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Introduction

Precipitation or reactive crystallization is an important unit operation in modern chemical
industry. It is a fundamental step in the production of many catalysts, pigments, phar-
maceutical products and also occurs during o�shore oil drilling. Due to the complexity of
the problem and the number of interacting phenomena a model can be conveniently used
for reactor design and scale-up.

The main scope of this work is the development of a model for studying turbulent
precipitation. Precipitation is a very complex process, in which solid particles are produced
by a chemical reaction. This very fast chemical reaction generates supersaturation which
is the actual driving force for nucleation and growth. Nucleation is the formation of
the new solid phase, whereas crystal growth is the process of size enlargement due to
solute molecules. Besides crystal growth there is another size-enlargement process, namely
aggregation. During aggregation particles collide and possibly adhere, forming bigger
particles. Particles may also undergo breakup processes and therefore reduce their size.

Study of precipitation has attracted much attention in the last two decades and ex-
perimental evidences showed that precipitation is strongly a�ected by mixing, since both
the chemical reaction and the nucleation process are quasi-instantaneous. Mixing is thus
responsible for the generation and the redistribution of the supersaturation, but plays also
an important role during aggregation. As a consequence the precipitation model has to
be based on a detailed description of mixing features of the reactor.

In this work the use of Computational Fluid Dynamics (CFD) for ow �eld and tur-
bulence �eld predictions is extended to reacting scalar �eld predictions. In turbulent
precipitation computations, CFD needs to be coupled with a micromixing model, for tak-
ing into account mixing at the molecular level, and the population balance for modeling
solid phase evolution.

The work is divided into two parts: in the �rst part the fundamental aspects concerning
precipitation and turbulent ow and mixing are presented and discussed. In the second
part the model proposed in this work is presented and validated. The validation was
carried out both by comparison with more sophisticated models and by comparison with
experimental data. Barium sulfate precipitation, produced by aqueous solutions of barium
chloride and sodium sulfate, was chosen as test reaction and was investigated in two
chemical reactors: a Taylor-Couette reactor and a tubular reactor.

As concerns mixing at the molecular level the probability density function approach
was used. In this work use of the �nite-mode Probability Density Function is proposed
for modeling precipitation. This part of the work was carried out in collaboration with
Prof. Rodney O. Fox (Iowa State University.) As concerns the population balance the
Standard Moment Method (SMM) was used but also a new method (Quadrature Method
of Moment) was proposed and partially validated. Also this part of the work was carried
out in collaboration with Prof. Rodney O. Fox.
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The Taylor-Couette cell is made of two coaxial cylinders and the uid is contained in
the gap between the two. This reactor was chosen among the other possibilities (ba�ed
and un-ba�ed stirred vessels) because it is quite easy to model it by using CFD codes.
However no detailed validation in our operating conditions exists, and thus ow �eld and
tracer dispersion predictions were validated through comparison with experimental data.
Experiments were carried out by using laser techniques (Laser sheet visualization, Laser
Doppler Anenometry, and Laser Induced Fluorescence.) This part of the work was carried
out at the Laboratoires des Sciences du Genie Chimique (ENSIC, France) in collaboration
with Prof. Laurent Falk and Dr. Elise Fournier (who carried out most of the experimental
work of this part.) Moreover in order to investigate the mixing properties of the reactor, in
the �rst part of the work, mixing e�ciency has been evaluated by using a parallel reaction
(iodide/iodate reaction.) As concers the tubular reactor the validation of ow �eld and
tracer dispersion validation has been carried out in a previous work.

Another important issue concerns precipitation kinetics. A wide literature has been
published in this �eld yielding di�erent and sometimes contradictory results. However
still now there exists a lack of information concerning kinetics, especially in particular
conditions (e.g. excess of one of the two ions.) In this work also the e�ect of kinetic
has been investigated, by comparing model predictions with di�erent kinetic expressions
for nucleation and growth. This part of the work was mainly carried out in the tubular
reactor, since in this device mixing dynamic is simpler and already investigated in previous
works.
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Chapter 1

Precipitation

Precipitation involves di�erent steps, namely: nucleation, crystal growth, aggregation
and breakage. Nucleation is the formation of nuclei of the solid phase, crystal growth
and aggregation are two mechanisms responsible for size enlargement while breakage is
responsible for size reduction of crystals. A detailed review of all these processes can be
found in [1]. Here the discussion focuses on some particular aspects concerning barium
sulfate precipitation1.

1.1 Nucleation

Classical theories assume that solute molecules combine to produce embryos. For this
transition it is possible to write the change in the Gibbs free energy in terms of two
contributions, one due to the formation of the new volume and the other one due to the
formation of the new surface:

�G(L) = �
 
kvL

3

�

!
kBT ln(S) + kaL

2; (1.1)

where kv is the volume shape factor, ka is the surface shape factor, L is the embryo
size, � is the embryo molecular volume, kB is the Boltzmann constant, T is the absolute
temperature, and  is the surface energy. Shape factors are de�ned as follows

V = kvL
3; (1.2)

A = kaL
2; (1.3)

where V and A are the particle volume and surface, whereas the supersaturation ratio S
is de�ned as:

S =
cBacSO4

ks
; (1.4)

where cBa and cSO4
are ion barium and ion sulphate concentration, ks is the solubility

product of barium sulphate (at room temperature ks=1.14 � 10�4 mol2/m6), and the
barium sulphate precipitation reaction is:

Ba++ + SO=
4 ! BaSO4(S): (1.5)

1Notice that in this work breakup e�ects are not considered. This is supported by experimental evi-
dences as it will be explained later.
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8 CHAPTER 1. PRECIPITATION

When the supersaturation ratio, S < 1 the process is always non-spontaneous [i.e.,
�G(L) > 0)], whereas when S > 1, �G(L) has a positive maximum. The height of
this maximum in the free-energy curve is the activation energy for nucleation, and the
value of L at which the maximum occurs is called critical nuclear size (Lc). Embryos
larger than this size are stable nuclei and can grow to form macroscopic solid particles;
embryos smaller than this size are unstable and are dissolved again in molecules. Given
the free-energy of the transition it is possible to determine the number density of embryos:

N(L) =

�
1

�sol

�
exp

���G(L)
kBT

�
; (1.6)

where N(L) is the number density of embryos for unit volume of solution, and �sol is the
molecular volume of the solvent. The rate at which stable embryos of size Lc (i.e., nuclei)
are formed can be derived from the following reaction

molecules+ embryo(Lc �molecules)$ nuclei (1.7)

and the reaction rate can be expressed as:

dN(Lc)

dt
=

�
k1

�
1

�sol

�
� k2

��
1

�sol

�
exp

�
��G(Lc)

kBT

�
; (1.8)

where k1 and k2 are the kinetic constants for the direct and inverse reaction. Use of the
Einstein theory to express the pre-exponential factor yields

J =
dN(Lc)

dt
=

2D

d5
exp

�
��G(Lc)

kBT

�
; (1.9)

where D is the di�usion coe�cient of the solute and d is the molecular diameter. The
nucleation rate can be made dimensionless by dividing for the asymptotic value Jmax at
S !1 for di�erent values of the new parameter A = (4k3a

3�2=[27k2vkBT ln(10)]3). After
this renormalization the nucleation rate becomes

log

�
J

Jmax

�
= �A[log(S)]�2: (1.10)

This expression can be used to derive the nucleation rate by �tting the experimental data.
This procedure was used by Nielsen [2] to determine barium sulfate nucleation rate and
results are reported in Fig. 1.1.

In the generalized nucleation rate diagram two lines are presented, one for homoge-
neous nucleation, and one for heterogeneous nucleation. In the diagram the best-�t values
for Jmax and A are also reported. Homogeneous nucleation occurs in absence of a solid
interface whereas heterogeneous nucleation occurs in the presence of a foreign solid in-
terface. The two rates obey to the same functional form, but as the surface energy  is
di�erent, two curves are obtained; in fact, for homogenous nucleation the surface energy
refers to the solid/liquid interface, whereas for heterogeneous nucleation the surface energy
refers to the solid/foreign interface. Using Nielsen's experimental data of barium sulfate
precipitation [2] other expressions for the nucleation rate were found [3]:

J(cBa; cSO4
) =

8>>><
>>>:

2:83 � 1010�c1:775 (1/m3s)
for �c � 10 mol/m3

2:53 � 10�3�c15 (1/m3s)
for �c > 10 mol/m3

(1.11)
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Figure 1.1: Dimensionless nucleation rate against supersaturation ratio.

where �c =
p
cBacSO4

�pks and again two expressions are given, for heterogeneous and
homogeneous nucleation respectively.

This expression does not account for ion excess, that on the contrary was shown to
have an e�ect on the �nal Crystal Size Distribution (CSD) [4, 5]. A detailed study of this
e�ect on kinetics, and a review of a number of kinetic expressions available in literature
can be found in [6]. The same authors in another work [7] derived an expression in terms
of the reactant concentration ratio R0 = cBa=cSO4

having the following form

J(cBa; cSO4
) = k exp

 
�B

[ln
p
cBacSO4

=ks]2

!

B = 14:9 + 67:57 j log(R0) j
k = 2:5 � 1011R2:28

0 if R0 > 1

k = 2:5 � 1011R�1:05
0 if R0 < 1: (1.12)

Unfortunately their expressions were derived in a relatively small range of reactant con-
centration and thus are not applicable for a wide investigation.

The presented equations were derived by assuming ideal behavior of electrolytes in
aqueous solutions. Wei and Garside [8] introduced activity coe�cients in kinetic ex-
pressions by using a correlation available in literature [9]. The barium sulfate activity
coe�cient (�) can be calculated as follows

log(�) =
�2:044pI
1 +
p
I

+ 0:5(F1 + F2); (1.13)

where I is the ionic strength of the solution

I = 0:5(4cBa + 4cSO4
+ cCl + cNa); (1.14)
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and F1 and F2 are de�ned as follows

F1 = 4B12cBa + 2:25B14cCl;

F2 = 4B12cSO4
+ 2:25B32cNa; (1.15)

where B12,B14, and B32 can be calculated as follows

B12 =
0:1512

(1 + 0:375I)2
� 0:037;

B14 =
0:1919208

(1 + 0:75I)2
� 0:059934;

B32 =
0:10656

(1 + 0:75I)2
� 0:0112: (1.16)

The correction of the driving force with the activity coe�cient, as explained by Wei and
Garside [8], results in the following expression for the nucleation rate [10]:

J(cBa; cSO4
) =

8>>><
>>>:

6:61 � 1010�c1:775� (1/m3s)
for �c� � 4:3 mol/m3

3:60 � 10�4�c15� (1/m3s)
for �c� > 4:3 mol/m3

(1.17)

where �c� =
p
cBacSO4

� �
p
ks is the modi�ed driving force.

1.2 Crystal growth

As concerns crystal growth several processes are involved, such as di�usion of solute from
the bulk of the solution to the crystal surface, adsorption on crystal surface, di�usion over
the surface, attachment to a step, di�usion along a step, and integration into a crystal
kink site (see Fig. 1.2).

When the supersaturation ratio is very low, growth is controlled by a mononuclear
process, in which a bunch of molecules, that form a single growth unit, attaches the old
surface in only one point. This event can be seen as a super�cial nucleation and consists
in the formation of a growth site on crystal surfaces. Growth might be also controlled by
a polynuclear process, in which the attachment of the old surface occurs in more than one
point. When the time between two nucleation events is about 60% of the time needed
to complete a single surface by di�usion along the surface itself, the two mechanisms are
equally important. Whereas when the nucleation rate is less than 20% of the di�usion
rate, the mononuclear process is predominant. These mechanisms play an important role
in determining the �nal smoothness of the surface. At low supersaturation level also a
screw dislocation growth was detected in several systems. This phenomenon is caused by
the presence of a dislocation that o�ers a free site for growth, without surface nucleation.
Increasing the supersaturation ratio nucleation events become more frequent and thus
growth can be controlled by di�usion from the solution.

As explained by Dirksen and Ring [1] and Nielsen [11] di�erent growth laws can be
obtained, linear, parabolic, and exponential, if the controlling mechanism is respectively
di�usion, surface spiral growth and surface nucleation (polynuclear). Concerning barium
sulfate growth rate, Nielsen and Toft [12] by �tting experimental data proposed a parabolic
expression with a kinetic constant (kr) equal to 5:8 � 10�8 (m/s)/(mol/m3)2. In normal
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Figure 1.2: Schematic representation of the di�erent steps involved in the growth of a face
of a crystal.

applications barium sulfate growth is not controlled only by surface growth but also by
di�usion. The �nal growth rate can be found as follows

G(cBa; cSO4
) = 5:8� 10�8�c2s

= kd(cBa � c�Ba)
= kd(cSO4

� c�SO4
) (m/s) (1.18)

where �cs =
q
c�Bac

�
SO4
�pks, c�Ba and c�SO4

are reactant concentrations on crystal surface

and kd is the mass transfer coe�cient. The solution of this equation for given values of cBa
and cSO4

(bulk concentrations) can be found by using a simple Newton-Rapson method.
Also in this case it is possible to introduce activity coe�cients, and for this case Wei and
Garside [8] found:

G(cBa; cSO4
) = 4:0� 10�7�c�s

2

= kd(cBa � c�Ba)
= kd(cSO4

� c�SO4
) (1.19)

where �c�s =
q
c�Bac

�
SO4

� �
p
ks.

As concerns di�usion, Dirksen and Ring [1] showed that for particles smaller than 1
�m the slip velocity is very small, particles are entrapped in a microeddy, and growth is
typically controlled by Brownian di�usion. In a recent work [13] a relationship for the
Sherwood number for microparticles was proposed

Sh =
k̂dL

D
= 2 + 0:52Re0:52p Sc1=3; (1.20)

where Re and Sc are the Reynolds and Schimdt numbers for microparticles

Rep =

 
"L4

�3

!1=3

; (1.21)
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Sc =
�

D
; (1.22)

and where " is the turbulent dissipation rate, and � is the kinematic viscosity of the uid.
This study is the �rst systematic experimental con�rmation that the theoretical limit of
Sherwood number equal to 2 is valid also for spherical microparticles in agitated systems.
Using this expression in the limit of null slip velocity we �nd that

kd =
ShD

L

M

�
� 2:0� 10�13

L
: (1.23)

where D is the molecular di�usion coe�cient, M is the molecular weight, and � is the
crystal density. According to this equation kd increases with decreasing particle dimension;
this result seems to be in contradiction with another work [14], in which it was found that
kd is constant for particles smaller than 10 �m notwithstanding the di�erence in solute.
However, given the limited number of experimental data used in achieving this conclusion,
the use of a size-dependent growth rate (by using Eq. 1.18 coupled with Eq. 1.23) seems
to be more appropriate.

Using a completely di�erent approach other authors found di�erent expressions for the
growth rate. In order to take into account the e�ect of ion excess (R0) the growth rate
can be expressed as follows [7]:

G(cA; cB) = kg(cBa �
p
ks)

1:15(cSO4
�
p
ks)

0:95 (m/s)

kg = 1:05 � 10�510�1:57=R0 if R0 > 1

kg = 2:73 � 10�510�1:99R0 if R0 < 1: (1.24)

1.3 Aggregation

Particle aggregation can be thought of as an extension of the concept of the di�usion-
controlled growth theory, in fact, also in this case size enlargement is produced by the
addition of a unit to the crystal, but in this case the growth unit is much larger than
a molecule. Aggregation takes place in two steps. In the �rst one, particles must be
brought into close proximity by a transport mechanism, producing what is usually called
a collision. Then depending on the balance of the interparticle forces (i.e., attractive or
repulsive) particles might adhere or not. Depending on the relative strength of each of the
two contributions, the energy versus distance pro�le typically displays one of the following
patterns (see Fig. 1.3):

(i) a deep minimum, called the primary minimum (PM), at close separation, followed by
a maximum, called the energy barrier (EB), occurring at a larger distance

(ii) a deep (primary) minimum only

(iii) a large maximum (EB) but no signi�cant secondary minimum.

The shape of the interaction pro�le has an important inuence on aggregation kinetics.
When there is a barrier, particles must overcome this, and if the height of the barrier
is greater than 20kBT the suspension is very stable. Lower values of the barrier height
imply that a part of the particles have enough energy to surmount the barrier, and when
the barrier is overcome, particles are held by the attractive forces in the primary mini-
mum. When the energy barrier is not present the suspension is unstable and particles will
aggregate quickly [15].
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Figure 1.3: Schematic representations of total energy of interactions versus surface-to-
surface separation distance pro�les.
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Attractive forces are caused by the short range Van der Waals forces, whereas repulsive
forces are caused by double layer repulsions. The electrical double layer is due to the fact
that particles have a surface charge, and because dispersions are electrically neutral, this
charge must be balanced by an opposite charge in the solution. Several mechanisms
determine the origin and the distribution of particle charge, such as ionization of surface
groups, di�erential solution of ions from the ionic crystal surface, physical entrapment
of charge inside the solid phase, and speci�c ion adsorption. An useful information on
the dispersion stability can be obtained from the point of zero charge (PZC), that is the
condition at which the surface charge is zero.

These considerations are useful in determining the colloid stability ratio (W ), which is
de�ned (for two spheres with radii a and b, separated by distance, R) as follows :

W = (a+ b)

Z 1

a+b
exp

�
V (R)

kBT

�
dR

R2
(1.25)

where V (R) is the potential-energy function determined by the interaction potential of
the two double layers. When crystals form an unstable colloidal supersaturated solution,
W can reach values in the range from 1 to 1000, and crystals start to aggregate when their
number density becomes su�ciently high. On the opposite when the colloidal system is
stable W can range from 105 to 109. It is useful to highlight that quite often colloid
stability is de�ned in terms of the collision e�ciency (�), which is de�ned as the inverse
of W .

Concerning aggregation kinetics, when particles are brought into close proximity by
Brownian motions, the process is known as perikinetic aggregation. When particle motion
is controlled by mean uid ow or uid velocity uctuations the process is known as
orthokinetic aggregation. Eventually particles may aggregate because of their inertia or
as a consequence of external forces (di�erential setting.) In each case the frequency of
collision is di�erent and can be quanti�ed by the aggregation kernel (�). In case of
collision of particles due to Brownian motion the aggregation kernel is [16]:

�(L; �) =
2kBT

3�

(L+ �)2

L�
; (1.26)

where � is the uid viscosity and L and � are the particle dimensions. If the colliding
particles are of about the same size (L � �) the kernel can be considered constant, and
thus for water at room temperature:

�0 =
8kBT

3�
= 10�17m3=s: (1.27)

If particle collisions are due to uid motion, an expression for the aggregation kernel is as
follows [16, 17]:

�(L; �) =
4

3
_(L+ �)3 (1.28)

where _ is the shear stress. Depending on the type of ow (laminar or turbulent) and the
size of the particles compared with the Kolmogorov microscale, this shear stress can be
evaluated in di�erent manners. For example, in the case of turbulent ows, and particles
smaller than the Kolmogorov microscale, the shear rate can be replaced by the e�ective
velocity gradient resulting in [18]:

_ /
r
"

�
; (1.29)
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where " is the turbulent dissipation rate and � is the kinematic viscosity.
In general when dealing with turbulent ows the kernel has to be calculated as the

sum of two contributions [19]:

�(L; �) = �(L; �)b + �(L; �)t; (1.30)

in which �(L; �)b is the Brownian kernel given by Eq. 1.26, and �(L; �)t is the turbulent
kernel:

�(L; �)t =
4

3

�
3�

10

�1=2 � "
�

�1=2
(L+ �)3: (1.31)

From Eq. 1.31 it is clear that increasing the size of the particles the turbulent aggregation
kernel increases, and depending on the value of " it could degenerate in a system with few
big particles. This situation is known as gelling, but occurs only in certain cases. Very
important in these cases is the evaluation of the collision e�ciency (�) that is a function
of the velocity gradient ( _, see Eq. 1.29) and the particle size (L)

� =

�
A

36�� _L3

�0:18
(1.32)

where A is the Hamaker constant [20]. This constant can be computed if the molecular
properties of the materials under consideration are known [21]. Its order of magnitude
for interactions in vacuum is 10�20-10�19 J at room temperature, however for interactions
across a medium is much lower (i.e., 10�22 J).

Useful pieces of information can be obtained by evaluating the Peclet number, de�ned
as

Pe =
3��L3 _

kBT
(1.33)

that is an estimate of the ratio between shear-induced and Brownian coagulation rate.
When Pe < 0:001 only Brownian aggregation can be considered, whereas when Pe > 10
Brownian contribution is negligible.

1.4 Crystal morphology and shape factors

According to previous considerations, depending on the operating conditions adopted,
di�erent phenomena occur. At low concentration nucleation is heterogeneous, crystal
growth rate is slow, and is controlled by surface processes. In this case well formed crystals
are usually obtained and aggregation is not detected. Increasing concentration crystal
growth goes under di�usion control. Solute is not able to be distributed along crystal faces,
and then edges grow faster, dendrite crystals are thus obtained. A further increase causes
the transition to homogeneous nucleation, and depending on colloid stability aggregation
may take place. In this case morphology is the typical for agglomerated crystals.

The process of size enlargement is due to crystal growth from solution and aggregation
of smaller crystals. Study of crystal morphology is very useful in determining the dominant
process. Crystals can be conveniently described in terms of self similar fractal structures.
The self-similarity can be quantitatively measured by using the fractal dimension. For
its determination, the number of smaller objects or pieces is counted when an object is
magni�ed by some factor M . The fractal dimension is then determined from [22]:

N = (M)df ; (1.34)
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where N is the number of new copies of an object observed after magni�cation, M is the
factor by which the original object must be magni�ed to see the new copies and df the is
the fractal dimension. In practice the fractal dimension can be determined by plotting the
mass (or volume) of aggregates against the aggregate size. For regular three-dimensional
objects such plot is linear and the slope is 3, whereas for a general aggregate may be still
linear but with a non-integer slope.

As experiments demonstrate the fractal dimension is a characteristic of the growth
process. During crystal growth from solution, for example df = 3, whereas aggregates
formed by Brownian coagulation present a value of df in the range from about 1.8 to
about 2.2 [23]. In the case of shear-induced coagulation, when particles of about the same
size aggregate, df = 1:8, while when big particles growth because smaller particles stick
on their surface df is close to 3 [24]. These two situations are represented in Fig. 1.4

Considering an aggregate of outer radius L made of monomers of radius a, it is possible
to estimate the aggregate density as follows [25]:

�(L) = �o

�
L

a

�df�3
; (1.35)

where �o is the density of the monomer. From this equation it is possible to see that the
aggregate density is lower than the monomer density only if df < 3.

Concerning shape factors, experimental evidences showed that by using a laser par-
ticle sizer, when crystals are at the crystal size detected by the instrument (d43) is
approximately the width of the crystal [26], whereas when crystals are round-shaped it is
approximately the diameter of the sphere that includes the crystal. If these are chosen as
characteristic dimensions, and df = 3, real shape factors (Ka;Kv) are de�ned as follows

V = Kvd
3
43; (1.36)

A = Kad
2
43: (1.37)

Generally Ka=Kv is not equal to 6, that is the characteristic value for a system with
equidimensional growth [27]. Equidimensioned regular objects require equal growth rates
along every particle axis. However it can be shown that an intermediate diameter can
always be chosen as the characteristic dimension L43 such that the shape factor ratio is
equal to 6. As it will become clearer in the next chapters, this characteristic dimension is
also the internal coordinate used to de�ne the population balance. For this reason, average
shape factors (ka; kv) must of course be in reference to this characteristic size, as follows:

V = kvL
3
43; (1.38)

A = kaL
2
43: (1.39)

In the case of equidimensional growth, equating the change of volume, for a growing
particle, to the rate of advance of the particle's surface gives

dV

dt
=

1

2
GA: (1.40)

For particles having a di�erent growth rate Gj for each crystal face Aj, the above rela-
tionship is only valid for the characteristic size L43 chosen as some suitable intermediate
size. Repeating the previous calculation for this case

dV

dt
=
X
j

�
1

2
GjAj

�
; (1.41)
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Figure 1.4: Fractal aggregates produced by (a) single-particle addition to an aggregate and
(b) cluster-cluster aggregation. In the latter case, aggregates have a more open structure
and have a lower fractal dimension.
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and if the growth rate along each axis Gj is related to the growth rate along the charac-
teristic axis L43, by a constant factor Gj = cjG = (Lj=L43)G, substituting Eq. 1.38 into
Eq. 1.41 gives

d

dt
(kvL

3
43) =

1

2
G
X
j

cjAj ; (1.42)

and as a consequence

6kvL
2
43 =

X
j

cjAj = A: (1.43)

Thus substituting Eq. 1.39 into Eq. 1.43 yields ka = 6kv . This last relationship can be
preserved if L43 is chosen in such a way that

P
j cjAj =

P
j(Lj=L43)Aj = A.

In practical applications, once real shape factors (Kv ;Ka), are experimentally deter-
mined, average shape factors (kv; ka), have to be recalculated in terms of L43

V = Kvd
3
43 = kvL

3
43; (1.44)

A = Kad
2
43 = kaL

2
43; (1.45)

superimposing equidimensional growth,

ka=kv = 6: (1.46)

With this approach new shape factors are obtained and the relationship between real and
characteristic crystal size can be written as

d43 = �cL43 (1.47)

where �c is derived by solving Eqs. 1.44-1.45- 1.46.



Chapter 2

Governing equations

The governing equations for the transport of reactive scalars in uid ows with constant
density are as follows (repeated indices imply summation):

@ui
@xi

= 0; (2.1)

@ui
@t

+ uj
@ui
@xj

= �1
�

@p

@xi
+
1

�

@�ij
@xj

; (2.2)

@��
@t

+ uj
@��
@xj

= ��r2�� + S�(�); (2.3)

where the viscous stress tensor is de�ned as

�ij = �

 
@ui
@xj

+
@uj
@xi

!
: (2.4)

In these equations ui is the uid velocity, p is the pressure, � is the uid density, �� are the
scalars under consideration (i.e., concentration, temperature, moments of the CSD), ��
is the molecular di�usivity of �� and S�(�) is the chemical source term. In this chapter
these equations will be presented and explained. Moreover, the transport equations of
other useful variables will be derived, highlighting the presence of some unclosed terms.
In the following chapters theories and results will be presented and used to discuss the
closure problem.

