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Abstract 

Incentive regulation in electricity distribution is expected to enlarge its scope, from an input-
oriented instrument to one that includes additional, output-based incentives. This creates a 
potential conflict with more traditional concerns for productive efficiency. In the case of Italy, 
together with input-oriented instruments, output-based incentives have been applied to 
indicators of quality for over a decade. Using micro-data from the largest Italian distribution 
company, we conduct an assessment of the effects of this regulatory framework. The aim of 
this word is threefold. First, we measure performance in terms of cost-efficiency and find that 
similar cost-reducing efforts were exercised in all distribution units. Second, we measure 
performance with respect to the overall regulatory framework. Using quality-related rewards 
and penalties, we find that more cost-efficient areas were also more successful in earning 
rewards/avoiding penalties: favorable external conditions have similar, positive effects on 
both cost and quality performance. Using the cost of the energy not supplied, we find no 
evidence of a conflict between cost efficiency and social cost efficiency. Results indicate, 
however, that is preferable to use social costs when measuring a single unit’s performance. 
From these results we derive specific policy indications. 
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1. Introduction 

Current technical changes in electricity distribution networks prompted a lively 

debate, in Europe and elsewhere, on how incentive regulation should evolve. Since 

liberalization, regulatory incentives have focused almost exclusively on the use of 

inputs (operational and capital expenditures). Current concerns for network 

innovation and sustainability are being addressed, instead, with incentives that focus 

on outputs measures of companies’ performance (network reliability, environmental 

impact, ability to connect dispersed generation, etc.). The best-known example in this 

regard is the new regulatory scheme recently adopted by Ofgem, the Revenue, 

Innovation, Incentives and Output (RIIO) model (Ofgem, 2010); the Italian regulatory 

authority and other regulatory agencies, for instance the Australian energy regulator, 

are moving in this direction as well (AEEG, 2011a; ACCC/AER, 2012). 

On the one hand, given the regulator’s asymmetry of information, output-based 

regulation has an important advantage: leaving the decision on the use of the 

resources to the regulated firm, it minimizes inefficiencies in the use of inputs. On the 

other hand, it forces the regulated firm to increase expenditures, to meet the additional 

goals set by the regulator (in contrast with the cost efficiency objective). Moreover, it 

presents implementation complexities and requires adequate regulatory powers, 

budget and skills (Glachant et al., 2012).  

In the case of Italy, together with incentives aimed at productive efficiency, output-

based incentives have been applied to indicators of quality for over a decade. Under 

the current regulatory reform, this represents an interesting case to investigate how a 

regulated firm responds to such a incentive scheme. The debate around this issue is, 

indeed, quite recent (Coelli et al., 2013; Growitsch et al., 2010; Jamasb et al., 2012).  

Moreover, when network operators are required to meet potentially conflicting 

objectives, also the assessment of their performance becomes more complex. Since 

the adoption of incentive regulation in infrastructure industries, benchmarking 

analysis has been extensively used to measure firms’ efficiency (Jamasb and Pollit, 

2001; Joskow, 2008; Haney and Pollit, 2009). Nevertheless, the question of including 

additional output measures of performance (e.g., quality of supply) has been scarcely 

explored by regulatory authorities and academics as well. 

Finally, as for Italy in particular, anecdotic evidence indicates that after a period of 

rapid increase in performance, the level of quality varied at a much slower pace, while 
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the rules for assigning output-based incentives have remained unchanged.2 Although 

from a technological perspective such a trend is to be expected, it has also prompted 

the question of how this regulatory scheme should evolve in the future.  

In this paper we address all three issues mentioned above.  

We investigate how the largest Italian electricity distribution company has 

responded to the input-based and output-based incentives provided by the current 

regulatory framework. To our knowledge, this is the first assessment of this incentive 

regime since its introduction in the year 2000. To this end, we exploit on an original 

dataset, constructed with the support of the Italian regulatory authority (Autorità per 

l’energia elettrica e il gas, AEEG), by means of a dedicated data collection. It is a 

comprehensive and balanced panel for 115 distribution units (Zones), tracked from 

2004 to 2009, which includes the amounts annually received in rewards (paid in 

penalties) for exceeding (failing to meet) quality-specific targets.  

As for the analysis, we rely on a benchmarking approach and contribute to the 

debate regarding the inclusion of additional measures of performance. Specifically, 

we use two alternative measures of quality that provide different and complementary 

information regarding the efficiency of the observed distribution unit: in one case, 

efficiency is estimated in terms of response to regulatory incentives; in the second, in 

terms of social costs. While latter was used in previous literature, the former has 

never been studied. From a methodological perspective, we apply a recent approach 

based on a two-stage, semi-parametric Data Envelopment Analysis (DEA) and 

bootstrapping techniques, where technical efficiency is estimated in the first stage and 

then regressed on a set of external variables in the second stage (Simar and Wilson, 

2007). We also study the evolution of performance over time by means of Malmquist 

indices. 

Our main finding is that the presence of quality regulation has not significantly 

altered the distribution units’ behavior: those that responded well to cost efficiency 

incentives, responded equally well to quality-related incentives and vice versa. After 

all, favorable external variables that have a significant and positive effect on cost 

efficiency (area size, load composition and network design) also influence the ability 

of a distribution unit to exceed the targets imposed by quality regulation. 

                                                 
2 In the first regulatory period (2000-2003) the national average duration of interruptions per customer 
decreased by over 60 minutes; in the second period (2004-2007) the improvement amounted to less 
than 20 minutes and, in the third period (2008-2011), to about 10 minutes. 
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Nevertheless, this response to regulatory incentives appears in contrast with the long 

term objective of quality regulation in Italy (convergence in performance). Hence, on 

the basis of the evidence provided throughout the paper, we derive two policy 

suggestions for the development of quality regulation, respectively, in the medium 

and in the long term.  

The remainder of the paper is structured as follows: Section 2 reviews the relevant 

literature on benchmarking analysis in electricity distribution; Section 3 outlines the 

Italian regulatory framework; Section 4 presents the empirical methodology; Section 

5 describes the dataset and presents our choice of variables for the benchmarking 

analysis; Section 6 discusses results in the context of the existing literature and 

derives policy implications; Section 7 concludes.  

 

 

2. Selected literature review  

A relatively small number of papers analyzes efficiency in the electricity 

distribution sector using a benchmarking model which includes an indicator of service 

quality. While Table 1 summarizes all the main contributions with these 

characteristics, we concentrate here on five studies based on panel data.3  

 

TABLE 1 ABOUT HERE 

 

A first strand of literature focuses on performance measurements and explores one 

main question, namely, the potential trade-off between cost savings and the level of 

service quality at firm level (i.e. the effects of incentive regulation on service quality). 

Additional questions explored in this literature regard: (i) the use of an integrated 

cost-and-quality benchmarking model vs. a cost-only approach, when assessing the 

progress of an incentive regulation regime and (ii) the analysis of productivity 

changes over time. The existing empirical studies do not provide clear cut evidence 

on any of these issues. 

                                                 
3 Benchmarking studies in electricity distribution which include a measure of quality, but rely on a 
cross-sectional sample, include the work by Jamasb and Pollit (2003) on 1999 international data, by 
von Hirschhausen et al. (2006) on 2001 German data (where quality is measured by network losses), 
and by Growitsch at al. (2009) on 2002 international data (where quality is measured by customer 
minutes lost). 
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Using a panel of 14 electricity distribution utilities in the UK (tracked from 

1991/92 to 1998/99) Giannakis et al. (2005) find that efficiency scores of cost-only 

DEA models do not show a high correlation with those of quality-based models 

(where quality is measured by the number and duration of service interruptions). In 

other words, cost-efficient firms do not necessarily exhibit high service quality. 

Malmquist indexes indicate, however, that improvements in service quality have 

made a significant contribution to the sector’s total productivity change. The authors 

conclude that is “desirable to integrate quality of service […] in benchmarking […] of 

electricity networks” (Giannakis et al., 2005, page 2269). Coelli et al. (2007) measure 

the efficiency of 92 French electricity distribution units (tracked from 2003 to 2005), 

all belonging to the same distribution company. By employing both a stochastic 

frontier and a DEA approach, they show that the inclusion of the quality variable 

(number of interruptions) has no significant effect on estimated efficiency scores. 

They deduce that including a quality aspect in an efficiency benchmarking is 

“unlikely to have a substantial effect upon price regulation outcomes” (Coelli et al., 

2007, page 17). Productivity changes are the main focus of the work by Miguéis et al. 

