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The first amphibian skin antimicrobial peptide (AMP) to be identified was named bombinin, reflecting its origin from the
skin of the European yellow-bellied toad (Bombina variegata). Bombinins and their related peptides, the bombinin Hs, were
subsequently reported from other bombinid toads. Molecular cloning of bombinin-encoding cDNAs from skin found that
bombinins and bombinin Hs were coencoded on the same precursor proteins. Here, we report the molecular cloning of two
novel cDNAs from a skin secretion-derived cDNA library of B. variegata whose open-reading frames each encode a novel
bombinin (GIGGALLNVGKVALKGLAKGLAEHFANamide) and a C-terminally located single copy of a novel nonapeptide
(FLGLLGGLLamide or FLGLIGSLLamide). These novel nonapeptides were named feleucin-BV1 and feleucin-BV2, respectively.
The novel bombinin exhibited 89% identity to homologues from the toads, B. microdeladigitora and B. maxima. The feleucins
exhibited no identity with any amphibian AMP archived in databases. Synthetic feleucins exhibited a weak activity against
Staphylococcus aureus (128-256 mg/L) but feleucin-BV1 exhibited a synergistic action with the novel bombinin. The present report
clearly demonstrates that the skin secretions of bombinid toads continue to represent a source of peptides of novel structure that

could provide templates for the design of therapeutics.

1. Introduction

Amphibians are generally slow moving, soft skinned and
inhabit environments that are often laden with potentially
pathogenic microbes [1]. Thus, in order to survive in such
conditions, they have developed a potent chemical defense
system within their skin secretions that contains, on the
one hand, numerous pharmacologically active peptides to
ward off predators and, on the other hand, a plethora of
broad-spectrum antimicrobial peptides (AMPs) to prevent
microbial infection [2]. In fact, the largest cohort of AMP
structures currently known is from amphibian skin sources,
despite their presence in many other life forms, including
plants [3, 4].

Based on their primary structures and/or secondary
structural characteristics, AMPs isolated from amphibian

skin can be classified into three broad groups [4-6]. (1) The
first contains the linear amphipathic helical peptides which
are devoid of cysteinyl residues; examples are the magainins,
isolated from the African clawed frog, Xenopus laevis, and
the bombinins, isolated from bombinid toads. (2) The sec-
ond group is the peptides isolated from various ranid frog
species and these can be further classified into four different
subgroups. However, all contain two cysteinyl residues that
form an intramolecular disulphide bond at their C-terminals.
(3) The third group includes the temporins, short peptides of
usually 14 amino acid residues that were originally isolated
from Rana temporaria [7]. Despite their diversity in primary
structure, most AMPs contain a high proportion of both
cationic and hydrophobic amino acid residues arranged to
form amphipathic structures. This structural feature is a
major determinant in facilitating their selective electrostatic


http://dx.doi.org/10.1155/2014/671362

interactions with the surfaces of bacterial membranes that are
rich in anionic phospholipids [8-11].

AMPs were first reported from amphibian skin by
Csordas and Michl in 1970, when they described the pep-
tide bombinin, a 24-residue antimicrobial and haemolytic
peptide from the skin of the European yellow-bellied toad,
Bombina variegata [12]. This original report was somewhat
underestimated in importance by the scientific community
until the discovery of the magainins by Zasloff, in 1987, a
paper that essentially launched the field of amphibian skin
AMP research [13]. From this time, many amphibian species
were studied and several groups revisited the bombinid toads,
resulting in the discovery of a large number of peptides with
antimicrobial activities [14]. These peptides were grouped
into two families based on their primary structural features.
(1) The bombinin-like peptides (BLPs) consisted of 24-27
amino acid residues with highly conserved amidated C-
terminal sequences but with more variable sequences out-
side this region when compared to the prototype peptide,
bombinin. (2) The bombinins Hs, which consist of 17-20
amino acid residues, are more hydrophobic and haemolytic.
The “H” suffix was a reflection of their high degrees of both
hydrophobicity and haemolytic activity. Members of each
group have highly conserved overall structures differing from
one another by only a few amino acid residues [14]. Many
molecular cloning studies of skin peptide precursor-encoding
c¢DNAs in bombinid toads have shown that bombinins and
bombinin Hs are coencoded within the same biosynthetic
precursors [15-17].