2.1 Mean velocities and Reynolds stresses

As it will become clearer in the next chapter, when the ow is turbulent any instantaneous
property of the ow can be seen as a random variation around a mean value:

ui = huii+ u0i; (2.5)

where huii is the mean velocity, and u0i is the uctuating term. Di�erent mean values
exist: according to the de�nition of Hinze [28], the time-average at a �xed position (for
steady-state ows) is given by:

huii = 1

T

Z T

0
uidt; (2.6)

19
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where T is the time interval during which the determination of the mean takes place. In
statistics one can also de�ne an ensemble average. Let us consider a great number N of
identical macroscopic ows. If the velocity is measured simultaneously at corresponding
points in these ows, the ensemble average can be de�ned as:

huii = 1

N

NX
n=1

u
(n)
i : (2.7)

Turbulent phenomena are assumed to be ergodic, hence time average and ensemble average
are identical, supposed that N and T are big enough to catch the true mean value. Ap-
plying this approach (Reynolds decomposition) to the continuity equation results in [29]:

@huii
@xi

= 0; (2.8)

whereas the Navier-Stokes equation becomes:

@huii
@t

+ huji@huii
@xj

= �r2huii � 1

�

@hpi
@xi
� @

@xj
hu0iu0ji; (2.9)

which is known as Reynolds-averaged Navier-Stokes (RANS) equation. The last term on
the right-hand side is a symmetric second order tensor and is known as Reynolds stress
tensor, and because of its presence Eq. 2.9 is unclosed. From the Navier-Stokes equation
it is possible to derive the transport equation for the Reynolds stresses, yielding

@hu0iu0ji
@t

+ huki
@hu0iu0ji
@xk

+
@hu0iu0ju0ki

@xk
= Pij +�ij + �r2hu0iu0ji � "ij ; (2.10)

where Pij and �ij are the production term and the velocity-pressure-gradient term respec-
tively:

Pij = �hu0iu0ki
@huji
@xk

� hu0ju0ki
@huii
@xk

; (2.11)

and

�ij = �1
�

*
u0i
@p

@xj
+ u0j

@p

@xi

+
: (2.12)

The production term represents the source for the Reynolds stresses due to mean velocity
gradients and it is in closed form, whereas the velocity-pressure-gradient term accounts
for the correlations between velocity uctuations and the uctuating pressure �eld and is
unclosed. The unclosed dissipation rate tensor is de�ned as follows

"ij = 2�

*
@u0i
@xk

@u0j
@xk

+
; (2.13)

and describes the dissipation of velocity uctuations at the Kolmogorov microscale, as it
will be explained in the next chapter. The molecular transport term �r2hu0iu0ji is usually
negligible at high-Reynolds-number ows, and in these conditions it is also possible to
write the dissipation rate tensor "ij in terms of a scalar ":

"ij =
2

3
"�ij : (2.14)
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2.2 Turbulent kinetic energy and turbulent dissipation rate

Summing over the diagonal of the Reynolds stress tensor results in the turbulent kinetic
energy transport equation

@k

@t
+ huki @k

@xk
+
1

2

@hu0ju0ju0ii
@xi

+
1

�

@hu0ipi
@xi

= P + �r2k � "� (2.15)

where k is the turbulent kinetic energy de�ned as

k =
1

2
hu0iu0ii =

1

2

�hu01u01i+ hu02u02i+ hu03u03i� ; (2.16)

the production term is

P = �hu0iu0ji
@huii
@xj

; (2.17)

and "� is the pseudo dissipation rate

"� = "� � @
2hu0iu0ji
@xi@xj

; (2.18)

that for high-Reynolds-number ows is approximately equal to ". Starting from the trans-
port equation of the uctuating velocity gradient @u0i=@xj , it is possible to write the
transport equation for the turbulent dissipation rate:

@"

@t
huii @"

@xi
= �r2"� @

@xi

h
hu0i�i+ T

(p)
";i

i
+ S" + C" + V" �D"; (2.19)

where " = h�i and � is the random dissipation rate, hu0i�i is the unclosed term for the

transport due to velocity uctuations, T
(p)
";i is the unclosed pressure transport term:

T
(p)
";i =

*
2�

�

@u0i
@xj

@p

@xj

+
; (2.20)

S" is the mean-velocity-gradient production term, C" is the mean-velocity-gradient cur-
vature term, V" is the vortex-straining term, and D" is the gradient-dissipation term. It
can be shown that S" and C" at su�ciently high Reynolds number, can be neglected [29],
whereas the remaining two terms V" and D" can be written in closed form under some
simpli�cations in terms of the spectral energy transfer rate, that will be introduced in the
next chapter.

2.3 Scalar mean and ux

Concerning the scalar transport equation (see Eq. 2.3), if Reynolds-average is applied
results in:

@h��i
@t

+ huji@h��i
@xj

= ��r2h��i �
@hu0j��i
@xj

+ hS�(�)i; (2.21)

the �rst term on the right-hand side is the molecular transport term, which is negligible in
high-Reynolds-number ows, hu0j��i is the scalar ux, which takes into account the scalar
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transport due to velocity uctuations, and hS�(�)i is the mean chemical source term. As
for the Reynolds stresses also for the scalar ux it is possible to derive a transport equation

@hu0i��i
@t

+ huji@hu
0
i��i
@xj

=
@

@xj

h
hu0ju0i��i+ T kij

i
+;

P�i +��i � "�i + hu0iS�(�)i; (2.22)

where T �ij contains the triple correlation term and molecular transport term that are
responsible for spatial transport of scalar ux, P�i is the production term, ��i is the
pressure- scrambling term, "�i is the scalar ux dissipation, and the last term is the unclosed
term for describing the correlation between uctuating velocity and chemical-source term.

2.4 Scalar variance and scalar dissipation rate

The transport equation of the scalar variance can be easily derived if a not-reacting scalar
(�) is considered, and results in what follows [30]

@h�02i
@t

+ huji@h�
02i

@xj
= �r2h�02i � @hu0j�02i

@xj
+ P� � "�; (2.23)

where P� is the production term of scalar variance, which is de�ned as:

P� = �2hu0j�i
@h�i
@xj

; (2.24)

and "� is the scalar dissipation rate de�ned by

"� = 2�

�
@�0

@xi

@�0

@xi

�
: (2.25)

The production term is always positive and represents the generation of scalar variance
by mean scalar gradients. The last term represents the molecular dissipation that occurs
at the Batchelor microscale as it will be explained in the next chapter. Also for the scalar
dissipation rate it is possible to derive a transport equation [30]

@"�
@t

+ huji@"�
@xj

= �r2"� �
@hu0j"�i
@xj

+;

S"� + G"� + C"� + V"� �D"�; (2.26)

where S"� is the mean-velocity-gradient term, G"� is the mean-scalar-gradient term, C"� is
the mean-scalar-curvature term, V"� is the vortex-stretching term, and D"� is the gradient-
dissipation term. In high-Reynolds-number ows the scalar dissipation ux hu0j"�i is the
dominant term, whereas S"�, G"�, and C"� are negligible. As concerns V"� and D"�, under
some simpli�cations, they can be written as follows:

V"� / "

k
"�; (2.27)

D"� / "�

h�02i"�; (2.28)

and thus in the case of homogeneous turbulent mixing the scalar dissipation rate transport
equation becomes [30]

d"�
dt

= V"� �D"�; (2.29)
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where is clear the role of production and dissipation of the two terms. For a fully-developed
scalar spectrum, when the stationary solution is reached (i.e., d"�=dt=0) it results in

V"� � D"�; (2.30)

and with the approximation of Eqs. 2.27 and 2.28 yields

"�

h�02i = C�
"

k
; (2.31)

which is a widely used closure model for the scalar dissipation rate, as it will be explained
later.
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Chapter 3

Turbulence and turbulent mixing

As mentioned in the previous chapter, in turbulent ows any instantaneous property of
the system is characterized by a random variation around a mean value. If the signal is
subtracted by the mean value it appears as a highly disorganized uctuation around zero
and presents structures on all scales; another important property is that the system is ex-
tremely sensitive to initial conditions, and as a consequence the state of the system cannot
be predicted, or in other words, the signal appears unpredictable in its detailed behavior.
However, although the detailed properties of the signal appear not to be predictable, its
statistical properties are reproducible. For this reason study of turbulence is based on a
probabilistic description by means of the probability density function approach. However
the description of the problem presented in the previous chapter is deterministic. How
can this chaotic behavior arise from a purely deterministic context?

3.1 Turbulence as deterministic chaos

It is possible to answer to this question by considering the Navier-Stokes equation:

@ui
@t

= �uj @ui
@xj

+ �r2ui � 1

�

@p

@xi
: (3.1)

This equation describes the dynamic evolution of a nonlinear system, in which the veloc-
ity vector ui (i = 1; 2; 3) de�nes a three-dimensional phase space, the so-called velocity
space. The trajectory of such a system is a curve in a three-dimensional space. Instead
of looking at the whole trajectory we consider its successive intersections with a two-
dimensional surface S arbitrary chosen. The trajectory is thus replaced by an in�nite set
of discrete points, and as a consequence the properties of the trajectory itself are reected
into corresponding properties of the set of points. This set of points is generated by the
repeated application of a mapping function, which is a di�erence equation. The poor
man's Navier-Stokes equation [31]:

ut+1 = 1� 2u2t : (3.2)

is a mapping function where there is no spatial structure, and the comparison with the
Navier-Stokes equation

ut+1 � ut = �2u2t � ut + 1; (3.3)

@ui
@t

= �uj @ui
@xj

+ �r2ui � 1

�

@p

@xi
; (3.4)
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Figure 3.1: Orbit for the poor man's
Navier Stokes map with w = 0:60.

−1 −0.5 0 0.5 1
ut

−1

−0.5

0

0.5

1

u t+
1

Figure 3.2: Orbit for the poor man's
Navier Stokes map with w = 0:61.

shows that it has the equivalent of the nonlinear term, the viscous term and the force
term, of the original equation. In this representation the velocity vector ui is represented
by ut, which is a real number between -1 and +1. Given an initial value u0 = w a set of
iterates t = 0; 1; 2; ::: is called an orbit in the phase space. As it is possible to see from
Figs. 3.1 and 3.2 given two initial conditions which di�er in a minute way, after iterations,
will separate very quickly. This sensitivity to initial conditions is often loosely referred to
as chaos.

Another important property is the existence of an invariant measure; in fact, by se-
lecting the initial conditions in a uniform distributions within the interval [-1,+1], the
maps gives back iterates in a uniform interval. It is now clear how the Navier-Stokes
equations can be seen as a dynamic system, but nevertheless one should always remember
that the poor man's model is only a simpli�ed approach. In fact, when dealing with three
dimensional Navier-Stokes equation the existence and uniqueness of the solution is not
guaranteed. Moreover, it is typical for dissipative systems to have their invariant measure
concentrated in an attractor with a fractal structure1 and to have more than one attractor,
and therefore more than one invariant measure. As a consequence the statistical properties
of the solution will depend on which basin the initial condition belongs to.

3.2 Turbulence

3.2.1 The probability density function approach

As already mentioned any property of a turbulent ow can be seen as a random variation
that can be described in terms of its probability density function (PDF). For example, for
the velocity vector ui(x; t) :

fu(v;x; t) = P [vi < ui(x; t) < vi + dvi; i = 1; 2; 3]; (3.5)

where vi represents the sample-space variable corresponding to the random variable ui(x; t).
This function is called the one-point, one-time, joint probability density function of ve-
locity: it contains information about the velocity in one position and in one instant. In

1We shall come back to this aspect at pag. 68
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Figure 3.3: Measurement of the probability density function of a stationary function.

Fig. 3.3 the PDF of a statistically steady signal is reported. Starting from the uctuating
signal u(t) it is possible to derive the PDF, as indicated in the �gure. Using this approach
the mean velocity �eld can be derived as follows:

hu(x; t)i =
Z +1Z
�1

Z
vfu(v;x; t)dv: (3.6)

The N-point, N-time joint PDF can be de�ned as an extension of the previous one.
Let (x(n); t(n)) be a speci�ed set of positions and times. Then it is possible to de�ne
fu;N(v

(1);x(1); t(1); :::;v(N);x(N); t(N)) to be the joint PDF of the velocity at these N space-
time points [29].

3.2.2 Structure functions and autocorrelation functions

Let us consider an homogeneous and isotropic turbulent �eld. The turbulence is homo-
geneous if fu;N is independent of the position, and is isotropic if it is invariant in respect
to rotations and reections of the coordinate axes. The second-order velocity structure
function is the covariance of the di�erence in the velocity di�erences between two points
x+ r and x

Dij(r;x; t) = h[ui(r+ x; t)� ui(x; t)][uj(r+ x; t)� uj(x; t)]i : (3.7)

Under the hypothesis of homogeneous and isotropic �eld it can be shown that Dij is
independent of the position, and can be written in terms of two scalar functions DLL(r; t)
and DNN (r; t) which are called longitudinal and transverse structure functions:

Dij(r; t) = DNN (r; t)�ij + [DLL(r; t) �DNN (r; t)]
rirj
r2

: (3.8)
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Figure 3.4: Longitudinal and transverse functions, de�ned in the �gure as R11 and R22.

From the continuity equation and Eq. 3.8, it is possible to show that DNN is uniquely
determined by DLL as follows

DNN (r; t) = DLL(r; t) +
r

2

@

@r
DLL(r; t): (3.9)

In parallel with what is done for Dij it is possible to de�ne the autocorrelation function
according to

Rij(r; t) = hu0i(r+ x; t)u0j(x; t)i: (3.10)

Notice that also in this case Rij is independent of the position because of the hypothesis
of homogeneous �eld. It is evident that at the origin

Rij(0; t) = hu0iu0ji; (3.11)

the autocorrelation function is the Reynolds stress tensor, that has been de�ned in the
previous chapter. Again a consequence of isotropy is that Rij can be expressed in terms
of two scalar functions

Rij(r; t) = u02
�
g(r; t)�ij + [f(r; t)� g(r; t)]rirj

r2

�
; (3.12)

where f and g are the longitudinal and transverse autocorrelation functions, and u02 is
the root-mean-square of velocity. If the coordinate system is chosen so that r is the x1
direction we obtain

f(r; t) = R11=u
02

g(r; t) = R22=u
02

R33 = R22;

Rij = 0 i 6= j;
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that are reported in Fig. 3.4. In parallel with the properties of Dij it can be shown that
also g is completely determined by the longitudinal autocorrelation function f according
to

g(r; t) = f(r; t) +
r

2

@

@r
f(r; t): (3.13)

From this two functions it is possible to derive some integral length scales. The longitudinal
integral scale

L11(t) =

Z 1

0
f(r; t)dr; (3.14)

and the transverse integral scale

L22(t) =

Z 1

0
g(r; t)dr; (3.15)

that is just half of L11. The integral scales L11 and L22 are proportional to a turbulent
integral scale Lu de�ned as

Lu =
k3=2

"�
: (3.16)

If the autocorrelation function is de�ned in terms of the time � instead of the distance r
an integrale time scale �u is found

�u =
k

"
: (3.17)

Other important scales are the longitudinal Taylor microscale, de�ned as

�f (t) = [�1
2
f 00(0; t)]�1=2; (3.18)

that can be though of as the intersection on the abscissas axis of the osculating parabola
of the longitudinal autocorrelation function, and the transverse Taylor microscale, which
is de�ned as follows:

�g(t) =
1p
2
�f (t): (3.19)

3.2.3 Velocity-spectrum tensor and energy-spectrum function

As it will become clearer in the next sections it is very useful to describe the homogeneous
turbulence problem in terms of the Fourier-transform. The Fourier-transform of the two-
point velocity correlation function (Rij) is the velocity-spectrum tensor

�ij(�) =
1

(2�)3

Z +1Z
�1

Z
Rij(r)e

�i��rdr; (3.20)

where � is the wave number vector. This tensor contains a great deal of information, and
can be transformed in a function in which all directional information is removed. This can
be done by integrating over all wave numbers of magnitude j�j = �. Mathematically, this
is an integration over a surface of radius �. Thus the energy-spectrum is de�ned as

E(�) =

I
1

2
�ij(�)dS(�): (3.21)
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Interesting properties of this function are

k =

+1Z
0

E(�)d�; (3.22)

and

" =

+1Z
0

2�k2E(�)d�: (3.23)

It is evident that E(�)d� is the contribution to the turbulent kinetic energy k from all the
wave numbers � in the in�nitesimal shell of radius j � j in the wave number space.

3.2.4 The Kolmogorov 1941 theory

The celebrated Kolmogorov 1941 theory (K41) starts from the formulation of some hy-
pothesis, compatible with the Navier-Stokes equations, and leads to additional predictions,
that were compared with some basic experimental laws. One of the main experimental
results concerning fully developed turbulent �elds is the so-called two-thirds law:

In a turbulent ow at very high Reynolds number, the longitudinal structure function
behaves as the two-third power of the distance.

It can be shown that when the energy-spectrum is represented by a power law

E(�) / ��n (3.24)

the second-order velocity structure function is also a power law

Dij / rn�1: (3.25)

A consequence of the two-third law is that there is a region where the energy-spectrum
behaves as k�5=3. For su�ciently high Reynolds number, this exponent is observed over a
very substantial range of several decades of wavenumber. This range is called the inertial
sub-range as it will be explained later. The K41 was able to predict this behavior as a
result of the four-�fth law:

In the limit of in�nite Reynolds number, the third order longitudinal structure function
DLLL(r; t) of homogeneous isotropic turbulence, evaluated for small spatial incre-
ments compared to the integral scale, is given in terms of the mean energy dissipation
per unit mass " by

DLLL(r; t) = �4
5
"r: (3.26)

From this result it is possible to derive also an expression for the second order longitudinal
structure function, leading to

DLL(r; t) = C2("r)
2=3; (3.27)

where C2 is a constant.
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3.2.5 Energy cascade

A turbulent ow can be considered to be composed of eddies of di�erent size and energy.
For each bunch of eddies it is possible to de�ne a characteristic size and velocity. The
largest eddies have a size comparable to the ow scale, and their characteristic velocity is
of the order of magnitude of the root mean square of the velocity uctuation.

In this range the e�ect of the viscosity is negligible. This is the so-called energy-
containing range (� < �EI , see Fig. 3.5 at page 34) in which the energy is added by
extracting from the mean ow �eld, as described by the kinetic energy production term
(see Eq. 2.15). The large eddies are unstable and break up, transferring energy to smaller
eddies. This is the Richarson's energy cascade: the energy is transferred to smaller and
smaller eddies, and this range of the spectrum is known as the inertial sub-range (�EI >
� > �DI). When the Reynolds number of the eddy is su�ciently small that the eddy
motion is stable, the molecular viscosity is e�ective in dissipating the kinetic energy. This
range is called the dissipation range (� > �DI).

For these two sub-ranges (inertial and dissipative) the time scales are small compared
with the ow scale, and for this reason this region is called the universal range equilibrium.
Under the hypothesis of local isotropy and of similarity, the statistics of the small-scale
motions have an universal form that is uniquely determined by the kinematic viscosity �
and the turbulent dissipation rate ". Given these two parameters there are unique length,
velocity and time scales, that are the Kolmogorov microscales

�k = (�3=")1=4;

uk = ("�)1=4;

� = (�=")1=2: (3.28)

It is interesting to notice that the Reynolds number at the Kolmogorov scale is equal to
one. This is consistent with the idea of the cascade, that proceeds to smaller scales until
the Reynolds number is small enough for dissipation to be e�ective. Thus the Kolmogorov
microscale can be though of as the size of the smallest eddy of the ow. It is interesting
to determine the relationship between the Taylor and the Kolmogorov microscales. For
this purpose we de�ne a Reynolds number to be

ReL =
k1=2Lu
�

; (3.29)

and then the relationships are:

�g
Lu

=
p
10Re

�1=2
L ;

�k
Lu

= Re
�3=4
L ;

�k
�g

=
Re

�1=4
Lp
10

: (3.30)

Thus at high Reynolds number, the Taylor scale is intermediate in size between the integral
and the Kolmogorov scale. However it should be mentioned that �g does not have any
physical meaning.

Another consequence of the universal theory is that in the equilibrium range the spec-
trum is uniquely determined by � and ". From a simple dimensional analysis it is possible
to show that this universal relationship can be written as

E(�) = "2=3��5=3	(��k); (3.31)
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and in the inertial sub-range, the function 	 becomes independent of its argument, and
tends to a constant C. This is the famous Kolmogorov spectrum, and C is the universal
Kolmogorov constant. Experimental data support the value C = 1:5.

3.2.6 Spectral transport

This picture of the energy cascade can be quanti�ed and summarized in the following
transport equation [32]

@

@t
E(�; t) = Pk(�; t) � @

@�
Tk(�; t) � 2��2E(�; t); (3.32)

valid for homogeneous turbulence with imposed mean gradients. The production term
Pk is mainly given by the mean velocity gradients, and represents the injection of energy
at the large scales (energy-containing range). The spectral energy transfer rate Tk is the
net rate at which the energy is transferred at the smaller scales. Since this term tends to
zero at zero and in�nite wave number, and since it contributes in the balance in terms
of its derivative in respect with �, its contribution to the balance of the turbulent kinetic
energy is null. The last term is the dissipation due to viscosity. Integrating the energy-
spectrum balance over the wave number � in the energy-containing range, the dissipation
contribution can be neglected, yielding

@k

@t
= P � TEI ; (3.33)

where TEI is the value of the spectral transfer funtion at the border of the energy-containing
range (�EI). In the inertial subrange both dissipation and production can be neglected,
and only spectral transfer is signi�cant

0 = TEI � TDI ; (3.34)

where TDI is the value of the spectral transfer function at the border of the inertial sub-
range �DI . In the dissipation range, production can be neglected yielding

0 = TDI � ": (3.35)

If these three equations are added together it results in the turbulent-kinetic-energy equa-
tion

@k

@t
= P � "; (3.36)

which highlights the essence of the energy cascade: energy is produced at large scales in
a non-universal way, depending on the mean velocity gradients, then energy is transferred
at smaller scales, and dissipated at the Kolmogorov scale by molecular dissipation.

3.3 Turbulent mixing

3.3.1 Spatial correlation for the scalar �eld

In parallel with what done for the velocity uctuations, it is possible to de�ne a spatial
correlation in terms of the uctuating scalar �eld:

R�(r; t) = h�0(x+ r; t)�0(x; t)i: (3.37)
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As like for the velocity spatial correlation function, R� contains scale information about
the scalar �eld. Let us consider an homogeneous and isotropic scalar �eld: this function
can be normalized yielding

f�(r; t) = R�(r; t)=R�(0; t): (3.38)

From this function some length scales can be derived, such as the integral scale L�

L�(t) =

+1Z
�1

f�(r; t)dr; (3.39)

and the scalar Taylor microscale

��(t) =

 
�1
2

@2f�
@r2

(0; t)

!1=2

: (3.40)

3.3.2 Scalar energy spectrum

The scalar spectrum ��(�; t) for an homogeneous scalar �eld, is de�ned through the
following Fourier transform

��(�; t) =
1

(2�)3

Z +1Z
�1

Z
R�(r; t)e

�i��rdr; (3.41)

and from this de�nition it results also that, the scalar variance can be written as follows

R�(0; t) = h�02i =
Z +1Z
�1

Z
��(�; t)d�: (3.42)

As done for the energy spectrum, also for the scalar spectrum it is possible to integrate
out all the directional information

E�(�; t) =

I
1

2
��(�)dS(�); (3.43)

where E�(�; t) is the so-called scalar energy spectrum. In Fig 3.5 a sketch of the spectrum
is reported and compared with the turbulent energy spectrum. It must be mentioned here
that the spectrum depends on the Scmidth number (Sc). The �rst part of the spectrum
is known as inertial-convective subrange. In this range the exponent of the spectrum for
the wave number � is -5/3, as for the energy-spectrum. This region is limited by the
Kolmogorov microscale �k (at the corresponding wave number �k.) For wavenumbers
larger than �k the scalar energy spectrum will decay quickly into the viscous-convective
subrange, where the exponent in the spectrum function for the wave number is -1. The
limit of the viscous-di�usive subrange is the Batchelor-scale �B (or �B) de�ned as

�B = Sc�1=2�k; (3.44)

It is evident that the viscous-convective sub-range exists only if Sc > 1.
The cascade picture can be invoked, also to describe turbulent mixing. Scalar variance

is introduced at large scales, and then by a cascade process is transferred to the smaller
scales. This process can be seen as a kind of size-reduction of the blobs of unpremixed
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Figure 3.5: Turbulent energy spectrum and scalar energy spectrum.
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Figure 3.6: Fluid deformation and vorticity: A,B deformation in the inertial subrange; C
deformation in the viscous subrange; D action of vorticity on uid elements.
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uids down to the Kolmogorov scale, without molecular mixing [see Fig. 3.6 (A,B,C).]
At this scale a further reduction of length scale occurs [see Fig. 3.6 (D)] until microscale
gradients are so large that molecular di�usion takes place. This is the so-called Batchelor
scale. A number of Lagrangian and Eulerian models have been formulated in terms on
the previous considerations. For example the EDD (engulfment-deformation-di�usion) is
one of the most popular and Fig. 3.6 refers to this model [33, 34].

It is interesting to remind that by de�nition the scalar variance can be found from the
scalar spectrum by integrating over the wave number space

h�02i =
+1Z
�1

E�(�)d�: (3.45)

Therefore, it is evident that E�(�)d� represent the fraction of scalar variance located at
the wave number �. It is also interesting to highlight that the scalar energy spectrum is
related to the scalar dissipation rate (de�ned in the previous chapter) by

"� =

+1Z
�1

2��2E�(�)d�; (3.46)

and thus the scalar energy spectrum determines the mixing time

�� =
2h�02i
"�

: (3.47)

Invoking the cascade process, the mixing time can be seen as the time required for scalar
variance (created at the integral scale) to be transported to the Batchelor scale, where it
is dissipated by molecular di�usion.
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Chapter 4

Modeling and simulation

In this chapter the most important models for the simulation of turbulent reacting ows
are derived. Particular attention is given to the �nite-mode PDF model for micromixing
and the quadrature method of moments for the population balance, that represent the
main novelties of this work.

4.1 Turbulent ows

4.1.1 Turbulence models

All the equations presented in Chapter 2 contain unclosed terms. Di�erent models have
been proposed for the solution of the closure problem, and concerning turbulent ow, they
are usually classi�ed by the number of equations added to the Navier-Stokes equation
to close the problem. A wide literature has been published in this �eld (see for exam-
ple [35]) and nowadays commercial Computational Fluid Dynamics (CFD) codes o�er a
large library of many of these models. The discussion here is limited to the most im-
portant models and focuses on those used in this work. One of the simplest turbulence
models available in commercial CFD codes is the standard k� " model, that employs the
Boussinesq hypothesis to relate the Reynolds stresses to the mean velocity gradients

�hu0iu0ji =
�t
�

 
@huii
@xj

+
@huji
@xi

!
� 2

3

�
k +

�t
�

@huii
@xi

�
�ij ; (4.1)

where �t is the turbulent viscosity, �ij is the Kroneker delta, and k is the turbulent
kinetic energy de�ned in Eq. 2.16. With this approach eddies are seen as lumps of uid,
which exchange momentum according to their turbulent viscosity. This eddy or turbulent
viscosity is computed as follows

�t = �C�
k2

"
; (4.2)

where " is the turbulent dissipation rate de�ned in Eq. 2.14. The transport equations for
these two variables appear in the model in closed form, as follows

@k

@t
+ huki @k

@xk
=

@

@xi

��
� +

�t
��k

�
@k

@xi

�
+

�t
�

 
@huji
@xi

+
@huii
@xj

!
@huji
@xi

� "; (4.3)
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where the production term P of Eq. 2.15 has been closed by using the Boussinesq hypoth-
esis, and

@"

@t
+ huii @"

@xi
=

@

@xi

��
� +

�t
��"

�
@"

@xi

�
+ C1"P "

k
� C2"

"2

k
: (4.4)

The last two terms of Eq. 4.4 correspond to V" and D" of Eq. 2.19. These two terms were
closed by assuming that the production-dissipation balance is controlled by large-scale
velocity uctuations, with a characteristic relaxation rate equal to "=k (see Eq. 3.17.) In
fact, if one considers that V" represents the rate at which dissipation is created by spectral
energy passing from the inertial range to the dissipative range of the energy spectrum,
and writes it in terms of the spectral energy transfer rate Tk(�; t) (see Eq. 3.32) under the
assumption of spectral equilibrium it is possible to demonstrate that [30]:

D" � Re1=2L

"

k
"; (4.5)

where ReL has been de�ned in Eq. 3.29. Several constants appear in the model, such as
C1", C2" and �k and �" that are the turbulent Prandt numbers for k and " respectively.
A detailed description of the model can be found in the original work of Launder and
Spalding [36]. Since two equations are added to close the problem the model and its
successive modi�cations are known as two-equation models.

The RNG k�" is a modi�cation of the standard k�" model, derived using a statistical
technique called the Renormalization group theory. RNG method for turbulence takes
advantage of the scale invariant properties of the system, meaning that the method can
describe small scales, which are independent from any externally imposed time or length
scale. The main idea of the method is the elimination of small scale eddies, through
representation in terms of larger scales, in the range of energy containing eddies. This
scale elimination procedure results in a di�erential equation for turbulent viscosity, and in
an additional term for the " transport equation. Concerning the �rst point it is interesting
to notice that at high Reynolds number integration of this di�erential equation gives the
usual expression for turbulent viscosity and the value of C� evaluated by the RNG theory
(C�=0.0837) is in good agreement with the experimental value used in the standard k� "
model (C�=0.09, see Eq. 4.2). Concerning the additional term in the " transport equation,
its role is to reduce the constant C2" in regions where the strain rate is large, resulting in
lower turbulent viscosity in comparison with the standard k� ". As a consequence of this
more accurate description the RNG k � " model gives better performances in the case of
ows in curved geometry and ows that are strained by e�ects such as impingement or
stagnation, low-Reynolds number and transitional ows, and ows with high swirl.

