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Abstract

Exogenous interleukin 6 (IL-6), synthesized at the initiation of the acute phase response, is considered responsible for
signaling hepatocytes to produce acute phase proteins. It is widely posited that IL-6 is either delivered to the liver in an
endocrine fashion from immune cells at the site of injury, or alternatively, in a paracrine manner by hepatic immune cells
within the liver. A recent publication showed there was a muted IL-6 response in lipopolysaccharide (LPS)-injured mice
when nuclear NFkB was specifically inactivated in the hepatocytes. This indicates hepatocellular signaling is also involved in
regulating the acute phase production of IL-6. Herein, we present extensive in vitro and in vivo evidence that normal
hepatocytes are directly induced to synthesize IL-6 mRNAs and protein by challenge with LPS, a bacterial hepatotoxin, and
by HGF, an important regulator of hepatic homeostasis. As the IL-6 receptor is found on the hepatocyte, these results reveal
that induction of the acute phase response can be regulated in an autocrine as well as endocrine/paracrine fashion. Further,
herein we provide data indicating that following partial hepatectomy (PHx), HGF differentially regulates IL-6 production in
hepatocytes (induces) versus immune cells (suppresses), signifying disparate regulation of the cell sources involved in IL-6
production is a biologically relevant mechanism that has previously been overlooked. These findings have wide ranging
ramifications regarding how we currently interpret a variety of in vivo and in vitro biological models involving elements of
IL-6 signaling and the hepatic acute phase response.

Citation: Norris CA, He M, Kang L-I, Ding MQ, Radder JE, et al. (2014) Synthesis of IL-6 by Hepatocytes Is a Normal Response to Common Hepatic Stimuli. PLoS
ONE 9(4): e96053. doi:10.1371/journal.pone.0096053

Editor: Laurent Rénia, Agency for Science, Technology and Research - Singapore Immunology Network, Singapore

Received November 4, 2013; Accepted April 2, 2014; Published April 24, 2014

Copyright: � 2014 Norris et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by National Institutes of Health grants CA103958, CA035373, CA76541, HL094295. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: wmars@pitt.edu

. These authors contributed equally to this work.

Introduction

IL-6 is a key mediator of the acute phase response. Additionally,

IL-6 plays a central role in restoring normal hepatic function

following liver injury [1,2]. During a general acute phase response,

IL-6, produced by immune cells at the site of injury, is deemed to

be one of the primary factors that signals liver hepatocytes to

produce acute phase proteins [3]. The predominant belief is that

IL-6 is released into the circulation, taken up by the liver, and the

resident hepatocytes then recognize the IL-6 as a stimulus to begin

production of acute phase proteins. Similarly, a principal

hypothesis has developed positing that in situations where an

injury is inflicted directly upon the liver it is the resident immune

cells, such as the Kupffer cells (hepatic macrophages), that

primarily produce the IL-6 used for stimulating acute phase

protein production. These hepatic immune cells are considered to

be the exclusive providers of the IL-6 that subsequently signals

hepatocytes in the damaged liver to produce acute phase proteins

while helping to restore hepatic function [1,2]. Still, although both

IL-6 and these internal immune cells are important for hepatic

regeneration [4,5], an exact understanding of how the two

contribute to hepatic repair is still wanting.

LPS injection is often used to mimic systemic, gram-negative

bacterial infections that induce an acute phase response, and IL-6

mRNA production is known to subsequently occur under the

transcriptional control of NFkB [6,7]. Maeda et al. established that

when NFkB function is selectively inactivated in hepatocytes, IL-6

mRNA production is severely muted in whole livers obtained from

mice at 4 h after injection of LPS [6]. As the time frame in which

the observed the changes in IL-6 was rapid, and the induced

NFkB defect was hepatocyte-specific, these experiments suggested

to us that hepatocytes, in addition to immune cells, might also

serve as a direct source of IL-6 during an acute phase reaction, i.e.

the hepatic response might also have an autocrine component.

Previously, it was demonstrated that transplantation of wild type

bone marrow into IL-6 deficient animals is able to rescue normal

liver function in response to targeted hepatic injury, proving the

importance of immune cells in providing IL-6 to hepatocytes [8].

However, importantly, these marrow transplantation experiments

did not rule out the possibility that other, non-immune cell types

might also be capable of producing IL-6. Furthermore, although

production of IL-6 by hepatocytes has not specifically been

demonstrated, hepatocytes have been shown to produce other

cytokines in response to LPS treatment [9].
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We now show that primary hepatocytes cultured under

completely serum-free conditions can synthesize both IL-6

mRNAs and protein, and that the levels of IL-6 in these cultures

are subject to regulation by both LPS and HGF. In vivo, our studies

show that hepatocytes are capable of synthesizing both IL-6

mRNAs and protein following injury induced by LPS injection as

well as after hepatic resection. In the latter model, specific loss of

the HGF receptor (MET) in hepatocytes results in the anticipated

decrease in hepatic IL-6; however, global hepatic loss (all cell

types) leads to a relative increase with a concomitant enhanced

staining of IL-6 in a limited immune cell population. As we have

previously shown HGF suppresses LPS-induced production of IL-

6 in cultured macrophages via the MET receptor [10], it appears

likely that following a 70% PHx, HGF can suppress the

macrophage-mediated production of IL-6 while simultaneously

inducing it in hepatocytes. Importantly, this indicates that under

the appropriate circumstances, regulation of the endogenous

hepatocellular IL-6 receptor can be autocrine instead of end-

rocrine/paracrine [11].

