View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by PORTO Publications Open Repository TOrino

Measuring DASH Streaming Performance from the
End Users Perspective using Neubot

Simone Basso!?, Antonio Servetti?, Enrico Masala?, Juan Carlos De Martin®?
'Nexa Center for Internet & Society 2Control and Computer Engineering Department
Politecnico di Torino - corso Duca degli Abruzzi, 24 - 10129 Torino, Italy
{simone.basso, servetti, masala, demartin}@polito.it

ABSTRACT

The popularity of DASH streaming is rapidly increasing and
a number of commercial streaming services are adopting
this new standard. While the benefits of building stream-
ing services on top of the HTTP protocol are clear, further
work is still necessary to evaluate and enhance the system
performance from the perspective of the end user. Here
we present a novel framework to evaluate the performance
of rate-adaptation algorithms for DASH streaming using
network measurements collected from more than a thou-
sand Internet clients. Data, which have been made publicly
available, are collected by a DASH module built on top of
Neubot, an open source tool for the collection of network
measurements. Some examples about the possible usage
of the collected data are given, ranging from simple analy-
sis and performance comparisons of download speeds to the
performance simulation of alternative adaptation strategies
using, e.g., the instantaneous available bandwidth values.

Categories and Subject Descriptors

H.5.1 [Multimedia Information System]: Video; C.2.3
[Computer Communication Networks|: Network Op-
erations

General Terms

Algorithms, Measurement, Standardization, Documentation

Keywords

Dynamic Adaptive Streaming over HT' TP, DASH, Rate Adap-
tation, Dataset, Neubot, Network Measurement Tool

1. INTRODUCTION

Recent years have witnessed a strong shift towards media
streaming based on the HTTP protocol. This trend signifi-
cantly changes the traditional paradigm in which web con-
tent and streaming media were delivered using two different
strategies. Web content was transferred using the HTTP
protocol and huge investments have been made to ensure
fast delivery of popular content to the end users, relying

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions @acm.org.

MMSys 14, March 19 - 21 2014, Singapore, Singapore

Copyright 2014 ACM 978-1-4503-2705-3/14/03 ...$15.00
http://dx.doi.org/10.1145/2557642.2563671.

on caching proxies and generic content delivery networks
(CDNs). Conversely, streaming media relied on the UDP
and other protocols designed to control streaming applica-
tions, such as RTSP, which made it very difficult to benefit
from the architecture and investments in generic CDNs for
web content delivery unless they were designed and tailored
specifically for the protocols in use.

However, starting from 2007 the HTTP protocol has also
been used to deliver media by means of splitting it in small
file chunks, so that each chunk could be seen as an indepen-
dent web resource with its own URL. This allowed to benefit
from the investments made to optimize web content deliv-
ery, while at the same time shifted the burden to manage
the media transfer to the client. The client has to constantly
monitor the download speed, a critical aspect in multimedia
delivery, and to adapt to the varying network conditions to
limit impairments on the user’s quality of experience.

This technology, named in its infancy “adaptive HTTP
streaming”, allowed streaming media to take full advantage
of the investments made in CDNs and web caching proxy
architectures to optimize web content delivery. Thus, many
solutions were developed independently from major compa-
nies: Microsoft with Smooth Streaming in 2008, Apple with
HTTP Live Streaming in 2009, Adobe with HTTP Dynamic
Streaming in 2010.

Although the basic idea is practically the same, those so-
lutions were incompatible among them due to lack of stan-
dardization. This problem has recently been addressed by
the MPEG Working Group which, in April 2012, ratified
a new standard named Dynamic Adaptive Streaming over
HTTP (DASH) [4]. Following the MPEG standard philoso-
phy, it enables interoperability and fosters adoption by the
industry, but it still allows for competition among different
players which can optimize different aspects of the imple-
mentation.

For instance, the standard does not define the client rate-
adaptation logic that is a fundamental element to efficiently
cope with the varying network conditions but has no impact
on interoperability.

This paper presents our architecture for testing differ-
ent DASH implementations, in particular their client rate-
adaptation logic, on a large number of clients connected to
the Internet using different access technologies, from residen-
tial DSL to high-speed connections, from wireline to wire-
less (cellular) connections. The proposed architecture, at
the same time, creates a dataset with all the measurements
that can be used for further analysis and improvements by
other interested researchers.