(2012). Employing a sample of 127 Norwegian distribution companies (tracked from 

2004 to 2007) the authors estimate both efficiency scores and Malmquist indexes 

using a multiple-output, single input DEA model. Several topological and 

geographical variables are included as outputs and quality is included as an input 

which adds to the utilities’ costs (i.e. quality is measured by the value of the Energy 

Not Served – ENS). Contrary to Giannakis et al. (2005), the authors find no evidence 

of a significant technology change over time (but do not estimate a cost-only model). 

Also, none of the factors considered in a second-stage regression is found to have a 

significant effect on efficiency scores. 

More recent papers have taken a different perspective. The main focus is no longer 

on the effect of incentive regulation on the level of service quality, but on the impact 

of quality regulation on firm performance, in terms of cost efficiency or in terms of 

quality provision. Such a change is clearly motivated by a wider adoption of quality 

regulation in European countries. 

Growitsch et al. (2010) use a panel dataset for 131 Norwegian distribution network 

operators observed over the period 2001 (the year quality regulation was introduced) 

to 2004. Comparing the efficiency scores of a cost-only and a cost-and-quality DEA 

model they find no systematic differences between the two (quality is measured by 
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the value of the ENS). Their results suggest that the introduction of quality regulation 

in Norway did not have a strong impact on firm's performance nor it conflicted with 

cost efficiency of electricity distributors. Coelli et al. (2013) employ a parametric 

distance function approach and a panel of 92 distribution units, all belonging to the 

main distribution company in France (tracked from 2003 to 2005). They conduct a 

study of the production technology and propose a methodology to estimate the 

operating cost of preventing one interruption. Their suggestion is to calculate this cost 

using more recent data and to use it to predict the efficacy of the quality-related 

incentives introduced in France in 2009.  

Our analysis of the Italian distribution sector is closer to the more recent empirical 

studies, i.e. it concerns distribution units that have been subject to price and quality 

incentive regulation and focuses on assessing the progress of both regulatory regimes. 

Our paper contributes to the literature in several ways. First, this appears to be the 

first study to examine the Italian distribution sector after the introduction of incentive 

regulation in the year 2000.4 Second, we propose two different (monetary) valuation 

of service quality for inclusion in the cost-and-quality benchmarking models. One 

measure has been used in studies on Norwegian data (the value of the ENS). The 

other is novel and it is the rewards and penalties actually paid by or received from the 

regulatory authority for, respectively, exceeding or failing to meet the quality targets 

set for each distribution unit. Third, we use a recent methodology to analyze the 

determinants of the heterogeneity in performance in both the cost-only and the cost-

and-quality models. To this end, we consider several explanatory variables that were 

either identified in previous studies, or that we identified as potentially significant on 

the basis of additional tests performed on our database. Finally, we devote particular 

attention to policy implications. 

 

 

3. The regulatory framework 

In Italy, in 2009, there were over 150 Distribution System Operators (DSO), that 

delivered a total volume of 279 TWh. The largest company, Enel Distribuzione, was 

responsible for 86.2% of the distributed energy, followed by A2A Reti Elettriche 

(4.1%), Acea Distribuzione (3.6%) and Aem Torino Distribuzione (1.3%); the other 

                                                 
4 Benchmarking analyses on Italian data are all prior to this date (e.g., Scarsi, 1999). 
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operators held marginal quotas (less than 1% in volumes). Enel was present over the 

entire national territory and it was organized in four Macro Areas, eleven Territorial 

Units and 115 Zones (each Territorial Unit has its local managers and coordination is 

ensured at the level of Macro Areas).  

DSOs are regulated by AEEG. Since the year 2000, an incentive-based mechanism 

applies (with a four-year regulatory period), with the objective to stimulate productive 

efficiency, investments and service quality. As for productive efficiency and 

investments, operational expenditures are required to decrease with an X efficiency 

factor while, starting from the second regulatory period (2004), the cost of capital is 

directly passed through to consumers.5 Note that the decision to pass-through all 

capital expenses was taken by the government and not by the regulator (Law n. 

290/2003). Moreover, since 2008, several, specific investments benefit from an 

increase in Weighted Average Capital Cost for period of 8 to 12 years (a plus 2% over 

the ordinary return). These include investments in low-losses transformers and in 

automation and control of active grids.6  

As far as quality is concerned, in the year 2000 AEEG introduced a reward and 

penalty scheme that linked the distribution tariff to an output measure of continuity of 

supply: the average number of minutes lost per customer for long (longer than 3 

minutes), unplanned interruptions.7 This indicator, SAIDI, is measured separately in 

more than 300 territorial districts, covering the entire national territory.8 Rewards and 

penalties are calculated per district on an annual basis, as a function of the difference 

between a target-SAIDI and the actual-SAIDI (targets are defined separately for each 

territorial district and year). The distribution tariff is unique across the entire national 

territory and it is adjusted yearly on the basis of companies’ performances: it 

                                                 
5 For the second tariff period the Weighted Average Capital Cost (WACC) was set at 6.8% and the X 
factor at 3.5%. For the third period (2008-2011) the WACC was increased to 7% and the X factor was 
decreased to 1.9%. Details on the choice of the WACC and X factors in the energy sector can be found 
in Cambini and Rondi (2010).  
6 Further details on the evolution of the Italian regulatory framework can be found in Lo Schiavo et al. 
(2013). 
7 Continuity of supply is described by the number and duration of supply interruptions. For a given 
distribution area and time period, the average duration of long interruptions per consumer (or customer 
minutes lost) is measured by SAIDI (System Average Interruption Duration Index), the average 
number of long interruptions per customer by SAIFI (System Average Interruption Frequency Index), 
and the average number of short (shorter than 3 minutes and longer than 1 second) interruptions per 
customer by MAIFI (Momentary Average Interruption Frequency Index). 
8 Each district includes municipalities that are homogeneous in population density, that are located in 
the same administrative province and whose network is managed by the same distribution company. 
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increases when, on average, quality has improved more than required (rewards earned 

by all districts in the country are greater than total penalties paid) and vice versa. 

Because of the uniqueness of the distribution tariff, beginning with the second 

regulatory period, target-SAIDIs are calculated using a formula that assumes a 

convergence in performance of all districts with equal population density to the same 

quality level (the national standard) in the medium term (12 years) – there are three 

levels of density and better continuity is expected in more densely populated areas. 

This approach enables the regulator to set more ambitious targets for districts that are 

initially under-performing with respect to national standards and vice versa. Also, in 

line with the indications of the literature, the results of a customer survey are used to 

define penalties and rewards (Sappington, 2005). Two different valuations of quality 

are considered, to reflect the different willingness to pay (WTP) for quality of 

residential and non-residential customers (see Section 5.1).  

 

 

4. Methodology 

For the purpose of this study we employ a two-stage DEA estimation, based on the 

semi-parametric approach proposed by Simar and Wilson (2007). Accordingly, 

technical efficiency is estimated in a first stage and regressed on a set of external 

variables in a second stage. This accounts for possible sources of inefficiency 

heterogeneity among different units of observation. Moreover, bootstrapping 

techniques are used in both stages to overcome other issues related to the traditional 

procedure, i.e. the uncertainty associated with DEA efficiency scores in the first stage 

and their serial correlation in the second stage.  

More specifically, assuming that all units of observation share the same production 

technology, the first stage is devoted to the estimation of the technology frontier and 

to the measurement of each unit’s efficiency, as their distance from the same frontier. 

Given a distribution unit which uses a set of inputs (x) to produce a set of outputs (y) 

via a known production technology, the unit’s efficiency is measured as an input 

distance function (Shephard, 1970).9 This is defined on the input set L(y) as: 

 

                                                 
9 In electricity distribution it is fair to assume that demand is mostly beyond the control of the firm, 
hence the choice, in line with the literature, to use an input-oriented model. 
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(1)

 

where L(y) represents the set of all input vectors, x, which can produce the output 

vector, y, and ρ is the input distance measure, i.e., for a each distribution unit 1/ρ 

represents the amount by which the observed inputs can be proportionally reduced, 

while still producing the same output level. The distance function will take a value 

which is greater than or equal to one if the input vector x is an element of the feasible 

input set, L(y), that is: 

 

 
(2)

 

The distance function will take a value of unity if the input vector is located on the 

inner boundary of the input set (Coelli et al, 2005).  