Here, we describe the molecular cloning of two novel
peptide precursor-encoding cDNAs from a Bombina varie-
gata skin secretion-derived cDNA library. Each encoded the
same novel bombinin of 27 amino acid residues and also a
second novel peptide of 9 amino acid residues with different
primary structures in each precursor. The 9-residue peptides
each possessed an N-terminal Phe (F) residue and a C-
terminal amidated Leu (L) residue and were named feleucins,
in accordance. Synthetic replicates of all three peptides
(the bombinin and both feleucins) exhibited antimicrobial
activity although the feleucins were significantly less potent
than the bombinin. Nevertheless, the feleucins represent the
prototypes of a new class of AMP from bombinid toad skin
secretion and they are among the smallest endogenous AMPs
so far reported from amphibian skin.

2. Materials and Methods

2.1. Specimen Biodata and Secretion Acquisition. Specimens
of B. variegata (n = 12) were obtained from a commercial
source as captive-bred metamorphs and were raised to matu-
rity in vivaria for a period of 18 months. The skin secretions
were obtained from the toads by gentle electrical stimulation
(4 ms pulse width, 50 Hz, and 5 V), using platinum electrodes
rubbed over the moistened dorsal skin surface at 10 s intervals
following the procedure originally described by Tyler et al.
[18]. Secretions were washed from the skin using deionised
water, snap-frozen in liquid nitrogen, and lyophilised. All
procedures on toads were carried out under appropriate
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UK animal licenses and had been approved by the local
ethical committee. The sample used in the present study
represented 15 mg dry weight of lyophilised skin secretion
that had been dissolved in 5mL of trifluoroacetic acid
(TFA)/water (0.1:99.9, v/v) and clarified by centrifugation
and the decanted supernatant was frozen at —20°C and stored
in this state for 12 years [19]. A sample (0.5 mL) was originally
removed for reverse phase HPLC analysis prior to freezing
of the remainder. The frozen sample was removed from the
freezer, thawed at room temperature, and then snap-frozen
in liquid nitrogen prior to lyophilisation. Approximately,
12.5 mg dry weight of skin secretion residue was recovered
following this procedure.

2.2. Molecular Cloning of Novel AMP Precursor-Encoding
cDNAs. Five mg of lyophilised skin secretion was dissolved
in ImL of mRNA stabilisation buffer and polyadenylated
mRNA was isolated from this solution using magnetic oligo-
dT beads as described by the manufacturer (Dynal Biotech,
UK) and reverse-transcribed. The cDNA was subjected to
3'-RACE procedures to obtain full-length prepro-bombinin
nucleic acid sequence data using a SMART-RACE kit (Clon-
tech, UK) essentially as described by the manufacturer.
Briefly, the 3'-RACE reactions employed an NUP primer
(supplied with the kit) and a degenerate sense primer (SI; 5'-
GATGAWKTTTAAGTACATARTTGCRGT-3') (W = A/T;
K = T/G; R = A/G) that was designed to a highly conserved
domain in the 5'-untranslated region of previously charac-
terised bombinin precursor-encoding cDNAs from Bombina
species [15-17]. The PCR cycling procedure was as follows.
Initial denaturation step: 60 s at 94°C; 35-cycle denaturation:
30 sat 94°C; primer annealing: 30 s at 58°C; extension: 180 s at
72°C. PCR products were gel-purified, cloned using a pGEM-
T vector system (Promega Corporation), and sequenced
using an ABI 3100 automated sequencer.