Built on top of Neubot [2], a Measurement Lab [7] tool
developed by the Nexa Center for Internet and Society, we
released a dashtest tool that is based on the libdash library

© ACM, 2014. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive
version was published in Proc. of the 5th ACM Multimedia Systems Conference, http://doi.acm.org/10.1145/2557642.2563671

https://core.ac.uk/display/20529277?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and the DASH dataset [5] and that periodically tests and
records DASH streaming sessions from each Neubot client
to a server in the Internet. These measurements provide
insights into the performance of DASH streaming on a large
scale and they may provide cues to improve the design of
new rate adaptation logic algorithms in terms of quality of
experience. Some examples are shown in this work.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the related work, the motivation for data
collection and the intended use of the data set. Section 3
gives a detailed description of the architecture used to per-
form the tests and to collect the dataset, that is based on a
tool called Neubot. The details on the format of the data
collected and some characterizing statistics are presented in
Section 4. Finally, Section 5 concludes the paper.

2. RATIONALE AND RELATED WORKS

A key feature of MPEG DASH is the ability to handle
bandwidth variations during a streaming session. A pull-
based system is described in which the client is responsible
for selecting and requesting the most appropriate resources
from the server. Therefore, the streaming logic completely
resides on the client side, i.e., the client can vary the stream-
ing media bitrate every time a new media segment is re-
quired.

To date most of the open source software implementations
that support DASH are based on the libdash library that,
however, provides only two basic adaptation algorithms: man-
ual adaptation and always lowest bitrate. Other open source
implementations such as Mozilla (https://www.mozilla.org)
and VLC (http://www.videolan.org/) rely on a long term
average bitrate adaptation algorithm where the target bi-
trate of the next media segment, to be downloaded, is com-
puted as the average bitrate of the whole streaming session.

Besides these simple algorithms, the research literature
presents several papers that address the issue of designing
and comparing the logic of different adaptation algorithms
in a number of network environments.

Liu et al. [6] propose an algorithm that use the ratio of the
segment duration and the latest single segment fetch time
to detect network congestion and spare network capacity.
The technique is evaluated using the network simulator ns-2
in the presence of exponential and constant bit-rate back-
ground traffic. Other papers consider instead real world sce-
narios. Akhshabi et al. [1] experimentally evaluate the rate
adaptation algorithms implemented in three major players
(Smooth Streaming, Netflix, OSMF). Muller et al. [8] evalu-
ate their DASH implementation on a vehicular network sce-
nario and compare its performance with other proprietary
systems.

In addition to the academic interest in DASH, HTTP-
based adaptive streaming solutions are increasingly chosen
by several companies as the delivery method for streaming
media. A first live and large-scale demonstration occurred
with the 2012 London Olympics that reported up to 1,000
concurrent viewers, then Wimbledon and Roland Garros fol-
lowed. In the industry premium on-demand services are also
reported to be based on HTTP streaming such as Netflix,
LoveFilm, and Amazon Instant Video.

However, none of these implementations or studies re-
leased to the public their data on the experienced network
conditions, the logic of the adaptation algorithms, the mea-
sured download rates. As a consequence, it is extremely dif-

ficult to evaluate and compare different DASH algorithms,
and there is a significant lack of a common dataset that can
be used for this purpose.

To the best of our knowledge the only public dataset for
DASH has been released in 2012 by Lederer et al. [5] and it
mainly consists of A/V material for video quality evaluation.
It comprises several videos with a duration between 10 and
90 minutes, that are provided in different segment lengths
as well as in different representations ranging from 50 kb/s
up to several Mb/s.

Using that dataset as a starting point, we add our con-
tribution to the study and evaluation of DASH adaptation
logic (AL) and algorithms with the release of a compan-
ion dataset with a huge collection of network measurements
from DASH streaming sessions on the Internet. The mea-
surements are collected by means of a Neubot [2] module
for DASH that is inspired by the protocol implementation
of the libdash library and that periodically tests and records
DASH streaming sessions from each Neubot client to a ran-
dom server in the Internet.

