
En vue de l'obtention du

DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE
Délivré par :

Institut National Polytechnique de Toulouse (INP Toulouse)
Discipline ou spécialité :

Réseaux, Télécommunications, Systèmes et Architecture

Présentée et soutenue par :
M. GIANG SON TRAN
le mercredi 4 juin 2014

Titre :

Unité de recherche :

Ecole doctorale :

COOPERATIVE RESOURCE MANAGEMENT IN THE CLOUD

Mathématiques, Informatique, Télécommunications de Toulouse (MITT)

Institut de Recherche en Informatique de Toulouse (I.R.I.T.)
Directeur(s) de Thèse :

M. DANIEL HAGIMONT
  

Rapporteurs :
M. DIDIER DONSEZ, UNIVERSITE GRENOBLE 1

M. JEAN-MARC MENAUD, ECOLE DES MINES DE NANTES

Membre(s) du jury :
1 M. NOËL DE PALMA, UNIVERSITE GRENOBLE 1, Président
2 M. ALAIN TCHANA, INP TOULOUSE, Membre
2 M. DANIEL HAGIMONT, INP TOULOUSE, Membre

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institut National Polytechnique de Toulouse (Theses)

https://core.ac.uk/display/20528956?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ii



To my family...

No one’s born a computer scientist,

but with a little hard work,

and some math and science,

just about anyone can become one.

Barrack Obama.





Acknowledgement

Firstly, I would like to express my gratitude to all the members of the jury who

spent invaluable time to evaluate my work. I would like to thank especially the

reviewers Mr. Jean-Marc Menaud and Mr. Didier Donsez who have given me the

constructive critics. I also would like to thank Mr. Daniel Hagimont, Professor

at Institute National Polytechnique de Toulouse for his supervision throughout my

work. His advices were important and essential for my research during these years.

I was very happy to swork within the SEPIA research team at IRIT-ENSEEIHT.

I deeply felt the working spirit of our team in each weekly meeting. Thanks Alain

Tchana for a lot of your welcome and help in my personal life when I initially joined

the group, and for our joint work as a background of my thesis. Thanks Larissa

Mayap - my office mate - for our discussions and works during our thesis. I also

would like to thank Laurent Broto, Suzy Temate, Aeiman Gadafi and Ekane Brice

for all of your help.

I would like to thank the Vietnamese Government, the Institute of Information

Technology (IOIT) and the University of Science and Technology of Hanoi (USTH)

for the grant to work in France. Many thanks to the laboratory IRIT for funding

all of my trips to the conferences.

Finally, I would like to express my deep gratitude to my parents who have raised

me, covered me and educated me for such a long time. Thank you my little sister

for all the fun we have had and shared together. Last but not least, I cannot finish

my work without everyday help and encourgement from my family members, my

wife and my little princess. They are my source of love and strength to continue my

pursuit of science.

v





Abstract

Recent advances in computer infrastructures encourage the separation of hard-

ware and software management tasks. Following this direction, virtualized cloud

infrastructures are becoming very popular. Among various cloud models, Infrastruc-

ture as a Service (IaaS) provides many advantages to both provider and customer. In

this service model, the provider offers his virtualized resource, and is responsible for

managing his infrastructure, while the customer manages his application deployed

in the allocated virtual machines. These two actors typically use autonomic resource

management systems to automate these tasks at runtime.

Minimizing the amount of resource (and power consumption) in use is one of the

main services that such cloud model must ensure. This objective can be done at

runtime either by the customer at the application level (by scaling the application)

or by the provider at the virtualization level (by migrating virtual machines based

on the infrastructure’s utilization rate). In traditional cloud infrastructures, these

resource management policies work uncoordinated: knowledge about the applica-

tion is not shared with the provider. This behavior faces application performance

overheads and resource wasting, which can be reduced with a cooperative resource

management policy.

In this research work, we discuss the problem of separate resource management

in the cloud. After having this analysis, we propose a direction to use elastic vir-

tual machines with cooperative resource management. This policy combines the

knowledge of the application and the infrastructure in order to reduce application

performance overhead and power consumption. We evaluate the benefit of our coop-

erative resource management policy with a set of experiments in a private IaaS. The

evaluation shows that our policy outperforms uncoordinated resource management

in traditional IaaS with lower performance overhead, better virtualized and physical

resource usage.

vii



Résumé

L’évolution des infrastructures informatiques encourage la gestion séparée de

l’infrastructure matérielle et de celle des logiciels. Dans cette direction, les infra-

structures de cloud virtualisées sont devenues très populaires. Parmi les différents

modèles de cloud, les Infrastructures as a Service (IaaS) ont de nombreux avantages

pour le fournisseur comme pour le client. Dans ce modèle de cloud, le fournisseurs

fournit ses ressources virtualisées et il est responsable de la gestion de son infra-

structure. De son coté, le client gère son application qui est déployée dans les ma-

chines virtuelles allouées. Ces deux acteurs s’appuient généralement sur des systèmes

d’administration autonomes pour automatiser les tâches d’administration.

Réduire la quantité de ressources utilisée (et la consommation d’énergie) est un

des principaux objectifs de ce modèle de cloud. Cette réduction peut être obtenue à

l’exécution au niveau de l’application par le client (en redimensionant l’application)

ou au niveau du système virtualisé par le fournisseur (en regroupant les machines

virtuelles dans l’infrastructure matérielle en fonction de leur charge). Dans les in-

frastructures de cloud traditionnelles, les politiques de gestion de ressources ne sont

pas coopératives: le fournisseur ne possède pas d’informations détaillées sur les ap-

plications. Ce manque de coordination engendre des surcoùts et des gaspillages

de ressources qui peuvent être reduits avec une politique de gestion de ressources

coopérative.

Dans cette thèse nous traitons du problème de la gestion de ressources séparée

dans un environnement de cloud virtualisé. Nous proposons un modèle de ma-

chines virtuelles élastiques avec une politique de gestion coopérative des ressources.

Cette politique associe la connaissance des deux acteurs du cloud afin de réduire les

coûts et la consommation d’énergie. Nous évaluons les bénéfices de cette approche

avec plusieurs expériences dans un IaaS privé. Cette évaluation montre que notre

politique est meilleur que la gestion des ressources non coordonnée dans un IaaS tra-

ditionnel, car son impact sur les performances est faible et elle permet une meilleure

utilisation des ressources matérielles et logicielles.
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Chapter 1

Introduction

Computing systems are continuously becoming more and more complex. These

structures evolved from a single machine (personal computer or large mainframe)

to clusters, to grids, and recently to hosting centers with complicated distributed

systems. The rapid increase in number of machines leads to the complexity of

administration. This is often considered as an error-prone and costly task: the

administrator not only deploys the applications into the system, but also maintains

its state and repairs as failure occurs. Maintaining such large clusters or grids needs

to be automated in order to be cost- and time-effective.

Autonomic administration was proposed as a potential option to solve the com-

plex problem of managing clusters and grids [40]. In an autonomic administration

system, the system self-manages with given high-level objectives from the admin-

istrator, such as application deployment or reactions to failures. As a result, the

intervention from the administrator is greatly reduced. TUNe [22] was developed

as an autonomic administration system with a high-level formalism for the specifi-

cation of deployment and management policies. TUNe has been experimented with

a variety of application domains: web applications, grid computing systems, and

cloud computing systems.

Cloud computing is becoming a global trend for companies to externalize their

hardware resources instead of managing themselves. The companies managing the

hardware, so-called providers, are expected to ensure quality of service for their

customers while minimizing costs. Power consumption in data centers in 2011 was

predicted at 100 billion kWh with peak load at 12GW, equivalent to 25 baseload

power plants. Additionally, American Society of Heating, Refrigerating and Air

Conditioning Engineers (ASHRAE) estimated that by 2014, infrastructure and en-

ergy would contribute 75% to the total IT cost of companies [16]. Many solutions
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are proposed and applied to address this power issue. Virtualization, being one of

the answers, allows resource mutualization of users on the same resource pool. With

virtualization, hardware resources are divided and encapsulated inside virtual ma-

chines. The usage of virtual machines in cloud computing increases utilization rate

of data centers and speedups application deployments.

To effectively manage resources in cloud infrastructures, the provider and the

customer are interested in using autonomic administration systems to handle their

resource management tasks. Using such a system, the customer dynamically allo-

cates and deallocates his virtual machines to fulfill his resource needs at runtime, to

deal with different load situations of his application and to minimize resource cost.

To do this, the customer defines his resource management policy before deployment

and instructs his autonomic administration system to follow this predefined plan.

On the other hand, the provider specifies his resource management policy so that a

minimum amount of physical resources is used. This strategy aims at reducing en-

ergy cost for the provider. These resource management policies are complementary

and should be coordinated. Very few works in literature focused on exploiting the

benefit of a cooperative management policy between these two actors. From this

point of view, the objectives of this research work are: (1) pointing out the missing

potential cooperation between the customer and the provider, and (2) contributing

to the exploration and confirmation of this benefit.

This document presents the work done in the domain of autonomic administra-

tion in a cooperative resource management policy. This dissertation is organized as

follows.

• Part 1: Thesis context

This part consists of chapter 2, describing the context that motivates this work.

This chapter gives an overview of cloud computing in section 2.1. Section 2.2

reviews the base of cloud computing: the virtualization technology. Section

2.3 briefs resource management policies in cloud infrastructures.

• Part 2: Thesis position

This part covers the problem analysis, approach and state of the arts with the

above management policies. It includes chapter 3 and 4. Chapter 3 motivates

our work by discussing the problems of fixed-size virtual machine (section 3.1)

and analyzing elastic virtual machine as a straightforward solution (section

3.2). It then presents the general orientation of our research in section 3.3.

Finally, chapter 4 presents the related works with respect to this orientation.

• Part 3: Contributions

Cooperative Resource Management in the Cloud
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The main contributions of this research work are presented in this part, in-

cluding an in-depth explanation of the specifications for a cooperative resource

management policy in chapter 6. Chapter 6 details the design and implemen-

tation of the jTune autonomic administration framework, and jCoop as the

implementation the cooperation specification. This part also covers the eval-

uation of our policy with jTune and jCoop in chapter 7. Finally, we conclude

our work and discuss the future works in chapter 8.

Cooperative Resource Management in the Cloud
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Cloud and Resource Management
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2.1 Cloud Computing

2.1.1 Introduction and Definition

The difficulties of self-managing infrastructures.

Computer infrastructure has been evolving very quickly, from a single machine

to clusters and grids. Large companies usually require large amount of machines

to host their business applications (for example: web servers, application servers,

database servers, file servers, email servers, authentication services, load balancers,

etc). These servers must also be secured from intrusions. On the other hand, small

companies need to reduce initial investment for IT to focus on their business. These

requirements lead to the following difficulties in order to build and maintain the

company’s computer infrastructure [15]:

• Increasing human power. More complicated infrastructures also mean more

requirements on the deployment, configuration, launch, and reconfiguration at

runtime. These tasks are either manually performed or automatically man-

aged (but still need to be supervised) by the IT department of the company.

However, the first deployment of the whole infrastructure (setting up servers,

networks, cooling systems) still must be manually done. Human power invest-

ment for the IT department is usually underestimated.

• Waste of resources. After deployment, the infrastructure must be well uti-

lized (i.e. it must have load and not being idle). Idle machines not only

contribute to the initial investment but also waste power at runtime. Electric-

ity for operating the whole computer infrastructure is always one of the highest

parts contributing to the Total Cost of Ownership (TCO). The average cost for

powering the servers and their cooling systems accounts for 20% of the total

cost [48]. The company must ensure that it provides enough power to keep

these servers running. As a result, the company usually needs to improve the

usage of the infrastructure, to reduce resource and energy waste.

• Difficulties to dimension the IT infrastructure. The infrastructure’s

workload at runtime cannot be perfectly predicted and allocated at deployment

time. There are idle and peak load phases (e.g. during the night and in business

hours, respectively). If being over-dimensioned to deal with peak loads, the

infrastructure will be more under-utilized during idle periods and contribute

to the resource waste. Therefore, it must have the ability to self-adapt to

the current load by increasing or decreasing the number of active servers to

Cooperative Resource Management in the Cloud
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handle application’s needs. To do this, the design of the infrastructure must

be flexible enough to deal with such various situations.

What is cloud computing.

Cloud computing is now a current trend for companies to externalize their com-

puting infrastructure into another type of company. The first actor is called cus-

tomer, and the later is provider. This movement is to improve the concentration of

each actor: the customers only focus on their business and leave the infrastructure

management to the providers. By improving the dedication of each actor, cloud

computing model connects the customer’s needs with the provider’s services.

Since there was no exact formal definition of cloud computing, we can quote

a proposal definition, which is rather widely accepted in the research community,

from National Institute of Standards and Technology (NIST1): “Cloud comput-

ing is a model for enabling ubiquitous, convenient, on-demand network

access to a shared pool of configurable computing resources (e.g., net-

works, servers, storage, applications, and services) that can be rapidly

provisioned and released with minimal management effort or service

provider interaction” [42]. From this definition, we can summary the following

characteristics of cloud computing:

• On-demand Self-service: the customer can request more or less computing re-

sources at runtime. These requests will be automatically served by the service

provider without any human intervention.

• Remote Access: the resource is available and can be accessed remotely over

the network. With the vast improvement of network infrastructures, accessing

resource over the network is not a challenge for the customers.

• Resource Pooling: the provider’s resource is shared by multiple customers.

These resources are dynamically assigned and reassigned to different customers

at runtime, when requested. The customer generally does not have any knowl-

edge about the physical location of his allocated resources.

• Rapid Elasticity: the provided resource can be elastically expanded and col-

lapsed rapidly at runtime, according to the customer’s request. From the

customer’s view, this resource pool often appears with unlimited amount and

can be requested at any time.

1http://csrc.nist.gov

Cooperative Resource Management in the Cloud
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• Monitored and Measured: the cloud manager monitors its resource usage with

various metrics, and tries to optimize the resource pool in an efficient way.

These activities are often transparent to the customer.

Cloud computing is the combination and adoption of many existing technologies.

Cloud computing is similar to grid computing in terms of hardware deployment and

management, but different as cloud computing mostly provides its resource by uti-

lizing virtualization [33]. This is the main technology behind cloud infrastructure’s

manageability and portability of resources. Additionally, utility computing concepts

are widely used in cloud computing [34]: resources (such as CPU, memory, storage

and bandwidth) provided to the customers are metered and billed. The pay-as-you-

go billing model is very popular in cloud services nowadays.

In cloud computing, resource sharing is the nature and the main factor bringing

the benefit: the provider switches off unused resources while sharing his resource

pool among the customers to satisfy their resource needs. Therefore, Service Level

Agreements (SLAs) are offered by the provider to the customer. A typical type of

SLA consists of a set of metrics regarding the Quality of Service (QoS) that the

provider must ensure at runtime. These metrics can be the number of allocated pro-

cessors or FLOPS2, dedicated memory, storage or network bandwidth, etc. Without

SLA, the provider may overcommit a lot of customer-booked resources into a small

set of physical resources, therefore the customers would not have their desired com-

puting capabilities. SLA is a way to protect the customers to certainly have the

resources they booked.

This section briefly shows the overview of cloud computing. Various ways to

classify different cloud computing models and their characteristics will be described

in the next section.

2.1.2 Classifications

Cloud computing has a long time of evolution. During this time, there appeared

many types of cloud, some of which overlapped some others. In the literature,

cloud computing has two major official ways of categorizing: by Service Model or

by Deployment Model.

When classifying cloud computing by Service Model, we use the type of service

that the cloud infrastructure provides to the customer. There exists three main types

2FLoating-point Operations Per Second

Cooperative Resource Management in the Cloud
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Figure 2.1: Components of each Cloud Service Model

of cloud services: Infrastructure as a Service (IaaS), Platform as a Service (PaaS)

and Software as a Service (SaaS). Other models are also proposed as cloud service:

Network as a Service (NaaS) and Communication as a Service (CaaS). However, this

section only briefly describes the three major types of cloud computing. Figure 2.1

summarizes the management role of each cloud actor, level of control and level of

abstraction of each service model.

Infrastructure-as-a-Service is the most basic model of the cloud service. The

IaaS provider offers physical machines or virtual machines (the later is more popular,

will be described in section 2.2) and other basic resources like network, load balancer,

storage. In a virtualized cloud, virtual machine is the primitive form of resources

being provided to the customer. The customer is responsible for controlling the op-

erating systems in the provided virtual machines and deploying his own applications

on it. In this model, the customer is typically billed on a utility computing basis,

meaning based on the amount of allocated resources. The most notable examples of

IaaS providers are Amazon Elastic Compute Cloud [1], Google Compute Engine [5],

Windows Azure Cloud Services [12].

Platform-as-a-Service is on a higher level when compared to a IaaS: the PaaS

offers a virtualized execution platform with predefined set of application program-

ming interfaces (APIs), libraries, services and other tools. The customer develops

using these APIs and deploys his application on to the PaaS execution environment.

After being deployed, the application is executed in the provider’s cloud infrastruc-

ture. The customer does not have control of the cloud platform, including network,

3Source: wikimedia.
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Figure 2.2: Cloud Service Models in Vertical Stack3

servers, operating systems, etc. The process of balancing and scaling the customer

application is generally performed by the provider’s cloud manager and is transpar-

ent to the customer. In this model, the customer can focus more on the application

business without the need to manage balancing and resizing of his application at run-

time. Google App Engine [3], Amazon Elastic Beanstalk [2] and IBM SmartCloud

Application Services [8] are major examples of PaaS.

Software-as-a-Service is the highest level of service compared to the above two:

the SaaS offers well-defined, pre-developed software to the client. The application is

accessible from various client devices with a thin client interface (e.g. a web browser)

or the client-side application interface. The provider manages his infrastructure

(network, servers, balancing) and the application itself. The provider also develops

and maintains the provided application. The customer acts like an end user: he only

uses the software from the cloud. The most popular SaaS applications are Google

Documents [6], Google Apps [4] and Microsoft Office 365 [9].

Figure 2.2 summarizes the basic components of each service model (IaaS, PaaS,

SaaS, respectively) in a bottom-up point of view: the IaaS is the basic foundation

of the cloud, the PaaS is usually built on top of a IaaS, and finally applications are

then developed on the provided platform.
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Hybrid Cloud

Private Cloud Community Cloud Public Cloud

Figure 2.3: Classification based on Deployment Model

On the other hand, when cloud computing is classified by Deployment Model,

we use the scope of the cloud elements as the main criterion (figure 2.3). This scope

also takes into account the customer type. In this type of classification, we identify

the following kinds of cloud computing: private cloud, community cloud, public

cloud and hybrid cloud.

A private cloud is a cloud infrastructure that is only used by one specific

organization (e.g. a company, a military or a nonprofit organization). The private

cloud is usually deployed, managed and accessed by the organization itself. This

type of cloud has more control compared to the others, because the owner have

access to both physical and logical resources. There are also virtual private cloud

providers (like Amazon, Google, or HP), offering secured and isolated private clouds

in a public cloud environment. Although with better security and isolation, virtual

private cloud still does not bring full control like a physical private cloud.

A bigger cloud environment, community cloud, is targeted by a type of or-

ganization (e.g. academic institutions in a country) with a common concern. The

goal of a community cloud is to provide the organization with the benefit of a public

cloud (such as pay-as-you-go billing model) but with the added level of privacy, se-

curity and other requirements which are usually satisfied with a private cloud. The

community cloud is owned, deployed and managed by one or more organizations in

the community. Its infrastructure is shared among the users.

Being the biggest cloud environment, public cloud is open to public use without

any limitation on the type of the customer (either personal, business, military or

academic institution). A cloud provider has full ownership of the cloud platform

with his own policy and shares his resource pool between the public cloud users

through network access, mostly through the Internet. This cloud infrastructure

serves any kind of applications, depending on the customers, and generally falls into

PaaS or IaaS. This is the most popular type of cloud service nowadays. Beside big
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and popular providers (Google App Engine, Amazon EC2), there exists more and

more smaller providers like Terremark4, DreamHost5, EMC6, etc.

A hybrid cloud solution is usually proposed to meet the requirements of the

customer. The cloud infrastructure in this case is a combination of two or more

smaller infrastructures (private, community or public). These small infrastructures

are bound together by the requirements of the customer, either his goals, security

concerns, or proprietary technologies. A typical application of hybrid cloud solutions

is to extend the capacity of a small cloud during peak load, by requesting additional

resources from a public cloud. This method is called cloud bursting. By using

hybrid cloud, organizations can obtain both performance (no Internet connectivity

is required when the private cloud is used locally) and availability (more resources are

available on the community/public cloud when the private cloud is out of resource).

It is also notable that the software required to power these types of cloud in-

frastructures is still a topic of research and enhancement. The cloud software is

categorized as proprietary (e.g. VMWare vCloud) or open source (e.g. OpenStack,

CloudStack). It depends on the customer and the provider to choose what cloud

software is best appropriate for their cloud requirements.

This section summarized the various kinds of cloud computing, based on the clas-

sification model (Service Model or Deployment Model). The next section discusses

their benefits and drawbacks to each actor of cloud computing.

2.1.3 Advantages and Disadvantages

Cloud computing, like many other computing systems, has its benefits and draw-

backs. This section summarizes the main advantages and disadvantages of this

popularity-gaining [15] computing model.

Advantages

Cloud computing brings many benefits to both the customer and the provider,

mainly because of each actor’s dedication. On the customer side, he simply uses the

provided application (SaaS), or is freed from taking care of the availability and main-

tainability of the computing infrastructure, and focuses on his business application

instead (PaaS or IaaS). On the other side, the provider is dedicated to deploying

4http://www.terremark.com/
5http://www.dreamhost.com/
6http://www.emc.com/
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and managing the infrastructure (IaaS), developing his platform with more services

(SaaS), or developing the application (SaaS). This dedication improves each actor’s

performance, increases hardware utilization rate and reduces power waste.