In the realizable k � " model equations are modi�ed in order to satisfy certain math-
ematical constrains on the normal stresses. As a consequence, the " transport equation
is modi�ed on the basis of the mean vorticity-square uctuations, and the term C� is no
longer constant, but is computed from:

C� =
1

A0 +AS
U�k
"

: (4.6)

Without going into details it is possible to say that the terms contained in the above
equation are function of the mean strain, of the rotation rate and of the angular velocity
of the system rotation, since U� is directly correlated to mean rate-of-rotation tensor, and
of course C� is also a function of the turbulent �eld (k and ".) This model has been
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validated in a wide range of practical applications and showed better performances than
the standard k � " model.

Completely di�erent is the approach used in the RSM1, where the isotropic eddy-
viscosity hyprothesis is abandoned by directly solving the transport equations for the
Reynolds stresses (see Eq. 2.10.) In general, it is possible to say that use of the RSM is
needed when the ow features of interest are the direct results of anisotropy in the Reynolds
stress, but one should always remember that since the unknown terms are modeled by
means of a second-order closure or introducing a transport equation, the �delity of the
RSM description is limited by the validity of the closure assumptions employed in the
Reynolds stress transport equations. These assumptions are:

(i) isotropic dissipation for the three normal-stress components and zero dissipation in
the shear stress components

(ii) proportionality between Reynolds stress di�usion and spatial gradient of the stress
component itself

(iii) representation of the pressure uctuations redistribution action by two groups of
terms: the �rst one involving Reynolds stresses and "=k and the second one product
of stresses and mean velocity gradients.

4.1.2 Near wall treatment

Mainly there are two approaches that can be used:

(i) the near wall region is not modeled but only bridged by the wall functions themselves

(ii) the near-wall region is modeled all the way down to the wall

In most high-Reynolds-number ows, the wall function approach is recommended, whereas
for low-Reynolds-number ows, the hypothesis underlying the wall functions cease to be
valid, and therefore the second approach is recommended [37]. Concerning wall functions
there are two possibilities: standard wall function and non-equilibrium wall function. In
the �rst one, the log-law coupled with the linear laminar stress-strain relationship for the
viscous sub-layer is used, whereas in the second one a non-equilibrium wall function is
used. In the latter case the budget of turbulent kinetic energy in the wall-neighboring
cells is computed and the log-law for mean velocity is sensitive to pressure gradients. On
the contrary, using the near wall model, the domain is dived into a viscous-a�ected region
and a fully-turbulent region (two-layer zonal model). The demarcation of the two regions
is determined by a wall-distance-based turbulent Reynolds number, de�ned as

Rey =
�
p
ky

�
; (4.7)

where y is the normal distance from the wall. If Rey >200 the cell is in the fully turbulent
region and the normal turbulence models can be used. When Rey <200 a one-equation
model (Wolfstein model) is used. In this model the turbulent viscosity is computed from:

�t = �C�
p
kl�; (4.8)

1The RSM is a multi-equation model. In two-dimensional simulations the added equations are 4 (for the
turbulent dissipation rate and three Reynolds stresses since the tensor is symmetric). In three-dimensional
simulation the added equations are 7 (for the turbulent dissipation rate and the Reynolds stresses since
the tensor is symmetric.)
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and " is computed from

" =
k3=2

l"
; (4.9)

where l� and l" are two characteristic length scales (for details see [37] Cap. 9).

4.1.3 Scalar transport

Concerning the description of turbulent mixing, the Reynolds-averaged transport equation
of a scalar has been presented in the previous chapter (see Eq. 2.21). In this equation some
unclosed terms appear: the chemical source term and the scalar ux term. Closure of the
�rst one is one of the major challenge is turbulent reacting ows and is non trivial for fast
reactions with nonlinear source term, as it will be discussed in the followings. The other
unclosed term is the scalar ux due to turbulent uctuations hu0i��i. This term obeys to
a transport equation (see Eq. 2.22) but at high Reynolds number the scalar ux can be
expressed by a linear equation

Mijhu0i��i = hu0iu0ji
@h��i
@xj

; (4.10)

where Mij is a second order tensor that can be derived from the scalar ux transport
equation. In general this tensor is non-symmetric but a widely-employed simpli�cation is
to assume Mij isotropic:

Mij =
1

CT

"

k
�ij ; (4.11)

where CT is a numerical constant, so that the scalar ux can be expressed as:

hu0i��i = �CT
k

"
hu0iu0ji

@h��i
@xj

: (4.12)

However, when a two equation model is used, and the Reynolds stresses are not known,
the scalar ux can be closed as follows

hu0i��i = ��t
@h��i
@xj

; (4.13)

where

�t =
C�
Sct

k2

"
; (4.14)

and where Sct is the turbulent Schimdt number.

4.1.4 Scalar variance and scalar dissipation rate

The transport equation of the scalar variance has been presented in a previous chapter
(see Eq. 2.23). This equation presents two unclosed terms, the production term and the
ux term which can be closed by using the gradient assumption model. This results
respectively in:

P� = �2hu0j�i
@h�i
@xj

= 2�t
@h�i
@xj

@h�i
@xj

; (4.15)
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and

hu0j�02i = ��t
@h�02i
@xj

: (4.16)

Thus the �nal equation is:

@h�02i
@t

+ huji@h�
02i

@xj
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@xj

"
(� + �t)

@h�02i
@xj

#
+ 2�t

@h�i
@xj

@h�i
@xj

� "�: (4.17)

From Eq. 4.17 it is clear that scalar variance is produced by the large-scale gradients,
transported by convection and turbulent di�usion and dissipated by "�. It has been also
highlighted that the mixing process can be seen, in a Lagrangian framework, as the time
needed to reduce scalar variance from the large scales to the small scales where molecular
di�usion is e�ective. In this sense the mixing time can be evaluated as2:

�� =
2h�02i
"�

; (4.18)

and under fully-developed scalar spectrum, in the case of dynamic equilibrium results in3:

�� =
2

C�

k

"
: (4.19)

This approach is based on the idea that the characteristic mixing time is related to the
decay of velocity uctuation and the constant C� was found to be of order of magnitude of
unity. Another approach is based on the evaluation of the lifetime of a single eddy which
is proportional to the Kolmogorov time-scale (see Eq. 3.28):

�� = 17:31

�
�

"

�1=2
: (4.20)

This time constant was derived from a stationary energy spectrum at high-Reynolds num-
ber ows, and for this reason the numerical constant is independent of the Reynolds
number. Corrsin [38] proposed a third model valid for isotropic and homogeneous tur-
bulence, based on the spectral analysis, which is a sort of combination of the previous
ones:

�� =
3

2

k

"
+
1

2
ln(Sc)

�
�

"

�1=2
: (4.21)

Very important is also the ratio between the scalar and turbulent length scales, indi-
cated by L� and Lu

4. In general Lu is of order of magnitude of the impeller dimension in
a stirred system, whereas L� depends on feed conditions (i.e., feed tube diameter and feed
ow rate). When Lu is very di�erent from L�, for example Lu � L�, the scalar length
scale distribution is not in equilibrium with the velocity spectrum, and a relaxation period
is needed to reach equilibrium. During this relaxation period there has to be a progress
of mixing on the molecular scale and possibly of chemical reaction.

A turbulent mixer model, based on three characteristic time constants, was proposed
by Baldyga [39]. The scalar variance is divided in di�erent subranges, depending on the

2This quantity has been already de�ned at pag. 36
3Notice that this de�nition for the mixing time is identical to what obtained in Eq. 2.31 at pag. 23
4These quantities have been de�ned in Eq. 3.16 at pag. 29 and Eq. 3.39 at pag 33.
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related mechanism of mixing, that according to Fig. 3.5 are the intertial-convective �21 ,
the viscous-convective �22 , and the viscous-di�usive �23:

h�02i = �21 + �22 + �23 : (4.22)

The transport equation is as follows:

@�2i
@t

+ huji@�
2
i

@xj
=

@

@xj

"
(� + �t)

@�2i
@xj

#
+RPi �RDi; (4.23)

where RPi and RDi stand for production and dissipation term. The rate of production of
variance in the inertial-convective subrange is due to large-scale scalar gradients and thus
is given by Eq 4.15. The rate of decay in the same subrange is:

RD1 = RP2 = C�
"

k
�21 : (4.24)

The viscous-convective mixing can be described by:

RD2 = RP3 = E�22 ; (4.25)

where E is the Engulfment parameter, de�ned as follows:

E = 0:058

�
"

�

�1=2
: (4.26)

Decreasing the scale of segregation, the scalar variance goes into the viscous-di�usive
subrange of the scalar energy spectrum, where molecular di�usion in the deforming slabs
occurs, according to the following rate:

RD3 = G�23; (4.27)

where

G = (0:303 + 17050=Sc)E: (4.28)

Another important model is the spectral relaxation model, proposed by Fox [40, 41, 42].
This model is based on the description of scalar dissipation, and it introduces additional
variables that can be seen as potential scalar dissipation rates at wave numbers smaller
than the Batchelor scale. Also in this case there are three main subranges, describing a
one-directional cascade from the lowest wave number to the Batchelor wave number. For
a detailed description of the model see [40, 41, 42], here it is interesting to highlight that
this model has been extended by employing the Lagrangian Probability Density Function
approach, which will be described in the next sections.

All the presented methods can be used to evaluate the mixing time. It is in general
di�cult to say a priori which model can give best results. Valerio et al [43] compared the
ability of predictions of models based on di�erent mixing times, for the yield of an instan-
taneous chemical reaction in a tubular reactor with coaxial feeds. The best agreement
was obtained by using Eq. 4.20, but if a very accurate description is needed, especially for
jet-ow con�guration, more complex closures must be used, for taking into account the
contribution from all the turbulence scales. Kruis and Falk [44] compared the turbulent
mixer model with the spectral relaxation model, and found that the latter leads to better
results, probably due to a more rigorous physical explanation.

In the next sections the link between mixing of non-reacting materials, and turbulent
reacting ows will be illustrated and cleared.
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4.2 Evaluation of the source term

As already mentioned one of the major issues in turbulent reacting ow computations is
the chemical source term; in fact, being nonlinear in most of the cases, its mean value is
not known. As an example let us consider a second order reaction, where cA and cB are
the reactant concentrations

S(cA; cB) = kcAcB ; (4.29)

in this case the chemical source term that appears in the Reynolds-averaged scalar trans-
port equation, is

hS(cA; cB)i = khcAihcBi+ khc0Ac0Bi; (4.30)

where hc0Ac0Bi is the covariance that, needless to say, is not known! It is evident that
if the reaction follows a �rst-order kinetic, the problem is completely closed; also when
the chemical reaction is slow in comparison with the mixing time the closure problem
does not exist. In fact, if the time for the variance to reach the Batchelor scale from the
integral scale is smaller than the reaction time, it means that reaction takes place when
the variance is almost completely reduced, and thus the covariance can be neglected.

In the past, several models have been used: for example Toor [45] proposed a model
to compute the covariance hc0Ac0Bi from the variance of a non-reacting scalar:

hc0Ac0Bi = �
h�02i

h�i (h�i � 1)
hcAihcBi; (4.31)

where � is the mixture fraction5 that by de�nition lies between 0 and 1. The model is
valid only for very fast reactions involving reactants with equal di�usivities, and if the
volume ratio of the reactant solution is equal to one. Another important model developed
in the past is the Eddy-breal-up model [46]. In this model the decay of turbulent energy
is correlated to the rate at which fresh lumps of uid are broken into smaller ones, and
therefore it relates the rate of reaction to the rate of dissipation of the reactant and
product containing eddies. The corrected rate of reaction is given by the smaller of the
two following expressions:

hS(cA; cB)i = khcAihcBi;
hS(cA; cB)i = C1

"

k
; (4.32)

where C1 is an empirical constant. No general rule exists for the choice of this variable, in
fact, it has been shown that the parameter depends on the reacting conditions [47] and in
addition is not able to predict the yield and selectivity of a series of complex competitive
reactions.

Another important approach makes use of probability density functions. Let us con-
sider the joint-composition PDF of the scalars involved in a reacting system: by de�nition
f� is

f�( ;x; t) = P [ � < ��(x; t) <  � + d �; � = A;B; :::]; (4.33)

5This variable will be de�ned in greater detail at pag. 49
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de�ned similarly to the velocity PDF (see Eq. 3.5). The main advantage of using PDF
methods lies in the fact that the chemical reaction term can be treated exactly

hS(�)i =
+1Z
0

: : :

+1Z
0

S( )f�( ;x; t)d : (4.34)

PDF methods can be classi�ed as full and presumed; both approaches need an accurate
estimation of velocity and turbulent �eld of the reactor under study. This can be done by
using CFD. With this approach the real reactor is represented by a computational grid,
and usually transport equations are solved based on a �nite-di�erence scheme.6

Several di�erences between full and presumed PDF approach exist, in terms of the
discretization in the composition space, the spatial transport and the numerical approach
adopted. For full PDF methods, for example, spatial transport is treated as a random
di�usion process, while presumed PDF methods are based on an assumption concerning
the scalar conditional mean concentrations. In the case of an inert scalar with uniform
mean gradients, the full PDF method would predict that the joint scalar PDF is Gaussian
(as seen in Direct Numerical Simulation), while the presumed PDF method cannot predict
the correct limiting PDF. Moreover, unlike presumed PDF, full PDF methods do not need
a priori knowledge of the shape of the joint composition PDF but are much more CPU
intensive.

4.2.1 Full PDF methods

The full PDF description is performed with a set of notional particles that obey stochastic
di�erential equations, and move in the computational domain mimicking the PDF trans-
port in physical and composition space. A detailed description of PDF formulation and
solution using Monte-Carlo methods can be found in [48], and here we limit the discussion
to the transport equation of the composition probability density function f�( ;x; t).

This transport equation can be derived starting from the transport equation of a
reacting scalar � as suggested by Pope [48]:

D��
Dt

=
@��
@t

+
@ui��
@xi

= ��; (4.35)

where

�� = ��r2�� + S�(�): (4.36)

As already mentioned, the main characteristic of the composition PDF is that for any
arbitrary function of � the expected (or mean) value can be easily derived as follows

hQi =
+1Z
�1

Q( )f�( ;x; t)d ; (4.37)

and being the integral a linear operator the convected derivative is�
DQ

Dt

�
=
@hQi
@t

+
@huiQi
@xi

; (4.38)

6We will come back later on this concept of coupling between CFD and scalar �eld (see Fig. 6.1 on
pag. 76).
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but the mean convected derivative of Q can be also written as follows�
DQ

Dt

�
=

�
@Q

@��

D��
Dt

�
=

�
@Q

@��
��

�
: (4.39)

The �rst term on the right-hand side of Eq. 4.38 can be easily written as follows:

@hQi
@t

=

+1Z
�1

Q( )
@f�
@t

d : (4.40)

Since the expected value of the function Q can be expressed in terms of the conditional
expected value:

hQi =
+1Z
�1

f�( )hQ j  id ; (4.41)

the second term of the right-hand side of Eq. 4.38 can be written as

@huiQi
@xi

=
@

@xi

+1Z
�1

f�huiQ j  id 

=
@

@xi

+1Z
�1

f�Q( )hui j  id 

=

+1Z
�1

Q( )
@

@xi
[hui j  if�] d : (4.42)

As concerns Eq. 4.39 the integral can be solved by integrating by parts

�
@Q

@��
��

�
=

+1Z
�1

Q( )h�� j  if�d 
��� �=+1
 �=�1

�
+1Z
�1

Q( )
@

@ �
[h�� j  if�]d : (4.43)

The �rst term on the right-hand side is null, since for well-behaved PDF and almost all
functions Q the probability ux at in�nity is null, and thus:

�
@Q

@��
��

�
= �

+1Z
�1

Q( )
h @

@ �
h��r2�� j  if� + @

@ �
S�( )f�

i
d : (4.44)

Equating Eqs. 4.38 and 4.39 and using the fact that the equality must hold for arbitrary
choices of Q leads to

@f�
@t

+
@

@xi
[hui j  if�] = � @

@ �

h
h��r2�� j  if�

i
� @

@ �
[S�( )f�] ; (4.45)

and use of the Reynolds decomposition for the velocity yields the transport equation of
the joint composition PDF:

@f�
@t

+ huii@f�
@xi

+
@

@ �
[S�( )f�] = � @

@xi

�hu0i j  if��� @

@ �

h
h��r2:�� j  if�

i
(4.46)
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The �rst term on the right-hand side of Eq. 4.46 represents the convective transport due to
the scalar conditioned velocity uctuations. It can be closed by using a gradient-di�usion
model that introduces a turbulent di�usion term:

hu0i j  if� = ��t
@f�
@xi

: (4.47)

The second term on the right-hand side of Eq. 4.46 represents the micromixing term that
can be closed by using di�erent approaches. In the case of non-reacting scalars it has been
shown [48] that the micromixing model has to ful�ll some constraints concerning the shape
of the PDF: the mean values must be constant, the variance decay has to be exponential,
and the asymptotic shape of the PDF has to be Gaussian. One of the most employed
models is the interaction-with-the-mean (IEM) model [49, 50]. This model is also known
as the Linear Mean Square Estimation (LMSE) model and is based on a linear relaxation
of the scalars towards their mean values [51]:

h��r2�� j  i = 1

2��
(h��i �  �) (4.48)

where h��i is the local scalar mean, and �� is the local micromixing time. The IEM
approach gives poor performances in the so-called partially segregated CSTR, where the
combined e�ects of macro, meso, and micromixing are described by the micromixing model
alone [52]. However, when properly used as a model for only micromixing and macro
and mesomixing due to spatial transport are handled separately, the IEM model yields
acceptable predictions, once the micromixing time is chosen correctly (see Section 4.1.4).

The solution of the PDF transport equation using standard �nite-di�erence methods is
computationally intractable due to the elevate number of independent variables, and the
di�culty of ensuring that the PDF is non-negative and integrates to unity. Monte-Carlo
simulations o�er a tractable alternative that does not solve for the PDF directly, but by
tracking a �nite-number of notional particles through the computational domain, allows
us to estimate the quantities of interest.

This representation corresponds to an approximation of the PDF by a set of N delta
functions:

f� � 1

N

NX
n=1

�(�(n) � ); (4.49)

where �(n) is the value of � related to the nth delta function (generally N=80-100.) Each
delta function correspond to a single notional particle, which is a sort of uid element, but
however one should always remember that this is a mathematical representation without
physical meaning.

In Eq. 4.46 three operators are present

@f�
@t

= (P1 + P2 + P3)f�; (4.50)

one responsible for convection and turbulent di�usion

P1 = �huii @
@xi

+ �t
@2

@x2i
; (4.51)

one responsible for micromixing

P2 =

 
1

2��

!
(h��i �  �) @

@ �
; (4.52)
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and the last one responsible for the chemical reaction

P3 = S�( )
@

@ �
: (4.53)

The transport equation is solved by means of the time splitting approach. This method is
based on the idea that the three operators act in sequence if a su�ciently small time step
is chosen.

The �rst step is the transport in physical space. This can be handled both in Eulerian
and Lagrangian frameworks. If the code is written in Eulerian form, based on the mean
velocity and turbulent di�usivity (evaluated by the CFD code), the e�ective ow rates into
each cell of the computational domain are computed. Then once the time step is �xed the
number of notional particles that ow into each cell from neighboring cells is computed.
This approach o�ers the advantage that is easily adaptable to any computational grid for
which the ow rates can be computed, but the major di�culty is associated with �xing
the time step in order to ensure that the particle ux is everywhere non-negative and not
rounded to zero. These di�culties can be overcome by using the Lagrangian approach,
where the PDF transport equation is written in terms of a set of Stochastic Di�erential
Equations for particle position. Since the velocity does not appear as a random variable,
an isotropic Wiener [30] process is introduced, and generates a random walk in real space.

The second step is the transport in composition space due to molecular mixing in
which notional particles are mixed together according to Eq. 4.48, and the last step is the
chemical reaction that occurs in each notional particle according to the reaction rate.

4.2.2 Presumed PDF methods

In the presumed PDF approach the functional form of the PDF is assumed a priori. Two
approaches are presented: the �rst one is the beta PDF proposed by Baldyga for liquid
reactions [53], whereas the second one is the �nite-mode PDF proposed by Fox [54] and
�rst applied to precipitation in this work [55] and in [56]. Formulation of both models
requires the de�nition of mixture fraction.

The mixture fraction PDF The mixing between two feed streams in a reactor can be
described using the mixture fraction approach [57]. For a simple reaction (i.e., A+B ! C)
in the case of two non- premixed feeds, the mixture fraction is a conserved scalar de�ned
as follows:

� =
cA � cB + cBo
cAo + cBo

(4.54)

where cAo and cBo are the inlet concentrations of the two reactants in their separate feed
streams. From Eq. 4.54 it is clear that the mixture fraction is equal to 1 in one feed stream
(cA = cAo; cB = 0) and 0 in the other (cA = 0; cB = cBo). The relationships between the
mixture fraction and the reactant concentrations are:

cA
cAo

= � � �sY; cB
cBo

= 1� � � (1� �s)Y; (4.55)

where

�s =
cBo

cAo + cBo
: (4.56)
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Figure 4.1: Relationships between mixture
fraction and reactant concentration in the
case of in�nitely fast reaction and of no re-
action.
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Figure 4.2: PDF at di�erent values
of mixture fraction variance and for
h�i=0.2

and where Y is the reaction progress variable. In the case of a non-reacting system Y = 0
whereas in the case of an instantaneous reaction, the two reactants cannot coexist at the
same point, and the reaction progress variable can be evaluated as follows

Y1(�) = min

�
�

�s
;
1� �
1� �s

�
: (4.57)

Thus the original system identi�ed by the composition vector of three components (cA; cB ; cC)
is now identi�ed by a vector of two components (�; Y ), where � is a non-reacting scalar and
Y is a reacting scalar. In Fig. 4.1 the relationships between concentrations and mixture
fraction are reported.

What happens when there is a chemical reaction but with a �nite rate? In this case
the PDF no longer has a one dimensional support and another random variable must be
added (e.g., reaction progress variable). This can be normally handled in full PDF codes by
adding a new particle variable and by solving the corresponding transport equation in each
notional particle. But when dealing with presumed mixture fraction PDF a conditional
mean must be introduced. In fact the composition PDF is a joint function of the mixture
fraction � and of the reaction progress variable Y . However can write the PDF

f�;Y = fY j�f�; (4.58)

as the product of a conditional PDF and the mixture fraction PDF (which is known). The
problem is now how to model this conditional PDF. Let as consider a speci�c problem.
The source term for the reaction progress variable can be written as

SY =
R

1
; (4.59)

where R is the reaction rate of the chemical reaction (A+B  C) and 1 = cA0cB0=(cA0+
cB0) is a scaling constant. Supposing the following kinetic scheme

R = kcAcB ; (4.60)
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and substituting, it results in

SY (�; Y ) = k1

�
�

�s
� Y

��
1� �
1� �s � Y

�
; (4.61)

whose mean value due to scalar uctuation is not known. The mean reaction progress
variable is de�ned as follows

hY i =
1Z

0

1Z
0

�f�;Y d�d� (4.62)

and using the conditional PDF it becomes

hY i =
1Z

0

0
@ 1Z

0

�fY j�d�

1
A f�d� =

1Z
0

hY j �if�d� (4.63)

where hY j �i is the conditional reaction progress variable. In the case of mixing without
reaction Y = 0 for each value of � and thus hY j �i = 0. In the case of instateneous reaction
Y = Y1(�) and thus hY j �i = Y1(�). The case of �nite-rate reaction is somewhere
between the two limit cases. This case be expressed in terms of the linear interpolation [53,
30]

hY j �i = �Y1(�); (4.64)

where � is the interpolation parameter, that can be determined if the reaction progress
variable is forced to yield the correct unconditional mean

hY i =
1Z

0

hY j �if�d� = �hY1i (4.65)

and thus

� =
hY i
hY1i : (4.66)

As a consequence the mean source term for the reaction progress variable is

hSY i = k1

1Z
0

�
�

�s
� hY ihY1iY1(�)

��
1� �
1� �s �

hY i
hY1iY1(�)

�
d�: (4.67)

Beta PDF The Beta PDF can be conveniently used to describe the mixture fraction
PDF in a number of cases [53, 58, 59]. The Beta PDF is uniquely determined by the mean
mixture fraction h�i and the mixture fraction variance7 h�02i:

f�(�) =
�v�1(1� �)w�1

B(v; w)
;

v = h�i
 
h�i(1 � h�i)
h�02i � 1

!
;

w = (1� h�i)
 
h�i(1� h�i)
h�02i � 1

!
;

B(v; w) =

Z 1

0
xv�1(1� x)w�1dx: (4.68)

7Notice that � represents the sample-space variable corresponding to the random variable �.



52 CHAPTER 4. MODELING AND SIMULATION

Once the distribution of h�i and of h�02i are known one can apply the Beta PDF to calculate
the chemical source term. The distribution of h�i and of h�02i can be calculated by solving
Eqs. 2.21 and 2.23 with an appropriate model for the scalar dissipation rate. The shape
of the beta PDF for h�i=0.2 and for di�erent values of h�02i is reported in Fig. 4.2.

The Beta PDF approach is of immediate use for instantaneous chemical reactions,
since in this case the relationship between concentrations and mixture fraction is given
by Eq. 4.55 and Eq. 4.57. As already mentioned, when dealing with �nite-rate chemical
reactions the relationship between concentration and mixture fraction can be estimated by
linear interpolation between the value for instantaneous reaction and for mixing without
reaction. Thus the mean reaction rate can be computed as follows

hS�(�)i =
1Z

0

S�(�(�))f�(�)d�; (4.69)

where the relationship between concentrations and mixture fraction is contained in �(�).

As highlighted by Fox [57] the use of Beta PDF has some important limitations, and
moreover solution of integrals involving the Beta PDF can be computationally expensive.

Finite-Mode PDF Using this approach every cell of the computational domain con-
tains Ne di�erent modes or environments, which correspond to a discretization of the
composition PDF in a �nite set of delta functions8 [54]:

f�( ;x; t) �
NeX
n=1

pn(x; t)
mY
�=1

� ( � � h��in(x; t)) (4.70)

where pn(x; t) is the probability of mode n, h��in(x; t) is the value of scalar � correspond-
ing to mode n, Ne is the total number of modes, and m is the total number of scalars.
By de�nition, the probabilities pn sum to unity and the average value of any scalar is
de�ned by integration with respect to  . As already mentioned the PDF can be expressed
in terms of the mixture fraction. Thus we will take the �rst scalar to be the mixture
fraction: �1(x; t) � �(x; t).

From Eq. 4.70, the average value of the mixture fraction is given by

h�i �
NeX
n=1

pnh�in; (4.71)

whereas the mixture fraction variance is

h�02i = h�2i � h�i2; (4.72)

where h�2i is the second moment of the mixture fraction:

h�2i �
NX
n=1

pnh�i2n: (4.73)

8If Eqs. 4.70 and 4.49 are compared it is evident that in the full PDF representation each mode (or
notional particle) has the same weight, whereas in the �nite-mode PDF representation each mode is
identi�ed by a probability. Moreover generally the number of modes Ne is much lower than the number
of notional particles N , allowing the use of a purely deterministic formulation of the problem.
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Figure 4.3: Di�erent representations of the micromixing process and resulting probability
density functions. From left to right: (a) real uid (b) full PDF (c) �nite-mode PDF.