As will be detailed in Section 3, Neubot is a research
project based on a lightweight open source program that
runs in the background on thousands of Internet clients and
periodically performs transmission tests with test servers
hosted by the distributed Measurement Lab platform. Trans-
mission tests probe the Internet using various application
level protocols (which now include DASH) and test results
are published on the web allowing anyone to inspect and
analyze the data for research purposes.

The dataset, containing all the measurements collected by
the Neubot clients and the preliminary analysis presented in
this paper, is available at (http://media.polito.it/mmsys14).

3. METHODOLOGY

In this section we describe the Neubot architecture, the
integration between Neubot and Measurement Lab, the Neu-
bot DASH module, and the dashtest adaptation logic.

3.1 The Neubot Architecture

Fig. 1 shows the Neubot architecture, which consists of
the Neubot program, the configuration server, the discovery
server, the test servers, and the collect server.

The Neubot program (henceforth, Neubot) is a piece of
software, written in Python, that volunteer users install on
their computers. Neubot runs in the background as a system

Test
Pig =" g Test A
Test

Configuration

Program
Collect

Figure 1: Neubot architecture. Instances on the users’
computers are coordinated by the Neubot configuration
server and connect to a test server to perform a network
tests. Results are collected on the collect server.

service and every 30 minutes performs a network test (hence-
forth, test), by cooperating with the configuration server,
the discovery server, and the test servers. In the following,
we call an instance of the Neubot program running on the
computer of a user ‘the instance’.

Before running a test, the instance connects to the con-
figuration server and invokes the Web API that returns the
list of available tests!. Then, the instance selects one of the
available tests (which we call the ‘selected test’); the current
implementation, in particular, picks the dashtest with higher
probability than the other tests, because the dashtest is the
current focus of our studies.

After the instance has selected a test, it connects to the
discovery server and invokes the Web API that returns the
address of a test server. By default such Web API returns
the address of the closest server, but the instance may also
request a random server?.

Next, the instance connects to the test server address re-
turned by the discovery server. The test server assigns to
the instance a temporary token and inserts the instance into
a wait queue. The instance has to wait for its turn to per-
form the test, which arrives when it reaches the front of the
queue. At that point, the test server authorizes the instance
to start the test, by passing to the instance an authorization
token and other test parameters (e.g., in the dashtest case,
the list of available representation bitrates).

During the test, the test server and the instance measure
test-specific performance metrics. After the test, the test
server and the instance share what they measured, and save
the measurements results on their local disk.

Every day the collect server collects the results from the
test-servers disks, and publishes them on the web.

3.2 Integration with Measurement Lab

The test servers are hosted by Measurement Lab (M-
Lab), a distributed server platform that hosts open-source
network-performance tools [3]. In practice, M-Lab provides
a Linux-Vserver (virtual private server) in which Neubot is
run in test server mode. As of October 2013, there are 124
M-Lab servers operating across 40 geographically-distributed
sites around the globe.

M-Lab also provides Neubot with the functionalities of
the discovery and the collect servers. The discovery server
functionality is implemented by mlab_ns (the M-Lab Name
Service), which is a Google App Engine application that re-
turns the address of the closest M-Lab server or, optionally,
of a random M-Lab server.

The collect-server functionality is implemented by the M-
Lab data-collection pipeline, which every day fetches the re-
sults from the test servers and publishes them on the Google
Cloud Storage service.

3.3 The Neubot DASH Module

The dashtest is implemented by mod_dash, a Neubot mod-
ule that emulates the DASH streaming of a video resource
composed of fifteen two-second segments. Each segment is
available in one of the bitrate representations used by the
DASH dataset (100, 150, 200, 250, 300, 400, 500, 700, 900,
1200, 1500, 2000, 2500, 3000, 4000, 5000, 6000, 7000, 10000,
20000 kb/s).

!Possibly tailored to the instance location and ISP.

2For the dashtest, which aims at probing many diverse net-
work paths, the instance requests a random server.

Differently from a standard DASH implementation there
is no media presentation description (MPD), but the test
server sends the list of available bitrates to the instance just
before the beginning of a test. Also, differently from a real
DASH stream, the video payload is emulated by a sequence
of random bytes.