2.3. Identification and Structural Analysis of Novel AMPs
Deduced from Cloned Precursor-Encoding cDNAs. A second
5mg sample of lyophilised skin secretion was dissolved
in 1mL of 0.05 (v/v) trifluoroacetic acid (TFA)/water and
clarified of microparticulates by centrifugation (1500 xg) for
10 min. The clear supernatant was decanted and pumped
directly onto a Cecil CE4200 Adept (Cambridge, UK) gra-
dient reverse phase HPLC system, which is fitted with an
analytical column (Phenomenex C-5, 0.46cm x 25cm).
After a 10min period of equilibration in start buffer
(0.05% v/v TFA/water), peptides were eluted using a gra-
dient formed from start buffer to 0.05/19.95/80.00 (v/v/v)
TFA/water/acetonitrile in 240 min at a flow rate of 1 mL/min.
Fractions were collected automatically at 1 min intervals and
the column eftluent was continuously monitored at A 214 nm.
Dead volume between column and fraction collector was
minimal (20 yL). The molecular masses of peptides in each
chromatographic fraction were determined using matrix-
assisted laser desorption/ionisation and time-of-flight mass
spectrometry (MALDI-TOF MS) on a linear time-of-flight
Voyager DE mass spectrometer (Perseptive Biosystems,
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MA, USA) in positive detection mode, using a-cyano-4-
hydroxycinnamic acid as the matrix. Internal mass calibra-
tion of the instrument with known standards established
the accuracy of mass determination as +0.1%. Peptides with
masses coincident with those of cloned precursor-deduced
mature peptides were subjected to MS/MS fragmentation
sequencing using an LCQ Fleet electrospray ion-trap mass
spectrometer (Thermo Scientific, San Jose, CA, USA).

2.4. Solid-Phase Peptide Synthesis. Replicates of each of the
three novel peptides were chemically synthesised by solid-
phase Fmoc chemistry using a PS3 automated solid-phase
synthesiser (Protein Technologies, Inc., AZ, USA). Following
cleavage from the resin and deprotection, each synthetic
peptide was analysed by both reverse phase HPLC and
MALDI-TOF mass spectrometry to establish degree of purity
and authenticity of structure.

2.5. Antimicrobial Assays. The antimicrobial activity of each
synthetic peptide was assessed by means of determining
minimal inhibitory concentrations (MICs) against reference
strains of Gram-positive bacteria, Staphylococcus aureus
(NCTC 10788), Gram-negative bacteria, Escherichia coli
(NCTC 10418), and yeast, Candida albicans (NCPF 1467),
respectively. The model microorganisms were initially incu-
bated in Mueller-Hinton Broth (MHB) for 16-20 h. Upon
achieving their respective logarithmic growth phases, as
measured by the optical density (OD) of media at 550 nm,
the cultures were diluted to 1 x 10° colony-forming units
(cfu)/mL for the bacteria and to 5 x 10° cfu/mL for the yeast.
Samples of these were then added to 96-well microtitre plates
and mixed with the peptides in a range of concentrations
between 1 and 512mg/L. After a 24h incubation, the OD
of each well was measured at 550 nm using a Synergy HT
plate reader (BioTek, USA), and the data were analysed
using Graph Pad Prism 5 software. The MIC was defined
as the minimum concentration of peptide which inhibits
microbial growth (i.e., giving an OD identical to that of the
negative control and culture medium with no organisms).
Positive controls were also included and these contained
organism cultures with no added peptides. After performing
the MIC assays, 10 uL of the medium from each well was
inoculated onto a Mueller-Hinton agar (MHA) plate and
incubated for 24 h for measurement of minimum bactericidal
concentrations (MBCs). These were defined as the lowest
concentration of peptide from which no colonies could be
grown.