Results

Primary rat hepatocytes produce IL-6 mRNA and protein
To initially test our hypothesis that hepatocytes can make IL-6,

purified hepatocytes from rat livers were isolated and plated in

primary cultures using completely serum-free conditions. Cell

extracts were then assayed for IL-6 mRNAs (RT-PCR) and

protein (western blot). Figure 1 indicates that both are present,

with hepatocytes showing low but consistent levels of IL-6 mRNAs

(Figures 1A, B) and mature protein (Figure 1C). To ascertain

whether the IL-6 was coming from contaminating macrophages in

the hepatocyte cultures, Kupffer cells were simultaneously isolated

and tested for mRNA and protein production. Surprisingly, IL-6

message in purified Kupffer cell extracts was only about 50% that

of hepatocyte cultures (Figures 1A, B). To verify these results and

identify the individual cells producing the protein and mRNA, we

next conducted immunofluorescence and mRNA fluorescent in situ

hybridization (FISH) studies on freshly plated cells from serum-

free hepatocyte cultures. Figure 1C illustrates that IL-6 protein is

present in the majority of newly cultured hepatocytes although not

in all of the freshly plated Kupffer cells. mRNA FISH verifies the

protein is likely coming from internal production of endogenous

IL-6 message (Figure 1D). In concert with the protein results,

isolated Kupffer cells, cultured and subjected to mRNA FISH at

the same time as the hepatocytes were heterogeneous, displaying

fewer positive cells overall than hepatocytes (Figure 1E) and

validating the results obtained from the RT-PCR assays. Finally,

we tested to see if the IL-6 protein is secreted from the serum free

hepatocyte cultures (Figure 1F). IL-6 was present in media from

the freshly plated cells and significantly decreased over time.

Hepatocytes express IL-6 mRNA after PHx
We next tested to see whether IL-6 is also produced by

hepatocytes in vivo in response to direct hepatic injury. The PHx

model of rat liver regeneration was utilized for these studies due to

the well-documented timing of surgically induced changes. In

remnant livers removed after 70% PHx, enhanced phosphoryla-

tion of MET, the HGF receptor, is detected from 5 to 60 min after

resection [12], NFkB translocation is evident as early as 30 min

after resection [13], and IL-6 mRNA levels begin to increase by

2 h, remaining elevated for 24 h [14]. We anticipated that in this

particular model, if IL-6 expression is hepatocellular, the mRNAs

should be apparent in the hepatocytes of remnant livers during the

time frame between 2 and 24 h after surgical resection. As shown

in Figure 2A, in resting livers there were minor quantities of

detectable IL-6 mRNAs in the organ under the conditions of our

assay. However, in livers we tested at 6 h after PHx, when the

circulating levels of IL-6 protein become elevated [14], IL-6

mRNAs were readily apparent across the tissue (Figure 2B),

correlating with a general increase in hepatic IL-6 protein and

RNA (Figure 2C). Double staining for IL-6 mRNAs and IL-6

protein demonstrated the individual cells producing the message

also harbor the protein (Figure 2D). The majority of these cells are

hepatocytes, as verified by double staining using the marker

albumin (Figure 2E); however, positive staining in macrophages is

also observed (Figure 2F). An increase in IL-6 staining, relative to

resting liver, could also be observed in both hepatocytes and

macrophages by immunohistochemistry (Figure 2G).

Hepatocytes express IL-6 mRNA in response to LPS in
vitro and in vivo

Administration of LPS can be used to mimic induction of a

systemic acute phase response. As hepatocytes have toll-like

receptors that allow NFkB signaling to be invoked after

stimulation with LPS [9], and as NFkB can act upstream of IL-

6 to control synthesis [6,7], we next tested to see whether LPS can

directly up-regulate IL-6 production in primary rat hepatocytes.

As shown in Figure 3A, IL-6 mRNAs were substantially increased

very early in response to LPS using our serum-free culture system.

To determine whether up-regulation of IL-6 by hepatocytes can

also occur in vivo, we next tested for the presence of hepatocellular

IL-6 mRNAs following LPS injection using the time frame of

Maeda et al [6]. As shown in Figure 3B (mRNA and merge panels),

at 4 h following LPS administration, IL-6 mRNAs are readily

detectable, whereas resting hepatocytes from animals injected with

a saline control harbor minimal quantities of IL-6 message.

Double staining with an antibody against albumin definitively

identifies a majority of the cells expressing IL-6 as hepatocytes,

although occasional positive immune cells were also observed

(Figure 3B). This increase was verified using immunohistochem-

istry as well (Figure 3C). We also verified there was NFkB signaling

at 1 h after LPS injection, when translocation of NFkB peaks after

LPS administration in mice [15]. An increase in nuclear staining

for the NFkB p65 subunit was found in hepatocytes from the LPS-

injected animals, relative to saline-injected controls, with staining

especially strong in patches throughout the tissue and around

hepatic vessels (Figure 3D). Our p65 data supports the finding that

there was a paucity of nuclear NFkB reported by Maeda et al when

nuclei from hepatocyte-specific NFkB knockouts, versus their

control counterparts, were subjected to EMSA at 1 h following

LPS injection [6]; however, surprisingly, we were unable to detect

nuclear staining for p50, the classical NFkB partner of p65, in

either treated or untreated animals (Figure 3E).

HGF regulates IL-6 production in hepatocytes
We were next interested in knowing if factors other than LPS

could stimulate production of IL-6 in hepatocytes in an NFkB -

dependent manner. HGF, a primary mitogen for hepatocytes, has

also been reported to mediate its effects in part via the NFkB

pathway [16]. Hence, we next determined whether HGF can also

affect IL-6 production in hepatocyte cultures, and whether this

correlates with concomitant changes in the NFkB pathway. Assays

for IL-6 mRNA levels in vitro focused on the first 30 min after HGF

stimulation due to the extremely short half-life of IL-6 mRNAs

that is directly related to message stability [17]. GAPDH, with a

half-life of at least 8 h [18], served as an internal control. The

addition of mitogenic doses of HGF (20 ng/ml) resulted in a

transient and significant enhanced level of IL-6 mRNAs

IL-6 Production by Hepatocytes
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Figure 1. IL-6 in serum-free cultured hepatocytes and Kupffer Cells. (A) Representative RT-PCR depicting IL-6 from a serum-free rat
hepatocyte culture (Heps) at 2 h after attachment (also see Figure 4A) and from fresh Kupffer Cells (KCs) at 15 min after attachment. GAPDH was used
as a positive control. Cells are from the same animal. (B) Densitometric analyses depicting percent IL-6 mRNA, as compared to GAPDH, with mean 6
s.e.m., in hepatocytes and Kupffer cells. n = number of independent trials using separate animals. * indicates statistical significance, P = 0.0238,
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(Figures 4A–C). Since high doses of HGF can suppress mitosis [19]