The mod_dash module is composed of a mod_dash test
server (HTTP-request handler) and a mod_dash client (hence-
forth, client). The client connects to the test server and re-
quests the fifteen emulated-video segments using the adap-
tation logic that we describe in the following subsection.

3.4 The Dashtest Adaptation Logic

At the beginning, the client requests the first segment us-
ing the most-conservative bitrate representation, i.e., 100
kb/s. After the download of each segment the client com-
putes the estimated available bandwidth (EAB) dividing the
size of the segment in kbit by the download time in seconds.
Subsequent segments are requested using possibly different
representations that depend on the network conditions, i.e.,
the client selects the highest available representation bitrate
that is lower than the EAB.

Note that all the segments are requested using the same
persistent HT'TP connection and, since the interval between
two consecutive requests is in general smaller than the re-
transmit timeout, TCP should not exit the congestion avoid-
ance state (unless, of course, network losses force the con-
nection out of such state).

This logic aims at selecting a representation bitrate that
permits the download of the next segment in about two
seconds (that is the emulated playout duration of the seg-
ment). However, when network conditions deteriorate and
the dashtest estimates that too much bandwidth is being
used, we adopt a mechanism to further reduce the EAB.
We are concerned, in fact, that the dashtest could have a
negative impact on the QoE of users’ foreground flows.

The mechanism is implemented as follows and it is ispired
by the the LEDBAT congestion control algorithm [9]:

if EDT > PLAY_TIME:
REL_ERR = 1 - EDT / PLAY_TIME
EAB = EAB + REL_ERR * EAB
EAB = max(min_rep_bitrate ,EAB)

in which EAB is the estimated available bandwidth, EDT is
the elapsed download time, PLAY_TIME is the playout du-
ration of the segment, and min_rep_bitrate is the minimum
bitrate available in the DASH dataset.

As it will be detailed in Section 4.2, since the dashtest also
records the channel throughput during the test, the mea-
sured data can be used to simulate the performance of more
complex players (i.e., with different adaptation algorithms)
in the same network conditions.

Name last year | last 3 months
of countries 146 108
of Autonomous Systems (AS) 1744 1036
of UUIDs 4060 2089
of IP addresses 112371 29275
of Different Locations 9613 4610
Median of # all tests per IP 12 11
Median of # dashtest per IP 7 7

Table 1: Dataset statistics as of Nov 11, 2013.

NAME

EXAMPLE

DESCRIPTION

uuid 7528d674-25f0-4ac4-aff6-46f446034d81 | Random unique identifier of the Neubot instance, useful to perform
time series analysis.

platform linux2 The operating system platform, e.g. “linux2”, “win32”.

version 0.004016008 Neubot version number.

real_address

130.192.225.141

Neubot’s IP address, as seen by the server.

internal_address

130.192.225.141

Neubot’s IP address, as seen by Neubot.

remote_address

80.239.142.212

The server’s IP address.

whole_test_timestamp | 1382434858 Time when the test was performed (Unix epoch time).
srvr_data.timestamp 1382434858 Time when the test was performed on the server (Unix epoch time).
timestamp 1382434858 Time when the test was started (Unix epoch time).
clnt_schema._version 3 Version of the client schema.

connect_time

0.02469491958618164

RTT estimated by measuring the time that connect() takes to com-
plete, measured in seconds.

iteration

14

Sequence number of the current donwload request.

request_ticks

1382434858.103292

Time when the request was performed on the server (Unix epoch
time).

elapsed_target 2 Expected download duration, measured in seconds.

rate 20000 Segment representation rate for the current request, measured in
kbit/s.

elapsed 0.5023031234741211 Time elapsed from the download request to the end of the download
(i.e. download duration), measured in seconds.

received 5000131 Amount of bytes received from the server for the current request,

measured in bytes.

delta_user_time

0.06000000000000005

Accumulated user time during a request, measured in seconds.

delta_sys_time

0.06000000000000005

Accumulated system time during a request, measured in seconds.