Let us consider a number of modes Ne equal to three
9; in this case the model is a �nite-

mode PDF model with three modes, and it can be thought of as the discretization of
the reacting system in three environments, where Environments 1 and 2 contain unmixed
reactants A and B, respectively, and reaction/particle formation occurs in Environment 3.
It is interesting to highlight the di�erent representations of the real uid in the methods
presented. In Fig. 4.3 the real uid and the representation of the uid in terms of notional
particles (full PDF) and environments (�nite-mode PDF) are shown. In the bottom the
resulting representations of the PDF are also reported.

The scalar transport equations for the probabilities of modes 1 and 2, and for the
weighted mixture fraction in Environment 3 (hs�i3 � p3h�i3) are

@p1
@t

+
@

@xi
(huiip1) = @

@xi

�
�t
@p1
@xi

�
+ sp3 � p1(1� p1); (4.74)

@p2
@t

+
@

@xi
(huiip2) = @

@xi

�
�t
@p2
@xi

�
+ sp3 � p2(1� p2); (4.75)

@hs�i3
@t

+
@

@xi
(huiihs�i3) = @

@xi

�
�t
@hs�i3
@xi

�
� sp3(h�i1 + h�i2)

+p1(1� p1)h�i1 + p2(1� p2)h�i2: (4.76)

where p3 = 1�p1�p2, and  and s are respectively the micromixing rate, and the spurious
dissipation rate. Note that s is required to eliminate spurious scalar dissipation resulting

9Here the choice ofNe=3 could seem arbitrary, however we shall look at questions concerning the number
of modes in great details in Chapter 6, where a more general formulation of the model is presented.
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from the �nite-mode representation. The formulation of these transport equations was
done in order to ensure mass balance for a non-reacting scalar (i.e., mixture fraction,)
whereas the functional form of the terms  and s can be explicitated by forcing the
resulting mixture fraction variance to obey the correct transport equation. Let us derive
 and s: the mixture fraction in Environments 1 and 2 are, respectively, h�i1 = 1 and
h�i2 = 0, and thus the mean mixture fraction is equal to

h�i = p1 + hs�i3; (4.77)

whereas the variance is given by

h�02i = p1 +
hs�i23
p3
� h�i2: (4.78)

Manipulation of Eq. 4.77 leads to the transport equation of a conserved passive scalar:

@h�i
@t

+
@

@xi
(huiih�02i) = @

@xi

�
�t
@h�i
@xi

�
; (4.79)

and manipulation of Eq. 4.78 leads to:

@h�02i
@t

+
@

@xi
(huiih�02i) = @

@xi

 
�t
@h�02i
@xi

!
+ 2�t

@h�i
@xi

@h�i
@xi
�

2h"�is � 2h"�i (4.80)

where h"�is and h"�i are

h"�is = �tp3
@h�i3
@xi

@h�i3
@xi

� s
2
p3
h
1 + 2h�i23 � 2h�i3

i
; (4.81)

h"�i = 

2

h
p1(1� p1) (1� h�i3)2 + p2(1� p2)h�i23

i
; (4.82)

and h�i3 = hs�i3=p3 is the local mixture fraction in Environment 3.
Except for the spurious scalar dissipation rate h"�is, Eq. 4.80 is identical to the scalar

variance transport equation for a conserved passive scalar (see Eq. 4.17). However, from
Eq. 4.81 it can be seen that h"�is can be eliminated by setting s as follows:

s =
2�t

1� 2h�i3(1� h�i3)
@h�i3
@xi

@h�i3
@xi

: (4.83)

The term h"�i is the scalar dissipation rate due to micromixing. Reversing Eq. 4.82 an
expression for  is found:

 =
h"�i�

p1(1� p1)(1 � h�i3)2 + p2(1� p2)h�i23
� : (4.84)

Thus given a generic chemical system that is identi�ed by the composition vector �, the
mean value is:

h�i =
3X

n=1

pnh�in =
3X

n=1

hsin; (4.85)

where h�in is the local composition vector in Environment/mode n and hsin is the weighted
composition vector in Environment/mode n, according to the following de�nition:

h�in = hsin=pn: (4.86)
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The transport equation for the weighted composition vector in Environment/mode 3 is
(compare Eq. 4.76 and 2.21)

@hsi3
@t

+
@

@xi
(huiihsi3) = @

@xi

�
�t
@hsi3
@xi

�
� sp3(h�i1 + h�i2)

+p1(1� p1)h�i1 + p2(1� p2)h�i2 + p3S(h�i3): (4.87)

This transport equation shows how reactants (introduced through Environment/mode 1
and 2) reached Environment/mode 3 because of the probability ux, and in Environ-
ment/mode 3 react. It is also clear how the closure problem is handled with this model:
the mean chemical source term is calculated by using local concentrations h�i3 and p3 is
used to get the mean value.

As a conclusion it is possible to say that micromixing inuences the predictions of
the model in regions where p3 < 1, whereas in perfectly micromixed regions p3=1. The
local composition vector h�i3 will thus be greater than the mean composition vector hsi3
whenever p3 < 1, resulting in increased chemical source term.

4.3 Solid evolution and population balance

The population balance is a continuity statement based on the number density function.
This function is de�ned in several ways depending on the properties of the system under
observation. Given the coordinates of the property vector � � (�1; : : : ; �K) that specify
the state of the particle, the number density function n(�;x; t) is de�ned as follows

n(�;x; t)d�1 : : : d�K = n(�;x; t)d�; (4.88)

and represents the number of particles with a value of the property vector between � and
�+d�. For a homogeneous particulate system the governing equation is (repeated indices
imply summation)

@n(�; t)

@t
+

@

@�i
[n(�; t)�i] = h(�; t) (4.89)

where the \ux in �-space" is denoted by

�i � d�i
dt

i 2 1; : : : ;K (4.90)

and h(�; t) represents the net rate of introduction of new particles into the system [60].

Depending on the system of interest, the number density function may have only one
internal coordinate (e.g., particle length or volume), or multiple coordinates (e.g., particle
volume and surface area). Usually when dealing with nucleation and growth problems,
the internal coordinate is a characteristic length, whereas when dealing with aggregation
and breakage, the internal coordinate is the particle volume. We will consider a number
density function de�ned in terms of the particle length (�1 � L), and then the homogeneous
population balance is

@n(L; t)

@t
+

@

@L
[G(L)n(L; t)] = B(L; t)�D(L; t) (4.91)

where G(L) is the growth rate, and B(L; t) and D(L; t) are, respectively, the birth and
the death rates due to aggregation.
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The study of aggregation started from the work of Smoluchowsky [16] who �rst de�ned
the birth and the death rate for a discrete system composed of interacting monomers. The
equations can be rewritten for a continuous system in terms of the particle volume (v) as
follows:

B0(v; t) =
1

2

vZ
0

�0(v � �; �)n0(v � �; t)n0(�; t)d�; (4.92)

D0(v; t) = n0(v; t)

+1Z
0

�0(v; �)n0(�; t)d�; (4.93)

where n0(v; t) is the particle number density with particle volume as internal coordinate,
and �0(v; �) is the aggregation kernel. The latter is a measure of the frequency of collision
of particles of volume v and �.

In order to introduce these terms in Eq. 4.91, a one further operation is needed.
Assuming that length and volume are related by v / L3, it is easily shown that Eqs. 4.92
and 4.93 expressed in a length-based form are as follows:

B(L; t) =
L2

2

LZ
0

�
��
L3 � �3�1=3 ; ��
(L3 � �3)2=3

n
�
(L3 � �3)1=3; t

�
n(�; t)d�; (4.94)

D(L; t) = n(L; t)

+1Z
0

�(L; �)n(�; t)d�; (4.95)

where L and � are the dimensions of the particles with volumes v and �, respectively.

Several numerical methods to solve this equation have been proposed. The most com-
mon methods are based on the discretization of the particle internal coordinate(s), leading
to a discretized population balance (DPB). Depending on the philosophy of this discretiza-
tion, di�erent methods have been developed for aggregation and breakage [61, 62, 63] and
aggregation and crystal growth [64, 65, 66, 67]. The available methods for aggregation-
breakage problems basically di�er on the discretization used, but in general nonlinear
discretization is used. The situation is completely di�erent for cases with crystal growth,
not only because the problem is formulated using particle length as the internal coordi-
nate, but also because in this case a linear discretization is the best approach. Another
completely di�erent approach is based on Monte-Carlo methods, in which a population of
particles is considered and undergoes a birth-death process [68].

A review of the state of the art of population balances limited to the aggregation-
breakage problem can be found in [69], whereas in [70] a detailed comparison of di�erent
methods is studied and discussed. Likewise, Ramkrishna [71] presents a lucid explanation
of the mathematical issues involved.

In general, the DPB approach describes the population balance accurately, but can
involve an extremely high number of scalars. If the �nal application is the implementation
of the population balance in a CFD code, then the solution of the scalars has to be done in
every cell of the computational domain, resulting in a very high calculation time. Thus, in
order to study the e�ects of mixing using CFD, it will be necessary to develop alternative
approaches that have nearly the same accuracy as the DPB approach, but use less scalars.
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4.3.1 Moment methods

A computationally-attractive alternative approach is the standard moment method (SMM)
in which the key is the formulation of the problem in terms of the lower-order moments in
closed form (i.e., involving only function of the moments themselves). For a homogeneous
system, the kth moment is de�ned by

mk(t) =

Z 1

0
Lkn(L; t)dL (4.96)

The �rst �ve moments (k 2 0; : : : ; 4) are of particular interest, since they are related to the
total number particle density (Nt = m0), the total particle area (At = kam2) and the total
solids volume (Vt = kvm3) by shape factors (ka; kv) that depend on particle morphology.
Moreover, using this approach a mean crystal size can be de�ned as follows:

L43 =
m4

m3
; (4.97)

and the solids concentration is given by

cs =
�kvm3

M
; (4.98)

where � is the crystal density, kv is the volume shape factor, and M is the molecular
weight of the crystal.

In a homogeneous system, the resulting transport equation for the kth moment is as
follows

dmk(t)

dt
= (0)kJ(t) +

Z 1

0
kLk�1G(L)n(L; t)dL+Bk(t)�Dk(t); (4.99)

where J(t) is the nucleation rate and the last two terms represent the e�ects of birth and
death, respectively, due to aggregation. The �rst of these can be rewritten by setting
u3 = L3 � �3 and reversing the order of integration [66]:

Bk(t) =
1

2

Z 1

0
n(�; t)

Z 1

0
�(u; �)

�
u3 + �3

�k=3
n(u; t)dud�; (4.100)

whereas the second one is

Dk(t) =

Z 1

0
Lkn(L; t)

Z 1

0
�(L; �)n(�; t)d�dL: (4.101)

In the case of size-independent growth rate (G constant) and without aggregation and
breakage (Bk and Dk null), the moments can be computed directly without requiring
additional knowledge of the number density function. In all the other cases, unless one
makes use of simpli�cations, the SMM is not applicable10.

10In Chapter 6 a possible solution of the nucleation, growth, and aggregation problem, by using the
SMM, will be presented and discussed (see pag. 122.)
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4.3.2 Discretized population balances

A number of discretized population balances (DPB) or classes method (CM) have been
proposed for simultaneous modeling of nucleation, growth and aggregation. Here we dis-
cuss the method proposed by Hounslow and co-workers [67]. The Hounslow's approach
is based on the idea that aggregates are formed of particles of 2i�1 monomers (as if only
particles made by 1,2,4,8, : : : monomers exist). In terms of length-based expressions, it be-
comes Li+1 = Li2

1=3. More recently, a revised version of the model has been proposed [66],
using an adjustable discretized population balance, by means of a parameter q, and thus

the discretization scheme becomes Li+1 = Li
�
21=q

�1=3
. However, it should be noticed

that this modi�cation improves results for very extensive aggregation, that usually is not
the case of crystallizer/precipitator. De�ning Ni as a function such that

mk =
NcX
i

LkiNi (4.102)

where Lki is the appropriate mean size, results in the following set of equations11:�
dNi

dt

�
agg

= Ni�1

i�1X
j=1

2j�i+1�i�1;jNj +
1

2
�i�1;j�1N

2
i�1 (4.103)

�Ni

i�1X
j=1

2j�i�i;jNj �Ni

1X
j=i

�i;jNj i 2 1; : : : ; Nc; (4.104)

whereas for crystal growth�
dNi

dt

�
growth

=
2G

(1 + r)Li

�
r

r2 � 1
Ni�1 +Ni � r

r2 � 1
Ni+1;

�
(4.105)

where r = Li+1=Li. This approach gives quite good performances in the case of aggre-
gation with simultaneous nucleation and growth. Other methods exist, but give good
performances only in the case of purely aggregation, or purely nucleation and growth.
These methods however present the inconvenient that in order to work with good accu-
racy an elevate number of classes are needed (e.g., 20-30 for simple problems, and 100-200
for complex problems.) As already mentioned for CFD applications this could results in
an enormous amount of calculations, since this elevate number of transport equations have
to be solved in every cell of the computational domain.

4.3.3 Quadrature method of moments

The quadrature method of moments (QMOM) was �rst proposed by McGraw [72] for
studying aerosol evolution under size-dependent growth rate. This method is based on
the idea of constructing a quadrature approximation as follows:

n(L; t) �
NqX
i=1

wi(t)� (L� Li(t)) ; (4.106)

11The model is derived by de�ning 4 binary interaction mechanisms that produce a birth or a death in
the ith interval. Aggregation between a particle in the (i-1)th and of a particle in the �rst to (i-2)th interval
produces a new particle in the ith interval. Aggregation between two particles both in the (i-1)th interval
results in the formation of a particle in the ith interval. Death occurs to a particle in the ith interval should
it aggregate with a particle of su�cient size for the resultant aggregate to be larger than the upper size
limit of the ith interval. If a particle in the ith interval aggregates with a particle from that or a higher
interval, a death occurs in the ith interval.
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so that, for example,

mk(t) �
NqX
i=1

wi(t)L
k
i (t): (4.107)

The essence of this method is the fact that the abscissas Li(t) and the weights wi(t)
can be speci�ed from the lower-order moments. In fact, in order to build a quadrature
approximation of order Nq, it su�ces to know the �rst 2Nq moments. Thus, for example,
the �rst six moments (m0; : : : ;m5) su�ce to build a QMOM approximation of order Nq =
3.

Once abscissas and weights have been computed, any integral involving the number
distribution function n(L; t) can be approximated using Eq. 4.106. The procedure used
to �nd wi and Li from the moments is based on the product-di�erence (PD) algorithm
proposed by Gordon [73]. The �rst step is the construction of a matrix P with components
Pi;j starting from the moments [72]. The components in the �rst column of P are

Pi;1 = �i1 i 2 1; : : : ; 2Nq + 1; (4.108)

where �i1 is the Kronecker delta. The components in the second column of P are

Pi;2 = (�1)i�1mi�1 i 2 1; : : : ; 2Nq + 1: (4.109)

Since the �nal weights can be corrected by multiplying by the true m0, the calculations
can be done assuming a normalized distribution (i.e., m0 = 1). Then the remaining
components are found from the PD algorithm:

Pi;j = P1;j�1Pi+1;j�2 � Pi;j�2Pi+1;j�1 (4.110)

where j 2 3; : : : ; 2Nq + 1 and i 2 1; : : : ; 2Nq + 2 � j. If, for example, Nq = 2 then P

becomes

P =

0
BBBBB@

1 1 m1 m2 �m2
1 m3m1 �m2

2

0 �m1 �m2 �m3 +m2m1 0
0 m2 m3 0 0
0 �m3 0 0 0
0 0 0 0 0

1
CCCCCA : (4.111)

The coe�cients of the continued fraction (�i) are generated by setting the �rst ele-
ment to zero (�1 = 0), and computing the others according to the following recursive
relationship:

�i =
P1;i+1

P1;iP1;i�1
i 2 2; : : : ; 2Nq: (4.112)

A symmetric tridiagonal matrix is obtained from sums and products of �i:

ai = �2i + �2i�1 i 2 1; : : : ; 2Nq � 1 (4.113)

and

bi = �p�2i+1�2i�1 i 2 1; : : : ; 2Nq � 2; (4.114)

where ai and bi are, respectively, the diagonal and the co-diagonal of the Jacobi matrix.
Once the matrix is determined, generation of the weights and abscissas is done by �nding
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the eigenvalues and the eigenvectors of the matrix. In fact, the eigenvalues are the abscissas
and the weights can be found as follows:

wj = m0v
2
j1 (4.115)

where vj1 is the �rst component of the j
th eigenvector vj .

When working with the �rst six moments (m0; : : : ;m5), the method is based on the
approximation of the number density function with a sum of Nq = 3 delta functions

n(L; t) = w1(t)� (L� L1(t)) + w2(t)� (L� L2(t))

+w3(t)� (L� L3(t)) (4.116)

and represents a population made up of three classes of particles with dimension L1(t),
L2(t), and L3(t) and number densities w1(t), w2(t), w3(t). As an example, consider a
population with L1(0) = 1, L2(0) = 2, L3(0) = 3 arbitrary unit (a.u.), w1(0) = 0:2,
w2(0) = 0:1, and w3(0) = 0:7, and with a constant growth rate G = 1 a.u./s. The moment
equations for this system are

dmk

dt
= kGmk�1 k 2 0; : : : ; 5; (4.117)

with initial conditions

mk(0) =
3X
i=1

wi(0)Li(0)
k k 2 0; : : : ; 5: (4.118)

From the �rst six moments (m0; : : : ;m5), the PD algorithm can be used to compute the
three weights and abscissas. Results are reported in Fig. 4.4, where it is shown that wi(t)
remains constant whereas Li(t) increases following the real increase of length of the three
classes.

For the case where L1(0) = 2, L2(0) = 3 and L3(0) =
�
L1(0)

3 + L2(0)
3
�1=3

and
w1(0) = 0:5, w2(0) = 0:5, w3(0) = 0:0 and particles L1 aggregates with particles L2 to
give particles L3 preserving the volume (without nucleation and growth), the source terms
for aggregation are very simple and the population balance can be written in terms of the
moments as follows:

dmk(t)

dt
=
�
�L1(t)

k � L2(t)
k + L3(t)

k
� �
m0(t)� m0(0)

2

�
k 2 0; : : : ; 5: (4.119)

Supposing an aggregation rate of [m0(t)�m0(0)=2] and tracking again abscissas and
weights by using the PD algorithm, three di�erent eigenvalues equal to L1(t) = 2, L2(t) =

3, L3(t) =
�
L1(t)

3 + L2(t)
3
�1=3

and the three weights reported in Fig. 4.5 are found. As
it is possible to see, w1(t) and w2(t) go to zero and w3(t) goes to 0.5. In fact, the total
number of particles is one half after all particles of dimension L1(t) and L2(t) have aggre-
gated. Obviously anytime the moments refer to a number density function that cannot be
exactly represented by three classes of particles, Eq. 4.116 is no longer exact. For these
cases, validation of the method is required12.

12Part of the validation has been already carried out and preliminary results are reported in Section 6.1.2.
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Figure 4.4: Evolution with time of the abscissas (Li) and weights (wi) for three classes of
particles in case of size-independent growth.
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Figure 4.5: Evolution with time of the abscissas (Li) and weights (wi) for three classes of
particles with aggregation.
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Chapter 5

Experimental set-up and

operating conditions

In this chapter the experimental set-up is presented. Two di�erent reactors have been
investigated: a Taylor-Couette reactor and a tubular reactor. Since the ow �eld in the
�rst system is quite particular a preliminary validation of ow �eld and tracer dispersion
predictions have been carried out, by using Laser techniques. As concerns the tubular
reactor the validation was carried out in a previous work [74]. Two types of fast reac-
tions have been used for studying the e�ect of mixing: parallel-competitive reactions and
precipitation reaction.

5.1 Parallel reactions

Parallel reactions have been often used in past years to characterized mixing e�ciency in
chemical reactors. Di�erent systems have been proposed in literature, but they can be
always reduced in the following scheme:

B +A ! R;

C +A ! S; (5.1)

where the �rst reaction is quasi-instantaneous, whereas the second one is fast. In this
work we used the iodide-iodate reaction [75], where

A = H+;

B = H2BO
�
3 ;

C = 5/6 I� + 1/6 IO�
3 ;

R = H3BO3;

S = 1/2 I2:

The procedure consists in adding a small quantity of concentrated solution of A, as limiting
reactant, to a mixture of B and C. In perfectly mixed systems, A is immediately mixed
through the solution and only the �rst reaction occurs; but if mixing is not perfect a
local excess of A remains and reacts according to the second reaction scheme. It is clear
that the quantity of S formed is a measure of the intensity of segregation of the chemical

63
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reactor. The selectivity of the second reaction is de�ned as the ratio of the acid mole
number consumed by the second reaction dived by the acid mole number injected

� =
2nI2

no
H
+

=
2VRcS
vicAo

; (5.2)

where VR is the chemical reactor volume, vi is the injected volume, and cAo is the concen-
tration of the injected solution. In the case of total segregation it results in

�ST =
cCo=cBo

cCo=cBo + 1
: (5.3)

The degree of segregation of the reactor can be quanti�ed by the segregation index de�ned
by:

Xs =
�

�ST
: (5.4)

This quantity is null in prefect mixing conditions and equal to unity in total segregation
conditions.

5.2 Precipitation reaction

Precipitation can be seen as a consecutive-competitive reaction, where barium sulfate
molecules are unstable and form solid nuclei (�rst reaction), which can grow to form
macroscopic crystals (second reaction.) The �rst reaction is nucleation and is quasi-
instantaneous, whereas the second one is crystal growth and is fast. A measure of the
degree of segregation of the system is the crystal size distribution (CSD) of the solid
formed; in fact if nucleation is favored crystals are smaller. The mean crystal size1 d43
can be used to quantify these e�ects. However one should never forget that crystals can
growth according to other mechanisms (e.g., aggregation) and can also undergo break-up
processes. These processes modify the CSD but can not be directly linked to molecular
mixing. In this work barium sulfate precipitation was investigated. Barium sulfate was
precipitated from aqueous solutions of barium chloride and sodium sulfate.

5.3 The Taylor-Couette reactor

The Taylor-Couette reactor is made of two coaxial cylinders with the inner one rotating.
The uid is contained in the annular gap and depending on the rotational velocity of
the inner cylinder several uid dynamic regimes are achieved. This system has attracted
much attention in the study of ow instabilities of uids past solid boundaries. Taylor [76]
carried out the �rst systematic study on this device and found that depending on the
viscosity of the uid, on the con�guration and the motion of the boundaries, when the
velocity of the uid exceeds a certain limit, the steady state motion breaks down and
eddying ow sets in (see Fig 5.1).

A detailed review of the theoretical and mathematical aspects of the instabilities in
circular Taylor-Couette ows can be found in [77], here we limit our discussion to a brief

1This quantity is calculated as the ratio of the 4th and 3th moments of the normalized CSD, and has
been de�ned at pag. 16.
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Figure 5.1: Skecth of the Taylor-Couette reactor. In the �gure the toroidal structure of
the ow is also reported.

presentation of the several uid dynamic regimes in this device. It is useful to de�ne some
dimensionless quantities, such as the Reynolds number

Rer =

1r1d

�
(5.5)

and the Taylor number

Ta =

2
1r1d

3

�2
(5.6)

where r1 is the radius of the inner cylinder, 
1 is the rotational velocity of the inner
cylinder, d is the annular gap, r2 is the radius of the outer cylinder, and � is the kinematic
viscosity of the uid. When the Reynolds (or Taylor) number is lower than a critical
value the ow is stable and is known as Laminar Couette Flow (LCF), whereas when
the Reynolds number is greater than this critical value the ow becomes unstable and
in�nitesimal disturbances are ampli�ed, causing the formation of toroidal equispaced vor-
tices. This latest is called Laminar Taylor Vortex Flow (LTVF). In his pioneering work
Taylor by using the linear instability theory achieved the �rst success in the calculation of
uid instability, and was able to predict the critical Taylor number for the �rst transition:

Tac =
�
�
1 + d

2r1

�
0:0571

�
1� 0:652 d

r1

�
+ 0:00056�

1�0:652 d
r1

� ; (5.7)

or in terms of the Reynolds number:

Rec =

�
Tac

r1
d

�1=2
; (5.8)

but his theory could not correctly describe the characteristics of this ow. Using a nonlin-
ear theory [78, 79, 80] it is possible to rigorously calculate for the LTVF the equilibrium
values of velocity disturbances .
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As the Reynolds number is increased further, the axialsymmetric LTVF becomes un-
stable leading to a time-dependent vortex ow called Singly Periodic Wavy Vortex Flow
(SPWVF), and Res is the critical Reynolds number at which this transition occurs. Sys-
tematic investigations of this ow [81] show that it is possible to achieve several stable
states at a given Reynolds number. Power spectra of radial component of velocity uctua-
tions were analyzed for this ow regime [82] and for Reynolds number slightly greater than
Res only a single frequency component was detected, that is the frequency of traveling
azimuthal waves passing a �xed point.

As the Reynolds number is raised further the SPWVF becomes more complex; in fact,
the amplitude of the azimuthal waves varies periodically with time. As a matter of fact,
in this regime a second fundamental frequency appears in the power spectrum, that can
be identi�ed with the frequency of amplitude modulation of the �rst fundamental mode.
This transition occurs when the Reynolds number is equal to Req and the established
regime is known as Quasi Periodic Wavy Vortex ow (QPWVF).

As the Reynolds number goes beyond a critical value (Ret) the azimuthal waves cease
preserving the vortex structure. Power spectra in this range no longer contain the two
fundamental frequencies, and this is the sign of the generation of chaotic turbulence.

A further increase in Rer beyond another critical value (Ref ) causes the destruction
of the vortex structure leading to a fully turbulent ow (FTF) without vortices [83].
Although, it is not possible to correctly predict the exact value at which this sequence
of transitions occurs and often not even the type of uid dynamic regime achieved, it is
possible to outline a likely sequence of transitions as follows

LCF ! LTV F ! SPWV F ! QPWV F ! TV F ! FTF: (5.9)

However it should be highlighted that if the ratio of the radii of the inner and outer cylinder
is lower than 0.714 the SPWVF and the QPWVF are generally unstable and then there is
a direct transition from LTVF to TVF. It is also possible to de�ne for each transition an
approximate value of Rer at which the transition occurs, in terms of Rec that identi�es
the �rst transition. The Taylor-Couette reactor used in this work has the inner radius
r1= 4.1 mm, the outer radius r2=5.5 mm and the height H=205 mm. In Tab. 5.1 the
di�erent transitions are reported. The sequence of transitions reported in Tab. 5.1 can
be explained also in terms of the period-doubling cascade [84] . If the axial component of
the velocity in one point of the reactor is reported against the Rer number the solution
diagram is obtained (see Fig. 5.2.)

In this diagram the stable and unstable solutions of the system are reported with a
particular notation that is explained below. When Rer < Rec the axial velocity is null,
since no eddy ow occurs, but as Rer turns the �rst critical value the LTVF is established.
In this operating condition the axial velocity is not null, and increases increasing Rer.
However the ow is time-independent and this is represented by a continuous line in
the diagram. When Res is reached the SPWVF is established, the axial velocity varies
periodically, and forms a limit cycle in the velocity space. This transition is a Hopf
bifurcation. This is represented by �lled circles in the diagram, and the two branches
represent the upper and lower bound of the axial velocity. At Req the transition to the
QPWVF occurs, and as already mentioned a new frequency appears, and the limit cycle
lies on a toroidal surface and not anymore on a circle. Then a period-doubling cascade is
generated and when Rer=Ret the ow is completely chaotic.
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Table 5.1: Summary of the estimated numerical values of the critical Rer numbers and
critical rotational speeds of the inner cylinder N .