or induce apoptosis [20], for control purposes we also tested a non-

mitogenic dose of HGF (500 ng/ml, efficacy confirmed by lack of

thymidine incorporation, data not shown). In contrast to the

mitogenic dose of HGF, when the higher amount of HGF was

administered there was a significant decrease of IL-6 mRNAs over

time, likely reflecting its short half-life (Figures 4A–B). As

anticipated, results with the IL-6 mRNAs were also followed by

rapid fluctuations in the quantity of IL-6 protein as shown by both

western blot and immunofluoresence (Figures 4D, E). Concur-

rently, we examined whether the HGF-induced alterations in IL-6

levels corresponded with the expected outcomes for localization of

NFkB and its regulatory inhibitor, IkB. Individual staining for the

NFkB subunits, p50 and p65, showed that at mitogenic doses,

HGF elicited a significantly enhanced nuclear localization of the

NFkB dimer (Figures 5A, B). Enhanced translocation of NFkB to

the nucleus corresponded with an associated loss of cytoplasmic

IkB (Figure 5C), the protein that retains the NFkB dimer in its

inactive, cytoplasmic configuration. Conversely, when hepatocytes

were exposed to the non-mitogenic dose of HGF, no significant

changes were noted in the locations of p50, p65, or IkB

(Figures 5A, C), in accordance with the inability of this HGF

dose to increase IL-6 production.

Hepatocyte-specific loss of HGF signaling abrogates IL-6
production after PHx

HGF signaling through its receptor, MET, is an early in vivo

response following PHx [12]. To determine if the rise in

hepatocellular IL-6 we detected after PHx (see Fig. 2) occurs in

vivo in response to MET activation, we next performed resections

on mice where Cre-Lox technology was used to specifically

remove MET from the hepatocytes. Removal of MET was

confirmed by western blot (data not shown) with subsequent

abrogation of NFkB-p50 nuclear translocation in the remnant

liver at 6 h post-resection (Figures 6A and 6B). In the hepatocel-

lular targeted mice we observed the expected abrogation of IL-6

protein at 6 h post-surgery (Figures 6C and 6D), indicating that

HGF signaling through hepatocellular MET is necessary for the

increase in hepatic IL-6 that is observed after PHx.

Loss of HGF signaling enhances IL-6 production in
immune cells

Finally, we wondered if the cell source of IL-6 might be relevant

with regard to overall hepatic health. Mice with hepatocellular-

targeted deletion of MET are reported to have a high death rate at

48 h following PHx whereas surprisingly, mice with a whole body

deletion of the receptor have been reported to survive [21,22].

This suggests that in hepatocyte-specific knockouts, MET-medi-

ated signaling in the non-parenchymal cells may somehow be

deleterious to hepatic health. In a recent publication we

demonstrated that unlike what we now see with hepatocytes,

HGF instead suppresses IL-6 production in macrophages via

signaling through the MET receptor [10]. Further, unlike what we

observed in our WT animals (especially rats, see Figure 2G), we

did not readily observe morphologically identifiable activated

macrophages staining for IL-6 in the livers of animals where MET

was specifically removed from the hepatocytes. As IL-6 is an

important promoter of hepatocyte viability after PHx [23], we

hypothesized that the reason animals with global loss of MET fair

better than mice with hepatocyte targeting is because the

additional MET deficiency in immune cells subverts the HGF-

mediated suppression of IL-6, allowing for an enhanced produc-

tion of IL-6 that can then rescue the animals. In concordance with

this hypothesis, Borowiak et al. reported that whole body MET

knockout animals do display a marked elevation of IL-6 following

PHx when compared to their wild type controls [22]. To test if

removing MET from just the liver, as opposed to the whole body,

would invoke a similar effect, rats were pre-treated with shRNAs

through the superior mesenteric vein to specifically decrease MET

in whole livers, prior to performing hepatic resections. Previously

we reported that under these conditions, MET is transiently

suppressed and regeneration is delayed in the animals. Specifically,

at 24 h after shRNA injection (when the surgeries are performed)

MET mRNA levels are reduced ,1.5 fold, and tyrosine-

phosphorylated MET protein levels are decreased ,3 fold [24].

As anticipated, examination of the p50 subunit indicated that

translocation of NFkB to the nucleus was impaired at 1 h after

PHx in the shRNA-treated animals (Figure 7A). However, despite

the decrease in NFkB translocation, there was an early and

significant increase, rather than a decrease, in the quantity of IL-6

mRNA at 1 h post-PHx, when overall hepatic MET was

suppressed (Figure 7B). To determine if this increase in IL-6 was

due to immune cells producing more IL-6, tissues were stained for

IL-6. As shown in Figure 7C, strong staining is observed in a sub-

population of hepatic immune cells, albeit ones that do not appear

to be the classically activated macrophages, at 1 h post-PHx in the

shRNA-treated, but not scramble-treated, animals. This indicates

there is a sub-population of immune cells can be a source of

increased IL-6 production when overall MET is suppressed.