Table 2: Dashtest data format

4. DESCRIPTION OF THE DATASET

This Section briefly characterizes the measurements col-
lected by the dashtest and discusses some insights that can
be extracted from the measurements. These characteriza-
tions may be the foundation for further studies with real
world measurements by researchers that aim at evaluating
the performance of DASH streaming. Neubot counts about
1,000 users each day and a slightly higher number of IPs
because some of the users connect their machine from both
home and office locations with typically two different ad-
dresses. The number of tests run each day is about 20,000
and they comprise all the four implemented tests. Other
statistics are presented in Table 1 and up to date informa-
tion is available at (http://media.polito.it/neubot).

The Neubot DASH module performs about 10,000 tests
each day involving more 1,000 IP addresses from about 100
countries and 1,000 autonomous systems.

A single dashtest lasts about 30 seconds because it per-
forms the download of 15 two-second long segments at the
available download bitrate.

Each test result is described with a number of properties
that characterize the Neubot client, the server, the connec-
tion and each one of the segment downloads. The values
that are recorded for each test are listed in Table 2.

The first set of values, from wuid to remote_address, de-
scribes the configuration of the Neubot client and it does not
change with the type of test. The second set of values, from
whole_test_timestamp to connect_time, describes the current
dashtest and it is fixed among all the segment downloads in
the same test. The field srvr_data.timestamp can be used,
with the remote_address to uniquely identify each test. The
third set of values, from iteration to delta_sys_time, charac-
terizes the download of each segment.

After each test the client sends the results, in JSON for-
mat, to the server where they are stored. Then, once per
day, the M-Lab data-collection pipeline fetches the results
and publishes them on the Google Cloud Storage service.

All the data collected by Neubot are available to the pub-
lic through the Google Cloud Storage service without any
restriction under a No Rights Reserved Creative Commons
Zero Waiver.

All the Neubot raw data are organized into tarballs, which
are grouped by the tool that generated the data, the date
when the data was collected, and the server that collected
the data. This means that each tarball contains all the
data collected during a single day, by a single tool run-
ning on a single M-Lab server. For example, the tarball
20131008 T000000Z-mlab1-lga01-neubot-0000.tgz contains the
first 1GB of data collected by all the Neubot tests that
were served by the M-Lab server mlabl-lga0l on October
8, 2013. The document at (https://code.google.com/p/m-
lab/wiki/HowToAccessMLabData) describe how to access
all the M-Lab data.

The Neubot DASH dataset contains the results of dasht-
ests that are part of the tarballs for the months of November
and December 2013, and January 2014.

4.1 Dataset Analysis

A deeper analysis of the data collected in the dataset al-
lows to characterize the tests in terms of client geographic
location, time of day at which they are performed and con-
nection throughput.

The authorization to publish the real_address of the client,
given by the Neubot users, allows us to determine the client
country, region, city, latitude and longitude, and also the
Autonomous System to which their IP belongs. For exam-
ple, Fig. 2 shows the location of the clients in October 2013
as results from the IP geolocation information given by the
free Geolite service provided by (http://www.maxmind.com).
A more extended representation covering all the 10,000+
different IPs and the 2,000+ different locations from which
Neubot test have been performed can be accessed on the web
at the following link (http://media.polito.it/neubot/world).

Since Neubot is an always running background process

Map [Satelite

Figure 2: Geographical distribution of the Neubot
clients in the world on the basis of their IP address. Fig-
ure refers to tests run in October 2013.

that schedules tests two times per hour, the dataset presents
repeated tests per IP in a single day. The top graph in Fig. 3
maps the distribution of the tests during a day (November
2, 2013) for each one of the client IPs. IPs are sorted on the
x axis as a function of the number of tests run in a day. The
middle graph of Fig. 3 shows that more than half of the IPs
run more than 7 tests a day (e.g., IP no. 470 run a dashtest
at 2:30, 5:11, 6:50, 8:39, 12:32, 16:31, 17:02). The tests are
almost equally distributed during the day as shown in the
bottom graph of Fig. 3. The mean is 360 tests per hour.

Some insights into the characteristics of the dashtest re-
sults are shown in Fig. 4 that presents the histogram of the
average download bandwidth measured by all the clients of
a given Internet operator in the last year: values have been
grouped for each IP for each day, then averaged and plotted
in the histogram.