For the customer, the computing capability of the whole infrastructure often

appears to be unlimited. That means the client can request as much as he wants

to deal with the computational needs. Generally, the client needs to deal with idle

or peak loads at runtime of his application. To do that, an autonomic resource

management system (ARMS) is implemented. In a peak load, the ARMS deploys

many instances of the customer’s application on the cloud infrastructure to keep

the application response time as low as acceptable. The cloud computing capability

allows the customer to allocate resources for his application as much as requested.

Combined with the pay-as-you-go billing model, this type of on-demand resource

allocation brings benefit to the client because he only pays for what is used: only

booked and used resources are billed. By effectively using the cloud infrastructure

from the provider, the customer does not need to spend on the computing infra-

structure himself, and therefore reduces the initial investment cost. This reduction

is critical to many startups and small companies. Large corporations also benefit be-

cause their computing infrastructure is huge. Deploying, maintaining and extending

such infrastructures are costly, both in terms of human resources and equipments.

The provider shares his own resource pool between various cloud customers. By

doing this, the provider has better infrastructure utilization rate: the same hardware

can be used to serve many clients at the same time (by providing virtual machines

to each customer). After initial investment to deploy the cloud infrastructure, it is

mainly the customers who pay for the hardware being used. This model is similar

to renting the hardware: the provider benefits from charging his customers for each

fraction of his hardware.

Not only does cloud computing benefit in terms of cost for the provider and

customer, it also helps in protecting the environment as a form of green computing.

By mutualizing the computing resources, both actors have lower physical hardware

needed to run the customer applications when compared with non-virtualized, non-

cloud infrastructure. Minimizing the amount of occupied physical hardware also

means minimizing the energy powering this hardware, and reducing the amount of

emitted CO2 used for generating electricity.

Issues

While cloud computing continues to gain popularity among enterprises, it also

raises concerns about its various drawbacks. The main drawbacks include (but not
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limited to) data privacy, system security, standardization and resource management.

They affect both the provider and the customer in their operations.

A typical and one of the most important concerns of the customer about cloud

computing is his data privacy. As cloud computing is a way of outsourcing data and

applications, the customer needs to put his data into the cloud, in which the provider

shares resources with other customers. The customer naturally raises a question

about their privacy of his data in the provider’s cloud infrastructure. Therefore,

there is a need for implementing appropriate mechanisms to isolate data between

customers. Additionally, the cloud provider should be prevented from exploiting the

customer’s data.

The cloud infrastructure’s security is also one of the main concerns. The security

issues for cloud computing are generally divided into two categories, according to

the point of view of the cloud provider or the customer. On the customer side,

physical control of a private cloud (in a local building) is usually considered more

secure than having the equipment at the provider’s data center. Physical control also

means the ability to have direct visibility of the equipments, and is easier to ensure

that the infrastructure is not compromised. In the case of a IaaS, the customer

needs to enforce better security to his provided virtual machines (including kernel,

operating system, virtual network, and the deployed application itself) than in the

case he deploys his application in a private data center. A higher security level is

required because many customers share the same physical network in the provider’s

infrastructure. On the provider side, beside the usual security policies employed in

a typical data center, an additional level of security must be enforced: the Virtual

Machine Monitor (or hypervisor, the virtualization software that separates hardware

and the virtual machines, see section 2.2.1). It poses more tasks for the provider:

the virtualization level must be properly configured, managed and secured [52]. If

a Virtual Machine Monitor in one host is compromised, the attacker has access to

all the virtual machines running on that host, regardless of the network security

system implemented on these virtual machines. Therefore, both actors need to

ensure security at their own levels.

Another problem blocking the adoption of cloud computing for enterprises is the

lack of standardization. Each cloud provider offers his own APIs for the clients,

applications and users to interact with the cloud. This obstructs the development

of the cloud ecosystem by preventing users from easily switching between differ-

ent providers. For example, there is currently no standardized way to seamlessly

translate security requirements and policies across cloud offerings [49]. More im-

portantly, proprietary APIs overburden the integration process to the cloud from

the company’s legacy system (i.e. traditional servers). Additionally, virtualization

technology among cloud platforms is not standardized: each cloud provider has his
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own choice of virtualization platforms (e.g. Xen [17], OpenVZ [10], VMware [11],

etc). These hypervisors do not interoperate because they do not share the same

virtualization techniques, file formats, network and storage architectures.

The research community made many efforts to bring open standards to the cloud.

IEEE Standards Association (IEEE-SA) is one of the main organizations (beside

Distributed Management Task Force, Open Grid Forum and National Institute of

Standards and Technology) contributing to the open standards of cloud comput-

ing [49]. For example, IEEE-SA has published two working drafts for standardizing

the portability and interoperability profiles, as well as for intercloud interoperability

and federation. Open Cloud Computing Interface develops the various standards for

cloud management tasks, enabling interfacing between IaaS cloud implementations.

However, these proposals are not yet finished, accepted and implemented. Cloud

computing still needs a long time to have full standards.

Last but not least, there is no unified resource management policy in the cloud.

The provider and the customer have their own ways of implementing resource man-

agement to solve the cost and scalability problems. The customer tends to reduce

the number of allocated virtual machines, because he is billed according to the num-

ber of requested VMs in the cloud. The provider wants to minimize the number of

running physical servers, because doing this will reduce resource waste and energy

consumption. The lack of coordination in the cloud prevents these resource man-

agement policies at both levels (the virtualized level and the application level) from

fully bringing benefits to all cloud actors.

2.1.4 Synthesis

We summarized the basis of cloud computing, its definition, characteristics and

two ways to classify cloud models. We also briefed the benefits and drawbacks

when adopting cloud computing to the enterprises. As previously discussed, cloud

computing is a means to connect the need of customers with the services of providers.

This connection not only improves the dedication and performance of each actor,

but also brings benefits to them. The success of cloud computing is backed by

virtualization technology. We will describe virtualization in the next section.
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Figure 2.4: Bare Metal Hypervisor (Type 1)

2.2 Virtualization

Virtualization is the most important technology in cloud computing because it

provides isolation and flexibility for managing computing resources. With virtualiza-

tion, the provider can easily offer different shares of his hardware to the customers,

allowing these resources to be allocated, relocated and deallocated at runtime. This

section gives an overview of virtualization, its various types, benefits and drawbacks.

2.2.1 Definitions

Virtualization is a software- and/or hardware-based solution for building and

running many operating systems simultaneously on the same bare hardware. Most

current implementations of virtualization platform use a software to separate phys-

ical hardware and the executing operating systems. These virtualization systems

are usually supported by the underlying hardware: the hardware provides architec-

tural support that facilitates the performance, management and isolation of virtual

machines.

A virtualized system uses its Virtual Machine Monitor (VMM ), the virtualizing

software responsible for hardware emulation and communication, to share its hard-

ware resources among the guest operating systems (Guest OS ). The VMM guaran-

tees the independence and isolation among the guest OSes, and therefore provides

better security for applications running inside the guest OSes than the same applica-

tions deployed in an unvirtualized environment. The VMM is also called hypervisor.

Most hypervisors support many instances of various operating system (e.g. Unix,

Linux, Windows). There exists two main types of hypervisor [46]:

• Type 1: also called native or bare metal hypervisor. This type of hypervisor

runs directly on the host’s hardware as an intermediate level between hardware
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Figure 2.5: Hosted Hypervisor (Type 2)

and the guest OSes. Therefore, the guest OS runs at another level above the

hypervisor (figure 2.4). This model represents the classic implementation of

virtual machine systems. The main benefit of bare metal hypervisor is having

less overhead: only does the hypervisor layer stay between the guest OSes and

the physical hardware. However, this type of hypervisor is hard to deploy on

an existing (and running) system: many type-1 hypervisors require a full hard

drive repartition and format during their installs. Most popular examples of

type 1 hypervisors include XenServer and VMware ESX/ESXi.

• Type 2: also called hosted hypervisor. These hypervisors run on top of a

normal operating system. The guest OSes suffer from two levels overhead:

the host operating system and the hypervisor (figure 2.5). Therefore, hosted

hypervisors generally have lower performance than bare metal ones. However,

they are easier to adopt in a running system: their installation usually includes

kernel drivers and a normal front-end application. They do not severely affect

the host operating system and do not require full system format. VMware

Workstation and VirtualBox are two main examples of hosted hypervisors.

To support the execution of each guest OS, the VMM emulates a virtual ma-

chine, providing complete system platform with a complete set of resource (similar

to a physical machine): CPUs, memory, graphic cards, audio cards, storage drives,

network interfaces, etc. These virtual machines are usually based on an existing

architecture, such as Intel x86, ARM, PowerPC. After finishing virtual machine al-

location (i.e. allocate physical resources for the virtual machine), the VMM starts

the guest OS inside this virtual machine. During the guest OS runtime, the VMM

can dynamically allocate additional resources to the virtual machine.

Virtualization ensures isolation among the guest OSes by wrapping each guest

OS in a separated virtual machine, similar to real operating systems running on

different servers. The VMM isolates its virtual machines both in terms of resources

and performance. Accessing resource of another virtual machine (storage, memory,

etc) is strictly prohibited (and generally there is no way to perform such tasks from a
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virtual machine). The VMM also ensures the performance of each virtual machine by

protecting resources from other virtual machines’ abuse. For example, each virtual

machine cannot use more than the defined amount of CPU cycles, memory limit or

network bandwidth. The VMM balances the physical resources being used between

virtual machines while ensuring performance for applications running on top of these

guest OSes.

Virtual machine live migration [26] enables the modification of the customer’s

virtual machine placements in the provider’s data center. It helps the provider to

satisfy customers and to reduce energy cost. In a cloud infrastructure with dynamic

virtual machine allocation, live migration can pack or spread running virtual ma-

chines among physical servers, based on their resource needs. Idle virtual machines

can be gathered into as few servers as possible, enabling the possibility to switch off

or to suspend the freed servers. On the other hand, overloaded virtual machines can

be distributed to less busy servers to ensure their performance to decrease the risk of

SLA violation. All of these migrations are executed at runtime, and most likely do

not affect the performance of the applications inside these virtual machines. More

importantly, the application is guaranteed that there will be almost no message loss

during the migrations [26]. As a result, server utilization is greatly improved and

power consumption is reduced with live migration.

2.2.2 Classifications

As virtualization has a long time of evolution (dated back to 1960s [18]), there

exists many different types of virtualization. In this section we categorize various

virtualization technologies in two directions: hardware level and operating system

level.

At the hardware level, the hypervisor is responsible for emulating complete

virtual machines with all types of hardware resources : CPU, memory, storage, I/O

devices, etc. In this virtualization architecture, the hypervisor and the host operating

system are separated. Access to all hardware resources is provided by the hypervisor

through virtual devices. Additionally, this type of virtualization requires a complete

copy of an additional operating system running in each virtual machine, including

the kernel, device drivers and all basic system services (e.g. modules to handle

different file systems). Note that each operating system instance consume a portion

of the storage and memory of each virtual machine. This part can be considered as

memory and disk overhead of hardware-level virtualization.
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The most straightforward solution in this level is full virtualization. A full virtu-

alization architecture emulates all necessary hardware to allow an unmodified guest

OS to be executed and isolated (figure 2.6). This includes the emulation of CPU

(along with its architecture and instruction sets), storage (hard drive or optical drive,

with its controller), graphic card, etc. Full virtualization is usually based on a tech-

nique called binary translation, in which all CPU instructions being executed in the

virtual machine are parsed, translated and executed in the host CPU (which may be

different from the emulated CPU). One of the key challenges for full virtualization

is the interception and simulation of privileged operations, such as I/O instructions.

As a result, full virtualization is complicated to implement and has low performance

when compared to a physical, unvirtualized system.

However, one of the main advantages of full virtualization is the ability to keep

the guest OSes unmodified: they are fully abstracted from the underlying hardware

by the virtualization layer. In this case, the guest OSes are not aware of being

virtualized and do not need to be modified. This advantage is important for running

proprietary operating systems (such as Windows, Solaris). Open source operating

systems do not need to be run in full virtualization, because they can be modified

to meet the virtualized requirements.

Paravirtualization (or OS Assisted Virtualization) exploits such modifications

to the guest OS to allow it to be virtualized (figure 2.7). It is different from full

virtualization in the sense that the guest OS is aware of being virtualized. The

changes to the guest OSes to support paravirtualization are generally minimal and

non-intrusive. Because of the possibility to modify the guest OS, paravirtualization

has better performance, less overhead and easier implementation when compared

with full virtualization. However, paravirtualization is limited only to modifiable

operating system, and this limitation greatly reduces the number of supported plat-

forms.

Hardware Assisted Virtualization is a form of full virtualization which uses the

support from the hardware (primarily from the host’s processor) to ease and increase

performance of the guest OSes. As virtualization gained popularity, hardware ven-

dors started supporting it by incorporating features in their hardware to simplify
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virtualization techniques. This support reduces performance overhead when exe-

cuting virtual machines and reduces changes to the guest OS. Intel and AMD have

their own instruction set extensions for virtualization, called VT-x and AMD-V, re-

spectively. However, not all processors and hardware have this capability, and this

limits the adoption of hardware assisted virtualization. Most popular virtualization

platforms use hardware assisted virtualization when the host hardware is capable of

it.

There exists both open source and proprietary implementations of hardware-level

virtualization: qemu, VirtualBox, VMware Workstation (full virtualization); Xen,

Sun’s Logical Domains, VMware ESX/ESXi (paravirtualization).

At the operating system level, virtualization is integrated inside the oper-

ating system. The guest processes are encapsulated into entities called containers

(figure 2.8). These containers share the operating system kernel with the host and

take parts of the hardware resources. Note that each container has its own view

of available resources: the number of CPU cores, the amount of available memory,

storage size, etc. In this category, the hypervisor and the host operating system are

merged. This type of virtualization supports a certain form of isolation, but less

separated than hardware-level virtualization. With the nature of sharing the same

operating system instance among containers, OS-Level virtualization has less per-

formance overhead when compared with hardware level virtualization: there is one

layer less in the virtualization stack. The customer’s applications running in the

containers can have doubled throughput when compared with hardware-level virtu-

alization solutions [53]. Live migration for containers is also possible in OS-Level

virtualization. Another advantage of OS-Level virtualization is the ability to easily

manage the size of allocated resources on-demand. However, security issue is the

main concern in OS-Level virtualization, because all containers share the same op-

erating system kernel with the host. If the attacker can exploit a vulnerability in the

guest kernel, it also means that he has exploited the host kernel and theoretically

has access to the whole physical system. Major examples of OS-Level virtualization

include OpenVZ, Linux Container (LXC) and Solaris Containers.
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2.2.3 Advantages and Disadvantages

Virtualization brings many benefits to the hosting industry. One of the main

advantages of virtualization is cost reduction, both for hardware cost and for main-

tenance cost. Many server applications can share the same physical hardware to

improve hardware utilization rate, without compromising each server’s security. For

instance, one physical server can be used for a web server in VM1, a database server

in VM2, an application server in VM3. If one server has security breach, the other

two are still safe in other virtual machines. In an unvirtualized system, these sys-

tems take 3 different physical servers (wasting power when underutilized) to have

the same security level. Additionally, virtualized resources are easier to manage

with autonomic management systems. A virtual machine acts both as a physical

entity (a machine) and a logical entity (a manageable software). Autonomic man-

agement systems can interact with the virtualization software to allocate, migrate,

or stop virtual machines at runtime. This helps in reducing resource usage and cost.

Furthermore, virtualization helps the customer in deployment and dependency man-

agement: a prebuilt image of a virtual machine disk containing the application with

its dependencies can be easily deployed and replicated into the cloud. The usage of

prebuilt virtual machine images can reduce deployment time for additional applica-

tion instances to serve load peaks. Finally, the ability to migrate virtual machines

provides the flexibility of placing them in the infrastructure, according to the actual

load status of physical servers.

However, similar to cloud computing, virtualization still lacks of open standards

to help interoperability among virtualization platforms. This fact leads to the vendor

lock-in problem: when a virtual machine is created using one virtualization platform,

it is not easy to port it to another one seamlessly. Furthermore, virtualization

introduces performance overhead when compared to a unvirtualized system: the

hypervisor itself consumes system resources, as well as all access to the resources

from the virtual machines needs to be processed and translated by the hypervisor.

In ideal cases, the computing performance overhead is as low as 3% [17], but real

world applications and benchmarks showed much larger values, up to 46% [13] when

compiling a Linux kernel inside a virtual machine.

2.2.4 Synthesis

Despite of the various drawbacks, virtualization is still widely used in the hosting

centers, mostly because its advantages outweigh the disadvantages: hosting centers

and customers benefit from cost reductions. Key factors contributing to this success
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include: domain isolation, virtual machine migration (server consolidation) and dy-

namic resource allocation. Isolation improves security in application server. Virtual

machine live migration reduces the number of running physical machines. Dynamic

resource allocation minimizes allocated resources and reduces cost for the customers.

Resource allocation is further enhanced by various resource management policies,

both at the physical level and at the virtualized level. The next section describes

in-depth these policies.
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2.3 Resource Management in a IaaS

Resource management is one of the most important tasks in cloud computing.

Inefficient resource management has a direct negative effect on performance and

cost. Ensuring performance and effective use of the resources is a challenge for both

provider and customer. In this research work we consider a cloud as a IaaS, in which

the provider offers his resources with virtual machines to the customer. This section

summarizes various resource management tasks in the cloud for the provider and

the customer.

The primitive resource container provided to the customer in a IaaS is in the

form of virtual machines. As described in the previous section, each virtual machine

has all typical resource types: computing power (CPUs), memory (virtual memory),

storage (hard drives), connectivity (virtual network interfaces, IP addresses). Note

that most current IaaS providers offer fixed-size virtual machines : the amount of

allocated resources for each virtual machine cannot be changed at runtime without

stopping the virtual machine first. Resource allocation in cloud infrastructures is

mostly based on the allocation, relocation and deallocation of the virtual machines.

In cloud computing, various metrics are defined when allocating resource for a

customer. A resource reservation is defined as a minimal threshold for the resource

that the provider must ensure. That means the reservation is used to specify a

minimum guaranteed amount of resources: the customer’s allocated resource is pre-

vented from being heavy overcommited. This type of threshold is typically defined

in terms of absolute units, such as Megahertz for CPU, the number of CPU cores,

or Megabytes for dedicated memory of each virtual machine. On the other hand, a

resource limit is used as a means to restrict the customer from resource abuse. A

limit is used to define an upper bound on resource consumption that the customer

cannot exceed. Most virtualization platforms support this ability on all major types

of resources: CPU cap, memory quota, storage limit, network bandwidth restric-

tions, etc. Similar to reservation, a limit is also expressed in terms of absolute units,

such as Megabytes or Megabits per second.

Resource allocation in a IaaS needs to take into account a lot of various factors,

including the heterogeneity of machines. As cloud infrastructure grows, it is difficult

for cloud providers to have a large number of identical machines: they need to

be added over time. The differences in architectures, hardware specifications and

computing capabilities increase the complexity of deciding which physical resource

will be allocated upon a resource allocation request. These differences also need to

be considered when migrating a virtual machine from one physical server to another.

For example, a VM running on a physical machine at 3GHz CPU with 50% quota

Cooperative Resource Management in the Cloud



2.3. RESOURCE MANAGEMENT IN A IAAS 23

must have a different quota value when being migrated to another server at 2.0GHz

CPU. This leads to the resource allocation problem: how to effectively distribute

the virtual machines, which contain the customer’s application instances, among

physical servers using the predefined metrics?

This problem is considered at two levels: virtual resource management and ap-

plication instance management (i.e. at the IaaS layer and at the application layer,

respectively).

2.3.1 Resource Management by the Provider

There exists two types of resources that the IaaS provider manages: physical

resources and virtualized resources, in the forms of physical servers and virtual ma-

chines. The provider is responsible for managing these resources effectively to reach

his goal: minimizing operation cost.

Physical servers has only few basic and manageable tasks: power off, power

on, suspend and resume. These actions allow the provider to dynamically start and

stop the physical machines, and therefore resize the server pool at runtime. Notice

that the main difference between power on/off and suspend/resume is the time to

execute the operation: starting up a server is much slower than resuming it from

sleep state. A cold boot often takes up to several minutes, while a resume task takes

less than 10 seconds. The provider needs to take into consideration this difference

when deciding to decrease the pool size (during idle periods). Powering off implies

a bigger latency when a peak load occurs, so most providers suspend their unused

physical servers for saving energy instead of powering them off.

Virtual machines has more options for the provider to deal with peak loads

or idle states. The provider can migrate his virtual machines: they can be placed

and moved anywhere, on any physical server, without any interruption. This ability

ensures performance for the customer and server consolidation for the provider.

To reach the goal of reducing cost, the provider manages his physical servers and

allocated virtual machines at the same time, by (1) relocating virtual machines, in

order to span as few servers as possible, then (2) switching off or suspending the

unused servers to save energy.
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2.3.2 Resource Management by the Customer

On the customer side, allocated resources can also be managed: the more unused

virtual machines, the more cost for the customer. The ultimate goal for the customer

is also to minimize operation cost. To achieve this goal, the customer tends to

minimize the number and size of his allocated virtual machines.

To do this, an autonomic administration system (AAS), a branch of autonomic

computing [40], is implemented to monitor and manage the customer application

instances. The customer’s AAS usually includes a set of probes, a decision core,

and an effector. The probes monitor each application instance, see if it is idle or is

dealing with high load. The information gathered is then submitted to the decision

core. This component, in turns, takes into consideration all loads of all instances

and selects a choice among (1) keeping the current application instances as is, or

(2) reducing the number of application instances in idle states, or (3) increasing

the number of application instances to deal with peak loads. This decision is then

transmitted to the effector. This last component, depending on the architecture

of the application, interacts with the cloud infrastructure to allocate or deallocate

virtual machines according to the decision.