Discussion

There is a long history to the prevailing theory that immune

cell-generated IL-6 induces hepatocytes to manufacture acute

phase proteins [3,4,8]. Generally, it is thought that when an injury

occurs, no matter where the insult initiates, an immune reaction is

generated in response to the damage. This ultimately results in IL-

6 production and secretion, with the IL-6 then travelling to the

liver via the circulation. In cases where the injury occurs to the

liver itself, instead of releasing the IL-6 into the general circulation,

the endogenous immune cells present in the liver are thought to

act in a paracrine manner and provide IL-6 to their neighbouring

hepatocytes. Although the stimulus generating this immune cell-

mediated production of IL-6 within the liver is not always

apparent, for the PHx model of hepatic repair, there is some

evidence suggesting that products from natural bacterial flora

within the gut are released during the surgical manipulations. It is

between hepatocytes and Kupffer cells, two-tailed t-test. (C) Immunofluorescent staining showing IL-6 in rat hepatocytes (top, note the
comparatively large size and presence of typical bi-nucleated cells) and Kupffer cells (bottom) plated completely serum-free from the same animal.
Secondary antibody was conjugated with Cy3 (red). The left panel is a control visualized at the same gating with no primary antibody added. The
right panel is a phase contrast image of the cells taken at the same magnification just prior to staining. (D, E) mRNA FISH depicting IL-6 in
hepatocytes (D), or Kupffer cells (E) from the same animal. Arrows indicate IL-6 mRNA-negative Kupffer cells. Animal n = 8. Nuclei were stained with
Hoescht dye (blue). Probes were conjugated with Alexa 546 (red). Left to right, hybridization with: reagent control (no probe, used for gating),
negative control (labeled IL-6 intron), labeled IL-6 cDNA and labeled GAPDH cDNA (positive control). (F) Representative slot blot samples (bottom)
and analyses (top, n = 12) of media from freshly plated hepatocytes at 2 h after attachment (T0) or after another 2 h (2 h). * P = 0.0313 significance,
using paired two-tailed t-test. Scale bars, 20 mm in images.
doi:10.1371/journal.pone.0096053.g001
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thought that these stimulants then induce Kupffer cells to produce

IL-6 [25] and that subsequently, hepatocytes respond in a

paracrine manner to the IL-6 via their endogenous IL-6 receptor

[11]. Importantly, while our findings do not refute the hypothesis

that hepatocellular signaling can occur in response to exogenously

produced immune cell IL-6, we are now able to definitively

demonstrate that hepatocytes themselves can also synthesize both

IL-6 mRNAs and protein. Further, we are able to detect IL-6 in

the media that decreases over time, with the decrease likely due to

its short half-life [17]. Although IL-6 has been detected in the

media of primary hepatocytes in culture before [26], it was

generally interpreted as likely to be originating from contaminat-

ing macrophages. While secretion of IL-6 by contaminating

macrophages is certainly a possibility, the paucity of IL-6 in freshly

isolated Kuppfer cells versus the abundance observed in hepato-

cytes would argue against macrophages being the primary source

of protein (see Figure 1C). Overall, these findings indicate that

hepatocellular IL-6 once produced is secreted and can promote

IL-6 signaling, likely in an autocrine manner, although production

by hepatocytes may also be important for signaling to other

hepatic cell types such as the bile duct epithelium cells [27].

Our data clearly shows that IL-6 can be made by hepatocytes in

response to specific stimuli; however, several aspects of the

mechanisms regulating hepatocellular-mediated IL-6 production

are novel and will merit further study. First, we find that

hepatocytes produce IL-6 both in vitro and in vivo in response to

LPS, a factor well known to stimulate production of IL-6 in

immune cells via the classic NFkB pathway. While this work

demonstrates that LPS-mediated induction of IL-6 can occur in

hepatocytes, our data do not support the idea that production in

hepatocytes is occurring via a classic NFkB signaling mechanism.

Figure 3 clearly shows that only the p65 subunit of NFkB, and not

p50, translocates to the nucleus of hepatocytes at one h following

LPS injection. This suggests that IL-6 induction by LPS is either

occurring downstream of an alternative NFkB pathway or occurs

via a completely separate mechanism [28,29]. Notably, although

our data is seemingly at odds with two other studies where NFkB

was elevated in liver at 1 h post-LPS injection in whole liver [15]

but not in liver with hepatocellular inactivation of NFkB [6], an

important consideration is that the other two investigations were

performed using gel shift analyses without subsequent supershift

confirmation to ensure that both subunits of prototypical NFkB

were in the DNA-binding complex. Second, our data indicates

that hepatocytes can produce IL-6 in response to HGF both in vitro

and in vivo. In this case, the HGF-mediated stimulation of IL-6

appears to occur in a classic, NFkB-dependent manner (Figure 5),

indicating more than one signaling pathway (unknown and classic

NFkB) can induce hepatocellular production of IL-6. Third and

possibly of most importance, hepatocellular IL-6 induction in

response to HGF is exactly the opposite of what we recently

observed with regard to HGF and IL-6 in cultured macrophages

[10]; in cultured macrophages HGF suppresses production of IL-

6, again emphasizing that the mechanisms controlling IL-6

production in hepatocytes are unique from that of macrophages,

even when signaling is induced with the same ligand and receptor.

In this regard, while certainly not conclusive, the data presented in

Figures 6 and 7, combined with studies from the literature, suggest

that the source of IL-6 may be relevant for hepatic health,

especially with regard to signalling via HGF. Specific removal of

MET from mouse hepatocytes led to a marked suppression of IL-6

production after injury (Figures 6C and D), yet global suppression

of hepatic MET led to an increase that corresponded with staining

of IL-6 in a subset of immune cells (Figures 7B and C). The

simplest interpretation of this data is that in the globally suppressed

animals, the loss of MET signaling in hepatic immune cells

allowed for and enhanced IL-6 production in a subset of cells that

contributed to animal survival.

