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Abstract

Adaptive systems modify their behaviour in order to run always and everywhere. Their
structure is therefore subject to continuous changes, which however could compromise
the correct behaviour of applications and break the guarantees on their non-functional
requirements. Effective mechanisms are thus required to adapt software to the new
added functionalities and to changes of the operational environment, namely the con-
text in which applications are plugged in. These mechanisms must also maintain the
applications properties after adaptation occurs.

Consequently, a shift in programming technologies and methodologies is needed to
manage adaptivity successfully. Since every system, be it adaptive or not, has to be pro-
grammed, programming languages need to natively support adaptivity. Furthermore,
having adaptivity as a linguistic construct enables us to design and to develop more
adequate verification tools that can help to prevent system failures due to erroneous or
unexpected changes.

This thesis addresses adaptivity, adopting an approach firmly based on program-
ming languages and formal methods. In particular, we have two main concerns. The
first one consists of introducing appropriate linguistic primitives to describe the context
and to express adaptation. The second one is about the design of verification tools,
based on static analysis techniques, in order to ensure that the software maintains its
consistency after adaptation.
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Introduction

Information Technology is so pervasive in our life and in our society that most of our
everyday activities depend on it.

On the one hand computing devices of different shapes and sizes are now our “dig-
ital friends”. Portable media players, smartphones, tablets, laptops are some examples
of devices we interact with every day. We exploit them to communicate with our con-
tacts; to access services provided through the Internet; to send or receive emails and text
messages; to chat with our buddies; to take pictures and share them with our friends
through social media; to book a flight. All these activities have become so natural for us
that we take them for granted.

On the other hand computing systems lie at the core of society infrastructures, such
as financial, business, communication, transportation, defence and healthcare systems,
to cite a few.

We are aware that Information Technology has simplified our lives, by increasing our
communication capabilities and by automatizing a large number of repetitive everyday
tasks. But it is important to notice that our dependency on computing systems exposes
us to many unknown threats, which include system failures as well as attacks by hack-
ers. These threats can have catastrophic consequences. For example, software mistakes
or attacks may shut down large parts of financial or business infrastructures causing
enormous economic damage. Now this scenario has become increasingly harder and
it poses severe challenges to computer scientists. The main reason is that we require
systems to run in environments only partially known, in which the anticipation of all
possible environments conditions and the perfect understanding of software require-
ments are unachievable at design and development time. Furthermore, the complexity
of systems gains every day so that it is very hard to design and to develop correct and
safe software systems with millions of lines of code and with large numbers of inter-
acting components. Additionally, once built and run such systems, their maintenance is
highly a difficult task, because every change is required to occur at runtime while the
system is operating.

Moreover, the ubiquity of mobile devices and mobile applications has been adding
a further level of complexity. Indeed now applications can move and run in different
execution environments which are unknown, open and possibly hostile and where the
computational resources change dynamically.

It would be highly desirable to have tools and software engineering methodologies
that support us in tacking these new challenges. By exploiting them, we would be able
to design and develop systems that are verified correct and that are capable of manag-
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ing themselves while they are running (almost) without any human involvement. Under
this hypothesis, systems might continually monitor themselves and perform the opera-
tions which are the most adequate for facing the current situation. The vision in which
computing systems are capable of managing themselves is called autonomic computing.
One of the most notable feature in this vision is self-adaptability, i.e. the capability of sys-
tems to modify their own behaviour depending on the execution environment, namely
the context. Self-adaptability is a notable requirement to support autonomic computing,
and it represents itself an interesting research topic and a hard challenge.

We think that current mainstream development tools do not consider adaptivity
a main concern, thus, they are not fully adequate to build effective and robust self-
adaptive systems. Consequently, we need a change in the programming technologies
and methodologies. Since every system, be it adaptive or not, has to be programmed, we
believe that some first mechanisms to tackle adaptation must be provided at program-
ming language level. We regard that addressing adaptation at this level pushes it down
to elementary software components and allows describing fine-grain adaptability mech-
anisms. Furthermore, making adaptivity a main concern in programming languages
enables us to design and develop verification tools that can help to prevent some kinds
of system failures at earlier stages of the development process.

For these reasons, this thesis addresses some foundational issues of self-adaptability,
by adopting an approach firmly based on programming languages and formal meth-
ods. In particular, we have two main concerns. The first one consists of introducing
appropriate linguist primitives and abstractions to describe the environment hosting
the application and to effectively express adaptation. The second concern is about the
design of verification tools, based on static analysis techniques, in order to ensure that
the “software behaves well” also after the adaptation steps. This means that software

• adequately reacts to changes in its execution environment;

• ensures some security guarantees.

To do that, we followed the research line of Context-oriented Programming (COP),
a programming paradigm which has been recently proposed for developing adaptive
applications. The two most noteworthy features of COP languages are the notions of
context and of behavioural variation. The context is a description of the environment
where the application is running, and it usually contains information about the device
capabilities, users (e.g. preferences, profiles, etc.) and the psychical environment (e.g.
location, level of noise, etc.). Behavioural variations are constructs specifying chunks of
behaviour that can be dynamically activated depending on information picked up from
the context. Thus, at runtime these chunks of behaviour alter the basic one of the
application. Furthermore, behavioural variations can be composed, and the result of
their combination determines the actual behaviour.

Although this new class of languages has proved quite adequate to program adapta-
tion, there are still some open issues, which we detail later on. Among these we consider
most impelling the following:

1. semantics foundations have not been sufficiently studied so far;
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2. security and formal verification have not been main concerns in the design of COP
languages;

3. primitives to describe the context are too-low level and not powerful enough to
model complex working environments, which may include heterogeneous infor-
mation;

4. the current implementation of behavioural variations, e.g. done through partial
definition of methods or classes, is not sufficiently expressive.

The contribution of this thesis is to formally address the above issues. For (1) and
(2), we introduce a development methodology which extends and integrates together
technique from COP, type theory and model-checking. The kernel of our proposal is
ContextML, a core functional language belonging to the ML family. Our choice is sup-
ported by the elegance of ML, which enables us to reason at a sufficiently abstract level,
and by the following pragmatic reasons. Nowadays functional languages, e.g. F# and
Scala, are actually used for development of real systems. Also many main stream lan-
guages as Python, Javascript, Ruby, to cite just a few, have borrowed ideas from the
functional paradigm. Finally, as already noted, the semantics of functional languages is
clear and well understood, and it enabled us to exploit a large number of known formal
techniques from the literature.

The most notable features of ContextML include layers as first class values and be-
havioural variation at expression level; simple constructs for resource manipulation;
mechanisms to declare and enforce security policies; and abstract primitives for com-
municating with other parties by message exchanging. Furthermore, we introduce a
static technique that not only ensures software “behaves well” as pointed out above, but
also some security properties. Software will then:

• adequately adjust its behaviour to context changes;

• safely use the available resources;

• correctly interact with the other parties.

Although ContextML and its companion static technique effectively tackle (1) and
(2), issues (3) and (4) above remain still open. To attack them, we introduce MLCoDa,
an evolution and redesign of ContextML. Its main novelty consists of having two com-
ponents: a declarative constituent for programming the context and a functional one for
computing. This bipartite nature is motivated by the following observation: the context
requires customised abstractions for its description, which are different from those used
for programming applications. Think about web applications where there are special-
ized languages for the content visualization (e.g. HTML and CSS) and for the application
logic. Our context is a knowledge base implemented as a Datalog program. Adaptive
programs can therefore query the context by simply verifying whether a given property
holds in it. In spite of the fact that this may involve possibly complex deductions. In
addition, MLCoDa introduces a notion of open context, i.e. the holding properties not
only depend on the software code, but also on the system, where it will run. This affects
our verification machinery (as we will detail).
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As for programming adaptation, MLCoDa includes context-dependent binding and first-
class behavioural variations. The first feature allows program variables to assume different
values depending on the context. The second one introduces behavioural variations as
values, i.e. they can be bound to identifiers, and passed as arguments to, and returned
by functions. This allows us to easily express dynamic and compositional adaptation
patterns as well as reusable and modular code.

Furthermore, MLCoDa is equipped with a static technique to ensure that software will
not fail due to an unexpected context arising at runtime. To effectively manage the open
context of MLCoDa, we perform the static analysis in two phases: at compile time (a type
and effect system) and at loading time (a control flow analysis). During type checking
we compute an abstraction over-approximating the capabilities required at runtime as
an effect. When the software is about to run, this abstraction is exploited to verify that
the actual hosting environment satisfies all the capabilities required by the application,
so that no failure will arise during the execution.

We point out that here we are only interested in studying the introduction of new
mechanisms for adaptivity inside programming languages from a foundational point
of view, hence, we completely omit issues about the concrete implementation of the
compilers and the verification mechanisms. Moreover, we do not consider event-based
adaptivity. Often, context-aware systems are also event-based, where the occurrence of
an event may trigger context changes and vice versa. Events can be both internal and
external to programs and they denote the occurrence of a given action or condition, for
example the activation of an hardware device or an input by the user. This situation
could be naively encoded in our calculi, by introducing two threads sharing the context:
the first listens for incoming events. Once an event is received, it modifies the context
accordingly. The second thread runs the code of the program. In this thesis we only
are interested in mechanisms for programming the second thread. Consequently, we
will not discuss any linguistic primitive for events and we consider no mechanism for
their management. Therefore, we only deal with single threaded programs, so allowing
a manageable formal development of our calculi.

Thesis structure

The thesis is organized as follows:

Chapter 1 presents Context-oriented Programming and intuitively introduces the static
analysis techniques which we use later in the text.

Chapter 2 introduces ContextML. The main contribution of this chapter is the semantics
of ContextML and its annotated type system, assuring that well-typed program are
able to react to context changes at runtime.

Chapter 3 extends the material of the previous chapter, by adding constructs for com-
munication, for resource manipulation and for security policy enforcement. The
main contribution of this chapter is the introduction of a static analysis technique,
which includes a type and effect system and a model-checking procedure. We
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prove the soundness of our analysis and that programs passing checks comply
with the security policies and correctly communicate with the other parties.

Chapter 4 is about the design and the formal description of MLCoDa. The main contri-
butions of the chapter are the semantics of MLCoDa and the definition of its two
phases static analysis; we also prove its soundness. Furthermore, we define an
analysis algorithm for the loading time part, prove its correctness, and compute
its worst case complexity.

Chapter 5 concludes the thesis by presenting ongoing research activities and future
work. Then, we extend our proposal to enforce security policies over the context.

Some portions of thesis were published in the following papers:

• A short version of Chapter 2 in

Pierpaolo Degano, Gian Luigi Ferrari, Letterio Galletta, and Gianluca Mezzetti.
Typing context-dependent behavioural variations. In Simon Gay and Paul Kelly,
editors, Proceedings Fifth Workshop on Programming Language Approaches to Concurrency-
and Communication-cEntric Software, PLACES 2012, volume 109 of EPTCS, pages
28–33, 2012

• The material of Chapter 3 in

Pierpaolo Degano, Gian Luigi Ferrari, Letterio Galletta, and Gianluca Mezzetti.
Types for coordinating secure behavioural variations. In Marjan Sirjani, editor,
Coordination Models and Languages - 14th International Conference, COORDINATION
2012, volume 7274 of Lecture Notes in Computer Science, pages 261–276. Springer,
2012

Chiara Bodei, Pierpaolo Degano, Gian Luigi Ferrari, Letterio Galletta, and Gian-
luca Mezzetti. Formalising security in ubiquitous and cloud scenarios. In Agostino
Cortesi, Nabendu Chaki, Khalid Saeed, and Slawomir T. Wierzchon, editors, Com-
puter Information Systems and Industrial Management, CISIM 2012, volume 7564 of
Lecture Notes in Computer Science, pages 1–29. Springer, 2012

Previous work on static analysis, but not included in this thesis are:

Letterio Galletta and Giorgio Levi. An abstract semantics for inference of types and
effects in a multi-tier web language. In Laura Kovács, Rosario Pugliese, and Francesco
Tiezzi, editors, Proceedings 7th International Workshop on Automated Specification and Veri-
fication of Web Systems, WWV 2011, volume 61 of EPTCS, pages 81–95, 2011

Letterio Galletta. A reconstruction of a types-and-effects analysis by abstract interpreta-
tion. In Proceedings Italian Conference of Theoretical Computer Science, ICTCS 2012, 2012

Letterio Galletta. An abstract interpretation framework for type and effect systems, 2013.
To appear in Fundamenta Informaticae
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Chapter 1

Preliminaries

1.1 Adaptive Software

In this section we introduce the notion of adaptive software (see [ST09] for a complete
survey) and we briefly review some language-based approaches which have been pro-
posed to program this kind of system. There are many definitions of self-adaptability.
For example, in a DARPA Broad Agency Announcement (BAA) [Lad97]:

Self-adaptive software evaluates its own behaviour and changes behaviour
when the evaluation indicates that it is not accomplishing what the software
is intended to do, or when better functionality or performance is possible.

A similar definition is given in [OGT+99]:

Self-adaptive software modifies its own behaviour in response to changes in
its operating environment. By operating environment, we mean anything ob-
servable by the software system, such as end-user input, external hardware
devices and sensors, or program instrumentation.

Following [ST09] in this thesis we consider that adaptive software falls under the um-
brella of autonomic computing, because self-adaptability is a fundamental constituent
of this kind of system. The problem of self-adaptability been tackled by a variety of
points of view such as control theory [KBE99], artificial intelligence [KW04], software
engineering [ABZ12, PCZ13] and at the programming languages level. We follow this
latter line of research. We strongly believe that language-level approaches are the most
promising because they push the adaptation down to elementary software components.
We will argue that at this level we can describe extremely fine-grain adaptability mech-
anisms and that it is easy to introduce fine-grain mechanized verification mechanisms,
as those we will define in next chapters. The mainstream languages-level approaches to
self-adaptability are aspect-oriented programming [KLM+97], dynamic aspect-oriented pro-
gramming [PAG03] and context-oriented programming [HCN08]. We adopt this latter ap-
proach because it has an explicit notion of context, which better models the working
environment hosting the software.
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1.1.1 Autonomic Computing

The complexity of modern computing systems is such that even the most skilled sys-
tem administrators can hardly manage and maintain them. Seeking for a solution, IBM
released a manifesto [IBMon] in 2001, which advocated an overall rethinking of comput-
ing systems. Future systems are required decreasing the human involvement, by freeing
administrators from the details of low-level operations and maintenance. The vision in
which machines are able to self-manage is called autonomic computing [KC03, HM08].
The term “autonomic” comes from biology, in particular from autonomic nervous sys-
tem. In the human body, the autonomic nervous system takes care of bodily functions
that do not require our attention, for example heart rate and body temperature, so an
autonomic system will maintain and adjust its operations in face of changing compo-
nents, workloads, external conditions and failures without a conscious involvement. The
essence of an autonomic system is therefore self-management. Under this hypothesis a
system continuously monitors its own execution and performs the operations consid-
ered most adequate. For example, if the advertised features of an upgrade seem worth
installing, a system will upgrade and reconfigure itself as necessary. If needed, the sys-
tem reverses to an older version, based, for example on a regression test that checks
whether the upgrade completed successfully or not.

According to [IBMon] self-management systems are characterized by the following
properties:

• self-configuration. Autonomic systems configure themselves according to high-level
policies specifying what is desired, not how to accomplish it. This means that
when components are introduced they will incorporate themselves seamlessly and
the rest of the system will adapt to their presence;

• self-optimization. Autonomic systems pro-actively seek ways to improve their own
performance, efficiency and resource usage;

• self-protection. Autonomic systems automatically defend themselves against ma-
licious attacks but also from end-users who inadvertently make unsafe software
changes. Systems autonomously tune themselves to achieve and ensure an ade-
quate security, privacy and protection level, and exhibit a proactive behaviour by
anticipating security breaches and prevent them from occurring in the first place;

• self-healing. Autonomic systems are fully fault-tolerant and are able to detect, di-
agnose and repair localized software and hardware problems by installing the
appropriate patches or isolating faulty components. It is important that as result
of the healing process the systems are not further harmed, for example by the
introduction of new bugs.

From an architectural point of view autonomic systems are massive collections of
interactive elements, called autonomic elements. Each autonomic element is responsible
for managing its own behaviour but it usually cooperates with others to perform its
task. The interactions with others elements and with the environment are performed
by exchanging signals and messages over predefined communication channels and in
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Managed Element
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Execute

Plan
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Autonomic Manager

Figure 1.1: The structure of a typical autonomic element

accordance to fixed communication protocols. The internal behaviour of an autonomic
element, as well as its relationships with others elements, are driven by policies that its
administrator has embedded in it.

Structurally, autonomic elements are characterized by one or more managed elements
coupled with a single (or multiple) autonomic manager that controls and manages them
(see Figure 1.1). The managed element is essentially a standard software component,
like those found in non-autonomic systems, except that it enables autonomic manager
to monitor and control it. The autonomic manager follows a MAPE-K (Monitor, Analyse,
Plan, Execute, Knowledge) control loop.

One of the most notable features of autonomic elements is self-adaptability, i.e. the
ability of modifying behaviour depending on decisions taken by the autonomic manager.
The problem of self-adaptability is one of hardest research challenges in designing and
building autonomic systems.

1.1.2 Aspect-oriented Programming and Dynamic Aspect-oriented Program-
ming

By analysing the source code of a computer program we discover that we can group it
according to its responsibilities. For example, some parts of the code are responsible
for implementing application logic, other ones for logging or for security checks. We
call the application logic the core concern. The other ones instead implement program
behaviour, functional or non-functional, that interacts with the core concern, but that
are orthogonal to it. They are called cross-cutting concerns. Usually the code of cross-
cutting concerns is intermixed with that of the application logic, causing code scattering.
A program exhibits code scattering when the same or similar fragments of code are
repeated throughout. It gives rise to the following issues:

• the code of the application logic is hard to maintain;
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• the probability of error in coding increases and identifying errors becomes hard;

• any change of cross-cutting concerns can require changes in many source files.

Aspect-oriented programming (AOP) is a paradigm that decreases the code scatter-
ing by allowing us to separate and organize in stand-alone modules, called aspects, the
orthogonal code, by decoupling it from the application logic. Aspect-oriented program-
ming is based on a joint point model, specifying the following three notion:

join point position in a program where the additional features provided by an aspect
can be inserted;

advice tool for specifying code to run at join point;

pointcut a pattern determining the set of join points where a given advice has to be
inserted.

As a typical example of aspect-oriented programming, consider the AspectJ applica-
tion shown in Figures 1.2 and 1.3. AspectJ [KHH+01] is an extension of Java [GJSB05].
The application is a toy example taken from [Li05] showing code that can be found
in a typical accounting system. The core application logic is in the transferFunds()

method that transfers funds between two accounts by debiting from one account and
then crediting to the other. LogTransfer defines an aspect implementing a logging
mechanism. We define a pointcut called transfer() that matches any invocation of the
transferFunds() method. The rest of code in LogTransfer defines two pieces of advice
that are executed before and after the invocation of transferFunds(), respectively, re-
alizing the logging mechanism. The link between join points and advice is performed
during the compilation of the program.

Dynamic aspect-oriented programming allows adding (also aspects previously un-
known to the system) and removing aspects to and from programs at runtime, hence,
enabling us to perform adaptation of the system behaviour. This capability to dynam-
ically activate or to deactivate advice has made dynamic aspect-oriented programming
attractive for adaptive systems, especially for the development of autonomic ones.

In the literature there are also papers about the semantics foundation of AOP. Since
AOP is not the topic of this thesis, we refer the interested reader to e.g. [WZL03, WKD04,
LWZ06].

Although AOP adequately supports dynamic adjustments in a program, it has no
mechanisms to explicitly represent the working environment hosting the application.
Consequently, programmers need to implement it by themselves, providing mechanisms
to intercept and react to the changes. For this reason, we have preferred adopting a
paradigm where the notion of the context is within the language.

1.1.3 Context-oriented Programming

Context-oriented programming [CH05, HCN08] is a programming paradigm recently
proposed as a viable approach to development of systems that are context-aware, i.e.
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import com.ibm.dw.tutorial.aop.accts.CustomerAccount;

public class AccountManagerAOP {

protected static final int ACCOUNT1 = 0;
protected static final int ACCOUNT2 = 1;

public static void main(String[] args) {
AccountManagerAOP mgr = new AccountManagerAOP();
mgr.transferFunds(ACCOUNT1, ACCOUNT2, 5);

}
public void transferFunds(int fromAcct, int toAcct, int amount) {

CustomerAccount from = findAccount(fromAcct);
CustomerAccount to = findAccount(toAcct);
from.debit(amount);
to.credit(amount);

}

protected CustomerAccount findAccount(int acctNum) {
// simple stub code for tutorial
return new CustomerAccount(acctNum, 10);

}
}

Figure 1.2: A toy accounting system that shows the ideas underlying aspect-oriented
programming

import com.ibm.dw.tutorial.aop.logging.SystemLogger;
import com.ibm.dw.tutorial.aop.accts.CustomerAccount;

public aspect LogTransfer {
SystemLogger sysLog = SystemLogger.getInstance();

pointcut transfer():
call(* AccountManagerAOP.transferFunds(..));

before(): transfer() {
Object[] args = thisJoinPoint.getArgs();
sysLog.logDetails(

"transferFunds START - from Acct#" +
args[0] + " to Acct#" + args[1] + " for $" +
args[2]

);
}
after(): transfer() {

Object[] args = thisJoinPoint.getArgs();
sysLog.logDetails(

"transferFunds END - from Acct#" +
args[0] + " to Acct#" + args[1] + " for $" +
args[2]

);
}

}

Figure 1.3: A toy logging system for the AccountManagerAOP class defined by using
aspect-oriented programming mechanisms
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able to dynamically adapt their behaviour depending on changes occurring in their ex-
ecution environment. Managing context-awareness is critical not only for autonomic
computing but also for modern mobile applications and internet services. For exam-
ple, consider applications that are location-based, situation-dependent or deeply per-
sonalized. Note that adaptation to the current context is an aspect that crosscuts the
application logics and often it is orthogonal to the standard modularization mechanism
provided by languages.

Currently, the only way to make the behaviour of a program context-dependent
consists of modelling the context using a special data structure, which can answer to a
fixed number of queries provided as methods or functions over it. Usually, to test the
results of queries conditional statements, e.g. if, are exploited. This naive approach has
at least two drawbacks:

1. the programmer has to implement its notion of context and the corresponding
operations by himself;

2. the extensive use of conditional constructs to carry out adaptation fails to achieve
a good separation of cross-cutting concerns.

Other approaches, which exploit traditional programming languages, are special design
patterns that encapsulate the context-dependent behaviour into separate objects whose
instantiation depends on the context [PCZ13]. Even if these approaches allow achieving
a good separation of concerns, they make the use of automatic verification tools difficult.

Instead, context-oriented languages are designed with suitable constructs for adap-
tation and grant expressing context-dependent behaviour in a modular and isolating
manner reducing the problem of code scattering. Furthermore, suitable constructs en-
able the compiler to optimise the code and the virtual machine to carry out automatised
verification in order to assure that programs keep their correctness after the adaptation.

There are two fundamental concepts in COP paradigm: behavioural variations and
layers. A behavioural variation is a chunk of behaviour that can be dynamically activated
depending on information picked up from the context, so as to substitute or modify the
application basic behaviour at runtime. Furthermore, multiple behavioural variations
can be active at the same time, and the result of their combination determines the actual
program behaviour.

A layer is an elementary property of the context. Indeed, the context is a set of lay-
ers that can be activated and deactivated at runtime. Usually, the concept of layer is a
language construct to identify an group related behavioural variations: activating/de-
activating a layer corresponds to activating/deactivating the corresponding behavioural
variation.

In [HCN08] Hirschfeld et al. have listed the essential features which a language must
supply in order to support context-oriented programming; these include means:

• to specify behavioural variations

• to group variations in well defined and isolated layers;

• to dynamically activate/deactivate behavioural variations based on context;
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• to explicitly and dynamically control the scope of behavioural variations.

They also have noted that layers1 have to be first class objects in the language, i.e.
they can be bound to variables, passed as argument and retuned by functions. This
feature is especially required to allow different parts of a system to communicate and
perform runtime adaptability.

Example 1.1.1. To clarify the main ideas of context-oriented programming we discuss a
toy example taken from [HCN08, SGP11] and written in ContextJ [AHHM11], a context-
oriented version of Java. The example is shown in Figures 1.4 and 1.5. We define a
Person class and a Employer class and we use the context to capture people roles and
their changes. Both classes declare a method toString() that is redefined inside the
layers Address and Employment. When the method toString() is invoked on objects
of Person class the implementation of the method to execute is chosen accordingly to
the currently active layers. ContextJ provides the construct with to perform the dy-
namic activation of layers. When toString() is invoked on somePerson object the layers
Adress Employment are active. These activations affect the method dispatching mecha-
nism that searches inside layers in reverse activation order. In the example, the activation
of Employment layer causes the printing of additional information about the person’s em-
ployment, while the Address layer causes the printing of information about the job. In
the code the invocation to proceed() is similar to the one of super in Java and forces the
execution of the method in the next active layer. If there are no further active layers the
original method is called. It is worth noting that layer activation performed by the with

construct is dynamically scoped and affects the control-flow of the program: indeed, it
modifies the behaviour not only for method calls systematically inside the code block,
but also for the calls triggered in turn.

Example 1.1.2. As a further example, consider the toy adaptable storage server in Fig-
ure 1.6 (left), taken from [SGP12]. The server is implemented by a class Storage provid-
ing the method getItem, which allows one to retrieve data stored on the disk trough a
key. The basic implementation of this method, the last one in the listing, simply looks
up the object from the disk. However, this basic behaviour can change depending on the
context hosting the server: the layer logLayer indicates that every access to the storage
must be recorded in a log file; and the layer cacheLayer exploits a cache on the main
memory to speed up the information retrieval. In Figure 1.6 (right) we create a new
instance of the Storage class and invoke the method getItem, first in a empty context,
and then in a context where the layers logLayer and cacheLayer are active. The out-
put of this execution is shown in the comment under the code: we can understand by
the prints how the activation of layers alter the control-flow in the body of the method
getItem.

Inspired by the pioneering work of Costanza, a large number of COP proposals
emerged, each of which addresses the problem of behavioural variation modularization
and dynamic layer activation in different ways. To give an idea of the features offered

1Note that in Chapter 4 we will introduce also behavioural variations as first class objects, enriching the
number of adaptation patterns we can express.
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class Person {
private String name, address;
private Employer employer;

Person(String newName, String newAddress, Employer newEmployer) {
this.name = newName;
this.address = newAddress;
this.employer = newEmployer;

}

String toString(){ return "Name: " + name; }

layer Address {

String toString() {
return proceed() + "; Address: " + address;

}
}

layer Employment {

String toString() {
return proceed() + "; [Employer] " + employer;

}
}

}

class Employer {
private String name, address;

Employer(String newName, String newAddress){
this.name = newName;
this.address = newAddress;

}

String toString() { return "Name: " + name; }

layer Address {

String toString(){
return proceed() + "; Address: " + address;

}
}

}

Figure 1.4: The Person and Employer class in ContextJ language
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Employer vub = new Employer("VUB", "1050 Brussel");

Person somePerson =
new Person("Pascal Costanza", "1000 Brussel", vub);

with(Address){
with(Employment){

System.out.println(somePerson);
}

}
/*
[Output]
Name: Pascal Costanza; Address: 1000 Brussel;[Employer] Name: VUB;
Address: 1050 Brussel

*/

Figure 1.5: An execution of the program in Figure 1.4

class Storage{
Cache cache = ...

// Other methods

Object getItem(int key){
println("Disk lookup");
Object item;
// retrieve item from the disk
return item;

}

layer logLayer {
Object getItem(int key){

println("Logging");
// Send info to the log manager
return proceed(key);

}
}

layer cacheLayer {
Object getItem(int key){

println("Cache lookup");
result = cache.get(key);
if(result == null){

result = proceed(key);
cache.put(key, result);

}
return result;

}
}

}

Storage s = new Storage();

// No active layers
s.getItem(10);

// cacheLayer active
with(cacheLayer){
s.getItem(10);

}

// logLayer and cacheLayer active
with(logLayer,cacheLayer){
s.getItem(10);

}

/*
-- Execution of the above code--

> Disk Lookup

> Cache Lookup
> Disk Lookup

> Logging
> Cache Lookup
> Disk Lookup

*/

Figure 1.6: A toy adaptable storage server implemented in ContextJ
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by the paradigm, we present a short overview of the most significant design choices
concerning activation mechanism and behavioural variation modularization. See [SGP12]
for more details about the different language proposals, [AHH+09] for an analysis of
some implementations and their performance and [GPS11] for an comparison about
the implementation of adaptive software by exploiting traditional languages and COP
languages.

In general, we distinguish two layer activation strategies namely global and local ac-
tivation. In the first case, there exists a global and shared context and the activation
of a behavioural variation affects the control-flow of all threads. In the second case,
there exists different local contexts, e.g. one for each thread or for each object of the
applications, and the activation affects only the behaviour of entities depending on the
modified context.

Regarding the extent of layers activation, we can identify two approaches: dynamically
scoped activation and indefinite activation. The first is the approach proposed by the most
COP languages. It is performed by the with statement that makes a sequence of layers
actives in its code block. The activation influences also the nested calls and obeys to a
stack discipline: whenever a new layer is activated, it is composed with the others by
pushing it on the stack. When the scope expires the most recent layers are popped by
retrieving the previous configuration. This behaviour allows programmers to properly
delimit which parts of the program have to change their behaviour.