2.4 Synthesis

After presenting the resource allocation in the IaaS from different actor’s point

of views, we conclude that the goal of both actors is to minimize costs, but their

way to achieve this goal is different. The provider minimizes the number of physical

machines by migrating the allocated virtual machines on as few physical machines

as possible, then switching off the freed machines. On the other hand, the customers

minimizes his number of running virtual machines with his own AAS.

However, a problem is raised when these resource management policies are oper-

ating separately. This problem and our approach toward solving it will be presented

in the next chapter.
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The previous chapters showed the goal and approaches of each cloud actors to-

ward minimizing operating costs in a conventional IaaS. In summary, the customer

dynamically requests the allocation and deallocation of fixed-size virtual machines

to serve his application. On the other side, while satisfying the customer’s de-

mand for computing resources, the provider ensures server consolidation to mini-

mize power consumption by live migrating allocated virtual machines and suspending

freed servers.

There exists several ways to optimize the infrastructure utilization rate. This

chapter discusses various issues in resource management in a conventional IaaS and

describes our proposal to solve these problems.
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Figure 3.1: Typical J2EE Architecture

3.1 Fixed Size Virtual Machine

Most IaaS providers currently offer a set of fixed size virtual machines : any

allocated virtual machines are assigned with a fixed set of resources and cannot

be resized at runtime. To resize a virtual machine, the customer firstly need to

stop it, change the required resource size and finally restart it. This limitation poses

inconvenience to the customer when he wants to resize his virtual machines according

to the application load.

A naive approach to have dynamic application size at runtime with fixed size

virtual machines is to use application replication: instead of having a single applica-

tion instance, the customer uses multiple instances. When the workload increases,

new application instances are dynamically added. In contrast, running instances

are removed when workload decreases. Depending on the application type, parts or

all of the application instances can be replicated. This mechanism is effective with

master-slave applications using load balancers.

For instance, a typical web application in Java 2 Platform Enterprise Edition

(J2EE) is a popular example of a master-slave application being deployed in the

cloud (figure 3.1). Such application represents the commonly hosted applications in

cloud platforms. Its design consists of a web server tier (e.g. Apache), an application

server tier (e.g. Tomcat) and a database server tier (e.g. MySQL). When a HTTP

request is received, it refers either to a static web document (e.g. HTML, CSS), in

which case the web server directly returns the requested document to the client; or

to a dynamically generated document, in which case the web server forwards the

request to the application server. In turn, the application server executes requested

application components (e.g. Servlets, EJBs), creating queries to a database through

a JDBC driver (Java DataBase Connection driver). Finally, queried data from the
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database (e.g. MySQL) is processed by the application server to generate a web

document which is returned to the client.

In this example, the customer application is replicable, consisting of 3 tiers: the

web server tier, the application tier and the database server tier. Each of these tiers

can be replicated to deal with important of work load: to serve a large number of

static files (e.g. static images at the web server), to finish a complicated task in the

application (calculations at the application server), or to execute a long query in the

database (making reports from multiple large tables in the database server). Each

load balancer distributing incoming requests to application tiers should be able to

take into account the weight of each managed tier instances: instances deployed with

more resources is forwarded with more requests than instances with less resources.

When being deployed in a cloud environment, each tier instance can be wrapped

inside a virtual machine to ease the management of the tier instances.

3.1.1 Resource Holes

In a conventional IaaS, the provider usually offers fixed size virtual machines

from a set of different instance types (specified size for each type of resource). These

instance types allow the provider to have a wide range of customers. When fixed

size virtual machines are created and released dynamically at runtime, the provider’s

infrastructure gradually becomes fragmented, similar to filesystems in storage disks.

As a consequence, resource holes appear at runtime in the cloud and the provider

has less flexibility for server consolidation. The resource holes at runtime depend on

the allocated virtual machine sizes. From the provider’s point of view, the ability

to move virtual machines (also called the flexibility of virtual machines) between

physical machines to ensure server consolidation is the most important factor. Small

virtual machines are more flexible for migration than big ones, because they are more

likely to fit available slots in physical machines. As a result, small virtual machines

are better to fill the holes.

An example to show the flexibility of small virtual machines over big ones is

described on figure 3.2. This illustration considers memory as the main resource-

constraint factor. The left part shows two occupied physical machines (PM1 and

PM2) with associated virtual machines on each. The allocated memory for each

virtual machine and free memory are also noted. PM3a denotes a case when the

customer uses a big virtual machine. PM3b shows another situation when the same

customer uses two smaller virtual machines, each consumes 5GB of memory, instead

of a big 10GB one.
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Figure 3.2: Example of Flexibility from Small Virtual Machines

If one big virtual machine is allocated (PM3a), the provider does not have the

ability to migrate it to PM1 or PM2, because the free memory on PM1 or PM2 is not

enough for this big virtual machine (requiring 10GB of memory). In this situation,

although the total free memory (11GB) fits VM4 (10GB), the provider still need to

keep all 3 PMs running. In contrast, if the customer chooses the second placement

(two virtual machines, each consuming 5GB of memory), like in PM3b, the provider

has the ability to migrate these virtual machines to PM1 and PM2 to shut down

PM3b.

From this example, it is clear that fixed size virtual machines do not bring flexibil-

ity to the provider for the best possible optimization regarding server consolidation.

Another issue with fixed size virtual machine is performance overhead, which will

be described in the next section.

3.1.2 Performance overhead

Because a fixed-size virtual machine cannot be resized after its allocation, the

customer needs to add or to remove application instances (wrapped into virtual

machines) to deal with workload fluctuation at runtime. He typically requests to

allocate new virtual machines to deal with the increase of the application’s workload.

As a result, there exists situations where multiple virtual machines of the same
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application are running on the same physical machine. An example is illustrated

in figure 3.3: to deal with a load peak, App2 allocates another fixed-size virtual

machine. In this example, two virtual machines of the same application 2 are running

on PM1a. This placement (PM1a) generates several types of performance overhead:

• Virtualization overhead is the performance penalty caused by the hypervisor.

Since the hypervisor is a software itself, it consumes system resources, including

CPU cycles and memory. CPU is used in the hypervisor for doing all virtu-

alization tasks, including making decision for the next virtual machine time

slice, processing hypercalls, looking up memory pages for guest OS memory

access, etc. Xen, a typical hypervisor, introduces 3% to 45% CPU overhead in

benchmarks [13, 17]. Hypervisors use a part of the host’s memory for managing

virtual machine, hash tables in content-based page sharing, etc. Having more

virtual machines on a host means more hypercalls, more pagetable lookups,

more allocated memory for virtual machine’s page mapping, etc. As a re-

sult, the more virtual machine shares the same host, the more virtualization

overhead is introduced.

• Balancer overhead occurs when requests to the customer’s applications are

passed through a load balancer. A balancer needs to maintain a list of managed

tier instances and distributes its requests to the worker instances. Introducing

a new layer (balancer) into the application architecture also adds one more

step in the request flow, further increasing application response time.
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Reducing the number of application instances acts as an important factor to

reduce performance overhead. For the hypervisor, a reduced number of virtual ma-

chines leads to less virtual machine’s context switches, less physical-to-machine mem-

ory mapping tables, more cache hit, etc. Similarly, with a smaller number of virtual

machines, the IO virtualization system has less network interfaces and disk images

to virtualize, reducing overhead. At the highest level, the balancer is less stressed

with less number of tier instances.

To summary, this section described the two main problems introduced in the

cloud infrastructure when using fixed size virtual machine, namely resource holes

and performance overhead. A straightforward solution is to use variable size virtual

machine for resource allocation and deallocation. This direction will be discussed in

the next section.
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3.2 Elastic Virtual Machine

Elastic virtual machines are the ones with the ability to be resized at runtime,

without the need of being stopped first. This section discusses the benefits and

issues of using elastic virtual machines in the direction of optimizing resource us-

age (reducing resource holes and performance overhead) in cloud infrastructures.

There exists several dimensions when considering a size for virtual machines: CPU,

memory, network bandwidth and virtual storage.

CPU resource management in hypervisors, being one of the most important

tasks in virtualization, has been well researched and implemented with various types

of hypervisor’s CPU schedulers. Note that these schedulers distribute CPU resources

between virtual machines, which is at a lower level than the operating system’s CPU

schedulers (the latter balances CPU power between processes inside guest operating

systems). Each hypervisor’s CPU scheduler has its specific parameters: weight,

vcpu, affinity, credit, reserve, limit, etc. Most of these parameters can be dynamically

reconfigured at runtime. This ability provides the elasticity of CPU resources for

virtual machines.

Memory is one key resource limiting server consolidation rate in cloud infra-

structures. Each virtual machine, even being idle, consumes a certain amount of

physical memory. This memory region cannot be used by any other virtual ma-

chines. Additionally, guest operating systems expect to be executed in a physical

machine, with a fixed amount of memory. Current virtualization platforms imple-

ment dynamic memory mechanism by pretending that the guest operating system

has the maximum amount of memory allocated (the limit that it can own) at its boot

time. A special driver in the guest operating system, named ballooning driver, then

inflates a balloon of memory to claim the unused memory and passes this region to

the hypervisor. As a result, the amount of available memory for the guest operating

system is reduced. By inflating and deflating the balloon of memory, the hypervisor

can dynamically change effective memory size for its managed virtual machines at

runtime.

Network throughput is a less important resource than the two types of re-

sources above in cloud infrastructures. Most hypervisors support throttling their

virtual machine’s virtual network interfaces to ensure Quality of Service (QoS). More

importantly, they also support the elasticity of network bandwidth, i.e. the band-

width can be dynamically increased or decreased at runtime. This ability helps the

administrator to resize his allocated virtual machines in the network dimension on

the fly.
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Lastly, virtual storage is another dimension of virtual machine size. The most

straightforward approach to change the size of virtual storage of a virtual machine is

to attach or detach virtual hard drives (similar to resizing a multi-tier application by

adding or removing application instances). Additionally, most modern hypervisors

support real dynamic resizing for storage of running virtual machine, i.e. to change

the size of a running virtual hard drive. The ability of hypervisors to resize virtual

storage complements the elasticity of virtual machines. Using all of these capabilities,

the provider can fully support resizing virtual machines in all dimensions: CPU,

memory, network and storage. In our work, we consider only elastic CPU and

memory resource management because they are the most concerned resources in a

cloud infrastructure.

Majorities of the public cloud providers (Google, Microsoft, Amazon, HP, etc.)

do not allow their customers to get involve in the physical resource management

process (e.g. resize their virtual machines at runtime). Fixed size virtual machines

are easier to manage (packing and migrating) because all resource dimensions are well

defined: each value (size) in each dimension (CPU, memory, bandwidth and storage)

does not change at runtime. The resource management policy on the provider side

is therefore less complicated and executes faster.

Improvements

If elastic virtual machines are used in cloud infrastructures, they will bring sig-

nificant benefits to both actors.

On the customer side, since the virtual machines can be resized at runtime,

the number of virtual machine allocations and deallocations to deal with workload

variation is dramatically reduced. Furthermore, elastic virtual machines provides a

finer-grain resource management to the customer (e.g. adding 200MB of memory to

an existing virtual machine), in contrast with the coarse-grain resource management

of fixed-size virtual machines (each can consume at least 500MB of memory). Finally,

time for resizing a virtual machine typically is much shorter than allocating a new

one, because a virtual machine allocation needs to take into account its considerable

boot time. As a result, the fluctuation of application load can be instantly dealt

by resizing its virtual machines. An example of this benefit can be illustrated in

figure 3.3: App2 can simply resize its elastic virtual machine to 6GB, resulting in

PM1b. In this example, only one application instance is used to deal with the load

peak. This behavior improves application’s responsiveness and reduces performance

overhead when compared with a fixed-size virtual machine allocation (in PM1a).

On the provider side, if he offers elastic virtual machines to the customer, finer-

grain resources will reduce resource fragmentation when compared with providing
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Figure 3.4: Finer-Grain Resource of Elastic Virtual Machine

fixed-size virtual machines: a size-up of a virtual machine can use memory that

would not have been sufficient to host another virtual machine. As a result, there

will be less resource holes (in both number and size of holes) for the provider.

Figure 3.4 considers a case when a IaaS EC2-like provider offers virtual machines

with the instance types having 1.7GB, 3.75GB, 7.5GB, 15GB of memory (similar to

EC2’s m1.small, m1.medium, m1.large and m1.xlarge, respectively). The left side of

this figure represents a scenario when 3 virtual machines of 3 different applications

are collocating on a single server PM1. We assume that the application 1 is dealing

with a load peak: it requires an additional 500MB of memory.

If this is a conventional IaaS, i.e. the IaaS provider offers fixed-size virtual ma-

chines, this application will need to allocate another virtual machine for its resource

requirement. Since the smallest instance type takes 1.7GB of memory, the provider

must start a new physical machine, PM2, for this allocation (figure 3.4, PM1a and

PM2). As a result, PM1a’s 1GB RAM free is unable to be used, leaving a resource

hole in PM1a. Additionally, a new server must be switched on and consumes energy.

On the other hand, if this IaaS provider offers elastic virtual machines, he can use

the remaining 1GB of free memory for this resource requirement: a resize of virtual

machine of this application, from 7.5GB to 8GB, is enough to meet the application’s

needs (PM1b). In this case, the provider does not need to start a new server to
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Figure 3.5: Multiple Instances of the same Application running on the same PM

after a Migration

satisfy the customer’s request, and his physical resource is more effectively used:

both resource and power is not wasted.

Remaining Issues

Although elastic virtual machine bring improvements for both actors like dis-

cussed in the previous section, they do not completely solve the problems of resource

holes and performance overhead when being used in cloud infrastructures.

Resource holes. There exists situations in which elastic virtual machine as a

sole solution cannot optimally fill resource holes. We can reference to figure 3.2 as

an example. In this scenario, PM1, PM2 and PM3 host four elastic virtual machines

for four different applications. Although total available memory of PM1 and PM2

(11GB) are enough for the total need of VM4 (10GB), the provider cannot use

these resources. A solution to fill this resource hole is to split VM4 into VM4a and

VM4b. This shows an opportunity for the provider to ensure server consolidation by

migrating VM4a and VM4b to PM1 and PM2 respectively, filling these remaining

holes in his infrastructure. Elastic virtual machine alone is not capable of splitting

virtual machines. The lack of ability to split virtual machines prevents the provider

from further defragmenting his infrastructure.

Performance overhead. Similarly, elastic virtual machine alone is not enough

for minimizing performance overhead. Naturally, the provider uses virtual machine

migration to consolidate his servers and improve infrastructure’s utilization rate.
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The migration process can result in non-optimal virtual machine placement: there

are possibilities that the customer’s virtual machines of the same tier are running

on the same physical server. Figure 3.5 shows an example of this situation, when

a virtual machine of the application 2 is migrated from PM2 to PM1, so that the

provider can shutdown or suspend PM2. This placement faces an application’s

performance overhead for the application, which could be solved by merging these

two small virtual machines (3GB each) into a bigger one (6GB). However, this merge

cannot be done with elastic virtual machines only as the customer is not aware of

the fact that the 2 virtual machines got collocated, and the provider is not aware

that the 2 virtual machines belong to the same tier. Note that figure 3.5 is different

from figure 3.3: the former shows the collocation problem with a virtual machine

migration (triggered by the provider) while the latter shows the same problem but

with a virtual machine allocation (triggered by the customer). The lack of ability to

merge virtual machines reduces the chances to optimize application’s performance

for the customer.

The missing point in this situation is the collaboration of the two cloud actors.

The next section describes our approach to use elastic virtual machine with the

cooperation of two cloud actors so that an optimal resource management is achieved,

in terms of reducing resource holes and performance overhead.
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3.3 Cooperative IaaS

The previous sections discussed the problems of resource holes and performance

overheads, caused by fixed size virtual machines and uncoordinated resource man-

agement in most current IaaS. To resolve these issues, both cloud actors need to

share their resource management knowledge to each other. Several methods can be

applied to exploit the advantages of sharing knowledge between the actors. This sec-

tion proposes an approach to improve resource usage and application performance

by introducing the notion of cooperative IaaS with the ability to split and merge

virtual machines.

After the approach description, we then make a comparison to study the simi-

larities and differences between a cooperative IaaS and a traditional IaaS or a PaaS,

which are the most two popular cloud models being provided currently. Various

points of view of the cooperative IaaS are also discussed to have better perspectives

about this work.

3.3.1 Approach overview

Most conventional IaaS systems work similar to figure 3.6. The customer has

his own application manager (AppManager), while the provider has his infrastruc-

ture manager (IaaSManager), providing and managing fixed-size virtual machines.

The AppManager can invoke services from the IaaSManager with various types

of API calls, provided by the provider. The most popular calls include: allocate,

deallocate, start, restart or stop virtual machines. Most providers also offer APIs

to reconfigure a virtual machine (adding or removing resources) when it is in the
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stopped state, but using them causes unwanted service breakage to the customer:

in order to resize a virtual machine, the customer needs to stop all running services,

stop the virtual machine, resize, start, wait for it being ready and finally resume

all services. The cloud API requests are usually implemented as RESTful API with

HTTP or HTTPS as the protocol and JSON/XML for resource representation. As

a result, the AppManager can access the cloud APIs from either inside or outside

of the cloud. In current IaaS systems, the provider usually does not send any noti-

fications about the infrastructure changes to the customer, e.g. virtual machines of

the customer have been migrated from one machine to another machine. Hosts are

transparent for the customer.

Unlike the traditional counterpart, we propose a cooperative IaaS with the

insistence on sharing knowledge about applications and virtual machines between

the two actors (figure 3.7), in order to improve mutual benefit and raise possibilities

to improve resource management, particularly:

• The customer provides information about his application (workload charac-

teristics, tiers, etc) to the provider; and

• The provider shares the knowledge about the placement of the allocated

virtual machines to the customer.

In case of a multi-tier application, the shared knowledge includes tier information

(which application instances are in each tier, this kind of information is typically

not shared in a conventional IaaS). In our cooperative IaaS, once the information

about application tier is shared, the provider can propose to split or to merge virtual

machines to the customer at runtime, based on the current virtual machine place-

ment. Splitting and merging virtual machines can help to further reduce resource

holes and performance overheads, as concluded in the previous section.
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In our cooperative IaaS, the resource management policy shifts the decision to add

or remove virtual machines from the customer to the provider. That means instead

of requesting the provider to allocate or deallocate individual virtual machines, the

customer only needs to request the total computing power (amount of virtual CPU

cores, amount of memory, etc.) that he really needs. According to these required

parameters, the IaaSManager automatically decides how many virtual machines will

be allocated and how big each virtual machine will be. Based on the actual placement

and size of the application’s virtual machines at runtime, the IaaSManager either

scales the application tier horizontally (adding/removing more virtual machines),

vertically (increasing/decreasing size of the existing virtual machines), or both. With

the support of elastic virtual machines, this behavior brings much more flexibility in

terms of resource management to the provider and manageability to the customer:

• The provider is able to make decision about when to allocate, deallocate,

relocate and resize the virtual machines at runtime. This ability helps to

improve the utilization rate of the infrastructure. Note that, the elasticity of

virtual machines is important and is well used in the cooperative IaaS, unlike

in a conventional IaaS where fixed size virtual machines are used.

• The customer is only responsible for requesting changes to the resources

associated with the global tier, and deploying application instances to his allo-

cated virtual machines. If the application has multiple tiers, he also needs to

reconfigure his load balancer upon virtual machine allocation and deallocation.

Note that the cooperation of these two actors is optional. That means our pro-

posed cooperative policy has backward compatibility and is able to work as a legacy

resource management policy, in which the customer makes requests for allocating

and deallocating virtual machines at runtime, and the provider does not create any

notification about his virtual machine’s relocation or resize to the customer. In this

case, knowledge is not shared, and there is no collaboration between the two actors.

This behavior is the same with most traditional IaaS.

In a cooperative IaaS, the two actors need to have a bi-directional channel to

communicate with each other (figure 3.8). This channel is used for transmitting

customer’s requests to the provider (e.g. quota change for a tier), customer’s notifi-

cations to the provider (e.g. an application tier has finished undeployment, so that

the IaaS can stop the virtual machine), provider’s notifications to the customer (e.g.

a virtual machine’s reconfiguration, resize, or started/stopped), etc. The two actors

also need a common protocol and communication API for requests and responses.

The communication channel and protocol will be described later in chapter 6.
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Figure 3.8: Communication Channel in a Cooperative IaaS

To summarize, a cooperative IaaS lets the customer decide the required amount

of computing resources for his application. The provider is then responsible for or-

ganizing a suitable set of dynamic-size virtual machines, so that they satisfy the

demanded resources. In order to do that, the two actors need to have a close collab-

oration.

3.3.2 Characteristics

Previous sections showed the importance of the cooperative resource management

policy by raising two main problems: resource holes and performance overhead. The

cooperation policy proposed in section 3.3.1 has the following characteristics:

• Mutual Benefit. The first and foremost goal of the policy is to bring benefits

to both cloud actors. The cooperation policy must be able to improve benefits

in terms of performance and resource utilization ratio: the provider helps the

customer to lower system overhead by merging virtual machines, while the

provider can reduce his physical resource usage with the support from the

customer with the agreement for splitting virtual machines. Additionally, the

customer has simplicity in resource management (by focusing on managing

his application) while still using pay-as-you-go billing model. On the other

hand, the provider has flexibility in determining virtual machine size and their

placement, in order to filling the resource holes. As a result, he can lower price

for the customer and be more competitive.

• Fine-grain Resources. The cooperative resource management system, as

discussed above, takes the advantages of dynamically resizing virtual machines.

This ability provides a finer-grain resource management to the customer than
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the traditional virtual machine’s allocate-deallocate mechanism, and allows the

physical resource to be better used.