Normally, the production technology is unknown and its estimation is required. 

This can be done using different approaches. The well-known advantages of using 

DEA include the absence of any assumptions on the functional form of the production 

frontier and the possibility to simultaneously use multiple inputs and outputs. Thus, in 

the first stage, we employ DEA to construct the frontier surface using linear 

programming methods and to compute technical efficiency scores (they are obtained 

as a by-product of the frontier construction process). Assuming that each unit of 

observation i uses K inputs to produce M outputs, we indicate with X the KxN matrix 

of inputs, whose columns are the input vectors xi of all N units. Similarly, we indicate 

with Y the MxN matrix of outputs that contains the N output vectors yi. The input-

oriented, Constant Returns to Scale (CRS) frontier is estimated by solving N linear 

programs of the following form: 

 

 

(3)

 

(xy) = ¶ρ : (xρ)∈(y)♦

(xy) = ¶ρ : (xρ)∈(y)♦


ρλ

ρ

s.t .
− y +Yλ � 0
x

ρ
− Xλ � 0

λ � 0
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where 1 ≤ ρ ≤ ∞ and  is an Nx1 vector of constants.10 

One of the well known limitations of DEA is its potentially biased estimation due 

to the uncertainty associated with sampling variation. We control for the uncertainty 

of DEA scores in the first stage by estimating their bias and confidence intervals 

using a consistent bootstrap approximation of the efficiency distribution (Simar and 

Wilson, 2000).  

A second limitation of DEA is its deterministic nature (all the distances from the 

efficient frontier are assumed to be inefficiency). In this regard, we note that while 

parametric methods allow for a random unobserved heterogeneity among different 

units of observation, they also require several assumptions, regarding the specific 

functional form of the production function, the distribution form of the inefficiency 

and of the statistical noise. Estimated efficiency scores are, of course, sensitive to 

these specifications (Coelli et al., 2005).11 Considering the purpose of our analysis 

and the characteristics of our dataset (which includes data from a single distribution 

company) a non-parametric approach was the preferred choice for the present work. 

Nevertheless, in the second stage, the efficiency of each unit of observation is 

regressed on a set of external variables. In other words, the bias-correct efficiency 

scores estimated in the first stage are used as dependent variables in a second stage 

regression analysis. To consistently estimate the regression parameters we apply a 

truncated regression and, following Simar and Wilson (2007), we also use a bootstrap 

approach for inference. The latter consistently accounts for the serial correlation 

structure of DEA efficiency scores. 

Input distance functions are also used to measure productivity changes between 

two points in time. To this end, we resort to the Malmquist index (M) proposed by 

Caves et al. (1982). For each unit of observation, this can be expressed as: 

 

 

(4)

 

                                                 
10 Note that the distribution operator can choose its internal organization, in particular regarding the 
size of the distribution Zones: this motivates our choice of a CRS assumption (moreover, our results 
show an average scale efficiency always above 93%). 
11 This method is employed in several benchmarking studies regarding the electricity distribution 
sector, including Estache et al. (2004), Farsi and Filippini (2004), Farsi et al. (2006) and Growitsch et 
al. (2009). 

 =
(yx)

(y+1x+1)
≤ +1(yx)

+1(y+1x+1)

12
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where dt(yt, xt) is the input distance function in time period t in relation to the 

production technology at time t and dt(yt+1, xt+1) is the input distance function in time 

period t in relation to the production technology at time t+1; dt+1(yt, xt) and dt+1(yt+1, 

xt+1) are similarly defined.12  

Malmquist indices can assume values that are smaller or greater than unity. A 

Malmquist index greater than one indicates a productivity growth from year t to year 

t+1; conversely an index Mi smaller than one indicates a productivity decline. 

Moreover, under the assumption of constant returns to scale, a Malmquist index can 

be decomposed in two components, or possible sources of productivity change: an 

efficiency change and a technical change (Färe et al., 1994). That is: 

 

 

(5)

 

The first component in (5) represents the efficiency change EC from year t to year 

t+1 and measures the extent to which a unit has moved closer to the frontier. The 

second component in (5) is the technical change TC. For a given sample, a TC greater 

than unity indicates an industry-level technological progress and vice versa.  

 

 

5. Data set and cost models  

Our dataset was built with the support of the Italian regulatory authority, by means 

of a dedicated data collection. It is a comprehensive and balanced panel for 115 

Zones, that belongs to Enel Distribuzione, tracked from 2004 to 2009. Given the 

volume of energy distributed by Enel and the geographic extension of its distribution 

territory, it can be considered a good representation of the entire country. 

As for technical variables, the dataset includes, for each Zone, the number of Low 

Voltage (LV) customers, the energy consumed by LV residential and non-residential 

users and by Medium Voltage (MV) consumers, the area served (in km2), 

transformers’ capacity for primary and secondary substations (in MVA) and network 

length (in km, for MV and LV, cable and overhead lines). Accounting data are given 

                                                 
12 In practice, Malmquist indices require the estimation of two single period and two mixed period 
distance functions. To this end, we employ, with the necessary modifications, CRS DEA models of the 
type described in equation (3). Also Malmquist indices are computed using a bootstrap procedure. 

 =
(yx)

+1(y+1x+1)
≤ +1(y+1x+1)

(y+1x+1)
≤

+1(yx)

(yx)

12
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in terms of annual revenues, asset values (detailed for primary and secondary 

substations, MV and LV feeders and for points of connection) and operating costs 

(which include labor, services, materials and other costs). 

In addition, AEEG provided data on customer minutes lost for long interruptions 

(SAIDI) as well as on the frequency of long and short interruptions (SAIFI and 

MAIFI, respectively).13 A key novelty of our dataset is the detailed information on the 

amounts annually received in rewards (paid in penalties) for out-performing (under-

performing) with respect to the regulatory standards. Continuity of supply data 

(indicators as well as rewards and penalties) were given per territorial district, which 

are geographically smaller than Zones. To ensure coherence with the other variables 

in the dataset, continuity data had thus to be calculated per Zone, aggregating district 

data. This means that, inevitably, the relation between population density and 

continuity of supply became less precise.  

The benchmarking analysis is conducted on 114 units (one Zone was dropped 

because of a major asset divestiture), a sample size that is comparable with those of 

the most recent studies (see Section 2). All units of observation belong to the same 

distribution company as in Coelli et al. (2007) and Coelli et al. (2013), but are 

observed over a longer period (six vs. three years). In the following we motivate our 

choice of variables for the benchmarking models. While our choice of monetary 

variables as inputs (vs. physical units) is in line with the most recent literature, we 

provide a rather strong motivation for our preference. We also illustrate some 

descriptive statistics, derive hypotheses on estimation results and identify candidate 

determinants of inefficiencies.  

 

5.1 Selected inputs and outputs  

The selection of input and output variables is crucial to the validity of a DEA 

model. On the basis of previous work and our knowledge of the distribution activity, 

we define a first model with energy consumption (energyit) and number of LV 

consumers (LVconsit) as the outputs for Zone i in year t. As known, the energy 

requested by final users is not under the control of a DSO. Similarly, all requests for 

connection must be met by the distributor (within certain technical limits). Our choice 

                                                 
13 Actual SAIDI used for regulatory purposes does not include interruption events that originated on 
the transmission network or that were caused by Force Majeure. The same assumption holds in this 
paper. 
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of inputs includes capital and non-capital variables (operating costs). Following Coelli 

et al. (2005), capital (capitalit) is measured using gross asset value (substations, 

feeders and points of connection) and not capital expenditures. This is to avoid 

penalizing a Zone for making recent investments. As for non-capital input, we 

included labor (the main voice), services, materials and other operating costs – and 

excluded depreciation and taxes (opcostit).
14 

The use of monetary inputs is justified by the fact that we are observing a single 

company and therefore we can reasonably assume that the price of goods, services 

and labor is the same for all Zones. Moreover, we are studying performance with 

respect to regulatory incentives: since one of the primary aims of the regulation was 

to create stimuli for productive efficiency (in operating costs), the use of monetary 

variables as inputs seems appropriate. 

Nevertheless, given the amplitude of our dataset, we considered building an 

alternative benchmarking model, where input variables were expressed in terms of 

physical units. In analogy with the “monetary” model, capital input was measured by 

transformer capacity (in MVA) and network length (in km), while operating costs 

were approximated by the number of employees. Nevertheless, this model was less 

convincing for various reasons. Recall that a DEA model finds the units of 

observation that are efficient with respect to a combination of input-output ratios. As 

for the number of employees, it seems reasonable to define efficient a distribution unit 

that minimizes the number of workers per consumer, or per energy delivered. 