As it now appears that both hepatocytes and Kupffer cells can

make IL-6, albeit under different circumstances, this study opens

up a greater question regarding whether the cell source of IL-6 is

critical within any given context. For example, in the setting of

PHx, both HGF [12] and gut bacterial endotoxins (mimicking

LPS) participate in the regenerative process [25]. Our current data

anticipates a model in which normal functioning livers subjected to

hepatic resection are exposed to gut endotoxins that are then able

to promote IL-6 production in both hepatocytes and macrophag-

es. Simultaneously, resection-induced induction of active HGF

[12] promotes IL-6 production, but in hepatocytes only. As we

have previously shown that HGF can suppress IL-6 production in

LPS-stimulated macrophages [10], the combined data suggests

that context (i.e. induction of endotoxin signaling in the presence

or absence of HGF) may regulate which cells produce the IL-6, as

well as the quantity being made. Although IL-6 is generally

considered a protective cytokine since binding to its receptor has

been shown to protect hepatocytes during acute hepatic injury

[11], long-term exposure of the liver to IL-6 has paradoxically

been demonstrated to be injurious [30]. Hence, an interesting

hypothesis would be that during chronic injury, loss of the HGF-

mediated suppression of immune cell IL-6 over time results in an

enhanced production of immune cell IL-6 that is in part,

responsible for the further injuring the liver. Importantly, in this

latter scenario, if the loss of MET signaling were due to HGF

depletion rather than down-regulation of the receptor, adminis-

tration of HGF might prove beneficial. In support of this

hypothesis, when Kaido et al. continuously introduced rat HGF

to animals through genetically modified fibroblasts, there was a

significantly decreased liver injury following LPS injection [31].

Finally, it is worth noting that the inhibitory effects of HGF on

cytokine production in epithelia may be a general mechanism;

HGF has recently been shown to inhibit RANTES production in

Figure 2. IL-6 production by hepatocytes after PHx. Resting rat livers (A) or remnant livers removed 6 h after PHx (B) were probed for IL-6
mRNA by FISH. Probes, red; Nuclei, blue. Lower panel in B represents a higher magnification from the panel above it. Panels in A and B were taken
from hybridizations performed the same day and those at the lower magnifications were gated the same for the picture. Mock hybridizations (no
probe) were used as the immunofluorescent gating control. (C) Densitometric analysis of IL-6 on western blots using protein lysates prepared from
resting livers (T0) or remnant livers at 6 h post-PHx. Actin was used as a reference control. Animal n = 3. * indicates statistical significance (P = 0.0217),
two way t-test. On the right is a representative western blot and RT-PCR from a single animal’s whole liver showing the relative changes in protein
and mRNA when compared to control (actin for protein, GAPDH for mRNA). Numbers underneath are the numerical change relative to resting liver
(T0). (D, E, F) Simultaneous staining for IL-6 (D), albumin (E), or lysozyme C (LysC) (F) proteins (green) and IL-6 mRNA (red) in livers at 6 h after PHx.
Co-localization (merge) appears as yellow. Left panels were probed with the IL-6 cDNA and antibody against IL-6, albumin, or lysozyme C. Right
panels were probed with the IL-6 intron and secondary antibody only (controls). For D and E, broken line boxes represent the areas magnified in the
insets. For F, the initial magnification shown is higher and 2 separate regions containing macrophages have been magnified. Controls were used for
gating levels. (G) Immunohistochemical staining for IL-6 in resting rat livers or remnant livers removed 6 h after PHx. Arrows and arrowheads point to
hepatocytes and macrophages, respectively. Inset shows magnification of one of the macrophage arrowheads. Scale bars, 20 mm in images.
doi:10.1371/journal.pone.0096053.g002
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kidney epithelial cells by disrupting NFkB signaling [32]. Hence,

in addition to its many other established functions, HGF may also

have an innate ability to serve as a general anti-inflammatory

molecule for epithelia.

Methods

Materials
Experiments involving rats were performed using isolated cells

or livers from male Fisher 344 rats. Experiments involving mice

were performed using C57Bl/6 or MET D mice with a targeted

hepatocyte deletion. Unless specified, reagents were purchased

from Sigma (St. Louis, MO).

Animal studies
Ethics statement: All animal procedures were in accordance

with the NIH Guide for the Care and Use of Laboratory Animals

and were approved by the IACUC at the University of Pittsburgh

(protocol number 1009148). For primary cell isolations, hepato-

cytes and Kupffer cells were simultaneously isolated by an

adaptation of the standard 2-step collagenase perfusion [33] as

described [34]. Isolated hepatocytes were plated serum-free and

allowed to attach on 20% rat-tail collagen-coated plates or cover

slips (12 mm) for 2 h prior to fixation or media change with HGF

or LPS as indicated. Supernatants containing non-parenchymal

cells were pelleted at 2006g, resuspended and layered onto a 25–

50% Percoll gradient prepared in HBSS (BioWhittaker, Walkers-

ville, MD). Non-parenchymal cells enriched for macrophages were

collected and then plated in serum-free DMEM with glucose and

L-glutamine (4.5 g/L each; BioWhittaker) for no more than

15 min to prevent adherence of other non-parenchymal contam-

inants before washing and then either fixing or harvesting for

RNA [35]. Purity was verified using an antibody against CD11b

(BD Pharmingen, San Diego, CA). All experiments involving

primary cells from rat livers were performed a minimum of 3

times; each time point in each experiment shown was plated in

either duplicate or triplicate. Hepatectomies in both rats and mice

and shRNA knockdown experiments in rats were performed as

previously described [24]. For LPS injections, animals were

inoculated i.p. with 100 mg LPS/g body weight or a saline vehicle

control and livers were then isolated 1 or 4 h post-injection, as

described by Maeda et al [6].