2.6. Assessment of Possible Synergistic Effects between AMPs.
The possible synergistic interactions between the peptides
were assessed by means of checkerboard titrations [20, 21].
In these assays, peptide A is diluted along the rows of a 96-
well plate from concentrations of 4 x MIC to 0 x MIC, while
peptide B is diluted in the same way along the columns. The
tested microorganism used was the Gram-positive bacterium
S. aureus (NCTC 10788). Peptide solutions of appropriate
concentrations were inoculated with microorganism cultures
(10°-10° colony forming units/mL) and the 96-well plates

were incubated for 18 h at 37°C in a humidified atmosphere.
Growth was measured by optical density (OD) of the bacterial
culture at A 550 nm using an ELISA plate reader (BioTek
Synergy HT). The result was calculated as the lowest cumu-
lative fractional inhibitory concentration (} FIC), where all
wells were nonturbid but along the turbidity/nonturbidity
interface. The calculation was as follows: )’ FIC = A/MIC, +
B/MICg, where A and B represent respective MICs when
in combination and MIC, and MICj represent the MICs of
peptide A and peptide B alone. The value of ) FIC < 0.5
indicates increasing degrees of synergy, whereas a ) FIC of
1 shows an additive effect with no synergy [20, 21].

2.7. Haemolysis Assay. The haemolytic activity of each pep-
tide was measured by incubating a range of concentrations
of each synthetic peptide (1-512 mg/L) with a 4% suspension
of horse erythrocytes that had been previously prepared
by repeated washings with sterile PBS, centrifugations, and
resuspensions. After incubation for 120 min, the suspensions
were centrifuged at 900 xg for 5min to loosely pellet but
not disrupt the cells. Optical density (OD) measurements of
supernatants at 550 nm were recorded using a Synergy HT
plate reader. The incubation of erythrocytes with 1% (v/v)
Triton X-100 in PBS was designated as a positive control
(100% haemolysis) and with PBS alone as a negative control
(0% haemolysis).

3. Results

3.1. Molecular Cloning of Novel AMP Precursor-Encoding
cDNAs. Two different full-length ¢cDNAs encoding novel
peptides were consistently and repeatedly cloned (>25 repli-
cates of each) from the skin secretion-derived cDNA library
of Bombina variegata (Figurel). Their respective open-
reading frames exhibited very high degrees of similarity
in both nucleotide and translated amino acid sequences
(Figure 1) and each contained 133 amino acid residues. The
domain architecture of each precursor protein was likewise
identical consisting of a putative signal peptide (MNFKYI-
VAVSFLIASTYA) occupying residues 1-18, a single copy
of the same novel 27-amino-acid-residue bombinin (GIG-
GALLNVGKVALKGLAKGLAEHFAN) occupying positions
44-70, and a different single copy of a novel 9-amino-acid-
residue feleucin (BV1-FLGLLGGLL or BV2-FLGLIGSLL)
occupying positions 124-132. The name feleucins was coined
to phonetically represent their structural features of pos-
sessing N-terminal Phe (F) residues and C-terminal Leu
(L) amide residues. Note that the two feleucins differ in
primary structure by conservative substitutions at posi-
tions 5 (Leu/Ile) and 7 (Gly/Ser), respectively. Interestingly,
bombinin is posttranslationally cleaved from the precursor by
cleavage at a single Arg (R) residue flanking the N-terminal
Gly (G) and it is cleaved and amidated following the C-
terminal Asn (N) at a classical-GKR-cleavage/amidation site
where the Gly (G) residue acts as a donor of its a-amino
group to form the amide moiety. In contrast, the feleucins
are cleaved from the precursor at a classical double basic
cleavage site (-Lys-Arg-, -KR-) which flanks their respective
N-terminals and are amidated directly by the Gly (G) residue
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1 50
FEL  BVI (1) ATGAATTTTAAGTACATAGTTGCAGTGTCCTTTTTAATAGCATCTACATA
FEL  BV2 (1) d

51 100
FEL  BVI  (51) TGCACGAAGTGTAAAGAATGATGAACAGTCTCTGAGTCAGAGGGATGTTT
FEL  BV2  (51)