Similarly, as for network length, it sounds reasonable to label as more efficient a 

distribution unit with less km of feeders per customer. On the contrary, it is more 

difficult to argue that a distribution unit is more efficient than another because it is 

characterized by less km of feeders per MWh delivered. The interpretation becomes 

even more difficult when dealing with transformer capacities. While a Zone with an 

adequate installed transformation capacity per MWh delivered is indeed efficient, 

there is no practical meaning in labeling as efficient a unit that minimizes its 

transformer capacity per customer (remember that we are including in the model only 

the number of LV customers). In sum, when using technical input variables it seemed 

                                                 
14 This model does not account for variables that are beyond the influence of the company (observable 
heterogeneity). Typical external variables in the distribution sector include geographic and climatic 
factors (altitude, costal areas, snow, etc.). Previous studies have shown that these are not relevant for 
Italy (Scarsi, 1999). In this work we will explore only the effect of load-related and network-related 
variables that are outside the control of the distribution unit (see Section 5.3).  
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inevitable to incur in input-output combinations that had little practical significance 

(network length per MWh or transformer capacity per LV customer). Hence, we 

opted for the “monetary” model specified above.15 

As for the inclusion of quality, and in line with the choice of a “monetary” model, 

we consider the two following options: 

 to substitute opcostit with a new variable, opcost_RPit, sum of opcostit plus 

penalties paid and minus rewards received (RP); as a consequence, Zones that 

receive rewards (i.e. present higher levels of quality than requested by the 

regulator) are expected to be relatively more efficient;  

 to substitute opcostit with a new variable, opcost_ENSit, sum of opcostit plus the 

cost of the ENS; in this way, Zones with lower levels of ENS are expected to 

be relatively more efficient. 

To derive the cost of ENS (C_ENSit) for Zone i and year t we employ:  

 the actual value of SAIDIit per Zone i and year t;   

 the WTP parameters indicated by the Italian regulatory authority: C1 for 

residential users and C2 for non-residential ones or, respectively, 18 and 36 

c€/(min·kW) (AEEG, 2007); 

 the residential (res_energyit) and non-residential (nonres_energyit) consumption 

per Zone and year (in MWh). 

From these, the cost of ENS is calculated as: 

 

(6)

 
Note that also regulatory rewards and penalties are calculated, per district, as in 

equation (6). To this end, however, SAIDIit is replaced by the distance between the 

actual-SAIDI and the target-SAIDI for the district and year.16  

In sum, as summarized in Table 2, we estimate three DEA models. With the Cost-

only model we measure performance with respect to the regulation of inputs (cost 

                                                 
15 Efficiency scores estimated using a “non-monetary” model are available from the authors upon 
request. 
16 In the regulatory practice, other information enter this calculation. For instance, annual rewards and 
penalties are capped and a two-year average value is used as the actual-SAIDI. All the details can be 
found in the Regulatory Orders n. 4/04 and 333/07 (AEEG, 2004; AEEG, 2007).  

    
C _ ENSit  SAIDIit  C1

res _energyit

8.76
C2 

nonres_energyit

8.76
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efficiency).17 With the CostRP model we measure performance with respect to the 

overall regulatory framework, that includes price and quality incentive schemes 

(regulatory efficiency). With the CostENS model, performance is measured with 

respect to social costs, sum of the company’s cost and the cost incurred by consumers 

for the ENS (social cost efficiency). 

 

TABLE 2 ABOUT HERE 

 

 

5.2 Descriptive statistics 

Table 3 shows the descriptive statistics of the input and output variables used in the 

three models. Table 4 provides yearly average values of the same variables, as well as 

their annual, relative standard deviations (in %). 18  Statistics include also several 

quality indicators; note that RP is the only variable that assumes both positive 

(rewards) and negative (penalties) values. 

 

TABLE 3 ABOUT HERE 

 

TABLE 4 ABOUT HERE 

 

In terms of outputs, average energy consumption has increased from 2004 to 2008 

and decreased in 2009 because of the economic crisis. Also the number of consumers 

has grown in the observed period (an internal recalculation by Enel explains why this 

number is lower in 2008). As for inputs, the total gross value of the assets has steadily 

increased, while we observe a reduction in operating costs between 2004 and 2008 

(and an increase in 2009), mainly due to a reduction in labor costs over the same 

period (partially compensated by increasing costs for services). Differences among 

Zones (relative standard deviations) remain fairly stable over time.  

While trends in opcost_RP and opcost_ENS are well explained by changes in the 

operating cost variable, it is interesting to look more closely at quality indicators. 

                                                 
17 In practice, the revenues of a distribution unit are modified by quality-related rewards and penalties. 
Hence, the cost model leaves out costs (and benefits) that derive from quality regulation. 
18 The relative standard deviation is obtained by multiplying the standard deviation by 100 and dividing 
this product by the average value of the variable. 
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SAIDI values steadily improved over the observed period.19 More specifically, the 

first three years of data reveal a significant decline in customer minutes lost, from a 

zonal (arithmetic) mean of 73.56 min. in 2004 to 51.06 min. in 2006. In the following 

years we do not observe a comparable trend: SAIDI in 2009 was equal to 47.73 min. 

and an increase was registered in 2008.  

As for RP, Table 4 shows that, on average, net rewards have constantly increased 

in the second tariff period (2004-2007). An initial large reduction in customer minutes 

lost, even if followed by relative stability, explains why incentives have continued to 

growth: a large initial improvement normally ensures that a district meets the quality 

targets for the rest of the tariff period. On the contrary, in the years 2008 and 2009, 

RP were significantly lower because of two effects: first, the recalculation of the 

starting point that, at the beginning of each tariff period, fixes the initial target-SAIDI 

at the same level of the actual-SAIDI for all districts and, second, the absence of a 

significant decline in customer minutes lost. Average RP values show also  

particularly large relative standard deviations. 

The cost of ENS (C_ENS) follows the trend in customer minutes lost: significant 

reductions in 2005 and in 2006, relatively smaller decreases in 2007 and in 2009 as 

well as an increase in 2008. Zonal differences (relative standard deviations), are 

similar at the beginning and at the end of the sample period (they present a minimum 

in 2005 and a peak in 2007). 

 

5.3 Hypotheses on benchmarking results and determinants of inefficiencies  

Considering first the Cost-only model, the relative standard deviations in Table 4 

suggest that cost-efficiency might not be particularly high, nor significantly converge 

over time. Nevertheless, we need to consider the possibility that differences across 

Zones are related to variables outside the control of the DSO.  

For instance, the surface covered in squared kilometers (area) is a measure of 

network dispersion: operating costs (manly maintenance activities) as well as capital 

costs (length of LV lines) are normally linked to the size of the area served (Coelli et 

al., 2007).  Hence, we expect lower efficiency in larger areas.  

Moreover, standard deviations of the ratios of capital and non-capital inputs over 

number of LV consumers are higher than the corresponding ratios over energy 
                                                 
19 SAIDI data presented an outlier with an extremely high value (698 min.) in 2004. To avoid bias in 
the analysis the variable was winsorized in the upper tail (Dixon, 1960). 
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consumption.20 Assuming a rationale conduct on the part of the DSO, we make the 

hypothesis that distribution costs are strongly driven by the number of customers 

served. Consequently, we expect that Zones where the single customer consumes 

relatively more energy will make a “better” use of their inputs and, therefore, will be 

more efficient. This effect can be captured by the ratio of non-residential consumption 

over total consumption (nonres_cons, in %). A similar effect was found by Scarsi 

(1999) and Filippini and Wild (2001).  

Finally, we consider also the average length of feeders per substation (f_length), 

calculated as the ratio of network length (in km, for MV lines) over transformer 

capacity for primary substations (in MVA).21  Although the variable is ultimately 

defined by investment choices, the number of substations installed is driven by the 

capacity which is necessary to serve the load and it can be modified only in the long 

term. Its impact on efficiency is ambiguous: a higher transformer capacity constitutes 

an additional burden in terms of capital assets, however it might be fully justified by a 

higher demand. The same variable is also closely related to continuity of supply: a 

higher number of substations ensures a higher level of redundancy (less consumers 

affected by the same fault, or for a shorter period of time).22 

As for the CostRP model, three observations are in order. First, RP present the 

largest relative standard deviations in Table 4. Second, as argued above, a good 

explanatory variable for SAIDI is the average length of feeders per substation. Third, 

in addition to changes in SAIDI, regulatory incentives depend on the composition of 

the load (see equation (6)). Altogether, we expect average efficiency scores in the 

CostRP model to differ from those in the Cost-only model and, specifically, to present 

lower values. We also expect that the determinants of inefficiency will include load 

composition and network design. 