Additionally, our implementation of a cooperative resource management system

is expected to have the following characteristics:

• Modularity. The cooperative resource manager is flexible and extensible for

both actors at runtime: its functionality can easily be added and removed by

reloading the modules. Modularity ensures that the policy can be customized

according to the needs of each actor. Modularity also enables the developers on

both sides to implement and reuse their components effectively. For example,

the provider can replace his consolidation manager module at runtime, to

have a better consolidation algorithm, without the needs of a whole system’s

redeployment.

• Adaptability is an important characteristic to ensure that the policy can be

used in various environments. There exists many hypervisors available for the

provider: VMware ESXi, XenServer, Microsoft Hyper-V, KVM, OpenVZ, etc.

Additionally, the customer’s application can range from typical multi-tiered

web applications to high performance computing applications. The coopera-

tion policy should be adaptable in order to fit various types of hypervisor (of

the provider) and application (of the customer) architecture. This ensures that

the policy can be widely implemented and bring benefit to as many scenarios

as possible.

3.3.3 Comparison with a conventional IaaS or a PaaS

After the description of the cooperation policy in the previous section, we high-

light the similarities and differences between a cooperative IaaS with a traditional

IaaS or a PaaS (figure 3.9). Notice that our proposal is in a form of resource manage-

ment policy, which is an extension of a traditional IaaS. In order to be implemented

in a IaaS, the resource management behaviors of both customer and provider need

to be extended.

When compared with a conventional IaaS, it is clear that a cooperative IaaS is

at a higher level in terms of resource management abstraction. The customer is not

responsible for managing the virtual machines anymore: he is provided with a set of

virtual machines satisfying his desired computing power, and is responsible for han-

dling the deployment, configuration, execution and undeployment of the application

Cooperative Resource Management in the Cloud



3.3. COOPERATIVE IAAS 41

IaaS PaaS

Application

Databases

Security

Virtual Machine

Storage

Networking

Hypervisor

Servers

Application

Databases

Security

Virtual Machine

Storage

Networking

Hypervisor

Servers

Level of Control

Level of Abstraction

Managed by
Customer

Managed by
Provider

Cooperative IaaS

Application

Databases

Security

Virtual Machine

Storage

Networking

Hypervisor

Servers

Figure 3.9: Comparison of a cooperative IaaS with traditional IaaS and PaaS

instances on this set. All management tasks regarding virtual machine placement

are handled by the provider. These tasks include allocating, deallocating, migrating,

resizing, splitting, merging virtual machines. Since the provider is the one manag-

ing both physical and virtual resources (servers and virtual machines), he has the

required knowledge for optimizing resource usage. The missing piece of knowledge

in resource management in the traditional IaaS is the placement and groups of tier

instances.

This separation improves the dedication of each actor in resource management,

increasing the effectiveness of resource management, in terms of reducing perfor-

mance overhead and power consumption, as well as improving physical resource

usage. The efficiency will be better analyzed in chapter 7.

A conventional IaaS also supports a tier notion, but in a different term than a

cooperative one’s. For example, Windows Azure has the definition of Availability

Sets, and Amazon EC2 has Auto Scaling Group. These group notions provide the

ability to automatically scale the group by actively monitoring the running instances’

loads in the group. This group notion is different than the one’s in a cooperative

IaaS, in these terms:

• The virtual machines containing application instances in a conventional IaaS

group must be pre-deployed, pre-configured and ready for startup. A coop-

erative IaaS does not need them to be ready, because they will be deployed,

configured and added to application tier at runtime by the customer. This

behavior is true on-demand resource allocation on both sides.
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• The tier groups in a conventional IaaS are limited in size. They cannot be

expanded over a number of pre-configured virtual machines. In contrast, a

cooperative IaaS has virtually unlimited size for any tier, because additional

virtual machines will be created by the provider, then instances will be de-

ployed and configured by the customer.

Another major difference between a conventional IaaS and a cooperative IaaS

is the usage of elastic virtual machines. Most traditional IaaS providers (Amazon,

Google, Microsoft, Rackspace, etc) do not offer elastic virtual machines. These

offered virtual machines are grouped into different instance types to support wide

range of customer’s needs. In contrast, our cooperative IaaS relies on elastic virtual

machines to allow merges and splits.

On the other hand, similar to a conventional PaaS, the cooperative IaaS is also

based on a IaaS. Most current PaaS cloud platforms are based on a self-managed

or public IaaS. This frees the PaaS manager from having the complication of vir-

tual machine management, so that he can focus on managing the platform with its

services. Additionally, the notion of virtual machine is well hidden in a PaaS: the

customer does not have any knowledge about the virtual machine that his applica-

tion is running on. On the other side, the cooperative IaaS is also based on a IaaS

with the extension of resource management policy, customer-provider communica-

tion channel and protocol, and takes care the virtual machine management for the

customer.

However, the main difference between a cooperative IaaS and a PaaS is the

amount of offered services. A cooperative IaaS provides much less services than a

traditional PaaS does: it does not provide to the customer any application design,

development environment, database, cross instance messaging services, security poli-

cies, etc. Because of these services, the customer in a PaaS has more vendor lock-in

than one in a (cooperative) IaaS. The more provided services, the more dependency

the customer has. As a result, substantial switching cost needs to be taken when he

wants to change to another provider. In contrast, customer in a cooperative IaaS

is provided with less services and has more freedom. He is still free to develop his

application on any software development platform, deploy it in the IaaS, manage

and undeploy as he wants, similar to a conventional IaaS.

A cooperative IaaS can be seen with various point of views. Firstly and pri-

marily, it can be considered as an extension of IaaS, like analyzed above. Secondly,

it can be viewed as a hybrid IaaS-PaaS model. A cooperative IaaS provides a set

of small platform services, so that the customer can develop his application with-

out worrying about the virtual machine placement and allocation. In this case, the
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platform services include customer-provider communication and automatic virtual

machine management.

Additionally, a cooperative IaaS can be considered as serving a set of distrib-

uted virtual machines (DVM). Each application tier (each tier consists of a set of

instances) is represented by a distributed virtual machine. The customer sees his

whole tier as a logical and distributed virtual machine. In this view, each logical

virtual machine has virtually unlimited amount of resources (CPU, memory, etc),

and can be resized dynamically at anytime. The customer only needs to specify the

desired amount of resources, and the provider will organize this distributed virtual

machine internally as long as the resource constraints are met. From the distributed

virtual machine point of view, the J2EE example in the previous section (figure 3.1)

can be seen as an application with three distributed virtual machines: one DVM for

Apache, one DVM for Tomcat and another DVM for MySQL.

3.4 Synthesis

In this chapter, we discussed the problem of resource holes and performance

overheads in IaaS clouds. We analyzed this problem with both fixed-size and elastic

virtual machines. We studied several scenarios to convince that using elastic virtual

machines is a step forward from its fixed-size counterpart. However, elastic virtual

machines alone do not fully minimize resource holes and performance overheads.

We then proposed a new direction with cooperative resource management in a IaaS.

This so-called cooperative IaaS extensively uses the dynamic capability (or elasticity)

of virtual machines, along with resource management awareness from both actors

in the cloud, to achieve better performance and power save. The communication

between the two actors is transmitted by a bi-directional communication channel.

The cooperative IaaS stands between a traditional IaaS and a PaaS in terms of level

of controls and level of abstractions.

In the next chapter, we study other existing research works having the same goal

addressed in this thesis: achieving further optimization of performance and power

consumption. This is to better compare our approach with current works in the

research community, in order to have a clear picture of our work in the literature.
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This thesis emphasizes on the improvement of performance and reduction of

power consumption in cloud infrastructure, with the combination of a cooperative

resource management policy and elastic virtual machines. We proposed our

approach to use this combination in the previous chapter: we attempt to exploit the

benefit of splitting and merging virtual machines. We also reviewed our direction

with several points of view (IaaS extension, hybrid PaaS-IaaS and distributed virtual

machine) so that we have better perspectives for our research work.

This chapter gives an overview of the related work from the research community’s

perspectives, mainly on two sides: resource management with fixed size virtual ma-

chines and the research direction of elastic virtual machines. According to our work’s

characteristics that we described in the previous chapter, we consider each related

work as a resource management system with the following criteria:
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• Server Consolidation: the capability to ensure that physical servers are well

used, resulting in energy saving for the provider.

• Horizontal Scaling: the ability to add or remove application instances to deal

with fluctuation of workload, ensuring application performance and reducing

cost for the customer.

• Vertical Scaling: the ability to dynamically change virtual machine’s size at

runtime, further ensuring application performance and minimizing cost for the

customer.

• Cooperation: the collaboration between the two actors of the cloud to achieve

both better performance and power saving. Note that this cooperation does is

limited to splits and merges of virtual machines.

4.1 Resource Management with Static Virtual Ma-

chines

The first category of work we consider in the literature is cloud resource manage-

ment policies with fixed size virtual machines. Most research works do not consider

the IaaS allowing customers to resize their virtual machines in running state. This

fact is a limitation of IaaS providers: the customers are not provided with elastic

virtual machines.

4.1.1 Traditional Resource Management

4.1.1.1 The Customer Side

Most customer’s side resource management policies are on-demand resource pro-

visioning and allocation [23]. Replication is currently the most widely used method

for scaling the application according to the runtime load. Research work in this

direction focuses on monitoring, allocating and distributing the customer’s appli-

cation one the provided virtual machines [25]. Algorithms are proposed to have

better prediction of runtime workload [35, 47] and better allocation of virtual ma-

chines [24, 45, 39]. This direction has two main goals:
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• Performance. Ensuring that the application has enough computing power

for maintaining its performance is one of the most critical factors affecting the

resource management policy on the customer side.

• Minimize VM Usage. This goal is to minimize cost for the customer. The

less allocated and unused resources, the less the customer has to pay.

Automated service provisioning is where many research works concentrate on. It

allows the customer to reach the two above goals [56]. The resource management

policy on the customer side needs to take into account various aspects during this

process. For example, the application manager may need to consider virtual machine

boot time, because during boot time of a new virtual machine, another virtual

machine may be released and be ready for another use. Therefore, an allocation for

a new virtual machine is wasted in this case.

Authors at Florida International University and Delft University of Technology,

with their work [51] in 2012, focused on allocating virtual machines and deploying

application instances on those virtual machines in a cloud. This work concentrates

on jointly considering both policies (allocating and deploying) at the same time, in

the customer’s resource management task and evaluating them using their system

called SkyMark. The first policy is explained as the task for acquiring or releasing

the resources based on the actual needs, only when, where, and for how long they

are needed. The resource can be allocated according to the requirements of the

workload. The later specifies which application instance will be running on which

virtual machine in the pool of allocated resources. This policy needs to take into

account delays during the allocation process, issued by the IaaS provider, including

time to select, lease-and-boot, and release a VM instance.

The authors described eight virtual machine allocation policies, including both

static and dynamic ones. Most of the dynamic policies are based on a generic On-

Demand one: a new virtual machine is requested for each job that cannot be assigned

to a previously-allocated resource. Additionally, four policies for application instance

placements are described, mostly based on the traditional First-Come, First-Served

policy. Throughout the evaluations, the authors claimed that these policies achieve

better performance and cost to the customer.

One main contribution of this work is to have a clear separation of resource

management tasks on the customer side: provision and allocation. The experi-

ments, partly performed on EC2, evaluate the effectiveness of each pair of provision

and allocation policy. The separation of resource management tasks shows that the

customer should take into account his workload characteristics to achieve better per-
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formance and cost efficiency. The authors claimed that informed allocation policies

achieve better performance than uninformed counterparts. To summarize:

– Server Consolidation: relies on the cloud provider.

– Horizontal Scaling: both static and dynamic allocation of application in-

stances depending on the experiment scenario.

– Vertical Scaling: only consider fixed size virtual machine.

– Cooperation: single-sided (customer) resource management. As a result,

there is no cooperation proposed between the customer and the provider.

Another work [30], by authors at A*STAR Institute of High Performance Com-

puting in 2011, proposes an extensible framework for On-Demand provisioning and

adaptation in a IaaS infrastructure. The proposed framework is named CREATE

(Cloud REsource provisioning and AdapTation framEwork). The authors pro-

posed a set of algorithms for resource adaptation, dealing with informed provision-

ing decisions to adapt with various types of workload. The framework prototype is

implemented as a web-service, allowing users to interact with different public cloud

providers as well as local resource managers (or private clouds). The objective of the

framework is to evaluate the proposed algorithms for managing provided resource

sets (RSSs).

The framework is composed of various components for easy flexibility and exten-

sibility. The main components include: RSS Monitoring and Management Service

(RMM), RSSs Adaptation Service (RA) and Cloud Clustering Service (CC). At the

lowest level, RMM is responsible for managing the configuration and gathering infor-

mation regarding the resource and workload of a single RSS. RA is at a higher level

of RMM: it manages multiple RSSs at the same time by communicating with the

corresponding RMMs. According to the gathered information (resource and work-

load), RA executes the associated algorithms (6 provided in the paper) to adapt the

provisioning decisions. These decisions are then performed by CC. CC is responsible

for interacting with the cloud providers or the local resource managers, and act as an

abstract layer on top of the cloud providers. Additionally, the algorithms described

in [30] take into account various factors for making informed provisioning decisions,

including location parameters, resource provisioning overhead, etc.

A noticeable contribution of this work is proposed in the CC: an abstraction layer

to interact with various cloud providers. This layer allows the customer to work

with multiple providers without worrying about the complexities and differences

among them, and in some ways helps him to be resistant from vendor lock-in. Our

implementation of cooperation resource management system has a similar structure:
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intermediate components for interacting with cloud providers. Additionally, the

authors should have also considered elastic virtual machines in their CC layer.

To conclude about CREATE with our mentioned characteristics:

– Server Consolidation: relies on the cloud provider.

– Horizontal Scaling: CREATE supports dynamic allocation of application

instances based on the OnDemand policy.

– Vertical Scaling: CREATE does not use elastic virtual machines for verti-

cally scaling up application instances.

– Cooperation: similar to SkyMark, CREATE is a single-sided resource man-

agement system. There is no cooperation between the customer and provider.

4.1.1.2 The Provider Side

In contrast with the customer side, research work on the provider side mostly

focuses on (1) size of resource slices, i.e. provided virtual machine’s size; or

(2) virtual machine placement, i.e. allocation and migration of virtual machines

among physical servers to improve infrastructure utilization ratio (note that this sec-

tion only considers static-size virtual machines). Various algorithms are proposed

to solve the virtual machine packing problem [20, 43], taking into account various

factors like real resource usage, virtual machine loads, etc. Because of these factors,

the process of making a migration plan may take a long time. There exists also pro-

totypes of the multiple-level resource managers for the IaaS, which will be discussed

later in section 4.1.2.

Resource Granularity: Small or Large Pieces of Resource

Many large IaaS (Google Compute Engine [5], Amazon EC2 [1], Windows Azure [12],

HP Public Cloud [7], etc) offer various types of virtual machines (called instance

types). Each type has a set of predefined characteristics: number of CPU cores,

amount of memory, size of storage, network bandwidth, etc. The customer needs to

select the best type to fit with his resource requirement before each virtual machine

allocation. From the provider’s point of view, his virtual machine packing algo-

rithms have all predefined values (resource sizes) in all resource dimensions (CPU,

memory, storage, network). As a result, offering resources with instance types poses

less complexity in resource management tasks for the provider. The optimization

algorithms for placing and migrating fixed-size virtual machines with instance types

are therefore less complicated and executes faster.
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Recent observations of IaaS trends by the authors at the Israel Institute of Tech-

nology in 2012 found that the model to provide fixed instance types will eventually

change to flexible ones [19]. The authors called this model Resource-as-a-Service.

CloudSigma1 or DimensionData2 are two popular provider examples of this

trend. Instead of providing fixed-size instances, the customer can choose the de-

sired resource size for his virtual machines. The flexibility in specifications includes

how many CPU cores, how much memory, how big is the storage, etc. that the

customer wants. The customer, after choosing the required virtual machine char-

acteristics (which is not bound to any instance types), has an exact price per hour

that he will need to pay for the desired virtual machine. This method brings more

flexibility to the customer when choosing the desired resources than a traditional

IaaS.

Note that, this flexibility allows the customer to specify their requirements at

allocation time and not at runtime. This is one step in the transition between fixed-

size virtual machines and elastic virtual machines. Most current IaaS providers use

virtual machine as a scalability unit: they currently do not support elastic virtual

machines (which can be resized at runtime), limiting the customer from dynamically

resizing their virtual machines on the fly according to their needs [27]. IaaS providers

should take one step further by offering fully elastic virtual machines to customers.

We analyze CloudSigma’s and DimensionData’s characteristics as follows.

– Horizontal Scaling: being the IaaS providers, CloudSigma and Dimension-

Data do not prevent the customer from scaling his application.

– Vertical Scaling: Elastic virtual machine is not allowed in these IaaS. Cus-

tomers can specify their virtual machine size at the beginning of resource

allocation but not at runtime.

– Cooperation: These two providers have a set of IaaS APIs provided to the

customer. However, there is still no cooperation similar to our proposal, espe-

cially upcalls.

Server Consolidation with Virtual Machine Migration

As previously discussed in section 2.3.1, the provider dynamically migrates his

virtual machines into as few physical servers as possible, as long as the SLA is satis-

fied. Various algorithms are proposed for having the best virtual machine placement

with different constraints. Actual CPU load and memory usage are among the most

important ones in these algorithms.

1http://cloudsigma.com
2http://dimensiondata.com
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Recent work by authors at University of Southern California in 2013 [37] considers

server consolidation as a Bin Packing Problem (BPP). This is a complicated problem

with multi-dimensional bin packing vectors (migration time, migration cost, failure,

virtual machine sizes, resource types, placement constraints, etc.), and is a NP-Hard

problem. Several heuristic techniques are proposed to reduce the time of execution

to find the best possible result as migration plan.

FINAL [37] proposes a two-level consolidation system. This system consists of

two distinct resource managers: the global and local managers. Due to the nature

of a hosting centers that consist of a set of connected clusters, the global manager

assigns the virtual machines to a cluster first. The main objective of this work is

to minimize the total resource usage of cluster, defined as a sum of used resource,

as a means to minimize the cost. The global manager in this work uses an FFD-

based algorithm, namely VM2C (VM-to-cluster), taking into account both unrelated

and correlated virtual machines, to select an appropriate cluster to assign the virtual

machines. The local resource manager then deploys the assigned virtual machines on

physical servers in the cluster. The authors proposed an algorithm (called VM2PM,

or VM-to-PM) to achieve balanced resource allocation: the local manager deploys

the assigned virtual machine into a physical server for which the remaining resource

is the most similar with the being-considered virtual machine. This algorithm is

basically the same as the traditional Best Fit Decreasing (BFD) solution. FINAL is

described as the combination of VM2C and VM2PM.

This work clearly divides resource management tasks into two level: data-center

level and cluster level. By dividing into two subproblems, the author achieved better

time and cost for the virtual machine placement task. Like previous work, the

author should also take into consideration elastic virtual machines. To summarize,

FINAL [37] has the following characteristics:

– Server Consolidation: Taking into account various input constraints, con-

sider server consolidation as the main goal. Additionally, FINAL is a two-level

consolidation system.

– Horizontal Scaling is not considered in these work.

– Vertical Scaling is also not considered, as they focus on computing virtual

machine’s migration plans on the provider side with fixed size virtual machines.

– Cooperation is not taken into account (only server consolidation).

Another notable work related to server consolidation service for a IaaS provider

is described in [32] by the authors in Grenoble Informatics Laboratory and École

Mines de Nantes. Based on Entropy [36], this work extends the elasticity of the

resource manager. Entropy itself is a cluster resource manager, handling all the
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deployment and migration decisions in a cluster. It takes a set of input configura-

tions (infrastructure, virtual machine sizes, physical server sizes, load and memory

capacity of each, etc) and other constraints from the administrators to minimize the

cloud’s energy consumption and computes a migration plan that satisfies all pro-

vided constraints. This process can be executed periodically or by request. Because

of its reliance on a constraint solver, Entropy usually takes time to solve the virtual

machine packing and migrating problem, especially with a large number of virtual

machines and physical nodes.

The authors in [32] deal with this problem and increase the elasticity of Entropy

by organizing a two-level Entropy system, with an Entropy Server and a set of

Entropy Workers. Each Entropy instance is virtualized, i.e. put in a virtual machine.

This work includes partitioning a cluster or a cloud infrastructure into random groups

(each is managed by an Entropy Worker), and gradually starting or stopping Entropy

Workers to maintain elasticity of the consolidation system. The authors claim that

this two-layer Entropy architecture brings a significant performance gain and less

error rates over traditional static single/multiple Entropy systems.

One strong point of this work is the ability to deal with different numbers of

virtual machines by dynamically adding or removing Entropy instances. This phi-

losophy is similar to dynamic application sizing at the application level. The author

should also consider using elastic virtual machines for Entropy instances to further

improve elasticity and efficiency of the workers for consolidation service .

The following characteristics can be inferred from this work:

– Server Consolidation is considered as the main goal. Elastic Entropy en-

sures that the consolidation service is provided with enough computing capa-

bility to compute the migration plan with less errors.

– Horizontal Scaling is not considered in this work, because this system acts

as a consolidation service on the provider side.

– Vertical Scaling is also not taken into account: only fixed size virtual ma-

chines is supported.

– Cooperation is not considered. Elastic Entropy is a single-sided resource

management system.

4.1.2 Multi-Level Resource Management

In a real world scenario, both actors naturally implement their own resource

management systems to reach their goals of minimizing operation cost (virtual ma-
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chine and server costs). As previously discussed, multi-level resource management

systems have better performance and less wasted resources. This section investigates

existing research works in this direction.

4.1.2.1 Uncoordinated Policies

This situation most commonly happens in current IaaS clouds. In this scenario,

both the customer and the provider have their own resource management systems,

but they do not work cooperatively. The work in the literature in this direction does

not expose the close relationship between these two actors.