Protein isolation, western blots, and slot blot analyses
Lysates were prepared and fractionated as previously described

[36]. For slot blot analyses, media from serum-free hepatocyte

cultures was removed, flash frozen, and stored until testing. The

supernatent was removed at 2 h after plating (attachment) or after

an additional 2 h. 5 ml from each well was freshly thawed on ice

and assayed per slot, with the subsequent membrane probed as if it

were a western blot. Western blots were performed using rabbit

anti-IL-6 at a dilution of 1:1000 (Abcam, ab6672, Cambridge,

MA; or Santa Cruz Biotechnology, Santa Cruz, CA), rabbit anti-

p50 at 1:500, rabbit anti-NFkB p65 at 1:250 (Santa Cruz

Biotechnology), and mouse anti-b-actin at 1:5000. Secondary

Abs (Jackson ImmunoLabs, West Grove, PA) were conjugated

with horseradish peroxidase. Proteins were visualized on Classic

Blue Sensitive X-ray film (Laboratory Products Sales, Rochester,

NY) using chemiluminescence reagent (Perkin Elmer LAS, Inc,

Boston, MA) according to the manufacturer’s directions. To adjust

for protein loading differences, bands of interest were normalized

to either b-actin or Ponceau protein stain (low-high molecular

weight range included) performed on the same blot [37]. ImageJ

software (1.38x; NIH, Bethesda, Maryland) was used for image

processing and densitometry measurements, and GraphPad Prism

version 4.0 (San Diego, CA) was utilized for graph and data

analysis (one way ANOVA for group testing with Newman Keuls

post-test analyses, one way t-test for paired testing). Results were

considered statistically significant if the P value was ,0.05.

Immunofluorescent staining
Staining was essentially as described [36]. Cells on cover slips

were fixed in 2% PFA at 4uC for 15–30 min, permeabilized with

0.1% Triton-100 (Fisher, Pittsburgh, PA) for 15 min, and blocked

with 10% normal donkey serum (Jackson ImmunoLabs, West

Grove, PA) in 2.0% BSA for 45 min-1 h before applying primary

Ab at dilutions ranging from 1:50-1:500 for 1 hr at RT or

overnight at 4uC using rabbit anti-IL-6 (Abcam 6672 or 7737,

Cambridge, MA), goat anti-NFkB p50 (Santa Cruz; C-19), rabbit

anti-NFkB p65 (Santa Cruz; C-20), goat anti-IkB (Santa Cruz),

goat anti-lysozyme C (Santa Cruz; C-19), or sheep anti-rat

albumin (Bethyl Laboratories, Inc., Montgomery, TX). After

washing with 0.5% BSA, cells were incubated with secondary Abs

ligated to either Alexa 488, Cy3, or Cy5 (Jackson ImmunoLabs,

West Grove, PA), washed, stained with Hoechst to visualize nuclei

for 30 s and mounted with gelvatol. Images were taken using epi-

fluorescence connected to a digital CCD camera (Olympus Provis,

Malvern, NY, USA) or by single slice confocal (Olympus Fluoview

1000). Actin was visualized using Alexa-647-conjugated phalloi-

din. In each experiment, all exposures were gated the same for

comparative purposes. Photoshop CS3 (Adobe Systems, San Jose,

CA) or Metamorph Offline version 7.5.4.0 (MDS Analytical

Technologies, Sunnyvale, CA) were used for image analysis.

Immunohistochemistry
Staining was essentially as described [38]. Normal or remnant

livers obtained after PHx from rats or mice were fixed for 2 days in

10% formalin and then embedded in paraffin. Immunoperoxidase

staining was performed on 4 mm sections using an indirect

immunolabeling procedure with an Avidin-Biotin Complex.

Rabbit anti-NFkB p50, anti-NFkB p65 (Santa Cruz Biologicals,

Santa Cruz, CA) or rabbit anti-IL-6 (Abcam, ab7737, Cambridge,

MA) was used as the primary antibody. Briefly, the tissue sections

were rehydrated and pretreated with a 3% solution of hydrogen

peroxide in deionized water for 10 min at room temperature. The

slides then were washed in deionized water and microwaved in

Figure 3. IL-6 synthesis and NFkB signaling in hepatocytes after LPS injection. (A) FISH for IL-6 mRNAs in serum-free rat hepatocyte
cultures, 15 min after media change with 1 mg LPS/ml or diluent (control). For these photographs, as a baseline level of IL-6 mRNA was known to be
present (see 1D), gating was adjusted with the diluent-treated sample serving as the baseline. (B, C) Rat livers were injected with 100 mg/kg LPS or
saline (control) and harvested at 4 h post treatment. In B, samples were simultaneously stained for albumin protein (green) and IL-6 mRNA (red). Co-
localization (merge) appears as yellow. A presumptive inflammatory cell (expressing IL-6 mRNA but albumin-negative) is indicated by an arrow and
featured in magnified inserts. Mock hybridizations (not shown) were used as the immunofluorescent gating control. C shows standard
immunohistochemical staining using an antibody against IL-6. (D, E) Representative immunohistochemistry depicting nuclear p65 (D), or p50 (E)
with and without LPS treatment. Arrows show nuclei stained with p65 or p50 (brown), arrowheads indicate unstained nuclei (colorless).
Simultaneously stained tissue section from liver of ILK-null mice [40] shows positive nuclear localization staining for p50 (left panel of D). Dotted
boxes are featured in magnified inserts. Scale bars, 20 mm in all images except for D (40 mm).
doi:10.1371/journal.pone.0096053.g003

IL-6 Production by Hepatocytes

PLOS ONE | www.plosone.org 8 April 2014 | Volume 9 | Issue 4 | e96053



citrate buffer (pH 6.0) for 10 min. Slides were blocked with Ultra

V block (Thermo Fisher, Pittsburgh, PA) for 5 min, then primary

antibody was added and they were incubated for 1 h at room

temperature. After washing in PBS with 0.25% Tween, the

secondary Ab was incubated at room temperature for 30 min. The

slides were washed again in PBS with 0.25% Tween and incubated

with Vectastain-Elite ABC (Vector Laboratories, Burlingame, CA)

for 30 min at room temperature. The slides were developed with

liquid 3,3’-diaminobenzidine (Vector Laboratories) and counter-

stained with Harris hematoxylin (Anatech, Battle Creek, MI).