The CostENS model is similar to the one studied by Growitsch et al. (2010), which 

employs the same outputs, but a single input, sum of capital and operational expenses, 

plus the costs of ENS. While Growitsch et al. (2010) find no significant differences in 

                                                 
20 On average, the capital ratio on energy consumption has a relative standard deviation equal to 
29.60% while the relative standard deviation of the capital ratio on number of customers is 43.63%. 
The corresponding values for the operating costs are, respectively, 14.82% and 37.23%. 
21 Dividing by the number of primary transformers per Zone would have been more appropriate, but 
our database does not include this information. 
22 The Appendix shows that a good explanatory variable for SAIDI at MV level is, indeed, the average 
length of feeders. Moreover, f_length presents also a high correlation with the percentage of 
underground lines. Grounding of long feeders is not necessarily cost efficient, but underground cables 
are normally associated with a lower probability of fault. 
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average efficiency between their cost-only and a cost-and-quality models, descriptive 

statistics in Table 4 do not immediately indicate an expected outcome for our 

database. Nevertheless, the fact that C_ENS is calculated as in equation (6) suggests 

that differences across Zones might be, again, related to the average length of feeders 

and to the composition of the load.  

 

 

6. Results  

In this section we focus, first, on the Cost-only model and analyze distribution 

units’ performance in terms of cost efficiency (i.e. we study the effect of input-based 

incentives). To this end, we investigate also the role of external variables and estimate 

productivity changes over time. Secondly, we analyze the combined effect of input-

based and output-based (quality-specific) regulation, using the two cost-and-quality 

models. Also in this case we consider possible determinants of inefficiency (and 

estimate productivity changes over time). For each model we discuss our results in 

light of previous studies and we interpret our findings in terms of their policy 

implications. 

Efficiency scores derive from the estimation of input-oriented, CRS DEA models, 

and are bias corrected via bootstrap replications. Specifically, they are calculated with 

respect to a different frontier for each of the six years of the observed period, using 

the FEAR Software Package (Wilson, 2008). The latter computes efficiency scores 

according to Shephard (1970), i.e. as input distance functions. All numerical 

elaborations presented in the paper are based on these values. Differently, in 

presenting and our results we report input efficiency measures according to Farrel 

(1957), i.e., as the reciprocal of the Shephard efficiency score. This representation is 

chosen to facilitate comparison with previous studies.  

 

6.1 Cost-only model 

A concise representation of the results for the Cost-only model is given in Table 5 

where we report the arithmetic average of bias-corrected efficiency scores, by year.  

The average unbiased efficiency over the period is 0.750 (0.736 in 2004 and 0.771 

in 2009), indicating that, given their input, Enel’s Zones could increase their output 

by 25%. These results are partially consistent with the findings of the literature. They 
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are below average scores obtained by Giannakis et al. (2005) and Coelli et al. (2007), 

on data from, respectively, the UK and France (around 82%). However, they are 

above the scores obtained by Growitsch et al. (2010) on Norwegian data (between 

56% and 63%, depending on the year). Of course, comparison with previous studies 

should be taken carefully because of the different choices made in terms of input and 

output variables: Giannakis et al. (2005) and Coelli et al. (2007) include an additional 

output (area size/network length), while Giannakis et al. (2005) and Growitsch et al. 

(2010) use total expenditures (TOTEX) as an input.23  

 

TABLE 5 ABOUT HERE 

 

As all Zones belong to the same company and are subject to the same regulatory 

incentives we are interested in exploring the determinants of the observed 

inefficiencies. Moreover, given that inefficiencies can be the result of bad managerial 

practices as well as of external conditions, it is important, from a regulatory 

perspective, to separate the two effects. To this end, we resort to a second-stage 

regression analysis, using bias-corrected efficiency scores (BC_d
it
) as the dependent 

variable. The model includes three independent variables – area size (area), load 

composition (nonres_cons), average length of feeders (f_length) – and takes the 

following form:  

 
(7)

 

where t are year fixed effects and it is the error term. Results are obtained using a 

truncated regression with bootstrap replications for the bias correction and for the 

confidence intervals.  

The results reported in Table 6 support the hypothesis that the heterogeneity 

observed across distribution units is associated with external factors (a positive 

coefficient suggests a larger distance from the efficient frontier and vice versa). As 

expected, a larger area size and a lower percentage of non-residential consumption 

positively affect a unit’s performance in terms of cost efficiency. The same holds also 

for shorter feeders.  

                                                 
23 Using TOTEX as a the only input (TOTEX model) we obtain an average unbiased efficiency of 
0.672 (between 0.651 and 0.683, depending on the year of observation). The correlation among 
efficiency scores in the Cost-only model and in the TOTEX model is equal to 0.843.  

_  = α0 + α1 ≤_  + α2 ≤+ α3 ≤_  + λ + 
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TABLE 6 ABOUT HERE 

 

Before analyzing performance over time, note that the residuals of equation (7) 

represent the portion of efficiency that remains unexplained after the correction for 

the external factors, used as independent variables. It is possible to use these residuals 

to level the external variables and derive an adjusted efficiency that is not influenced 

by the external conditions in which each Zone operates. Employing, with the 

necessary modifications, the procedure proposed by De Witte and Moesen (2010), we 

obtain an average adjusted efficiency over the observed period equal to 0.854 (0.832 

in 2004 and 0.886 in 2009). In other words, after accounting for several determinants 

of heterogeneity, our results appear fully consistent with previous studies that use data 

from a single company. In terms of policy, this is a positive result: although 

inefficiencies are still present, managerial performance appears quite homogeneous 

across all Enel’s Zones.  

The question, however, remains on the effect of the regulation of inputs over time, 

or on the company’s response to regulatory incentives aimed at productive efficiency. 

To properly discuss this matter and on the basis of the original Cost-only model, we 

examine productivity changes over time. Average Malmquist indices and their 

components (efficiency change and technical change) are reported in Table 7.  

 

TABLE 7 ABOUT HERE 

 

During the observed period, there is evidence of a decrease in productivity and 

both the efficiency and the technical component are, on average, lower than one. In 

other terms, from the perspective of productive efficiency, our analysis shows no 

significant improvements over time (there are no costs reductions that can be passed 

on to consumers). This is consistent with results obtained by Miguéis et al. (2012) and 

also with the Italian regulatory framework. The tariff scheme provides incentives for 

the DSO to achieve higher efficiency in operating costs but allows a pass-through of 

capital expenses and depreciation. In practice, it appears that savings in operating 

costs have been masked by renovation or expansion of distribution assets, a strategy 

that is expected to bring benefits to consumers only in the longer term. 

 



 21

6.2 Cost-and-quality models 

To study the effects of price and quality regulation we employ two different 

measures of quality: regulatory rewards and penalties (CostRP model) and the cost of 

the ENS (CostENS model). The arithmetic average of the bias-corrected efficiency, 

for each model and year is reported in Table 8. Before discussing each model in 

detail, a few general remarks are in order.  

 

TABLE 8 ABOUT HERE 

 

Average efficiency scores observed over the entire period are lower in the CostRP 

model than in the Cost-only model (0.700 vs. 0.750); conversely, differences between 

average efficiency in the Cost-only and the CostENS model are minimal (0.743 vs. 

0.750).  

Table 9 presents the score and ranking (in parentheses) correlation coefficients 

across the three models. Score correlations between the Cost-only and the CostRP 

model are equal to 86.9% and those between the Cost-only and the CostENS models, 

to 82.8%. Notably, the lowest score correlation (77.2%) is between the two cost-and-

quality models. The same holds also for ranking correlations. 

 

TABLE 9 ABOUT HERE 

 

Table 10 illustrates changes in ranking of single Zones between the Cost-only and 

the two cost-and-quality models. Calculations are made using an average scores, per 

Zone, over the observed period and then dividing the observations in four quartiles. 