The behavioural variation modularization depends on the layer declaration strategy. We
distinguish two layer declaration strategies, namely class-in-layer and layer-in-class. The
first denotes layer declarations where the layer is defined outside the lexical scope of the
modules for which it provides behavioural variations. This strategy allows layer encap-
sulation in dedicated and isolated modules. The second declaration strategy, instead,
supports the declaration of a layer within the lexical scope of the module it augments,
allowing modules definition to be completely specified. For example in Figure 1.4 the
layers Employment and Address are defined inside the class Person.

1.1.4 Context-oriented programming for autonomic systems

Salvaneschi et al. [SGP11] proposed Context-oriented Programming as framework upon
build autonomic systems. The underlying idea is to use context-oriented mechanisms
to accomplish the adaptability requirements of the managed element by implementing
it with a context-oriented language. When the control-flow enters in a with statement,
the autonomic manager is queried for the active layers and the code in the scoped block
is automatically adapted:

with(AutonomicManager.getActiveLayers()){
// Dynamic adapted code

}

In this way the autonomic manager directly manages the actual adaptation that should
be performed. This model requires that the designers precisely identify which parts of
the code have to be included inside a with statement.
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Furthermore, it is based on the strong hypothesis that all possible adaptations are
known in advance and that all possible relevant changes in the execution environment
can be anticipated at design time. This hypothesis is very strong and could bring down
the model applicability to a reduced class of systems. They also highlighted that cur-
rent context-oriented programming languages are not fully adequate for implement-
ing autonomic systems, but that further improvements and developments are required.
For example, in certain autonomic applications it could be necessary to express con-
straints on layers: two layers can conflict with each others or a dependency between
them can exist, so that the (de)activation of a layer require the (de)activation of other
one. Some prototype implementations including layer dependency enforcement have
been proposed, e.g. in [CD08], but they are still premature. Another open issue is that
layer activation in accordance to the program control-flow is often insufficient to ex-
press the adaptation needed by an autonomic systems since context changes are often
triggered from external events. These situations require language mechanisms able to
express the asynchronous event-driven adaptability. Recently, to cope this issue EventCJ
was proposed in [KAM11], but it is still a prototype. For further details about the model
and its corresponding open questions see [SGP11].

1.1.5 Calculi for context-oriented languages

So far most of the research efforts in the field of context-oriented programming have
been directed toward the design and the implementation of concrete languages. To the
best of our knowledge only a limited number of papers in the literature provides a
precise semantic description of these languages. Here, we briefly review the most sig-
nificant contributions. Later on we compare our proposals, i.e. ContextML and MLCoDa

with them.
In [CS09] Clarke and Sergey have defined ContextFJ, an extension of Featherweight

Java [IPW01] that includes layers, scoped layers activation, and deactivation. They have
not considered constructs for expressing inheritance and have adopted a class-in-layer
strategy to express behavioural variations. Since layers may introduce new methods
not appearing in classes, they have also defined a static type system ensuring that there
exists a binding for each dispatched method call.

In [HIM11] Hirschfeld et al. have defined a different Featherweight Java extension
including inheritance and still exploiting a class-in-layer strategy. Also in this case,
a static type system has been specified to statically prevent erroneous invocations at
runtime. Their type system is much more restrictive than that of [CS09], because it
prohibits layers from introducing new methods that do not exist in the class. This
means that every method defined in a layer has to override a method with the same
name in the class. In [IHM12] Igarashi et al. have addressed the restriction of [HIM11]
and extended the type system to handle dynamic layers composition.

Featherweight EventCJ [AKM11] is another calculus inspired by Featherweight Java
introduced to formalize event-based layer activation. This mechanism allows activating
layers in reaction to events triggered by the environment.

Contextλ [CCT09] extends the λ-calculus with layer definition, activation/deactiva-
tion and a dispatching mechanism. However, the calculus does not include high-order
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behavioural variations. Contextλ is exploited to study the issues deriving from the com-
bination of closures and the special proceed construct, a sort of super invocation in
object oriented languages [HCN08]. The problem arises when a proceed appears within
a closure that escapes the context in which it was defined. This opens interesting se-
mantic issues because escaping from a context may cause the application to live in a
context where the required layers could not be active any longer. In [CCT09] several ap-
proaches to deal with this semantically relevant problem have been proposed, however
no completely satisfactory solution has been put forward yet and this question is still
open. Note that the proceed construct is strictly related to the idea of representing the
context as a stack of layers.

1.1.6 Context-oriented languages open issues

Besides the limitations described in [SGP11] concerning the application of COP language
as programming tool for autonomic computing, we identify the following restrictions as
the most limiting for the development of complex adaptive software:

1. neither semantics foundation nor verification mechanism for this class of lan-
guages have been extensively studied so far.

2. Primitives used to describe the context are too low-level and not enough power-
ful to model complex working environment. Indeed, layers are binary predicates,
therefore, they cannot accurately identify the amount and the measure of different
and structured pieces of information. Consider the storage server in Figure 1.6.
There, the layer cacheLayer in the context represents only the fact that we are us-
ing a cache, but it does not give any information about the size or other features
of the cache. So we believe that layers in this form are sometimes inadequate to
program complex adaptive applications, where the context may contain structure
information. Although in many implementations layers are implemented as ob-
jects so they can have a own state, this information do not affect the dispatching
mechanism. Thus, there is no easy way to express adaptation based on the data
carried by a layer.

3. Although behavioural variations are a basic notion in COP, they are not first class
citizens in the languages. Usually, they are expressed as partial definition of mod-
ules in the programming language that underlies the actual COP language, such
as procedures, classes or methods as we saw in the previous examples. However,
behavioural variations are not values and one cannot easily manipulate them, e.g.
passing them to functions as arguments, or binding them to variables. Instead, we
believe that a language especially designed for adaptivity should have constructs
to manipulate behavioural variations, for this reason one of our calculi provides
such a feature.

4. Finally, to the best of our knowledge security issues have never been considered
within COP languages. In particular, there is no mechanism to declare and en-
force security polices over the context. We believe that this is an important open
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issue because security could affect the adaptive capabilities of an application. For
example, a security policy could prevent a behavioural variation to be activated.

In the following chapters, we address the above weakness, by adopting a language
and formal method-based approach. In particular, ContextML attempts to tackle both
(1) and (4) (Chapters 2 and 3). Whereas MLCoDa (Chapter 4) mainly deals with (1), (2),
(3) and (4) by introducing a completely new treatment of COP primitives. Both our
proposals support automatized verification.

1.2 Static analysis techniques

In this section, we briefly review concepts and ideas underlying the static analysis tech-
niques that we intend to exploit in this thesis.

The purpose of static analysis is to acquire information about the runtime behaviour
of a program without actually executing it but only by examining its source code. The
results of an analysis can be used to optimize the execution, to discover errors in the
code or to mathematically prove properties about programs.

Typical examples are

• data-flow analysis [NNH05, KSS09] which determines for each point in the code
properties about the possible computed values;

• Flow Logic [NN02, BDNN01] that predicts safe and computable approximations
to values that a program may compute during its execution;

• type systems and their extensions (type and effect systems [NN99], dependent
types [XP99], refinement types [BBF+11]) which compute for each program phrase
its type augmented with a semantic annotation;

• (software) model-checking [CGP00, JM09] which allows algorithmically verifying
whether the execution of a program2 satisfies a property expressed by a temporal
logic formula;

• abstract interpretation [CC77, CC79] through which we can systematically derive
from the semantics of a program a sound analysis by an abstraction process.

These methods have been widely used to statically verify that programs satisfy a
given specification both to detect unsafe and malicious behaviour. In the rest of this sec-
tion we will explain in more detail the ideas underlying type systems, model-checking
and Flow Logic to make the formal development in later chapters more clear.

1.2.1 Type Systems

Among formal methods used to ensure that a system behaves correctly, type systems are
among the most popular and the most largely used. In [Pie02] a type system is defined
as follows

2A special automaton (Kripke structure) needs to be derived from source code of the program
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A type system is a tractable syntactic method for proving the absence of certain
program behaviour (type errors) by classifying phrases according to the kinds of
values that they compute.

The definition of type error depends on the specific language and type system. For
example, type systems for functional languages often prevent the application of a func-
tion to arguments for which it is not defined and the application of non-functional
values.

Type systems belong to the class of deductive systems where the proved theorems
are about the types of programs. The formal definition of a type system consists of
the following elements: type syntax, type environment, typing judgement, typing rules,
soundness theorem and type-checking algorithm.

Type syntax and type environment Each programming language makes available dif-
ferent kinds of values. A type can be thought as a description of a collection of homoge-
neous values. The type syntax describes the basic types and the type constructors which
can be used to obtain new types from existent ones. Usually the type syntax is specified
by a context-free grammar whose language is the set of all possible types. For example,

t ::= integer | boolean | t1 → t2 | t1 × t2

defines type integer and boolean and the ones obtained by recursive applications of
constructors→ and ×.

A type environment stores the associations between program variables and the types
of the values which these variables denote. Formally, a type environment is a list of
bindings, i.e. pairs (variable, type), recursively defined as

Γ ::= ∅ | Γ, x : t

where ∅ is the empty environment and Γ, x : t is the environment Γ extended with the
binding between x and t.

Judgements Judgements are formal assertions about the typing of program phrases
and correspond to the well-formed formulas of the deduction systems. A typical judge-
ment has the form

Γ ` A.

It means that Γ entails A, where A is an assertion whose free variables are bound in Γ.
Usually, A asserts that there exists a relationship between a program phrase (has-type
judgement) or between two types (subtype-of judgement).

Typing rules Typing rules establish relationships among judgements and assert the
validity of a certain judgement on the basis of others judgements that are already known
to be valid, by inductively defining a logical theory about program types. Each typing
rule has the form:

(rule name)
Γ1 ` A1 . . . Γn ` An

Γ ` A
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where the judgements Γi ` Ai above horizontal line are called premises, and the single
judgement Γ ` A below the line is called the conclusion. When all of the premises are
valid then it is possible to assert that the conclusion holds. Rules without premises are
allowed and are used to assert judgements that are always valid (axioms).

A derivation is a tree of judgements having the form

Γ11 ` A11 . . . Γ1j ` A1j

Γ12 ` A12
···

Γ1m ` A1m · · ·

Γn1 ` An1 . . . Γ1k ` A1k

Γn2 ` An2
···

Γnm ` Anm

Γ ` A

where leaves (at the top) are axioms and where each internal node is a judgement ob-
tained from the ones immediately above it by applying some rules. A judgement is valid
if and only if it can be obtained as the root of a derivation. Hence, establishing that a
program phrase M has type t is the same as finding a derivation with root Γ ` M : t.

Soundness theorem As noted above, the main goal of a type system is to prevent the
occurrence of type errors during the execution. Traditionally, two classes of type errors
are identified [Car04]:

trapped errors that can be caught by the abstract machine of language and that cause
the computation to stop immediately (e.g. division by 0)

untrapped errors that go unnoticed for a while and that later cause arbitrary behaviour.

An effective type system should ensure that no untrapped error and no trapped error
designated as forbidden occur.

Unfortunately, the definition of type system is not enough to guarantee that type
errors do not happen at runtime. A formal proof of a soundness theorem is required
to establish a connection between the semantics of the language and types, ensuring
that the type system achieves its objectives. Any proof of the soundness theorem is
intimately tied to the formulation of the semantics of the language. If the semantics
is specified with an operational style, usually the soundness theorem is proved in two
steps, commonly known as the progress and preservation lemmata:

progress a well-typed phrase is a value or it can take a step according to the evaluation
rules

preservation if a well-type phrase takes a step of evaluation the resulting phrase is also
well-typed (types are preserved under reduction).

Type checking and type inference algorithm Type checking is the problem of veri-
fying that a given term M has type t. Instead, type inference is the problem of finding
for a given term M a type t, i.e. finding a derivation for the judgement Γ ` M : t. In
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static typed languages these algorithms are part of the compiler front-end. Although
their implementation can use different techniques, we need to ensure that their results
are correct. This is accomplished by demonstrating that the algorithm is sound and
complete with respect to the type system. The soundness property guarantees that if
the algorithm gives as result the type t for the term M, then the judgement Γ ` M : t is
valid. The completeness property, instead, guarantees that if Γ ` M : t is valid, then the
algorithm is able to determine that t is the type of M.

1.2.2 Type and Effect Systems

Type and effect systems are a powerful extension of type systems which allows one to
express general semantic properties and to statically reason about program execution.
The underlying idea is to refine the type information so as to further express intentional
or extensional properties of the semantics of the program. In practice, they compute
the type of each program sentence and an approximate (but sound) description of its
runtime behaviour.

The elements of a type system are extended as follows:

• in type syntax we annotate types with effects or tags describing some semantic
properties. For example,

t ::= integer | boolean | t1
φ→ t2

φ ::= . . .

means that the functional types are annotated with the effect that will hold after
the function application (latent effect);

• judgements not only have to assert correspondences between program sentences
and types but also express properties about runtime behaviour. For example,

Γ ` M : t . φ

means that in the environment Γ, M has type t and that the effect described by
φ holds. In addition, we need to define further judgements and inference rules
describing the relationship between effects;

• the correctness of a type and effect system is proved in two steps:

1. prove that the type and effects system is a conservative extension of the un-
derlying type system;

2. prove a soundness theorem that consider the effects.

1.2.3 Flow Logic

Flow Logic [NN02] is a declarative approach to static analysis based on logical systems.
It borrows and integrates many ideas from classical techniques, in particular from data
flow analysis, constraint-based analysis, abstract interpretation and type systems. The
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distinctive feature of Flow Logic is to separate the specification of the analysis from its
actual computation. Intuitively, the specification describes when the results, namely anal-
ysis estimates, are acceptable, i.e. describing the property which we are concerned with.
Furthermore, Flow Logic provides us with a methodology to define a correct analysis al-
gorithm which operates in polynomial time, by reducing the specification to a constraint
satisfaction problem.

Usually, an analysis specification requires the definition of the following elements:

1. an abstract domain, i.e. the universe of discourse for the analysis estimate;

2. the format of the judgements;

3. the clauses.

The abstract domain is the space of properties of interest and it usually is a complete
lattice. The clauses specify what the analysis computes. Formally, these clauses define
a relationship that “assigns” to each program phrase its analysis. Flow Logic allows us
to specify the analysis at different abstraction levels (different styles in the terminology
of Flow Logic). In this thesis we will adopt a syntax-directed style (see [NN02] for a
description of all possible styles and their relationships), so the analysis will be inductive
defined by a set of inference rules. After the definition of the clauses, the Flow Logic
methodology requires to prove that the analysis enjoys the properties below 3:

1. the analysis is correct with respect to the dynamic semantics;

2. every expression has a best or most informative analysis estimate.

The statement of the correctness theorem and its proof depend on the style used to
specify the semantics. In the case of small step operational semantics, which is the
style of semantics we will use, the correctness result is a subject reduction theorem,
expressing that the analysis estimate remains acceptable under reduction.

For (2) is sufficient to prove that the set of the acceptable analysis estimates enjoys
a Moore family property: a Moore family is a subset V of a complete lattice such that
whenever Y ⊆ V then

d
Y ∈ V, for details see [DP02].

For the definition of an analysis algorithm we conveniently reformulate the analysis
as a constraint satisfaction problem. To do that, it is necessary to define:

• the syntax and the (denotational) semantics of the constraints;

• a function that generates constraints for each program phrase;

• a relation saying when an analysis estimate satisfies a set of constraints.

Finally, we need to prove a syntactic soundness and completeness result expressing that
any solution for the constraints is also an acceptable analysis estimate and vice versa.

3Actually, there are some cases (the abstract definition style) where it is also required to show that the
analysis judgements are well-defined. See [NN02].
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1.2.4 Model-checking

Model-checking is an automatic verification technique used to discover the presence of
bugs in software and hardware. In particular, it consists of proving that a system com-
plies with a given specification. This verification problem is equivalent to the problem
in formal logic of checking that a given formula φ is satisfied in a finite domain M.
Since the model M is finite it is possible to carry out an exhaustive search through all
the possible models of the formula φ to decide its validity in M, i.e. M |= φ. This ex-
haustive search is decidable in the finite case, and it corresponds to the model-checking
procedure. Usually, M is a specification describing our system (the model), whereas
the formula φ is obviously the property of interest. In classical model-checking4 the
specification M has the form of a Kripke structure and the formula φ is expressed in a
modal temporal logic. This kind of logic allows us to express formulas about an uni-
verse where there are several possible states, and where a truth value is given to each
proposition in each state. Traditionally, each state corresponds to time instants, and we
say that it is possible to reach the state B from the state A, if B temporally follows A. In
addition to classical truth operators, temporal formulas can include temporal operators
saying in which states formulas should be true, e.g. in one future state (eventually) or
in all future states (always).

In this thesis we will use a language-based approach to model-checking [VW86,
VW08]. This approach exploits the fact that a model-checking problem can be reduced
to a membership or inclusion problem in automata theory, since the set of the models
of a temporal logic formula is a language (see [VW86, VW08] for details). In particular,
we will compute an abstraction H for our programs and we use it as the model. The
semantics of this abstraction is a context-free language, whereas our properties φ are
regular languages. So in this case the model-checking reduces to verifying whether the
intersection between the language of H and the complement of the language of φ (equiv-
alent to ¬φ) is empty, i.e. that the model H satisfies φ. Since from the classical results
of automata theory [Hop79] we know that context-free languages are closed respect to
the intersection with regular languages and the problem of emptiness is decidable for
them, we have an effective model-checking procedure.

1.2.5 Language-based Security

Traditionally, security has been considered an external property of programs and has
usually been tackled through mechanisms of operating systems, e.g. monitor, firewalls,
etc. With the ubiquity of the Internet and of mobile computing devices it turns out
that security is a fundamental concern, and that has to be taken into account from the
first steps of the development process. Language-based security [Koz99, SMH01] has been
proposed to address security concerns at programming language-level. Nowadays it is
a wide research area, which can be summarized by the following two points:

1. the usage of techniques from compilers, from static analysis and from program
transformations to enforce and verify security properties;

4Actually, there are different approaches as, e.g., statistical model-checking [LDB10] and probabilistic
one [FKNP11].
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2. the introduction into languages of constructs aimed at dealing with security issues.

Typically, the compiler creates a certificate containing extra information about the pro-
gram, and packs it with the object code. The system, that wants to run this code (the
consumer), uses the certificate to verify the compliance with some security properties by
a verifier. If the certificate passes the test, the code is considered safe and it is run. This
approach is the basis of the Java Bytecode verifier [LYBB13, Ros04] and Proof-Carrying
Code [NL98]. In Chapter 4 we adopt the same schema to verify that our programs will
adapt to every context arising at runtime.

An other interesting approach is the one proposed by Bartoletti et al. [BDFZ09,
BDF09] and by Skalka et al. [SSVH08]. They introduced the notion of program his-
tory and the programming construct called security framing. A history is the sequence
of actions that the program carries out at runtime. The notion of action is quite general,
but they usually consider the ones that are relevant for security, e.g. the creation of a
file, the access to a database record, etc.. The security framing is a construct that allows
programmers to enforce a security policy φ on a program fragment e (in symbols φ[e]).
Intuitively, it works as a monitor: after each execution step the framing requires that the
current history η satisfies φ (written η |= φ). the security policy to be enforced is a reg-
ular property of the history. In [BDFZ09, BDF09, SSVH08] the authors consider regular
properties of histories as security policies and show that the enforcement can be per-
formed statically. Their idea consists of using a type and effect system to assign a type
and an effect to each valid program. The effect is an expression in a suitable process alge-
bra (history expressions) that soundly approximates all the histories that can be generated
at runtime. Since history expressions are equivalent to context-free languages and since
security policies are regular languages, they exploit the language-based model-checking
to statically verify that a program is safe.

Note that this schema is an instance of the one described above, where the history
expression works as the certificate and the model-checking procedure as the verifier.
We adopt this approach in Chapter 3 to verify security and the compliance with the
communication protocol of software components written in ContextML.
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Chapter 2

A Basic Calculus for
Context-Oriented Programming

In this chapter we give our first contribution to foundations of COP programming lan-
guages, in particular we investigate how the introduction of COP features affects the
semantics of a “traditional” programming language. Here we introduce ContextML,
a core functional language belonging the ML family extended by COP features. We
considered a functional language because this class of languages has a clear and well
understood semantics and because we can exploit the large number of formal tech-
niques in the literature to statically prove properties about programs. At the same time,
we equip ContextML with an annotated type system to ensure that the dispatch mech-
anism always succeeds at runtime for each well-typed expression.

The main contributions of this chapter are:

• the introduction of the notion of behavioural variation in a functional language as
expressions (layered expressions)

• layers are values

• an annotated type system ensuring that the dispatching mechanism always suc-
ceeds for well-typed programs (Theorem 2.2.3).

First we present the features of ContextML through a running example and then we
define its syntax, its dynamic semantics and its type system.

2.1 An example of ContextML features

To illustrate the novel features of ContextML and its design we exploit a running exam-
ple. Consider a program implementing a game for mobile devices, like smartphones.
The game can activate different effects depending on the battery charge level. For ex-
ample, if the battery is fully charged, vibration is triggered when an enemy hits the
player and sounds are produced. We assume that the level of charge is represented as
discrete values, called profiles. For the sake of simplicity, we consider only two profiles,
the power saving mode and the performance one. As usual in COP languages this kind
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of information concerns the context and can be represented in the code through two
different layers: PowerSavingMode and PerformanceMode. Layers are expressible values,
hence they can be returned by functions as results. The function getBatteryProfile,
described below in a sugared syntax, queries the battery sensor to retrieve the charge
level through the function batSensor. The returned layer describes the current active
profile depending on a threshold value:

fun getBatteryProfile () =
if batSensor () > threshold then

PerformanceMode
else

PowerSavingMode

We represent the context as a stack of layers and we change the current context by
pushing (activating) a layer. As an activation mechanism we adopt the dynamic scoped
activation solution exploited by the most COP languages (see Section 1.1.3). This mech-
anism is implemented by the with(e1) in e2 construct. It activates the layer obtained
evaluating e1 and delimits the activation in the scope of the inner expression e2. When
the scope expires the activated layer is popped from the context, restoring the previous
configuration. For instance, in the code below, the layer obtained as result of the call
getBatteryProfile() is active throughout the execution of the inner expression.

with(getBatteryProfile()) in
PowerSavingMode. basicEffects ()
PerformanceMode. fullEffects ()

The above inner expression is a layered expression specifying a behavioural varia-
tion. Roughly, a layered expression is similar to pattern-matching but with layers in
place of patterns and with the context as implicit parameter. Intuitively, a layered ex-
pression alters the control-flow of the application depending on the context. Its exe-
cution triggers a dispatching mechanism that inspects the context top-down to find the
first layer matching one of the layered expression. The execution resumes from the ex-
pression of the matched layer. If the application getBatteryProfile () returns the layer
PerformanceMode, we activate it through the with and the evaluation continues with the
expression fullEffects () (the dispatching mechanism selects the second case since the
top of the context is PerformanceMode).

Note that the dispatching mechanism fails when it cannot find a match. If the func-
tion getBatteryProfile returns an unexpected layer, e.g. OnDemandMode, then the pro-
gram throws a runtime error being unable to adapt to the context. Later on, we show
how to tackle these undesired behaviour by adopting static analysis techniques. The
ContextML type system guarantees that well-typed programs are always capable to re-
act to their changing environment, i.e. the dispatching always succeeds at runtime.

2.2 ContextML: a COP core of ML

ContextML is a purely functional fragment of ML extended with COP primitives. In
ContextML the context is explicit and is part of the runtime environment. The language
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is endowed with primitives to manipulate the context and to specify behavioural varia-
tions in the form of layered expressions. The abstract syntax, the structural operational
semantics and the type system of ContextML follow.

2.2.1 Abstract Syntax and Dynamic Semantics

Let Const be a set of constants (e.g. (), true, f alse), Ide a set of identifiers, LayerNames a
set of layer names, then the syntax of ContextML is defined by the following grammar:

c ∈ Const x, f ∈ Ide L ∈ LayerNames

v ::= values
| c constants e.g. 1, 2, . . . , true, false, ()
| L layers
| fun f x ⇒ e functions

e ::= expressions
| v values
| x identifiers
| e1 e2 function application
| let x = e1 in e2 declaration
| e1 op e2 operators e.g. +, −, ×, . . .
| if e0 then e1 else e2 conditional
| with(e1) in e2 layers activation
| without(e1) in e2 layers deactivation
| lexp layered expressions

lexp ::= L.e | L.e, lexp

The novelties with respect to ML (underlined and in blue) are layers as expressible
values; the with construct for activating layers; the without construct for deactivating
layers; and the layered expressions (lexp). Recall that a context C is a stack of active
layers. We denote with L :: C the pushing of layer L on C and with [L1, . . . , Ln] a context
with n elements whose top is L1. Formally,

Definition 2.2.1 (Context Extension). The empty context is denoted by [ ] and a context
with n elements with L1 at the top, by [L1, . . . , Ln]. Let C = [L1, . . . , Li−1, Li, Li+1, . . . , Ln],
1 ≤ i ≤ n then

L :: C =

{
[Li, L1, . . . , Li−1, Li+1, . . . Ln] if L = Li

[L, L1, . . . , Li−1, Li, Li+1, . . . , Ln] otherwise

Furthermore, we introduce the operation C − L that removes a layer L from the
context C if present, formally:
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Definition 2.2.2 (Removing from Context). Let C = [L1, . . . , Li−1, Li, Li+1, . . . , Ln] be a
context with n elements, then

C− L =

{
[L1, . . . , Li−1, Li+1, . . . Ln] if L = Li

C otherwise

The semantics is only defined for closed expressions and is characterised by judge-
ments having the form C ` e → e′ meaning that in context C the closed expression e
reduces to e′ in one evaluation step. In Figure 2.1 we show the semantic rules. Since
most of constructs are inherited from ML, their semantics is standard. Hence, we com-
ment only on rules with1, with2, with3, without1, without2, without3 lexp that deal
with the new constructs.

The rules for with(e1) in e2 first evaluate e1 in order to obtain a layer L; then, the
expression e2 is evaluated in a context extended (through the function ::) with L. Sym-
metrically, the rules for without(e1) in e2 evaluate e2 in a context where the layer L
obtained evaluating e1 is deactivated.

Example 2.2.1. Back to our running example, we consider to evaluate the second snippet
of code above in a context containing the layer AtHome only and under the assumption
that the function batSensor returns a value greater than the threshold. The following
reduction shows how the layer activation mechanism works:

[AtHome] ` with(getBatteryProfile ()) in
PowerSavingMode. basicEffects ()

PerformanceMode. fullEffects ()

→

with


if batSensor () > threshold then

PerformanceMode

else
PowerSavingMode

 in

PowerSavingMode. basicEffects ()

PerformanceMode. fullEffects ()

→?

with(PerformanceMode) in
PowerSavingMode. basicEffects ()

PerformanceMode. fullEffects ()

→ see Example 2.2.2

The expression inside the with is executed in the context [PerformanceMode, AtHome]
and we will show its reduction in the next example.

When a layered expression L1.e1, . . . , Ln.en has to be evaluated (rule lexp), the dispatch
mechanism is triggered. It inspects top-down the current context to select the expression
ei that corresponds to the first layer Li which matches the context. Formally,
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if1

C ` e0 → e′0
C ` if e0 then e1 else e2 → if e′0 then e1 else e2

if2

C ` if true then e1 else e2 → e1

if3

C ` if false then e1 else e2 → e2

let1

C ` e1 → e′1
C ` let x = e1 in e2 → let x = e′1 in e2

let2

C ` let x = v in e2 → e2 {v/x}

op1

C ` e1 → e′1
C ` e1 op e2 → e′1 op e2

op2

C ` e2 → e′2
C ` v op e2 → v op e′2

op3

v = v1 op v2

C ` v1 op v2 → v

app1

C ` e2 → e′2
C ` e1 e2 → e1 e′2

app2

C ` e1 → e′1
C ` e1 v→ e′1 v

app3

C ` (fun f x⇒ e)v→ e {fun f x⇒ e/ f , v/x}

with1

C ` e1 → e′1
C ` with(e1) in e2 → with(e′1) in e1

with2

L :: C ` e2 → e′2
C ` with(L) in e2 → with(L) in e′2

with3

C ` with(L) in v→ v

without1

C ` e1 → e′1
C ` without(e1) in e2 → without(e′1) in e2

without2

C− L ` e→ e′

C ` without(L) in e→ without(L) in e′

without4

C ` η, without(L) in v→ v

lexp

dsp(C, {L1, . . . , Ln}) = Li

C ` L1.e1, . . . , Ln.en → ei

Figure 2.1: ContextML semantics.
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Definition 2.2.3 (Dispatching mechanism). The dispatch mechanism is implemented by
the following partial function dsp, defined as

dsp([L0, L1, . . . , Ln], A) =

{
L0 if L0 ∈ A

dsp([L1, . . . , Ln], A) otherwise

that returns the first layer in the context [L0, L1, . . . , Lm] which matches one of the layers
in the set A. If no layer matches then the computation gets stuck.

Example 2.2.2. We continue the previous examples by showing the reduction of the
layered expression inside the with. We assume that the functions basicEffects and
fullEffects return the numbers of enabled effects.

C = [PerformanceMode, AtHome] ` PowerSavingMode. basicEffects ()

PerformanceMode. fullEffects ()
→

fullEffects ()→?

10

In the computation from the first to second step we trigger the dispatching mechanism
that matches the top of the context with the layer PerformanceMode, i.e.

dsp(C, {PerformanceMode, PowerSavingMode}) = PerformanceMode.

As a further example, consider to evaluate the above layered expression in context
C′ = [OnDemandMode, AtHome]. In this case, the computation gets stuck

C′ ` PowerSavingMode. basicEffects ()

PerformanceMode. fullEffects ()
9

since the invocation dsp(C′, {PerformanceMode, PowerSavingMode}) fails. Our type sys-
tem detects and avoids exactly this kind of error.