The graph clearly shows the typical download speed for
that operator, which has a popular and cheap DSL offer at
7 Mb/s nominal speed. The sharp drop after that value
is due to the fact that only few customers signed for more
expensive contracts with higher nominal speeds. Moreover,
note that the actual speed may be quite variable since it
also depends on the network congestion at the time of mea-
surement. This type of results is just a small sample of the
information that researchers can extract from the dataset to
investigate the potentiality of new techniques in the context
of DASH streaming systems.

4.2 Example of DASH Simulation

In addition to the analysis of the collected data, dataset
measurements can be used to drive simulations that test
the performance of different rate adaptation algorithms on
a given recorded trace. While the recorded trace is bound
to the adaptation logic used for the measure, it is also able
to provide information on the measured bitrate during the
download of each segment. i.e., nearly every two seconds.

With the assumption that during each “sampled period”
the connection bandwidth is constant and equal to the mea-
sured average bitrate, we can linearly interpolate the values
between each point to produce a “download bitrate” suitable
to run simulations.

Figure 5 shows an example in which the measured bi-
trates are used to draw the arrival time of each byte of the
streaming session. With this information we can simulate
the behavior of any specific adaptation logic.

Time of day a dashtest is performed per IP

Time of Day
)

4
0 G et
0 100 200 300 400 500 600 700 800 900
IP no.

49 40 T T T T T T

@ Number of dashtest in a day per [P ———
s 30 7
c

g ,
E 4
=

Z

0 100 200 300 400 500 600 700 800 900
IP no.

3 600 ——
S 500 - Number of dashtest per hour]
5 400 W,_:—\ﬂ:—j
—g 300 +]
5 200
Z 0 2 4 6 8 10 12 14 16 18 20 22

Time of Day

Figure 3: Distribution of dashtests during a day (Novem-
ber 2, 2013) for each client IP address. Each value on
the x axis correspond to an unique IP. IPs are sorted on
the x axis as a function of the number of tests run in a
day. Each dot in the main graph represents a test from a
given IP at a given time of day. The middle graph shows
the number of tests per IP in a day and the bottom graph
the number of tests per hour.

For testing purpose we implemented three adaptation al-
gorithms named a) session average bitrate (SAB), b) last
segment bitrate (LSB), and ¢) moving window average bi-
trate (WAB). SAB is the algorithm currently implemented
in the VLC DASH plugin and requests the highest represen-
tation bitrate (HRB) which is lower than the average bitrate
measured from the beginning of the streaming session. The
LSB algorithm requests the HRB which is lower than the bi-
trate measured for the download of the last DASH segment.

3500 —
3000
2500]
2000 +
1500 A
1000 A -
] — ol
508 -

—

0 2 4 6 8 10 12 14 16
Bandwidth (Mbit/s)

Total number of occurrences

Figure 4: Number of occurrences of average download
speed values over the last year (only clients connected
using a given Internet operator).

2300 Measured (from dataset trac‘efile)‘]
2100 Session Average 1
1900 Last Segment ----------- |

1700 Afver?ge ¢ ﬁgeg) e

2 ool | i

2 1100 il ra T Ak

AL

2wl v g
700 4 A3 i
500 \ i Wi /
300 J \ B \l]‘

! \ \/1

100

0 10 20 30 40 50 60 70 80 90 100

30 Session Average
25 Last Segment - .
20 Window Average (5 seg) - S

Hﬂljﬂr

10 o o

Playout buffer size (s)
o

0 10 20 30 40 50 60 70 80 90 100
Time (s)

Figure 5: Simulation of the behavior of three different
rate adaptation logic using the measured download bi-
trate in a particular trace of the dataset. The top graph
shows the trace measured bitrate and the representation
rate requested by the three simulated algorithms. The
bottom graph shows the playout buffer level in the three
cases.

The WAB algorithm requests the HRB which is lower than
the average bitrate measured on the last L segments.