Rer Rer N , rpm

Rec 86 1.4

Res 1.2 Rec 103 1.7

Req 10 Rec 860 14

Ret 22 Rec 1892 31

Ref 700 Rec 60200 1000

Figure 5.2: Solution diagram showing the period-doubling cascade.
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In order to picture the level of chaos, or with more appropriate words, in order to
analyze the properties of this dissipative nonlinear dynamic system, one makes use of
power spectra, phase space reconstructions, Poincar�e sections, returns map and fractal
dimensions. A section of the evolution in the phase space of the dynamic system is a
Poincar�e section, whereas a projection of the time evolution of the phase space on a plane
orthogonal to the time axis, shows the presence of an attractor.

In the study of chaos very useful is also the determination of the Liapunov exponents,
that can be seen as a measure of the sensitivity on initial conditions2. In the case of
turbulent ows we deal with strange attractors, which exhibit fractal features. In fact due
to dissipation, volume in phase space shrink and therefore lengths cannot expand in all
directions, and because of the �nite boundary of the attractive basin, volume elements
are folded at the same time. This stretching, shrinking and folding process leads to the
self-similar structure of the attractor [86]. The determination of the fractal dimension of
the attractor gives very interesting information on the order to disorder transition that
occurs increasing the Re number. It has been shown for example that in the transition
to chaos the fractal dimension behaves as the one-fourth power of the control parameter
(Re) a value very similar to a continuous phase transition [87]. It is now clear that the
fractal dimension can be used as an order parameter to characterize these transitions.

5.3.1 Experimental investigation of ow and non-reacting scalar �eld

Experimental information concerning the ow �eld and the scalar �eld are provided by
using three measurement techniques: Laser sheet visualization, Laser Doppler Anenometry
(LDA), Laser Induced Fluorescence (LIF).

The laser sheet is created by a 10 mW Ionized Argon Laser whose beam is vertically
diverted by a mirror in order to cross two collimating lenses. This sheet visualizes a
meridian plane (as show in Fig. 5.3) of the ow �eld seeded by solid refractive particles.
This technique can be used to gather qualitative information on the ow �eld and to
determine some important characteristics, such as, time dependencies, number of vortices,
and stability.

The laser doppler anenometry (LDA) technique is particularly devoted to steady
state ow �eld and provides mean velocities, and velocities cross correlations. The appa-
ratus used in this work can simultaneously measure 2 velocity components, axial velocity
(uz) and azimuthal velocity (u�) as shown in Fig. 5.4. The technique consists in measuring
velocity of very small refractive particles (10 �m.) Two pairs of laser beams generated
by an Ionized Argon Laser at 2 di�erent wave lengths (541 nm and 488 nm) are focused
in such a way that the four beams cross in a common con�ned volume. Particles that
cross this probe volume emit in all directions with a new frequency: the emitted light
is concentrated and led to a photomultiplier. The frequency shift between incident light
and emitted light is called Doppler frequency and it is proportional to velocity. After ac-
quisition, data are statistically treated giving: mean axial velocity huzi, mean azimuthal
velocity hu�i, and three components of the Reynolds stress tensor: hu0zu0zi, hu0�u0�i and
hu0zu0�i.

The Laser Induced Fluorescence (LIF) technique provides evolution of mean con-
centration of a non-reacting scalar in steady and unsteady conditions. The uorescent
dye used in this work is Rhodamin B whose absorption spectrum is centered around 580
nm. The green light of the Ionized Argon Laser (514 nm) excites Rhodamin B molecules,

2For more details on Liapounov exponents and nonlinear dynamics see also [85].
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Figure 5.3: Experimental setup used is the lasersheet visualization tests.
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Figure 5.4: Sketch of the Laser Doppler Anenometry device used in the experiments. Laser
beams are collected by the transmitting lens and focus on the probe volume. Emitted
beams are collected by two lens and are focused on the receiving �ber.

that decay to the fundamental energy state by emitting a light whose spectrum is centered
around 590nm. The emitted light is collected, led to a photomultiplier, and analyzed.

As mentioned before (see Tab. 5.1), the transition to TVF is estimated to occurs at
Re=1,892 whereas the transition to FTF at Re=60,200 that correspond respectively to 31
rpm and 1,000 rpm. However, it is useful to highlight that these values must be used as
approximate indications. In this work the behavior of the reactor was investigated in the
turbulent region. Three di�erent types of analysis have been carried out. In the �rst type
the number of vortices has been counted by using the Laser sheet visualization technique
and LDA measurements only for few radial positions scanning the axial direction. In this
part of the work the rotational speed of the inner cylinder was varied between 35 rpm
and 500 rpm. Then a deeper study at 300 rpm was carried out. For this rotational speed
the mean axial velocity, the swirl velocity, and three Reynolds-stresses, were measured by
scanning through a �ne two- dimensional grid (scanning the axial and radial direction)
in one meridian plane. Then the e�ect of injector and of injection were studied. Four
di�erent injection positions were investigated indicated with FP1, FP2, FP3, and FP4.
The injector was made of a small tube (OD: 2 mm, ID: 1mm) positioned in the middle of
the annular gap at 0 mm (FP1), 70 mm (FP2), 95 mm (FP3) and 105 mm (FP4) from
the top. The extremity of the injector was curved in order to lead the injected uid in
the direction of the mean ow. Eventually the dispersion of an inert tracer was studied.
The tracer was injected in the four di�erent positions with an injection velocity equal to
30 ml/min and LIF was used to determine local values of tracer concentration. Tracer
concentration was determined in a meridian plane that forms an angle of 270 degrees with
the injection plane. Measurements were taken on this plane at �ve di�erent points, namely
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Figure 5.5: Sketch of the reactor. With FP1-FP2-FP3-FP4 are indicated the four injection
positions, and with M1-M5-M6-M7-M10 are indicated the �ve measurement points.

M1, M5, M6, M7, M10 that correspond to an axial position of 7, 92, 112, 129, 197 mm
from the bottom of the reactor, as shown in Fig. 5.5.

5.3.2 Experimental investigation of fast reactions

Parallel reaction The experimental procedure [88] prescribes injection of a volume
equal to vi=4 ml of sulphuric acid [H2SO4]=1 M, in a reactor of volume VR containing
iodate [IO�

3 ]=0.0023 M, iodide [I�]=0.0117 M and borate [H2BO
�
3 ]=0.0909 M, or in terms

of the symbolic notation cAo=2 M, cBo=0.0909 M, cCo=0.014 M. Notice that iodide and
iodate ions form a stoichiometric mixture, according to the reaction coe�cient ratio (5 : 1)
and that borate ions are added in the mixture with sodium idroxide, producing a bu�er
solution in order to keep the pH at a constant value. The iodine further reacts with iodide
ions I� yielding I�3 according to the following equilibrium:

I2 + I� $ I�3 ; (5.10)

[I�3 ] can be easily measured by spectrophotometer at 353 nm. Knowledge of [I�3 ] and of
the equilibrium constant KB=702 l/mol su�ces to determine the iodine formed by the
second reaction. These tests were carried out at 100 rpm and 300 rpm, and injecting 4
ml of acid in positions FP1 and FP2. The e�ect of the injection time was studied in the
range between 5 and 300 seconds.

Precipitation reaction Experiments for barium sulfate precipitation were carried out
in the Taylor-Couette reactor from aqueous solutions of sodium sulfate and barium chlo-
ride. Micro-�ltered water and analytical chemicals were used to prepare the solutions. The
reactor was �rst �lled with a sodium sulfate solution, and barium chloride was then added
with a constant injection velocity. Hereinafter with A it is meant the reactant injected
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in the reactor (in this case barium chloride) and with B the reactant already present in
the reactor (sodium sulfate.) After 200 seconds, samples taken from the bottom of the
reactor were analyzed. The CSD was determined using a laser granulometer (Coulter
LS230, by using the \small volume cell") whereas the solid concentration was calculated
by measuring the residual reactant concentrations with a conductimetric technique.

The rotational speed of the inner cylinder was varied between 100 and 1000 rpm,
whereas the initial concentration of sodium sulfate (cBo) was varied between 1 mol/m3

and 10 mol/m3. The e�ect of the injection velocity was studied in the range between
30 and 100 ml/min and the ratio between reactant concentrations � = cBo=cAo, which
represents the ratio between the concentration of the sodium sulfate present in the reactor
divided by the concentration of the barium chloride injected, was varied between 0.1 and
0.001. The volume injected in the reactor and injection time were chosen such that the
overall stoichiometric ratio was always 1:1, meaning that reactants were fed in order to
have a �nal ratio of reactant concentrations in the case of complete mixing without reaction
equal to one.

In these operating conditions it is useful to de�ne the initial nominal supersaturation
ratio as the ratio of the product of the reactant concentrations in the case of complete
mixing without reaction (i.e., hc0Ai and hc0Bi) and the solubility product of barium sulfate
(ks):

So =
hc0Aihc0Bi

ks
: (5.11)

When the concentration of reactant B (in this case sodium sulfate) varies between 1 and
10 mol/m3 the initial nominal supersaturation ratio (So) varies between 104 and 106.

5.4 Tubular reactor

Barium sulfate precipitation was also carried out in a tubular reactor with a single jet
con�guration. The tubular reactor is 2.1 m long and has an internal diameter of 1 cm.
The jet is positioned on the reactor axis, and is made of a small pipe (ID = 1 mm and OD
= 1.5 mm). The two reactants were separately fed in the small tube and in the annular
region. Distilled water and analytical grade reagents were used to prepare barium chloride
and sodium sulfate solution.

Two di�erent series of measurements were performed: on- and o�-line. In the �rst
ones the reactor outlet was connected with the laser particle sizer (Coulter LS 230), as
reported in Fig. 5.6, and the CSD was directly measured on the particles owing in the
outlet uid.

In this case the laser particle sizer was used with the \uid cell" device. These ex-
periments were carried out because in certain cases the reaction was not complete and
would have progressed during sampling and analysis. On-line measurements were compli-
cated by particle deposition over the cell lens. In order to minimize particle deposition
the measurement time was reduced from 60 to 15 seconds and after each run all the line,
including piping, tubular reactor and particle sizer were cleaned with washing water and
the particle sizer cell was mechanically cleaned.

Although all the precautions to avoid particle deposition, after each run, deposited
particles were found over optical lens. The main point was to verify if the amount of
deposited particles was adding further appreciable scattering and thus altering measure-
ments. After cleaning the line with distilled water another measurement was carried out.
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Figure 5.6: Experimental set-up for the tubular reactor.

In complete absence of particle deposition, this would result in the blank test, with parti-
cle deposition would result in the CSD of deposited particles. In several runs the amount
of deposition was so small not to allow the instrument to detected it, and when it was
detected results showed that there was small overlapping between the CSDs of owing
and deposited particles. Each experiments was repeated 5-6 times in order to deal with
the poor reproducibility typical of precipitation.

In the o�-line measurements samples from the reactor outlet were taken and gently
stirred. The CSD was measured by using the particle sizer with the \small volume cell",
at di�erent time steps, and moreover a part of these samples was simultaneously �ltered.
Filtered particles were dried in a stove at 120�C, and after redispersion in acetone prepared
for SEM observation.

The inlet velocity in the annular region was kept equal to 1 m/s, because of on-
line measurement constrains, so that the macroscopic Reynolds number3 was equal to
10,000. This Reynolds number is well above turbulence transition but is lower than in
other works in literature [89]. Generally the Reynolds number is kept at higher values
to ensure a fully developed turbulent ow, since only in this condition turbulence models
and turbulent mixing models are applicable. This requirement was irreconcilable with
on-line measurements. In fact increasing Re the residence time of particles in the particle
sizer cell decreases, and under a certain value the measurement was not possible. All the
experiments were carried out with the ratio between the velocity in the feed stream in the
nozzle and the feed stream in the annular region (VR) equal to one.

With A is indicated the reactant fed in the nozzle and B the reactant fed in the annular
region. However in this case barium chloride was fed either in the nozzle or in the annular
region while sodium sulfate was fed in the other region. Initial reactant concentrations
(cAo; cBo) used in the experiments are reported in Tab. 5.2 with the relative measurements
carried out.

The �rst column (case 1) refers to experiments carried out at low concentration level
with barium chloride in the nozzle and sodium sulfate in the annular ow. Concentration

3The macroscopic Reynolds number is de�ned as Re = uD=� where u is the mean velocity in the axial
direction, D is the pipe diameter, and � is the kinematic viscosity.
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Table 5.2: Summary of the operating conditions of experiments.

Reactant fed in the inner tube

� = cBo
cAo

BaCl2 Na2SO4 BaCl2

- cAo=34 mol/m
3 cAo=34 mol/m

3 cAo=341 mol/m
3

0.01 OT OT OT

0.10 OTM OT OTM

1.00 OTM OT OTM

1.50 OTM OT T

3.00 OTM OTM T

O on-line meas.; T o�-line meas.; M SEM obs.

of the reactant fed in the nozzle (barium chloride in this case) was the same in all the
runs of this series, whereas the concentration of the reactant fed in the annular region was
varied in order to have a ratio between the two concentrations (� = cBo=cAo) between
0.01 and 3. Notice that, being the ratio of the two feed stream rates (QBo=QAo) equal to
100, the condition for �=0.01 yields equal concentrations after complete mixing without
reaction (cAoQAo = cBoQBo), respecting stoichiometric ratio.

The feed positions were inverted in the second series: sodium sulfate was fed in the
nozzle and barium chloride in the annular region, keeping the over-all concentration level at
same values (second column, case 2). Moreover, as at these initial reactant concentrations
the �nal solid concentration was too low to have extended aggregation, keeping as basic
con�guration experiments in the �rst column, concentrations were increased by a factor
of ten. Then experiments at high concentration (third column, case 3) were carried out
with barium chloride in the nozzle and sodium sulfate in the annular ow.



Chapter 6

Results and discussion

In this Chapter experimental and modeling results are presented. The Chapter is divided
in four sections. In section 6.1 the validation of the �nite-mode PDF model by comparison
with a more sophisticated model is presented and discussed.

As already mentioned in the Introduction CFD calculations were carried out by using
the Standard Moments Method (SMM) for the population balance, however the results
that will be presented in the following sections show that this approach is not adequate in
certain operating conditions. For this reason in section 6.1 the validation of the Quadrature
Method of Moments (QMOM) for the population balance is also presented. However
since the use of this method for CFD calculations requires a complete redesign of the
numerical approach used, its introduction in CFD codes represents a possible improvement
of the presented model, and will be the object of our future work, as highlighted in the
Conclusions section.

In section 6.2 CFD predictions (FLUENT) concerning ow �eld and tracer dispersion
are validated by comparison with experimental data. In section 6.3 experimental results
concerning the reactive runs are presented and compared with model predictions.

Eventually in section 6.4 CFD predictions obtained with the �nite-mode PDF model
are compared with full PDF predictions for a real case: turbulent precipitation in the
tubular reactor.

6.1 Simpli�ed models validation

In this section the �nite-mode PDF model and the Quadrature method of moments are val-
idated by comparison with more sophisticated models. For the �nite-mode PDF model the
comparison was carried out with the full PDF model, whereas for the Quadrature method
of moments a Discretized Population Balance (DPB) was used. As already mentioned
simulations by using the full PDF approach for modeling micromixing or the Discretized
Population Balance for modeling the solid evolution are computationally expensive. The
models proposed here present the main advantage of requiring much less computational
resources, but of course give less accurate performances.

However, both the approaches (detailed versus simpli�ed) need an accurate description
of the ow �eld and of the turbulent �eld, and for this reason must be coupled with CFD
codes (see Fig. 6.1). By using CFD every cell of the computational domain can be seen
as a perfectly mixed reactor which exchanges mass and energy with the surrounding cells
because of mean velocities and turbulent dispersion. Since both the detailed and the

75
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Figure 6.1: Coupling between CFD code and models for scalar �eld and solid evolution

simpli�ed description are linked with the CFD code, use of one of the two a�ects model
predictions locally. Aim of the comparison is the investigation of this local loss of accuracy.
Both validations are carried out in a simple uid dynamic system: the perfectly mixed
reactor (i.e., a single cell of the computational domain.) In this ideal reactor no spatial
macro-gradients exist, and therefore properties of the system are constant throughout the
domain.

6.1.1 Finite-mode PDF

The �nite-mode PDF model has been presented in section 4.2.2 (see pag. 52) for the
particular case Ne = 3. However this model has a more general formulation, in which Ne

is a parameter [30]. Let us consider the general formulation of the �nite-mode composition
PDF:

f�(�;x; t) =
NeX
n=1

pn(x; t)
MY
�=1

�[ � � h��in(x; t)]; (6.1)

where Ne is the total number of modes, pn is the probability of mode n, h�in is the
local composition vector in mode n. The transport equation of the probability vector
p = (p1; p2; : : : ; pNe) in homogeneous ows is

dp

dt
= G(p); (6.2)

and that of the weighted concentrations

dhsin
dt

= M(n)(p; hsi1; : : : ; hsiNe) + pnS(h�in); (6.3)

where the functions G and M(n) represent the rate of change of p and hsin due to mi-
cromixing, hsin = pnh�in is the weighted composition vector in mode n, and h�in is
the local composition vector in mode n. The functional form of G and M(n) depends
on the micromixing model, however some properties have to be respected; for example,
probabilities sum to unity and thus:

NeX
n=1

Gn(p) = 0: (6.4)
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The mean composition vector is obtained by

h�i =
NeX
n=1

pnh�in =
NeX
n=1

hsin; (6.5)

and since summation of Eq. 6.3 over all modes must yield the correct transport equation
for the mean composition:

dh�i
dt

=
NeX
n=1

M(n)(p; hsi1; : : : ; hsiNe) + hS(�)i; (6.6)

micromixing functions must obey the following constrain

NeX
n=1

M(n)(p; hsi1; : : : ; hsiNe) = 0: (6.7)

From model equations it is also possible to derive an expression for the scalar variance of
a non-reacting scalar. The scalar variance in de�ned as:

h�02i = h�2i � h�i2

=
NeX
n=1

pnh�i2n �
 
NeX
n=1

pnh�in
!2

; (6.8)

and thus the equation for the scalar variance is:

dh�02i
dt

= �h(p; h�i1; : : : ; h�iNe); (6.9)

but for homogeneous ows (see Eq. 4.17)

dh�02i
dt

= "�; (6.10)

and then it is possible to derive the value of  in order to force the scalar variance of a
non-reacting scalar to follow the correct equation1

 =
"�

h(p; h�i1; : : : ; h�iNe)
: (6.11)

The micromixing functions can be de�ned in terms of linear combination of the probability
exchange rate r = (r1; : : : ; rNe):

Gn = a1r1 + : : :+ aNerNe (6.12)

and

M (n) = a1h�i1r1 + : : :+ aNeh�iNerNe ; (6.13)

coe�cients an are chosen depending on Ne and the formulation of the problem, whereas
for the choice of the exchange rate r see [90].

Let us consider the formulation of this �nite-mode PDF model with the mixture frac-
tion as the �rst scalar and for di�erent value of Ne. When Ne=1 the reacting system is

1In this case the evaluation of the functional form of s is not required, since in homogeneous scalar
�eld the spurious dissipation term is always null.
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represented by one environment, and the PDF is a delta function centered on the mean
value. In this case weighted concentrations and local concentrations coincide and only
the mean mixture fraction is predicted correctly. In fact in this case the mixture fraction
variance is always null since h�2i = h�i2, (only the �rst moment of the mixture fraction
can be correctly predicted.) This is the default solution available in CFD code, and by
using this option micro-mixing is evidently neglected2.

When Ne=2 the reacting system is represented by two modes. Generally one of the
co-reactants is introduced in mode 1 where h�i1=1, whereas the other one is introduced
in mode 2 where h�i2=0. The e�ect of micromixing is to decrease probability of mode 2
whereas mode 1 always grows in probability. This is the so-called Engulfment model. In
this model the micromixing process is thought of as a sort of engulfment of the portion
of uid contained in mode 2 by the uid in mode 1. In this case the �rst and the second
moment of the mixture fraction can be correctly predicted (mean mixture fraction and
mixture fraction variance.) In Tab. 6.1 the governing equations for this case are reported.

As already mentioned when Ne=2 the model is not symmetric, since mixing goes
from mode 1 to mode 2 and not viceversa. In general this is not a desirable feature
for a CFD-based micromixing model, and can be improved by setting Ne=3, and letting
mode 3 represent the reacting environment. Thus, when Ne=3, modes 1 and 2 contain
unmixed reactants where h�i1=1 and h�i2=0, and due to micromixing probabilities of
mode 1 and 2 decrease whereas mode 3 always grows in probability. Notice that in this
case reaction occurs in mode 3 and that also the mixture fraction skweness can be correctly
predicted. Governing equation for this case have already been presented (see pag. 53) but
for completeness are reported in Tab. 6.2.

The last case discussed here is when Ne=4. In this case unmixed reactants are intro-
duced through modes 1 and 4 (h�i1=1 and h�i4=0). Probability of modes 1 and 4 decrease
and modes 2 and 3 are formed. The probability ux goes from mode 1 to 2 and from mode
4 to 3. Modes 3 and 4 are connected by symmetric probability uxes. Reaction takes place
in modes 3 and 4, and thus this model requires more computational e�ort than the others
presented in this section. Governing equations for this case are reported in Tab. 6.3.

2The Chemical Reaction Engineering (CRE) approach based on Lagrangian formulation suggests the
existence of regions: macromixing is the region controlled by large-scale eddies and micromixing is the
region controlled by small scales eddies. In this de�nition macromixing is due to turbulent di�usion and
convection, whereas micromixing is due to molecular di�usion. An intermediate region named mesomixing
has been also de�ned. Mesomixing is responsible for breaking up the large blobs of uid and creates the
environment in which micromixing occurs. Thus by using CFD alone for modeling turbulent reacting
ows only the e�ects of macromixing are taken into account, whereas micromixing e�ects are completely
neglected.
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Table 6.1: Governing equation for Ne=2. Notice that since probabilities sum to unity
p2 = 1� p1 thus only an equation for p1 is needed. Reaction occurs only in mode 1 thus
in mode 2 local concentrations are constant and the transport equation for hsi2 is not
needed. In this case  = "�=[p1p2h�i21].

Models Variables G or M(n)

p1 p1(1� p1)
hsi1 p1hsi2

Table 6.2: Governing equation for Ne=3. Notice that since probabilities sum to unity
p3 = 1� p1� p2 thus the transport equation for p3 is not needed. Reaction occurs only in
mode 3 thus in modes 1 and 2 local concentrations are constant and the transport equations
for hsi1 and hsi2 are not needed. In this case  = "�=[p1(1�p1)(1�h�i3)2+p2(1�p2)h�i23].

Models Variables G or M(n)

p1 �p1(1� p1)
p2 �p2(1� p2)
hsi3 [(1� p1)hsi1 + (1� p2)hsi2]

Table 6.3: Governing equation for Ne=4. Notice that since probabilities sum to unity
p4 = 1 � p1 � p2 � p3 thus the transport equation for p4 is not needed. Reaction occurs
only in modes 2 and 3 thus in modes 1 and 4 local concentrations are constant and the
transport equations for hsi1 and hsi4 are not needed. In this case  = "�=[p1(1 � p1)(1 �
h�i2)2 + (p2 + p3)(h�i2 � h�i3)2 + p4(1� p4)h�i23].

Models Variables G or M(n)

p1 �p1(1� p1)
p2 �[p1(1� p1)� p2 + p3]

p3 �[p2 � p3 + p4(1� p4)]
hsi2 [(1� p1)hsi1 � hsi2 + hsi3]
hsi3 [hsi2 � hsi3 + (1� p4)hsi4]
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The �nite-mode PDF predictions with Ne = 2; 3; 4 have been compared with Ne=1
(without any closure) and with full PDF predictions for barium sulfate precipitation. The
full PDF transport equation (Eq. 4.46) was presented at pag. 47, and here is applied in
the case of homogeneous ow:

@f�
@t

+
@

@ �
[S�( )f�] = � @

@ �

h
h��r2�� j  if�

i
: (6.14)

In the full PDF simulations the reactor was modeled by using 100 notional particles. A
fraction of the particles was initialized with �=1 whereas the rest of the particles were
initialized with �=0. Simulations were carried out with two di�erent values of h�i: 0.1
and 0.01. Subsequently particles were mixed by using a random process (coalescence and
dispersion model.) Couples of particles were randomly chosen and mixed. After each
event, mixture fraction variance was determined and the simulation time was updated.
This was done by using a very simple model for the scalar variance dissipation rate

dh�02i
dt

= �"� = �h�
02i
��

; (6.15)

where evidently �� is the micromixing time. The analytical solution of this expression, in

terms of the intensity of segregation Is = h�02i=[h�i(1 � h�i)] can be written as follows:

Is = exp(�t=��): (6.16)

Knowledge of the mixture fraction variance and thus of the intensity of segregation, su�ces
the evaluation of the real time during the simulation after each mixing event. Then scalars
are updated in each notional particle according to the source term. In this case we have
to consider a �nite-rate chemical reaction (e.g.,A + B ! C.) The chemical source term
can be described in terms of the reaction progress variable, and the relationships between
concentrations, the mixture fraction, and the reaction progress variable (Y ) are

cA
cAo

= � � �sY; cB
cBo

= (1� �)� (1� �s)Y; (6.17)

which appear to be in between the relationships for in�nitely fast reaction and for mixing
without reaction (see Fig. 4.1). The source term for Y is

dY

dt
=
S(cA; cB)

�scAo
(6.18)

where S(cA; cB) is the source term for the chemical reaction, and cA and cB are de�ned
in terms of � and Y by Eq. 6.17. Initial reactant concentrations of sodium sulfate and
barium chloride were �xed as follows

cAo =
1:067

h�i mol/m3;

cBo =
1:067

1� h�imol/m
3: (6.19)

The population balance was solved by using the Standard Moment Method (see Eq. 4.99,)
neglecting the e�ect of aggregation (Bk=0 and Dk=0.) Only the �rst �ve moments were
tracked (mk k 2 0; : : : ; 4).

For the nucleation rate and the growth rate Eqs. 1.11 and 1.18 were used, whereas for
shape factors an average value was used (kv=5 and ka=30.) It should be mentioned here
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that the parameters used in these simulations (i.e., ��,kv ,ka) as well as kinetic expressions
play a relative importance; in fact, since the aim of this part of the work is the comparison
between two di�erent models it is of �rst importance to use the same values, but however
these values have to be reasonable. The �nite-mode PDF simulations with Ne=2,3,4 were
carried out with the following initial conditions:

p1(t = 0) = h�i;
pn(t = 0) = 1� h�i;

with n equal to 2 for Ne=2, 2 for Ne=3 and 4 for Ne=4. Notice that for all the models no
transport equation for � is needed since its value is constant and equal to its initial value.
The validation process requires the solution of a system of ordinary di�erential equations
(ODE) that was solved by using the ODE package ODEPACK (LSODE fortran double
precision subroutine.)

All the models were tested by using the same variance decay (or intensity of segregation
decay) for several characteristic micro-mixing times. In Fig. 6.2 the intensity of segregation
decay of the di�erent models are presented. Data are reported against the dimensionless
time (� = t=tbatch) where tbatch=200 seconds. As already mentioned, given the value of ��,
all the models show the same variance decay rate.

In order to verify the correct behavior of the di�erent models the e�ect of the time
constant �� was investigated. In Fig. 6.3 and 6.4 the mean crystal size (d43) predicted
by the �nite-mode PDF model with Ne=2 and the full PDF model, for h�i=0.1 and for
h�i=0.01, and at di�erent values of the time constant are compared. The results reported in
the two �gures show that decreasing �� the �nal mean crystal size when reaction is complete
(i.e., �=1) decreases. This is due to the fact that a decrease in �� accelerate micro-mixing,
thus reactants mix faster and nucleation is favored (being quasi-istantaneous) over crystal
growth (which is much slower.) This trend was observed in all the models. Moreover it
is interesting to notice that, for all the models when �� < 0:01, the predicted evolution
was equal to that of the 1 Environment model (i.e., Ne=1 model with only one mode
neglecting micromixing.) This result con�rms that when micromixing in faster than the
chemical reaction the prediction of the micromixing model is equal to the prediction of
the model without micromixing. Moreover this result gives an order of magnitude for
the characteristic reaction time, that in this operating condition is around 0.01 second.
Comparison of mean crystal size (d43) and total particle number density (m0) predicted
by the di�erent models for h�i=0.1 and 0.01 and for ��=1 second is reported in Figs. 6.5
and 6.6. Data are presented for this value of �� since it seems to be reasonable; if ��=10
seconds the model would have been tested in more stressed conditions, but however this
appears not to be a likely scenario.