2.2.2 Type system

We introduce an annotated monomorphic type system for ContextML which ensures
that the dispatch mechanism always succeeds at runtime for well-typed expressions. To
do that, our type system over-approximates the possible contexts which may arise at
runtime from the initial one by tracking all layers which may be activated. Furthermore,
it verifies that all contexts, in which a layered expression (call it lexp) can be evaluated,
contain at least one layer occurring in lexp.

Our type system is characterised by typing judgements of the form 〈Γ; C〉 ` e : τ.
This means that “in the type environment Γ and in the context C, the expression e has
type τ”.

The type environment Γ binds the variables of an expression to their types. As usual,
it is inductively defined as

Γ ::= ∅ | Γ, x : τ
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where ∅ denotes the empty environment and Γ, x : τ denotes the environment Γ ex-
tended by the binding for the variable x (x does not occur in Γ). We denote with Γx the
environment Γ where the binding for x is removed and with dom(Γ) the set of variables
for which Γ contains a binding. Moreover, we use the application notation Γ(x) for
retrieving the type τ bound to the variable x.

Types are constants, layers and functions.

τ, τ1, τ′ ::= τc | lyφ | τ1
ψ−→ τ2 τc ∈ {int, bool, unit, . . . } φ, ψ ∈ ℘(LayerNames)

We annotate types with sets of layer names φ, ψ for analysis reasons. In lyφ, φ over-

approximates the layers an expression at runtime can be reduced to. In τ1
ψ−→ τ2, ψ

over-approximates the layers that must be active in the context to apply the function
(precondition of the function).

Example 2.2.3. Back to our example, the type of the function getBatteryProfile will
be the following:

unit
∅−→ ly{PowerSavingMode, PerformanceMode}.

The intuition is that the function application yields a layer in the set

{PowerSavingMode, PerformanceMode}.

The function has no preconditions, i.e. it can be applied in any context.

Our typing rules are in Figure 2.2. Since types are annotated, the type system con-
tains rules for dealing with the subtyping and the subeffecting. The rules Sconst, Sly,
Sfun have judgements of the form τ1 ≤ τ2, meaning that τ1 is a subtype of τ2. Further-
more, we assume that annotations are ordered by set-inclusion and that |C| denotes the
set of active layers in a context C, i.e. |[L1, . . . , Ln]| = {L1, . . . , Ln}.

The rule Sconst states that a constant type is a subtype of itself. By the rule Sly a
layer type lyφ is a subtype lyφ′ if and only if the annotation φ is a subset of φ′. The rule

Sfun is a subtyping rule for functional types. As usual τ1
ψ−→ τ2 is contravariant in τ1 but

covariant in φ and τ2.
By the rule Tconst we assign to a constant c the corresponding type τc. The rule

Tly asserts that the type of a layer L is ly annotated with the singleton set {L}. By the
rule Tvar we look up the type of an identifier x from the environment Γ. The rule Tsub

allows us to enlarge the annotation of a type, by applying subtyping rules. In rule Tfun

we guess a type for the bound variable, for the function f and we determine the type
of the body under these additional assumptions and in a guessed context C′. Implicitly,
we require that the guess of a type for f matches the one of the resulting function.
Additionally, we require that the resulting type is annotated with a precondition that
includes the layers in C′. The rule Twith establishes that an expression with has type τ,
provided that the type of e1 is lyφ (recall that φ is a set of layers) and that e2 has type τ

in all context obtained by extending the context C with the layers in φ. Symmetrically,
the rule Twithout establishes that an expression without has type τ, as long as the type
of e1 is lyφ and that e2 has type τ in all context obtained by removing from C the layers
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Sconst

τc ≤ τc

Sly

φ ⊆ φ′

lyφ ≤ lyφ′

Sfun

τ′1 ≤ τ1 τ2 ≤ τ′2 ψ ⊆ ψ′

τ1
ψ−→ τ2 ≤ τ′1

ψ′−→ τ′2

Tconst

〈Γ; C〉 ` c : τc

Tly

〈Γ; C〉 ` L : ly{L}

Tsub

〈Γ; C〉 ` e : τ′ τ′ ≤ τ

〈Γ; C〉 ` e : τ

TVar

Γ(x) = τ if x ∈ dom(Γ)

〈Γ; C〉 ` x : τ

Tfun

〈Γx, f , x : τ1, f : τ1
|C′|−−→ τ2; C′〉 ` e : τ2

〈Γ; C〉 ` fun f x⇒ e : τ1
|C′|−−→ τ2

Twith

〈Γ; C〉 ` e1 : lyφ ∀L′ ∈ φ.〈Γ; L′ :: C〉 ` e2 : τ

〈Γ; C〉 ` with(e1) in e2 : τ

Twithout

〈Γ; C〉 ` e1 : lyφ ∀L′ ∈ φ.〈Γ; L′ − C〉 ` e2 : τ

〈Γ; C〉 ` without(e1) in e2 : τ

Tlexp

∀i.〈Γ; C〉 ` ei : τ L1 ∈ |C| ∨ · · · ∨ Ln ∈ |C|
〈Γ; C〉 ` L1.e1, . . . , Ln.en : τ

Tapp

〈Γ; C〉 ` e1 : τ1
φ−→ τ2 〈Γ; C〉 ` e2 : τ1 φ ⊆ |C|
〈Γ; C〉 ` e1 e2 : τ2

Top

〈Γ; C〉 ` e1 : τc 〈Γ; C〉 ` e2 : τc

〈Γ; C〉 ` e1 op e2 : τc

Tlet

〈Γ; C〉 ` e1 : τ1 〈Γx, x : τ1, C〉 ` e2 : τ2

〈Γ; C〉 ` let x = e1 in e2 : τ2

Tif

〈Γ; C〉 ` e0 : bool 〈Γ; C〉 ` e1 : τ 〈Γ; C〉 ` e2 : τ

〈Γ; C〉 ` if e0 then e1 else e2 : τ

Figure 2.2: ContextML type system
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Twith

Tlexp

〈Γ; C′〉 ` basicEffects () : τ
〈Γ; C′〉 ` fullEffects () : τ PowerSavingMode ∈ |C′| ∨ PerformarceMode ∈ |C′|

〈Γ; C′〉 ` PowerSavingMode. basicEffects ()
PerformarceMode. fullEffects ()

: τ
. . .

〈Γ; C′′〉 ` . . .
Tlexp

〈Γ; C〉 ` getBatteryProfile () : lyφ

〈Γ; C〉 ` with(getBatteryProfile ()) in
PowerSavingMode. basicEffects ()
PerformarceMode. fullEffects ()

: τ

Figure 2.3: The typing derivation of the running example.

in φ. By the Tlexp rule the type of a layered expression is τ, provided that each sub-
expression ei has type τ and that at least one among the layers L1, . . . Ln is active in the
context C. This requirement ensures that the dispatch mechanism always succeeds at
runtime. Notably, when evaluating a layered expression one of the mentioned layers
will be active in the current context.

Example 2.2.4. Back to our example, the considered expression is well-typed as wit-

nessed in Figure 2.3. We assume basicEffects, fullEffects : unit
∅−→ τ. We de-

note φ = {PowerSavingMode, PerformanceMode}; C′ = PowerSavingMode :: C; C′′ =
PerformanceMode :: C. The type of getBatteryProfile ensures that one between the
two layers PowerSavingMode and PerformanceMode is returned. One of them is required
to be active in order to evaluate the layered expression. Hence, the Twith rule (the last
used in the figure) guarantees that the whole expression is never stuck at runtime.

The rule Tapp is almost standard and reveals the role of function preconditions. The
application gets a type if only if the layers in the precondition φ are active in the current
context C.

Example 2.2.5. To better explain how preconditions work, consider the Figure 2.4. There

the function fun f x⇒ L1.0 is shown having type int
{L1}−−→ int. This means that L1 must

be active in the context where we apply the function.

The rule Top is standard: it states that if the sub-expressions e1 and e2 are constants,
i.e. they have type τc, then the result of the operator op has type τc too. The rule Tlet

requires that the expression e2 gets a type τ2 in an environment Γ, which was extended
by the binding between the variable x and the type τ1 computed for the expression e1.
The type of the overall let expression is the one computed for e2. By the Tif rule a
conditional expression gets the type of the branches if the guard (the expression e1) is a
boolean and the two branches have the same type τ.

Our type system guarantees not only that functional types are correctly used, but
also that the evaluation of a layered expression never gets stuck. The following lemmata
prove that our type system is sound with respect to the operational semantics. The first
one ensures that types are preserved during reduction:

Lemma 2.2.1 (Preservation). Let es be a closed expression, if 〈Γ; C〉 ` es : τ and C ` es → e′s
then 〈Γ; C〉 ` e′s : τ.
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Tlet

Tfun

Tlexp

〈Γ, x : τ, f : τ
|C′ |−−→ τ; C′〉 ` 0 : τ L1 ∈ C′

〈Γ, x : τ, f : τ
|C′ |−−→ τ; C′〉 ` L1.0 : τ

〈Γ; C〉 ` fun f x⇒ L1.0 : τ
|C′ |−−→ τ

〈Γ, g : τ
|C′ |−−→ τ; C〉 ` g : τ

|C′ |−−→ τ

〈Γ, g : τ
|C′ |−−→ τ; C〉 ` 3 : τ |C′| ⊆ |C|

〈Γ, g : τ
|C′ |−−→ τ; C〉 ` g 3 : τ

Tapp

〈Γ; C〉 ` let g = fun f x⇒ L1.0 in g 3 : τ

Figure 2.4: Derivation of a function with precondition. We assume that C′ = [L1], L1 is
active in C and, for typesetting convenience, we also denote τ = int.

The second one states that a well-typed expression is never stuck unless it is a value:

Lemma 2.2.2 (Progress). Let es be a closed expression such that 〈Γ; C〉 ` es : τ for some Γ and
C. If C ` es 9, i.e. es is stuck, then es is a value.

The following theorem ensures us that the dispatching mechanism always succeeds at
runtime for a well-typed expression:

Theorem 2.2.3. Let es be a closed expression if 〈∅; C〉 ` es : τ for some C, either the computa-
tion terminates by yielding a value (C ` es →∗ v) or it diverges, but it never gets stuck.

2.3 Soundness of the Type System

This section contains the technical development to prove Lemma 2.2.1, Lemma 2.2.2 and
Theorem 2.2.3. The proofs require an auxiliary definition and some lemmata which are
stated below.

The following Definition formalizes the notion of substitution used in the dynamic
semantic of ContextML.

Definition 2.3.1 (Capture avoiding substitutions). Given the expressions e, e′ and the
variable x we define e{e′/x} as following

c{e′/x} = c

L{e′/x} = L

(fun f x′ ⇒ e){e′/x} = fun f x′ ⇒ e{e′/x}
if f 6= x ∧ x′ 6= x ∧ f , x′ /∈ FV(e′)

x{e′/x} = e′

x′{e′/x} = x′ if x 6= x′

(e1 e2){e′/x} = e1{e′/x} e2{e′/x}
(e1 op e2){e′/x} = e1{e′/x} op e2{e′/x}
(if e1 then e2 else e3){e′/x} =

if e1{e′/x} then e2{e′/x} else e3{e′/x}
(let x′ = e1 in e2){e′/x} = let x′ = e1{e′/x} in e2{e′/x}

if x 6= x′ ∧ x′ ∈ FV(e′)
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(with(e1) in e2){e′/x} = with(e1{e′/x}) in e2{e′/x}
(without(e1) in e2){e′/x} = without(e1{e′/x}) in e2{e′/x}
(L1.e1, . . . , Ln.en){e′/x} = L1.e1{e′/x}, . . . , Ln.en{e′/x}

The lemma below ensures that the order of bindings in a type environment does not
affect the typing of an expression (useful to prove Lemma 2.3.3).

Lemma 2.3.1 (Permutation). If 〈Γ; C〉 ` e : τ and Γ′ is a permutation of Γ then 〈Γ′; C〉 ` e : τ.

Proof (Sketch). The proof is a straightforward induction on typing derivation and by
cases on the last rule applied. We consider only few cases, the other ones follow the
same schema.

• case Tvar

By the premise of the rule we have Γ(x) = τ. Since Γ′ is a permutation of Γ, they
are the same bindings, thus it holds also Γ′(x) = τ and the thesis follows from
applying the rule Tvar.

• case Tlexp

By the premise of the rule we know ∀ i ∈ {1, . . . , n} 〈Γ; C〉 ` ei : τ and Li ∈ |C|.
By the induction hypothesis we have ∀ i ∈ {1, . . . , n} 〈Γ′; C〉 ` ei : τ. Hence, the
thesis follows from applying the Tlexp.

• case Tlet

By the premise of the rule we have 〈Γ; C〉 ` e1 : τ1 and 〈Γx, x : τ1; C〉 ` e2 : τ2. Now
consider Γ′′ = Γx, x : τ1, there are two cases:

1. x /∈ dom(Γ) then Γx = Γ and Γ′′ = Γ, x : τ1. Since Γ′ contains the same
bindings of Γ it holds that Γ′x = Γ′ and that Γ′, x : τ1 is a permutation of Γ′′.

2. x ∈ dom(Γ) then Γx 6= Γ and Γ′′ = Γx, x : τ1. Since Γ′ is a permutation
of Γ we have x /∈ dom(Γ′) too and Γ′ 6= Γ′x; we removed the same binding
from the two environment then Γ′x is a permutation of Γx, thus Γ′x, x : τ1 is a
permutation of Γx, x : τ1 .

By using the induction hypothesis we have that 〈Γ′; C〉 ` e1 : τ1 and 〈Γ′x, x : τ1; C〉 `
e2 : τ2. The thesis follows from applying the rule Tlet.

The lemma below allows us to insert a new binding in the type environment without
changing the typing of an expression (exploited in the proof of Lemma 2.3.3).

Lemma 2.3.2 (Weakening). If 〈Γ; C〉 ` e : τ and y /∈ dom(Γ) then 〈Γ, y : τ′; C〉 ` e : τ.

Proof (Sketch). By induction on typing derivation and then by cases on the last rule ap-
plied. We consider only few cases, the other ones follow the same schema.
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• case Tvar

By the premise of the rule we know Γ(x) = τ. Since it holds y /∈ dom(Γ), the
adding of the new binding does not affect the other ones, hence, we have Γ, y :
τ(x) = τ. Then, the thesis follows from using the rule Tvar.

• case Twith

By the premise of rule it holds 〈Γ; C〉 ` e1 : lyφ and ∀L ∈ φ 〈Γ; L :: C〉 ` e2 : τ.
By using the induction hypothesis we have 〈Γ, y : τ′; C〉 ` e1 : lyφ and ∀L ∈ φ

〈Γ, y : τ′; L :: C〉 ` e2 : τ. Then, the thesis follows from applying the rule Twith.

• case Tlet

By the premise of the rule the judgements 〈Γ; C〉 ` e1 : τ1 and 〈Γ, x : τ1; C〉 ` e2 : τ2

hold. Since y /∈ (Γ) and y 6= x, then y /∈ (Γ, x : τ1). The thesis follows from the
induction hypothesis and the conclusion of the rule Tlet.

The following lemma ensures that we can always enlarge the typing environment and
the context where an expression type-checks (useful in the proof of the Lemma 2.3.4).

Lemma 2.3.3 (Inclusion).

1. If 〈Γ; C〉 ` e : τ and Γ ⊆ Γ′ for some Γ′, then 〈Γ′; C〉 ` e : τ.

2. If 〈Γ; C〉 ` e : τ and |C| ⊆ |C′| for some C′, then 〈Γ; C′〉 ` e : τ.

Proof.

1. Since Γ ⊆ Γ′ there exists some bindings {x1 : τ1, . . . , xn : τn} that are in Γ′ but not
in Γ. By adding these bindings to Γ we obtain Γ′′ = Γ, x1 : τ1, . . . , xn : τn. Then by
using n times Lemma 2.3.2 we have 〈Γ′′; C〉 ` e : τ. Since Γ′′ is a permutation of Γ′,
the thesis follows from Lemma 2.3.1.

2. (Sketch) By induction on typing derivation and then by cases on the last rule
applied. We consider only few cases, the other ones follow the same schema.

• case Tlexp

By the premise of the rule it holds ∀i ∈ {1, . . . , n} 〈Γ; C〉 ` ei : τ and
∨

i Li ∈
|C|. By induction hypothesis we have ∀i ∈ {1, . . . , n} 〈Γ; C′〉 ` ei : τ and since
|C| ⊆ |C′| then

∨
i Li ∈ |C′| holds. The thesis follows from the rule Tlexp.

• case Tapp

By the premise of the rule we have 〈Γ; C〉 ` e1 : τ1
φ−→ τ2, 〈Γ; C〉 ` e2 : τ1

and φ ⊆ |C|. By induction hypothesis we know 〈Γ; C′〉 ` e1 : τ1
φ−→ τ2,

〈Γ; C′〉 ` e2 : τ1. Since φ ⊆ |C| ⊆ |C′| we can apply the rule Tapp to prove the
thesis.

• case Twith

By the premise of rule it holds 〈Γ; C〉 ` e1 : lyφ and ∀L ∈ φ 〈Γ; L :: C〉 ` e2 : τ.
If L ∈ |C| then L ∈ |C′| and it holds L :: C ⊆ L :: C′; if L /∈ |C| and L ∈ |C′| it
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holds L :: C ⊆ C′; if L /∈ |C| and L /∈ |C′| it holds L :: C ⊆ L :: C′. Then, by the
induction hypothesis we have 〈Γ; C′〉 ` e1 : lyφ and ∀L ∈ φ 〈Γ; L :: C′〉 ` e2 : τ.
The thesis follows from the rule Twith.

The lemma below (useful to prove Lemma 2.2.1) ensures us that if a function type-checks
in a context where its preconditions are satisfied, then its body will type-check too, of
course, adding the needed bindings to the type environment.

Lemma 2.3.4 (Decomposition). If 〈Γ; C〉 ` fun f x ⇒ e : τ1
φ−→ τ2 and φ ⊆ |C| then

〈Γx, f , x : τ1, f : τ1
φ−→ τ2; C〉 ` e : τ2.

Proof. By the premise of the rule Tfun it holds 〈Γx, f , x : τ1, f : τ1
φ−→ τ2; φ〉 ` e : τ2. The

thesis follows from using Lemma 2.3.3 (2).

The following lemma guarantees that the types are preserved under substitution (it is
used to prove Lemma 2.2.1).

Lemma 2.3.5 (Substitution). If 〈Γy, y : τ′; C〉 ` e : τ and 〈Γ; C〉 ` v : τ′ then 〈Γ; C〉 `
e{v/y} : τ.

Proof. By induction of the depth of the derivation and then, by cases on the last rule
applied.

• case Tconst

By Definition 2.3.1 it holds c{v/y} = c. Since Tconst is an axiom we can trivially
clams 〈Γ; C〉 ` c : τ, i.e. the thesis holds.

• case Tly

It follows from a reasoning similar to the previous one.

• case Tvar

By the premise of the rule we know Γ(x) = τ. We have two cases:

1. x = y then 〈Γx, x : τ′; C〉 ` x : τ and τ = τ′. By Definition 2.3.1 we know
x{v/x} = v, hence, the thesis trivially holds.

2. x 6= y then by Definition 2.3.1 we have x{v/y} = x, hence the thesis holds,
since we removed from the environment the binding for y only, but not for x.

• case Tsub By the premise of the rule we know that it holds 〈Γy, y : τ′; C〉 ` e : τ′′

and τ′′ ≤ τ. By the induction hypothesis we know that 〈Γy, y : τ′; C〉 ` e{v/x} : τ′′

holds, hence, the thesis follows from applying the rule Tsub again.

• case Tfun

Without loss of generality we assume that x 6= y. By the premise of the rule we

have 〈Γx, f , x : τ1, f : τ1
|C′|−−→ τ2, y : τ′; C′〉 ` e : τ2. By induction hypothesis it holds

〈Γx, f , x : τ1, f : τ1
|C′|−−→ τ2; C′〉 ` e{v/x} : τ2, and then 〈Γ; C〉 ` fun f x ⇒ e{v/y} :
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τ1
|C′|−−→ τ2 by the rule Tfun. The thesis follows from the Definition 2.3.1 applied

from right to left.

• case Twith

By the premise of the rule we have 〈Γ, y : τ′; C〉 ` e1 : lyφ and ∀L′ ∈ φ.〈Γ, y : τ′; L′ ::
C〉 ` e2 : τ. By using the induction hypothesis it holds 〈Γ; C〉 ` e1{v/y} : lyφ and
∀L′ ∈ φ.〈Γ; L′ :: C〉 ` e2{v/y} : τ. The thesis follows applying the rule Twith and
then Definition 2.3.1 from right to left.

• case Twithout

Similar to the case Twith.

• case Tlexp

By the premise of the rule we know for all i ∈ {1, . . . , n} 〈Γ, y : τ′; C〉 ` ei : τ and∨
i Li ∈ |C|. The induction hypothesis ensures us that for all i ∈ {1, . . . , n} 〈Γ; C〉 `

ei{v/x} : τ, thus the thesis follows using the rule Tlexp and then Definition 2.3.1
from right to left.

• case Tapp

By the premise of the rule it holds 〈Γ, y : τ′; C〉 ` e1 : τ1
φ−→ τ2, 〈Γ, y : τ′; C〉 ` e2 : τ1

and φ ⊆ |C|. By exploiting the induction hypothesis we have 〈Γ; C〉 ` e1{v/y} :

τ1
φ−→ τ2 and 〈Γ; C〉 ` e2{v/y} : τ1. The thesis follows using the rule Tapp and then

Definition 2.3.1 from right to left.

• case Top

It is similar to the case Tapp.

• case Tif

It is similar to the case Tapp.

• case Tlet

Without loss of generality assume that x 6= y. The proof is similar to the case Tapp.

The following lemma states that values type-check in every context (it is exploited in
Lemma 2.2.1).

Lemma 2.3.6. If 〈Γ; C〉 ` v : τ then for all C′ 〈Γ; C′〉 ` v : τ.

Proof. We consider three cases depending on the form of v:

1. case v = c
Straightforward because the typing rule Tconst is an axiom.

2. case v = L
Straightforward because the typing rule Tly is an axiom.
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3. case v = fun f x⇒ e
By the premise of the typing rule we know, so the context C′′ does not depend on
C and that the binding for x is added to the environment, so we can use the typing
rule to conclude the thesis.

Lemma 2.2.1 (Preservation). Let es be a closed expression, if 〈Γ; C〉 ` es : τ and C ` es → e′s
then 〈Γ; C〉 ` e′s : τ.

Proof. By induction of the depth of the typing derivation and then, by cases on the last
rule applied. Below for each case we report the premises of the corresponding rule.

• case Tconst or Tly or Tvar or Tfun

In this case we know that es is a value (or a variable in the case of Tvar), then it
cannot be the case C ` es → e′s for any e′s, so the theorem vacuously holds.

• case Tsub 〈Γ; C〉 ` es : τ′ τ′ ≤ τ

By using the induction hypothesis we also know 〈Γ; C〉 ` e′s : τ′, hence, by applying
the rule Tsub it holds 〈Γ; C〉 ` e′s : τ, i.e. the thesis.

• case Twith es = with(e1) in e2 〈Γ; C〉 ` e1 : lyφ ∀L′ ∈ φ 〈Γ; L′ :: C〉 ` e2 : τ

There are three semantic rules from which C ` es → e′s can be derived.

1. case with1

In this case we know C ` e1 → e′1 by the premise of the semantic rule with1,
hence e′s = with(e′1) in e2. By the induction hypothesis we have 〈Γ; C〉 ` e′1 :
lyφ, thus using the rule Twith we conclude 〈Γ; C〉 ` e′s : τ.

2. case with2

In this case by the premise of the semantic rule with2 we have that e2 reduces
to e′2 (C ` e2 → e′2), that e1 = L and that e′s = with(L) in e′2. By using the
induction hypothesis we have ∀L′ ∈ φ 〈Γ; L′ :: C〉 ` e′2 : τ. Than the thesis
follows from applying the typing rule Twith.

3. case with3

In this case we have es = with(L) in v and e′s = v and ∀L′ ∈ φ 〈Γ; L′ :: C〉 `
v : τ by our assumptions. The thesis follows from Lemma 2.3.6.

• case Twithout

Similar to the case Twith.

• case Tlexp es = L1.e1, . . . , Ln.en ∀i ∈ {1, . . . , n} 〈Γ; C〉 ` ei : τ
∨

i Li ∈ |C|
By the semantic rule lexp es reduces (C ` es → e′s) to an subexpression of it, i.e. e′s =
ei for some i ∈ {1, . . . , n}. The thesis vacuously follows from our assumptions.

• case Tapp es = e1 e2 〈Γ; C〉 ` e1 : τ1
φ−→ τ2 〈Γ; C〉 ` e2 : τ1 φ ⊆ |C|

There are three semantic rules from which C ` es → e′s can be derived:
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1. case app1

In this case we know C ` e2 → e′2 from the premise of the semantic rule app1,
hence e′s = e1 e′2. By induction hypothesis it holds 〈Γ; C〉 ` e′2 : τ1, thus the
thesis follows from the typing rule Tapp.

2. case app2

In this case the premise of semantic rule app2 says that the subexpression e1

reduces (C ` e1 → e′1) and that e′s = e′1 v. By induction hypothesis we have

〈Γ; C〉 ` e1 : τ1
φ−→ τ2, thus using the typing rule Tapp we prove the thesis.

3. case app3

In this case we have es = (fun f x ⇒ e) v and e′s = e {fun f x⇒ e/ f , v/x}.
From our assumption we know that 〈Γ; C〉 ` fun f x ⇒ e : τ1

φ−→ τ2 and

φ ⊆ |C| and from Lemma 2.3.4 it holds 〈Γx, f , x : τ1, f : τ1
φ−→ τ2; C〉 ` e : τ2.

Using two times the Lemma 2.3.5 for the variable x and f , we obtain the
thesis.

• case Top es = e1 op e2 〈Γ; C〉 ` e1 : τc 〈Γ; C〉 ` e2 : τc

There are three semantic rules which drive the reduction C ` es → e′s:

1. case op1

From the premise of the semantic rule op1 we know that the subexpression e1

reduces to e′1 (C ` e1 → e′1), hence, e′s = e′1 op e2. By induction hypothesis we
have that 〈Γ; C〉 ` e′1 : τc, thus, the thesis follows from applying the rule Top.

2. case op2

In this case the subexpression e2 reduces to e′2 (C ` e1 → e′1 from the premise
of the semantic rule), and e′s = c op e′2. The thesis follows from applying the
induction hypothesis (〈Γ; C〉 ` e′2 : τc holds) and then the typing rule Top.

3. case op3

In this case e′s = c, than the thesis trivially holds by applying the rule Tconst.

• case Tlet es = let x = e1 in e2 〈Γ; C〉 ` e1 : τ1 〈Γx, x : τ1, C〉 ` e2 : τ2

There are two rules from which C ` es → e′s can be derived:

1. case let1

In this case it holds C ` e1 → e′1 (premise of the semantic rule), e′s = let x =

e′1 in e2 and 〈Γ; C〉 ` e′1 : τ1 by induction hypothesis. The thesis follows from
applying the typing rule Tlet.

2. case let2

From the semantic rule we know e1 = v and e′s = e2{v/x}. By applying
Lemma 2.3.5 the thesis holds.

• case Tif es = if e0 then e1 else e2 〈Γ; C〉 ` e0 : bool 〈Γ; C〉 ` e1 : τ

〈Γ; C〉 ` e2 : τ

There are three rules which drives the reduction of es:
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1. case if1

From the premise of the semantic rule it holds C ` e0 → e′0, hence e′s =

if e0 then e1 else e2. By using the induction hypothesis 〈Γ; C〉 ` e0 : bool,
thus the thesis holds by applying the typing rule Tif.

2. case if2

From the semantic rule we know that e′s = e1, than the thesis trivially holds
by our assumptions.

3. case if3

Similar to the previous case with e2 in place of e1.

The lemma below claims that we can easily deduce the syntactic form of a value from
its type (it is exploited in Lemma 2.2.2).

Lemma 2.3.7 (Canonical form). Let v be a value then

1. If 〈Γ; C〉 ` v : τc then v = c for some c;

2. If 〈Γ; C〉 ` v : τ1
φ−→ τ2 then v = fun f x⇒ e for some f ,x and e;

3. If 〈Γ; C〉 ` e : ly{L1, ..., Ln} then v ∈ {L1, . . . , Ln}.

Proof.

1. We have three kind of values only: constants, functions and layers. If v has type τc,
our derivation consist of an application of the rule Tconst, followed by n (possibly
n = 0) applications of the rule Tsub, hence, v = c for some c.

2. It follows from a reasoning similar to the previous one.

3. The type ly with annotation {L1, . . . , Ln} can be only deduced by applying de-
duced the rule Tsub, starting from a type annotated with a singleton set {L} for
some L ∈ {L1, . . . , Ln}. So this type can be obtained by the rule Tly only, hence,
v = L.

Lemma 2.2.2 (Progress). Let es be a closed expression such that 〈Γ; C〉 ` es : τ for some Γ and
C. If C ` es 9, i.e. es is stuck, then es is a value.

Proof. By induction of the depth of the typing derivation and then, by cases on the last
rule applied. The cases Tconst, Tly, Tfun are immediate because es is a value. The case
Tvar cannot occur because we assume that es is a closed. To prove the others cases, we
assume that es is stuck and it is not a value and then we prove that this assumption
leads to contraction.

• case Tsub

Straightforward by induction hypothesis.