Researchers at National Technical University of Athens and Bell Laboratories ex-

amine a slightly coordinated (although not fully cooperative) resource management

policy in a cloud infrastructure in their work [41]. The authors describe a model to

coordinate different resource management policies from both cloud actors’ point of

views, in order to provide an elastic cloud with optimum allocation for distributed

services on virtualized resources. The optimization model takes into account var-

ious factors like trust, eco-efficiency and costs. The proposed approach allows the

customer to specify his resource management constraints. These constraints include

computing capacity, load thresholds for each host and for each subnet before an allo-

cation of a new virtual machine, etc. The authors also describe a set of affinity rules

for constraining virtual machine’s collocation in the IaaS: a component or a service

must be located in the same physical machine or same subnet. The authors claimed

that this model allows an efficient allocation of services on virtualized resources.

One important difference compared to other works above is that this research

work allows the customer to provide virtual machine collocation constraints to the

provider, which is a form of knowledge sharing. However this type of knowledge

sharing is done in one direction (from the customer to the provider). The author

should have investigated knowledge sharing in the opposite direction. On the other

hand, to have a better resource allocation, this work should also consider elastic

virtual machines on the provider side when growing and shrinking the application.

We summarize this work according to our criteria as follows:

– Server Consolidation is not explained. The authors do not mention about

virtual machine migration or server consolidation on the provider side.

– Horizontal Scaling is done at the customer size with application’s replicas.

– Vertical Scaling is not used, only fixed-size virtual machines.

– Cooperation is slightly more detailed than previous works with affinity rules.
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Figure 4.1: Relationship between Local Decision Module and Global Decision Mod-

ule [44]

4.1.2.2 Cooperative Policies

A cooperative policy, like previously described, takes both actors into account

while doing resource management tasks. This behavior insists on the knowledge

sharing between these actors in order to have a mutual benefit. Note that the

related work about cooperative resource management policies in this section is still

with fixed-size virtual machines. Dynamic-size (or elastic) virtual machine will be

discussed in section 4.2.

Researchers at University of Nantes described their research work closely-related

to ours about knowledge sharing in two level resource management in [44]. The

authors proposed an autonomic resource management system to tackle with the

requirements of dynamic provisioning and placement of virtual machines, taking

both application level SLA and resource cost into account; and to support various

types of applications and workloads. Globally, the authors clearly separate two levels

of resource management: Local Decision Module and the Global Decision Module

(similar to our AppManager and IaaSManager , respectively, as described in 3.3.1).

This architecture is illustrated on figure 4.1.

The Local Decision Module is responsible for managing a single application en-

vironment (AE). Each LDM is application-specific and is associated with each AE

at runtime. According to the metrics gathered by the monitoring probes, the LDM

evaluates the current system state and makes decision to allocate or release virtual

machines, using predefined utility functions. These functions (1) transform system

load and other metrics to indicators (so-called utility values) and (2) transform re-
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source capability (based on the availably resource, provided by the GDM) to utility

values. Comparing these values, the LDM makes a decision to add or to remove vir-

tual machines to scale the AE accordingly. This behavior is the same as our defined

AppManager , which works at the customer level, that we described in 3.3.1.

On the other hand, the Global Decision Module manages virtual machine al-

location: VM Provisioning (deploying AE onto virtual machines) and VM Packing

(placing virtual machines onto physical servers). The authors consider these mapping

phases as two Constraint Satisfaction Problems. The author solves these problems

by using a Constraint Solver, with a predefined set of constraints. For example,

the first problem (VM provisioning) has a set of requirements for the solver: the

acceptable virtual machine sizes (fixed ones, taken from a set of available instance

types), the maximum number of virtual machines for a specific AE, etc. Similar

to our work, the goal of the VM packing problem in this work is to minimize the

number of active physical servers with minimum migration cost.

These two decision modules works cooperatively with each other. The LDM

makes requests to the GDM to allocate and deallocate virtual machines. The GDM

then notifies the LDMs about virtual machines which have been allocated or deallo-

cated. Similar to previous works, the authors should have also considered elastic

virtual machines. Using them increases the number of cooperation tasks that can

be performed.

This two-level resource management work has the following characteristics:

– Server Consolidation is explained as the packing of virtual machines with

various resource constraints. The selected virtual machines are then migrated

following an optimal migration plan.

– Horizontal Scaling is done at the customer size with application’s replicas.

– Vertical Scaling is not used. This system considers fixed-size virtual ma-

chines only.

– Cooperation is applied but still basic.

Researchers at Chinese Academy of Sciences, Wayne State University and others

proposed their work in 2013 named PhoenixCloud [55], a cooperative resource

provisioning system fairly close with ours. This work’s objective is to minimize

hardware cost. The authors argue that the server cost is the largest share of data

center cost, and most of current research work in the direction to reduce data center

cost is categorized into two types: server consolidation with virtualization, and

statistical multiplexing to predict future loads in order to be able to delay allocations.

The main idea of this work is to share the same used resource among a number of
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applications using statistical data to prioritize given applications in case of load

peaks. The authors also claim that IaaS providers need to take into account the

increasing heterogeneous workloads in terms of different classes of workload.

The idea of this work is to leverage different characteristics of heterogeneous

workloads and use the knowledge about them to improve statistical multiplexing

in the cloud. Each type of workload has its own attributes, such as runtime for

each task in the work load, task’s priority, etc. If the provider can exploit their

complementarity, he can have a better utilization ratio and reduce hardware cost.

The main contribution of this work is to take into account the workload character-

istics (provided by the customer), and to reschedule (or replan) these workloads to

decrease peak resource consumption. Typically, web server has more priority than

queued data analysis jobs: each web request must be responded immediately. In a

case of peak load, the submitted data analysis jobs can be delayed, so that there

are more available resources for the web server to satisfy its workload. As a result,

the authors the IaaS resource pool can be smaller when compared to a traditional,

uncooperative IaaS. This helps to reduce the hardware cost for the IaaS provider.

The system is composed of two main entities: the Common Service Framework

and the Workload Manager. The CSF is responsible for monitoring and managing

resources in the cloud infrastructure, similar to our IaaSManager . The workload

profilers handle incoming requests, schedule the jobs and manage application in-

stances. Its function is the same as our AppManager . From this point of view,

PhoenixCloud is a cooperative, two-level resource management, similar to our

approach.

One important aspect of PhoenixCloud is the need of delaying submitted jobs.

This behavior would need the agreement of the customer. Cooperation can only

be leveraged when two actors see the benefits. We assume that in order to allow

delaying tasks, the customer has lower price for their resource allocation.

We conclude the characteristics of PhoenixCloud before switching to the Elas-

tic Virtual Machine category as follows.

– Server Consolidation. PhoenixCloud does not consider the migrations of

virtual machines to reduce power consumption. It focuses on rescheduling

workloads of the customers.

– Horizontal Scaling is based on the replication of the customer’s applications.

– Vertical Scaling is not applied for PhoenixCloud: it uses fixed-size virtual

machines for the customer’s application replicas.
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– Cooperation is explained as the sharing of workload knowledge between the

customer and the provider.

4.2 Elastic Virtual Machines

The problems of fixed-size virtual machines have been discussed in section 3.1.

This section describes and compares our work with other approaches regarding the

usage of elastic virtual machines in cloud infrastructures. As previously discussed

in section 3.2, elastic virtual machines bring benefits not only to the customer (fine-

grained resource, less performance overhead and more responsiveness) but also to

the provider (less number of virtual machine instances, migrations and less fragmen-

tation). This is usually referred as vertical scaling (or scaling up, in contrast with

scaling out - the action to add more replicas in replicated systems to deal with load

peaks).

Research work [28] (by researchers at Potsdam University in 2011) is one of the

pioneer works in the application of elastic virtual machines in the cloud. The au-

thors propose to use elastic virtual machines as a means of scaling the customer’s

application. By using elastic virtual machines, resource management in a cloud is

more fine-grained than adding or removing application instances in fixed-size virtual

machines (horizontal scaling). In this work, the author claims that scaling up has

more benefits than scaling out: having a wider range of supported applications (can

be applied to any tier), better stability, mitigates SLA violations, no overhead of

booting virtual machine, lower cost and complexity, and most importantly, higher

throughput with less performance overhead. Experiments with elastic virtual ma-

chines in a typical multi-tier application, including a web server tier and a database

tier, confirm this benefit.

Although the resource management policy is not detailed in the original paper,

we classify this work as an uncoordinated two-level resource management with elas-

tic virtual machines, because there can be server consolidation at the IaaS level.

On the customer side, the resource management policy is implemented as a basic

On-Demand one. According to the system load and response time, the AppMan-

ager requests to add or reduce resources to the virtual machine. Upon receiving

these requests, the IaaSManager vertically resizes the virtual machine, by adding or

removing the associated vCPUs.

While showing benefits of elastic virtual machines, this work solely focuses on

vertical scaling. Scaling up is limited because servers do not have unlimited re-
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source. The authors mentioned this problem in the paper. They also confirmed

that this should be better to support both scaling out and scaling up in order to

have both fine grain resource allocation and unlimited amount of resources. Finally,

the resource management policies in this work are uncoordinated: the IaaSManager

simply resizes the virtual machines.

– Server Consolidation. This work does not migrate virtual machines to

ensure server consolidation.

– Horizontal Scaling is not considered.

– Vertical Scaling is the main focus of this work.

– Cooperation is not applied for better performance and power save.

Another recent work [54] in 2013 by researchers at TU-Dresden uses a differ-

ent approach for autonomic resource allocation in a cloud. The authors provide

VScaler, a framework using reinforcement learning (RL) to adapt the resource

allocation policies with its observation from the environment (i.e. the cloud infra-

structure). VScaler scales the application both horizontally and vertically (using

tier replication and elastic virtual machine, respectively). The authors consider the

adaptive policy for resource management as a Markov Decision Process with states,

actions, transaction probabilities and rewards. Additionally, the authors use parallel

learning with assumption to speed up the learning process.

The main difference of VScaler with our work is the single-sided resource man-

agement policy. VScaler focuses only on scaling the application while it does not

have any knowledge about the application being managed. It considers the applica-

tion as a blackbox and captures its workload and other metrics at runtime, by using

a built-in proxy. Based on the gathered information, VScaler makes scaling decision,

either horizontally (replicating application instances) or vertically (adding resources

for an existing virtual machine of this application). From this point of view, this

system is working on the provider side only. As argued previously in the previous

chapter, the author should implement cooperation from both side optimizes resource

usage and application performance.

– Server Consolidation. The author does not mention about server consoli-

dation, only focuses on scaling customer’s application.

– Horizontal Scaling is considered by using tier replication.

– Vertical Scaling is used with elastic virtual machines.

– Cooperation is not also not mentioned because VScaler works on the provider

side only.
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A more matured work is described in [31] by researchers at IBM Research India

in 2012. The authors propose SmartScale, taking into account both horizontal and

vertical scaling in its resource management policy, i.e. by changing the number of

virtual machines and changing the resources assigned to the allocated virtual ma-

chines. The authors claim that SmartScale reduces the total cost of running virtual

machines and outperforms both traditional vertical and horizontal scaling policies.

The combination of these policies brings a challenging problem that SmartScale

must solve at runtime: determining the optimal scaling path and the trade-off of

the corresponding reconfiguration. The authors solve this problem with a two-phase

algorithm: computing the optimal virtual machine sizes and the corresponding ap-

plication’s throughput; and determine the minimum number of instances such that

the total throughput is reached. Note that SmartScale’s scale algorithm also takes

into account the information about the application provided by the customer.

From our point of view, SmartScale should also take into account the information

(tier knowledge) provided by the customer to have a better placement. This work

focuses on application scaling, taking into account reconfiguration cost, and does not

consider server consolidation with virtual machine migration. With these additional

actions, SmartScale can also support splitting and merging virtual machine, further

improving resource management at both sides.

Before summarizing the related works, we conclude the characteristics of SmartScale:

– Server Consolidation. SmartScale does not optimize virtual machine’s

placement.

– Horizontal Scaling is used with tier replicas.

– Vertical Scaling is also used with elastic virtual machine.

– Cooperation is slight, because SmartScale takes the information about the

application as an input parameter for its optimal scaling algorithm

4.3 Synthesis

This chapter summaries the study of related works regarding resource manage-

ment with both fixed-size and elastic virtual machines in the cloud infrastructure

(table 4.1). From this table, we realized that there are very few research works

considering multiple level resource management. Many research works focus

on resource management at only one level. On the provider side, they typically con-

centrate on the placement and migration plan of virtual machines at runtime. On

the customer side, virtual machine provision and allocation/deallocation algorithm
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Consolidation
Scaling

Cooperation
Horizontal Vertical

SkyMark [51] No Static,

Dynamic

No No

CREATE [30] No Yes,

OnDemand

No No

CloudSigma

DimensionData

Not mentioned Not limited Only sized

at creation

No

FINAL [37] Two-Level,

VM2C and

VM2PM

No No No

Elastic

Entropy [32]

Two-Level

Consolidation

No No No

[50] Migration Yes No No

[41] Not mentioned No No Affinity rules

[44] Migration

(constraints)

Replicas No Basic

PhoenixCloud [55] No Replicas No Workload

Knowledge

[28] No No Yes No

VScaler [54] No Replicas Yes No

SmartScale [31] No Replicas Yes Application

Information

for Scaling

Algorithm

Table 4.1: Comparison of the Policies

are the main topic of research. On-Demand and its derivatives are the most widely

used resource management policies at this level.

Few recent researches exploited the elasticity of virtual machine in the cloud.

This is because most large IaaS providers, if not all, do not permit the customer to

resize their allocated virtual machines on the fly. These works show the benefit

of dynamic-size virtual machines over traditional fixed-size ones, mainly in terms of

speed and management cost. No existing work takes into account the full cooperation

of the two cloud actors in combination with elastic virtual machine.

From the general orientation that we described in section 3.3 and this analysis,

our work takes the best factors of two areas, namely cooperative two-level resource

management policy with elastic virtual machine, to achieve the best possible perfor-

mance to the customer and power economy to the provider. The detailed description

of our work will be described in the next chapter.
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Contribution: Cooperation Design
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Our system extensively uses the notion of cooperation calls between the two

managers (AppManagers and IaaSManager). This chapter is dedicated to describ-

ing the specification of major cooperation calls. Furthermore, we also detail our

algorithms to process quota change requests in a cooperative IaaS. We divide the

cooperation calls into two main types: Upcall and Downcall, according to the

direction of the call. A downcall is made from the customer to the provider. An up

call is in the opposite direction, from the provider to the customer.
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5.1 Cooperation Protocol

The cooperation protocol is defined as a sequence of cooperative calls at runtime

to achieve a particular goal. During the design of the protocol we identified the

following main operations:

• Subscription for application tier;

• Modification of the amount of resource (also called quota) for an application

tier, triggered by the AppManager ; and

• Splitting or merging virtual machines associated to an application tier, trig-

gered by the IaaSManager .

This section describes the actions performed by each actor in each operation. An

example of these operations is illustrated in figure 5.1.

5.1.1 Tier Subscription

The first operation of the cooperation resource management policy is to share

the knowledge of the application tiers. The customer initiates the cooperation with

a tier subscription. By subscribing all tiers and providing tier name in subsequent

calls, the AppManager provides the group notion of its application instances to the

IaaSManager . Based on the provided tier notion, the latter can perform certain

tasks at runtime for further tier and virtual machine placement optimization.

Figure 5.1 shows an example of a tier subscription at time a. The IaaSManager

then confirms this subscription with a confirmation upcall “OK” at time b.

5.1.2 Changing Tier Resource

At runtime, based on the actual application needs, the AppManager can request

to modify resources allocated to a specific application tier, either adding resource, or

removing resource. Like previously described in section 3.3, our cooperative resource

management policy uses elastic virtual machines at runtime. As a result, there

are several possible solutions to a single quota modification request. Based on the

actual physical server usage and virtual machine placement, the IaaSManager can
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Figure 5.1: Example of Actions for Subscription and Add Resources

perform: (1) scaling the tier horizontally (adding/removing virtual machines); (2)

scaling the tier vertically (adding/reducing resource to running virtual machines);

or (3) a combination of both (1) and (2). Algorithms for managing application tiers

according to a resource modification request will be detailed in the next section (5.2).

To illustrate the above sequences of cooperation calls, we use figure 5.1 to show 3

different examples of “add quota” operations at runtime for an application tier.

If the modification request can be solved with a vertical scale, the IaaSManager

simply resizes one or several running virtual machines and notifies the AppManager

with an upcall about these scaling actions (figure 5.1, time d). Upon receiving these

notifications, in case of a multi-tiered application, the AppManager reconfigures its

balancer to take into account the new weight of its instances on the resized virtual

machines.

On the other hand, if that modification request for changing tier resource can

be solved with a horizontal scale, the following 3 cooperation calls are performed: a

proposal upcall from the IaaSManager to allocate/deallocate a virtual machine (time

f ), a confirmation downcall from the AppManager (time g) and finally an upcall from

the IaaSManager to notify the AppManager about this allocation/deallocation (time

h). Upon receiving the last notification, if this is an allocation, the AppManager has

access credentials to deploy its application instance on the newly allocated virtual

machine. If this is a multi-tier application, the AppManager needs to add this new

instance into its load balancer.
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Finally, in case of a combination of both horizontal and vertical scaling, the

sequence of cooperation calls is the accumulation of the two above sequences: a pro-

posal upcall from the IaaSManager to allocate/deallocate a virtual machine (time

j ), a confirmation downcall from the AppManager (time k), a notification upcall

about a new virtual machine allocation/deallocation (time l) and another notifica-

tion upcall about resized virtual machines (time m).

5.1.3 Splitting or Merging Tier Instances

At runtime, if the IaaSManager found an opportunity to optimize its physical

resource usage or application performance, it can propose to split a big virtual ma-

chine of an application tier to two smaller ones (in order to fill resource holes), or

propose to merge small virtual machines into a bigger one (in order to reduce vir-

tualization and balancer overhead). Note that, these elastic splits or fusions can be

rejected by the AppManager depending on the customer’s goal. For example, appli-

cation A may need two application instances of the same tier to act as a solution for

fault tolerance, thus merging these two instances is not feasible. Another application

B may need big application instances to process data from large database tables,

requiring a lot of memory. As a consequence, splitting an instance of application B

is not preferred because smaller virtual machines will need to a lot of swap to disk

(which is generally slow) to be able to handle such large memory requirement.

An elastic split of a big virtual machine is explained as the following sequence:

• An allocation of a new virtual machine

• A vertical scale down of the original virtual machine

In contrast, an elastic merge between two virtual machines can be explained as

a sequence of two actions:

• A deallocation of the first virtual machine

• A vertical scale up of the second virtual machine

Based on the above split and merge description, we then define cooperation calls

for splitting and merging virtual machines, along with an example from figure 5.2.

For a cooperative split, the following 5 cooperation calls are performed: a split

proposal upcall from the IaaSManager (time A), a confirmation downcall from the
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Figure 5.2: Example of Actions for Merging and Splitting Virtual Machines

AppManager (time B), a notification upcall from the IaaSManager to notify about

a new virtual machine allocation with its access credentials (time C ), a confirmation

downcall from the AppManager that its tier instance has finished deployment (time

D), and finally a notification upcall from the IaaSManager that the original virtual

machine has been scaled down (time E ). In case of a multi-tier application, like

previously, after performing these calls, the AppManager has to reconfigure its load

balancer.

On the other hand, a cooperative fusion has the following sequence: a fusion

proposal upcall from the IaaSManager with the names of two virtual machines

to be merged (time F ), a confirmation downcall from the AppManager (time G),

a proposal upcall from the IaaSManager to remove either one of the two virtual

machines (time H ), a confirmation downcall from the AppManager after it has

finished undeployment on this virtual machine (time I ), a notification upcall from

the IaaSManager about this virtual machine has been deallocated (time J ), and

finally a notification upcall from the IaaSManager about the first virtual machine

has been scaled up (time K ). The load balancer still needs to be reconfigured in case

of a multi-tier application like previously.

With the above procedures, we have described the major operations and se-

quences in our cooperation protocol. The next section describes our algorithms to

effectively manage resources (or quota) allocated to an application tier.

Cooperative Resource Management in the Cloud



5.2. QUOTA MANAGEMENT 65

5.2 Quota Management

Due to the group notion, the task of managing virtual machines which contain the

whole application tier is shifted from the customer to the provider. While describing

our cooperative IaaS approach in section 3.3, we mentioned that the AppManager

monitors its tier loads and sends requests to change the quota (the size) of the

whole tier. On the other side, the IaaSManager is responsible for the organization

of the virtual machines to fit the required computing power, including the placement

and size of each virtual machine. Upon receiving a downcall to change quota from

the AppManager , according to the actual status of the virtual machine allocation

on servers, the IaaSManager can have multiple choices to serve this request. This

section introduces the algorithm being used in the IaaSManager in order to handle

such requests.