The results show that if no micromixing model is used the mean crystal size is sensibly
underestimated and the total particle number density is overestimated. The �nite-mode
PDF model in all its con�gurations shows quite good agreement with the full PDF model,
although when Ne=4 the model seems to work better. However, since the �nite-mode PDF
model with 4 modes requires the solution of reaction and of particle evolution in modes
2 and 3, it is more computational expensive. Thus considering that the improvement in
performances between the model with Ne=4 and Ne=3 is very small, hereinafter the 3E
model will be used. Another result that supports the use of three modes is that when using
four modes concentration pro�les of mode 2 and 3 are very similar, showing that with this
reaction scheme Ne=3 should represent with su�cient detail the reacting system.
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Figure 6.2: Intensity of segregation decay with time for the tested models at di�erent
values of ��.
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6.1.2 Quadrature method of moments

The validation of the QMOM has been done in two steps. In the �rst step the ability of
the QMOM to model crystal growth with size-dependent growth rates was veri�ed. In
the second step, a DPB with nonlinear discretization was used to validate the QMOM
ability to predict aggregation. The validation process requires the solution of a system
of ordinary di�erential equations (ODE) and the solution of the eigenvalues problem.
The �rst one was solved by using the ODE package ODEPACK (LSODE fortran double
precision subroutine), whereas for the second one the linear algebra package EISPACK
(IMTQL2 fortran double precision subroutine) was used.

Size-independent growth rate: For this case, moment equations can be expressed in
closed form:

dmk

dt
= kGmk�1 k 2 0; : : : ; 5: (6.20)

Solving the system either by using the moments themselves or by using the moments
recalculated from the quadrature approximation, excellent agreement was found, proving
that the abscissas and weights so obtained are able to give back the exact value of the
moments. Di�erent initial CSDs were used such as Dirac-delta and step functions. In
Fig. 6.7 the �rst six normalized moments are reported for the following initial CSD:

n(L; 0) = 1:0 � 1020 for L � 10�6 (6.21)

= 0:0 for L > 10�6 (6.22)

and a constant growth rate G = 1:0 � 10�6 m/s. Results show that the total number
density is constant, whereas m1 varies linearly. For all the moments the agreement was
excellent.

Size-dependent growth rate: For this case, since the equation for m1 contains m�1,
the set of moment equations cannot be solved by using the Standard Moments Method
(SMM.) Instead, by using the Quadrature Method of Moments (QMOM) with three nodes3

the problem is formulated in closed form:

dmk

dt
=

Z 1

0
kG(L)n(L; t)Lk�1L � k

3X
i=1

G (Li(t))Li(t)
k�1wi(t) k 2 0; : : : ; 5: (6.23)

Mcgraw [72] showed that QMOM is able to correctly predict the �rst six moments for a
growth law of the form

G(L) =
Go
L
: (6.24)

From his calculations, the error was estimated to be lower than 0.1%. In this work
comparison was made by using the same initial condition as in the previous case and
Go = 1:0 � 10�13 s�1. Results from QMOM were compared with predictions of a dis-
cretized population balance:

dn(Li; t)

dt
= �G(Li+1)n(Li+1; t)�G(Li�1)n(Li�1; t)

Li+1 � L1�i
i 2 1; : : : ; Nq; (6.25)

3For details see the model formulation at pag. 58.
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Figure 6.7: Evolution versus time of the �rst six moments for size-independent growth.



6.1. SIMPLIFIED MODELS VALIDATION 87

with Nd = 200, Lmin = 0 and Lmax = 2:0 � 10�5. In Fig. 6.8 the �rst six moments are
reported against time. As it is possible to see, m0(t) is again constant whereas in this case
m2(t) varies linearly with time. This is con�rmed by the exact relationship (available only
for even moments):

dm2

dt
= 2Gom0: (6.26)

Also in this case excellent agreement was found with a maximum error of 0.3% after 10
seconds of evolution.

Aggregation: Concerning aggregation, validation was �rst carried out by comparison
with analytical solutions. For example the exponential CSD reported below:

n(v) =
No

vo
exp(�v=vo) (6.27)

provides analytical solutions but in a limited number of cases [91]. First results showed
quite good agreement, however in order to investigate model performances in a wider range
of initial conditions and by using di�erent aggregation kernels, the comparison was done
also with a speci�c DPB method for simultaneous nucleation, growth and aggregation.
For this purpose the DPB approach proposed by Hounslow and co-workers4 was used [67].

Using QMOM for this system yields

dmk

dt
=

1

2

Z 1

0
n(�; t)

Z 1

0
�(�; u)(u3 + �3)k=3n(u; t)u�

�
Z 1

0
Lkn(L; t)

Z 1

0
�(L; �)n(�; t)�L;

� 1

2

3X
i=1

wi

3X
j=1

wj�(Li; Lj)
�
L3
i + L3

j

�k=3

�
3X
i=1

wiL
k
i

3X
j=1

wj�(Li; Lj) k 2 0; : : : ; 5: (6.28)

The QMOM was validated in three di�erent conditions:

1. Constant kernel:

�(L; �) = �0; (6.29)

2. Brownian kernel:

�(L; �) = �0
(L+ �)2

L�
; (6.30)

3. Hydrodynamic kernel:

�(L; �) = �0(L+ �)3: (6.31)

4This model has been already presented and commented, see Eqs. 4.104 and 4.105 at pag.58
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Figure 6.8: Evolution versus time of the �rst six moments for size-dependent growth.
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The three cases were tested with di�erent initial CSDs and here results for unimodal and
a bimodal initial CSDs will be presented.

The unimodal CSD is shown in Fig. 6.9a, and in the same �gure is also reported the
CSD at di�erent time steps after aggregation with constant kernel (�0 = 10�17 m3/s) by
using DPB with Nc = 100. As it is possible to see aggregation causes the disappearance
of smaller particles to form bigger particles. The evolution of the moments is reported in
Fig. 6.10a. Results clearly show that m3 remains constant, since during aggregation total
particle volume is conserved. The moments of order lower than three decrease whereas
the others increase.

In order to quantify the ability of the model to predict system properties it is useful
to de�ne the intensity of aggregation [92]:

Iagg = 1� m0(t)

m0(0)
: (6.32)

Iagg is 0 when the number of aggregation events is null and goes to 1 as this number
increases. In the case under investigation an error of 4% was detected when Iagg = 0:95.
In Fig. 6.9b the error committed by using QMOM (assuming the prediction of the DPB
to be exact) is reported against Iagg. As it is possible to see the error on moments of
order lower than three is less than 2%, whereas the third moment is perfectly predicted.
For moments of order greater than three the error is still less than 10% for Iagg � 1.
Note that in normal crystallization/precipitation reactors Iagg typically falls in the range
between 0.5-0.6, where the errors are lower. Moreover in this case the error is greater
for m5, which is calculated only because it is needed in the PD algorithm; in fact, the
highest-order moment that is used for comparison with experimental data is m4 (that
appears in Eq. 4.97) for which the error is lower.

The behavior of the bimodal CSD in case of aggregation with constant kernel is shown
in Fig. 6.11a. In Fig. 6.11b the percentage errors for the �rst six moments are reported.
As it is possible to see the situation is slightly di�erent, in fact the error on m0 is quite
high and when Iagg = 0:5 becomes stable at about 10%. All the other moments behave in
a similar way, but the errors are greater than for the unimodal case.

In the case of Brownian aggregation, the CSD at di�erent time steps is reported in
Fig. 6.12a using the same initial conditions, but with �0 = 2:5�10�18 m3/s. This di�erent
value of �0 was used in order to have comparable value of Iagg. As it is possible the see, the
evolution is slightly di�erent, especially for smaller particles that seem to aggregate faster.
Also in this case agreement with the two methods was excellent, as reported in Fig. 6.12b.
Moreover results con�rm that in this case (and generally for the unimodal distribution)
the case of Brownian aggregation can be treated with constant kernel, in fact under the
hypothesis of aggregating particles of the same size:

�(L; �) = �0
(L+ �)2

L�
� 4�0: (6.33)

For the bimodal distribution, results are very similar. In Fig. 6.13a the CSD at di�erent
time steps is reported. Again in this case smaller particles aggregate faster, but their
weight on the �nal mean crystal size is small. Also in this case the error in m0 is quite
high, but remains lower then 10% until Iagg < 0:5 (see Fig. 6.13b).

In the case of hydrodynamic kernel, the same initial conditions were used with �0 =
1:5 � 106 m3/s. This value of �0 was used in order to obtain comparable values of Iagg.
The evolution of the CSD predicted by the DPB is reported in Fig. 6.14a. As it is possible
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to note, the tail of the CSD increases faster with time as a proof of the increased ability of
bigger particles to collide and aggregate. In this case agreement between the two models
is not as good as in the previous cases, in fact the integrant function contains the number
density function multiplied by (L+�)3 that is responsible for the long \tail" of the function.
However, it is useful to highlight that for moderate aggregation rates (Iagg < 0:5) error
are around 10-15% (see Fig. 6.14b).

In Fig. 6.15a the CSD at di�erent time steps, in the case of initial bimodal distribution
for the hydrodynamic kernel, is reported. Note that in this case in order to obtain the
same range of Iagg a di�erent �0 was used (�0 = 5:0 � 104). Up to Iagg = 0:5 all the
errors are lower than 10%, but for Iagg close to one the m4 error goes up to 800%. Since
the percentage error increases with the order of the moments, there is not a big di�erence
between the unimodal and the bimodal initial distributions.

It is very interesting, for this last case, to investigate the e�ect of the number of nodes
in the quadrature approximation. In Fig. 6.16 the mean crystal size versus Iagg calculated
with the DPB and the QMOMwith 3,4,5 nodes is reported. As it is possible to see the order
of magnitude of the errors are very similar, however increasing the number of nodes a small
improvement in QMOM performances was detected. On the other hand, use of a greater
number of nodes requires the calculation of higher-order moments, that are involved in P
determination (see Eq. 4.111,) and it could result in numerical instabilities and underow
problems. Thus use of a three nodes based QMOM is strongly recommended.

The validation process leads us to the conclusion that in the case of constant or Brow-
nian kernel, QMOM works quite well by tracking only the �rst six moments. Agreement
between QMOM and a DPB using 100 classes was satisfactory. However, also in this
simple case some limitations were detected. In fact the model performance in the case
of initial bimodal CSD was worse than with a unimodal CSD. Moreover results showed
that it is di�cult to �nd a criterion for error estimation. For example, the rule that errors
increase with moment order is not always valid. Nevertheless QMOM can be used also in
case of hydrodynamic aggregation for moderate aggregation rates.

Despite the limitations discussed above, the QMOM method is indeed fascinating for
several reasons. The method is very fast, in fact the reduction of the number of scalars
to be tracked is drastic (from 50-100 to 6) and in general does not depend on the width
of the CSD. This reduction of scalars has a strong impact on CPU time, in fact by using
the QMOM method a reduction of 150-200 times was detected with respect to the DPB.
In addition, as mentioned before, the method proposed does not present the problem of
�xing the intervals to be considered in the simulations. Thus, unlike the DPB approach,
it can be used without any modi�cation for di�erent CSDs.
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6.2 Validation of the ow �eld and tracer dispersion predic-

tions in the Taylor-Couette reactor

In section 5.3 the uid dynamic regimes that can be achieved in the Taylor-Couette reactor
have been illustrated. Since the ow �eld in this reactor is very particular an experimental
validation is required. As already mentioned for the tubular reactor this validation was
carried out in a previous work [74].

In Fig. 6.17 a typical result from a visualization experiment is reported. This particular
picture refers to 35 rpm and in this case 7 vortices are visible. However, as in the �gure
only one half of the reactor is reported the total number of vortices detected in this case
is 14. Notice that the aspect ratio � = H=d is about 14; if the vortices have equal axial
and radial dimensions it would lead to 14 vortices, that is exactly the situation observed
experimentally, as shown in the �gure. However this is not the unique solution found in
this case. In fact, this is the ow �eld established if initially the uid was at rest. If this
con�guration was achieved starting from higher rotational speeds the number of vortices
detected was 12. This result is con�rmed by other works, where the existence of multiple
steady-state solutions and of hysteresis is widely documented. The explanation lies in the
mathematical description of the problem: the Navier-Stokes equation represents a dynamic
nonlinear system, and thus multiple steady-state solutions are a natural consequence of
this non-linearity.

For all the cases investigated the vortices were always even in number and counter-
rotating; moreover the vortices in the top and in the bottom of the reactor were always
formed in such a way to force the uid to go from the outer cylinder to the inner one.
Increasing the rotational speed of the inner cylinder up to 300 rpm the number of vortices
is reduced down to 10, and for 400 rpm and 500 rpm the ow was found not to be stable.
The number of vortices in this case was not constant, due to strong instabilities in the
top and in the bottom of the reactor. In these regions vortices split apart and then merge
again periodically. A further increase in the rotational speed causes the transition to the
fully turbulent ow without vortices.

The number of vortices was determined both with laser visualization and with LDA
measurements. In Tab. 6.4 a summary is reported. Experimental data were compared
with CFD predictions (in this work the commercial code FLUENT version 5.4 was used.)
In this �rst part of the work 2D simulations in a meridian section of the reactor were
carried out. Di�erent grids were tested in order to �nd a grid independent solution. The
�nal grid for this 2D simulations was with 15 nodes in the radial direction and 206 in
the axial direction for a total of 3090 nodes. Di�erent turbulence models and near-wall
treatments were tested. The comparison, in terms of the number of vortices is reported
in Tab. 6.4.

The comparison shows that depending on the rotational speed of the inner cylinder several
combinations of turbulence models and near wall treatments give good agreement with
the experimental data. However the RSM with standard wall function seems to be the
best one. This is also con�rmed by a more detailed comparison between CFD predictions
and experimental data. In this case experimental data used for the comparison are axial
pro�les of axial huzi and azimuthal hu�i velocity at several rotational speeds (see Fig. 6.18.)
The comparison was done at a �xed radial position located at three third of the annular
gap starting from the inner cylinder (r = 0:0515 m.) As a general comment it should
be said that the experimental determination using LDA is a�ected by a certain error in
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Figure 6.17: Experimental determination of the number of vortices for N=35 rpm (uid
initially at rest.)
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Table 6.4: Summary of the number of vortices experimentally detected (Exp) and relative
comparison with CFD predictions. Std: standard wall function; Non-eq: non-equilibrium
wall function; Two-eq: two-equation model. RNG k � ": RNG k � " model; Real. k � ":
Realizable k � " model; RSM: Reynolds Stress Model; �: after 100,000 iterations the
convergence criteria were not satis�ed.

N, rpm wall fnc RNG k � " Real. k � " RSM Exp.

Std 14 14 12

35 Non-Eq 2 2 2 14-12

Two-Eq 12 12 2�

Std 14 14 12

100 Non-Eq 8 2 8 12

Two-Eq 12 12 2�

Std 14 14 10

200 Non-Eq 12 8 10 10

Two-Eq 12 12 2�

Std 12 12 10

300 Non-Eq 10 10 10 10

Two-Eq 12 8 2�

Std 8 8� 10

400 Non-Eq 8 8� 10 Not stable

Two-Eq 12 12 2�

Std 8 8� 10

500 Non-Eq 8 8� 10 Not stable

Two-Eq 12 12 2�
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determining the actual position of the probe volume. This position was determined by
using some reference points, such as the top and the bottom, the inner cylinder and the
outer cylinder, but still this position is known with a small uncertainty. This could explain
why in certain cases the overall agreement is good but would improve with a small shift
on the axial position.

The comparison shows that in general the agreement is good. At low rotational speeds
the azimuthal velocity is in good agreement with experimental data whereas increasing this
parameter is underestimated by the CFD code. Concerning the axial velocity the over-all
agreement is quite good and the fact that the data are quite spread at low rotational
speed can be explained in terms of the di�culties in carrying out the experiments in these
operating conditions.

In Figs. 6.19-6.22 the comparison between CFD predictions and experimental data for
mean axial velocity, mean azimuthal velocity, and two components of the Reynolds Stress
tensor hu0zu0zi and hu0�u0�i at 300 rpm are reported. The agreement in general is good
although it should be again mentioned that the azimuthal velocity is underestimated, as
well as the two components of the Reynolds stress tensor.

Hereinafter the RSM with standard wall function is used for modeling the ow �eld in
the Taylor-Couette reactor.

The CFD calculations presented in this �rst part were carried out by using two-
dimensional grids. However also three-dimensional simulations have been carried out.
In Fig. 6.23 the three-dimensional grid used in these simulations is reported and com-
pared with the two-dimensional one. It is composed by 120 cells in the axial direction, 60
cells in the azimuthal direction and 14 cells in the radial one, for a total of 100,800 cells.
From the �gure it is clear that when modeling the system in 2D no azimuthal gradient
exist and the reactor is modeled under the hypothesis of axial symmetry, however we will
come back to this aspect later. Concerning ow �eld predictions comparison between 2D
and 3D simulations shows small di�erences, con�rming that in these operating conditions
the ow �eld can be modeled by using a 2D approach.

In a second part of the validation also tracer dispersion experiments have been con-
sidered for comparison. Although using the RSM the Reynolds stresses are known, and
Eq. 4.10 could have been used, transport of a non-reacting scalar is modeled by using
Eq. 4.14:

@h�i
@t

+
@

@xi
(huiih�i)� @

@xi

�
�t
@h�i
@xi

�
= 0; (6.34)

where:

�t =
C�
Sct

k2

"
; (6.35)

with Sct = 0.7 and C� = 0.09. The transport equation for this non-reacting scalar is
implemented in the CFD code by means of user-de�ned subroutines. With the CFD
code FLUENT (as well as almost all the commercial CFD codes) it is possible to solve,
besides the Navier-Stokes and continuity equation, other transport equations de�ned by
the user. These transport equations are added to FLUENT as user-de�ned scalars. For
every user-de�ned scalar a transport equation of the form

�
@�k
@t

+
@

@xi

�
�huii�k � ��k @�k

@xi

�
= S�k (6.36)
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Figure 6.18: Comparison of experimental and predicted axial pro�les of mean axial velocity
huzi and mean azimuthal velocity hu�i at r = 0:0515 m and at several rotational speeds.
Continuous line: CFD predictions by using the RSM with standard wall function; circle:
LDA measurement.
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Figure 6.19: Comparison between experimental data and CFD predictions for the axial
velocity huzi at 300 rpm.
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Figure 6.20: Comparison between experimental data and CFD predictions for the az-
imuthal velocity hu�i at 300 rpm.
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Figure 6.21: Comparison between experimental data and CFD predictions for hu0zu0zi at
300 rpm.
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Figure 6.22: Comparison between experimental data and CFD predictions for hu0�u0�i at
300 rpm.
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Figure 6.23: Computational grids used in the 3D and 2D simulations.

is solved, where �k is the kth scalars, � is the uid density and �k, and S�k are the
di�usivity and the source term for the kth scalar, respectively. In this work the di�usivity
�k has been set equal to the turbulent di�usivity (�t) for all scalars. Note that the source
term must be consistent with the dimensions of the other terms in Eq. 6.36. For this
reason the source terms appearing in model equations must be multiplied by the uid
density. However for the user-de�ned scalar that represent the tracer concentration the
source term is null (since it is a non-reacting scalar.)

Injection of tracer was investigate at 300 rpm and at 30 ml/min in four di�erent
positions: FP1, FP2, FP3, FP4 (see pag. 70 for details.) In Figs. 6.24 and 6.25 the tracer
dispersion evolution computed with 3D simulations by using the RSM with standard wall
functions is reported for two injection positions: FP1 and FP2. From the �gure it is
possible to notice that when the injection is done in FP1 the ow �eld is probably not
disturbed by the injection, since the velocity of the injected uid is much lower than the
velocity of the surrounding uid. However when injection is done in FP2-FP3-FP4 due to
the presence of the injector some distortion of the ow �eld are expected. CFD simulations
show that in general the ow �eld is locally modi�ed but the structure seems to be very
similar. This results is con�rmed by some experimental data obtained with the speci�c
purpose of investigating the e�ect of the injector.

During the simulations the tracer concentration at di�erent meridian planes (every 45�)
in points at equal axial and radial positions has been monitored. The comparison showed
that tracer dispersion evolution is very similar in di�erent planes, suggesting the use of the
axial symmetric hypothesis also for tracer dispersion simulation. Further investigations
showed that this hypothesis is held in the range of rotational speeds used in this work.
When the system is modeled in 2D the injection point is represented by a small region in the
computational domain. However, because of the hypothesis of axial symmetry, this region
corresponds to a toroidal surface in the real system. Although this strong simpli�cation
in the representation of the reactor, 2D and 3D predictions for tracer dispersion are very
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Figure 6.24: Tracer dispersion for FP1, N = 300 rpm, and an injection velocity vi = 30
ml/min. Volume of the computational domain for which 0:0008 < c=co < 1:0.

similar.
The e�ect of Sct was investigated in the range from 0.2 to 2 and tracer dispersion was

shown to be relatively insensitive to this parameter, showing that in the reactor scalar
transport is dominated by convection due to the presence of the vortices. In Fig. 6.26
the comparison between experimental data and two-dimensional CFD predictions for the
tracer concentration is reported. Data are presented in terms of the normalized tracer
concentration against time, where t=0 is the beginning of the injection. Experimental
data are obtained via LIF measurements in �ve points (see Fig. 5.5.) As it is possible to
see the agreement is quite good although for points far from the injection CFD predictions
show a dispersion e�ciency lower than the measured one.
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Figure 6.25: Tracer dispersion for FP2, N = 300 rpm, and an injection velocity vi = 30
ml/min. Volume of the computational domain for which 0:0008 < c=co < 1:0.
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6.3 Reactive tests

In this section the experimental data from reactive tests are presented and compared with
model predictions. As already mentioned, precipitation was investigated both in a Taylor-
Couette reactor and in a tubular reactor. The �rst results from the Taylor-Couette reactor
showed that the inuence of mixing on precipitation is indeed quite strong but due to the
number of complex phenomena involved it was sometimes very di�cult to understand
the role of every single parameter. For this reason, in order to investigate the mixing
properties of this reactor in addition to precipitation experiments a series of tests using
competitive parallel reactions were carried out (iodide/iodate reaction.) The section is
divided into three subsections: in section 6.3.1 the results from the iodide/iodate reaction
in the Taylor-Couette reactor are presented and some conclusions on the mixing properties
of this device are drawn; in section 6.3.2 the results from the precipitation tests in the
same reactor are discussed, and �nally in section 6.3.3 the precipitation tests carried out
in the tubular reactor are presented.

6.3.1 Iodide/iodate reaction in the Taylor-Couette reactor

Experimental data The e�ect of the rotational speed of the inner cylinder, the injection
velocity and the feed position (only FP1 and FP2 locations) on the segregation index was
investigated. The experimental results are showed in Fig. 6.27. As already explained (see
pag. 71) a constant volume of 4 ml was injected at di�erent injection velocities and thus
with di�erent injection times. During injection blobs of A is introduced in the reactor that
contains a mixture of B and C. This blob is mixed at the macroscopic level by convection
and turbulent di�usion and is mixed at the microscopic level by molecular mixing. If the
injection is instantaneous, the blob containing A is introduced in an in�nitesimal small
interval of time and it has to undergo the overall mixing process: macroscale gradients are
destroyed by convection and turbulent di�usion and microscale gradients are destroyed by
molecular mixing. If the injection occurs during a su�ciently long interval of time, reaction
takes place in a pseudo-homogeneous system, and the segregation can be attributed only
to micromixing.

In other words for rapid injection conditions, the acid plume is not well dispersed in
the reactor and macroscopic concentration gradients may inuence the results, yielding
higher values of the segregation index. In the opposite situation, when acid injection is
in�nitely low, macromixing e�ects are eliminated and the �nal segregation index is only
micromixing relevant. The results reported in Fig. 6.27 are the experimental evidence of
this: the segregation index decreases increasing the injection time and reaches a constant
value for su�ciently long injection times.

In the �gure is also clear which is the e�ect of the rotational speed of the inner cylinder:
increasing this parameter the segregation index decreases since mixing is faster (at the
macroscopic and microscopic level.) It is also interesting to highlight the e�ect of the
injection position. Moving the injection from FP1 to FP2 the e�ect of the rotational
speed of the inner cylinder is reduced. This can be explained by the fact that since the
injection is in the middle of the reactor mixing is more e�cient and less sensitive to the
rotational speed. However small di�erences are detected in the limiting value of Xs for
long injection time, showing that the change in the injection position produces a strong
change in the quality of mixing at the macroscopic level, but imitate improvements in the
mixing at the molecular level.
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Figure 6.27: Experimental segregation index obtained injecting 4 ml of acid with di�erent
injection times at 100 and 300 rpm in the two feed locations FP1 and FP2.
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This method has been also suggested for the experimental determination of turbulent
dissipation rate in chemical reactors [93]. In fact, as already mentioned, for su�ciently long
injection times the segregation index is only micromixing relevant, and in these conditions
it is possible to apply the Engulfment model [52] to determine the relationship between
segregation index and turbulent dissipation rate 5. This is shown in Fig. 6.28. From this
relationship and the asymptotic value of the segregation index at several rotational speeds
it is possible to determine the corresponding value of ". This value was compared with
the volume-averaged " obtained from CFD simulations, and with the values obtained from
relationships available in literature. In particular " can be evaluated as follows:

" =
G
1

�VR
; (6.37)

where G is the torque required for one cylinder to rotate at a desired rotational speed
(
1), � is the uid density, and VR is the reactor volume. The torque can be evaluated by
using di�erent relations [77]. One of the dimensionless relations (A) is as follows:

f = 0:46

�
r2d

r21

�1=4
Re�0:5r 4� 102 < Re < 104

f = 0:073

�
r2d

r21

�1=4
Re�0:3r Re > 104: (6.38)

where r1 is the radius of the inner cylinder, r2 is the radius of the outer cylinder, d = r2�r1
is the annular gap, Rer is the rotational Reynolds number de�ned in Eq. 5.5 and f is the
friction factor:

f =
G

�H�(r1
1)2r21
: (6.39)

Another relation (B) is the following:

f

flam
= 0:128Re0:58m 103 < Rem < 106; (6.40)

where Rem is the modi�ed Reynolds number de�ned as follows:

Rem = Rer

�
d

r1

�1=2
; (6.41)

and the laminar friction factor de�ned by:

flam =
4r22

r1(r1 + r2)
1
Rer

: (6.42)

Concerning CFD simulations the results showed that the volume-averaged turbulent dis-
sipation rate is strongly a�ected by the near-wall treatment rather than the turbulence
model adopted. For this reason CFD results have been presented for di�erent near-wall
treatments6. The comparison is shown in Fig. 6.29. In this logarithmic diagram the power
law between turbulent dissipation rate and rotational speed is represented by a linear plot.

5Since in these operating conditions macro-scale gradients are very small the reactor can be modeled
as an homogeneous system. The micromixing time is evaluated by using Eq. 4.20 (see pag. 43.)

6In this part of the work only converged simulations were considered. Notice that simulations that after
100,000 iterations did not satisfy convergence criteria are indicated in Tab. 6.4 with �.
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The exponent calculated by �tting experimental data is 1.2, whereas both the relations
used results in an exponent of 2.5, CFD simulations with standard wall function (std) 1.8,
with non-equilibrium wall function (non-eq) 2.1, and with the two-layer zonal model 3.0.