38 A Basic Calculus for Context-Oriented Programming

• case Twith es = with(e1) in e2

There are only two cases in which es can be stuck:

1. case e1 is stuck
By induction hypothesis e1 is a value. By the premise of the typing rule TWith

it gets lyφ as type and by the Lemma 2.3.7 (3) it holds e1 = L for some L ∈ φ. If
e2 reduces, then we use the semantic rule with2 to reduces es (contradiction),
otherwise we are in the case (2).

2. case e1 is a value and e2 is stuck
By the induction hypothesis e2 is a value, so we have a contradiction because
we can reduce es by using the semantic rule with3.

• case Twithout

Similar to the case Twith.

• case Tlexp es = L1.e1, . . . , Ln.en

If es is stuck, then the dispatching mechanism failed to find a match between the
layers of es and the context C. But by the premise of the typing rule Tlexp, we
know that

∨
i Li ∈ |C| holds, i.e. there exists at least one of the layers of es (say Li)

which is the in context C. Then the invocation dsp(C, {L1, . . . , Ln}) = Li and es

reduces to ei by the semantic rule lexp (contradiction).

• case Tapp es = e1 e2

If es is stuck then there are two only cases:

1. e2 is stuck
By induction hypothesis e2 is a value. If e1 reduces, then the semantic rule
app2 applies, so there is a contradiction because es reduces too. If e1 is stuck,
we are in case (2).

2. e2 is a value and e1 is stuck
By induction hypothesis e1 is a value, by the premise of the typing rule Tapp

it gets a function type and by Lemma 2.3.4 (2) e1 = fun f x⇒ e.

• case Top es = e1 op e2

There are only two cases when es is stuck:

1. e1 is stuck.
By induction hypothesis e1 is a value. If e2 reduces, then the semantic rule
op2 applies, so we obtain a contradiction because es reduces. If e2 is stuck, we
are in the case (2).

2. e1 is a value and e2 is stuck
By induction hypothesis e2 is a value. By the premise of the typing rule Top

e1 and e2 gets τc as type and then by Lemma 2.3.7 (1) e1 = c1 and e2 = c2. So
the semantic rule op3 applies, and the es reduces (contradiction).

• case Tlet e′s = let x = e1 in e2

If es is stuck, then it is only the case that e1 is stuck and by induction hypothesis
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this can only occur when e1 is a value. So we can apply the semantic rule let2 to
reduce es (contradiction).

• case Tif e′s = if e0 then e1 else e2

If es is stuck, then it is only the case that e1 is stuck. By induction hypothesis it
can only occur when e1 is a value v. Since 〈Γ; C〉 ` v : bool by our hypothesis and
v = true or v = f alse by Lemma 2.3.7 (1). So either rule if2 or if3 applies and
hence, es cannot be stuck (contraction).

Theorem 2.2.3. Let es be a closed expression if 〈∅; C〉 ` es : τ for some C, either the computa-
tion terminates by yielding a value (C ` es →∗ v) or it diverges, but it never gets stuck.

Proof (By contradiction). Assume that C ` es →i e′s 9 for some i ∈ N where e′s is a
non-value stuck expression. By applying i times the Preservation Lemma we know that
〈Γ; C〉 ` e′s : τ, then by using the Progress Lemma we know that e′s is a value, hence, a
contradiction.

2.4 Remarks

Our type system is based on the assumption which the initial context is known at com-
pile time and that all changes performed over it can be determined from the application
code. Note that the approaches in [HIM11, CS09] adopt the same assumption. However,
our proposal differs from the ones in [HIM11, CS09, CCT09] because in ContextML lay-
ers are values. This fact affects the type system and requires a special treatment, i.e. the
annotations φ in the layer types. Furthermore, with respect to [CCT09], ContextML in-
troduces behavioural variation as expressions, but it does not have any construct similar
to proceed to avoid the problematic situation analysed in [CCT09]. Despite its simplic-
ity, ContextML is the kernel of the material presented in the Chapter 3 and its design
influenced MLCoDa presented in Chapter 4.
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Chapter 3

A Methodology for Programming
Context-aware Components

The development of complex adaptive systems presents issues that cannot be tackled us-
ing COP primitives only. In fact, as described in Section 1.1.1, a typical characteristic of
these systems is that they are made up of a massive number of interacting components.
Each component is able to modify its behaviour, can access its private resources and has
to satisfy a set of non-functional requirements (e.g. QOS, security, etc.). A system be-
haves correctly when each component satisfies its own non-functional requirements and
correctly interacts with others components, i.e. it respects the communication protocol.

The aim of this chapter is to introduce a language-based methodology for program-
ming complex adaptive software and for ensuring their correctness. The main contri-
bution is the definition of a static analysis technique that guarantees the enforcement of
security policies and the correctness of interactions among components. We assume a
model (see Figure 3.1) where each adaptive component has

• mechanisms to manipulate the context;

• an abstract and declarative representation of the operational environment;

• security policies governing behaviour and resource usages;

• a protocol ruling the messages exchanged with other parties.

We adopt a top-down approach [C+09] to describe the interactions with other compo-
nents, because we do not want to wire a component to a specific communication infras-
tructure. For this reason, we consider a communication model based on a bus through
which messages are exchanged. Moreover, we assume in the following formal develop-
ment that the other components respect the communication protocol and never fail.

Under these assumptions we define a methodology which suitably extends and in-
tegrates together techniques from COP, type theory and model-checking. In particular,
it consists of a static technique ensuring that a component

(i) adequately reacts to context changes;

(ii) accesses resources in accordance with security policies;
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Context Description Adaptation Mechanisms

Resources Security Policies

R 1 R 2

R 3 R 4

P 1 P 2

P 3 P 4

External Environment/ 
Others Components

Bus

Protocol P

Figure 3.1: Our component model. We assume that each component has a private declar-
ative description of the context and its sets of resources, security policies and adaptation
mechanisms. Security policies rule both behaviour and resource usage. The bus is the
unique point of interaction with others components and communication through it is
governed by a protocol P.

(iii) exchanges messages on the bus, complying with a specific communication proto-
col provided by the operational environment.

Technically, the contribution of this chapter consists of three points:

1. we extend ContextML with constructs for resource manipulation (in the spirit
of [BDFZ09]); mechanisms to declare and enforce security policies by adopting
the local sandbox approach of [BDFZ09]; and the introduction of message passing
constructs for the communication with external parties.

2. We design a type and effect system (an extension of the type system presented in
Chapter 2) for ensuring that programs adequately react to context changes and for
computing as effect an abstract representation of the overall behaviour. This rep-
resentation, in the form of History Expressions, describes the sequences of resource
manipulation and communication with external parties in an abstract form.

3. We model check effects to verify that the component behaviour is correct, i.e. that
adaptation and actions over resources are in accordance with the security poli-
cies and that the communication protocol is respected. The model checking is
performed in two phases:

(a) adherence to security policies (safety)

(b) compliance with the protocol (compliance).

The chapter is organized as follows. In the next section we introduce a motivating
example to illustrate our methodology. In Section 3.2 we extend ContextML with the
new constructs. Section 3.3 describes our type and effect system and Section 3.4 our
model-checking procedure.
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3.1 A mobile application for a library of e-books

Consider a simple scenario consisting of a smartphone app that uses some services sup-
plied by a cloud infrastructure. The cloud offers a repository to store and synchronize
a library of e-books and computational resources to execute customised applications
among which there is a full-text search.

A user buys e-books online and reads them locally through the app. The purchased
e-books are stored in the remote user library and some of them are kept locally in
the smartphone. The two libraries may not be synchronized. The synchronization is
triggered on demand and depends on several factors: the actual bandwidth available
for the connection, the free space on the device, etc. We specify below the fragment of
the app that implements the full-text search over the user’s library.

As in Chapter 2 the context dependent behaviour emerges because of the different
energy profiles of the smartphone. We assume that there are two profiles: one is active
when the device is plugged in, the other one when the battery is used. These profiles
are represented by two layers: ACMode and BatMode. The function getEnergyProfile

returns the layer describing the current active profile. The actual energy profile depends
on the value returned by the sensor which is queried through the function isPlugged:

fun getEnergyProfile () =
if isPlugged () then

ACMode
else

BatMode

As usual layers can be activated to modify the context through the with construct.
In Figure 3.2a we display the code for the part of the application running on the smart-
phone. The code consists of a with construct (lines 13-14) that activates the layer repre-
senting the actual energy profile and calls the function ftsearch (defined at lines 1-11).
This function is formed by nested layered expressions describing behavioural variations
matching different configurations of the execution environment. The code exploits con-
text dependency to take into account also the actual location of the execution engine
(remote in the cloud at line 3 or local on the device at line 4), the synchronization state
of the library at lines 5-6 and the active energy profile at lines 2 and 10. The smartphone
communicates with the cloud system over the bus through message passing primitives
at lines 7-9. Communication primitives are labelled with the types of the transmitted
values. In our example τ denotes the type lyφ where φ is a set of layers including ACMode;

the type τ′ is the functional type unit
P|H−−→ τ′′ (see later for details about P and H); the

type of search result is denoted by τ′′.
The search is performed locally only if the library is fully synchronized and the

smartphone is plugged in. If the device is plugged in but the library is not fully syn-
chronized, then the code of function ftsearch is sent to the cloud and is executed
remotely by a suitable server.

In Figure 3.2b we show a fragment of the environment provided by the cloud infras-
tructure. The considered service offers generic computational resources to the devices
connected on the bus by continuously running the function serve. At the line 2, it listens



44 A Methodology for Programming Context-aware Components

1 fun ftsearch x =
2 ACMode.
3 OnCloud. search ()
4 OnSmartphone.
5 LibrarySync. search ()
6 LibraryUnsyc.
7 sendτ (ACMode);
8 sendτ′ (ftsearch);
9 receiveτ′′

10 BatMode.
(* do something else *)

11

12 ....
13 with(getEnergyProfile ())
14 ftsearch ()

(a) The code running on the smartphone

1 fun serve x =
2 let lyr = receiveτ in
3 let g = receiveτ′ in
4 φ [
5 with(lyr) in
6 let res = g () in
7 sendτ′′(res)
8 ];
9 serve ()

10 ...
11 serve ()

(b) The code of the cloud infrastructure

Figure 3.2: The code of the e-library application

to the bus for incoming code (assumed to be a function) and an incoming layer (line 3).
Then, it executes the received function (line 6) in a context extended with the received
layer (line 5). In the code of the cloud at the line 4, there is a security policy φ which is
enforced while running the received code from the bus. The enforcement is expressed
by a special construct called security framing φ[. . . ], that causes the enclosed expression
to be executed under the strict monitoring of φ. In this chapter, we are not interested in
showing either how the policies are defined or their concrete syntax. In Section 3.4 we
will see that policies are equivalent to finite automata, so the reader can suppose them
to be written in the code as regular expressions or as a (subset of) LTL formulae. Here,
assume φ to be a policy which forbids the received code from writing on the library
(represented by the action write(library)), but it always allows reading. The framing
guarantees that the execution of foreign code does not alter the remote library. In this
example, the policy φ only concerns actions on resources, e.g. the library, but our ap-
proach also allows us to enforce security policies governing behaviour adaptation and
communication.

The cloud system constrains communications on the bus by declaring a protocol P,
that prescribes the viable interactions. Additionally, the cloud infrastructure will make
sure that the protocol P is indeed an abstraction of the behaviour of the various services
involved in the interactions. Here we are not interested in the problem of how protocols
are defined by the environment, but only in checking whether a client respects the given
protocol.

The protocol to communicate with the cloud infrastructure is

P = (sendτsendτ′receiveτ′′)
∗
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and expresses the sequence of communication actions which a client has to perform.
Specially, it requires that the client must send a value of type τ, then a value of type τ′

and then must receive back a value of type τ′′. These actions can be repeated a certain
number of times as indicated by the symbols ∗.

A static analysis technique is exploited to verify that all security policies are enforced
(safety) and that the communication protocol is respected (compliance). As already said,
our technique consists of a type and effect system and a model-checking procedure.
Below we explain how it applies to our example.

Function getEnergyProfile returns a value of type ly{ACMode,BatMode}, i.e. the returned
layer is one of ACMode and BatMode.

The type of function ftsearch is τ′ = unit
P|H−−→ τ′′, assuming that the value re-

turned by the search function has type τ′′. The type τ′ is annotated by a set of precon-
ditions P (see below) and a latent effect H (discussed later on).

P = {{ACMode, IsLocal, LibrarySynced} , {ACMode, IsCloud} , . . . }

Each precondition in P is a set of layers. To apply getEnergyProfile, the context of the
application must contains all the layers in υ, for a precondition υ ∈ P.

As we will see later on, our type system is an extension of the one of Chapter 2.
Not only it guarantees that the dispatching mechanism always succeeds at runtime
but also it computes an effect H (history expression). This effect represents an over-
approximation of the sequences of events, i.e. resource manipulations or layer activations
or communication actions. In our example, the with will be well-typed whenever the
context in which it will be evaluated contains IsLocal or IsCloud and LibraryUnsync or
LibrarySync. The requirements about ACMode and BatMode coming from the body of the
function ftsearch are ensured at the line 13. This is due to the type of getEnergyProfile
guarantees that one of them will be activated in the context by the with. The effect H
in τ′ is the latent effect of ftsearch, over-approximating the set of histories, i.e. the
sequences of events, possibly generated by ftsearch.

Effects are then used to check whether a client complies with the policy and the
interaction protocol provided by the environment. Verifying that the code of ftsearch
obeys the policy φ is done by model-checking the effect of ftsearch (a context-free
language) against the policy φ (a regular language). Obviously, the app never writes, so
the policy φ is satisfied, assuming that the code for the BatMode case has empty effect.

To check compliance with the protocol, we only considering communications. Thus,
the effect of the body of ftsearch becomes:

Hsr = sendτ · sendτ′ · receiveτ′′

Verifying whether the program correctly interacts with the cloud system consists of
checking that the histories generated by Hsr are a subset of those allowed by the protocol
P. In our scenario this is indeed the case.

3.1.1 Expressing Role-based Access Control Policies

Here, we extend our running example to show that contexts can include information
on principals using resources, and that we can implement a kind of role based access
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1 fun ftsearch1 x =
2 ACMode.
3 OnCloud. search ()
4 OnSmartphone.
5 LibrarySync. search ()
6 LibraryUnsyc.
7 sendτid(id_code);

8 sendτ (ACMode);
9 sendτ′ (ftsearch);

10 receiveτ′′

11 BatMode.
(* do something else *)

12

13 ....
14 with(getEnergyProfile ())
15 ftsearch1 ()

(a) The code running on the smartphone

1 fun serve1 x =
2 φ′[ with(Root) in

3 let id = receiveτid in

4 cd(/billing);
5 write(bid_id);
6 cd(/lib_id);
7 with(Usr) in

8 let lyr = receiveτ in
9 let g = receiveτ′ in

10 φ [
11 with(lyr) in
12 let res = g () in
13 sendτ′′(res)
14 ];
15 serve1 ()
16 ]
17 ...
18 serve1 ()

(b) The code of the cloud infrastructure

Figure 3.3: The code of the e-library application extended with the role based access
control. The new code is underlined and in blue.

control by our policies. Assume that each user has an unique identifier needed to access
the cloud services. The cloud uses the id to grant services and to update information
about user’s account, e.g. charging money for offered services. Figure 3.3a shows the
new version of the function ftsearch: the app on the smartphone sends the user’s
id to the cloud at line 7. In the function serve1 the layer Root (line 2) is activated
to indicate that the code is running with administrator privileges, i.e. it can access all
system resources. Once the user’s id has been received, the information about the bill is
updated (line 4-5) and the current working directory is changed into the one containing
the user’s library (line 6). Then, the layer User is activate and the same code of serve is
executed with user privileges.

Regarding security, serve1 has two policies φ and φ′. The first one is the same as be-
fore (it forbids writing on the library). The second one, instead, specifies infrastructural
rules of the Cloud. Among the various controls, it inhibits the code running with user
privileges, (i.e. with the layer Usr active in the context) to perform operations allowed
only to the administrator, e.g. changing the working directory or modifying system files.
This is possible because policies can also require that contexts satisfy certain properties.
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3.2 Extending ContextML

We extend ContextML by introducing resource manipulation, enforcement of security
properties and communication.

Resources available in the system are represented by identifiers and can be manipu-
lated by a fixed set of actions. For simplicity, we omit the fact that resources can have a
complex structure with their own private state, but we treat them as abstract data types.
In addition, we do not provide ContextML with constructs for dynamically creating
resources, but these can be added following [BDFZ09, BDF09].

We enforce security properties by protecting expressions with policies: φ[e]. This
mechanism is known in the literature as policy framing [BDF09]. Roughly, it means that
during the evaluation of e the computation must respect φ. Our policies turn out to
be regular properties of special computation traces, called histories; more details are in
Section 3.4.

The communication model is based on a bus which allows programs to interact with
the environment by message passing. The operations of writing and reading values over
this bus can be seen as a simple form of asynchronous I/O. We will not specify this bus
in detail, but we will consider it as an abstract entity representing the whole external
environment and its interactions with programs. Therefore, ContextML programs oper-
ate in an open-ended environment. The syntax and the structural operational semantics
of ContextML follow.

3.2.1 Syntax

Let Const be a set of constants, Ide a set of identifiers, LayerNames a finite set of layer
names, Policies a set of security policies, Res a finite set of resources identifiers and Act

a finite set of actions for manipulating resources. Then, the syntax of ContextML is:

c ∈ Const x, f ∈ Ide L ∈ LayerNames φ ∈ Policies r ∈ Res α, β ∈ Act

v ::= values

| c constants e.g. 1, 2, . . . , true, false, ()

| L layers

| fun f x ⇒ e functions

e ::= expressions

| v values

| x identifiers

| e1 e2 function application

| let x = e1 in e2 declaration

| e1 op e2 operators e.g. +, −, ×, . . .

| if e0 then e1 else e2 conditional

| with(e1) in e2 layers activation
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| without(e1) in e2 layers deactivation

| lexp layered expressions

| α(r) resource manipulation

| φ [e] enforcement of security policy

| sendτ communication

| receiveτ communication

| auxe auxiliary expressions

lexp ::= L.e | L.e, lexp

auxe ::=

| with(L̄) in e2

| without(L̄)in e2

| φ̄[e]

Additionally, we assume the syntactic sugar e1; e2 for (fun f x ⇒ e2) e1 where x and
f are not free in e2.

The novelties of ContextML with respect to the previous version of the Chapter 2
(underlined and in blue) are primitives for handling resources, policy framing and com-
munication. The expression α(r) indicates that we access the resource r through the
action α, possibly causing side effects. The security properties are enforced by policy
framing φ[e] guaranteeing that the computation satisfies the policy φ. Of course, policy
framings can be nested. The communication is performed by sendτ and receiveτ. They
allow us to interact with the external environment by writing and reading values of
type τ to and from the bus. The auxiliary expressions auxe are not used by the pro-
grammer but they are needed in the dynamic semantics for intermediate configurations
(see below).

3.2.2 Dynamic Semantics

We provide a new small-step operational semantics for ContextML programs, defined
as usual only for closed expressions. Note that, since now ContextML programs can
read values from the bus, a closed expression can be open with respect to the external
environment. For example, consider the expression let x = receiveτ in x + 1. It is closed
but it reads an unknown value v from the bus. To give meaning to such programs, we
use an approach similar to the early input of the π-calculus [SW01].

Furthermore, the semantics is history dependent. Program histories are sequences of
interesting events that may arise at runtime. In our case, events ev record the activation
and the deactivation of layers, the dispatching of behavioural variations and program
actions, such as resource accesses, entering and exiting policy framing and communica-
tion. The syntax of events ev and programs histories η is the following:

ev ::= LL | ML | {L | }L | Disp(L) | α(r) | sendτ | receiveτ | [φ| ]φ
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η ::= ε | ev | η η

The event LL marks that we begin the evaluation of a with body in a context where the
layer L is activated; the event ML marks the end of the activation; symmetrically, the event
{L signals that we begin the evaluation of a without body in a context where the layer
L is masked; instead the }L signals the end of the masking; the event Disp(L) signals
that layer L has been selected by the dispatch mechanism; the event α(r) marks that the
action α has been performed over the resource r; the event sendτ indicates that we send
a value of type τ over the bus; symmetrically, the event receiveτ records that we read a
value from the bus; the event [φ marks the beginning of the enforcement of the policy φ;
instead, the event ]φ marks the end. As before a context C is a stack of active layers and
in the following we use the operation :: and − of Definition 2.2.1 and Definition 2.2.2.

The transitions have the form C ` η, e→ η′, e′, meaning that in the context C, starting
from a program history η, the expression e may evolve to e′ and the history η to η′ in
one evaluation step.

The semantic rules are shown in Figures 3.4 and 3.5. Most of them are inherited
from the Chapter 2 but we adapted them to deal with the history. We briefly comment
on those about new constructs.

The rules for with(e1) in e2 are similar to those presented previously, but addition-
ally we store in the history the events LL and ML marking the beginning and the end of
the evaluation of e2. Note that the fact of being within the scope of the activation of the
layer L is recorded by using the auxiliary expression with(L) in e2. Symmetrically, the
rules for without(e1) in e2 evaluate e2 in a context where the layer obtained evaluating
e1 is deactivated. Moreover, they record the events {L and }L in the history to mark
the beginning and the end of the evaluation of e2. Also in this case we denote with
without(L) in e2 the fact of being within the scope of the deactivation of the layer L.

The new version of the rule lexp stores in the history which case of the layered
expression is selected by the dispatching mechanism (Definition 2.2.3). Also in this case
the computation gets stuck, if no layer matches.

The rule action establishes that performing an action α over a resource r yields the
unit value () and extends η with α(r).

The rules governing communication reflect our notion of protocol, which abstractly
represents the behaviour of the environment, showing the sequence of direction/type
of messages. Accordingly, our primitives carry types as tags, rather than dynamically
checking the exchanged values. In particular, there is no check that the type of the
received value matches the annotation of the receive primitive. Our static analysis will
guarantee the correctness of this operation.

In detail, sendτ(e) evaluates e and sends the obtained value over the bus. Addition-
ally, the history is extended with the event sendτ. A receiveτ reduces to the value v read
from the bus and appends the corresponding event to the current history. This rule is
similar to that used in the early semantics of the π-calculus, where a name is guessed
and transmitted over the channel [SW01].

The rules for framing say that an expression φ[e] can reduce to φ[e′], provided that
the resulting history η′, purged of all security framing events (η′−[]), obeys the policy φ,
in symbols η′−[] � φ (see next Sections for a precise definition). Also here, placing a bar
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with1

C ` η, e1 → η′, e′1
C ` η, with(e1) in e2 → η′, with(e′1) in e2

with2

C ` η, with(L) in e→ η LL, with(L̄) in e

with3

L :: C ` η, e→ η′, e′

C ` η, with(L̄) in e→ η′, with(L̄) in e′

with4

C ` η, with(L̄) in v→ η ML, v

without1

C ` η, e1 → η′, e′1
C ` η, without(e1) in e2 → η′, without(e′1) in e2

without2

C ` η, without(L) in e→ η {L, without(L̄) in e

without3

C− L ` η, e→ η′, e′

C ` η, without(L̄) in e→ η′, without(L̄) in e′

without4

C ` η, without(L̄) in v→ η }L, v

lexp

dsp(C, {L1, . . . , Ln}) = Li

C ` η, L1.e1, . . . , Ln.en → η Disp(Li), ei

action

C ` η, α(r)→ η α(r), ()

send1

C ` η, e→ η′, e′

C ` η, sendτ(e)→ η′, sendτ(e′)

send2

C ` η, sendτ(v)→ η sendτ, ()

receive

C ` η, receiveτ → η receiveτ, v

framing1

η−[] � φ

C ` η, φ[e]→ η[φ, φ[e]

framing2

C ` η, e→ η′, e′ η′−[] � φ

C ` η, φ[e]→ η′, φ[e′]

framing3

η−[] � φ

C ` η, φ[v]→ η]φ, v

Figure 3.4: The semantics rules of extended ContextML: part I



Extending ContextML 51

app1

C ` η, e2 → η′, e′2
C ` η, e1 e2 → η′, e1 e′2

app2

C ` η, e1 → η′, e′1
C ` η, e1 v→ η′, e′1 v

app3

C ` η, (fun f x⇒ e)v→ η, e{fun f x⇒ e/ f , v/x}

if1

C ` η, e0 → η′, e′0
C ` η, if e0 then e1 else e2 → η′, if e′0 then e1 else e2

if2

C ` η, if true then e1 else e2 → η, e1

if3

C ` η, if false then e1 else e2 → η, e2

let1

C ` η, e1 → η′, e′1
C ` η, let x = e1 in e2 → η′, let x = e′1 in e2

let2

C ` η, let x = v in e2 → η, e2{v/x}

op1

C ` η, e1 → η′, e′1
C ` η, e1 op e2 → η′, e′1 op e2

op2

C ` η, e2 → η′, e′2
C ` η, v op e2 → η′, v op e′2

op3

v = v1 op v2

C ` η, v1 op v2 → η, v

Figure 3.5: The semantics rules of extended ContextML: part II
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over φ records that the policy is active. If η′ does not obey φ, then the computation gets
stuck. Of course, we store in the history through [φ/]φ the point where the enforcement
of φ starts/ends.

Example 3.2.1. Back to our motivating example in Section 3.1, consider the part of the
application running on the smartphone and assume to invoke the function ftsearch

in the context C = [ACMode, OnSmartphone, LibraryUnSync] and with a history η. The
following evaluation shows how the mechanism of histories and the communication
work:

[ACMode, OnSmartphone,LibrarySync] `
η, ftsearch ()→∗

η1,



OnCloud.search()
OnSmartphone.
LibrarySync.search()
LibraryUnsync.

sendτ(ACMode);
sendτ′(ftseach);
receiveτ′′ ;


→∗

η2,

 sendτ(ACMode);
sendτ′(ftseach);
receiveτ′′ ;

→
η3,
(

sendτ′(ftseach);
receiveτ′′ ;

)
→

η4, receiveτ′′ →
η5, v

where the histories generated during the evaluation are:

η1 = ηDisp(ACMode) because the dispatching mechanism matched the layer ACMode;

η2 = η1Disp(OnSmartphone)Disp(LibraryUnsync) because the layers OnSmartphone
and LibraryUnsync was selected in order;

η3 = η2 sendτ because we sent the layer ACMode over the bus;

η4 = η3 sendτ′ because the function ftsearch was written on the bus;

η5 = η4 receiveτ′′ because we read the value v from the bus.

After the third transition the layer ACMode and the code of the function ftsearch are
we sent on the bus. These value are read from the bus by the cloud server running the
function serve. We assume that the function serve is run in context C′ = [OnCloud] and
with a history η′ (remember that the policy φ prevents the received code from modifying
the library):

C′ ` η′, serve ()→
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η′,



let lyr = receiveτ in
let g = receiveτ′ in

φ[with(lyr) in
let res = g () in

sendτ′′(res)]

serve ()


→∗

η′1,


let g = receiveτ′ in

φ[with(ACMode) in
let res = g () in

sendτ′′(res)]

serve ()

→∗

η′2,


φ[with(ACMode) in

let res = ftsearch () in
sendτ′′(res)]

serve ()

→∗

η′3,


φ[with(ACMode) in

let res = ftsearch () in
sendτ′′(res)]

serve ()

→∗

η′4,

 φ[with(ACMode) in
sendτ′′(v)]

serve ()

→∗

η′5,

 φ[with(ACMode) in
()]

serve ()

→∗
η′6, serve ()

The evaluation yields the following histories:

η′1 = η′receiveτ — the layer ACMode is read from the bus;

η′2 = η′1receiveτ′ — the code of the function ftsearch is taken from the bus;

η′3 = η′2[φ LACMode — the enforcement of the policy φ is started and the layer ACMode
is activated in the context;

η′4 = η′3Disp(ACMode)Disp(OnCloud) — while evaluating the body of the function
ftsearch the dispatching mechanism selected the layer ACMode and then OnCloud;

η′5 = η′4sendτ′′ — the value v is sent over the bus;

η′6 = η′5MACMode ]φ — the layer ACMode is deactivated and then the enforcement of the
policy φ is ended.

Of course, the value v read by the smartphone is the same one sent by the cloud over
the bus.
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3.2.3 Validity of a History

Here, we introduce the notion of validity of a history. The framing construct allows us to
enforce a security policy on a expression. Security framings can be nested, so during the
evaluation there might be many policies whose scope has been entered but not exited
yet. These policies are called active policies. Intuitively, a history is valid if it satisfies all
the active policies.

Given a history η, we denote with η−[] the history purged of all security framing
events, formally

ε−[] = ε

(η ev)−[] = η−[] ev if ev 6= [φ, ]φ

(η ev)−[] = η−[] otherwise

Given a history η, the multiset ap(η) collects all the policies φ still active, and it is
defined as follows:

ap(ε) = { } ap(η [φ) = ap(η) ∪ {φ}
ap(η ev) = ap(η) ev 6= [φ, ]φ ap(η ]φ) = ap(η) \ {φ}

The validity of a history η is inductively defined as follows, assuming the notion of
safety η � φ (see Definition 3.4.1):

Definition 3.2.1 (Validity). Given a history η we say that is valid, |= η in symbols, if

� ε if η = ε and

� η′ev if η = η′ev and � η′ and (η′ev)−[] � φ for all φ ∈ ap(η′ev)

Example 3.2.2. Returning to our example, consider the histories η′1, η′2, η′3, η′4, η′5 and
η′6 generated by the reduction of the function serve in Example 3.2.1. As we said in
Section 3.1, the policy φ forbids writing on the library, i.e. the action write(library).
Since this action is never carried out, all the histories are valid.