With the following definitions:

• m: number of machines in the server pool

• ψ = {Mj, 0 ≤ j < m}: the set of running servers

• ϕj: remaining resource on Mj

• n: number of allocated virtual machines for a tier

• χ = {Vk, 0 ≤ k < n}: set of running virtual machines for the current tier

• αk: amount of allocated resource for Vk

Based on the amount of resources being modified for an existing tier ∆q (negative

value of ∆q means to reduce quota, and otherwise), we identified four possible

solutions to deal with an increase quota request:

• Vertical scale of an existing virtual machine: the IaaSManager can

add a specific amount of resource ∆q from an existing virtual machine Vk:

αk = αk + ∆q, such that the server containing Vk is free enough (in terms of

available resources) for this vertical scale:

∃k | 0 ≤ k < n, 0 < ∆q ≤ ϕj, Vk ∈Mj (5.1)

The IaaSManager can traverse through its internally-managed list of virtual

machines to find a possible virtual machine for this action. If not found, it

tries the next action (see below).
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• Distribute the required quota change among existing virtual ma-

chines. The IaaSManager tries to split the required quota change ∆q > 0

into p ≤ n smaller sub-quota changes:

∆q =

p−1∑
i=0

δi (5.2)

such that these sub-quota changes can be applied into a set S consisting of p

virtual machines of the same tier:

S = {Vs0 , Vs2 ..., Vsp−1}, S ⊂ χ, 0 ≤ si < n,∀i ∈ [0, p− 1] (5.3)

If it is possible to find such case, the IaaSManager then scales them vertically:

αsi = αsi + δi,∀i ∈ [0, p− 1] (5.4)

to avoid the need of a virtual machine allocation. However, similar to above,

the free-resource constraints must be satisfied:

δi ≤ ϕj, Vsi ∈Mj,∀i ∈ [0, p− 1] (5.5)

• Allocation of a new virtual machine: if ∆q > 0, and two actions above

cannot be performed because of the free-resource constraints (5.1, 5.5), the

IaaSManager creates a virtual machine Vn with αn = ∆q and asks the App-

Manager to deploy an application instance on it.

• Combination of the above actions is the last action in case each single one

above cannot be done. For example, the combination of vertical scale of an

existing virtual machine Vk: αk = αk + δ1 and an allocation of another virtual

machine Vn with αn = δ2, such that δ1+δ2 = ∆q. We prioritize vertical scaling

of one or several virtual machines to avoid adding virtual machines .

In contrast, a reduce quota request (∆q < 0) is easier to handle than above:

• Deallocations of running virtual machines: this action has the highest

priority. The IaaSManager firstly tries to find a virtual machine Vk with

αk ≤ ∆q, and if found, proposes a virtual machine removal to the AppManager .

It repeats this action until there is not any virtual machines which are small

enough to remove.

• Vertical scale of existing virtual machines: The IaaSManager then tries

to reduce resources from the remaining virtual machines allocated to the tier.

Following the above analysis of possible actions to process a quota change request,

we implemented the quota modification algorithms in Algorithm 1, 2 and 3.
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Algorithm 1: Handling quota modification request of the IaaSManager

Input : Tier t

Amount of resources to be changed ∆q

Set of occupied servers ψ = {Mj}
Output: Successfully resized tier

/*Find the set of running virtual machine for tier χ(t) = {Vk}*/
χ = findVm(t);

if ∆q > 0 then
addQuota(t, ∆q, χ, ψ)

else
reduceQuota(t, ∆q, χ, ψ)

Algorithm 2: Reduce quota from a tier

Input : Tier t

Amount of resources to be removed ∆q < 0

Set of running virtual machines χ(t) = {Vk}
Set of occupied servers ψ = {Mj}

Output: Successfully resized tier

/*Sort ascending the list of VM χ by allocated size*/

sortVm(χ);

foreach Vk ∈ χ do

if size(Vk) ≤| ∆q | then

/*Less or equal the requested amount, remove this VM*/

∆q = ∆q − size(Vk);

notify(t, ET_UPCALL_REMOVE_VM, Vk);

free(t, Vk);

else

/*Larger than the requested amount, a reduction is enough*/

notify(t, ET_UPCALL_QUOTA_CHANGED, size(Vk)− | ∆q |);
setSize(Vk, size(Vk)− | ∆q |);
return;

/*Anything left?*/

if ∆q = 0 then

break;
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Algorithm 3: Adding quota to a tier

Input : Tier t

Amount of resources to be added ∆q > 0

Set of running virtual machines χ = {Vk}
Set of occupied servers ψ = {Mj}

Output: Successfully resized tier

/*Sort ascending the list of PM χ by free size*/

sortPmFree(ψ);

/*Try to scale up one VM in a PM with the least free resource*/

foreach Vk ∈ χ do

Mj = findPm(ψ, Vk);

if freeRes(Mj) ≥ ∆q then

setSize(Vk, size(Vk) + ∆q);

notify(t, ET_UPCALL_QUOTA_CHANGED, ∆q);

return;

/*Try to distribute quota among the allocated VMs*/

free = calcTotalPmFreeSize(t, ψ);

if free ≥ ∆q then

qadded = 0;

while qadded < ∆q do

(Vk, δq) = calcSubQuota(t, χ,∆q, qadded);

if δq > 0 then

setSize(Vk, size(Vk) + δq);

qadded = qadded + δq;

else

break;

notify(t, ET_UPCALL_QUOTA_CHANGED, qadded);

if qadded = ∆q then

return;

else

∆q = ∆q − qadded;

/*Scaling up is not enough, need to scale out*/

r = min(∆q,MaxV mSize);

n = allocate(t, r);

notify(t, ET_UPCALL_ADD_VM, n);

if ∆q > r then /* Add recursively the remaining quota */

addQuota(t, ∆q − r, χ, ψ);
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With the described algorithms, we try to minimize the number of virtual machine

allocations and deallocations by attempting to distribute the quota changes to the

running virtual machines. We aim to exploit the elasticity of virtual machines in a

cooperative IaaS, because allocating and deallocating virtual machines are costly in

terms of time and performance. We also use a combination of both vertical scaling

and horizontal scaling when vertical scaling only is not enough to handle quota

modification requests.
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CoopCall
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Sender TargetCommunication Channel

Figure 5.3: Detail of a Cooperation Call

5.3 Cooperation Calls

Previous sections described the protocol and algorithms for resource management

in a cooperative IaaS. In this section we detail the specification of cooperation calls

being used in our cooperative IaaS.

A typical cooperation call is embedded inside an event (events will be detailed

in section 6.1). A cooperation call includes four main attributes: the call id, the

sender, the target, and extra information (figure 5.3). All of these fields will be

serialized and sent through the communication channel. At the destination, data

will be deserialized, parsed and finally processed.

Firstly, the call id field identifies the purpose of this call. For example, a call

with call id ET_DOWNCALL_REGISTER_TIER is to register a tier from the customer to

the IaaS: this call provides the architecture of the application to the IaaS. Another

example of call id is ET_UPCALL_MERGE_VM, used by the provider to propose a fusion

of two virtual machines into a bigger one to the customer. The second important

data of a call is the sender and the target. Each managed application component

in our cooperative resource manager is wrapped inside a specific component called

Wrapper, which will be detailed in the next chapter. The sender and target field

inside the call are the names of the source wrapper and the destination wrapper,

respectively. Finally, the extra information field stores the additional data being

attached to the call. Some examples of this information include the name of the tier

being registered, the amount of quota needed to be added or removed, the name or

IP address of the newly allocated virtual machine, etc. This field is optional, but

most calls use this field to provide supplemental data to the target.

Cooperation calls can be also categorized from another point of view as service

calls. This point of view has 3 kinds of calls: requests, responses and notifications.

A request call is made when a manager (AppManager or IaaSManager) invokes a
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service from the other (ET_DOWNCALL_ADD_VM to create a new virtual machine for

example). The response will be wrapped in another cooperative call (e.g. ET_OK

or ET_ERROR). A notification call is made when an actor announces an action or

proposal to the other (e.g. ET_UPCALL_MERGE_VM). Note that this is another point

of view for cooperation call: an Upcall or a Downcall can be either request, response

or notification.

5.3.1 Upcall

An Upcall is defined as an event passed through the communication channel: the

sender is the IaaSManager , and the target is the AppManager . The upcall is mostly

used for the IaaSManager ’s proposals. Like discussed in section 5.1, we divide upcalls

into three main subcategories: virtual machine allocation proposals, virtual machine

allocation notifications, and proposals for splitting or merging virtual machines. This

section roughly describes the usage and procedures of the major upcalls used in our

system.

5.3.1.1 Proposals of Virtual Machine Allocation

The proposal calls for virtual machine allocation are sent to the AppManager af-

ter the IaaSManager receives a quota change request. Based on the actual allocation

and size of the running virtual machines belonging to the tier, the IaaSManager can

decide either to change quota of one or several existing virtual machines or to allo-

cate/deallocate some more. This sub-category describes the allocation/deallocation

proposal.

ET_UPCALL_ADD_VM is used when the IaaSManager proposes new allocation of a

virtual machine to the AppManager , according to the quota change request from

the latter. After the confirmation (either accept or reject the allocation with ET_OK

or ET_ERROR) the AppManager is then responsible for deploying its application in-

stances onto the newly allocated virtual machine. The ExtraData field contains the

necessary information for the AppManager to access the virtual machine, including

its name, resource specification, IP address and access credentials. Having these

informations, the customer has full responsibility to manage his own application on

this virtual machine.

ET_UPCALL_REMOVE_VM is similar to the previous one, but with the opposite pur-

pose: to propose a removal of virtual machine from the allocated virtual machine
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list (i.e. to deallocate an existing virtual machine). This proposal is to notify the

AppManager that its running instance on this virtual machine should be removed

from the tier. The AppManager , after confirming its decision, detaches the running

instance from the load balancer, waits for its finalization, stops it, clears the deploy-

ment and notifies the IaaSManager that the tier removal has been finished. This

notification allows the later to safely terminate a virtual machine without losing

any requests (if tier replica is smoothly terminated). In this case, the cooperation

improves minimizes request loss during an instance removal with the confirmation

and notifications from both sides.

These two cooperation calls were previously illustrated on figure 5.1, time f and

j.

5.3.1.2 Notifications of Virtual Machine Allocation

This sub-category contains the notification calls from the IaaSManager , to inform

the AppManager about the allocation/deallocation status of a virtual machine, after

this progress is finished.

ET_UPCALL_VM_ADDED is sent to the customer’s AppManager whenever a new

virtual machine is added. This cooperation call is in part of the allocation proposal

series, starting with ET_UPCALL_ADD_VM in the previous section. Upon receiving this

call, the customer has all the necessary information to access the newly allocated

virtual machine to deploy his application instance, and finally add the tier to the

balancer when the deployment is finished. This call was illustrated on figure 5.2,

time C.

ET_UPCALL_VM_REMOVED is generated after a virtual machine has just been de-

allocated (i.e. terminated). This call is to notify the AppManager that the tier

removal process has been completed and was illustrated on figure 5.2, time J.

5.3.1.3 Elasticity Proposals

This sub-category of cooperation call is special when compared with a traditional

IaaS. Like we previously compared in chapter 4, the ability to split or to merge virtual

machine is unique to our system. Other existing works do not take into account

cooperative resource management with elastic virtual machine, thus are unable to

propose split or merge actions to the customer. A merge is proposed to the customer

when two (or more) virtual machines of the same application tier are migrated,

Cooperative Resource Management in the Cloud



5.3. COOPERATION CALLS 73

collocated and sharing the same physical machine. This merge brings benefit to

the customer in terms of performance. On the other hand, a split is proposed to

the customer when the IaaSManager consolidates his cloud infrastructure to reduce

power consumption by turning off a physical server. The split and merge behaviors

can be considered as both vertical and horizontal scaling at the same time.

ET_UPCALL_SPLIT_VM is proposed to the customer when the IaaSManager cal-

culates a better virtual machine placement for server usage optimization. Basically,

a virtual machine split is a combination of a vertical scale of an existing virtual

machine with a horizontal scale of a new one. As a result, the procedure of this

cooperation call is similar to ET_UPCALL_ADD_VM (section 5.3.1.1): a new virtual

machine will be added, the AppManager deploys one more application instance and

links it to the load balancer after finishing deployment. An additional task that

must be performed is the reconfiguration of the load balancer to take into account

the new size of the scaled-down virtual machine.

After the scale-down of the original virtual machine and the creation of a smaller

one, the IaaSManager has more opportunities to reorganize its allocated virtual

machines by migrating them across the server pool to achieve a better hardware

utilization ratio. Because split is important to cooperative resource management,

we summarize the procedure of the split behavior as follows.

• The IaaSManager proposes a cooperative split with ET_UPCALL_SPLIT_VM;

• The AppManager decides to accept or reject, either with ET_OK or ET_ERROR;

• If accepted, the IaaSManager allocates a new virtual machine, deploys a stock

operating system on it;

• The IaaSManager starts the newly allocated virtual machine, waits until it

becomes ready, then notifies the AppManager with ET_UPCALL_VM_ADDED, in-

cluding all access credentials;

• The AppManager deploys his application on the virtual machine using the

received the credentials, then add this instance to the load balancer;

• The AppManager notifies about the success of the deployment with ET_DOWN-

CALL_DEPLOYED

• Finally, the IaaSManager resizes the original virtual machine.

ET_UPCALL_MERGE_VM is opposite to the previous call when the IaaSManager

tries to replace collocated virtual machines with a larger one. This operation is a
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sequence of a horizontal scale and then a vertical scale. This is done by requesting to

deallocate virtual machines and then resizing the remaining one. This procedure is

similar to a ET_UPCALL_REMOVE_VM (section 5.3.1.1), but it also requires an additional

reconfiguration from the load balancer to take into account the new weight of the

scaled-up instance. After a fusion, the application is expected to have a better

performance with less tier instances. Like above, we summary the procedure of a

cooperative merge as follows.

• The IaaSManager proposes a cooperative merge with ET_UPCALL_MERGE_VM.

A list of virtual machine names being merged are passed using the ExtraData

field;

• The AppManager decides to accept or reject this merge, either with ET_OK

or ET_ERROR;

• The AppManager chooses a candidate from the virtual machine list to keep

running after this merge, then removes the rest from the load balancer;

• The AppManager undeploys these application instances and notifies the IaaS-

Manager after it finishes undeployment with ET_DOWNCALL_REMOVE_VM;

• The IaaSManager frees the virtual machines containing the undeployed appli-

cation instances, and scales up the remaining one.

5.3.2 Downcall

Opposite to the upcalls, the downcalls are passed from the AppManager to the

IaaSManager . These calls allow the customer to make requests to change the quota,

application’s tier registration, confirmation for the deployments of application in-

stances, responses of split or merge proposals from the IaaSManager , etc. We divide

the upcalls into two main sub-categories: requests and confirmations.

5.3.2.1 Requests

The request downcalls are made to properly demand services from the IaaS. The

two main calls of this sub-category include tier registration and quota change.

During its initialization, the AppManager registers its tiers to the IaaSManager

using ET_DOWNCALL_REGISTER_TIER (note that one AppManager can handle more
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than one tier). Tier name is put in the ExtraData field. After tier registration, all

subsequent cooperative downcalls need to specify the tier being used. By supplying

these kinds of information, the AppManager allows the IaaSManager to gain more

knowledge about the virtual machines being used in the tier, therefore having better

proposals for tier optimization. When receiving the tier registration downcall, the

IaaSManager saves the tier into an internally-managed tier list, in order to reuse the

tier information later; and responds with another upcall, either ET_OK or ET_ERROR,

accordingly.

Based on the actual workload of the application tiers, the AppManager re-

sizes its allocated resources to satisfy the workload requirement. After determin-

ing the required amount, the AppManager makes a cooperative call with call id

ET_DOWNCALL_CHANGE_QUOTA. The type (CPU, Memory) and amount (number of

vCPUs, fraction of CPU core, MB of memory, etc) of quota change are stored in the

ExtraData field of the call. As discussed in the previous section, based on this amount

of quota change, the IaaSManager can horizontally and/or vertically scale the appli-

cation, with the corresponding upcalls (ET_UPCALL_ADD_VM, ET_UPCALL_REMOVE_VM,

or ET_UPCALL_QUOTA_CHANGED).

5.3.2.2 Confirmations

The second type of downcalls is confirmation. These calls allow the AppManager

to respond to the proposals from the IaaSManager , vary from the approvals of merge,

split, tier deployment, allocation and deallocation of virtual machines. Most of these

calls contain only tier name and is dependent on the call context. Two confirmation

downcalls being widely used are ET_OK and ET_ERROR, corresponding to accepted

and rejected responses, respectively.

5.4 Synthesis

This chapter described our protocol specification, procedures and algorithms

of cooperative IaaS. We also categorized and detailed several important calls for a

cooperative resource management system. The next chapter describes our autonomic

resource management framework jTune, which is the foundation for our cooperative

resource manager jCoop. jCoop can be considered as an implementation of the

proposed cooperation specification.
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In the previous chapters, we concluded that existing research works do not con-

sider the combination of two-level resource management and elastic virtual ma-

chines, in order to improve both performance for the customer and power save for

the provider. From this point of view, we proposed a general direction in section 3.3,

which exploits this combination to achieve better optimization for both actors. We

also described the protocol, procedures, and specifications of cooperation calls in

chapter 6.

Following this direction, we implemented our autonomic management framework

named jTune. Based on jTune, we then implement our cooperative resource man-
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agement system named jCoop. jTune is used as the same base for two separate

resource managers in jCoop, each working on a different level: at the customer level

or at the provider level. jCoop was used with the Xen hypervisor and the multi-tier

RUBiS application. Note that, using a component model and adaptability in design,

it is easy to encapsulate other hypervisors and applications.

This chapter details the model, architecture and implementation of jTune in

section 6.1. jCoop is illustrated as an extension of jTune in section 6.2.

6.1 jTune Framework

jTune, a derivative version of TUNe [22], is a framework that aims to simplify the

management of legacy applications and the links between them. Originated from the

ideas of the autonomic resource management system JADE [21], jTune has the same

philosophy: to encapsulate the managed application components into Wrappers and

to interact with the managed applications through these Wrappers . This section

describes the general architecture, principles and usage of jTune framework.

In a typical autonomic management system (AMS), the managed application’s

architecture is presented in the System Representation (SR). Application compo-

nents are bound together in the SR. The AMS uses the architecture in the SR

and its resource configuration to deploy the managed components. Using a control

loop, the AMS then actively monitors and administrates the managed application

at runtime.

6.1.1 System Representation

System representation (SR) is a subset of jTune’s components, used for present-

ing and encapsulating the managed application’s architecture, its components and

the links between them. Before describing the SR, we have the following machine

definitions:

• Manager Machine is where jTune executes. It is responsible for performing

management tasks of the whole infrastructure.

• Remote Machines are where the managed application is deployed and executed.
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Figure 6.1: jTune’s SR

Note that, the manager machine or the remote machines can be either physical

servers or virtual machines, depending on the infrastructure.

System representation and deployment in jTune is illustrated in figure 6.1. We

describe the main components in jTune’s SR as follows.

Legacy. A Legacy is defined as an application component which will be deployed

and managed at runtime. In other words, autonomic administration of Legacies is

the main objective of the jTune framework. A Legacy is generally prebuilt into

binary packages to be ready for deployment. jTune is responsible for transmitting

these packages to remote machines and executes them at the destination at runtime.

Examples for Legacies of a typical multi-tier J2EE application are: Apache Web

Server, Tomcat Application Server, MySQL Database Server.

Wrapper. A Wrapper is defined as a component at the manager machine which

implements the management interface for a specific Legacy . The Wrappers ’ interface

provide low level management tasks for the provided application, such as start,

stop, configure (e.g. setting listening port, directory for deployment), etc. When

requesting a deployment for one application instance, the administrator needs to

specify which Wrapper will manage this instance. Listing 6.1 shows an example of

two important methods, start() and stop(), for managing Apache.

Listing 6.1: Wrapper for Apache

public void start() {

super.start();

// set LD_LIBRARY_PATH environment variable
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sendEvent(new Event(EventType.ET_SET_LIB_DIR , "", serverRoot +

"/lib"));

executeCommand(serverRoot + "/bin/apachectl start")

String apachePids = "";

while (apachePids.length () == 0) {

sleep(Settings.getInt (" monitor_interval "));

apachePids = executeCommand ("pidof httpd");

}

}

public void stop() {

sendEvent(new Event(EventType.ET_SET_LIB_DIR , serverRoot + "/

lib"));

executeCommand(serverRoot + "/bin/apachectl -k stop");

}

RemoteWrapper. The RemoteWrapper is the only remote component in jTune.

It is deployed along with the legacy to the remote machine, using the same protocol

(SSH, OarSH). After being deployed to the remote machine, the RemoteWrapper

is launched. It then starts waiting for requests from the manager node. Finally, it

connects back to jTune at the manager node and notifies its ready status.

The corresponding Wrapper at the central manager machine communicates with

the deployed RemoteWrapper . Management actions (e.g. starting or stopping legacy,

setting port for a server application) are sent from the Wrapper to the RemoteWrap-

per and executed at the remote machine. Note that all commands executed at the

remote machines will be sent using a separate communication channel to reduce

SSH’s performance impact. SSH or OarSH is only used for the initial deployment

and launch of the RemoteWrappers .

Link. A Link allows to bind two Wrappers together. By binding the Wrappers

at the SR construction time, the management policy can traverse in the managed

application’s architecture to look for a specific Wrapper at runtime. Binding is per-

formed simply by using with the provided SR’s method, for example:

Listing 6.2: Binding Apache instances to MySQL instances

// bind all Apache Servers to all MySQL Servers

ArrayList <MySqlWrapper > mySqls = sr.getWrappersByClass(

MySqlWrapper.class);

ArrayList <ApacheWrapper > apaches = sr.getWrappersByClass(

ApacheWrapper.class);

for (ApacheWrapper apache : apaches) {

for (MySqlWrapper mySql : mySqls) {
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sr.addWrapperBinding(apache , mySql);

}

}

6.1.2 Application Deployment

After the SR is constructed, jTune’s DeploymentManager uses this architecture

knowledge to deploy the application to the remote machines. It exploits SSH as the

initial deployment and remote control protocol. SSH is a widely used protocol for

remote management in cloud infrastructures. Taking advantages of the JSch1 library,

jTune does not need any external SSH client to connect to its managed machines

(both physical and virtual ones). Additionally, using JSch, jTune can optionally use

the given access credentials (username, password) to manage the remote machines,

without the need of pre-authorization using generated key-pairs.

When an application component is requested for deployment, a machine is auto-

matically chosen from a resource pool. This task is handled by ResourceManager .