The results show that the experimental data are closer to relation (B) (see Eq. 6.40)
and both are in quite good agreement with CFD predictions with standard wall function.
However it should be mentioned that the experimental data does not give an average
value on the entire volume of the reactor, but only in the region where reaction takes
place. Moreover use of these relations (Eqs. 6.38 and 6.40) is questionable and can be
considered only to de�ne the order of magnitude of the property.
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Model predictions and comparison with experimental data The results reported
in the previous section (see pag. 105) showed that the ow �eld of the Taylor-Couette
reactor can be modeled by using 2D simulations with RSM and standard wall functions.
Moreover it was shown that the hypothesis of axial symmetry can be used also to model
the scalar �eld. The reacting system will thus be modeled by using 2D simulations.

Before recalling the governing equation of the model and explaining the computational
details of the simulations, let us consider again the parallel reaction scheme:

B +A ! R;

C +A ! S: (6.43)

In this case there are 5 reacting scalars with 2 reactions; in general for modeling this
system one should solve 5 transport equations (one for each scalar.) However it can be
shown that the reacting system can be written in terms of only 2 scalars in addition
to the mixture fraction. In fact, this system of 5 scalar can be written in terms of 1
non reacting scalar (mixture fraction) and 2 reacting scalars (reaction progress variables.)
A detailed explanation of this technique can be found in [30] and here we present the
solution for parallel reactions. The relationships between mixture fraction (�) reaction
progress variables (Y1,Y2) and concentrations are

cA
cAo

= � � �s1Y1 � �s2Y2;
cB
cBo

= 1� � � (1� �s1)Y1;
cC
cCo

= 1� � � (1� �s2)Y2;
cR
cBo

= (1� �s1)Y1;
cS
cCo

= (1� �s2)Y2; (6.44)

where

�s1 =
cBo

cAo + cBo
; (6.45)

and

�s2 =
cCo

cAo + cCo
: (6.46)

The source terms for the reaction progress variables are:

SY 1 =
R1

1
; (6.47)

and

SY 2 =
R2

2
; (6.48)

where R1 and R2 are the source terms for reaction 1 and 2 and where

1 =
cAocBo
cBo + cAo

; (6.49)
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and

2 =
cAocCo
cCo + cAo

: (6.50)

In the case in which the �rst reaction is considered in�nitely fast, the �rst reaction progress
variable (Y11) can be written in terms of Y2 and �:

Y11 = min

�
1� �
1� �s1 ;

�

�s1
� �s2
�s1

Y2

�
; (6.51)

that gives cB = 0 where A is in excess and cA = 0 where B is in excess. Thus this reactive
system that originally was described by 5 transport equations can now be described by
only 2 transport equations, one for the mixture fraction � and one for the reaction progress
variable Y2 whereas Y11 is directly computed from Eq. 6.51.

The �nal model is constituted by 4 transport equations: Eqs. 4.74 and 4.75 for the
probabilities of Environment/mode 1 and 2 (p1 and p2)
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�
+ sp3 � p1(1� p1); (6.52)
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@t

+
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@xi
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@xi

�
�t
@p2
@xi

�
+ sp3 � p2(1� p2); (6.53)

and Eq. 4.76 for the weighted mixture fraction in Enviroment/mode 3 (hs�i3 = p3h�i3)
@hs�i3
@t

+
@

@xi
(huiihs�i3) = @

@xi

�
�t
@hs�i3
@xi

�
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+p1(1� p1)h�i1 + p2(1� p2)h�i2; (6.54)

and the following equation for the weighted reaction progress variable (hsY2i3 = p3hY2i3):
@hsY2i3
@t

+
@

@xi
(huiihsY2i3) =

@

@xi

�
�t
@hsY2i3
@xi

�
+
p3R2(hcAi3; hcCi3)

2
(6.55)

where R2(hcAi3; hcCi3) is the local source term for the chemical reaction calculated with
local concentrations in Environment/mode 3 that are de�ned in Eqs. 6.44 by replacing �
with h�i3, Y11 with hY11i3, and Y2 with hsY2i3. The problem is closed once a functional
form for the chemical source term R2(hcAi3; hcC i3) is given. In literature (see [88],) the
following kinetic expression is proposed:

R2 = k[H+]2[I�]2[IO�
3 ]; (6.56)

where k is a function of the ionic strength I that has been determined experimentally:

I < 0:166M log10(k) = 9:28105 � 3:664
p
I

I > 0:166M log10(k) = 8:383 � 1:5112
p
I + 0:23689I; (6.57)

and with our notation:

R2 = k(cA)
2(5=6cC )

2(1=6cC ): (6.58)

As a �rst step simulations were carried out for the ideal case of instantaneous injection.
In this case an uniform grid was used (15 nodes in the radial direction and 206 in the axial
direction for a total of 3090 nodes.) First the ow �eld was solved by using steady-state
simulation and then time-dependent simulations, for the scalar �eld, were carried out. For
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Figure 6.30: Contour plots of the volume fraction of Environment 2 (p2) at di�erent time
steps (Left to right: t1 = 0 s, t2 = 0:14 s, t3 = 0:24 s, t4 = 0:5 s, t5 = 1 s).

time-depedent simulations under-relaxation factors for p1, p2, hs�i3 and hsY2i3 were kept
equal to one, whereas the time step was varied from 0.0001 seconds, in the beginning of the
simulation, to 1 second at the end. The time step in the very beginning of the simulation
has to be very small due to the fact that in the �rst period reaction rates are extremely
high and the problem is numerically sti�. Due to the sti�ness of the problem moreover all
the simulations were carried out in double precision.

In this ideal case in the beginning of the simulation the reactor is �lled with a mixture
of B and C and A is present in a small spot around the injection point7. The portion of
uid containing the mixture of B and C is segregated from the portion of uid containing
A. Thus in the �nite-mode PDF representation B and C form Environment 2 (p2 = 1)
whereas A forms Enviroment 1 (p1 = 1). According to Eq. 6.44 the uid that contains
B and C has the local mixture fraction h�i2 = 0 whereas the uid that contains A has
the local mixture h�i1 = 1. As soon as mixing starts Environment 1 and 2 interact with
each other and disappear to form Environment 3 which contains micromixed reactants.
This is represented in Fig. 6.30, where the probability of mode 2 is reported. This means
that in the beginning the PDF is represented by 2 delta functions centered at � = 0
(Environment/mode 2) and at � = 1 (Environment/mode 1). During mixing a third delta
function appears and represents mixed reactants in Environment/mode 3.

In Fig. 6.31 the segregation index is reported for the case of instantaneous injection in
FP1 for two rotational speeds of the inner cylinder. Fig. 6.31 con�rms that the increase
in the rotational speed of the inner cylinder causes a decrease in the segregation index:
higher rotational speeds improve the mixing e�ciency. Moreover in the �gure the e�ect of
the constant C� (see Eq. 4.19) is also reported. This constant de�nes the scalar variance

7The volume of this spot has to be the injected volume, and thus in this case is 4 ml.
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dissipation rate:

"� =
h�02i
��

: (6.59)

through the micromixing time (��.) As already mentioned several approaches have been
proposed to evaluate this characteristic time (see pag. 43) such as the cascade model pro-
posed by Baldyga or the spectral relaxation model proposed by Fox. However, these multi-
scale models are based on the idea of fully developed turbulence spectra (high Reynolds
numbers) and since in this reactor, especially near the injection zone, the spectra are prob-
ably not fully developed, the use of a simple large-scale motion dominated model, seems
to be more reasonable:

�� =
2

C�

k

�
; (6.60)

where C� is the over mentioned numerical constant. It is also interesting to notice that this
constant is related to the Damkoehler number (Da.) This number is de�ned as the ratio
between the characteristic time for micromixing and the characteristic time of the chemical
reaction. For homogeneous systems this number is constant, whereas for inhomogeneous
systems is a function of position. For this reason it is interesting to carry out this sensitive
analysis in respect of the constant C�; in fact, a variation of this constant results in an
uniform change of the characteristic time ratio throughout the reactor, since

Da =
��
�R
/ 1

C�
: (6.61)

As it is possible to see model predictions are quite sensitive to the numerical value of
C�. When C� increases the segregation index decreases and approximately when C�=6
an asymptote is reached. This value was shown to be the segregation index predicted by
the model when micromixing is neglected8.

In Fig. 6.31 the e�ect of micromixing is shown: given a particular ow �eld (and thus
mixing in terms of convection and turbulent di�usion) the e�ect of mixing at the molecular
level is to create local areas of segregation; the segregation slows down the �rst reaction,
which is in�nitely fast, and favors the second one.

The second case investigated is with injection in a �nite time. In this case a 2D grid
with �ner resolution near the injection zone was used. The �nal grid was structured and
with quadratic cells in all the computational domain except near the injection zone, where
the grid was unstructured with triangular cells, for a total of 4778 cells. In this case the
initial conditions for the computational domain inside the reactor are as follows:

p1 = 0; p2 = 1; hs�i3 = hsY2i3 = 0; (6.62)

whereas at the inlet point:

p1 = 1; p2 = 0; hs�i3 = hsY2i3 = 0: (6.63)

Thus the acid (A) is introduced through Environment 1 whereas the mixture of B and C
is in Environment 2. The injection in this case is represented by a mass ow inlet surface.

8For testing the model in these conditions it is su�cient to set as initial conditions p1=0 p2=0 in every
cell of the computational domain and then to set C�=0 and hs�i3=0 except for the injection volume where
hs�i3=1.
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During injection, A enters the reactor, and successively, due to micromixing, moves to
Environment 3. In the same way, B and C move to Environment 3 where the reaction
takes place.

In Fig. 6.32 contour plots of the volume fraction of Environment 2 at di�erent time
steps are reported. At the beginning of the simulation, the reactor is occupied by Envi-
ronment 2 except at the injection point. As soon as Environment 1 enters into the reactor,
Environment 2 starts to disappear due to mixing. After approximately one second, En-
vironment 3 has completely taken the place of Environment 2, except near the injection
zone, where Environment 3 will not be equal to one until the injection is �nished. It is
interesting to notice that Figs 6.30 and 6.32 are very similar but di�ers in a minute way
because of the presence of the injector and of the injection.

The volume-averaged pro�les of the volume fractions of Environments 1 and 2 for
di�erent injection velocities are reported in Figs. 6.33 and 6.34, respectively. From the
�gures, it is clear that the injection velocity has little e�ect on the temporal evolution of
Environment 2, but has a strong e�ect on the temporal evolution of Environment 1. In
fact, Fig. 6.33 shows that di�erent injection velocities imply di�erent injection times, and
moreover the value of the volume fraction of Environment 1 during the injection increases
with decreasing injection velocity. Note, however, that even at high injection velocities
the volume fraction of Environment 1 remains very small.

From these observations, we can draw the following conclusions concerning mixing in
this reactor. Within 1 second (see Figs. 6.32 and 6.33), large-scale gradients due to the
initial conditions are eliminated. The reactor then operates in a steady-state regime until
the injection is �nished (see Fig. 6.33). During this period, the largest gradients (and
hence micromixing) are concentrated in a small volume surrounding the injection point.
At the end of the injection period, all gradients in mixture fraction are quickly eliminated
and the system behaves like a perfectly mixed batch reactor.

In Fig. 6.35 the comparison between experimental and predicted segregation index
for FP1 is reported. The agreement is satisfactory although for 100 rpm and for short
injection time the model over predicts the segregation index. This can be caused by the
fact that the ow �eld predictions in these operating conditions are not as good as at 300
rpm. Moreover for very long injection time (t > 200 s) the predicted segregation index
decreases, meaning that the 2D model is not able to reproduce the asymptotic behavior.
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Figure 6.31: Segregation index in the case of istantaneous injection in FP1 for two rota-
tional speeds of the inner cylinder.

Figure 6.32: Contour plots of the volume fraction of Environment 2 (p2) at di�erent time
steps (Left to right: t1 = 0 s, t2 = 0:14 s, t3 = 0:24 s, t4 = 0:5 s, t5 = 1 s).
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Figure 6.33: Volume-averaged volume fraction of Environments 1 for three di�erent injec-
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Figure 6.35: Comparsion between experimental and predicted segregation index for FP1.
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6.3.2 Precipitation reaction in the Taylor-Couette reactor

Precipitation model Let us consider the application of the model to the precipitation
of barium sulfate in the Taylor-Couette reactor. For simplicity all the transport equations
will be recalled. After the solution of the ow �eld, the scalar �eld is solved by solving
the transport equations for p1, p2, hs�i3 and hsY i3

@p1
@t

+
@

@xi
(huiip1) = @

@xi

�
�t
@p1
@xi

�
+ sp3 � p1(1� p1); (6.64)

@p2
@t

+
@

@xi
(huiip2) = @

@xi

�
�t
@p2
@xi

�
+ sp3 � p2(1� p2); (6.65)
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+
@

@xi
(huiihs�i3) = @

@xi

�
�t
@hs�i3
@xi

�
� sp3(h�i1 + h�i2)

+p1(1� p1)h�i1 + p2(1� p2)h�i2; (6.66)

@hsY i3
@t

+
@

@xi
(huiihsY i3) = @

@xi

�
�t
@hsY i3
@xi

�
+
p3S(hcAi3; hcBi3)

�scAo
(6.67)

where as usual S(hcAi3; hcBi3) is the source term for the chemical reaction, and hcAi3 and
hcBi3 are calculated from

cA
cAo

= � � �sY; cB
cBo

= (1� �)� (1� �s)Y; (6.68)

using h�i3 = hs�i3=p3 and hY i3 = hsY i3=p3. We recall here that  and s are computed
from Eqs. 4.84 and 4.83.

Since reaction and particle formation occur only in mode 3 the population balance has
to be solved only for this mode. The population balance was solved by using the standard
moments method (SMM). In the case of size-independent growth rate, the �nal set of
equations for the �rst �ve moments is as follows

@hsmk
i3

@t
+

@

@xi
(huiihsmk

i3) = @

@xi

�
�t
@hsmk

i3
@xi

�
+ (0)kp3J(hcAi3; hcBi3)

+kG(hcAi3; hcBi3)hsmk�1
i3 + p3(Bk �Dk); (6.69)

with k = 0; :::; 4, and where J(hcAi3; hcBi3) is the nucleation rate in mode 3, hsmk
i3 is the

weighted kth moment and Bk is

Bk =
�0
2

Z 1

0
hn(�)i3

Z 1

0
(u3 + �3)k=3hn(u)i3dud�; (6.70)

where u3 = L3 � �3, and Dk is

Dk = �0

Z 1

0
hn(L)i3Lk

Z 1

0
hn(�)i3d�dL; (6.71)

where hn(L)i3 is the local particle number density function in mode 3, and the aggregation
kernel is assumed to be constant [�(L; �) � �0]. The problem is closed if Bk and Dk are
expressed in terms of the moments of the CSD. As explained in [94] in the case of constant
kernel, and under some simpli�cations Bk and Dk become:

Bk = �0bkhm0i3hmki3; (6.72)
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Figure 6.36: Crystal morphologies and corresponding shape factors for barium sulfate
precipitation in a Taylor-Couette reactor.

Dk = �0hm0i3hmki3; (6.73)

where hmki3 is the local kth moment [hmki3 = hsmk
i3=p3] and bk are found by solving

Eq. 6.70. Notice that b0 = 1=2 and b3 = 1 are derived from the exact solution of the
integral in Eq. 6.70 whereas b1 = 2=3, b2 = 5=6 and b4 = 7=6 are derived by replacing
(u3 + �3)k=3 with its Taylor series.

The chemical source term is written as follows

p3S(hcAi3; hcBi3) = �3kvhsm2
i3

2M
G(hcAi3; hcBi3): (6.74)

where kv is the volume shape factor that has been de�ned at pag. 16. As concerns nucle-
ation and growth rates Eq. 1.11 and Eq. 1.24 were used.

In a previous work [26] the e�ect of operating conditions in a continuous Taylor-Couette
reactor on barium sulfate morphology was investigated, and shape factors were calculated
for the di�erent morphologies observed. In Fig. 6.36 a summary of the results of this work
is presented. These experimental values were used in a second study [95] to investigate
the e�ect of this numerical parameter on the �nal predictions of the precipitation model,
and �nally an average value was used9 (kv = 0:06.)

The initial conditions used in this case are slightly di�erent from the previous ones
and are summarized below:

p1 = 0; p2 = 1; hs�i3 = hsY2i3 = hsmk
i3 = 0; (6.75)

9In this �rst case the crystals were considered as equidimensional objects. Thus in this case Kv = kv
and Ka = ka and L43=d43 since �c=1 (see Eqs. 1.44-1.45-1.46.)
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whereas at the inlet point:

p1 = 1; p2 = 0; hs�i3 = hsY2i3 = hsmk
i3 = 0: (6.76)

Also in this case reactant A (barium chloride) is introduced through mode 1 from the
injection but h�i1 = 1, and similarly reactant B (sodium sulfate) is already present in
the reactor in mode 2 where h�i2 = 0. However the details concerning the computational
procedure are identical to the previous one (see pag. 116.)

E�ect of operating conditions The e�ect of the operating conditions on supersatura-
tion (S), total particle number density (m0) and mean crystal size (d43) have been studied.
The reported values of these variables are volume-averaged values over all the reactor. In
the case of precipitation, the interpretation of the results is often di�cult and controversial
because of the many phenomena involved [i.e., mixing at various scales (macro-, meso- and
micro-mixing), nucleation and growth]. Moreover, the e�ect of varying a single parameter
can be di�erent depending on the controlling process. For example, an increase in the
intensity of mixing can reduce the volume-average intensity of segregation of the reactant
favoring nucleation, or reduce the local peak of supersaturation disfavoring nucleation.

E�ect of Rotation Speed. The e�ect of the rotational speed of the impeller on the
crystal size has been analyzed by several authors, and di�erent results and conclusions
have been found. Kim and Tarbell [96] found a maximum of the mean crystal size versus
the stirrer speed, while Phillips et al. [5] and Fitchett and Tarbell [97] found a monotonic
increase. Di�erently from what is observed in the continuous apparatus [98], in the semi-
batch Taylor-Couette reactor both the model and the experimental data show a decrease
of the mean crystal size when plotted against the rotational speed of the internal cylinder
(Fig. 6.37). This e�ect could be caused by enhanced macromixing, which reduces the
degree of segregation of the reactants and favors nucleation. The �nal e�ect is to produce
a slightly higher number of particles, but with a lower dimension.

In Fig. 6.38 a plot of the solid concentration against the speed of the internal cylinder
is reported. The �gure shows that the rotational speed does not signi�cantly a�ect the
�nal solid concentration. In fact, given that the experiments were su�ciently long for the
reactants to completely react, this result was included only to show that the overall mass
balance was satis�ed. The same behavior for the �nal solids concentration has been found
for all other parameters, except for the initial nominal supersaturation as will be explained
below.

E�ect of Injection Velocity. In Fig. 6.39 the calculated volume-averaged supersat-
uration evolutions are reported for three injection velocities. The discontinuity in the
derivative of the pro�le shown by the plots occurs at the end of the injection period. From
the �gure it is clear that increasing the injection velocity results in a higher peak of su-
persaturation. However, the supersaturation subsequently decreases more rapidly due to
crystal growth. Overall, the supersaturation is kept at a higher time-averaged value with
low injection velocity and this e�ect causes the formation of a higher number of particles
(Fig. 6.40) with a smaller dimension (Fig. 6.41) under these conditions. A comparison
with the experimental data for the volume-averaged mean crystal size at the end of the
reaction is reported in Fig. 6.42, showing good agreement.

E�ect of reactant concentration. The time evolution of the volume-averaged supersat-
uration for three di�erent initial nominal supersaturation ratios are reported in Fig. 6.43.
From the �gure it is clear that by increasing this ratio, the peak of the supersaturation is
also increased. It has to be highlighted that for the highest initial supersaturation ratio
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after the peak, the reaction starts to remove the reactants, but after a while the injec-
tion of fresh reactants makes the pro�le rise again. This is caused by the large number
of particles, created by the high supersaturation, that grow rapidly due to the enhanced
growth rate, and remove the reactants. After this period the fresh reactants are almost
completely segregated in di�erent vortices in the bottom and in the top of the reactor (see
Fig. 6.44), and it is necessary to wait for the end of the injection in order to have a further
decrease of the concentration.

We saw earlier that during the injection period the reactor operates in a steady-state
regime where the mixture fraction is slightly larger at the top of the reactor than at
the bottom. Due to the nonlinear nature of the nucleation rate, at high supersaturation
this small macroscale gradient is ampli�ed in the reactant concentrations, leading to the
macroscale segregation seen in Fig. 6.44. Such large-scale, reaction-induced segregation
could not be predicted without resorting to CFD.

The comparison with the experimental data is reported in Fig. 6.45 for di�erent ini-
tial nominal supersaturation ratios. Under these conditions an increase in So accelerates
crystal growth more than nucleation, because the heterogeneous nucleation order (1.775)
is smaller than the overall growth order (2.1). For higher So the homogeneous nucleation
order (15) becomes very high and a further increase would cause more crystals of smaller
size. From Fig. 6.45 it is possible to see that both model and experiments show an in-
crease in the mean crystal size with increasing So. However the model over-predicts the
rate of increase, because of the strong segregation in the system due to the vortices, that
causes poor macromixing. This result, once again, shows the importance of an accurate
knowledge of the ow �eld, in order to predict its e�ect on the �nal CSD.

E�ect of reactant concentration ratio. The e�ect of the reactant concentration ratio has
been studied for two di�erent values of the initial nominal supersaturation ratio [log(So) =
4 and 6]. The results are reported in Fig. 6.46 and the model predictions for log(So) = 4
are compared with experimental data. In this case the reactant concentration ratio � is
the volume average of the mean mixture fraction h�i at the end of the injection period; in
fact, it represents the �nal volume fraction of uid injected into the reactor. In order to
maintain a 1:1 stoichiometric ratio, decreasing � results in a higher concentration of the
reactant over a shorter injection time at the same ow rate. This results in a signi�cant
increase of the local supersaturation near the injection point. Depending on the initial
nominal supersaturation, this local increase can favor nucleation or growth.

At low values of the initial nominal supersaturation ratio [log(So) = 4], the local value
of the supersaturation is not high enough to induce homogeneous nucleation, and this
results in a smaller number of crystals with larger dimension. However, when the initial
nominal supersaturation ratio is increased to 106, the local value of the supersaturation
leads to homogeneous nucleation and a higher number of particles with lower dimension are
produced. Furthermore, a decrease in the mean crystal size is observed in the simulations
for concentration ratios lower than 0.01 for log(So) = 4, and 0.03 for log(So) = 6. In
the �rst case, only when the concentration ratio is lower than 0.01 is the local value of
the supersaturation high enough to favor nucleation over growth. In the second case,
this condition is satis�ed for concentration ratios less than 0.1. The fact that the mean
crystal size starts to decrease with a decreasing concentration ratio at lower values of this
parameter is due to the segregation of the fresh reactants as explained above (Fig. 6.44).
Only when the concentration ratio is small enough to have a short injection time, will the
introduction of the reactant be faster than the growth process, so that during the injection
the high local supersaturation favors nucleation.
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The results show that the precipitation reaction is strongly inuenced by the local
value of supersaturation at high reactant concentrations. Mixing at various scales has
been found to be the controlling phenomenon and in particular the vortical structure of
the ow in the Taylor-Couette reactor favors the role of macromixing.
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Figure 6.37: Final mean crystal size versus speed of the internal cylinder (v = 60 ml/min,
� = 0:1, log(So) = 4). Open symbols: CFD prediction. Filled symbols: experimental
data.
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Figure 6.38: Final solid concentration versus speed of the internal cylinder (v = 60 ml/min,
� = 0:1, log(So) = 4). Open symbols: CFD prediction. Filled symbols: experimental data.
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Figure 6.39: Volume-averaged supersaturation versus time for three injection velocities
(N = 500 rpm, � = 0:1, log(So) = 4).
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Figure 6.40: Volume-average total particle number density versus time for three injection
velocities (N = 500 rpm, � = 0:1, log(So) = 4).
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Figure 6.41: Volume-averaged mean crystal size versus time for three injection velocities
(N = 500 rpm, � = 0:1, log(So) = 4).
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Figure 6.42: Final mean crystal size versus injection velocity (N = 500 rpm, � = 0:1,
log(So) = 4). Open symbols: CFD prediction. Filled symbols: experimental data.
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Figure 6.43: Volume-averaged supersaturation pro�les versus time for three initial nominal
supersaturation ratios (v = 60 ml/min, � = 0:1, N = 500 rpm).

Figure 6.44: Contour plots of reactant concentrations in Environment 3 at the end of the
injection period (v = 60 ml/min, � = 0:1, N = 500 rpm, t = 86:5 sec). Left: hcAi3,
mol/m3. Right: hcBi3, mol/m3.
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Figure 6.45: Comparison with experimental data for the �nal mean crystal size versus
the initial nominal supersaturation ratio (v = 60 ml/min, � = 0:1, N = 500 rpm). Open
symbols: CFD prediction. Filled symbols: experimental data.
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Figure 6.46: Final mean crystal size versus reactant concentration ratio for two di�erent
initial supersaturation ratios (N = 500 rpm, v = 60 ml/min). Open symbols: CFD
predictions. Filled symbols: experimental data.
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Figure 6.47: Time evolution of mean crystal size (d43) in sampled suspensions as a function
of the concentration ratio (�). BaCl2 fed in the nozzle, cAo=34 mol/m3. The �rst point
represents the tubular reactor outlet.
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6.3.3 Precipitation in the tubular reactor

Experimental results The e�ect of the concentration ratio (� = cBo
cAo

) at several con-
ditions (see Tab. 5.2 at pag. 74) on CSD and crystal morphology was investigated in the
tubular reactor. As a �rst thing the variation with time of the mean crystal size in the
suspension sampled at the reactor outlet is investigated, to evidence the grade of complete-
ness of the reaction, and get information on the amount of crystals formed. In Fig 6.47
the mean crystal size evolution versus time for several values of � in case 1 (BaCl2 in the
nozzle) is reported. Notice that as explained before � = 0:01 correspond to a �nal reac-
tant concentration ratio after complete mixing without reaction equal to 1 (i.e., reaction
stoichiometry), whereas for greater values of � the reactant fed in the annular region is
in excess. As the concentration of the reactant fed in the nozzle is kept constant for each
series, increasing � the local reactant concentrations increase but the �nal solid concen-
tration, after complete reaction, is constant. At low values of �, nucleation and growth
are quite slow; after sampling, crystals continue to growth and well formed crystals are
produced (see Fig. 6.48a). Increasing � up to 1.0, growth becomes di�usion-controlled,
and in fact dendritic crystals are obtained (see Figs. 6.48b and 6.48c). Notice that in
this condition crystals are stable after about 1 minute, meaning with this that the pre-
cipitate does not show any further growth. Moreover when � is in the range between
0.01-1.0 an increase in this parameter causes an increase in the �nal mean crystal size
after 30 minutes, whereas for values of � greater than 1 the mean crystal size after 30
minutes decreases. This is due to the fact that, given the same �nal solid concentration
after complete reaction, for low concentrations an increase in � favors growth in respect
with nucleation, whereas at higher concentrations nucleation moves into the homogeneous
region, and an increase in � has an opposite inuence. For the highest value (�=3) the
mean crystal size is the smallest, but crystals are not stable and the mean crystal size is
slowly increasing. Since in this condition the reaction is very fast and, due to homoge-
neous nucleation, the total particle number density is very high, this further increase can
be attributed to aggregation. Crystal morphology is sensibly di�erent (see Fig. 6.48d) and
seems to be originated by aggregation and subsequent recrystallization. In Fig. 6.49 the
CSDs for three values of � at the reactor outlet and after 30 minutes are reported. As
it possible to see for �=0.1 and 1.5 CSDs are monomodal both at the reactor outlet and
after 30 minutes, whereas for �=3 the CSD presents more peaks. In this last case both
CSD and crystal morphology indicate aggregation.