If a history is valid, also its prefixes are valid, i.e. validity is a prefix-closed property,
as stated by the following property [BDFZ09]:

Property 3.2.1. If a history η is valid, then each prefix of η is valid too.

Proof. It is straightforward by applying Definition 3.2.1.

Example 3.2.3. As a further example, consider a policy φ protecting a resource r and
amounting to no read(r) after write(r). The history η0 = write(r) · [φ·read(r)·]φ is not valid
because write(r) · read(r) 6� φ. On the other hand, the history η1 = [φ·read(r)·]φ ·write(r)
is valid because both read(r) � φ and read(r) · write(r) � φ .

The semantics of ContextML (in particular the rules for framing) ensures that the
histories generated at runtime are all valid:
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Property 3.2.2. If C ` ε, e→∗ η′, e′, then η′ is valid.

Proof. If η = ε and e′ = e the proof is trivial. Otherwise we proceed by contradiction.
Assume that η′ is not valid and denote with Φ the set of policies occurring in policy
framings of e. This mean that there exist e′′ and η′′ such that C ` ε, e →∗ η′′, e′′ → η′, e′

and that η′′−[] 2 φ for some φ ∈ Φ. Thus the computation gets stuck because no rule for
framing applies for η′′ and e′′ (contradiction).

3.3 Type and Effect System

We now associate a ContextML expression with a type and an abstraction, called his-
tory expression. The model checking procedure exploits history expressions to verify
that programs respect security policies and the protocol. Firstly, we introduce history
expressions and then our type and effect system.

3.3.1 History Expressions

History expressions [SSVH08, BDFZ09, BDF09] are a simple process algebra providing
an abstraction over the set of histories that a program may generate. Here, history
expressions approximate activating or deactivating layers, enforcing policies and send-
ing or receiving messages. We adopt the same notion of [BDF09], though we consider
histories with a different set of events, namely ev.

The syntax of history expressions is:

H ::= ε empty
| ev events e.g. α(r), sendτ, LL

| H1 + H2 non-deterministic sum
| H1 · H2 sequence
| h recursion variable
| µh.H recursion
| φ[H] security framing abbreviation for [φ·H·]φ

The empty history expression ε abstracts programs that perform no relevant action;
the “atomic” history expression ev indicates that an interesting event may occur during
evaluation such as carrying out an action over a resource, the activation and deactivation
of a layer, etc.; the non-deterministic sum H1 + H2 stands for the conditional expression
if - then - else ; the concatenation H1 · H2 is for sequences of actions, that arise, e.g.
while evaluating application; µh.H abstracts possibly recursive function with recursion
variable h; the safety framing φ[H] represents the enforcement of the policy φ on H.

The behaviour of a history expression H is formalized by the labelled transition
system inductively defined in Figure 3.6. Configurations have the form H w−→ H′ where
w ∈ (ev ∪ {ε}) meaning that H reduces to H′ carrying out the action w.

We briefly comment on the rules of the transition system. The “atomic” history
expression ev reduces to ε yielding itself as label; the recursion µh.H reduces to the
body H substituting µh.H for the recursion variable h (unfolding) and yielding ε; the
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ev ev−→ ε µh.H ε−→ H{µh.H/h}
H1

ev−→ H′1
H1 · H2

ev−→ H′1 · H2 ε · H2
ε−→ H2

H1
ev−→ H′1

H1 + H2
ev−→ H′1

H2
ev−→ H′2

H1 + H2
ev−→ H′2

Figure 3.6: Transition system of History Expressions.

rules for sequence H1 · H2 reduce H1 up to obtaining ε and then the overall expression
reduces to H2; the sum H1 + H2 reduces to the history expression resulted from the
reduction of one of its subexpressions (non-deterministically chosen). Note that there is
no rule for the φ[H] because it is an abbreviation for [φ·H·]φ, then it is handled by the
rules for events.

By exploiting the transition system in Figure 3.6 we define the semantics of a his-
tory expression H as a prefix closed set of histories. Intuitively, the semantics is the
language of strings (prefix closed) obtained reducing H through the transition system
in all possible way (the alphabet of the language is the set of the events ev). Formally,

Definition 3.3.1 (Semantics of History Expressions). Let H be a closed history expres-
sion, we define its semantics JHK to be the set of histories η = w1 . . . wn (wi ∈ ev ∪
{ε}, 0 ≤ i ≤ n) such that ∃H′. H

w1−→ · · · wn−→ H′.

Note that the empty history expression ε plays also the role of the empty string, so
in the following we assume that it is the identity element of the concatenation “·”, i.e.
ε · η = η. We can easily extend the notion of history validity introduce in Definition 3.2.1
to history expression: a history expression H is valid, if |= η for all η ∈ JHK.

From [BDFZ09] we inherit the following equational theory on history expressions:

Definition 3.3.2 (Equational Theory of History Expression).

H + H ≡ H ≡ ε · H ≡ H ≡ H · ε H1 + H2 ≡ H2 + H1

H1 · (H2 · H3) ≡ (H1 · H2) · H3 H1 + (H2 + H3) ≡ (H1 + H2) + H3

H1 · (H2 + H3) ≡ (H1 · H2) + (H1 · H3) (H1 + H2) · H3 ≡ (H1 · H3) + (H2 · H3)

Example 3.3.1. Back to our motivating example in Section 3.1, assume that H is the
history expression over-approximating the behaviour of the function read from the bus
at line 3 of Figure 3.2b. Then, the history expression for the function serve is

Hs = µh.receiveτ · receiveτ′ · φ [LACMode·H · sendτ′′MACMode] · h.

Assuming that H reduces to ε yielding the labels Disp(ACMode) and Disp(OnCloud), a
possible reduction of Hs is

µh.receiveτ · receiveτ′ · φ [LACMode·H · sendτ′′ ·MACMode] · h
ε−→
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receiveτ · receiveτ′ · φ [LACMode·H · sendτ′′ ·MACMode] · Hs
receiveτ−−−→

receiveτ′ · φ [LACMode·H · sendτ′′ ·MACMode] · Hs
receiveτ′−−−−→[

φ · LACMode·H · sendτ′′ ·MACMode·
]

φ
· Hs

[φ−→

LACMode·H · sendτ′′ ·MACMode·]φ · Hs
LACMode−−−→

H · sendτ′′ ·MACMode·]φ · Hs
Disp(ACMode)·Disp(OnCloud)−−−−−−−−−−−−−−−→

∗

sendτ′′ ·MACMode·]φ · Hs
sendτ′′−−−→

MACMode·]φ · Hs
MACMode−−−→

]φ · Hs
]φ−→

Hs

The sequence receiveτreceiveτ′ [φLACModeDisp(ACMode)Disp(OnCloud)sendτ′′MACMode]φ is a his-
tory (call it ηs). By Definition 3.3.1 the semantics of Hs is

JHsK = {(receiveτreceiveτ′ [φLACModelcsendτ′′MACMode]φ)? | lc ∈ JHK}.

Obviously, by taking lc = Disp(ACMode)Disp(OnCloud) we have that ηs ∈ JHsK. Note also
that the evaluation of Hs above abstracts the function serve in Example 3.2.1: indeed, it
is easy to observe that η′4 = η′ηs, where η′ is the history with which the evaluation of
the function serve starts.

3.3.2 Typing rules

Here, we define the typing rules defining the type and effect system of ContextML.
Our typing judgements have the form 〈Γ; C〉 ` e : τ . H. This means that in “in the

type environment Γ and in the context C the expression e has type τ and effect H”.
The typing environment Γ is defined as usual to map identifiers to their types. Types

are constants, layers and functions:

τc ∈ {int, bool, unit, . . . } σ ∈ ℘(LayerNames) P ∈ ℘ (℘(LayerNames))

τ, τ1, τ′ ::= τc | lyσ | τ1
P|H−−→ τ2

As we did in Section 2.2.2, we annotate types with sets of layer names σ for analysis
reason. In lyσ, σ over-approximates the set of layers an expression can be reduced to. In

τ1
P|H−−→ τ2, the set P contains the preconditions υ. Each υ ∈ P over-approximates the set

of layers that must occur in the context to apply the function. The history expression H
is the latent effect, i.e. the sequence of events generated while evaluating the function.

We now introduce the ordering vP and vH on the set of preconditions and history
expressions, respectively (often we omit the indices when unambiguous). The ordering
on the set of preconditions and history expressions are defined as follows:

P vP P′ iff ∀υ ∈ P . ∃υ′ ∈ P′ . υ′ ⊆ υ
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Sref

τ ≤ τ

Sfun

τ′1 ≤ τ1 τ2 ≤ τ′2 P v P′ H v H′

τ1
P|H−−→ τ2 ≤ τ′1

P′|H′−−−→ τ′2

Sly

σ ⊆ σ′

lyσ ≤ lyσ′

Tsub

〈Γ; C〉 ` e : τ′ . H′ τ′ ≤ τ H′ v H

〈Γ; C〉 ` e : τ . H

Figure 3.7: Subtyping rules

H1 vH H2 iff H2 ≡ H1 + H3 for some H3

Note that the partial ordering H1 v H2 is defined over the quotient induced by the
(semantic-preserving) equational theory introduced in Definition 3.3.2. Clearly, it holds
that H1 v H2 implies JH1K ⊆ JH2K, but the theory is not complete i.e. JH1K ⊆ JH2K does
not imply H1 v H2 (see [BDFZ09]). Intuitively, the partial order H1 v H2 means that
the abstraction represented by H2 is less precise than the one by H1.

Since our types are annotated and we have effects, we need rules for subtyping
(τ1 ≤ τ2) and for subeffecting (H v H′)displayed in Figure 3.7. The rule Sref states that
the subtyping relation is reflexive. The rule Sly says that a layer type lyσ is a subtype
of lyσ′ whenever the annotation σ is a subset of σ′. The rule Sfun defines subtyping for
functional types. As usual, it is contravariant in τ1 but covariant in P, τ2 and H. By the
Tsub rule, we can always enlarge types and effects.

Figure 3.8 shows the typing rules of our type and effect system. Most of them
extends the one shown in Figure 2.2 to deal with the effects. For instance, the rules
Tconst, Tvar and Tly are the same apart from the fact that they yield the empty effect
ε. So we only comment in detail on the rules which changed and the ones for the new
(and COP) constructs. In the rule Tfun we guess a set of preconditions P, a type for
the bound variable x and for the function f . For all preconditions υ ∈ P we also guess
a context C′, under which we determine the type of the body e. We impose that the
precondition υ contains all the layers in C′, in symbols υ ⊆ |C′|, where |C′| denotes the
set of active layers in the context C′ as done in Section 2.2.2. Implicitly, we require that
the guessed type for f , as well as its latent effect H, match the ones of the resulting
function. Additionally, we require that the resulting type is annotated with P. The
application gets a type (rule Tapp) if there exists a precondition υ ∈ P such that it is
satisfied in the current context C. A context satisfies the precondition υ whenever it
contains all the layers in υ, in symbols |C′| ⊆ υ. The effect is obtained by concatenating
the ones of e2 and e1 and the latent effect H. The rule Twith is almost unchanged except
for the effect. It is the union of the possible effects resulting from evaluating the body.
This evaluation is carried on the different contexts obtained by extending C with one of
the layers in σ. The special events LL and ML express the scope of this layer activation.
The rule Twithout is similar to Twith, but instead removes the layers in σ and use {L and
}L to delimit layer hiding. The rule Tlexp is extended in such a way that its effect is the
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TVar

Γ(x) = τ

〈Γ; C〉 ` x : τ . ε

Tconst

〈Γ; C〉 ` c : τc . ε

Tly

〈Γ; C〉 ` L : ly{L} . ε

Tfun

∀υ ∈ P. 〈Γ, x : τ1, f : τ1
P|H−−→ τ2; C′〉 ` e : τ2 . H

∣∣C′∣∣ ⊆ υ

〈Γ; C〉 ` fun f x⇒ e : τ1
P|H−−→ τ2 . ε

Tapp

〈Γ; C〉 ` e1 : τ1
P|H−−→ τ2 . H1 〈Γ; C〉 ` e2 : τ1 . H2 ∃υ ∈ P.υ ⊆ |C|

〈Γ; C〉 ` e1e2 : τ2 . H2 · H1 · H

Tif

〈Γ; C〉 ` e0 : bool . H 〈Γ; C〉 ` e1 : τ . H1 〈Γ; C〉 ` e2 : τ . H2

〈Γ; C〉 ` if e0 then e1 else e2 : τ . H · (H1 + H2)

Tlet

〈Γ; C〉 ` e1 : τ1 . H1 〈Γ, x : τ1, C〉 ` e2 : τ2 . H2

〈Γ; C〉 ` let x = e1 in e2 : τ2 . H1 · H2

Top

〈Γ; C〉 ` e1 : τc . H1 〈Γ; C〉 ` e2 : τc . H2

〈Γ; C〉 ` e1 op e2 : τc . H1 · H2

Twith

〈Γ; C〉 ` e1 : ly{L1,...,Ln} . H′ ∀Li ∈ {L1, . . . , Ln}.〈Γ; Li :: C〉 ` e2 : τ . Hi

〈Γ; C〉 ` with(e1) in e2 : τ . H′ ·∑
Li

LLi ·Hi·MLi

Twithout

〈Γ; C〉 ` e1 : ly{L1,...,Ln} . H′ ∀Li ∈ {L1, . . . , Ln}.〈Γ; C− Li〉 ` e2 : τ . Hi

〈Γ; C〉 ` without(e1) in e2 : τ . H′ ·∑
Li

{Li ·Hi·}Li

Tlexp

∀i.〈Γ; C〉 ` ei : τ . Hi L1 ∈ |C| ∨ · · · ∨ Ln ∈ |C|
〈Γ; C〉 ` L1.e1, . . . , Ln.en : τ . ∑

Li∈{L1,...,Ln}
Disp(Li) · Hi

Talpha

〈Γ; C〉 ` α(a) : unit . α(a)

Tphi

〈Γ; C〉 ` e : τ . H

〈Γ; C〉 ` φ[e] : τ . [φ·H·]φ

Trec

〈Γ; C〉 ` receiveτ : τ . receiveτ

Tsend

〈Γ; C〉 ` e : τ . H H′ = H · sendτ

〈Γ; C〉 ` sendτ(e) : unit . H′

Figure 3.8: Typing rules
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Tbwith

〈Γ; L :: C〉 ` e2 : τ . H

〈Γ; C〉 ` with(L) in e2 : τ . H·ML

Tbwithout

〈Γ; C− L〉 ` e2 : τ . H

〈Γ; C〉 ` without(L) in e2 : τ . H·}L

Tbphi

〈Γ; C〉 ` e : τ . H

〈Γ; C〉 ` φ[e] : τ . H·]φ

Figure 3.9: Typing rules for auxiliary syntactic configurations

sum of the effects Hi of sub-expressions, each of which is preceded by Disp(Li) event.
The rule Talpha gives an expression α(r) the type unit and effect α(r). By the rule Tphi

the expression φ[e] has the same type of e and as effect the one of e enclosed between
the events [φ and ]φ. The expression sendτ(e) has type unit and its effect is that of e
extended with event sendτ. The expression receiveτ has type τ and its effect is the event
receiveτ. Note that the rules establish the correspondence between the type declared
in the syntax and the checked type of the value sent/received. An additional check
is however needed and will be carried on also taking care of the interaction protocol
(Section 3.4).

For technical reasons, we need the rules shown Figure 3.9 for dealing with the aux-
iliary syntactic configurations for with, without and φ[e]. The rule Tbwith requires that
the subexpression e2 gets a type τ and an effect H in the context C enlarged by the layer
L. If this happens, the overall expression has type τ and effect obtained by appending
the event ML to H. Note that when we reach this configuration during the evaluation
we already know which the layer L is activated and its activation was recorded in the
history. The rule Tbwithout is the similar to Tbwith, but it adds the event }L to the effect
computed for the subexpression e2. By the rule Tbphi the φ̄[e] has the same type of e and
its effect is obtained by concatenating the one of e with the event ]φ.

Example 3.3.2. In Figure 3.10 we show an example of type derivation tree for a part of

the body of the function serve. We assume that τ = ly{ACMode}, τ′ = unit
H−→ τ′′ and that

the application g () gets the type τ′′ and the effect H. Furthermore, in the type derivation
tree we use the following type environments, contexts and history expressions:

Γ1 = Γ, lyr : τ H1 = receiveτ · receiveτ′ · φ[LACModeH · sendτ′′MACMode]
Γ2 = Γ, lyr : τ, g : τ′ H2 = receiveτ′ · φ[LACModeH · sendτ′′MACMode]
Γ3 = Γ, lyr : τ, g : τ′, res : τ′′ H3 = φ[LACModeH · sendτ′′MACMode]
C1 = ACMode :: C H4 = LACModeH · sendτ′′MACMode

It is easy to see that the resulting effect H1 is a subterm of the history expression Hs

introduced in Example 3.3.1 as effect of the function serve, i.e. Hs = µh.H1 · h.

Our type and effect system ensures us that

• functions are correctly used;



Type and Effect System 61

〈Γ; C〉 ` receiveτ : τ . receiveτ

〈Γ1; C〉 ` receiveτ′ : τ′ . receiveτ′

〈Γ2; C〉 ` lyr : τ . ε

〈Γ2; C1〉 ` g () : τ′′ . H
〈Γ3; C1〉 ` res : τ′′ . ε

〈Γ3; C1〉 ` sendτ′′ (res) : unit . sendτ′′

〈Γ2; C1〉 `
(

let res = g () in
sendτ′′ (res)

)
: unit . H · sendτ′′

〈Γ2; C〉 `

 with(lyr) in
let res = g () in

sendτ′′ (res)

 : unit . H4

〈Γ2; C〉 `

 φ[with(lyr) in
let res = g () in

sendτ′′ (res)]

 : unit . H3

〈Γ1; C〉 `


let g = receiveτ′ in

φ[with(lyr) in
let res = g () in

sendτ′′ (res)]

 : unit . H2

〈Γ; C〉 `


let lyr = receiveτ in
let g = receiveτ′ in

φ[with(lyr) in
let res = g () in

sendτ′′ (res)]

 : unit . H1

Figure 3.10: The type derivation of the body of function serve

• the evaluation of a layered expression never gets stuck;

• the computed effect is a safe over-approximation of the histories may arise at run-
time.

The following two lemmata guarantee that our type and effect system is sound with
respect to the operational semantics. The first assures that types are preserved during
the evaluation. In the statement we denote with ηH the history expression obtained
concatenating the events of η with H.

Lemma 3.3.1 (Preservation). Let e be a closed expression, if 〈Γ; C〉 ` e : τ . H and C ` η, e→
η′, e′, then 〈Γ; C〉 ` e′ : τ . H′ with ηH w η′H′.

The second lemma claims that under the assumptions of the safety and compliance
a well-typed expression never gets stuck unless it is a value. In the statement we denote
with C ` η, e 9 the fact that e is stuck.

Lemma 3.3.2 (Progress). Let e be a closed expression such that 〈Γ; C〉 ` e : τ . H. If C `
η, e 9 and ηH is valid and it is compliant with the communication protocol, then e is a value.

From the two lemmata above we prove the following proposition. It states that the
history expression obtained as effect of an expression e over-approximates the set of
histories that may actually be generated during the execution of e.

Proposition 3.3.3 (Over-approximation). If 〈Γ; C〉 ` e : τ . H and C ` ε, e →∗ η, e′, then
η ∈ JHK.

The following theorem guarantees that a well-typed expression never gets stuck,
provided that its H is valid and that it adheres to the communication protocol.
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Theorem 3.3.4. If 〈∅; C〉 ` e : τ . H and H is valid with balanced policy framings and it is
compliance with the communication protocol, then either the computation terminates by yielding
a value (C ` ε, e→∗ η′, v) or it diverges, but it never gets stuck.

3.3.3 Soundness of the Type and Effect System

We collect below the technical development to prove Lemma 3.3.1, Lemma 3.3.2, Propo-
sition 3.3.3 and Theorem 3.3.4. The proofs require some auxiliary results stated below.
We refer to the definition of the partial order v we will use = instead of ≡.

The following definition extends the notion of substitution introduced in Defini-
tion 2.3.1.

Definition 3.3.3 (Substitution). Given the expressions e, e′ and the identifier x we define
e{e′/x} as following:

n{e′/x} = n

L{e′/x} = L

(){e′/x} = ()

(fun f x′ ⇒ e){e′/x} = fun f x ⇒ e{e′/x} if f 6= x ∧ x 6= x′ ∧ f , x′ /∈ f v(e′)

x{e′/x} = e′

x′{e′/x} = x′ if x′ 6= x

(e1 e2){e′/x} = e1{e′/x}e2{e′/x}
(e1 op e2){e′/x} = e1{e′/x} op e2{e′/x}

(if e0 then e1 else e2){e′/x} = if e0{e′/x} then e1{e′/x} else e2{e′/x}
(with(e1) in e2){e′/x} = with(e1{e′/x}) in e2{e′/x}

(without(e1) in e2){e′/x} = without(e1{e′/x}) in e2{e′/x}
(φ[e]){e′/x} = φ[e{e′/x}]

α(r){e′/x} = α(r)

(sendτ(e)){e′/x} = sendτ(e{e′/x})
(receiveτ){e′/x} = receiveτ

(L1.e1, . . . , Ln.en){e′/x} = L1.e1{e′/x}, . . . , Ln.en{e′/x}

The following Lemma guarantees us that the arrangement of the bindings within the
type environment does not influence the typing (used in the proof of Lemma 3.3.7).

Lemma 3.3.5 (Permutation). If 〈Γ; C〉 ` e : τ . H and Γ′ is a permutation of Γ then 〈Γ′; C〉 `
e : τ . H.

Proof. Similar to the one of Lemma 2.3.1.

The Weakening Lemma below states that inserting new bindings in the type environ-
ment for new variables does not affect the typing (useful in the proof of Lemma 3.3.7).
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Lemma 3.3.6 (Weakening). If 〈Γ; C〉 ` e : τ . H and y /∈ dom(Γ) then 〈Γ, y : τ′; C〉 ` e :
τ . H.

Proof. Similar to the one of Lemma 2.3.2.

By the Inclusion Lemma below we can always enlarge the type environment and the
context where an expression type-checks (used to prove Lemma 3.3.8).

Lemma 3.3.7 (Inclusion).

1. If 〈Γ; C〉 ` e : τ . H, then ∀Γ′ s.t. Γ ⊂ Γ′ it holds 〈Γ′; C〉 ` e : τ . H

2. If 〈Γ; C〉 ` e : τ . H, then ∀C′ s.t. |C| ⊂ |C′| it holds 〈Γ; C′〉 ` e : τ . H

Proof. Similar to the one of Lemma 2.3.3.

The following Lemma is required to prove Lemma 3.3.9.

Lemma 3.3.8 (Decomposition). 〈Γ; C〉 ` fun f x ⇒ e : τ
P|H−−→ τ′ . H′ and ∃υ ∈ P. |C| ⊇ υ

implies 〈Γ, x : τ, f : τ
P|H−−→ τ′; C〉 ` e : τ′ . H.

Proof. Sketch: By the rule Tfun we know that for all υ ∈ P there exists a guessed context

C′ such that |C′| ⊆ υ and 〈Γ, x : τ, f : τ
P|H−−→ τ′; C′〉 ` e : τ′ . H. Since |C′| ⊆ |C|, thesis

follows by Lemma 3.3.7 (2).

The Substitution Lemma states that types are preserved under substitution (we use
it in the proof of Lemma 3.3.1).

Lemma 3.3.9 (Substitution Lemma). Let 〈Γ, x : τ′; C〉 ` e : τ . H and 〈Γ; C〉 ` v : τ′ . ε

then 〈Γ; C〉 ` e{v/x} : τ . H

Proof. By induction of the depth of the derivation and then, by cases on the last rule
applied.

• cases Tconst, Tly, Talpha and Trec

Since by Definition 3.3.3 holds for these cases that e{v/x} = e the property vacu-
ously holds.

• case Tphi

By the precondition of the rule Tphi 〈Γ, x : t′; C〉 ` e1 : τ . H′ holds where H =

[φH′]φ. By Definition 3.3.3 we know that φ[e1]{v/x} = φ[e1{v/x}], hence by the
applying inductive hypothesis 〈Γ; C〉 ` e1{v/x} : τ . H′. So by the rule Tphi and
by Definition 3.3.3 we can conclude that 〈Γ; C〉 ` φ[e1]{v/x} : τ . H holds.

• case Twith

By the precondition of the rule Twith we know that 〈Γ, x : τ′; C〉 ` e1 : ly{L1,...,Ln} .

H′ and ∀Li ∈ {L1, . . . , Ln}.〈Γ, x : τ′; Li :: C〉 ` e2 : τ . Hi hold where H = H′ ·
∑Li

LLi ·Hi·MLi . By Definition 3.3.3 (with(e1) in e2){v/x} = with(e1{v/x}) in e2{v/x}.
By the inductive hypothesis 〈Γ, x : τ′; C〉 ` e1{v/x} : ly{L1,...,Ln} . H′ and ∀Li ∈
{L1, . . . , Ln}.〈Γ, x : τ′; Li :: C〉 ` e2{v/x} : τ . Hi hold. So by the rule Twith and by
Definition 3.3.3 we can conclude that 〈Γ; C〉 ` (with(e1) in e2){v/x} : τ . H.
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• case Twithout

Similar to the case for the rule Twith.

• case Tlexp

By the rule Tlexp we know that ∀i ∈ {L1, . . . , Ln} 〈Γ, x : τ′; C〉 ` ei : τ . Hi, L1 ∈
|C| ∨ · · · ∨ Ln ∈ |C| and H = ∑Li∈{L1,...,Ln} Disp(Li) ·Hi. By Definition 3.3.3 we know
that (L1.e1, . . . , Ln.en){v/x}. By the inductive hypothesis we can state that ∀i ∈
{L1, . . . , Ln} 〈Γ; C〉 ` ei{v/x} : τ . Hi. Since L1 ∈ |C| ∨ · · · ∨ Ln ∈ |C| by the rule Tl-
exp and by Definition 3.3.3 we can conclude that 〈Γ; C〉 ` (L1.e1, . . . , Ln.en){v/x} :
τ . H hold.

• case Tsend. By the rule Tsend we have that 〈Γ, x : τ′; C〉 ` sendτ(e1) : τ . H′ holds
with H = H′ · sendτ. By Definition 3.3.3 sendτ(e1){v/x} = sendτ(e1{v/x}) and
by inductive hypothesis that 〈Γ; C〉 ` e1{v/x} : τ . H′. So by Definition 3.3.3 and
by the rule Tsend we can conclude that 〈Γ; C〉 ` sendτ(e1){v/x} : τ . H.

• The other cases are standard and their proofs are similar to the one of Lemma 2.3.5.
We do not show them.

The following property states that the order over history expressions is preserved by the
concatenation:

Property 3.3.10. Given the histories expressions H1, H2, H′1 and H′2 such that H1 v H′1 and
H2 v H′2 then H1 · H2 v H′1 · H′2

Proof. By the definition of v over the history expressions we know that H′1 = H1 + H3

for some H3 and H′2 = H2 + H4 for some H4. By exploiting the equational theory of
Definition 3.3.2.

H′1 · H′2 = (H1 + H3) · (H2 + H4)

= (H1 · (H2 + H4)) + (H3 · (H2 + H4))

= H1 · H2 + H1 · H4 + H3 · H2 + H3 · H4

So we can conclude that H1 · H2 v H′1 · H′2.

By the following lemma we can type-check values in every type environment and
context (exploited in Lemma 3.3.1).

Lemma 3.3.11. If 〈Γ; C〉 ` v : τ . H, with v a value, then for all C′ we have that 〈Γ; C′〉 ` v :
τ . H.

Proof. Similar to the one of Lemma 2.3.6.

The lemma below ensures us that we can always restrict the effect of the values to
the empty one (used in Lemma 3.3.1).

Lemma 3.3.12. If 〈Γ; C〉 ` v : τ . H then 〈Γ; C〉 ` v : τ . ε
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Proof. In the typing derivation for the judgement 〈Γ; C〉 ` v : τ . H there is a subderiva-
tion with conclusion 〈Γ; C〉 ` v : τ′ . ε for some τ′. This conclusion is obtained by ap-
plying one of typing rules for values. Since v is a value we can obtain 〈Γ; C〉 ` v : τ . H
from this conclusion by applying only the rule Tsub to enlarge the type and the effect.
So we can make a new derivation that simulates the first one but where we enlarge only
the type but not the effect. In this way we construct a derivation for the judgement
〈Γ; C〉 ` v : τ . ε.

Lemma 3.3.1 (Preservation). Let e be a closed expression, if 〈Γ; C〉 ` e : τ . H and C ` η, e→
η′, e′, then 〈Γ; C〉 ` e′ : τ . H′ with ηH w η′H′.

Proof. By induction on the depth of the typing derivation, and then by cases on the last
rule applied. Below for each case we report the premises of the corresponding rule.

• case Tconst or Tly or or Tvar Tfun

In this case we know that es is a value (or a variable in the case of rule Tvar), then
it cannot be the case C ` η, es → η′, e′s for any eta′ and e′s, so the thesis vacuously
holds.

• case Tsub 〈Γ; C〉 ` e : τ′ . H′ H′ v H
If C ` η, e→ η′, e′, then by inductive hypothesis and by the premises of the typing
rule we have that 〈Γ; C〉 ` e′ : τ′ . H′′ with ηH′ w η′H′′. Thesis follows because
H w H′ implies ηH w ηH′. Then 〈Γ; C〉 ` e′ : τ . η′H′′ and ηH w η′H′′.