This component manages a set of available machines2 for deployment with a config-

uration file. These configurations include server host name (or IP address), protocol

to access the server (SSH, OarSH3), access credentials and deployment directory. A

typical configuration file for physical machines is shown as follows.

Listing 6.3: Configuration for Resource Pool

#name protocol javapath dir isPwd user pw/keypair

node1 ssh /usr/bin/java /tmp/ 1 root rootpw

node2 ssh /usr/bin/java /tmp/ 1 root rootpw

node3 ssh /usr/bin/java /tmp/ 1 root rootpw

node4 ssh /usr/bin/java /tmp/ 1 root rootpw

Depending on the allocation request, the ResourceManager decides to select a

physical server or a virtual machine as the deployment target. The legacy’s com-

pressed binary is transmitted with the specified protocol to the selected target,

unpacked to the destination directory and is ready to be managed.

1Java Secure Channel, a pure Java implementation of SSH2. http://www.jcraft.com/jsch/
2The deployment target can be a virtual machine or a physical server.
3A variant of SSH for use in Grid5000 – the French National Grid for Scientific Purposes
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6.1.3 Control Loop

jTune’s control loop monitors and administrates the whole infrastructure at run-

time. From the point of view as an autonomic resource manager, jTune implements

all necessary components of autonomic computing [40]: an observer, a decision core

and an effector. Figure 6.2 illustrates the simplified components of jTune acting as

the control loop.

jTune’s Observer listens to all information transmitted from all remote machines.

Typical gathered informations include: CPU load and memory usage of the remote

machine, process status of the managed application process, etc. Based on the

collected data, the Policy , acting as the decision core, makes decisions on how to

manage the application (e.g. deploy, reconfiguration, repair, etc.). The decision is

then sent to the effector to be performed. In jTune, the Wrappers (at the manager

machine) and RemoteWrappers (at the remote machines) act as the effector.
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Since jTune’s objective is to manage the whole application, it has several Poli-

cies . As mentioned above, a Wrapper only executes primitive tasks (start, stop,

configure, etc.). The associated Policy works at a higher level: it gathers informa-

tions about the application components, and bases on this data, makes decision to

manage it at runtime. Generally, a Policy collaborates with a number of Wrappers

(figure 6.3), each maintaining a single application instance. As a result, the Policy

administrates the whole application tier in a multi-tier web application. For in-

stance, an ApachePolicy works with a set of ApacheWrappers to manage the whole

Apache tier. Note that all Policies and Wrappers are executed in the main manager

node, all tasks assigned to each Wrapper are transmitted to the remote machines

and are performed by the RemoteWrapper .

6.1.4 Communication between Components

In jTune, components communicate with each other using Events , both lo-

cally (e.g. Observer -Policy and Policy-Wrapper) and remotely (e.g. Wrapper -

RemoteWrapper , RemoteWrapper -Observer). Figure 6.4 summarizes the event flows

and detailed jTune’s component architecture. We extensively use event-driven pro-

gramming model in jTune. Events are asynchronous, allow autonomic management

tasks to be non-blocked and ensure that administration tasks (deployment, config-

uration, launch, repair, etc.) can be performed in real time. The EventManager

maintains an internal list of registered Events. Each component in jTune needs

to subscribe its managed events to the EventManager during their initialization.

Whenever receiving an Event , the EventManager dispatches it to the corresponding

component according to this list.

6.1.5 Runtime Management

Once the application is deployed and its RemoteWrapper is ready, the corre-

sponding Policy starts managing the application’s life cycle. The Policy is written

by the administrator to implement his desired resource management policy. We de-

termined the following major tasks in the application’s life cycle that each Policy

must implement (figure 6.5):

• Configuring the application parameters. Before starting the application,

the Policy needs to prepare the application to make it fit with the current

configuration, e.g. the application port, the connection to other tiers, load

balancers, database initialization, etc. During the configuration phase, the
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Policy uses the predefined settings (specified by the administrator) and re-

quests the Wrappers to set them accordingly. These parameters are typically

written to the application’s configuration file. As a result, the Wrappers are

tier-specific.

• Launching the application process. The Policies then starts the appli-

cation with the help from its associated Wrapper and RemoteWrapper . The

command to launch the application (wrapped inside an Event ET_EXEC) is

passed from the Wrapper to the RemoteWrapper . At remote destination, the

RemoteWrapper uses system calls to execute the binary. Additionally, it au-

tomatically starts the embedded monitoring probe. This probe periodically

gathers various information about the deployed system and application, such

as system load, port status, existence of a process, etc. This information is

reported back to the central jTune’s Observer for further decisions.

• Reconfiguring the application. Various applications need to be configured

in real time without being stopped. At the runtime, based on the gathered

metrics, the responsible Policy reconfigures the application instances with its

associated Wrappers to satisfy the required goals (set by the administrator).

The reconfiguration task includes, but not limit to: reacting with failures,

dynamically resizing tier in a multi-tier application, changing the listening

TCP port, etc.

• Terminating the application. At the end of the application life cycle, the

Policy component requests the Wrapper to stop the application, clears the

destination directory, then stops the associated RemoteWrapper at the target

node. From this time, the target machine is freed and is available for later use,

such as another application deployment.

6.1.6 Usages

After an introduction of the jTune’s components as an AMS, we show in this

section the basic usage of jTune from the administrator’s point of view. jTune is

a Java application, built and packaged into a JAR4 file. Additionally, section 6.1

mentioned that RemoteWrapper is deployed along with the application to the target

destination. Therefore, the manager node and all managed machines (virtual ma-

chines or physical servers) must have a JRE5 pre-installed. The utilization of jTune

is divided into 3 steps: configuration; specification of the wrappers and policies;

build and launch.

4Java ARchive
5Java Runtime Environment
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In the Configuration step, the administrator modifies the jTune’s configuration

file to fit his needs. These configurations are managed by the Settings component.

The important values include:

• node pool file: name of the file containing a list of available physical nodes for

deployment.

• observer service and observer port : the interface name and port of the Ob-

server component on the manager node. This interface is the central point for

aggregating events from the deployed RemoteWrappers .

• remote service and remote port : the end point of RemoteWrapper on the man-

aged nodes. This interface allows the transmission of commands (in the form

of Events) from central Wrappers .

• nfs server and nfs path: indicates the NFS6 server and mount path that con-

tain the virtual machine images and settings. We support NFS as a means to

support virtual machine live migration in our experiments with Xen later.

• log-related settings: jTune supports a wide range of logs from event log to re-

mote or local log. This helps the administrator to have an in-depth knowledge

about the management system at runtime.

Additionally, a list of nodes with access credentials also needs to be specified similar

to listing 6.3, so that the NodeDeployer can locate the resource pool at runtime. At

the end of this step, the administrator needs to package the application into a single

compressed binary. jTune supports various file formats (e.g. zip, tar.gz, tar.bz).

The application package will be automatically uncompressed after being transferred

to the target machine.

The administrator then implements the Wrapper and Policy for his applica-

tion. Note that the RemoteWrapper can be reused without further modifications.

We made a GenericWrapper component for the administrators to base their own

Wrappers on. This component eases the basic tasks for administrating the wrapped

application: executing a command, modifying a configuration file, etc. Similarly, the

customized Policy for each resource management policy is based on a GenericPolicy

component. For example, a Policy typically starts / stops the application, asks the

RemoteWrappers to periodically monitor CPU load, handles idle or peak loads using

replication of application instances.

Finally, the administrator launches the whole system. This task is done from

the manager node. From the command line, the administrator can specify the extra

6Network File System
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parameters to pass to jTune for automating the management process. During the

deployment and execution of the managed application, the administrator can interact

with jTune and override management policy using the provided console using the

Shell component.

Since jTune is only a generic autonomic resource management framework, it

cannot be used in a specific IaaS environment. The next section described our work

jCoop as an extension of jTune for managing resources in a cooperative IaaS.
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6.2 jCoop: Cooperative Resource Manager

We built jCoop as the implementation of the cooperation specification on top

of the autonomic management system jTune. jCoop consists of two main compo-

nents: the IaaSManager and the AppManager . One IaaSManager can serve multiple

AppManagers (each for a separate customer) at the same time (figure 6.6). These

managers inherit jTune’s Observer and Wrappers to communicate with each other

using Events . The IaaSManager works at the provider’s cloud manager node, while

each customer has at least one AppManager on their allocated virtual machines.

In order to evaluate our cooperative resource management policy in the next

chapter, we chose a specific platform and a target application. On the provider

side, we consider Xen as the virtualization platform. Our resource management

policies in the IaaSManager consider both CPU and memory management. On the

customer side, we consider managing a typical multi-tier application using Apache

/ MySQL / PHP (AMP) software stack. This is one of the most popular platforms

for web application development and deployment. We implemented our XenManager

and AmpManager for these targeted platform and application, respectively.

6.2.1 XenManager

Our XenManager is implemented as a simplified IaaS using Xen as the hypervisor

to further demonstrate the benefits of a cooperative resource management system

in the next chapter. The XenManager has basic functionality of a IaaS: allocation,

deallocation, launch and termination of virtual machines. Our XenManager also
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supports the discovery of virtual machine images and their corresponding configura-

tions using NFS (see section 6.1.6 for NFS parameters). The XenManager searches

for virtual machines in this specified repository at startup. After being added to

the resource pool, these virtual machines are ready for the customers. Note that

the customer can prepare his own virtual machines and deploys into this repository,

so that they can be reused later without the need of deploying and configuring the

application.

Similar to most conventional IaaS, our XenManager uses virtual machine live

migration for saving physical resources. Depending on the experiment, the migration

plan is computed using the real CPU and memory usage or using the booked CPU

and memory resource of the allocated virtual machines. Our migration algorithm is

based on Best Fit Decreasing with heuristics to improve calculation time. We also

limit the frequency of virtual machine migrations to avoid bandwidth bottlenecks,

causing performance degradation for the applications in the same network. After

migration, the freed servers are suspended and resumed using provided tools from

the host operating systems (particularly pm-suspend) and Wake-On-LAN feature.

Elasticity

The XenManager ’s support for elastic CPU is implemented using the default

credit scheduler in Xen hypervisor. To distribute CPU processing power among vir-

tual machines, Xen considers each virtual machine similar to a process in operating
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systems: it switches CPU among its virtual machines after each timeslice. This

process is called VM scheduling. Xen’s default credit scheduler allows each man-

aged virtual machine to have a guaranteed a portion of CPU’s processing power with

different parameters: weight, cap, vcpu, and timeslices.

• Weight indicates the priority for CPU computing power of a virtual machine,

relative with the others.

• Cap is used to define the upper threshold of the CPU load for a virtual machine,

given in percentage.

• vCPU is the number of virtual CPUs allocated to a virtual machine.

• Timeslice specifies the duration of each virtual machine’s execution before the

scheduler interrupts it and switches to another virtual machine. This value

can be tweaked to change the responsiveness of virtual machines.

Our XenManager exploits the ability to use these parameters, mainly cap and vCPU,

to dynamically resize its elastic virtual machines at runtime.

Additionally, the XenManager handles elastic memory by using Xen’s memory

ballooning mechanism. Xen added supports dynamic virtual machine size with its

ballooning driver (described in section 3.2) since version 3.3. By inflating and deflat-

ing the memory balloon at runtime, XenManager can resize the effective memory

size for its virtual machines. Note that the amount of memory at runtime for each

virtual machine cannot exceed the maximum amount of allowed memory (which was

specified at its boot time).

Xen’s virtual machine management tools allow changing these values with the

provided Xen management user interface (xl) from the host. The mentioned CPU

values can be changed with xl’s vcpu-set and sched-credit tool. On the other

side, resizing memory for a running virtual machine can be done with mem-set tool.

Our XenManager utilizes these provided tools to support elasticity for its managed

virtual machines (i.e. the ability to vertically scale them), both in terms of CPU

processing power and effective memory size.

Components

Our XenManager consists of three major components: XenVMAllocator , Xen-

Wrapper and XenPolicy (figure 6.7). These components communicate with each

other using internal calls or Events. Note that all of these components are executed

inside the provider’s management node, all decisions and commands to manage the
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virtual machines are transmitted to the remote nodes using Events and then exe-

cuted by XenRemoteWrappers (a slightly modified version of RemoteWrappers).

• XenVMAllocator is responsible for discovering virtual machines in the reposi-

tory. It then analyzes the configuration file, simulates DHCP requests to obtain

the automatically assigned IP addresses, and adds these virtual machines to

the resource pool for later use.

• XenWrapper , based on jTune’s GenericWrapper , is responsible for managing

the virtual machines on remote servers by using xl tool on each host. By using

this tool and its parameters, XenWrapper indirectly manages the hypervisor

on each physical server.

• XenPolicy is the core our XenManager . It listens to requests from customers

(with their AppManagers), serves these requests, optimizes resource usage in

the given resource pool (using both horizontal and vertical scaling). Addi-

tionally, XenPolicy implements the cooperation calls with the specifications

described in chapter 6.

At startup, XenPolicy registers many events with the EventManager to work

with both non-cooperative and cooperative AppManagers . The most important

ones include:

• ET_ADD_VM is used for allocating a virtual machine. XenManager looks for an

available virtual machine in the pool, starts it and passes the access credentials

to the customer. If no virtual machine in the pool is suitable for this request,

XenManager creates a new one with the specified resource requirement. This

event is not used in the cooperative scenario (with the AppManager being

aware of the cooperative resource management).

• ET_REMOVE_VM is used for deallocating an existing virtual machine. The Xen-

Manager stops the embedded Wrapper inside this virtual machine (responsible

for monitoring this virtual machine), undeploys it, and stops this virtual ma-

chine using the corresponding XenWrapper . In a non-cooperative case, this

Event is transmitted from the AppManager to the IaaSManager to directly

request a virtual machine removal. On the other hand, in a cooperative sce-

nario, this event is used internally by the XenManager to remove a virtual

machine when there is a possibility for a cooperative merge.

• ET_DOWNCALL_REGISTER_TIER is used for retrieving tier registrations from the

cooperative AppManagers . Our XenManager uses an internally managed list

to store these tiers and to look up later.
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• ET_DOWNCALL_CHANGE_QUOTA is used for changing the quota for a specific tier.

XenManager implemented the algorithms 1, 3 and 2 in chapter 6 to change

quota of the registered tiers at runtime.

6.2.2 AmpManager

The previous section described our XenManager as an implemention of the IaaS-

Manager on the provider’s side. This section highlights the main components of the

AmpManager built on top of jTune on the customer’s side, using a typical multi-

tier application with the Apache / MySQL / PHP (AMP) architecture (figure 6.8).

Similar to the J2EE architecture (figure 3.1), AMP has a web server tier (Apache)

and a database tier (MySQL). Unlike J2EE, AMP does not have a dedicated tier for

application servers. In this situation, PHP acts as the application server in AMP ,

because all server side scripts are interpreted and executed by a PHP processor

module embedded in Apache.

Being a multi-tier architecture, AMP needs to distribute the incoming requests to

its tier instances, similar to the HTTP load balancer, Mod JK and MySQL proxy in

the J2EE example (figure 3.1). We consider HaProxy7, one of the most popular TCP

load balancers, as the load balancer for the Apache tier and the MySQL tier in the

customer’s application. Using these load balancers, the customer can horizontally

scale his application tier (Apache or MySQL) according to the runtime load easily

by adding or removing tier instances.

Components

Our AmpManager consists of various Wrappers and Policies, each combination

handles a specific tier. Note that the HaProxies acting as load balancers also need

to be managed. As a result, the AmpManager has the following Wrapper/Policy

combinations:

• HttpHaProxyWrapper and HttpHaProxyPolicy are responsible for managing

the HTTP load balancer. Basic tasks include starting and stopping the bal-

ancer itself. Furthermore, they also allow adding and removing tier instances

into the balancer. This layer needs to take into account the weight of each

Apache’s virtual machine sizes. The changes to HaProxy can be applied on-

the-fly by modifying its configuration file and notifies the running instance.

7http://haproxy.1wt.eu/
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Figure 6.8: AmpManager’s Components in jCoop

• ApacheWrapper and ApachePolicy are responsible for the management of

Apache tier. The ApacheWrapper provides low-level tasks for administrat-

ing Apache instances, such as starting, stopping, setting listening port, and

configuring the customer’s PHP application. At a higher level, ApachePol-

icy gathers Apache loads, memory usage and horizontally resizes this tier at

runtime.

• MySqlHaProxyWrapper and MySqlHaProxyPolicy manage the MySQL load

balancer, similar to the HaProxy acting as the HTTP load balancer above.

• MySqlWrapper and MySqlPolicy manage the MySQL tier. Similar to the

Apache tier, they horizontally scale this tier according to the actual CPU load

and memory usage. The configuration task of MySqlWrapper has database-

specific actions, such as creating user accounts and initializing databases.

The AmpManager registers itself with the EventManager to process various

types of Events. Since our later experiments consist of both cooperative and non-

cooperative scenarios, the AmpManager handles tier resizing with both vertical and

horizontal scale. In a non-cooperative scenario, the AmpManager monitors each tier

and resize it with ET_ADD_VM and ET_REMOVE_VM, according to the actual load at

runtime.

On the other hand, in a cooperative scenario, as an implementation of the co-

operative specification (chapter 6), the AmpManager registers several upcall events
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with the EventManager . These events allow the AmpManager to communicate and

to response with requests and notifications from the XenManager . These events

include:

• ET_UPCALL_SPLIT_VM

• ET_UPCALL_MERGE_VM

• ET_UPCALL_ADD_VM

• ET_UPCALL_REMOVE_VM

Upon receiving these calls, the AmpManager decides to accept or to reject, based

on the current status of each tier. Additionally, the AmpManager requests quota

changes as needed with ET_DOWNCALL_CHANGE_QUOTA. We also limit the frequency

and amount of each quota change to avoid the XenManager being overloaded with

too many quota changes at runtime.

6.3 Synthesis

In this chapter, we have illustrated the architecture and implementation of jTune,

from an autonomic management system’s point of view. We presented jTune’s Sys-

tem Representation, Control Loop and Runtime Management. We also described the

roles and tasks of each major components in jTune, particularly the Wrapper , Policy ,

ResourceManager , DeploymentManager , PolicyManager and EventManager . The

most important parameters in jTune’s configuration are also detailed. We then in-

sisted on the close relationship between Policy , Wrapper and RemoteWrappers (on

three different levels), three main components for legacy application’s management

in jTune. These components are application-specific and need to be implemented

by the administrator. To ease this task, we made the GenericWrapper and Gener-

icPolicy for the administrators to base their works on.

This generic administration management framework is then used as a base for

jCoop, our implementation of the cooperation call’s specification (previously detailed

in chapter 6). We chose Xen as the target platform, and Apache / MySQL / PHP

software stack as the target application. Two main components in jCoop are Xen-

Manager and AmpManager , representing the IaaSManager on the provider side and

AppManager on the customer side, respectively. We detailed the subcomponents in-

side XenManager , AmpManager , the links among them, and also the methods to

achieve elasticity and cooperation between these components.

Cooperative Resource Management in the Cloud



6.3. SYNTHESIS 94

The next chapter evaluates the benefit of the proposed cooperative resource man-

agement policy, using the implemented XenManager and AmpManager .
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The objective of this chapter is to show the effectiveness in minimizing resources

usage and maximizing performance of the cooperation strategy. To reach this goal,

the experiments are divided in 3 major parts: (1) confirmation of the ability to

split and merge elastic virtual machines; (2) evaluation of the benefit to reduce

performance overhead; and (3) evaluation of the benefit to improve resource usage.
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7.1 Experimental Setup

7.1.1 Hardware Testbed

Our experiments were performed in our private, simplified IaaS with two clusters

(figure 7.1). The first cluster (SlowCluster) consists of 5 identical nodes Dell Opti-

plex 755. Each node in this cluster is equipped with an Intel Core 2 Duo 2.66GHz

(2 cores) and 4GB RAM. The second cluster (FastCluster) consists of two HP Com-

paq Elite 8300, each equipped with an Intel Core i7-3770 3.4GHz (quad core with

HyperThreading) and 8GB RAM. All nodes are installed with Debian Squeeze on

top of Xen 4.1.5 and connected with 1Gbps switch. We configure each dom0 (the

host operating system) to have 1/3 of a physical machine (50% of a CPU core and

1GB of memory). Our node usage is distributed as follows:

• Our XenManager is installed on a dedicated node in FastCluster. This IaaS-

Manager instance is executed in a non-virtualized system to have the maximum

performance at runtime. As previously described in the previous chapter, all

components of XenManager are executed in this node, the central point of our

private cloud’s management.

• On the second unvirtualized node in FastCluster, we install a NFS server for

the cloud’s virtual machine repository, so that virtual machine live migration

can be performed between the nodes. Additionally, a DNS forwarder and a

DHCP server (both are integrated in dnsmasq1) are also collocated on this

node. Therefore, this node provides basic network services for our private

cloud (NFS, DNS and DHCP).

• All 5 nodes of SlowCluster are used as the resource pool. These resources are

virtualized and provided on-demand to the customer: virtual machines will be

allocated, deployed and executed on these nodes.

7.1.2 Customer Application: RUBiS

Our target application is a multi-tier application named RUBiS (Rice Univer-

sity Bidding System [14]), an implementation of eBay-like auction system. RUBiS

is composed of several tiers: a web tier, an application tier and a database tier.

1http://thekelleys.org.uk/dnsmasq/doc.html
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Figure 7.1: Our Private IaaS Cloud

There exists several implementations of RUBiS: Java Servlet, PHP and Enterprise

JavaBean. We chose the PHP version to fit with our managed AMP software stack

(described in the previous chapter). RUBiS provides multiple types of interactions

from the external clients, including listing product, managing user accounts, buying,

selling and bidding items. Most of these activities are dynamic web pages. Thus,

most requests need to be processed by all tiers: static content are served directly by

Apache, while dynamic pages are processed and rendered by PHP modules with the

data queried from the MySQL tier.