The CostRP model does not modify the ranking found in the Cost-only model, 

particularly at the extremes. Rankings are modified for 4% of ‘very cost-efficient’ 

Zones, 21% of ‘very cost-inefficient’ Zones and 34% or less of ‘cost-inefficient’ and 

‘cost-efficient’ Zones. Altogether, out of 114 Zones, only 14 score better and 14 

worse. Similarly, including the cost of ENS in the benchmarking model does not 

significantly modify the ranking of ‘very cost-inefficient’ (21%) and ‘very cost-

efficient’ Zones (32%). Zones in the intermediate ranges appear, instead, to be 

impacted relatively more (48% of ‘cost-inefficient’ and 46% ‘cost-efficient’ Zones). 

On average, out of 114 Zones, 22 score better and 20 worse.  
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TABLE 10 ABOUT HERE 

 

 

6.2.1 CostRP model 

Efficiency scores for the CostRP model are consistent with the hypothesis of a 

larger dispersion in input data. Together with the relative stability in the ranking order 

this indicates that, on average, Zones that are more cost efficient are also good 

performers in terms of exceeding regulatory targets for quality (i.e. they have been 

rewarded by the regulatory mechanism). Also the converse is true: lower cost 

efficiency appears to be associated with lower cost-and-quality efficiency. Changes 

observed over time (2008 and 2009 present higher average values than previous 

years) are consistent with the fact that rewards and penalties decrease at the beginning 

of each regulatory period (a convergence in performance was to be expected).24  

With respect to the literature, our results are in line with those found by Coelli et 

al. (2007): the cost-only model has, at least partially, captured the quality aspect of the 

distribution units. In terms of policy, we infer that in the period under observation the 

presence of quality regulation has not significantly altered the behavior of the 

distribution units: those that responded well to cost efficiency incentives responded 

equally well to quality-related incentives and vice versa. Another interpretation is that 

the company has responded strategically to the regulatory regime, extracting larger 

gains from both price and quality regulation in some distribution Zones and smaller 

ones (or none) in others.25  

The absence of a different response to cost and quality regulatory incentives (or the 

adoption of a strategic behavior on the part of the distribution company) might be 

motivated by fact that the same external conditions that favor cost efficiency also 

influence the ability of distribution unit to attract larger rewards. To test this 

hypothesis we perform a second stage analysis of the bias-corrected efficiency scores 

obtained in the CostRP model, using the same independent variables employed in 

equation (7). Results, obtained with a truncated regression (with bootstrap replications 

for the bias correction and for the confidence intervals), are reported in the first 

                                                 
24 Malmquist indices estimated for the CostRP model exclude, however, any performance change over 
time (the mean over the period is equal to 1.001). 
25 We thank an anonymous reviewer for this insight. 
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column of Table 11. They reveal that a smaller area size, a higher percentage of non-

residential consumption and shorter feeders are associated with smaller distances 

from the efficient frontier. In sum, external factors that favor cost efficiency also 

ensure that the distribution unit collects regulatory rewards (i.e., maintains SAIDI 

below the regulatory target).  

 

TABLE 11 ABOUT HERE 

 

Nevertheless, the fact that a distribution unit responds in the same manner to input-

based and to output-based incentives leads an allocation of quality-related incentives 

that appears in contrast with the long term objective of quality regulation (i.e. 

convergence of SAIDI). To support these statement we compute the average annual 

SAIDI reduction and the average annual rewards and penalties assigned to each Zone. 

Table 12 illustrates these data by different quintiles of the 2004 SAIDI index, i.e. 

ordered by the initial level of quality. Additional information includes the number of 

times when no rewards nor penalties were assigned and the external variables (area 

size, share of non-residential load and average feeder length). 

 

TABLE 12 ABOUT HERE 

 

We observe that Zones in the first quintile attained relatively small quality 

improvements (0.64 min./year) and yet, collected almost as many rewards as Zones 

whose annual SAIDI improvements were significantly larger (above 3 min./year) – 

clearly rewards were magnified by the share of non-residential load in the same areas. 

In any case, it appears that significant resources were allocated to reward cost-

efficient distribution units (see external variables in Table 12) for providing nearly the 

same level of quality that they delivered in 2004.  

At the same time, Zones in the last two quintiles attained the largest improvements 

in SAIDI (6.09 min./year and 12.52 min./year, respectively) but were able to attract 

less then average rewards. Although annual SAIDI targets are more demanding for 

poor performing areas, it appears that rewards were also limited by a lower share of 

non-residential load. Moreover, these Zones more frequently met, instead of 

exceeding, the regulatory targets, i.e. they received no rewards (or penalties). In sum, 

lower resources were allocated to Zones that presented higher values of SAIDI in 
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2004 as well as the external characteristics of less efficient areas (see external 

variables in Table 12).  

Altogether, this raises some doubts on the efficacy of the current regulatory 

mechanism to reach convergence in SAIDI in the long term. Regulatory incentives for 

quality were never meant as a compensation for quality-related expenditures. 

Nevertheless, our analysis provides strong motivations for the modification of this 

principle and in favor of an incentive scheme where rewards are preferably assigned 

to areas with less favorable external conditions. The role of network structure in 

defining the level of quality also suggests that those incentives should be mainly 

directed at supporting capital expenditures. 

In line with these findings, a change in prospective has been introduced in quality 

regulation for the fourth tariff period. Since January 2012 rewards to high performing 

territorial districts (SAIDI close to the national standard) have been significantly 

reduced, while those to underperforming ones can largely increase if substantial 

improvements in SAIDI are achieved  (AEEG, 2011b).  

Note that what appears as a radical change in perspective implies also a strong 

commitment to meet one of the regulatory objectives set in 2004. As this commitment 

approaches its natural end (in 2015), results from the CostENS model suggest taking a 

different course of action. 

 

6.2.2 CostENS model 

Also for the CostENS model, average efficiency scores (0.743) are in line with 

previous studies. Using SOTEX (TOTEX plus the cost of ENS) as the only input 

Growitsch et al. (2010) find average scores that are between 57% and 62%, depending 

on the year;26 Miguéis et al. (2012) report, instead, average scores above 84% (but 

their model includes additional outputs).  

Consistent with previous work (Growitsch et al., 2010) is also the fact that average 

performance in terms of cost efficiency and average performance in terms of social 

                                                 
26 Using SOTEX as a the only input (SOTEX model) we obtain an average unbiased efficiency of 
0.669 (between 0.642 and 0.698, depending on the year of observation). The correlation among 
efficiency scores in the CostENS model and in the SOTEX model is equal to 0.870.  
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cost efficiency do not significantly differ in our database. Although this does not 

imply that they can not be improved, at least, it excludes a conflict between them.27 

Nevertheless, a relatively low score correlation with the CostRP model (Table 9) 

and the observed changes in ranking correlations with respect to the Cost-only model 

(Table 10) suggests that the CostENS model provides a different perspective on cost-

and-quality efficiency. To illustrate this point, we conduct a second-stage analysis on 

bias-corrected efficiency scores from the CostENS model, using the same independent 

variables as in equation (7). Results, obtained with a truncated regression (with 

bootstrap replications for the bias correction and for the confidence intervals) are 

reported in the second column of Table 11. 

We find that favorable geographical conditions (smaller area) and network design 

(shorter feeders) continue to have significant and positive effect on distribution units’ 

performance. Differently, a higher share of non-residential load continues to have a 

positive effect on performance but becomes less significant: given the same cost 

efficiency level, two Zones can be equally social-cost efficient if one presents a 

relatively high value of SAIDI and a relatively low share of non-residential load and 

the other, instead, a lower SAIDI but a higher share of non-residential load. 

From a research perspective, we infer that while the CostRP model is best suited to 

study how distribution units have responded to the regulatory regime, the CostENS 

model appears as a more equitable choice when assessing their performance in terms 

of (social) cost efficiency and the cost of ENS should be included in benchmarking of 

distribution networks.  

From a policy perspective, we observe that current quality targets in Italy are not 

differentiated on the basis of the cost of ENS in a given area. In turn, this is used to 

calculate rewards and penalties. Therefore, customer valuations of different levels of 

quality (their WTP) enter the distributor’s choice in setting the level of SAIDI, i.e. 

will induce a distribution unit to set different levels of SAIDI in areas with a different 

composition of the load. We infer that a regulatory objective which requires 

convergence in SAIDI performance is inherently at risk whenever the benefit of 

meeting it does not outweigh its cost from a company’s perspective.  