In Fig. 6.50 mean crystal size evolution with time for case 2 (Na2SO4 in the nozzle) is
reported. The results present some similarities but also some di�erences with the previous
case. For low � values, reaction is not complete but in this case the maximum of the mean
crystal size is not anymore for � = 1 but for � = 0:01. This result shows that the transition
to homogeneous nucleation occurs at lower concentrations and that a modi�cation in the
nucleation mechanism occurs. Increasing � the mean crystal size decreases and then
increases again, but small di�erences are detected for higher values of �. However except
for �=0.01 in all the other cases the mean crystal size is more stable after sampling. In
Fig. 6.51 the CSDs for di�erent � are reported and as it is possible to see CSDs at reactor
outlet and after 30 minutes are more similar. Moreover, generally in case 2 the �nal mean
crystal size after 30 minutes was always lower than in case 1. This can be explained in
terms of ion adsorption.

Suspended particles interact depending on the balance between attractive and repulsive
forces. An useful indication on the dispersion stability is given by the value of the point
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a b

c d

e f

Figure 6.48: Crystal morphologies: (a) tabular crystals (BaCl2 in the jet cAo = 34 mol/m3

� = 0:1); (b) dendritic crystals (BaCl2 in the jet cAo = 34 mol/m3 � = 1:0); (c) particular
of a dendritic crystal (same condition of b); (d) round-shaped crystals (BaCl2 in the jet
cAo = 34 mol/m3 � = 3:0); (e) round-shaped crystals (Na2SO4 in the jet cAo = 34 mol/m3

and � = 3:0); (f) round-shaped crystals (BaCl2 in the jet cAo = 341 mol/m3 and � = 0:1).
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Figure 6.49: CSDs for several values of � in condition 1 at the reactor outlet (solid lines)
and after 30 minutes of gentle stirring (dashed lines).
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Figure 6.50: Time evolution of mean crystal size (d43) in sampled suspensions as a function
of the concentration ratio (�). Na2SO4 fed in the nozzle, cAo=34 mol/m

3. The �rst point
represents the tubular reactor outlet.



6.3. REACTIVE TESTS 135

0

10

20

0

10
%

 v
ol

um
e

0.1 1 10 100
d43, µm

10

α = 0.1

α = 1.5

α = 3.0

Figure 6.51: CSDs for several values of � in condition 2 at the reactor outlet (solid lines)
and after 30 minutes of gentle stirring (dashed lines).

of zero charge (PZC), that is the ion concentration at which the surface charge is zero.
When the surface charge is null, crystals have an higher tendency to aggregate and the
system in unstable. For barium sulfate this value, in terms of pBa is 6.7, and since

pks = pBa+ pSO4 = 10; (6.77)

it means that this situation is established when there is an excess of sulfate ion (case 1).
It can be inferred that in this case, in the early stages of nucleation, due to high local
values of total particle number density and strong instability, nuclei have a high tendency
to aggregate resulting in a reduced nucleation rate. In case 2, nuclei are more stable and
then once formed grow producing crystals; Crystal morphology in this case for �=3 is
reported in Fig. 6.48e. As it is possible to see the structure is very similar to the one
obtained in case 1 with the same �. However aggregates seem to be constituted by less
particles as a proof of the reduced tendency to aggregate.

Results of experiments at high concentration (case 3) are reported in Fig. 6.52. As it
is possible to see, in this case except for � = 0:01, reaction was always complete at the
reactor outlet. After sampling crystals were found to be quite stable although some small
changes in the CSDs were detected. As it is possible to see in Fig. 6.53 for all values of
� the CSDs maintain the same shape, although generally the �rst peak decreases and the
second one (or ones) increases. This is a proof of the high tendency of the precipitate to
aggregate also for longer time (30 min). It should be highlighted that in this case also
at the reactor outlet CSDs had more than one peak, meaning that aggregation started to
occur inside the reactor although the short residence time.

In Fig. 6.48f the crystal morphology for �=0.1 is shown. As it is possible to see
crystals are spherical aggregates formed by spherical monomers. The formation of these
round-shaped crystals has been obtained in the past only by using additives. Results from
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Figure 6.52: Time evolution of mean crystal size (d43) in sampled suspensions as a function
of the concentration ratio (�). BaCl2 fed in the nozzle, cAo=341 mol/m
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Figure 6.53: CSDs for several values of � in condition 3 at the reactor outlet (solid lines)
and after 30 minutes of gentle stirring (dashed lines).



6.3. REACTIVE TESTS 137

these studies are very interesting and can be useful in understanding the role of ion excess
on crystal growth. For example, Archibald et al. [99] studied the e�ect of additives on
barium sulfate morphology �nding that the presence of an additive can favor or unfavor the
growth of some speci�c crystal faces. Besides stable faces they found also some rounded
faces composed of a variety of facets presenting corrugation sizes approaching the ionic
dimensions. In their study they inferred that the degree of supersaturation and the ionic
strength of the solution play an important role in determining the presence of charged
domains on crystal surface that may help in explaining the rapid growth of this rounded
faces. Yokota et al. [100] investigated the formation and the structure of round-shaped
crystals of barium sulfate in the presence of additives. Their main conclusion is that
additive ions may adsorb onto particular faces of a crystal and retard the growth of these
faces whilst there is no inuence on other surfaces.

Comparison with the model Simulations were carried out by using a commercial
CFD code (Fluent 5.2). The real 3D geometry was modeled under the hypothesis of axi-
alsymmetry (see Fig. 6.54.) Di�erent grids were tested in order to �nd a grid-independent
solution, and the �nal grid was with 131 nodes in the axial direction and 35 nodes in
the radial direction. The standard k � " model with standard wall functions was used.
The micromixing model and the population balance were introduced via user- de�ned
functions.

The complete model is constituted by a set of nine transport equations, in which the
convection and the turbulent di�usion are modeled by the CFD code, and a source term
must be speci�ed for each scalar10. After solving the ow �eld, once mean velocities
and turbulence quantities were known, mixing properties were determined by solving the
transport equations for p1, p2 and hs�i3 according to Eqs. 4.74-4.75-4.76. Then reaction
and particle formation were solved for mode 3, by solving the transport equations for the
reaction progress variable [hsY i3], and for the moments of the CSD [hsmk

i3 with k = 0; :::; 4]
according to Eqs 6.55 and 6.69.

Two inlet streams were de�ned into the computational domain. For the �rst one (inner
stream) p1=1 and p2=0, whereas for the second one (annular region) p1=0 and p2=1. All
the other variables were set equal to zero in the two inlet streams. For the ow �eld de-
fault under-relaxation factors were used, whereas for user-de�ned scalars variable factors,
depending on the sti�ness of the problem, were used. Generally for low reactant con-
centrations unitary factors were used, whereas increasing concentrations under-relaxation
factors were reduced down to 0.6.

In Fig. 6.54 plots of p1 (top) and p2 (bottom) are shown; p1=1 in one inlet stream
and p2=1 in the other, and as soon as the two streams mix together modes 1 and 2
start to disappear, and then p1 and p2 go to zero, whereas p3 becomes equal to one.
Micromixing inuences the reaction in zones of the computational domain where p3 is
lower than unity, resulting in local concentrations di�erent from weighted concentrations.
The mixture fraction variance is greater than zero when p1 or p2 or p3 are not equal to
unity, and it is generated by mean local gradients, (i.e., mixing zone between the two
streams), and dissipated by molecular mixing, whose rate is proportional to "=k and to a
constant (C� = 1, see Eqs. 6.60 and 6.59.)

Simulations were carried out by using di�erent kinetic expressions in order to com-
pare model predictions with experimental data. Di�erent shape factors were used; for

10for details see pag. 98.
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Figure 6.54: Contour plot of p1 (top) and p2 (bottom) near the injection point.

simulations at low concentration (experimental conditions 1 and 2) an average value was
used (kv = 5, ka = 30, �c = 3) whereas at high concentrations (experimental condition 3)
crystals were considered as spheres (kv = �=6, ka = �, �c = 1).

In the �rst part of the work kinetic expressions were chosen as follows: Eq. 1.11 for
nucleation rate and Eq. 1.18 for growth rate. By using Eq. 1.18 the for growth rate the mass
transfer coe�cient (kd) should be evaluated by using Eq. 1.23 leading to a size-dependent
growth rate. However this is not possible since the standard moment method (SMM) is
used to solve the population balance and thus kd has to be considered as a pseudo-constant
parameter. In a previous work [10] the e�ect of this parameter on model predictions
is discussed. Eventually it was found a best-�t value kd = 10�6 (m/s)/(mol/m3), and
hereinafter all results refer to this speci�c value.

In Fig. 6.55 model predictions at the reactor outlet (averaged value along the radial
direction) are presented. In the top of the �gure the mean crystal size predicted by the
model is compared with experimental data; as mentioned before the model is not able
to give di�erent predictions for condition 1 and 2. However both experimental data and
model predictions show a shallow maximum for �=1.5.

When using kinetic expressions with activity coe�cients (Eq. 1.17 for nucleation rate
and Eq. 1.19 for growth rate,) the model is able to give di�erent predictions for conditions
1 and 2. In Fig. 6.56 the comparison between experimental data and model predictions,
at the reactor outlet and after 30 minutes is reported, for condition 1 and 2. As it is
possible to see, in both conditions the agreement is not satisfactory. In fact, introduction
of activity coe�cient does not improve the quality of prediction in terms of the ion excess
e�ect. However, the use of activity coe�cients seems to be questionable, since this kind
of treatment is usually used for determining equilibrium conditions and not for kinetic
expressions that are expressed in terms of concentrations. For these reasons hereinafter
kinetic expressions without activity coe�cients are used.

In the bottom of Fig 6.55 the total particle number density is presented. For this
variable experimental data at the reactor outlet are not available, but the total number
density of crystal formed when the reaction is complete at t=30 min, can be derived from



6.3. REACTIVE TESTS 139

the CSDs measured. In fact, knowledge of the CSD and the �nal solid concentration
su�ce in determining the �nal total particle number density. This experimental data can
be compared with model predictions by extending the precipitation model also to the
second part of the experiment. Assuming that mixing is important only in the �rst part,
by using a simple well-mixed approach, it is possible to model the reaction course until it
is complete.

In Fig. 6.57 results from case 1 and 2 are compared with model predictions. As it is
possible to observe, experimental data are very dispersed. This is due to the fact that
this property is not directly measured but is derived from the CSD, and any uncertainty
is ampli�ed by the third power; in addition very small particles are not measured by the
particle size analyzer. Also for this property a big di�erence between case 1 and 2 was
observed, and model predictions are closer to case 2. The simulation results con�rm that
at low values of � notably the reaction is not complete, but also the nucleation step in
ongoing (compare m0 at �=0.01 in Figs. 6.55 and 6.57).

Moreover, model predictions can be compared with experimental mean crystal size
obtained at di�erent instants in the second part of the experiment. This comparison is
very interesting since given a �xed concentration of the limiting reactant, and thus of the
maximum �nal solid concentration, until reaction is not complete particles might have
similar sizes and assume di�erent sizes only when reaction proceeds. The comparison is
reported in Fig. 6.58. As mentioned before the mean crystal size in case 2 is always lower
than in case 1 and model predictions stand between the two series of experimental data,
but are closer to case 2.

The results presented in Figs. 6.57 and 6.58 clearly show that the kinetic expressions
used in this work are able to give good agreement in terms of the order of magnitude, but
however there still exists a lack of information concerning this non-symmetric e�ect of the
ion excess. Moreover, comparison of model predictions with and without the micromixing
model showed that in these operating conditions micromixing has a small e�ect, and then
macro- and meso- mixing play the major role in determining the �nal CSD.

In Fig. 6.59 model predictions at the reactor outlet are compared with experimental
data in case 3. In the top the mean crystal size is compared with the model with and
without aggregation. In this case only aggregation with constant kernel is considered
(Eq. 1.27). Comparison shows that in these operating conditions if aggregation is neglected
the mean crystal size is sensibly underestimated, for � greater than 0.1. It is useful to
compare the mean crystal size predicted by the model without aggregation and the CSDs
presented in Fig. 6.53. From this analysis it is possible to observe that the model is able
to predict the size of the monomers, but only including aggregation the model is able
to predict the size of the agglomerates. However the mean crystal size of agglomerates
is still higher than model predictions. This could be caused by the fact that turbulent
aggregation is not considered. In fact, it has been shown that also for particles smaller than
the Kolmogorov scale turbulent aggregation might be important. Evaluation of the Pe
number (see Eq. 1.33) showed that when L43 falls in the range between 10�7 m and 10�6

m Pe is approximately included in the range 0.001-100, meaning that both contributions
(Brownian and turbulent) should be taken into account. However this can be done only
if a more accurate approach for the population balance is used.

In the bottom of Fig. 6.59 the total particle number density is reported. Model pre-
dictions without aggregation, show an increase of m0 increasing concentration, whereas
including aggregation the �nal m0 is reduced by particle-particle interactions. Also in
this case the total particle number density derived from experimental CSD for t=30 min
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is compared with model predictions with and without aggregation (see Fig. 6.60); again
nucleation is still ongoing at the reactor outlet for �=0.01 (compare Figs. 6.59 and 6.60).
Although the dispersion of the experimental data, it is interesting to notice that the e�ect
of aggregation is to reduce m0 resulting in a better agreement.

Di�erently from cases 1 and 2, in these operating conditions also micromixing is very
important; in fact, due to high reactant concentrations, precipitation is very fast and is
con�ned in a small region near the injection where p3 is lower than one. As a matter of
fact, in case 3 neglecting micromixing causes an error of 30-50 % on the mean crystal size
and of 150-200 % on the total particle number density.

As a conclusion it is possible to say that experimental results show that ion excess has
a strong inuence on the �nal CSD and it can be explained in terms of the preferential
absorption of the ion in excess, whereas the role of activity coe�cients seem to be ques-
tionable [10]. This �nding is in agreement with other works [7, 4], and it shows the need
of a systematic kinetic study on the e�ect of ion excess on nucleation and growth rate, in
a wider range of concentration.

Moreover it has been shown that increasing concentration, aggregation and simultane-
ous growth from solution take place. This causes the formation of very stable aggregates
that can be de�ned as agglomerates. Comparison with model predictions show in gen-
eral good agreement. The role of the micromixing model has been shown to be critical
especially for higher concentrations.

Moreover in the case of high aggregation rate also turbulent aggregation should be
taken into account. This involves the use of non-constant kernels that can be handled by
using more sophisticated population balance treatments (i.e., DPB or QMOM).
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Figure 6.55: Top: mean crystal size versus � at the reactor outlet; bottom: total particle
number density versus � at the reactor outlet; circles: experimental data in condition 1;
squares: experimental data in condition 2; solid line: model predictions.
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Figure 6.56: Top: mean crystal size versus � at reactor outlet; bottom: mean crystal size
versus � after 30 minutes; �lled circles: experimental data in condition 1; �lled squares:
experimental data in condition 2; open circles: model predictions with activity coe�cient
in condition 1; open squares: model predictions with activity coe�cient in condition 2.
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Figure 6.57: Total particle number density versus � for t = 30 min (complete reaction);
�lled symbols experimental data in condition 1 (circle) and in condition 2 (square); solid
line: model predictions.
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Figure 6.58: Mean crystal size versus � at di�erent instants; �lled symbols experimental
data in condition 1 (circle) and in condition 2 (square); solid line: model predictions.
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Figure 6.59: Top: mean crystal size versus �; bottom: total number density versus �;
squares: experimental data in condition 3; solid line: model predictions; dashed line:
model predictions neglecting aggregation.
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Figure 6.60: Total particle number density versus � for t = 30 min (complete reaction);
square: number density derived from experimental data in condition 3; solid line: model
predictions; dashed line: model predictions neglecting aggregation.
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6.4 Comparison with the full PDF model

Precipitation in the tubular reactor in conditions 1 and 2 has been modeled also with the
full PDF model and results were compared to those presented in the previous section.
Also in this case the ow �eld was modeled by using the k � " model [37] in FLUENT
(v. 5.2) and standard wall functions were used for the wall boundary layer. The grid for
the ow �eld simulation was 131 nodes in the axial direction and 35 nodes in the radial
direction. This grid included the annular region before the injection zone (xo=168 mm
with 20 nodes) in order to correctly predict the velocity pro�le in the inlet zone. This
region was not considered in the full PDF simulation because no reaction occurs. Thus
the �nal grid for the full PDF simulation had 111 nodes in the axial and 35 nodes in the
radial direction.

Concerning the full PDF code, it was initialized by reading the axial and radial coor-
dinates used in FLUENT and the steady-state solution of the ow �eld, including mean
velocities (ux and uy), k, ", mean pressure, and uid density. A number of particles equal
to npncells where np=100, were positioned in the computational domain and the particle's
ow properties were �xed by linear interpolation depending on its location. Particles were
initialized at the inlet and were moved according to the velocity vector and the turbulent
di�usivity assigned to them. Then particles interact with each other due to micro-mixing
where the local mean values are derived by taking the ensemble average of scalar in each
cell. (For details see [102].) The changes in scalar composition due to chemical reaction,
nucleation and crystal growth, are calculated for each particle by direct integration using
a routine based on a fourth-order Runge-Kutta method. Notice that kinetic expressions,
shape factors are identical to those used in the �nite-mode PDF simulation (see pag. 138.)

In Figs. 6.61 and 6.62 reactant concentrations (cA, cB) obtained with the full PDF code
are reported. As it is possible to see, reactant A is fed in the small tube whereas reactant
B is fed in the annular region. Due to turbulent di�usion, reactants mix together and
react. Reactant B is in strong excess, and thus its concentration remains almost constant,
whereas reactant A disappears, �rst because of mixing and later because of chemical
reaction. The plot of nucleation rate (see Fig. 6.63) shows a peak near the injection point,
which is due to very high supersaturation in this region. The nucleation rate reaches very
high values in this region, and then decreases rapidly. The plot of the mean crystal size
(L43) is shown in Fig. 6.64. As it is possible to observe, the mean crystal size increases,
until the �nal value is reached. It has to be highlighted that the wavelike uctuations
in the scalar �elds are caused by statistical errors which can be improved by using more
notional particles per cell or by averaging over several time steps.

In order to compare results provided by di�erent models that are based on di�erent
methods, it is useful to compare mixture fraction and intensity of segregation pro�les in
di�erent sections of the reactor. The mixture fraction is a non-reacting scalar and thus
its mean value [h�i] and its variance [h�02i] are a�ected only by convection and turbulent
di�usion. The intensity of segregation Is is de�ned as follows:

Is =
h�02i

h�i(1 � h�i) (6.78)

and is an index of the degree of mixing, in fact it is equal to one when the system is perfectly
segregated and equal to zero when the system is perfectly micromixed. In Figs. 6.65-6.67
the mean mixture fraction and the intensity of segregation versus the radial direction
at several axial positions [(x � xo)=D] are reported. Comparison is made between time-
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averaged full PDF model predictions and FM-PDF model predictions, and as it is possible
to observe predictions are quite similar.

Concerning the reacting scalars, contour plots of mean reactant concentrations, nucle-
ation rate and mean crystal size look similar but di�erences were detected. For example,
the FM-PDF model seems to under predict the nucleation rate (as compared to the full
PDF results) and thus the �nal particle number density. The value of the total number
density is extremely sensitive to numerics because of the strong non-linearity of the nucle-
ation rate. However, as mentioned before, by testing di�erent grids the solution was shown
to be grid independent. Likewise, by using di�erent discretization schemes, the approach
used was shown to be adequate to handle the sti�ness of the problem. In Fig. 6.68 the
total particle number density along the reactor axis is reported for cAo=34.101 mol/m3

and �=1. The peak of m0 after the injection zone predicted by all models is initially
very high, but decreases sharply. The comparison of the mean crystal sizes (see Fig. 6.69)
highlights that without any closure this property is sensibly underestimated. Notice that
full PDF predictions presented in the last two �gures are time-averaged values.

In Fig. 6.70 model predictions for the three models are compared with experimental
data, and as it is possible to see, overall agreement is quite good, but in general for
these operating conditions the e�ect of micromixing is small, as already explained in
the previous section. At higher concentrations the e�ect of micromixing is greater, but
aggregation begins to play an important role and then all models de�nitively under predict
the mean crystal size. The comparison of full and �nite-mode PDF predictions at higher
concentrations (i.e., conditions 3) will be possible only using a more accurate model for
the population balance (i.e., Quadrature Method of Moment.)
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Figure 6.61: Full PDF prediction of concentration of reactant A (cAo=34.101 mol/m3,
�=1)

Figure 6.62: Full PDF prediction of concentration of reactant B (cAo=34.101 mol/m3,
�=1)
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Figure 6.63: Full PDF prediction of nucleation rate (cAo=34.101 mol/m3, �=1)

Figure 6.64: Full PDF prediction of mean crystal size (cAo=34.101 mol/m
3, �=1)
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Figure 6.65: Comparison between the two PDF approaches for the mean mixture fraction
h�i and the intensity of segregation Is at (x� xo)=D=0.0
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Conclusions

Barium sulfate precipitation in turbulent liquid ows has been investigated and experi-
mental data have been compared with model predictions. Moreover the presented model
has been also compared with predictions obtained by using more sophisticated models
(full PDF). It is thus possible to conclude that:

1. CFD is now a mature and well known tool for modeling chemical reactors; CFD predic-
tions for ow and turbulent �eld in the Taylor-Couette reactor showed good agree-
ment with experimental data; however an ad-hoc experimental validation is always
recommended, when dealing with unusual problems, allowing the use of such a tech-
nique with much more con�dence

2. comparison with experimental data and full PDF predictions showed that the �nite-
mode PDF model can be conveniently used for modeling fast reactions in turbulent
liquid media, in fact with a small computational e�ort it is able to describe mixing
at all scales with good accuracy

3. the Quadrature Method of Moment was shown to be a promising approach for popu-
lation balance description; however further validation is needed

4. barium sulfate kinetics were found not be su�ciently known; especially the e�ect of ion
excess is still not completely understood, and use of activity coe�cients was shown
to be questionable and ine�cient.

These conclusions also de�ne the future steps of this work:

1. concerning ow �eld predictions results showed good agreement but also some limi-
tations were found; in fact the Reynolds-averged Navier-Stokes (RANS) equation
approach was not able to reproduce some ow instabilities even when used for 3D
simulations; this might be overcome by using Large Eddy Simulation (LES) nowa-
days available in commercial CFD code

2. the �nite-mode PDF model might be also used for modeling turbulent reacting ows
which present strong coupling between ow and scalar �eld (e.g. combustion), avoid-
ing the use of two codes (one for the ow �eld and another for the scalar �eld) and
overcoming the so-called two way coupling approach; however application of this
appraoch for non-passive scalar needs further validation

3. use of the Quadrature Method of Moments requires further validation through com-
parison with more accurate models (i.e., Monte Carlo simulation) and experimental
data

4. a new kinetic study of barium sulfate precipitation might be useful in order to �nd
more reliable kinetic expressions.
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Notation

a particle area, m2

A Hamaker constant, J

B birth rate due to aggregation, m�4 s�1
cA reactant A concentration, mol m�3
cB reactant B concentration, mol m�3
cA0 inlet reactant A concentration, mol m�3
cB0 inlet reactant B concentration, mol m�3
cBa barium concentration, mol m�3
cSO4 sulfate concentration, mol m�3
C� constant appearing in turbulent viscosity de�nition

C� micromixing constant

d annular gap, m

d43 mean crystal size, m

df fractal dimension

D death rate due to aggregation, m�4 s�1
Da Damkoehler number

Dij structure function, m
2 s�2

DLL longitudinal structure function, m2 s�2

DNN transverse structure function, m2 s�2

E Engulfment parameter, s�1

E(�) energy-spectrum function

E�(�) scalar energy-spectrum

f friction factor

fu one-point one-time velocity PDF

f� one-point one-time joint-composition PDF

f� one-point one-time mixture fraction PDF
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f�;Y one-point one-time joint mixture fraction and reaction progress variable PDF

f�jY one-point one-time conditional PDF

G growth rate, m s�1

�G(L) change of free energy during nucleation, J

I ionic strength, mol m�3

Is intensity of segregation

Iagg intensity of aggregation

k turbulent kinetic energy, m2 s�2

ka area shape factor

kB Boltzmann constant, J K�1

kd mass tranfer coe�cient in growth rate expression, m4 s�1 mol�1

k̂d mass tranfer coe�cient, m s�1

kv volume shape factor

Ka real area shape factor

Kv real volume shape factor

J nucleation rate, m�3s�1

L particle size, m

Li abscissas of the quadrature approximation

L11 longitudinal integral scale, m

L22 transverse integral scale, m

Lu turbulent integral length-scale, m

L� integral length-scale for scalar �eld, m

L43 characteristic mean crystal size, m

mk k
th moments of the CSD

M barium sulfate molecular weight, kg mol�1

N rotational speed of the inner cylinder, rpm

N(L) number denisty function, m�4

Nc number of classes adopted in the CM

Ne number of modes (or environment) in the �nite-mode PDF approximation

Nq number of nodes in the quadrature approximation

p uid pressure, N m�2

pi probability of mode i

Pe Peclet number
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r1 radius of the inner cylinder, m

r2 radius of the outer cylinder, m

R� autocorrelation function for scalar �eld

Rij autocorrelation function, m2 s�2

RLL longitudinal autocorrelation function, m2 s�2

RNN transverse autocorrelation function, m2 s�2

Rec critical Reynolds number

ReL microscale Reynolds number

Rep Reynolds number for microparticles

Rer rotational Reynolds number

Rey wall-distance-based Reynolds number

S supersaturatio ratio

S�(�) chemical source term, mol m
�3 s�1

Sc Schimdt number

hs�ii weighted mixture fraction in mode i

Ta Taylor number

Tac critical Taylor number

ui velocity in the i direction, m s�1

ui Kolmogorov microscale, m s�1

v particle volume, m3

VR reactor volume, m3

wi weight of the quadrature approximation

W colloid stability ratio

Xs segregation index

Y reaction progress variable

Greek letter

alpha collision e�ciency

beta aggregation kernel, m3s�1

 micromixing rate, s�1

s spurious dissipation rate, s�1

� activity coe�cient

�� molecular di�usivity of scalar �, m2 s�1

�t turbulent di�usivity, m
2 s�1
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_ shear stress, s�1

� turbulent dissipation rate, m2 s�3

�ij dissipation rate tensor, m2 s�3

�� scalar dissipation rate, mol2 m�6 s�1

� wavenumber, m�1

�B Batchelor microscale, m

�f longitudinal Taylor microscale, m

�g transverse Taylor microscale, m

�� scalar Taylor microscale, m

�k Kolmogorov microscale, m

� viscosity, kg m�1s�1

�t turbulent viscosity, kg m
�1s�1

� kinematic viscosity, m2 s�1

� mixture fraction

�s stochiometric mixture fraction

h�ii local mixture fraction in mode i

� crystal density, kg m�3

�(L) fractal density, kg m�3

�s selectivity of S

�1 inertial-convective contribution to scalar variance

�2 viscous-convective contribution to scalar variance

�3 viscous-di�usive contribution to scalar variance

�u turbulent integral time scale, s

�k Kolmogorov microscale, s

�� mixing time, s

� composition vector, mol m�3

�� concentration of scalar �, mol m�3

�c mean crystal size factor

�ij velocity-spectrum tensor

�� scalar energy spectrum


1 angular velocity of the inner cylinder, rad s�1

Operators

h i Reynolds average
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0 uctuation

Abbrevation

CFD Computational uid dynamics

CM Classes method

CSD Crystal size distribution

DPB Discretized population balance

FTF Fully turbulent ow

LCF Laminar Couette ow

LDA Laser doppler anenometry

LIF Laser induced uorescence

LTVF Laminar Taylor Vortex ow

Non-eq non-equilibrium wall function

PDF Probability density function

QMOM Quadrature method of moments

QPWVF Quasi-periodic wavy vortex ow

RANS Reynolds-averaged Navier-Stokes

RNG Renormalization Group Theory

RSM Reynolds stress model

SMM Standard moments method

SPWVF Single-periodic wavy vortex ow

Std standard wall function

Two-eq Two-equation model
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