• case TApp 〈Γ; C〉 ` e1 : τ1
P|H−−→ τ2 . H1 〈Γ; C〉 ` e2 : τ1 . H2 ∃υ ∈ P.υ ⊆ |C|

There are three semantic rules from which C ` η, es → η′, e′s can be derived:

– case app1

The premise of the semantic rule tell us that e2 reduces to e′2 (C ` η, e1 → η′, e′1)

and so e′s = e1 e′2. By the induction hypothesis 〈Γ; C〉 ` e′2 : τ1
P|H−−→ τ2 . H′2

with ηH2 w η′H′2. The thesis follows because 〈Γ; C〉 ` e′s : τ2 . H′2 · H1 · H and
by 3.3.10 ηH2 · H1 · H w η′H′2 · H1 · H.

– case app2

The premise of the semantic rule ensures us that e1 reduces (C ` η, e1 → η′, e′1)
and e′s = e′1 v. We prove that 〈Γ; C〉 ` e′s : τ2 . H′ with ηH2 · H1 · H w η′H′.

By the inductive hypothesis 〈Γ; C〉 ` e′1 : τ1
P|H−−→ τ2 . H′1 with ηH1 w η′H′1.

This implies the thesis because then 〈Γ; C〉 ` e′s : τ2 . H2 · H′1 · H and by 3.3.10
ηH2 · H1 · H w η′H2 · H′1 · H.

– case app3

From the semantic rule we have e′s = e{v/x, e1/ f }. We have to prove that
〈Γ; C〉 ` e′s : τ2 . H′ with ηH2 · H1 · H w ηH′. By the typing rule and
Lemma 3.3.8 we have that H1 = H2 = ε (since e1 and v are values) and

〈Γ, x : τ1, f : τ1
P|H−−→ τ2; C〉 ` e : τ2 . H. The thesis follows because we have

that 〈Γ; C〉 ` e′s : τ2 . H by Lemma 3.3.9 and ηH2 · H1 · H w ηε · H w ηH
because of H2 · H1 = ε · ε = ε w ε.
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• case Tif 〈Γ; C〉 ` e0 : bool . H 〈Γ; C〉 ` e1 : τ . H1 〈Γ; C〉 ` e2 : τ . H2

There are semantic rules which drive the reduction of es:

– case if1

From the premise of the semantic rule it holds C ` η, e0 → η′, e′0, hence e′s =
if e′0 then e1 else e2. By induction hypothesis it holds 〈Γ; C〉 ` e′0 : bool . H′

with ηH w η′H′. The thesis holds because we have 〈Γ; C〉 ` e′s : τ . H′ · (H1 +

H2) by exploiting the typing rule and ηH · (H1 + H2) w η′H′ · (H1 + H2) by
3.3.10.

– case if2

The transitions lead to e1 without modifying history η. The thesis follows
from the hypothesis of the typing rule and because H · (H1 + H2) = H1 +

H2 w H1 since H = ε w ε.

– case if3

Similar to the previous case.

• case Tlet

The transition can be carried out by two semantic rules:

– case let1

From the premise of the semantic rule e1 reduces to e′1 (C ` η, e1 → η′, e′1).
By induction hypothesis it holds 〈Γ; C〉 ` e′1 : τ1 . H′1 with ηH1 w η′H′1. The
thesis follows because 〈Γ; C〉 ` e′s : τ2 . H′1 · H2 holds by the typing rule and
because ηH1 · H2 w η′H′1 · H2 by 3.3.10.

– case let2

By Lemma 3.3.12 we have 〈Γ; C〉 ` v : τ1 . ε and by Lemma 3.3.9 〈Γ; C〉 `
e{v/x} : τ2 . H2. The thesis follows because it holds H1 = ε w ε and η · ε ·
H2 = ηH2 w ηH2.

• case Top

Quite standard. The proof consists mainly of using the induction hypothesis and
3.3.10 for the cases op1 and op2. As regards the case op3, it can be proved by
applying the rule Tconst.

• case TWith 〈Γ; C〉 ` e1 : lyφ . H′ ∀Li ∈ φ.〈Γ; Li :: C〉 ` e2 : τ . Hi
The transition is driven by two semantic rules:

– case with1

From the premise of the semantic rule we know that e1 reduces to e′1 (C `
η, e1 → η′, e′1), hence e′s = with(e′1) in e2. By induction hypothesis it holds
〈Γ; C〉 ` e1 : lyφ . H′′ with ηH′ w η′H′′. Thesis follows because 〈Γ; C〉 ` e′s :
τ . H′′ ·∑Li

LLi ·Hi·MLi with ηH′ ·∑Li
LLi ·Hi·MLi w η′H′′ ·∑Li

LLi ·Hi·MLi by 3.3.10.

– case with2

By Lemma 3.3.13 it is only the case that L = Li for some Li ∈ {L1, . . . , Ln}.
The thesis follows because it holds 〈Γ; C〉 ` with(Li) in e2 : τ . ·H·MLi by
Tbwith it holds H = ε and ηH ·∑Li

LLi ·Hi·MLi = η ∑Li
LLi ·Hi·MLi w ηLLi ·Hi·MLi .
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• case Twithout

Similar to the case of Twith rule.

• case Tlexp ∀i.〈Γ; C〉 ` ei : τ . Hi L1 ∈ |C| ∨ · · · ∨ Ln ∈ |C|
From the semantic rule lexp we have the transition C ` η, es → η Disp(Li), ei. From
the premise of the typing rule we know 〈Γ; C〉 ` ei : τ : Hi. The thesis follows
because η ∑Li∈{L1,...,Ln} Disp(Li) · Hi w ηDisp(Li)Hi by 3.3.10.

• case Talpha

By using the rule action we deduce the transition C ` η, α(r) → ηα(r), (). Since
〈Γ; C〉 ` () : unit . ε by rule Tconst, we can conclude that ηα(r) w ηα(r) · ε.

• case Tphi 〈Γ; C〉 ` e : τ . H
From the semantic rule framing1 we deduce the transition C ` η, φ[e] → η[φ, φ[e].
By using the premises of the typing rule Tphi and by applying the rule Tbphi we
get that 〈Γ; C〉 ` φ[e] : τ . H·]φ. The thesis follows from 3.3.10 η[φ·H·]φ w η[φ·H·]φ.

• case Trec

Similar to the case of the rule Talpha where receiveτ substitutes α(r).

• case Tsend 〈Γ; C〉 ` e : τ . H
The reduction of es is driven by two rules:

– case send1

From the premise of the semantic rule we have the transition C ` η, e→ η′, e′.
By induction hypothesis we have 〈Γ; C〉 ` e′ : τ . H′ with ηH w η′H′. Then
the thesis follows because 〈Γ; C〉 ` e′s : unit . H′ · sendτ by the rule Tsend and
ηH · sendτ w η′H′ · sendτ by 3.3.10.

– case send2

We have the es reduces to the value unit (C ` η, sendτ(v) → ηsendτ, ()). The
thesis follows because 〈Γ; C〉 ` () . ε by exploiting the rule Tconst and since
H = ε we have ηH · sendτ = ηε · sendτ = ηsendτ w ηsendτ.

• case Tbwith 〈Γ; L :: C〉 ` e2 : τ . H
There are two semantic rules driving the reduction of es:

– case with3

From the premise of the semantic rule we know e2 reduces to e′2 (L :: C `
η, e2 → η′, e′2). By inductive hypothesis we have that 〈Γ; L :: C〉 ` e′2 : τ . H′

with ηH w η′H′. The thesis follows because 〈Γ; C〉 ` with(L) in e′2 : τ . H′

and ηHM w η′H′M by 3.3.10.

– case with4

Immediate by Lemma 3.3.11.

• case Tbwith

Similar to the previous case.
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• case Tbphi 〈Γ; C〉 ` e : τ . H
We can carry out the transition through two semantic rules:

– case framing2

Since by the premises of the rule framing1 we have that C ` η, e → η′, e′, we
can use the inductive hypothesis so that we have 〈Γ; C〉 ` e′ : τ . H′ such that
ηH w η′H′. By 3.3.10 we have that ηH]φ w η′H′]φ.

– case framing3

In this case we have e = v. By the premise of the typing rule and by
Lemma 3.3.12 we have 〈Γ; C〉 ` v : τ . ε. We have to prove that ηH]φ w
η]φ · ε = ηε·]φ. Since H = ε, ηH]φ = ηε·]φ w ηε·]φ holds.

The lemma below allows us to deduce the syntactic form of a value from its type
(exploited in Lemma 3.3.2).

Lemma 3.3.13 (Canonical form). Let v be a value

1. If 〈Γ; C〉 ` v : τc . H then v = c for some c.

2. If 〈Γ; C〉 ` v : τ1
P|H−−→ τ2 . H′, then v = fun f x ⇒ e for some f , x, e.

3. If 〈Γ; C〉 ` v : ly{L1,...,Ln} . H, then v ∈ {L1, . . . , Ln}.

Proof. The proof is similar to the one of Lemma 2.3.7.

Proposition 3.3.3 (Over-approximation). If 〈Γ; C〉 ` e : τ . H and C ` ε, e →∗ η, e′, then
η ∈ JHK.

Proof. By induction on the length i of the computation, by repeatedly applying Lemma 3.3.1
we can prove that 〈Γ; C〉 ` e′ : τ . H′ with H w ηH′. Since by definition η ∈ JηH′K and
since H′ v H1 ⇒ JH′K v JH1K, we have that η ∈ JHK.

Lemma 3.3.2 (Progress). Let e be a closed expression such that 〈Γ; C〉 ` e : τ . H. If C `
η, e 9 and ηH is valid and it is compliant with the communication protocol, then e is a value.

Proof. By induction on the depth of the typing derivation, and then by cases on the last
rule applied. Most of cases are equal to the ones of Lemma 2.2.2. Here, we consider
only the cases for new constructs (the case for the rule Twithout is similar to the one of
rule Twith).

• case Talpha es = α(r)
The semantic rule action is an axiom and we always can apply when es = α(r) to
reduce es (contradiction).

• case Tphi es = φ[e]
If φ[e] is stuck, then it is only the case that it does not hold η−[] � φ. Since
η[φ·H·]φ is valid, then η[φ∈ Jη[φ·H·]φK (remember that the semantics of a history is
prefix closed), hence η[φ is valid and η−[] � φ. So we can apply the semantic rule
framing1 (contradiction).
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• case Trec es = receiveτ

The semantic rule receive is an axiom and we always can apply when es = receiveτ

to reduce es (contradiction).

• case Tsend es = sendτ(e)
If es is stuck, then it is only the case that e is stuck. By induction hypothesis e is a
value v. Then, es reduces to v by the rule send2 (contradiction).

• case Tbwith es = with(L) in e2

If es is stuck, then e2 is stuck. By induction hypothesis e2 is a value v, so we can
apply the rule with4 (contradiction).

• case Tbwithout es = without(L) in e2

Similar to the previous case.

• case Tbphi es = φ[e]
If es is stuck, then either e is stuck or it does not hold η−[] � φ.

1. case e
By induction hypothesis e is a value v, so we have the case (2).

2. case η−[] 6� φ.
By Lemma 3.3.1 〈Γ; C〉 ` e′ : τ . H′ with ηH w η′H′. Since ηH·]φ w η′H′·]φ
and ηH·]φ is valid and balanced then η′H′·]φ is valid and balanced. In partic-
ular, there is a history ηη′ ∈ Jη′H′]φK with such an unmatched [φ. Since η′η′′

is valid then (η′η′′)−[] � φ, hence η′−[] � φ by 3.2.1 (contradiction).

Theorem 3.3.4. If 〈∅; C〉 ` e : τ . H and H is valid with balanced policy framings and it is
compliance with the communication protocol, then either the computation terminates by yielding
a value (C ` ε, e→∗ η′, v) or it diverges, but it never gets stuck.

Proof. Assume that C ` ε, e →i η′, e′s 6→ for some i ∈ N where e′ a non-value stuck
expression. By induction on the length i of the computation, by repeatedly applying
Preservation Lemma, we have that 〈Γ; C〉 ` e′ : τ . H′ and η′H′ v H. Since H is valid
and balanced also η′H′ is valid and balanced. Then the Progress Lemma suffices to
show that e′s is a value (contradiction).

3.4 Model Checking

In this section we introduce a model-checking machinery for verifying whether a history
expression is compliant with a policy φ and a protocol P. The idea is that the environ-
ment specifies P, and it accepts a component to join only if the component follows P
during the communication.
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3.4.1 Safety checking

To formalize our notion of safety, we adopt the approach introduced in [HMS06], where
a security policy φ is actually a safety property, expressing that nothing bad will occur
during a computation. Policies are expressed through standard Finite State Automata
(FSA) and we assume a default-accept paradigm, i.e. only the unwanted behaviour is
explicitly mentioned. Consequently, the language of φ is the set of unwanted traces,
hence an accepting state is considered as offending. Below we denote with L(φ) the
language of φ.

Example 3.4.1. Returning to our running example in Section 3.1, consider the policy φ in
the function serve that forbids to write action on the library. The automaton specifying
this policy is displayed in Figure 3.11a. If the action write(library) is carried out, the
automaton performs the transition toward the offending state q1 to indicate a policy
violation. The self loop indicates that for each event different from write(library) the
automaton consumes the symbol and remains in the same state. Note that the alphabet
of the automaton is the set of the events Σ ⊆ ev occurring in the program. Obviously,
this set is computable from the code and it is finite.

As a further example of FSA implementing a policy, consider Figure 3.11b where we
depict a simple policy φ2. It prevents the occurrence of an action write after an action
read on a file system, say the resource fs, at the beginning of the computation. The
language accepted by this automaton consists of all strings containing first a read(fs)

and then write(fs) (unnecessarily consecutive). Also in this case Σ denotes the events
may occur in the program and reaching the accepting state indicates that the program
performed the forbidden actions on the resource fs violating φ2.

We now complete the definition of validity of a history (η � φ) introduced in Sec-
tion 3.2.3:

Definition 3.4.1 (Safety). Let η be a history without framing events, then η � φ iff
η /∈ L(φ).

The semantics of a history expression may contain histories with redundant framings,
i.e. nesting of the same policy. For instance, µh. (φ[α(r)h] + ε) generates [φα(r)[φα(r)]φ]φ.
Intuitively, a history η has redundant framing whenever the active policies ap(η′) contain
a duplicate φ for some prefix η′ of η.

In [BDFZ09] they proved that redundant framing can be eliminated without affecting
validity. This is because the expressions monitored by the inner-framings are already
under the scope of the outermost one. For this reason the definition of validity uses η−[],
i.e. the history purged from framings. To do that, in [BDFZ09] there is a regularisation
algorithm that given a history expression H returns its regularized version H↓, satisfying
the followings

1. each history in JH↓K has no redundant framing;

2. H↓ is valid if and only if H is valid.
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q0 q1

write(library)

Σ \ write(library) Σ

(a) The automaton of the security policy φ of our motivating example.

q0 q1 q2

read(fs) write(fs)

Σ \ read(fs) Σ \ write(fs) Σ

(b) The automaton implementing the security policy φ2 which forbids an action write after read.

Figure 3.11: Example of automata defining security policies.

Hence, we can reduce the problem of checking validity of a history expression H to the
corresponding one for a history expression H↓ without redundant framings.

Our approach fits into the standard automata based model checking [VW86]. Indeed,
there is an efficient and fully automated method for checking the � relation for a regu-
larized history expression H. Let {φi} be the set of all policies φi occurring in H. From
each φi it is possible to obtain a framed automaton φ

[]
i such that η is valid iff η /∈ L(

⋃
φ
[]
i ).

The detailed construction of framed automata is in [BDFZ09]. Roughly the framed au-
tomaton for the policy φ has two copies of φ. The first copy has no offending states, the
second has the same offending states of φ. Intuitively, one uses the first copy when the
actions are made while the policy is not active. The second copy is reached when the
policy is activated by a framing event. Indeed, there are edges labelled with [φ from the
first copy to the second one and with ]φ in the opposite direction. So when a framing
gets activated we can also reach an offending state.

Example 3.4.2. Figure 3.12a displays the framed automaton for the policy φ of Exam-
ple 3.4.1. This automaton has two new states q′0 and q′1 (accepting) that mimic their
counterparts. These new states are reached when the policy φ is activated as the transi-
tion labelled by the event [φ signals. Note that when the policy is not active a possible
action write(library) causes a transition in the automaton from the state q0 to q1, without
causing any violations (q1 does not accept). When we activate φ, the transition from q1

to q′1 is performed and there is a security violation because q′1 is accepting. As a further
example, in Figure 3.12b we show the framed automaton for the security policy φ2 of
Example 3.4.1. Also in this case we create new states mimicking the existent ones and
setting transitions to manage the activation and the deactivation of the policy.
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In [BDF09] Bartoletti et al. proved that the semantics of a history expression H is a
context-free language because there exists a pushdown automaton recognising JHK.
Then, validating a regularized history expression H amounts to verifying that JHK ∩⋃

L(φ[]
i ) is empty. We can state the following:

Theorem 3.4.1 (Model checking policies). A given history expression H is valid if and only
if L(H↓) ∩⋃ L(φ[]

i ) = ∅.

Since regular languages are closed by union, context-free languages are closed by inter-
section with a regular language and the emptiness of context-free languages is decidable
the above problem is decidable and we can use standard algorithms to solve it [Hop79].

Example 3.4.3. As an example of checking policies, consider the history expression Hs

of the function serve, its semantics JHsK in Example 3.3.1 and assume that the sub-
term H never generates string with the event write(library). Consider also the au-
tomaton specifying the policy φ and its language L(φ) whose strings have the form
(ev \ write(library))?write(library)ev?. Since the strings in L(φ) always contains at
least one write(library) event, whereas the strings in JHsK do not, there are no strings
in JHsK which are also in L(φ) (their intersection is empty), then our function serve is
compliant to φ.

3.4.2 Protocol compliance

In this subsection we described how checking whether a program well-behaves when
interacting with other parties through the bus. We assume that a protocol P is a (regular)
sequence S of sendτ and receiveτ actions possibly repeated. Formally, our protocols are
specified by the following grammar:

P ::= S | S∗ S ::= ε | sendτ.S | receiveτ.S

The symbol S∗ indicates that the action can be repeated. We require a program to
interact with the bus respecting the protocol, but we do not force the program to do the
whole interaction specified, this means that a program may perform only a prefix of the
specified sequence. For this motivation the language L(P) of P is a prefix closed set of
actions, obtained by considering all the prefixes of the sequences defined by P. Then
our protocol compliance procedure only requires that all the histories generated by a
program (projected so that only sendτ and receiveτ appear) belong to L(P).

Let Hsr be a projected history expression where all non sendτ, receiveτ events have
been removed. Then we define compliance to be:

Definition 3.4.2 (Protocol compliance). Let e be an expression such that 〈Γ, C〉 ` e : τ . H,
then e is compliant with P if JHsrK ⊆ L(P).

The following theorem provides us with a decidable model checking procedure to
establish protocol compliance. In its statement we write L(P) for the complement of
L(P). Note that the types annotating sendτ/receiveτ can be kept finite in both L(P) and
L(P), because we only take the types occurring in the effect H under checking.
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q0 q1

q′0 q′1

write(library)

write(library)

]φ[φ ]φ[φ

Σ \ write(library), [φ Σ \ [φ

Σ \ write(library), ]φ Σ

(a) The framed automaton of the policy φ in our motivating example.

q0 q1 q2

q′0 q′1 q′2

read(fs)

read(fs)

]φ2[φ2 ]φ2[φ2 [φ2 ]φ2

write(fs)

write(fs)

Σ \ read(fs), [φ2

Σ \ read(fs), ]φ2

Σ \ write(fs), [φ2

Σ \ read(fs), ]φ2

Σ \ [φ2

Σ

(b) The framed automaton for the security policy φ2.

Figure 3.12: Examples of framed automata
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Theorem 3.4.2 (Model checking protocols). Let e be an expression such that 〈Γ, C〉 ` e :
τ . H, then e is compliant with P iff

L(Hsr) ∩ L(P) = ∅

Also in this case, we reduce our model checking procedure to verify the emptiness
property of context-free languages. We remark that, in our model, protocol compliance
cannot be expressed only through security policies introduced above. As a matter of
fact, L(Hsr) ∩ L(P) = ∅ expresses that H has no forbidden communication patterns,
and this is a requirement much similar to a default-accept policy. Recall that JHsrK ⊆
L(P) requires that some communication pattern in compliance with P must be done.
This highlights the different nature of security policies and protocols in our framework
and explains why we keep them distinct and we need two different model-checking
procedures.

Example 3.4.4. Back to our running example, consider the protocol

P = (sendτ.sendτ′ .receiveτ′′)
∗

and the reduced history expression of the body of the function ftsearch

Hsr = sendτ · sendτ′ · receiveτ′′ .

It is easy to verify that the app running on the smartphone is compliant with the protocol
because JHsrK∩ L(P) = ∅.

3.5 Remarks

The material of this chapter is an extension of the one in Chapter 2, thus all remarks
we made at the end of Section 2.2.2 about the relationships with [HIM11, CS09, CCT09]
are still valid. Here, we introduced constructs for resource manipulation, enforcement
of security policies and communication and we defined a static mechanism that, to the
best of our knowledge, was not tackled in the area COP languages.



Chapter 4

A Declarative approach to
Context-Oriented Programming

As discussed in Section 1.1.6, there are some open issues in context-oriented languages.
In particular, the primitives for describing and querying the context are at a too low level,
which make programming complex adaptive applications difficult. As matter of fact
the behavioural variations implemented as partial definition of classes, procedures and
modules are not able to express dynamic adaptation patterns. ContextML introduced in
Chapter 3 suffers from these limitations as well. Indeed, layers are binary predicates so
we cannot use them to represent structured pieces of information, capable of affecting
the dispatching mechanism. Furthermore, layered expressions are not flexible enough
to express involved adaptation patterns.

For these reasons, we introduced a new ML-based language, MLCoDa, equipped with
linguistic primitives for context-awareness, coupled with a logical language for context
definition and management. In particular, in our proposal we suggest to use structured
knowledge bases as contexts and behavioural variations are first class constructs. As
a by-product, the context can be dynamically constrained to requirements that may
change over time, thus making a fine control of adaptation possible. For the time being,
MLCoDa is sequential, and we offer no construct for event-based adaptation.

As ContextML, MLCoDa is designed to support mechanized verification based on
static analysis techniques. Differently from ContextML, the verification of MLCoDa pro-
grams occurs into two stages: a type and effect system (at compile time) to compute an
abstraction (history expression) and a control-flow analysis (at loading time) to verify
that the various contexts hosting the program a runtime have the required capabilities.

First we describe the design of MLCoDa (Section 4.1) and a running example (Sec-
tion 4.2). Then, we introduce the syntax and the semantics of the language (Section 4.3)
and our static analysis (Section 4.4 and Section 4.6).

4.1 The Design of MLCoDa

Our first concern in the design of our COP language is the context. We follow the line
proposed by Jackson and Zave [ZJ97] who defined the context as the part of the real
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Figure 4.1: The programming model of MLCoDa

world which interacts with (and is affected by) a program and which potentially evolves
independently. They pointed out the importance of the context in the development
process because it includes crucial information, such as the requirements and the do-
main knowledge (assumptions and properties). In this setting, defining and modelling
the context requires skills different from those needed for programming applications
and usually this task is performed by specialized engineers, namely requirements engi-
neers. These observations, as well as separation of concerns, have motivated us to define
MLCoDa as a two-component language: a declarative constituent for describing the con-
text and a functional one for computing.

The declarative approach allows programmers to express what information the con-
text has to include, leaving to the virtual machine how this information is actually col-
lected and managed. For us, a context is a knowledge base and we implement it as
a Datalog program [OT11, Lok04]. This representation lets adaptive programs query
the context by simply verifying whether a given property holds in it, i.e. by checking a
Datalog goal. During the needed deductions the relevant information is also retrieved.

As for programming adaptation, we propose two mechanisms. The first one takes
care of those program variables that assume different values depending on the different
properties of the current context. To make that explicit, we introduce the notion of
context-dependent binding, a sort of dynamic binding.

The second mechanism is a more powerful kind of behavioural variation. As said,
behavioural variations are not first class constructs in COP languages, or rather, they
are expressed as partial definition of procedures or classes or methods or modules. In
ContextML we express them as layered expressions (see Chapter 2). MLCoDa extends
layered expressions by introducing Datalog goals and by making them first class citi-
zens, so that they can be bound to identifiers, passed as arguments to, and returned
by functions. This extension provides us with more natural means for programming
dynamic adaptation patterns, as well as reusable and modular code, than the previous
proposals where only layers are values. For example, in MLCoDa a behavioural variation
can be supplied by the context, and then composed with existing ones, so making easier
implementing the notion of autonomic element. For example, see the definition of the
function addDefault later on in this section.

We now discuss the programming model of MLCoDa, displayed in Figure 4.1. It
assumes that the virtual machine of the language provides its users with a collection
of system variables, values, functions and predicates through a predefined API. Con-
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Figure 4.2: Execution model of MLCoDa

sequently, the context is split in two parts: the system and the application context. The
first one is provided by the virtual machine through its API (system predicates) and
contains information about the device running the application. Obviously, the actual
values of system predicates are only available at runtime. Whereas the application con-
text stores specific knowledge of the application, and its contents are initially filled in
by the programmer.

The execution model of MLCoDa is shown in Figure 4.2. We assume that the compiler
produces a triple (C, e, H), where C is the application context, e is the object code and
H is an approximation of e, used to verify properties about the program (we adopt the
approach described in Section 1.2.5). Given such a triple, at loading-time the virtual
machine performs a linking and a verification phase. The linking phase resolves system
variables and links the application context to the system one, so obtaining the initial
context which, of course, is checked for consistency. Note that linking itself makes a
first adaptive step, because it enables the application to use the capabilities of the host
system, be they resources, data or code. In the spirit of Proof-Carrying code [NL98]
and of the Java Bytecode Verifier [LYBB13, Ros04], the verification phase exploits the
approximation H to check that the program e will adapt to all contexts that may arise at
runtime. If both phases succeed, program evaluation begins, otherwise it is aborted.

4.2 A Guided Tour of MLCoDa Features

In this section we illustrate and discuss the main features of MLCoDa through a run-
ning example. Consider a smartphone application implementing a multimedia guide to
museums. First a user registers at a desk and gets credentials; he then uses them and
connects to the museum Intranet to download the guide application for his smartphone.
The Intranet provides communication facilities and hosts a website, with a page for each
exhibit with relevant information, e.g. videos documenting a recent restoration.

First, we briefly overview the functionalities of the application and then we discuss
some snippets of code.
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4.2.1 A Multimedia Guide to Museums

We assume the museum has a wireless infrastructure exploiting different technologies,
like WiFi, Bluetooth, Irda or RFID. Each exhibit is equipped with a wireless adapter
and a QR code, which are only used to supply the guide with the URL of the exhibit.
The way this URL is retrieved depends on the visitor’s smartphone capabilities. For
example, the URL is directly downloaded by Bluetooth, if such a device is available;
otherwise if the smartphone has a camera and a QR decoder, the guide can decode it
and retrieve the URL.

There are tickets with different prices, depending on the profile provided by the
visitor during registration; for instance, if he is a European citizen and is over 65, the
reduced fare applies. After buying the ticket, the visitor can set some preferences, in-
cluding accessibility options. For example, a user can choose to only have textual in-
formation or to have all texts read by a speech synthesiser. The guide then supplies
the user with the tour, taking into account his preferences and information about the
physical environment acquired by the sensors of his smartphone.

4.2.2 The Context

The most important design choice in the development of a context-aware application is
deciding the contextual information, i.e. what the context is. In our example, the context
will certainly contain information about the smartphone capabilities, both hardware and
software; data about the physical environment, e.g. in which museum room the user
is; and the user profile and preferences. These data come from different sources and
have different representations. Some of these data are application independent, like
those about smartphone capabilities and about the physical environment; other data are
application-dependent like user preferences.

We argued that the context is conveniently structured in two parts: the system and
the application context, and this is how MLCoDa handles this notion. The system context
pertains to the environment running the application, for example to the virtual machine
of the language. As said, we assume this part of the context is accessible through
a predefined API, and its actual data is only available at runtime. The application
context stores specific knowledge of the application, and its contents are filled in by the
programmer. Of course, this context can use information from the system context, using
the API. At runtime, the actual execution context results from linking the system and
the application contexts.

Tools are clearly needed to access and manipulate all kinds of contextual data in
an easy and uniform way. As discussed in the Section 4.1, we foster a programming
methodology where context management is neatly separated from program code. For
that, one of the components of MLCoDa is Datalog, which provides programmers with
well-established tools for declaratively describing the context and reasoning on it.

As for the system context, Datalog predicates and facts represent properties and
capabilities of devices, and come with the abstract machine of the language that natively
implements them.

For example, the API of the system context can offer the (system) predicate device
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to test if a specific sensor or hardware is available. In our running example, if the
smartphone is equipped by an accelerometer, the fact

device(accelerometer)

will hold in the (system) context. So to check a particular feature of a device, a pro-
grammer simply queries the context by the standard Datalog machinery, and need not
take care of any low-level native code to interact with hardware.

Predicates can also encapsulate native code for more complex tests requiring com-
plicated computations. Assume that the API provides us with the predicate headphones

to test whether headphones are plugged in or not. If plugged in, the following fact will
hold

headphone(plugged).

Furthermore, the predicate level_noise encapsulates a routine computing the level of
noise in the room where the smartphone is, through complex operations, like interacting
with the microphone and executing a numerical algorithm. One can check if the value
returned by level_noise exceeds a given noise_threshold by the following

level_noise(x), x > noise_threshold.

In the previous snippet of code, the place-holder x receives a value, but an argument of
a predicate can also be a constant (e.g. accelerometer above) so passing a value. Note
that this mechanism for both passing and receiving values makes it easier to interact
with the context, and supports our choice of having a two-component language.