Images were taken using a Nikon Eclipse E600 microscope

connected to a Nikon digital camera (DXM1200) with Nikon

ACT-1 software, version 2.63 (Melville, NY, USA). All exposures

were gated the same for comparative purposes.

RNA isolation, cDNA synthesis and PCR
RNA was extracted using RNA-Bee (Tel-Test, Friendswood,

TX) according to the manufacturer. After DNase treatment

(Worthington, Lakewood, NJ), cDNA for use in RT-PCR

(SuperScript III, Invitrogen, Carlsbad, CA) was synthesized from

Figure 4. HGF-mediated effects on IL-6 production in serum-free hepatocyte cultures. (A) Representative RT-PCR of IL-6 and GAPDH
(control) in serum-free hepatocyte cultures over 25 min, in the presence or absence of 20 or 500 ng HGF/ml. Duplicates shown are separate cultures
from a single animal. (B) Summary graph of relative percent IL-6 mRNA to GAPDH in hepatocytes treated with 20 or 500 ng HGF/ml at 1, 15 and
30 min, with mean 6 s.e.m. n = 4. * indicates statistical significance, P,0.05, between time point control and designated condition. (C) FISH probing
for IL-6 mRNAs in serum-free hepatocyte cultures at 15 min after media change with either 20 ng HGF/ml (bottom panel) or diluent (no treatment,
top panel). Mock hybridizations (not shown) were used as the immunofluorescent gating control. (D) Representative western blots for detection of IL-
6 in serum-free hepatocyte cultures over a 15 min time period, in the absence or presence of 20 or 500 ng HGF/ml. Animal n = 3. (E)
Immunofluorescent staining for IL-6 in serum-free hepatocyte cultures over 15 min, in the presence or absence of 20 or 500 ng HGF/ml. The cells
without primary antibody were used as the immunofluorescent gating control. Numbers under figure represent quantifiable increase at 15 min,
relative to 1 min staining shown directly above. Scale bars, 20 mm in all images.
doi:10.1371/journal.pone.0096053.g004
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5 mg RNA by random hexamer priming (Invitrogen). To amplify

mature IL-6 mRNA, intron-spanning primers (40 pmole each:

F:5-TCAACT CCATCTGCCCTTCAG and R:5-AAGG-

CAGTGGCTAACAAC, GenBank accession number

NM_012589) were utilized in a 50 ml reaction containing half

the cDNA plus AmpliTaq Gold polymerase (Applied Biosystems,

Foster City, CA). Intron-spanning GAPDH primers served as the

positive control (F:5-AGATGGTGAAGGTCGGTGT-

GAACGG; R:5-AGCCTTGACTGTGCCGTTGAACTTG,

GenBank accession number NM_017008.2). An IL-6 intron with

comparable G/C content provided a negative control and was

generated by performing PCR on sheared genomic rat DNA

(primers: 5 pmole each, F:5-GTAAGTGAAGG-

CAGTTTCTCGCCCT; R:5-CTGCGTGGAGGAAAGG-

GAAAGAAGC). The IL-6 cDNA was 104-bp; GAPDH was

184-bp and the IL-6 intron was 163-bp. PCR products were run

on 2% agarose gels and visualized with AlphaImager 4.1 software

(Alpha Innotech, San Leandro, CA) using ultraviolet light. For

RT-PCR analyses, ImageJ software (1.38x; NIH, Bethesda,

Maryland) was used for image processing, and GraphPad Prism

version 4.0 (San Diego, CA) was utilized for graph and data

analysis (one way ANOVA for group testing with Newman Keuls

post-test analyses, one way t-test for paired testing). Results were

considered statistically significant if the P value was ,0.05.

Subcloning and labelling for FISH
PCR products were eluted and gel purified using illustra GFX

(GE Healthcare, Piscataway, NJ). DNA was ligated with TOPO

2.1 and used to transform Mach1 –T1R E. coli (Invitrogen).