                                                 
27 Changes observed over time even suggests a converge of performance (see Table 8). Malmquist 
indices estimated for the CostENS model exclude, however, any performance change over time (the 
mean over the period is equal to 0.977). 
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Consequently, our policy suggestion for the longer term is to redefine the 

convergence objective in terms of the costs of ENS. This will provide a better 

understanding (also in the public opinion) of the progress of quality regulation and, at 

the same time, remove the incentive to provide the same level of SAIDI in areas 

where the composition of the load does not justify the cost. While this would mean 

accepting a higher SAIDI where the load is mostly residential, in the end it would 

benefit consumers, by ensuring that the level of expenditures in electricity distribution 

does not increase beyond what is socially efficient. 

 

 

7. Conclusions  

Regulation of electricity networks is changing, moving from a productivity-

oriented instrument to one that includes additional, longer term objectives, generally 

pursued with the introduction of output-based incentives. This has prompted interest 

for the assessment of firms’ response to output-based incentives, mostly because of 

their potential conflict with more traditional concerns for productive efficiency.  

In this paper we study the effect of input-based and output-based regulatory 

incentives on the performance of the largest Italian electricity distribution company. 

Specifically, our focus is on assessing progress in terms of cost efficiency and in the 

provision of quality. To this end, we rely on a recent statistical approach, based on 

DEA and bootstrapping techniques, which enable the estimation of technical 

efficiency in the first stage and the study of possible sources of efficiency 

heterogeneity in the second stage. We also employ Malmquist indices to study 

changes in performance over time. 

As for performance in terms of cost efficiency, as implied in the regulation of 

inputs, we find that, once we account for the external characteristics of each 

distribution unit (area served, load composition and network topology), similar efforts 

were exercised across all Enel’s Zones. They were restrained, however, by the need to 

renovate and to expand the distribution system.  

As for performance with respect to the overall regulatory framework we find that 

the presence of (output-based) quality regulation has not significantly modified the 

behavior of the distribution units: those that responded well to cost efficiency 

incentives responded equally well to quality-related incentives and vice versa. Indeed, 
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the same external conditions that favor cost efficiency also influence the ability of a 

distribution unit to exceed the targets imposed by quality regulation. This behavior, 

however, appears in contrast with the long term objective of convergence in SAIDI 

performance.  

Finally, in line with previous literature, we find that average performance in terms 

of cost efficiency and in terms of social cost efficiency do not significantly differ. 

Nevertheless, a comparison with the results obtained with different specifications of 

the benchmarking model indicates that is preferable to include the cost of ENS when 

assessing a single unit’s performance.  

Altogether, the evidence presented in this paper calls for a new course of action in 

quality regulation. Specifically, in order to reach convergence in the desired output 

(SAIDI), the Italian incentive scheme needs to allocate more resources where quality 

improvements are difficult to achieve rather than on rewarding good quality 

performance. As the composition of the load or the area served can hardly be 

modified, incentives should be directed at improving the network design. While the 

national regulator has already taken a step in this direction, our analysis suggests also 

a different conduct. A convergence objective redefined in terms of the cost of ENS 

(rather than SAIDI) would account for differences in load composition and might 

reduce the need to modify the network in areas where consumers’ valuation of quality 

does not justify the cost.  

In this perspective, further work should concentrate on studying the relationship 

between quality-related incentives and expenditure decisions in the electricity 

distribution sector. Also, an estimation of the company’s cost for quality 

improvements would be useful to assess the efficacy of the policy suggestions 

proposed in this paper.  
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Table 1. Benchmarking with quality in electricity distribution 

 
Input 

variables 
Output 

variables 
Quality 

variables 
Database 

Benchmarking 
approach 

Jamasb and 
Pollit (2003) 

OPEX; 
TOTEX; 
(Network 

length) 

Energy 
supplied; 

Num. 
customers; 
(Network 

length) 

Energy losses 
Cross-section 

1999 
International 

DEA, COLS and 
SFA 

von 
Hirschhausen 
et al. (2006) 

Labour; 
Network 

length; Peak 
load capacity 

Energy 
supplied; 

Num. 
customers; 

Inverse 
density index 

Energy losses 
Cross-section 

2001 
National 

SFA and DEA 

Growitsch et 
al. (2009) 

TOTEX 

Energy 
supplied; 

Num. 
customers 

CML 
Cross-section 

2002 
International 

SFA 

Giannakis et 
al. (2005) 

OPEX; 
TOTEX 

Energy 
supplied; 

Num. 
customers; 
Network 
length 

NINT and 
TINT 

Panel 
1991/92 – 
1998/99 
National 

DEA and 
Malmquist Index 

Coelli et al. 
(2007) 

Capital 
replacement 
value, OPEX 

Energy 
supplied; 

Num. 
customers; 
Network 
length 

NINT 
Panel 

2003-2005 
One company 

SFA and DEA 

Miguéis et al. 
(2012) 

SOTEX 

Energy 
supplied; 

Num. 
customers, 

others 

Cost of ENS 
Panel 

2004-2007 
National 

DEA and 
Malmquist Index 

Growitsch et 
al. (2010) 

TOTEX, 
SOTEX 

Energy 
supplied; 

Num. 
customers 

Cost of ENS 
Panel 

2001-2004 
National 

DEA 

Coelli et al. 
(2013) 

Capital 
replacement 
value, OPEX 

Energy 
supplied; 

Num. 
customers; 
Area size 

NINT 
Panel 

2003-2005 
National 

SFA, Parametric 
Linear 

Programming 

Note: CML: Customer Minutes lost; NINT: Number of Interruptions; TINT: Duration of interruptions; ENS: 
Energy Not Served; OPEX: Operating expenditures; TOTEX: Operating and capital expenditures; SOTEX: 
TOTEX plus Cost of ENS. 
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Table 2. Input and output variables in DEA models 

DEA Model Input Output

Cost-only 
capital (€)
opcost (€) 

energy (GWh)
LVcons 

CostRP 
capital (€)

opcost_RP (€) 
energy (GWh)

LVcons 

CostENS 
capital (€)

opcost_ENS (€) 
energy (GWh)

LVcons 
 

Table 3. Descriptive statistics on input and output DEA variables 

Variable Mean Std. dev. Minimum Maximum Zones
energy (GWh) 1,756 1,162 307 5,876 114 
LVcons 264,456 140,351 60,275 693,154 114 
capital (mln€) 263.89 121.58 78.54 705.47 114 
opcost (mln€) 17.21 8.56 4.13 50.48 114 
SAIDI (min) 56.55 31.58 10.42 194.28 114 
RP (mln€) 0.89 1.16 -3.19 9.05 114 
C_ENS (mln€) 3.17 2.34 0.14 15.30 114 
opcost_RP (mln€) 16.33 8.36 3.66 48.77 114 
opcost_ENS (mln€) 20.38 10.39 4.37 57.75 114 

 

Table 4. Descriptive statistics on input and output DEA variables: mean and 
relative standard deviation (%) per year  

  2004 2005 2006 2007 2008 2009 

energy (GWh) 
1,685 1,719 1,782 1,787 1,826 1,736 

67.08% 66.48% 66.43% 66.59% 66.58% 64.96% 

LVcons 
257,460 260,344 264,054 269,183 266,781 268,912 
53.26% 53.24% 53.26% 53.29% 53.18% 53.17% 

capital (mln€) 
246.54 253.16 259.92 265.94 275.35 282.45 
45.94% 45.95% 45.80% 45.98% 46.00% 46.02% 

opcost (mln€) 
19.17 17.11 17.50 15.83 15.59 18.08 

48.85% 47.96% 48.29% 49.86% 50.11% 50.50% 

SAIDI (min) 
73.56 66.83 51.06 48.59 51.54 47.73 

50.65% 55.03% 51.57% 58.35% 47.07% 51.63% 

RP (mln€) 
0.55 1.02 1.38 1.58 0.47 0.33 

105.57% 104.45% 105.83% 98.42% 121.65% 193.56% 

C_ENS (mln€) 
4.03 3.54 2.95 2.79 3.03 2.69 

74.02% 64.78% 72.77% 78.14% 68.23% 74.51% 

opcost_RP (mln€) 
18.62 16.1 16.12 14.25 15.12 17.76 

49.39% 48.52% 50.00% 53.57% 50.24% 51.15% 

opcost_ENS (mln€)
23.19 20.65 20.45 18.61 18.62 20.77 

49.34% 48.18% 49.95% 52.15% 51.39% 52.24% 
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Table 5. Efficiency scores in the Cost-only model 