101 150
FEL BVI  (101) TAGATGAAGAATCACTGAGGGAAATCAGAGGTATAGGAGGAGCCCTCCTA
FEL BV2  (101)

151 200
FEL BVl (151) AATGTTGGTAAAGTAGCTTTAAAAGGCTTGGCTAAAGGATTGGCTGAGCA
FEL BV2  (151) C

201 250
FEL BVl (201) TTTTGCGAATGGGAAGAGAACAGCTGAAGATCATGAAATGATGAAAAGAC
FEL BV2  (201)

251 300
FEL BVI  (251) TGGAAGCCGCAATGCGTGATCTAGATTCCTTGGATCATCCAGAGGAAGCT
FEL BV2  (251) T T

301 350
FEL BVI  (301) TCTGAAAAGGAAACCAGAAGCTTCAATCAAGAGGAGATTGCAAATCTTTA
FEL BV2  (301)

351 400
FEL BVI  (351) TACTGAAAAAGAGAAACGCTTTTTAGGTTTGCTTGGTGGTTTACTTGGAT
FEL  BV2  (351)  —=m-mmmmmmmmemememomeoooo A--m-mh--mmm-

401
FEL BVI  (401) AA
FEL BV2  (401) AL

(@)

1 50
FEL BV1 (1) MNFKYIVAVSFLIASTYARSVKNDEQSLSQRDVLDEESLREIRGIGGALL
FEL  BV2 (1)

51 100
FEL  BVI  (51) NVGKVALKGLAKGLAEHFANGKRTAEDHEMMKRLEAANRDLDSLDHPEEA
FEL  BV2  (51) v Yooem

101 133
FEL Bv1  (101) SEKETRSFNQEETANLYTEKEKRFLGLLGGLLG
FEL BV2 (101) I-§———

()

FIGURE 1: Alignment of open-reading frame nucleotide sequences of cloned cDNAs encoding feleucin-BV1 (FEL BV1) and feleucin-BV2
(FEL BV2) precursors. Putative signal peptide domains are double-underlined, mature bombinin domains are single-underlined, and mature
feleucin domains are underlined with dotted lines. Sites of nucleotide sequence differences are indicated (a). Alignment of open-reading frame
translated amino acid sequences of cloned cDNAs encoding feleucin-BV1 (FEL BV1) and feleucin-BV2 (FEL BV2) precursors. Putative signal
peptide domains are double-underlined, mature bombinin domains are single-underlined, and mature feleucin domains are underlined with
dotted lines. Sites of amino acid sequence differences are indicated (b).
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TaBLE 1: Predicted b- and y-ion series (singly and doubly charged) arising from MS/MS fragmentation of (a) the novel bombinin, (b) feleucin-
BV1, and (¢) feleucin-BV2. Ions observed in actual MS/MS spectra are indicated in bold typeface.

()

Number 1 b(1+) b(2+) Seq. y(1+) y(2+) Number 2
1 58.02875 29.51801 G 27
2 171.11282 86.06005 I 2560.50874 1280.75801 26
3 228.13429 114.57078 G 244742467 1224.21597 25
4 285.15576 143.08152 G 2390.40320 1195.70524 24
5 356.19288 178.60008 A 2333.38173 1167.19450 23
6 469.27695 235.14211 L 2262.34461 1131.67594 22
7 582.36102 291.68415 L 2149.26054 1075.13391 21
8 696.40395 348.70561 N 2036.17647 1018.59187 20
9 795.47237 398.23982 \% 1922.13354 961.57041 19
10 852.49384 426.75056 G 1823.06512 912.03620 18
1 980.58881 490.79804 K 1766.04365 883.52546 17
12 1079.65723 540.33225 \% 1637.94868 819.47798 16
13 1150.69435 575.85081 A 1538.88026 769.94377 15
14 1263.77842 632.39285 L 1467.84314 734.42521 14
15 1391.87339 696.44033 K 1354.75907 677.88317 13
16 1448.89486 724.95107 G 1226.66410 613.83569 12
17 1561.97893 781.49310 L 1169.64263 585.32495 1
18 1633.01605 817.01166 A 1056.55856 528.78292 10
19 1761.11102 881.05915 K 985.52144 493.26436 9
20 1818.13249 909.56988 G 857.42647 429.21687 8
21 1931.21656 966.11192 L 800.40500 400.70614 7
22 2002.25368 1001.63048 A 687.32093 344.16410 6
23 2131.29628 1066.15178 E 616.28381 308.64554 5
24 2268.35519 1134.68123 H 487.24121 244.12424 4
25 2415.42361 1208.21544 F 350.18230 175.59479 3
26 2486.46073 1243.73400 A 203.11388 102.06058 2
27 N-Amidated 132.07676 66.54202 1
(b)