The simulation tests these adaptation algorithms on a
trace of 60 segments downloaded using a cellular connec-
tion. In the top graph, the bitrate measured by the dashtest
is plotted together with the simulated representation bitrate
requested by the three algorithms. Representation bitrates
are as specified in the DASH dataset (i.e., 100, 250, 300,
400, 500, 700, 900, 1200, 1500 kb/s).

Here the SAB algorithm is able to adapt to the vary-
ing network bandwidth only during the beginning of the
streaming session. After a while the weight given to the
past measurements is too high to allow for rate adaptation
and, even in presence of bandwidth fluctuations, SAB is un-
able to change the requested representation bitrate. The
main advantage of this algorithm is that the user does not
experience changes in the video quality.

On the contrary the LSB algorithm presents fast adap-
tation to the channel bandwidth with frequent and short
changes in the requested representation bitrate. Often the
changes are towards a high quality representation, in fact
the overall video bitrate requested in the whole session is
higher than in the SAB case. However, the risk to incur in
freezes during the video playback is high. In fact, the bottom
graph of Fig. 5 shows that, among the tested adaptation al-
gorithms, this is the one that keeps the playout buffer closer
to the minimum level.

The WAB algorithm is a simple compromise between the
other two ones. The requested representation bitrate is com-
puted using a moving average whose length can be chosen
trading off fast adaptation for stable video quality (possibly

as a function of the buffer level). A longer average window
can produce a smoother throughput measurement, however
it will also result in a slower rate adaptation behavior.

Note that this is only a small example of the possibilities
offered by the collected data. A more complete assessment
of different adaptation algorithms will be the focus of our
future work.

S. CONCLUSIONS

This work presented a novel framework to evaluate the
performance of rate-adaptation algorithms for DASH-based
HTTP streaming. A number of network measurements have
been performed by means of more than a thousand clients
distributed in the Internet. The activity has been carried
out using a DASH module built on top of Neubot, an open
source tool for the collection of network measurements. Data
are publicly available and they include the performance over
time for each client. The paper also showed, by means of
some examples, the usefulness of the dataset for various pur-
poses, including HTTP streaming analysis and performance
comparisons. We believe that this new dataset can strongly
contribute to the rapidly growing research in the field of
HTTP adaptive streaming.

6. REFERENCES

[1] S. Akhshabi, A. C. Begen, and C. Dovrolis. An
experimental evaluation of rate-adaptation algorithms
in adaptive streaming over HTTP. In Proceedings of the
second annual ACM conference on Multimedia systems,
pages 157-168. ACM, 2011.

[2] S. Basso, A. Servetti, and J.C. De Martin. The network
neutrality bot architecture: a preliminary approach for
self-monitoring of Internet access QoS. In IFEE
Symposium on Computers and Communications
(ISCC), pages 1131-1136. IEEE, 2011.

[3] C. Dovrolis, K. Gummadi, A. Kuzmanovic, S. D.
Meinrath, and G. Tech. Measurement lab: Overview
and an invitation to the research community. ACM
SIGCOMM Computer Communication Review,
40(3):53-56, 2010.

[4] ISO/IEC DIS 23009-1. Information technology —
Dynamic adaptive streaming over HTTP (DASH) —
Part 1: Media presentation description and segment
formats, 2012.

[5] S. Lederer, C. Miiller, and C. Timmerer. Dynamic
adaptive streaming over HT'TP dataset. In Proceedings
of the 3rd Multimedia Systems Conference, pages
89-94. ACM, 2012.

[6] C. Liu, I. Bouazizi, and M. Gabbouj. Rate adaptation
for adaptive HTTP streaming. In Proceedings of the
second annual ACM conference on Multimedia systems,
pages 169-174. ACM, 2011.

[7] Measurement Lab. http://www.measurementlab.net/.

[8] C. Miiller, S. Lederer, and C. Timmerer. An evaluation
of dynamic adaptive streaming over HTTP in vehicular
environments. In Proceedings of the 4th Workshop on
Mobile Video, pages 37-42. ACM, 2012.

[9] D. Rossi, C. Testa, S. Valenti, and L. Muscariello.
LEDBAT: the new BitTorrent congestion control
protocol. In Proc. of 19th Intl. Conf. on Computer
Communications and Networks (ICCCN), pages 1-6.
IEEE, 2010.