Additionally, RUBiS allows the simulation of web clients to benchmark its im-

plementation. This benchmark simulates many web clients at the same time, each

represents a specific user. During the benchmark, RUBiS benchmark generates three

different phases: up ramp, main session and down ramp. In the up ramp phase, RU-

BiS benchmark gradually increases the number of client. At the end of up ramp, the

main session executes for a predefined amount of time with the maximum number

of clients. Finally, the down ramp phase steadily reduces the number of simulated

clients.

In our experiments, we consider managing only MySQL tier because it is the first

tier to be saturated when the number of clients increases.
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7.1.3 Metrics

We define several metrics in our evaluations to measure the effectiveness of a

cooperative resource management system. These metrics include:

• Response Time is the average response time of RUBiS application to the

incoming requests. Response time represents the Quality of Service that the

customer must ensure. The customer also uses this metric as a parameter

to scale his application: high response time means the application is being

saturated and overloaded.

• Physical Machine Utilization (ψ) is the accumulated number of powered-on

physical servers for every second (i.e. the sum, for all servers, of the accumu-

lated time that each server was powered-on). ψ represents the energy usage of

the whole cloud infrastructure: the lower ψ is, the less time physical machines

are powered on. ψ is measured in seconds.

• Virtual Machine Occupation: Given a cap (the capacity of CPU resource)

value 0 < ck,i ≤ 2 (our SlowCluster has 2 cores on each machine) in each

duration tk,i (in seconds) allocated to a virtual machine VMk, we define the

occupation of it as ωk in our experiments as follows.

ωk =
n∑

i=1

ck,i × tk,i (7.1)

From this definition, we have a virtual machine occupation of each application

Appj is

Ωj =
n∑

k=1

ωk (7.2)

Using the occupation value as a metric, we can evaluate the effectiveness of each

resource management policy toward minimizing the booked virtual machine

resource for the customers.

7.1.4 Workload Profile

We simulate a scenario in which three different customers share the same IaaS.

The synthesized workload for each application is generated by a RUBiS benchmark

tool. As a result, we have three different workloads for three RUBiS applications

like illustrated in figure 7.2. The up ramp, session and down ramp of each workload

generator are 4 minutes, 18 minutes and 14 minutes, respectively.
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Resource Management System jCoop with XenManager and AmpManager

Virtualization Platform Xen

Customer’s Architecture Multi-tier Apache / MySQL / PHP

Customer’s Application RUBiS

Workload Profile RUBiS Benchmark (figure 7.2)

Comparison Metrics Response Time, PM Utilization ψ and VM

Occupation Ω

Table 7.1: Summary of our Evaluation’s Conditions

7.2 Evaluations

This section describes and discusses our experiments to confirm the benefit of

our cooperative resource management, particularly in providing elasticity for virtual

machines, reducing performance overhead and improving both virtualized and phys-

ical resource utilization ratio. Various aspects of these experiments are summarized

in table 7.1.

We define the following scenarios:

• Static placement. In this situation, one big virtual machine of each RU-

BiS application occupies a whole physical server. This amount of resource is

enough for these virtual machines to deal with our experiment’s workload pro-

file. With only one virtual machine per server, this placement is expected to

have the lowest response time for the customer’s application (the lower-bound

of response time for the application). As a result, Static can be considered

as an “ideal” virtual machine placement for maximizing application’s perfor-
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mance. However, this placement clearly wastes resources, because it does not

allocate or relocate resources at runtime.

• Server Consolidation Only (SCO) is a less static scenario, in which the cus-

tomer does not have on-demand resource manager (i.e. without the AmpMan-

ager), but the provider implements his XenManager with server consolidation.

In other words, a fixed number of instances for each tier (two in our experi-

ments) is provisioned and allocated throughout the application life cycle, even

when they are idle. Note that, the consolidation service in this scenario bases

on the actual CPU load to perform live migrations. This placement is expected

to have highest application response time without an On-demand AmpMan-

ager , because this scenario always occupies most virtual machines (no tier

sizing by the AmpManager is performed). SCO is also expected to have best

hardware utilization with active virtual machine migration using CPU load.

This strategy is implemented by research works discussed in section 4.1.1.2.

• Both Level, Independent (BLI) is the two-level, non-cooperative scenario.

In this situation, the XenManager and AmpManager work without any coor-

dination: XenManager migrates virtual machines to ensure server consolida-

tion, while AmpManager minimizes the number of application instances. No

knowledge is shared and no cooperative call is made. This scenario is similar

to resource management in the conventional IaaS and is discussed by research

works in section 4.1.2.1. XenManager uses booked CPU resource to make

migration decisions, because AmpManager on the customer level has already

effectively minimized the number of application instances based on the CPU

load: idle instances are removed.

• Both Level, Cooperative (BLC) is the scenario in which jCoop takes into

account resource management of the two levels at the same time: the IaaS

level and the application level. We configured jCoop to have 1/6 of a physical

machine (memory and CPU) as each quota addition step. XenManager in

BLC also uses booked CPU resource to migrate virtual machines in order to

ensure server consolidation, similar to BLI.

To evaluate the benefit of our cooperative resource management policy, we run

jCoop various times with the generated workload (figure 7.2), then we compare the

defined metrics (section 7.1.3) using the above scenarios.
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Figure 7.3: BLC: Virtual Machine Placement and Quota Distribution

7.2.1 Scalability and Elasticity

Firstly we confirm scalability and elasticity of virtual machines with our coop-

erative IaaS, i.e. the ability to scale (both horizontally and vertically), merge and

split virtual machines. Cooperation calls are sent at runtime to notify each other

ongoing situations and actions. Cooperation feature is activated for all AmpManager

instances and the central XenManager in this experiment.

The virtual machines and quota allocation of all applications in this experiment

are shown in figure 7.3. Each RUBiS AmpManager uses down calls to request for

quota increase during the up ramp phase of its workload (950th, 1050th, 1450th,

1550th, etc second). Depending on the virtual machine placement and available

resources on each PM in the time of those down calls, the XenManager either ver-

tically scales an existing tier virtual machine (1050th, 1550th and 1750th second)

or horizontally scales (allocates a new virtual machine) the associated tier for this

AmpManager (950th, 1450th and 1650th second). In the later case, the XenManager

notifies this allocation to the customer’s AmpManager , so that a new application

tier instance is deployed. In both cases, the customer’s load balancer (HttpHaProx-

ies) needs to be correctly configured to take into account each tier instance’s weight.

Similarly, the possibilities to decrease size for a tier’s virtual machine or to remove

a virtual machine are handled in the down ramp phase of the workload. The cus-

tomer’s AmpManager asks for quota decrease with its down calls. The XenManager

then decides to reduce size (vertically scale) of a tier’s virtual machine (2600th,

2900th and 3150th second) or to remove it (at 2650th and 2950th second).

Notice that at runtime, with the tier knowledge provided by the AmpManagers ,

the XenManager proposes to merge small virtual machines into bigger ones,
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in attempt to reduce overhead. For example, a cooperative merge happens at 2650th

second: the XenManager merges two virtual machines for application 2 (in PM1 and

PM3) into one big virtual machine (in PM3). At the same time, another cooperative

merge is executed between two virtual machines of application 3 (in PM1 and PM2)

into a big virtual machine in PM1. Application 2 and 3 benefit with each having a

single instance running in a big virtual machine (similar to Static). This performance

benefit will be discussed in section 7.2.2. Additionally, after reducing quota for the

virtual machine of application 2 at 2950th second, the IaaS migrates the virtual

machine of application 1 from PM2 to PM3. It then turns PM2 off, and the provider

benefits in energy saving. This resource optimization will be further analyzed in

section 7.2.4.

7.2.2 Performance Overhead

After confirming that our cooperative IaaS handles scalability of elasticity for the

customer’s virtual machine, we evaluate the benefit to reduce performance overhead

by the cooperative resource management system. Like described at the beginning

of this section (7.2), Static placement can be considered as “Ideal” placement of

virtual machine in terms of performance (with only one big virtual machine per

server). As a result, performance overhead for each scenario is evaluated as the

difference of application response between the concerning scenario and Static. We

claimed in section 3.1 that (1) performance overhead is generated by the hypervisor,

the virtualized I/O layer and the balancer; and (2) overhead can be lowered by

reducing the number of virtual machines of the same application tier (MySQL in

our experiments) collocating on the same physical server.

To evaluate jCoop’s performance benefit, we compare our cooperative IaaS with

Static (lower bound of response time), SCO (upper bound of response time) and BLI

(being used in conventional IaaS). Figure 7.4 compares the average response time

of the third RUBiS application with the mentioned scenarios. This figure confirms

the response time’s upper and lower bound of Static and SCO, respectively. The

response time of SCO during full load period is approximately 15%-20% higher than

in Static, because of the overheads.

When the workload increases (1400th to 1750th second), jCoop in BLC deals with

load peak with a virtual machine allocation at 1500th second (PM1 in figure 7.3).

This action generates a peak response time (BLC curve, 1500th second in figure 7.4).

After this allocation, jCoop then vertically scales this new virtual machine (PM1,

1750th second in figure 7.3), lowering the response time while the workload continues

to rise.
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Figure 7.4: Response Time of Application 3

When compared with a static tier configuration (SCO), jCoop in BLC has more

stable response time with elastic virtual machines: additional required resources can

be added on-demand and instantly (1750th second in figure 7.3). Additionally, BLC

does not suffer from virtual machine migration’s overhead when dealing with load

peak, unlike SCO (which has a virtual machine migration at 1750th second to deal

with increasing load, therefore has increased response time – SCO curve, 1750th

second in figure 7.4).

Comparing with a non-cooperative resource management system in a conven-

tional IaaS (BLI), jTune in BLC has similar response time in the up ramp and main

session phase (1200th to 2500th second in figure 7.4). However, the benefit of coop-

eration strategy appears in the down ramp phase: two small virtual machines of the

application 3 is merged (2650th second in figure 7.3). After this merge, the whole

PM1 is occupied by only one big virtual machine for application 3. This situation is

similar to Static: only one virtual machine for each RUBiS application, each physi-

cal server hosts only one virtual machine (figure 7.5, from 2650th to 2950th second).

As a result, response time of application 3, from 2650th onward, stays very close to

Static’s one (“ideal” performance). BLI does not have this merge, and therefore, has

higher response time, up to 10-15%. This phase clearly shows the cooperative IaaS

benefit in terms of performance optimization for the customer’s application.
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7.2.3 Virtual Machine Occupation

In this section we measure the virtual machine occupation Ω among the defined

scenario. Section 7.1.3 defines Ω as the metric to represent the effectiveness of

resource allocation policy: the lower Ω, the less waste for booked virtual machine’s

resource. In other words, low Ω confirms the fine grain resources provided by the

IaaS. The customer saves cost if the resource management policy provides low Ω in

the experiment.

Figure 7.6 summarizes the calculated Ω for the defined scenarios. As can be

seen from this figure, both Static and SCO have highest virtual machine occupation

(around 4000): the customer’s virtual machines are preallocated and not scaled

at runtime. Static and SCO can be considered as the upper bound for virtualized

resource waste in a IaaS.

BLI and jCoop in BLC have much better occupation rate, because the allocated

virtual machines are either well used (actively loaded) or they will be removed by

the AmpManager to improve utilization rate and to reduce cost for the customer. In

our experiment, jCoop in BLC has better utilization rate than BLI, with Ω = 2083
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and Ω = 2136, respectively. These values reflect the fact that jCoop’s XenManager

exploits elastic virtual machines and their ability to vertically scale.

Although BLC’s total virtual machine size at runtime is quite similar to BLI in

all phases, BLC’s improvement over BLI in terms of saving virtualized resources is

shown when the newly allocated virtual machine has smaller size than BLI’s one

(950th, 1450th and 1650th second in figure 7.3). In other words, BLC’s virtual

machine size has an intermediate step between unallocated and fully allocated

(1/3 of a physical machine, respectively). This intermediate size reduces cost to

the customer when compared with full size, while it still provides to the customer’s

enough resources to handle the incoming load. In fact, the number of intermediate

steps can be increased in jCoop to have finer grain resource allocation. However,

to avoid saturation of XenManager with too many quota allocation requests, we

set minimum size for each quota change as 1/6 of our node’s total resource in our

experiments with jCoop. These intermediate steps allow BLC to have potentially

lower virtualized resource waste than BLI in real world’s workloads.

In conclusion, our jCoop in BLC has the least virtualized resource waste (i.e.

lowest Ω) with the cooperation and elastic virtual machines. Static and SCO are the

two most wasted resource management policy for the customer’s virtual machines.

7.2.4 Physical Server Utilization

In this section, we analyze the defined scenarios’ capabilities to minimize physical

resource usage. We use the total PM utilization time to measure the hardware

resource usage. The higher PM utilization time, the more energy the provider needs

to spend. The comparison is shown in figure 7.7.

Static is the worst case for physical server utilization: it occupies all servers

at runtime and there is no migration. In contrast, SCO’s benefit is confirmed: it

minimizes the amount of physical machines being used for the provider (7419s) by

packing as many virtual machines into as few physical servers as possible. However

SCO is not widely used in a IaaS, because it does not have dynamic application

sizing, saving cost for the customer and being able to handle load peaks.

Our jCoop in BLC saved average 5% of utilization time for all physical machines

when compared with BLI (7611s and 8059s, respectively). This comparison shows

jCoop’s powersaving benefit with a resource management policy being widely used

in conventional IaaS (BLI). Although we cannot reach the lower bound of server
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utilization like SCO (7419s) but the trade-off of 2.5% server usage (BLC) is better

than 10%-20% lower application performance (SCO and BLC, figure 7.4).

7.3 Synthesis

In this chapter, we justified the benefit of jCoop with the BLC scenario. When

comparing our cooperative resource management policy with others, namely Static,

SCO, and BLI, we showed that jCoop has certain advantages.

First, we showed that jCoop handles elastic virtual machines effectively. It al-

lows XenManager to resize and propose cooperative merges to the AmpManagers .

Second, jCoop has close-to-ideal performance (with response time similar to Static)

after these merges are performed. This helps the customer to have better perfor-

mance with less performance overhead. Third, jCoop improves virtualized resource

usage by allowing the customer to have intermediate virtual machine sizes. This

support also reduces cost for the customer, as he is provided with finer grain re-

source blocks. Finally, we achieved better physical resource utilization: physical

server is less used. jCoop outperforms BLI (resource management policy being used

in conventional IaaS) with all of these metrics.
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8.1 Conclusion

Recent years have observed the rise of cloud computing model: companies ex-

ternalize their hardware resources to dedicated centers. This evolution comes from

the increasing complexity of managing infrastructures. Essentially, cloud comput-

ing meets the needs of the customer with the provider’s services. This dedication

improves each actor’s performance and more importantly, it saves costs for both

actors.

Resource management is an important task that such model must ensure, in

order to reduce costs: the customer only pays for the amount of resources being

really used, and the provider optimizes his physical resource usage while sharing his

resource pool between the customers. The complexity of the provider’s infrastruc-

ture raises the problem of resource management with both virtualized and physical

resources (virtual machines and physical servers). Managing these resources at the

same time is an error prone task. To solve this problem, autonomic administration

systems are implemented on both sides. These systems automatically monitor the

application and the infrastructure and react with events (e.g. load fluctuation) at
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runtime. In traditional cloud infrastructures, these management systems are usu-

ally not coordinated. Additionally, the lack of elastic virtual machines prevents

them from having optimal resource utilization, causing performance overhead and

resource holes. A naive solution is to provide elastic virtual machines to the cus-

tomer. However, elastic virtual machine alone, without the cooperation from both

actors, does not fully optimize resource usage and reduce performance overhead.

From this point of view, we proposed a direction to use the combination of co-

operative resource management with elastic virtual machine. This cooperative IaaS

brings the two resource managers (IaaSManager and AppManager) closer. Informa-

tion about the customer’s application (e.g. tier instances) is shared between the two

management layers. With the provided application information, the provider can

better optimize his infrastructure and reduce performance overhead. In a coopera-

tive IaaS, the decision to allocate or deallocate virtual machines is shifted from the

customer to the provider. The customer is only responsible for evaluating the total

resource needed as a whole for his application. Virtual machine distribution and

placement tasks are handled by the provider. Our proposed cooperative IaaS can

be considered from different perspectives: an extension of PaaS, a hybrid IaaS-PaaS

model, or distributed virtual machines.

We confirmed the benefit of our cooperative resource management policy using

a set of experiments. We compared our work with different scenario (upper bound,

lower bound, and actual resource management policy in conventional IaaS) in terms

of both performance and resource utilization. The evaluations showed that our co-

operative IaaS outperforms traditional two-level, non-cooperative resource manage-

ment in current IaaS (BLI) with: (1) lower performance overhead (better response

time for the customer’s application), (2) better virtual machine usage (reducing cost

for the customer with finer grain resource blocks), and (3) better physical resource

usage (reducing energy and cost for the provider).

8.2 Perspectives

Although the evaluation shows merits of the cooperative IaaS, our work still has

a wide range of improvements. We identified several potential directions that can

extend the effectiveness and usability of a cooperative IaaS. These directions can be

classified into main categories: short term works to improve jCoop and long term

works to have wider adoption of cooperative resource management in the cloud.

Cooperative Resource Management in the Cloud
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8.2.1 Short Term Perspectives

Algorithms

jCoop is our first prototype to evaluate the benefit of cooperative resource man-

agement in the cloud. One of the most important component in jCoop is XenMan-

ager . It uses a derivation of Best-Fit-Decreasing algorithm to distribute and migrate

virtual machines among physical server in the provider’s resource pool. While show-

ing good results, this algorithm can be improved to have better virtual machine

placement, taking into account knowledge about other tiers and migration costs

(jCoop does not yet consider migration cost while making decision to consolidate

physical servers).

Additionally, our proposed algorithms do not take into account the overhead

of splitting: the customer has two virtual machines instead of one. Performance

overhead would be increased in this situation. Therefore, the algorithms should

take into account providing extra quota for the customer to counter balance this

overhead.

Fault Tolerance

As an early prototype, jCoop does not take into account unexpected failures that

may happen at runtime. These failures include application crashes, hardware prob-

lems, etc. Because of possible sfailures, our cooperation protocol may not work prop-

erly. For example, the proposal to merge virtual machines (ET_UPCALL_MERGE_VM)

may not reach the destination (customer’s AppManager) when the network link be-

tween the IaaSManager and the AppManager is down. As a result, the proposal is

not accepted, tier instances are not merged, and the application performance is not

improved. We need to enhance jCoop’s reliability to handle failures at runtime.

Real Scenarios

In chapter 7, we evaluated our work using synthesis benchmark with RUBiS

client and Apache / MySQL / PHP stack in our private IaaS. We believe that

our work can show benefit in real conditions: real multi-tier applications with real

workloads in real cloud infrastructures. We are currently in progress of evaluating

the proposed cooperative resource management system with real workload traces

provided by Eolas1 datacenter. Another source of workload trace is The Grid Work-

loads Archive[38]. Using these data, we can conduct trace-based simulations of the

1http://www.businessdecision-eolas.com

Cooperative Resource Management in the Cloud

http://www.businessdecision-eolas.com


8.2. PERSPECTIVES 110

customer’s applications in a cooperative IaaS, evaluate the performance gain and

resource optimization.

Additionally, we think that the experimented resource step of 1/6 of a physical

machine in BLC is rather coarse. We believe with finer grain resource steps (e.g. 1/10
or 1/20 size of a physical machine) will bring more benefits to both sides at runtime:

the customer’s resource allocation is closer to what is really needed, and the provider

has less total physical utilization time. We aim to continue our experiments with

these settings in order to confirm the benefits.

8.2.2 Long Term Perspectives

In a longer term, we aim to improve the easy adoption of cooperative resource

management in the cloud.

Resource Dimensions

First, the cooperative resource management policy should be able to take into

account more types of elastic resources. In our algorithms, we currently consider

only two major resource dimensions for elastic virtual machines: CPU and memory.

The two missing dimensions are storage and network bandwidth. Introducing more

dimensions to manage increases the complexity and performance of our virtual ma-

chine packing and quota changing algorithms, but also provides more flexibility to

the customer when managing his applications at runtime.

Application Domains

In this thesis, we considered only the case of multi-tier applications in the cloud.

In real world clouds, the customer can work with various application domains. Each

application domain has different effectiveness when used with a cooperative IaaS.

For example, in a parallel batch processing application (with MapReduce [29] jobs),

the virtual machines do not need to be merged or split because they maximize their

utilization of allocated resources most of the time (e.g. their vCPUs are at maximum

load).

Cooperative PaaS

Finally, we wonder if the cooperation between the customers and providers can be

exploited in a PaaS environment. Most PaaS is built on top of IaaS (public or hybrid

IaaS). In the case of using public IaaS, there exists three actors: PaaS customer (who

Cooperative Resource Management in the Cloud
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Figure 8.1: Cooperative PaaS on top of Cooperative IaaS

develops his application on the PaaS), PaaS provider, and IaaS provider (figure 8.1).

From this point of view, cooperative PaaS can be considered to have two cooperative

resource management policies: PaaS customer – PaaS provider, and PaaS provider

– IaaS provider. The later is similar to what was described in this thesis: the PaaS

provider uses the IaaS, therefore is a IaaS customer.

In this context, the cooperation between the PaaS customer and the PaaS provider

is an interesting direction that can be further explored. For instance, in a traditional

J2EE scenario, the PaaS provider can propose to collocate servlets from various PaaS

customer’s applications into the same container, to reduce the number of virtual ma-

chines serving these containers and reduce performance overheads. A deeper inves-

tigation of this cooperation may bring benefit to both the PaaS customer (in terms

of performance) and the PaaS provider (in terms of virtualized resource usage).
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