Year Mean Std. dev. Min Max 
2004 0.736 0.085 0.500 0.889 
2005 0.715 0.079 0.514 0.883 
2006 0.751 0.076 0.541 0.901 
2007 0.767 0.072 0.539 0.918 
2008 0.760 0.072 0.502 0.922 
2009 0.771 0.073 0.581 0.937 
Mean 0.750 0.079 0.500 0.937 

Efficiency scores are bias corrected via boostrap (2000 replications) 

 

Table 6. Second stage regression (Cost-only model)  

 Efficiency scores
area 0.026 ***
 (0.005)  
nonres_cons - 0.267 ***
 (0.082)  
f_lenght 0.019 ***
 (0.003)  
2004 0.069 ***
 (0.020)  
2005 0.111 ***
 (0.018)  
2006 0.041 **
 (0.018)  
2007 0.011  
 (0.017)  
2008 0.023  
 (0.017)  
const. 1.350 ***
 (0.069)  
n.obs 684  
n. Zones 114  

***, **, and * indicate, respectively, significance levels of 1%, 5%, and 10% 
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Table 7. Malmquist indices (Cost-only model) 

Year Malmquist EF TC 
2004-05 0.893 1.023 0.873 
2005-06 1.005 0.957 1.050 
2006-07 0.887 1.981 0.904 
2007-08 0.990 1.008 0.982 
2008-09 1.154 0.992 1.164 

Mean 0.986 0.992 0.995 
Indices are bias corrected via boostrap (2000 replications)  

 

Table 8. Efficiency scores in CostRP and CostENS models 

 CostRP model CostENS model 

Year Mean 
Std. 
dev. 

Min Max Mean 
Std. 
dev. 

Min Max 

2004 0.703 0.089 0.457 0.878 0.689 0.106 0.382 0.897 
2005 0.664 0.094 0.447 0.877 0.706 0.107 0.423 0.918 
2006 0.676 0.102 0.417 0.915 0.749 0.089 0.503 0.938 
2007 0.675 0.101 0.414 0.905 0.752 0.089 0.470 0.926 
2008 0.733 0.080 0.468 0.922 0.778 0.091 0.502 0.953 
2009 0.748 0.079 0.543 0.927 0.786 0.082 0.545 0.975 
Mean 0.700 0.096 0.414 0.927 0.743 0.100 0.382 0.975 
Efficiency scores are bias corrected via boostrap (2000 replications) 

 

Table 9. Score and ranking (in parenthesis) correlations among DEA models  

 Cost-only CostRP CostENS

Cost-only 1 
    
    

CostRP 
0.869 ***

1 
  

(0.859)    

CostENS 
0.828 *** 0.772 ***

1 
(0.842)  (0.803)  

***, **, and * indicate, respectively, significance levels of 1%, 5%, and 10% 
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Table 10. Changes in raking order  

    Cost only 

    Very efficient Efficient Inefficient Very inefficient 

Cost-RP 

Very efficient 25 86% 4 14% 0 0% 0 0% 
Efficient 4 14% 19 68% 5 17% 0 0% 

Inefficient 0 0% 5 18% 19 66% 5 18% 
Very inefficient 0 0% 0 0% 5 17% 23 82% 

  Tot. 29 100% 28 100% 29 100% 28 100% 

    Cost only 

    Very efficient Efficient Inefficient Very inefficient 

Cost-ENS 

Very efficient 23 79% 6 21% 0 0% 0 0% 
Efficient 5 17% 15 54% 7 24% 1 4% 

Inefficient 1 3% 5 18% 15 52% 8 29% 
Very inefficient 0 0% 2 7% 7 24% 19 68% 

  Tot. 29 100% 28 100% 29 100% 28 100% 
Percentage values are rounded 

 

Table 11. Second stage analysis (CostRP and CostENS models)  

 CostRP model CostENS model 

area  0.041 *** 0.038 *** 

 (0.008)  (0.008)  

nonres_cons -0.565 *** -0.201 * 

 (0.105)  (0.119)  

f_length 0.029 *** 0.021 *** 

 (0.004)  (0.005)  

2004 0.102 *** 0.243 *** 

 (0.023)  (0.034)  

2005 0.203 *** 0.203 *** 

 (0.024)  (0.031)  

2006 0.187 *** 0.094 *** 

 (0.027)  (0.024)  

2007 0.192 *** 0.086 *** 

 (0.025)  (0.025)  

2008 0.041 * 0.027  

 (0.021)  (0.026)  

const. 1.511 *** 1.199 *** 

 (0.090)  (0.105)  

n.obs 684 684 

n. Zones 114 114 
***, **, and * indicate, respectively, significance levels of 1%, 5%, and 10% 
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Table 12. Average annual SAIDI reduction and RP by SAIDI 2004 quintiles 

Quintiles SAIDI 
2004 

Annual 
SAIDI 

reduction 

Annual 
Rewards 

Annual 
Penalties 

Zero RP area nonres_cons f_length 

 [min] [min] [mln€] [mln€] [N. obs.] [km2] [%] [km/MVA] 

Q1 
18.70 - 
40.56 0.64 1.08 0.15 0 1789*103 0.77 3.33 

Q2 
40.56 - 
59.83 3.08 1.15 0.45 1 2825*103 0.74 3.59 

Q3 
59.83 - 
77.39 3.81 1.34 0.41 8 2468*103 0.72 4.02 

Q4 
77.39 - 
98.18 6.09 0.88 0.48 11 2541*103 0.68 4.57 

Q5 
98.18 - 
194.28 12.52 0.89 0.40 24 2826*103 0.68 5.18 

Mean - 5.17 1.08 0.42 - 2487*103 0.72 4.13 
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Appendix 

In this Appendix we analyze the determinants of the continuity indicator SAIDI 

and, in particular, we focus on interruptions that occur at Medium Voltage (MV) level 

(a measure that include most of the customer minutes lost in a given area). To this 

end, estimate the following model (Model A): 

 

 
(A.1)

 

The dependent variable is the SAIDI indicator used in the paper, net of 

interruptions events that originated on the low voltage network (SAIDI_MV). The 

explanatory variables are the average length of feeders per substation (f_length), 

network length at MV level (km_MV) and the percentage of non-residential energy 

consumption over total consumption (nonres_cons). Annual dummy variables are 

included to control for time-variant fixed effects (t). 

As explained in Section 5.3, a larger value for the variable f_length is expected to 

increase SAIDI. Similarly, a longer network indicates a more dispersed distribution 

area and is expected to be associated with longer interruption durations (longer supply 

restoration times). On the contrary, a larger share of non-residential load is expected 

to be associated with lower values of SAIDI (non-residential consumers have a higher 

valuation of quality).  

Results, obtained with a Random Effect model, are reported in Table A.1: Model 

A-I includes only the technical variables (f_length and km_MV); Model A-II considers 

also the composition of the load (nonres_cons).  

In Model A-I, the coefficient on f_length is, as expected, positive and statistically 

significant; differently, the coefficient for the variable km_MV has the expected sign, 

but it is statistically insignificant. Model A-II confirms the effect on SAIDI_MV of the 

variable f_length, althought at a lower significance level; it also shows that a higher 

share of non-residential load has the expected negative and significant effect upon 

SAIDI at MV level. Finally, the annual dummy variables indicate that the variable 

SAIDI_MV decreased over the observed period. 

  

_  = α0+α1≤_ +α2≤_ +α3≤_ +λ+ 
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Table A.1 Determinants of continuity indicator SAIDI at MV level 

 Model A-I Model A-II 
    
f_length 3.132*** 1.620* 
  (0.953) (0.956) 
km_MV 0.002 0.001 
  (0.001) (0.001) 
nonres_cons  - -97.531*** 
 - (24.720) 
2004 26.043*** 25.641*** 
  (2.505) (2.560) 
2005 19.127*** 19.310*** 
  (2.132) (2.125) 
2006 4.661*** 5.231*** 
  (0.896) (0.908) 
2007 1.938** 2.714*** 
  (0.851) (0.852) 
2008 1.194 2.238* 
  (1.229) (1.201) 
const. 13.022*** 91.062*** 
  (4.998) (19.340) 
    
N. obs. 684 684
N. Zones 114 114

***, **, and * indicate, respectively, significance levels of 1%, 5%, and 10% 

 

 