Transformed colonies were grown in Luria-Bertani broth (1%

Tryptone, 0.5% Yeast Extract, 1% NaCl) containing ampicillin

and purified plasmid was isolated from the clones using QIAprep

spin or Plasmid maxi kit (Qiagen, Valencia, CA). EcoR1 (New

England Biolabs, Ipswich, MA) digestion was used to verify

presence of insert with identity confirmed via sequencing. Inserts

were then purified and 1 mg was labelled using ULYSIS nucleic

acid labeling kit with Alexa Fluor 546 dye (Molecular Probes,

Eugene, OR). After DNAs were purified of excess dye using G-25

columns (GE Healthcare, Piscataway, NJ), labelling efficiency was

Figure 5. NFkB signaling corresponds to changes in IL-6 production in response to HGF. (A) Confocal staining for the NFkB subunits p50
and p65 in serum-free hepatocyte cultures over 15 min, in the presence or absence of 20 or 500 ng HGF/ml. Actin staining (phalloidin) of the plasma
membrane is shown in blue; p50, red; p65, green; with co-localization appearing as yellow. The control cells (no HGF) were used as the
immunofluorescent gating control. (B) Summary graph of the percent nuclear staining for NFkB (co-localized staining for p50 and p65) in the
experiment shown in A, with mean 6 s.e.m. P = 0.0284, significant for one way ANOVA. * indicates statistical significance, P,0.05 from control,
Newman-Keuls test. (C) Immunofluorescent staining for the NFkB inhibitor, IkB, in serum-free hepatocyte cultures from the experiment shown in A, at
15 min after stimulation with 0 (control), 20 or 500 ng HGF/ml. The cells without primary antibody were used as the immunofluorescent gating
control. Scale bars, 20 mm in all images.
doi:10.1371/journal.pone.0096053.g005
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Figure 6. Hepatocyte-specific HGF-mediated effects on IL-6 production in mice after PHx. (A) Western blot analysis of hepatic NFkB p50
protein expression at 6 h post-PHx in MET flox mice either lacking Cre recombinase (WT) or possessing Cre (KO) is presented, using nuclear-enriched
lysates. A representative Ponceau Red-stained protein band, stained prior to antibody probing, is shown for loading comparison. Ponceau-normalized
densitometry comparing WT to KO levels of p50 is shown at right. P,0.0001, significant, for two-tail Student’s t-test. *** indicates statistical
significance, n = 3–5. (B) Standard immunohistochemical staining using the same antibody against p50 as used for the western blot shown in A.
Livers removed at 6 h post-hepatectomy from WT (Cre2) or KO (Cre+) animals are shown. Counterstain was deliberately omitted to enhance
visualization. Insets represent magnifications of the figure in order to better see the hepatocellular nuclei. (C) Western blot analyses of hepatic IL-6
protein expression in cytoplasmic-enriched lysates for the 6 h PHx experiment described in subfigure A. Densitometric analysis of IL-6 protein
expression was performed as described in subfigure A. P = 0.0002, significant, for two-tail Student’s t-test. *** indicates statistical significance, n = 4–5.
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calculated according to the manufacture’s protocol; all probes fell

within desired ratios for labelling capacity.

FISH for mRNA
FISH for the mRNAs (GAPDH and IL-6) were performed using

intron-spanning probes to assure detection of mature message. A

G/C content matched sequence from the spanned IL-6 intron

served as the negative control (see above). All solutions except the

balanced salt solution were prepared in 0.1% diethylpyrocarbo-

nate-treated H2O. Cultured hepatocytes and Kupffer cells were

fixed and hybridized as described previously [39] with some

modifications. Cells were fixed in 4% PFA with PBS at 4uC for

10 min, washed with a sterile balanced salt solution (67.0 mM

KCl, 1.4 M NaCl, 100.7 mm HEPES, 47.5 mM NaOH) and

stored in 70% ethanol at 4uC. At hybridization, cover slips were

removed from ethanol, rinsed with 0.56 SSC (1x = 150 mM

NaCl, 15.0 mM sodium citrate), and incubated in a moist

chamber at 45uC for 1–3 h with hybridization buffer consisting

of: 50% formamide, 2.56 Denhardt’s solution (0.5% Ficoll 400,

0.5% polyvinylpyrrolidone, 0.5% BSA), 36SSC, 0.5% SDS, 5%

dextran sulphate and 10 mg/ml sheared salmon sperm DNA.

Following pre-hybridization, the cells were washed with 0.56
SSC. Denatured, fluorescently labelled cDNA (150 ng) along with

hybridization buffer was added to each cover slip and, a larger

cover slip was placed over the cells and sealed using rubber

cement. Cells were hybridized overnight in a moist chamber at

45uC. Cover slips were then successively washed 3 times for

25 min in 26 SSC, 0.16 SSC and 0.56 SSC (all preheated to

(D) Standard immunohistochemical staining using an antibody against IL-6. Livers extracted at 6 h post-hepatectomy from WT (Cre2) or KO (Cre+)
animals are depicted. Insets represent magnifications of the figure in order to better see the hepatocytes and a presumptive macrophage. Scale bars,
20 mm in all images.
doi:10.1371/journal.pone.0096053.g006

Figure 7. Effects of non-specific loss of MET on IL-6 production after PHx in rats. Livers from rats pre-treated for 24 h with shRNAs to
inactivate the HGF receptor (shMET) or control shRNAs (scrambled) were removed at time 0 (T0) or at 1 h after PHx and analyzed for p50 and IL-6. (A)
Representative immunohistochemistry depicting nuclear p50 in the shRNA treated animals (scrambled and shMET) at 1 h after PHx. Arrows show
nuclei stained with p50 (brown), arrowheads indicate unstained nuclei (counterstain, blue). Scale bars, 20 mm. (B) Densitometric analyses of percent
IL-6 mRNA, compared to percent GAPDH control, with mean 6 s.e.m., in livers from shRNA-treated animals. P = 0.0001, significant for one way
ANOVA. *** indicates statistical significance, P,0.05, from all other samples, Newman-Keuls test. (C) Representative images of immunohistochemistry
for IL-6 in the livers of shRNA treated animals at 1 h after PHx. Arrows show IL-6 positive immune cells (stained brown), arrowheads indicate
unstained immune cells. Scale bars, 20 mm in all images.
doi:10.1371/journal.pone.0096053.g007
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45uC), incubated with Hoechst for 30 s and washed in 0.56SSC.

Slips were then mounted onto slides with gelvatol, examined using

epi-fluorescence microscopy and color merged using MagnaFire

version 2.1 software (Optronics, Goleta, CA). In each experiment,

all exposures were gated the same for comparative purposes.

For FISH to whole tissues, liver was harvested, frozen in OCT

(TissueTek, Torrance, CA) and sectioned (5 mm). Cryosections

were fixed and pre-treated essentially as previously described [39].

Sections were fixed in 4% PFA with PBS for 20–25 min,

incubated twice for 15 min each in PBS with 0.1% active

diethylpyrocarbonate, then equilibrated for 15 min in 36 SSC.

Sections were exposed to 1mg/ml proteinase K (Novagen,

Gibbstown, NJ) for 10 min at room temperature, then hybridized

and visualized as described above. In each experiment, all

exposures were gated the same for comparative purposes.

In double-label experiments, designed to simultaneously visu-

alize protein and mRNA, immunofluorescent labeling preceded

the in situ hybridization. Complete controls were always performed

for each FISH, immunofluorescent, and double label experiment

(some not shown for brevity).
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