Number 1 b(1+) Seq. y(1+) Number 2

1 148.07570 F 9

2 261.15977 L 754.51859 8

3 318.18124 G 641.43452 7

4 431.26531 L 584.41305 6

5 544.34938 L 471.32898 5

6 601.37085 G 358.24491 4

7 658.39232 G 301.22344 3

8 771.47639 L 244.20197 2

9 L-Amidated 131.11790 1

(c)

Number 1 b(1+) Seq. y(1+) Number 2

1 148.07570 F 9

2 261.15977 L 784.52915 8

3 318.18124 G 671.44508 7

4 431.26531 L 614.42361 6

5 544.34938 I 501.33954 5

6 601.37085 G 388.25547 4

7 688.40288 S 331.23400 3
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(c) Continued.

Number 1 b(1+) Seq. y(1+) Number 2
8 801.48695 244.20197 2
9 L-Amidated 131.11790 1

TABLE 2: Summary of the minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of the three novel
AMPs (bombinin, feleucin-BV1, and feleucin-BV2) described in this study. NA: not active. Haemolysis values are those effecting 100% lysis

of red blood cells in 120 min.

Peptides MIC (mg/L) MBC (mg/L) Haemolysis (mg/L)
S. aureus E. coli C. albicans S. aureus E. coli C. albicans Horse red cells

Bombinin 8 32 32 32 32 32 64
Feleucin-BV1 256 NA NA 256 NA NA >512
Feleucin-BV2 128 NA NA 256 NA NA >512
amide donor that flanks their respective C-terminals. As 1061
in most amphibian skin peptide precursor proteins, the
intervening peptide domains are rich in acidic amino acid
residues. 2 812 7

The bombinin and feleucin amino acid sequences were £
separately subjected to online BLASTp (protein/protein) 8 o5
analyses, using the National Center for Biotechnology Infor- 2
mation (NCBI) US database. Although the database con- 2z
tained many bombinins and related peptides, none were = 3154
identical to the bombinin described here. The top hits were
bombinins from the Oriental toads, Bombina microdeladig-
itora (accession number ABZ86151-89% identity), Bombina 66

maxima (accession number Q58T59-89% identity), and
Bombina orientalis (accession number CACI11122-85% iden-
tity). All of these bombinin precursors had typical bombinin
H peptides encoded towards their C-terminals. In contrast,
feleucin did not afford a single hit neither with any amphibian
skin AMP peptide nor indeed with any AMP from any source.
The nucleotide sequences of the precursor-encoding cDNAs
of both peptides have been deposited in the EMBL Nucleotide
Sequence Database under the accession codes HG794243
(feleucin-BV1) and HG794244 (feleucin-BV2).