Predicates not only represent devices (and their implementations), but also provide
the programmer with a friendly interface for interacting with the software services of-
fered by the system. For example, a user with disabilities may have a smartphone with
a speech synthesizer helping him to use some applications. In MLCoDa, we can test
the availability of this service, typically implemented thought a mix of hardware and
software, with the predicate

speech_synthetizer(y).

If a synthesizer is available, the variable y will be bound to the handle through which the
service can be invoked. Note that a synthesizer is an object of the system, supplied as a
software service.

Besides system predicates that are independent of the specific application, the pro-
grammer specifies predicates and clauses that constitute the other component of the
context, namely the application context.

In our example, the multimedia guide stores and accesses data about the user’s
profile. The programmer defines then the following predicates

user_age(n)
user_country(c)
user_work(job)

that the application running on the smartphone uses to retrieve the age, the country and
the job, respectively, as declared by the visitor at the registration desk and stored in the
museum database. Similarly for preferences and accessibility options. If the user prefers
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to display all information as text or he declares to be blind, either of the following facts
will hold in the application context

user_prefer(text_only)
user_acc_opt(blind).

So far, our predicates are simply facts. However, the definition of aggregated data and
their retrieval may require some deduction, because the contextual information comes
from different sources. To this aim, Datalog clauses and its deduction machinery are
clearly an asset of our proposal.

For example, our multimedia guide will download the images of an exhibit, selecting
the size more appropriate for the dimension of the smartphone screen, classified, e.g. as
small, medium or large, regardless of its exact size. This kind of aggregate information is
given by the predicate sscreen, easily defined by the following clauses (max_resolution
and min_resolution have the obvious meaning and are predefined)

sscreen(small) ← max_resolution(320,180).
sscreen(medium) ← max_resolution(1024,480).
sscreen(large) ← min_resolution(1024,480).

Furthermore, the orientation of the device (portrait/landscape) drives the optimal
layout to visualize information. Also, this information results from aggregating low-
level data:

screen_orientation(portrait) ← device(accelerometer),
accelerometer(x,y,z),
portrait_pos(x,y,z).

screen_orientation(landscape) ← device(accelerometer),
accelerometer(x,y,z),
landscape_pos(x,y,z).

The screen orientation is deduced by interacting with the accelerometer and by retriev-
ing and testing the values of axes, through system predicates. Note that the programmer
only uses screen_orientation and is shielded by its actual definition (alternative defi-
nitions are of course possible, e.g. when the smartphone has no accelerometer).

Datalog clauses can also express business logic rules taking into account the con-
text. For example, a ticket has different prices, depending on the information the user
supplies during registration, as follows:

ticket(reduced) ← user_age(x), x < 10,
user_country(y),
Europe(y).

ticket(reduced) ← user_age(x), x > 65,
user_country(y),
Europe(y).

ticket(reduced) ← user_work(student).
ticket(free) ← user_work(student),

user_study(art).

The first two clauses grant a reduced ticket to under 10 or over 65 users from a Euro-
pean country; the third clause does the same to students; additionally if they study art,
entrance is free. The predicates user_age, user_country, user_work and user_study
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retrieve data from the user profile and we check if they satisfy the given constraints, e.g.
x < 10 or Europe(y).

We list further clauses, part of the application context of our running example. Pred-
icates only_text and only_speech concern which media providing the user with the
information required:

only_text() ← user_prefer(text_mode).
only_text() ← user_acc_opt(deaf).
only_text() ← level_noise(x),

x > noise_threshold,
¬ headphones(plugged).

only_speech() ← speech_synthesizer(on),
user_prefer(speech_mode).

only_speech() ← user_acc_opt(blind).

The predicate only_text holds whenever the user only wants textual information or
if she declared hearing impairments. Note that in the third clause, we use the system
predicates about noise, described above.

The appropriate video format HD is defined below, and requires the smartphone to
support high definition, to run a codec, and to have enough battery:

video(hd) ← screen_quality(hd),
supported_codec(H.264),
¬ battery_level(low).

The last group of predicates describes capabilities of the smartphone for retrieving
URLs. The first predicate holds when the smartphone can decode QR code; the second
one if direct communication is possible:

use_qrcode(x) ← user_prefer(qr_code),
qr_decoder(x),
device(camera).

use_qrcode(x) ← qr_decoder(x),
device(camera),
¬ device(irda),
¬ device(rfid_reader),
¬ device(bluetooth).

direct_comm() ← device(irda).
direct_comm() ← device(bluetooth).
direct_comm() ← device(rfid_reader).

4.2.3 The application behaviour

We now discuss the two main constructs, context-dependent binding and first class be-
havioural variations, that distinguish MLCoDa. They are used to program how applica-
tions adapt to changes in the context. We assume that programmers only interact with
the system running the application via the API, which makes code and data available to
them.
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It is worth noting that the context influences the shape and the features of the pro-
gram input (e.g. where it is taken from) and how it is processed, but the context is not
part of the input itself. Of course, the context affects also the output of the application.

In our example, the input of the multimedia guide consists of the interactions be-
tween the user and the program GUI and of the downloads from the exhibit pages.
Contextual data, such as the predicates only_text and only_speech, affect both the
downloads and the way they are presented to users: if only_text holds the application
will not download videos and audio files.

Context-dependent binding is the mechanism through which a programmer declares
variables whose values depend on the context. For that, we introduce the dlet construct
that is syntactically similar to the standard let, but has a clause when requiring that a
given goal hold in the context. The variable declared (called parameter hereafter) may
denote different objects, with different behaviour, which is a major aspect of adaptivity.
A parameter is dynamically bound, according to which goal is satisfied by the current
context, as exemplified below.

Assume that the GUI of the multimedia guide gets an additional text label to dis-
play information about exhibits, unless the user prefers no textual information. This is
implemented as follows

dlet txt_label = getLabel ()
when ← ¬only_speech() in

(* other code *)

If the parameter txt_label is referred to in a context where only_speech() does not
hold, the function getLabel will be called and the returned value will be bound to the
current occurrence of txt_label. Note that getLabel is not called when txt_label is
declared, but when it is used, in a sort of call-by-name style. To better illustrate this
mechanism, consider the following snippet of code, that adds components to the main
window of the application

fun setMainWindow window =
(* create and set menu *)
addComponent window txt_label;
addComponent window vcanvas;
(* add other components *)

If the goal ¬only_speech() holds in the context where setMainWindow is running, then
getLabel() will be evaluated and the returned value will be bound to txt_label.

We now exemplify the multiple declarations of a parameter representing the can-
vas where the guide will display videos. Different kinds of canvas can be selected,
depending on the quality (e.g. high or low) of videos to reproduce and on the smart-
phone capabilities. Below, the parameter vcanvas gets multiple declarations, and the
appropriate one will be selected when the above addComponent window vcanvas is run

dlet vcanvas = getHDCanvas ()
when ← video(hd), ¬only_text() in

dlet vcanvas = getLowQualityCanvas ()
when ← video(low), ¬only_text() in
(* other code *)
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We now discuss the main difference between our context-dependent binding and
standard dynamic binding. Consider the following snippet of code

(* definition of setMainWindow and vcanvas *)

fun createMainWindow () =
(* create window *)
setMainWindow window
(* other code *)

where the function setMainWindow is defined before the declarations of the parameter
vcanvas and then it is applied in the body of the function createMainWindow. As-
sume your smartphone can reproduce high-definition videos and that the current con-
text grants the goal video(hd),¬ only_text(), but not video(low),¬ only_text(). Now,
call createMainWindow, which in turn calls setMainWindow: the parameter vcanvas is
bound to the value returned by getHDCanvas. With dynamic binding, vcanvas would
instead be bound to the value returned by getLowQualityCanvas.

The other main feature to express context-dependency is that of behavioural variation,
which as usual alters the flow of application depending on the context. The construct
of MLCoDa extends layered expression of ContextML, indeed, roughly it is a list of pairs
(goal, expression), but with goals in place of layers. Additionally, MLCoDa behavioural
variations have parameters and they are first-class values, so we can bind them to vari-
ables, pass them to functions, manipulate them with ad hoc operators, and so on. Note
that they are also similar to functional abstractions: we need to apply them in order to
evaluate them. As in ContextML, the application triggers a dispatching mechanism that
queries the context at runtime and selects the first expression whose goal holds.
We introduce the behavioural variation url which has a not used dummy argument “_”

fun getExhibitData () =
let url = (_){
← direct_comm().

let c = getChannel () in
receiveData c,

← use_qrcode(decoder), camera(cam).
let p = take_picture cam in

decode_qr decoder p }
in

getRemoteData #url

Depending on the smartphone capabilities, this behavioural variation retrieves the URL
of an exhibit page. If communication with the exhibit adapter is direct, the application
reads the URL through the channel returned by getChannel; otherwise, the smartphone
takes a picture of the QR code and decodes it. Note that in this second case the variables
decoder and cam will be assigned with the handles of the decoder and the one of the
camera deduced by the Datalog machinery. These handles are used by the functions
take_picture and decode_qr to interact with the actual smartphone resources.

The behavioural variation (bound to) url is applied before invoking the function
getRemoteData (for readability, here we use a simplified syntax for behavioural varia-
tions application represented by #; for details see Section 4.3).
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As a further example of behavioural variation, consider the function getRemoteData

that connects to the website and downloads the page of the exhibit:

fun getRemoteData url =
(* other code *)
← ¬only_speech().
(* other code *)

let img = (_){
← orientation(landscape),
sscreen(large),
supported_media(png).
getImg(url + "/" + iname + "-large.png"),

← orientation(portrait),
sscren(small),
supported_media(svg).
getImg(url + "/" + iname + "-small.svg")
(* other code *)

}
in

(* other code *)

The actual downloaded data depend on the preference of the user and on smartphone
display capabilities.

It is worth noting that behavioural variations are values, so like other values we can
write code that manipulate them. This allows programmers to implement adaptation
patterns they think more appropriate for their applications and write more modular
and extendible code. To manipulate behavioural variations we equip MLCoDa with the
binary operator ∪ that allows extending the cases over which a behavioural variation
is defined by concatenating the lists of pairs (goal, expression) of another behavioural
variation. As an example of behavioural variation concatenation, let True be the goal
always true, and consider the function

fun addDefault bv dv =
bv ∪ (w){ True. y }

It takes as arguments a behavioural variation bv and a value dv, and it extends bv by
adding a default case which is always selected when no other case applies. Note that this
function implements a sort of program extension pattern that may requires an intricate
definition with available COP mechanisms. In particular, the above addDefault allows
MLCoDa programmer to easily implement the standard notion of basic behaviour of COP
languages.

Besides the features that describe and query the context, and those that adapt pro-
gram behaviour, MLCoDa is also equipped with constructs that update the context by
adding facts (tell) and removing them (retract) (a sort of indefinite activation mecha-
nism, see Section 1.1.3). For example, the function below inserts into the context the fact
returned by getCheckedOption applied to the argument accRadioButton. We assume
this application will yield either the fact user_acc_opt(deaf) or user_acc_opt(blind)

fun setAccessibilityOpt () =
tell ( getCheckedOption accRadioButton )
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Note that tell and retract belong to the functional component of MLCoDa, and they
can be used neither in the context description nor in the goals within dlet and within
behavioural variations. This implies that querying the context, i.e. making deductions,
has no side-effects. Furthermore, through these constructs the programmer can insert
or remove facts of the application context, only. Instead, the system context can only be
updated through the provided API, so a control is possible for preventing the program-
mer to drive the system in an unsafe state, e.g. by inhibiting access to a hardware device
if the level of battery is too low.

An application can fail to adapt to a context, both because the programmer assumed
the presence of functionalities that the current system context does not support, or be-
cause of some programming errors causing some crucial facts to be removed. This
happens when a parameter cannot be resolved in a context-dependent binding or when
a behavioural variation gets stuck, i.e. the dispatching mechanism fails. In both cases the
reason is that the goals occurring in these constructs do not hold in the current context.

Back to our example, consider the function setMainWindow. For evaluating it, the
function addComponent is called twice, with the parameters txt_label (in the first call)
and vcanvas (in the second one). Assume that the context satisfies neither goals in the
declarations of vcanvas, so it cannot be resolved and a runtime error occurs.

As an example of the dispatching mechanism failure, consider evaluating the func-
tion getExhibitData on a smartphone without wireless technology and QR decoder. Of
course, no context will ever satisfy the goals of the behavioural variation url. So when
url is applied, no case can be selected and an error is triggered.

To avoid these runtime errors from happening, we equip MLCoDa with a two-phase
static analysis that detects if an application will be able to adapt to its execution contexts.

At compile time we associate a type and an effect with an expression e. The type is
(almost) standard; and the effect over-approximates the actual runtime behaviour of e,
and abstractly represents the changes and the queries performed on the context during
its evaluation.

For example, consider the function getExhibitData. Its computed type is unit
H1−→ τd

where τd is the type of the value retuned by the invocation of getRemoteData. The
annotation H1 is

H1 = ask G1 ⊗ ask G2,

where

G1 =← direct_comm()

G2 =← use_qrcode(decoder), camera(cam)

are the goals of url (for readability, here we use a simplified syntax for type annotations;
for details see Section 4.4). Intuitively, H1 says that one of G1 or G2 must be satisfied by
the context in order to successfully apply the function getExhibitData.

As a further example, consider the function setAccessibilityOpt. Its type is unit H2−→
unit where the annotation

H2 = tell(user_acc_opt(deaf)) + tell(user_acc_opt(blind))
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means that setAccessibilityOpt modifies the context by adding one between the facts
yielded by getCheckedOption, i.e. user_acc_opt(deaf) or user_acc_opt(blind).

The effects are exploited at loading time to verify that the application can adapt to all
contexts arising at runtime (Section 4.6). To do that, our control-flow analysis first builds
a graph to trace how the initial context evolves during execution. Then, for all possible
invocations of the dispatching mechanism, the analysis controls if it will succeed, i.e.,
if the contexts in the graph satisfy at least one of the goals of the behavioural variation
involved.

4.3 The Abstract Syntax and the Semantics of MLCoDa

As discussed above, MLCoDa consists of two components: Datalog with negation to
describe the context and a core of ML extended with COP features. Its syntax and its
structural operational semantics follow.

4.3.1 Syntax

First, we intuitively introduce our Datalog dialect. Let Var (ranged over by x, y, ...), Const
(ranged over by c, n, ...) and Predicate (ranged over by P, ...) be a set of variables, of basic
constants and of predicate symbols, respectively. The syntax is

x ∈ Var c ∈ Const P ∈ Predicate

u ::= x | c u ∈ Term
A ::= P(u1, . . . , un) A ∈ Atom
L ::= A | ¬A L ∈ Literal

cla ::= A← B. cla ∈ Clause
B ::= ε | L, B B ∈ ClauseBody
F ::= A← ε F ∈ Fact
G ::= ← L1, . . . , Ln. G ∈ Goal

As usual in Datalog, a term is a variable x or a constant c; an atom A is a predicate
symbol P applied to a list of terms; a literal is a positive or a negative atom; a clause is
composed by a head, i.e. an atom, and a body, i.e. a possibly empty sequence of literals;
a fact is a clause with an empty body and a goal is a clause with empty head.

A Datalog program is a finite set of facts and clauses. In the following we assume
that each Datalog program is safe [CGT89], i.e. it satisfies the following requirements:
(i) each fact is ground; (ii) each variable occurring in the head of a clause must occur in
the body of the same clause; and (iii) each variable occurring in a negative literal must
also occur in a positive literal of the same clause. Predicates are split into two categories:
extensional and intensional. The first one represents concrete context objects, such as
resources, user preferences and data. The intensional predicates instead describe rela-
tionships and properties about context objects. For instance, the predicate user_prefer
of Section 4.2 is extentional, because it describes a user preference; whereas only_text
is intensional, because it expresses a property of the context by composing properties of
the users and of the objects therein.
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As usual extensional predicates can occur only in facts. Also we require that given
a clause A ← B, the head A only contains intensional predicates, and the body B can
contain all kinds of predicates, if non-empty. Also this requirement can be enforced by
a syntactic analysis of a program.

To deal with negation, we assume our world closed and we admit stratified pro-
grams, i.e. only Stratified Datalog [CGT89].

Since our context is split into the system and the application context, we divide
each of our syntactic categories into two disjoint classes: those of the system and those
of the application. The system ones, supplied by the API, are marked through a bar
over their name; the second ones are defined by the programmer. For example, x is a
system variable and A is an application atom. Furthermore, given a clause A ← B, we
require that A is an application atom while the body B can contain both application and
system literals. Also in this case we can easily ensure this requirement using a syntactic
analysis.

The functional part inherits most of the ML (and ContextML) constructs. Specially,
the behavioural variation of MLCoDa are an extension of the layered expressions of Con-
textML. The syntax follows:

x̃ ∈ DynVar (Var ∩ DynVar = ∅) C, Cp ∈ Context

Va ::= variations
| G.e
| G.e, Va

v ::= values
| c constants e.g. true, (), 1, 2, . . .
| fun f x ⇒ e functions
| (x){Va} behavioural variations
| F Datalog facts

e ::= expressions
v values
| x variables
| x̃ parameters
| e1 e2 functional application
| let x = e1 in e2 declaration
| if e1 then e2 else e3 conditional
| dlet x̃ = e1 when G in e2 context-dependent binding
| tell(e1) asserting facts
| retract(e1) retracting facts
| #(e1, e2) behavioural variation application
| e1 ∪ e2 behavioural variation concatenation

In addition to the usual constructs (the new ones are underlined and in blue), our
values include Datalog facts F and behavioural variations. Also, we introduce the set
x̃ ∈ DynVar of parameters, i.e., variables assuming values depending on the properties of
the running context, whereas Var are standard identifiers. Our COP constructs include
behavioural variations (x){Va}, each consisting of a variation Va, i.e. a list of expressions
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If1
ρ ` C, e1 → C′, e′1

ρ ` C, if e1 then e2 else e3 → C′, if e′1 then e2 else e3

If2

ρ ` C, if true then e2 else e3 → C′, e2

If3

ρ ` C, if f alse then e2 else e3 → C′, e3

let1
ρ ` C, e1 → C′, e′1

ρ ` C, let x = e1 in e2 → C′, let x = e′1 in e2

let2

ρ ` C, let x = v in e2 → C, e2{v/x}

App1
ρ ` C, e1 → C′, e′1

ρ ` C, e1 e2 → C′, e′1 e2

App2
ρ ` C, e2 → C′, e′2

ρ ` C, (fun f x ⇒ e) e2 → C′, (fun f x ⇒ e) e′2

App3

ρ ` C, (fun f x ⇒ e) v→ C, e{v/x, (fun f x ⇒ e)/ f }

Figure 4.3: Part of semantic rules for MLCoDa

G1.e1, . . . , Gn.en guarded by Datalog goals Gi. The variable x can freely occur in the
expressions ei. At runtime, the first goal Gi satisfied by the context determines the
expression ei to be selected (dispatching). The dlet construct implements the context-
dependent binding of a parameter x̃ to a variation Va. When x̃ is referred to, one of ei is
selected depending on the first goal Gi in the list the actual context satisfies. The tell and
retract constructs update the context by asserting and retracting facts. The application of
a behavioural variation #(e1, e2) applies e1 to its argument e2. To do that, the dispatching
mechanism is triggered to query the context and to select from e1 the expression to run,
if any. The append operator e1 ∪ e2 dynamically concatenates behavioural variations, so
providing a further adaptation mechanism.

Note that we could add constructs for communication, resource manipulation and
security as we did in Chapter 3 for ContextML, but we prefer to omit them to keep the
formal development manageable.

4.3.2 Semantics of MLCoDa

We endow MLCoDa with a small-step operational semantics. Recall (Section 4.1) that the
evaluation of a program only starts after the virtual machine has completed the linking
and verification phases.

For the Datalog evaluation we adopt the top-down standard semantics for stratified
programs [CGT89]. Given a context C and a goal G, C � G with θ means that there exists
a substitution θ, replacing constants for variables, such that the goal G is satisfied in the
context C.
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Tell1
ρ ` C, e→ C′, e′

ρ ` C, tell(e)→ C′, tell(e′)

Tell2

ρ ` C, tell(F)→ C ∪ {F}, ()

Retract1
ρ ` C, e→ C′, e′

ρ ` C, retract(e)→ C′, retract(e′)

Retract2

ρ ` C, retract(F)→ C\{F}, ()

Dlet1
ρ[G.e1, ρ(x̃)/x̃] ` C, e2 → C′, e′2

ρ ` C, dlet x̃ = e1 when G in e2 → C′, dlet x̃ = e1 when G in e′2

Dlet2

ρ ` C, dlet x̃ = e1 when G in v→ C, v

Dyvar

ρ(x̃) = Va dsp(C, Va) = (e, {~c/~y})
ρ ` C, x̃ → C, e{~c/~y}

Append1
ρ ` C, e1 → C′, e′1

ρ ` C, e1 ∪ e2 → C′, e′1 ∪ e2

Append2
ρ ` C, e2 → C′, e′2

ρ ` C, (x){Va1} ∪ e2 → C′, (x){Va1} ∪ e′2

Append3
z fresh

ρ ` C, (x){Va1} ∪ (y){Va2} → C, (z){Va1{z/x}, Va2{z/y}}

VaApp1
ρ ` C, e1 → C′, e′1

ρ ` C, #(e1, e2)→ C′, #( e′1, e2)

VaApp2
ρ ` C, e2 → C′, e′2

ρ ` C, #((x){Va}, e2)→ C′, #((x){Va}, e′2)

VaApp3
dsp(C, Va) = (e, {~c/~y})

ρ ` C, #((x){Va}, v)→ C, e{v/x, ~c/~y}

Figure 4.4: Semantic rules of the new constructs for adaptation of MLCoDa
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The MLCoDa semantics is inductively defined for expressions with no free variable,
but possibly with free parameters. These will take a value in an environment ρ, i.e. a
function mapping parameters to variations DynVar → Va. Environments are updated
as usual, given an environment ρ we define the update operation as follow

ρ[Va/x̃](x̃′) =

{
Va x̃ = x̃′

ρ(x̃′) otherwise

A transition ρ ` C, e → C′, e′ says that in the environment ρ, the expression e is
evaluated in the context C and reduces to e′ changing the context C to C′. We assume
that the initial configuration is ρ0 ` C, ep where ρ0 contains the bindings for all system
parameters, and C results from the linking of the system context C and of the application
context Cp, as illustrated in Figure 4.2.

The semantics rules are displayed in Figure 4.3 and Figure 4.4. Since most of them
are inherited from ML, below we only comment on those for new constructs (Figure 4.4).

The rules for tell(e)/retract(e) evaluate the expression e until it reduces to a fact F
(rule Tell1/Retract1). Then, the evaluation yields the unit value () and a new context
C′, obtained from C by adding/removing the fact F (rule Tell2/Retract2).

Example 4.3.1. In the following we show the reduction of a tell construct: we apply the
function getAccessibilityOpt to unit, assuming that getCheckedOption returns the
fact user_acc_opt(blind):

ρ `C, setAccessibilityOpt ()→
C, tell(getCheckedOption accRadioButton)→?

C, tell(user_acc_opt(blind))→ C ∪ {user_acc_opt(blind)}, ().

The rules Dlet1 and Dlet2, that handle the construct dlet, and the rule Par for param-
eters implement our context-dependent binding. To simplify the technical development
we assume here that e1 contains no parameters. The rule Dlet1 extends the environment
ρ by appending G.e1 in front of the existent binding for x̃. Then, e2 is evaluated under
the updated environment. Notice that the dlet reduction rules do not evaluate e1 but
only record it in the environment. The rule Dlet2 is standard: the dlet reduces to the
value eventually computed by e2.

The Par rule looks up the variation Va bound to x̃ in ρ. Then the dispatching mech-
anism selects the expression to which x̃ reduces.

Definition 4.3.1 (Dispatching Mechanism). The dispatching mechanism of MLCoDa is
defined on the line of the one of ContextML (Definition 2.2.3) and it is implemented by
the partial function dsp, as

dsp(C, (G.e, Va)) =

{
(e, θ) if C � G with θ

dsp(C, Va) otherwise

The dispatching mechanism inspects a variation from left to right to find the first
goal G satisfied by C, under a substitution θ that binds the variables of G. If this search
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succeeds, the results are the corresponding expression e and θ. Then x̃ reduces to e θ, i.e.
to e whose variables are bound by θ. Instead, if the dispatching matching fails because
no goal holds, the computation gets stuck since the program cannot adapt to the current
context.

Example 4.3.2. Consider the function setMainWindow defined in Section 4.2 and apply
it to a value w. Assume that the environment ρ binds the parameters txt_label and
vcanvas as done in Section 4.2. Furthermore, assume that context C satisfies the goals←
¬only_speech() and← video(hd),¬only_text() but not← video(low),¬only_text().

ρ ` C, setMainWindoww→?

C, addComponentw txt_label; addComponentw vcanvas; e→
C, addComponentw (getLabel()); addComponentw vcanvas; e→?

C, addComponentw vcanvas; e→
C, addComponentw (getHDCanvas()); e→? C, e

In the computation from the second to the third configuration, we retrieve the bind-
ing for txt_label and apply dsp to C and ρ(txt_label):

dsp(C, ρ(txt_label)) = dsp(C,← ¬only_speech().getLabel()) = (getLabel(), ι)

where ι is the empty substitution. The same happens from the fourth to the fifth config-
uration: we apply dsp to C and ρ(vcanvas) obtaining getHDCanvas().

The rules for e1 ∪ e2 sequentially evaluate e1 and e2 until they reduce to behavioural
variations (rules Append1 and Append2). Then, they are concatenated together by renam-
ing bound variables to avoid name captures (rule Append3).

Example 4.3.3. As an example, consider the function addDefault of Section 4.2. In the
following computation we apply addDefault to p = (x){G1.c1, G2.x} and to c2 (c1, c2

constants):

ρ `C, addDefault p c2 →
C, (x){G1.c1, G2.x} ∪ (w){True.c2} →
C, (z){G1.c1, G2.z, T.c2}

The rules for behavioural variation application #(e1, e2) evaluate the sub-expressions
until e1 reduces to (x){Va} (rule VaApp1) and e2 to a value v (rule VaApp2). Then,
the rule VaApp3 invokes the dispatching mechanism to select the relevant expression e
from which the computation proceeds after v is substituted for x. Also in this case the
computation gets stuck, if the dispatching mechanism fails.

Example 4.3.4. As an example consider the function getExhibitData and apply it to
unit. The computation is

ρ ` C, getExhibitData ()→? C, getRemoteData #(u, ())→?

C, getRemoteData(receiveData n)
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(∗ n is returned by getChannel ∗)

If the context C satisfies the goal ← direct_comm(), in the computation from the sec-
ond to the third configuration, the dispatching mechanism selects the first expres-
sion of the behavioural variation u (the one bound to url in the body of the function
getExhibitData).

4.4 Type and Effect System

We now associate MLCoDa expressions with an annotated type and an history expression.
The shape of history expression of MLCoDa are different from the ones of ContextML,
although the underlying idea remains the same. During the verification phase the virtual
machine uses this history expression to ensure that the dispatching mechanism will
always succeed at runtime. First, we briefly present history expressions for MLCoDa and
then the rules of our type and effect system.

4.4.1 History Expressions of MLCoDa

Here, history expressions approximate the sequence of actions that a program may per-
form over the context at runtime, i.e., asserting/retracting facts and asking if a goal
holds, as well as how behavioural variations will be “resolved”.

The following syntax of history expressions is similar to the one introduced in Sec-
tion 3.3 except for constructs (underlined and in blue below) to deal with the context:

H ::= ε empty
| h recursion variable
| µh.H recursion
| tell F asserting a fact F
| retract F retracting a fact F
| H1 + H2 non-deterministic sum
| H1 · H2 sequence
| ∆ abstract variation

∆ ::= abstract variations
| ask G.H ⊗ ∆ dispatch
| fail failure

Here, the empty history expression ε abstracts programs which do not interact with
the context; the “atomic” history expressions tell F and retract F are for the analogous
expressions of MLCoDa; ∆ mimics our dispatching mechanism, where ∆ is an abstract
variation, defined as a list of history expressions, each element Hi of which is guarded
by ask Gi; the other constructs are the similar to the ones of ContextML.

Given a context C, the behaviour of a history expression H is formalized by the tran-
sition system inductively defined in Figure 4.5. Configurations have the form C, H →
C′, H′ meaning that H reduces to H′ in the context C and yields the context C′. Most
rules are similar to the ones in Section 3.3, and below we only comment on those dealing
with the context.
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C, tell F→ C ∪ {F}, ε C, retract F→ C\{F}, ε C, ε · H → C, H

C, H1 → C′, H′1
C, H1 · H2 → C′, H′1 · H2

C, H1 → C′, H′1
C, H1 + H2 → C′, H′1

C, H2 → C′, H′2
C, H1 + H2 → C′, H′2

C, µh.H → C, H[µh.H/h]

C � G

C, ask G.H ⊗ ∆→ C, H

C 2 G

C, ask G.H ⊗ ∆→ C, ∆

Figure 4.5: Semantics of History Expressions

An action tell F reduces to ε and yields a context C′ where the fact F has just been
added; similarly for retract F. The rules for ∆ scan the abstract variation and look for the
first goal G satisfied in the current context; if this search succeeds, the overall history
expression reduces to that history expression H guarded by G; otherwise the search
continues on the rest of ∆. If no satisfiable goal exists, the stuck configuration fail is
reached, representing that the dispatching mechanism fails.