3.2. Identification and Structural Analysis of Bombinin and
Feleucins. All three predicted novel peptides were identi-
fied in reverse phase HPLC fractions of B. variegata skin
secretion based on their respective deduced monoisotopic
molecular masses (bombinin = 2616.51 Da; feleucin-BV1
= 900.57 Da; feleucin-BV2 = 930.58 Da) as indicators in
MALDI-TOF mass spectrometric analysis. Their elution
positions/retention times are indicated in the appropriate
regions of the reverse phase HPLC chromatogram in Figure 2.
The fractions containing the predicted peptide molecular
masses were infused into the electrospray ion-trap mass
spectrometer and the appropriate doubly charged ions from
each peptide were separately trapped and subjected to
MS/MS fragmentation sequencing analysis to confirm their
respective identities. The data obtained are shown in Table 1.

3.3. Antimicrobial and Haemolytic Assays. The data obtained
in these assays are summarised in Table 2. The synthetic
replicate of the novel bombinin, as expected, displayed

T T T
136:42 156:49 176:57

Time (mm:ss)

T
96:27 116:34 197:04

FIGURE 2: Region of reverse phase HPLC chromatogram of
Bombina variegata skin secretion with arrows indicating elution
positions/retention times of fractions containing peptides with
molecular masses coincident with those predicted for the novel
bombinin (arrow number 1), feleucin-BV2 (arrow number 2),
and feleucin-BV1 (arrow number 3). The y-axis represents the
absorbance in milliabsorbance units (mA) at A 214 nm and the x-
axis represents the retention time in minutes and seconds.

relatively potent and broad-spectrum activity against all three
test microorganisms with MICs of 8 mg/L, 32mg/L, and
32 mg/L against S. aureus, E. coli, and C. albicans, respectively.
The synthetic feleucins, in contrast, were only moderately
active against S. aureus exhibiting MICs of 256 mg/L (BV1)
and 128 mg/L (BV2), respectively. Both peptides had no effect
on E. coli or C. albicans at concentrations up to and including
512mg/L. The MBC values for the novel bombinin against
all three test microorganisms were 32mg/L and those for
both feleucins against S. aureus were 256 mg/L (Table 2). The
novel bombinin caused 100% haemolysis at a concentration
of 64 mg/L while both feleucins were essentially ineffective in
the lysis of red blood cells at the highest concentration tested
(512mg/L) (Table 2). The existence of possible synergistic
effects between the novel bombinin and the feleucins was
investigated using a checkerboard assay and the data are
summarised in Table 3. The combination of feleucin-BV1and
feleucin-BV2 produced an additive effect (FIC index of 1.0)



BioMed Research International

TABLE 3: Summary of the combinational effects of the three novel
AMPs (bombinin, feleucin-BV1, and feleucin-BV2) described in this
study against S. aureus. FIC indices are shown in the top panel and
raw data in the lower panel.

()

Peptide combination FIC index Result of combination

Feleucin-BV1 + feleucin-BV2 1 Additive
Bombinin + feleucin-BV1 0.5 Synergistic
Bombinin + feleucin-BV2 0.625 Additive

(b)
Lowest FIC index ([A]/[B] in mg/L)

Microorganism
Peptide A + Peptide A + Peptide B +
peptide B peptide C peptide C
S. aureus 0.5 (2/64) 0.625 (4/16) 1(128/64)
Peptide A is bombinin.

Peptide B is feleucin-BV1.
Peptide C is feleucin-BV2.
[A] and [B] are the MIC fractions or multiples in combination.

as did the combination of the novel bombinin and feleucin-
BV2 (FIC index of 0.625). However, the novel bombinin and
feleucin-BV1 in combination produced a synergistic effect
(FIC index of 0.5).

4. Discussion

AMPs constitute the most abundant group of peptides in
amphibian skin secretions and occur invariably alongside an
array of pharmacologically active peptides (PAPs) rendering
these secretions among the most molecularly diverse in
nature [1-9, 22]. Their primary functions are in chemical
defense against predators (PAPs) and in preventing infection
from microorganisms in their microbially rich environments
(AMPs) [1-9]. Many families of AMPS have been reported
from such secretions and members of each are classified on
the basis of their primary structural similarities and/or the
presence of well-defined structural motifs [1-9].

One of the archetypal families of amphibian skin AMPs is
the bombinins, originally discovered in the skin of Bombina
variegata due to their haemolytic/antimicrobial activities [12].
Bombinins have subsequently been found in abundance and
with a high degree of primary structural diversity in the
skins/skin secretions of all bombinid toads investigated to
date [14]. In addition, within a single species, the bombinins
occur in multiple isoforms often differing by as little as a
single amino acid residue and they are generally C-terminally
amidated [14].

Following the advent of molecular cloning technology
and its application to amphibian skin peptide research, the
c¢DNAs encoding the biosynthetic precursors of bombinins
were successfully cloned. Each translated amino acid
sequence was found to contain both single copies of a
bombinin and, located towards the C-terminus, a single
copy of a bombinin H [15-17]. The latter peptides were so
named as they possessed a more potent haemolytic activity

than bombinins due to their higher content of hydrophobic
amino acid residues [14].

Here, we have cloned two novel cDNAs from a skin
secretion-derived library of B. variegata, one of the most
extensively and longest-studied species; and while each
encodes a precursor containing a single copy of a novel
bombinin, in each there is a single copy of a different
novel nonapeptide amide located towards their C-terminals.
These peptides were named feleucins-BV1 and BV2, and they
differ in primary structure by two conservative substitutions,
L/T at position 5 and G/S at position 7. Of their nine
amino acid residues, 6 are hydrophobic (F/L/I) and 3 are
hydrophilic (G/S). Neither of the feleucins contained an
acidic (E/D) or basic (K/R) amino acid residue and their
C-terminal carboxyl groups were blocked through amida-
tion. Despite their high degree of hydrophobicity, neither
peptide possessed haemolytic activity up to concentrations
of 512mg/L, in contrast to the bombinin H peptides [23].
However, their antimicrobial potencies were relatively low
and both were only effective against the model Gram-positive
bacterium S. aureus. It remains unclear whether AMPs in
these complex defensive skin secretions act on their own
or cooperate/interact with others. Early studies on AMPs
from African clawed frog (Xenopus laevis) skin suggested
that cooperative effects did in fact occur between different
peptides [24]. In view of this, it was decided to investigate
possible synergistic actions between the novel bombinin
and the feleucins using a standard checkerboard assay [20,
21]. Bombinin in combination with feleucin-BV2 and both
feleucins in combination produced additive effects with no
evidence of synergism. In contrast, bombinin in combination
with feleucin-BV1 produced a clear synergistic effect. In
view of the high degree of structural diversity of AMPs in
amphibian defensive skin secretions and the widely held
view that such secretions, like venoms, act in a holistic
manner through numerous intermolecular interactions, it
would not be surprising to observe such cooperative effects
and, indeed, this has been previously reported for the mag-
ainins from Xenopus skin [1-9, 24]. Although the feleucins
are among the smallest amphibian skin AMPs, recently, an
AMP consisting of 8 amino acid residues—FFFLSRIFa—
and named temporin-SHf was reported from the skin of the
North African ranid frog, Pelophylax saharica [25]. While
this AMP had a more potent and broad-spectrum activity
than the feleucins, this was probably due to its high content
of phenylalanyl (F) residues (50%) and the possession of a
cationic residue (arginine-R). Enhancing the cationicity of
the feleucin template may result in parallel enhancement of
potency and spectrum of action.

5. Conclusions

In conclusion, novel prototype AMPs, the feleucins, have
been identified in the skin secretion of the bombinid toad, B.
variegata, and are coencoded in a common precursor protein
with a novel bombinin. These nonapeptide amides are among
the smallest AMPs so far reported from amphibian skin
secretions and are, additionally, among the smallest AMPs so



far reported from nature. Amphibian skin secretions, even
those of intensively studied species, such as B. variegata,
still represent unique resources for the discovery of novel
bioactive peptides that could serve as templates for the
rational design of novel peptide therapeutics.
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