Note that differently from Section 3.3 we here are not concerned about the sequence
of actions carried out on the initial context, but we are interested in the contexts which
can be reached starting from it. For this reason, here the transition system has no labels
and we introduce no language-theoretic semantics, as Definition 3.3.1. As we see later
on, our loading time analysis provides us with an over-approximation of the reached
contexts.

Example 4.4.1. Consider the initial context C = {F2, F5, F8} and the history expression

Ha =tell F1 · retract F2 · ask F8.retract F5 ⊗ fail +

ask F5.retract F8 ⊗ ask F3.retract F4 ⊗ fail.

For simplicity, we use a context and goals with only facts and we omit the symbols ←
from goals. A possible sequence of transitions for C, Ha is:

{F2, F5, F8}, Ha →∗

{F1, F2, F5, F8}, ε · retract F2 · ask F8.retract F5 ⊗ fail→
{F1, F2, F5, F8}, retract F2 · ask F8.retract F5 ⊗ fail→∗

{F1, F5, F8}, ask F8.retract F5 ⊗ fail→
{F1, F5, F8}, retract F5 →
{F1, F8}, ε

When the reduction of Ha terminates, the empty history expression is reached, yielding
the context {F1, F8}. As an example of failure, take C′ = {F2, F5} as initial context. In
this case we reach the fail configuration as shown by the following reduction:

{F2, F5}, Ha →∗
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{F1, F2, F5}, ε · retract F2 · ask F8.retract F5 ⊗ fail→
{F1, F2, F5}, retract F2 · ask F8.retract F5 ⊗ fail→∗

{F1, F5}, ask F8.retract F5 ⊗ fail→
{F1, F5}, fail

4.4.2 Typing rules

Here, we only give a logical presentation of our type and effect system, leaving the
definition of an inference algorithm as a future work (see Section 5.1.1). We assume that
our Datalog is typed, i.e. each predicate has a fixed arity and a type. Many papers exist
on this topic, and one can follow, for example a light version of [MO84]. From here
onwards, we simply assume that there exists a Datalog typing function γ that given a
goal G returns a list of pairs (x, type-of-x), for all variables x of G (e.g. in the Tvariation,
Figure 4.7).

The syntax of types is

τc ∈{int, bool, unit, . . .} φ ∈ ℘(Fact)

τ ::=τc | τ1
K|H−−→ τ2 | τ1

K|∆
==⇒ τ2 | factφ

We have basic types (int, bool, unit), functional types, behavioural variations types, and
facts. As in Section 3.3, some types are annotated for analysis reason. In the type f actφ,
the set φ soundly contains the facts that an expression can be reduced to at runtime

(see the semantic rules Tell2 and Retract2). In the type τ1
K|H−−→ τ2 associated with a

function f , the environment K is a precondition needed to apply f . Here, K stores the
types and the abstract variations of parameters occurring inside the body of f . The
history expression H is the latent effect of f , i.e. the sequence of actions which may be
performed over the context during the function evaluation. Analogously, in the type

τ1
K|∆
==⇒ τ2 associated with the behavioural variation bv = (x){Va}, K is a precondition

for applying bv and ∆ is an abstract variation representing the information that the
dispatching mechanism uses at runtime to apply bv.

The rules of our type and effect systems have the usual environment Γ binding the
variables of an expression:

Γ ::= ∅ | Γ, x : τ

where ∅ denotes the empty environment and Γ, x : τ denotes an environment having a
binding for the variable x (x does not occur in Γ).

Additionally, we introduce another environment K that maps a parameter x̃ to a pair
consisting of a type and an abstract variation ∆. The information in ∆ is used to resolve
the binding for x̃ at runtime. Formally:

K ::= ∅ | K, (x̃, τ, ∆)

where ∅ denotes the empty environment and K, (x̃, τ, ∆) denotes an environment having
a binding for the parameter x̃ (x̃ not occurring in K).
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Srefl

τ ≤ τ

Sfact

φ ⊆ φ′

factφ ≤ factφ′

Sfun

τ′1 ≤ τ1 τ2 ≤ τ′2 K v K′ H v H′

τ1
K|H−−→ τ2 ≤ τ′1

K′|H′−−−→ τ′2

Sva

τ′1 ≤ τ1 τ2 ≤ τ′2 K v K′ ∆ v ∆′

τ1
K|∆
==⇒ τ2 ≤ τ′1

K′|∆′
===⇒ τ′2

Tconst

Γ; K ` c : τc . ε

Tvar

Γ(x) = τ

Γ; K ` x : τ . ε

Tif

Γ; K ` e1 : bool . H1 Γ; K ` e2 : τ . H2 Γ; K ` e3 : τ . H3

Γ; K ` if e1 then e2 else e3 : τ . H1 · (H1 + H2)

Tlet

Γ; K ` e1 : τ1 . H1 Γ; x : τ1, K ` e2 : τ2 . H2

Γ; K ` let x = e1 in e2 : τ2 . H1 · H2

Tabs

Γ, x : τ1, f : τ1
K′|H−−→ τ2; K′ ` e : τ2 . H

Γ; K ` fun f x ⇒ e : τ1
K′|H−−→ τ2 . ε

Tapp

Γ; K ` e1 : τ1
K′|H3−−−→ τ2 . H1 Γ; K ` e2 : τ1 . H2 K′ v K

Γ; K ` e1 e2 : τ2 . H1 · H2 · H3

Figure 4.6: Typing rules for standard ML constructs

Our typing judgements have the form Γ; K ` e : τ . H, expressing that in the
environments Γ and K the expression e has type τ and effect H.

We now introduce the orderings vH,v∆,vK on H, ∆ and K, respectively (often
omitting the indexes when unambiguous). We define H1 v H2 iff ∃H3 such that H2 =

H1 + H3. We lift the operator ⊗ to abstract variation ∆ as follows ∆1 v ∆2 iff ∃∆3 such
that ∆2 = ∆1 ⊗ ∆3 (note that we assume fail⊗ ∆ = ∆, so the concatenation ∆2 has an
single trailing term fail); K1 v K2 iff ( (x̃, τ1, ∆1) ∈ K1 implies (x̃, τ2, ∆2) ∈ K2 ∧ τ1 ≤
τ2 ∧ ∆1 v ∆2 ).

Most of the rules of our type and effect system are inherited from those of ML and
from those presented in Section 3.3 (Figure 4.6). Those for the new constructs are in
Figure 4.7. Comments on the typing rules for new constructs are in order.

We have rules for subtyping and subeffecting (Figure 4.6, top). As expected these
rules say that subtyping relation is reflexive (rule Srefl); that a type f actφ is a subtype
of a type f actφ′ whenever φ ⊆ φ′ (rule Sfact); that functional types are contravariant in
the types of arguments and covariant in the type of the result and in the annotations
(rule Sfun); analogously for the types of behavioural variations (rule Sva).
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Tsub

Γ; K ` e : τ′ . H′ τ′ ≤ τ H′ v H

Γ; K ` e : τ . H

Tfact

Γ; K ` F : fact{F} . ε

Tpar

K(x̃) = (τ, ∆)

Γ; K ` x̃ : τ . ∆

Ttell

Γ; K ` e : factφ . H

Γ; K ` tell(e) : unit . H ·
(

∑
F∈φ

tell F

)

Tretract

Γ; K ` e : factφ . H

Γ; K ` retract(e) : unit . H ·
(

∑
F∈φ

retract F

)

Tvariation

∀i ∈ {1, . . . , n} γ(Gi) = ~yi : ~τi
Γ, x : τ1,~yi : ~τi; K′ ` ei : τ2 . Hi ∆ = ask G1.H1 ⊗ · · · ⊗ ask Gn.Hn ⊗ fail

Γ; K ` (x){G1.e1, . . . , Gn.en} : τ1
K′|∆
==⇒ τ2 . ε

Tvapp

Γ; K ` e1 : τ1
K′|∆
==⇒ τ2 . H1 Γ; K ` e2 : τ1 . H2 K′ v K

Γ; K ` #(e1, e2) : τ2 . H1 · H2 · ∆

Tappend

Γ; K ` e1 : τ1
K′|∆1
===⇒ τ2 . H1 Γ; K ` e2 : τ1

K′|∆2
===⇒ τ2 . H2

Γ; K ` e1 ∪ e2 : τ1
K′|∆1⊗∆2
=====⇒ τ2 . H1 · H2

(Tdlet)
Γ,~y : ~̃τ; K ` e1 : τ1 . H1 Γ; K, (x̃, τ1, ∆′) ` e2 : τ2 . H2

Γ; K ` dlet x̃ = e1 when G in e2 : τ2 . H2

where γ(G) = ~y : ~̃τ
if K(x̃) = (τ1, ∆) then ∆′ = G.H1 ⊗ ∆
else (if x̃ /∈ K then ∆′ = G.H1 ⊗ fail)

Figure 4.7: Typing rules for new constructs
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The rule Tsub allows us to freely enlarge types and effects by applying the subtyping
and subeffecting rules. The rule Tfact says that a fact F has type f act annotated with the
singleton {F} and empty effect. The rule Ttell (or Tretract) asserts that the expression
tell(e) (or retract(e)) has type unit, provided that the type of e is f actφ. The overall
effect is obtained by concatenating the effect of e with the nondeterministic summation
of tell F (or retract F) where F is any of the facts in the type of e.

Example 4.4.2. Take the body of the function setAccessibilityOpt of Section 4.2. We
know that the function getCheckedOption (call it e1) returns either the fact user_acc
_opt(deaf) (call it F1) or user_acc_opt(blind) (call it F2). Now, call e2 the application of
e1 to accRadioButton. The type of e2 is f act{F1, F2}, and its effect is H, which is the latent
effect of e1. So the overall type of tell(e2) will be unit and its effect H · (tell F1 + tell F2).

Rule (Tpar) looks up the type and the effect of the parameter x̃ in the environment K.

Example 4.4.3. Consider type-checking the application addComponent window vcanvas in
the body of function setMainWindow in Section 4.2. Assume that addComponent has type

window_t Ha−→ component_t
Hb−→ unit and empty effect, window has type component_t

and empty effect and that the binding for vcanvas in K is (component_t, ∆) where

∆ = ask ← video(hd),¬only_text(). H1 ⊗ ask ← video(low). H2 ⊗ fail,¬only_text().

The application addComponent window vcanvas thus has type unit and effect ∆ · Ha · Hb.

In the rule Tvariation we guess an environment K′ and the type τ1 for the bound variable
x. We determine the type for each subexpression ei under K′ and the environment Γ
extended by the type of x and of the variables ~yi occurring in the goal Gi (recall that the
Datalog typing function γ returns a list of pairs (z, type-of-z) for all variable z of Gi).
Note that all subexpressions ei have the same type τ2. We also require that the abstract
variation ∆ results from concatenating ask Gi with the effect computed for ei. The type
of the behavioural variation is annotated by K′ and ∆.

Example 4.4.4. As an example of typing of a behavioural variation, take the one defined
inside the body of function getExhibitData of Section 4.2 (call it bv1). Assume that the
unused argument _ has type unit and that the two cases of this behavioural variation
have type τ and effect H1 and H2, respectively, under the environment Γ, _ : unit (goals
have no variables) and the guessed environment K′. Hence, the type of bv1 will be

unit
K′|∆
==⇒ τ with

∆ = ask direct_comm().H1 ⊗ ask use_qr_code(), camera(on).H2 ⊗ fail

and the effect will be empty.

The rule Tvapp type-checks behavioural variation applications and reveals the role
of preconditions. As expected, e1 is a behavioural variation with parameter of type τ1

and e2 has type τ1. We get a type if the environment K′, which acts as a precondition,
is included in K according to v. The type of the behavioural variation application is τ2,
i.e. the type of the result of e1, and the effect is obtained by concatenating the ones of e1

and e2 with the history expression ∆, occurring in the annotation of the type of e1.
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Example 4.4.5. Take the above behavioural variation bv1, which has type unit
K′|∆
==⇒ τ.

Assume having the environments Γ and K, under which we wish to type-check the
expression #(bv1, ()). If K′ v K, its type is τ and its effect is ask direct_comm().H1 ⊗
ask use_qr_code(), camera(on).H2 ⊗ fail.

The rule Tappend asserts that two expressions e1,e2 with the same type τ, except for
the abstract variations ∆1, ∆2 in their annotations, and effects H1 and H2, are combined
into e1 ∪ e2 with type τ, and concatenated annotations and effects. More precisely, the
resulting annotation has the same precondition of e1 and e2 and abstract variation ∆1 ⊗
∆2, and effect H1 · H2.

Example 4.4.6. Consider again the above bv1 and its type int
K′|∆
==⇒ τ; consider also the

body of the function addDefault of Section 4.2 and let bv2 = (w){True.y}, and let its

type be unit
K′|∆′
===⇒ τ and its effect be H2. Then the type of bv1 ∪ bv2 is unit

K′|∆⊗∆′
====⇒ τ

and the effect is H2. The type of addDefault is unit
K′|∆
==⇒ τ → τ → unit

K′|∆⊗∆′
====⇒ τ.

The rule Tdlet requires that e1 has type τ1 in the environment Γ extended with the
types for the variables ~y of the goal G. Also, e2 has to type-check in an environment
K extended with the information for the parameter x̃. The type and the effect for the
overall dlet expression are the same of e2.

Our type and effect system ensures us that no type error occurs at runtime and
that the effect is an over-approximation of the actions performed over the context. Our
analysis is sound with respect to the operational semantics. To concisely state our formal
results, it is convenient to introduce the following technical definitions. The following
definition establishes a relation among the dynamic environment ρ used in the semantics
and the typing environments Γ and K.

Definition 4.4.1 (Typing dynamic environment). Given the type environments Γ and K,
we say that the dynamic environment ρ has type K under Γ (in symbols Γ ` ρ : K) iff
dom(ρ) ⊆ dom(K) and ∀x̃ ∈ dom(ρ) . ρ(x) = G1.e1, . . . , Gn.en K(x̃) = (τ, ∆) and ∀i ∈
{1, . . . , n} . γ(Gi) = ~yi : ~τi Γ,~yi : ~τi; K ` ei : τ′ . Hi and τ′ ≤ τ and

⊗
i∈{1,...,n} Gi.Hi v ∆.

Definition 4.4.2. Given H1, H2 then H1 4 H2 iff one of the following case holds

(a) H1 v H2;

(b) H2 = H3 · H1 for some H3;

(c) H2 =
⊗

i∈{1,...,n} ask Gi.Hi ⊗ fail ∧ H1 = Hi, ∃i ∈ {1..n}.

Intuitively, the definition above formalises that the history expression H1 could be
obtained from H2 by evaluation.

The soundness of our type and effect system easily derives from the following stan-
dard results.

Lemma 4.4.1 (Preservation). Let es be a closed expression; and let ρ be a dynamic environment
such that dom(ρ) includes the set of parameters of es and such that Γ ` ρ : K.
If Γ; K ` es : τ . Hs and ρ ` C, es → C′, e′s then Γ; K ` e′s : τ . H′s and there exist H such
that H · H′s 4 Hs and C, H · H′s →? C′, H′s.
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The Progress Lemma assumes that the effect H is viable (see Definition 4.6.2), namely
it does not reach fail, because the dispatching mechanism succeeds at runtime. To guar-
antee the viability we have defined the analysis of Section 4.6. In the following state-
ments we write ρ ` C, e 9 to intend that there exists no transition.

Lemma 4.4.2 (Progress). Let es be a closed expression such that Γ; K ` es : τ . Hs; and let ρ

be a dynamic environment such that dom(ρ) includes the set of parameters of es, and such that
Γ ` ρ : K. If ρ ` C, es 9 and H is viable for C, i.e. C, Hs 9+ C′, fail, then es is a value.

The following corollary ensures that the history expression obtained as an effect
of e over-approximates the actions that may be performed over the context during the
evaluation of e.

Corollary 1 (Over-approximation). Let e be a closed expression. If Γ; K ` e : τ . H ∧ ρ `
C, e →? C′, e′, for some ρ such that Γ ` ρ : K, then there exists a sequence of transitions
C, H →? C′, H′, for some H′.

The following theorem ensures the correctness of our approach.

Theorem 4.4.3 (Correctness). Let es be a closed expression such that Γ; K ` es : τ . Hs; let
ρ be a dynamic environment such that dom(ρ) includes the set of parameters of es, and that
Γ ` ρ : K; and let C be a context such that Hs is viable i.e. C, Hs 9+ C′, fail. Then either the
computation terminates yielding a value (ρ ` C, es →? C′′, v) or it diverges, but it never gets
stuck.

4.5 Properties of the Type and Effect System

In this section we prove Lemma 4.4.1, Lemma 4.4.2 and Corollary 1. We start giving
some technical lemmata and definitions useful for the proofs. Roughly, the formal de-
velopment follows the same schema of the ones presented in Chapter 2 and Chapter 3.

Definition 4.5.1 (Capture avoiding substitutions). Given the expression e,e′ and the vari-
able x we define e{e′/x} as following

c{e′/x} = c

F{e′/x} = F

(λ f x′.e){e′/x} = λ f x′.e{e′/x}
if f 6= x ∧ x′ 6= x ∧ f , x′ /∈ FV(e′)

(x′){G1.e1, . . . , Gn.en}{e′/x} =
(x′){G1.e1{e′/x}, . . . , Gn.en{e′/x}}

if x 6= x′ ∧ x ∈
⋃

i∈{1,...,n}
FV(Gi)∧{x′} ∪ ⋃

i∈{1,...,n}
FV(Gi)

 ∩ FV(e′) = ∅

x{e′/x} = e′
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x′{e′/x} = x′ if x 6= x′

(e1 e2){e′/x} = e1{e′/x} e2{e′/x}
(e1 op e2){e′/x} = e1{e′/x} op e2{e′/x}
(i f e1 then e2 else e3){e′/x} =

i f e1{e′/x} then e2{e′/x} else e3{e′/x}
(tell(e)){e′/x} = tell(e{e′/x})
(retract(e)){e′/x} = retract(e{e′/x})
(e1 ∪ e2){e′/x} = e1{e′/x} ∪ e2{e′/x}
#(e1, e2){e′/x} = #(e1{e′/x}, e2{e′/x})
(let x′ = e1 in e2){e′/x} = let x′ = e1{e′/x} in e2{e′/x}

if x 6= x′ ∧ x′ ∈ FV(e′)

(dlet x̃ = e1 when G in e2){e′/x} =
dlet x̃ = e1{e′/x}when G in e2{e′/x}

if x /∈ FV(G) ∧ FV(G) ∩ FV(e′) = ∅.

Lemma 4.5.1. If Γ ` ρ : K and K v K′ then Γ ` ρ : K′.

Proof. The thesis follows from Definition 4.4.1 and that of K v K′.

In the following we denote with Kx̃ = K\(x̃, τ, ∆)

Lemma 4.5.2. Given K and a parameter x̃

1. if x̃ /∈ K then K v Kx̃, (x̃, τ, ∆) for all τ and ∆

2. if K(x̃) = (τ, ∆) then K v Kx̃, (x̃, τ1, ∆1 ⊗ ∆) for all τ ≤ τ1, ∆1

Proof. The thesis follows by using the definition of K v K′.

Lemma 4.5.3. If Γ ` ρ : K and G and e are such that γ(G) = ~y : ~τ and Γ,~y : ~τ; K ` e : τ . H

1. for all x̃ /∈ dom(ρ) then Γ ` ρ[G.e/x̃] : Kx̃, (x̃, τ, askG.H)

2. if ρ(x̃) = G′1.e′1, . . . G′n.e′n and K(x̃) = (τ, ∆) then Γ ` ρ[G.e, ρ(x̃)/x̃] : Kx̃, (x̃, τ, askG.H⊗
∆).

Proof. The thesis follows by using the Definition 4.4.1 and that of K v K′.

Lemma 4.5.4. If Γ; K ` e : τ . H and Γ′ and K′ are permutation of Γ and K respectively, then
Γ′; K′ ` e : τ . H.

Proof. Straightforward induction on typing derivations.

Lemma 4.5.5 (Weakening).

1. if Γ; K ` e : τ . H and x is a variable x /∈ dom(Γ) then Γ, x : τ′; K ` e : τ . H
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2. if Γ; K ` e : τ . H and x̃ is a parameter x̃ /∈ dom(K) then Γ; K, (x̃, τ, ∆) ` e : τ . H

Proof. By a standard induction on the depth of the derivations.

Lemma 4.5.6 (Inclusion).

1. if Γ; K ` e : τ . H and Γ ⊆ Γ′ then if Γ′; K ` e : τ . H

2. if Γ; K ` e : τ . H and K v K′ then if Γ; K′ ` e : τ . H

Proof.

1. Since Γ ⊆ Γ′ there exists a set of binding {x1 : τ1, . . . , xn : τn} ⊆ Γ′ such that
Γ, x1 : τ1, . . . , xn : τn = Γ′, so by applying n times Lemma Lemma 4.5.5 the thesis
holds.

2. Similar to previous case.

Lemma 4.5.7 (Canonical form). If v is a value such that

1. Γ; K ` v : τc . H then v = c

2. Γ; K ` v : τ1
K′|H′−−−→ τ2 . H then v = fun f x ⇒ e

3. Γ; K ` v : τ1
K′|∆
==⇒ τ2 . H then v = (x){Va}

4. Γ; K ` v : f act{F1,...,Fm} . H then v ∈ {F1, . . . , Fm}

Proof.

1. Values can only have four forms: c, (x){Va}, fun f x ⇒ e and F. If v has type τc

the only rule which we can apply is Tconst hence v = c.

2. Follow from a reasoning similar to (1)

3. Follow from a reasoning similar to (1)

4. The f act type with annotations {F1, . . . , Fn} can be only deduced by applying the
Tsub rule, starting from a type annotated with a singleton set {F} for some F ∈
{F1, . . . , Fn}. So this type can be obtained by Tfact rule only, hence v = F.

Lemma 4.5.8 (Decomposition Lemma).

1. If Γ; K ` λ f x.e : τ1
K′|H−−→ τ2 . H′ and K′ v K then Γ, x : τ1, f : τ1

K′|H−−→ τ2; K ` e :
τ2 . H

2. If Γ; K ` (x){G1.e1, . . . , Gn.en} : τ1
K′|∆
==⇒ τ2 . H′ and K′ v K and ∆ =

⊗
i∈{1,...,n} ask Gi.Hi

then ∀i ∈ {1, . . . , n} Γ, x : τ1,~yi : ~τi; K ` ei : τ2 . Hi where ~yi : ~τi = γ(Gi)
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Proof.

1. By the premise of the rule Tabs we know that Γ, x : τ1, f : τ1
K′|H−−→ τ2; K′ ` e : τ2 . H.

Since, K′ v K, the thesis follows by Lemma 4.5.6.

2. By the premise of the rule Tvariation we know that ∀i ∈ {1, . . . , n} Γ,~yi : ~τi; K′ `
ei : τ2 . Hi and ~yi : ~τi = γ(Gi) and ∆ =

⊗
i∈{1,...,n} ask Gi.Hi. Since K′ v K the

thesis follows by Lemma 4.5.6(2).

Lemma 4.5.9 (Substitution). If Γ, x : τ′; K ` e : τ . H and Γ; K ` v : τ′ . ε then Γ, x :
τ′; K ` e{v/x} : τ . H.

Proof. By induction on the depth of the typing derivation, and then by cases on the last
rule applied.

• rule Ttell

By the premise of the rule we know that Γ, x : τ′; K ` e : f actφ . H′ holds. By
using the induction hypothesis we can claim that Γ; K ` tell(e{v/x}) : τ . H and
by Definition 4.4.1 we can conclude that Γ; K ` (tell(e)){v/x} : τ . H.

• rule Tretract

Similar to the case Ttell

• rule Tappend

By the premise of the rule we know that Γ, x : τ′; K ` ei : τ1
K′|∆i
===⇒ τ2 . Hi for

i ∈ {1, 2} holds. By the inductive hypothesis we can claim that Γ; K ` e1{v/x} ∪
e2{v/x} : τ . H holds and by Definition 4.4.1 we can conclude Γ; K ` (e1 ∪
e2){v/x} : τ . H.

• rule Tvapp

By the premise of the rule we know that Γ, x : τ′; K ` e1 : τ1
K′|∆
==⇒ τ2 . H1 and

Γ, x : τ′; K ` e2 : τ1 . H1 and K′ v K. By using the induction hypothesis we can
claim that Γ; K ` #(e1{v/x}, e2{v/x}) : τ . H holds and by Definition 4.4.1 we
can conclude that Γ; K ` #(e1, e2){v/x} : τ . H.

• rule Tvariation

By the premise of the rule Tvariation we know that ∀i ∈ {1, . . . , n} Γ, x : τ′, x′ :
τ1,~yi : ~τi; K′ ` ei : τ2 . Hi where ~yi : ~τi = γ(Gi), ∆ =

⊗
i∈{1,...,n} ask Gi.Hi. By

Lemma 4.5.4 ∀i ∈ {1, . . . , n} Γ, x′ : τ1~yi : ~τi, x : τ′; K′ ` ei : τ2 . Hi. By us-
ing the induction hypothesis and the rule Tvariation we can claim that Γ; K `
(x′){G1.e1{v/x}, . . . , Gn.en{v/x}}τ . H and by Definition 4.4.1 we conclude Γ; K `
(x′){G1.e1, . . . , Gn.en}{v/x}τ . H

• rule Tdlet

By the precondition of the rule Tdlet we know that Γ, x : τ′,~y : ~τ; K ` e1 : τ1 . H1

and Γ, x : τ′; K, (x̃, τ1, ∆) ` e2 : τ . H with ~y : ~τ = γ(G). By Lemma 4.5.4
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Γ,~y : ~τ, x : τ′; K ` e1 : τ1 . H1. By using the induction hypothesis we can claim
that Γ; K ` dlet x̃ = e1{v/x}when G in e2{v/x} : τ . H and by Definition 4.4.1
Γ; K ` (dlet x̃ = e1 when G in e2){v/x} : τ . H.

• rule Tconst, Tfact, Tdvar Since e{v/x} = e by Definition 4.4.1 the result Γ; K ` e :
τ . H is immediate, when e = c, e = F and e = x̃.

• The other cases are standard.

Lemma 4.5.10. If Γ, x : τ′; K ` e : τ . H and z is a variable such that z /∈ FV(e) and z does
not occur in Γ then Γ, z : τ′; K ` e{z/x} : τ . H.

Proof. Similar to that of Lemma 4.5.9

Lemma 4.5.11. If Γ; K ` v : τ . H then Γ; K ` v : τ . ε

Proof. In the typing derivation for the judgement Γ; K ` v : τ . H there is a subderiva-
tion with conclusion Γ; K ` v : τ′ . ε for some τ′. This conclusion is obtained by
applying one of typing rules for values. Since v is a value we can obtain Γ; K ` v : τ . H
from this conclusion by applying only the rule Tsub to enlarge the type and the effect.
So we can make a new derivation that simulates the first one but where we enlarge only
the type but not the effect. In this way we constructed a derivation for the judgement
Γ; K ` v : τ . ε.

Lemma 4.5.12. If Γ; K ` v : τ . H then for all K′ we have that Γ; K′ ` v : τ . H.

Proof. By induction of the depth typing derivation.

Definition 4.4.2. Given H1, H2 then H1 4 H2 iff one of the following case holds

(a) H1 v H2;

(b) H2 = H3 · H1 for some H3;

(c) H2 =
⊗

i∈{1,...,n} ask Gi.Hi ⊗ fail ∧ H1 = Hi, ∃i ∈ {1..n}.

Lemma 4.5.13. Given the histories expressions H1, H2, H3 and H4 such that H1 4 H2 and
H4 = H3 + H̃ then H1 · H3 4 H2 · H4

Proof. There are three cases according to Definition 4.4.2.

1. H2 = H1 + H

H2 · H4 = (H1 + H) · (H3 + H̃)

= H1 · H3 + H1 · H̃ + H · H3 + H · H̃
< H1 · H3
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2. H2 = H̃ · H1

H2 · H4 = H̃ · H1 · (H3 + H̃)

= H̃ · (H1 · H3 + H1 · H̃)

< H1 · H3 + H1 · H̃
< H1 · H3

3. H2 =
⊗

i∈{1,...,n} ask Gi.H′i ⊗ fail and H1 = Hi for some i

H2 · H4 =

 ⊗
i∈{1,...,n}

ask Gi.Hi ⊗ fail

 · H4

=
⊗

i∈{1,...,n}
ask Gi.Hi · H4 ⊗ fail

< Hi · H4

= Hi · (H3 + H̃)

= Hi · H3 + Hi · H̃
< Hi · H3

= H1 · H3

Lemma 4.4.1 (Preservation). Let es be a closed expression; and let ρ be a dynamic environment
such that dom(ρ) includes the set of parameters of es and such that Γ ` ρ : K.
If Γ; K ` es : τ . Hs and ρ ` C, es → C′, e′s then Γ; K ` e′s : τ . H′s and there exist H such
that H · H′s 4 Hs and C, H · H′s →? C′, H′s.

Proof. By induction on the depth of the typing derivation and then by cases on the last
rule applied.

• rule Tvariation or Tconst or Tfact or Tabs or Tvar

In this case we know that es is a value (or a variable in the case (Tvar)), then
it cannot be the case that ρ ` C, es → C′, e′s for any e′s so the theorem holds
vacuously.

• rule Ttell es = tell(e′) Γ; K ` e′ : f actφ . H Hs = H ·∑F∈φ tell F
We have only two rules by which ρ ` C, es → C′, e′s can be derived.

– rule tell1
We know that e′ is an expression and e′s = tell(e′′) and ρ ` C, e′ → C′, e′′ and
there is in our derivation a subderivation with conclusion Γ; K ` e′ : f actφ .

H. By the induction hypothesis Γ; K ` e′′ : f actφ . H′′ and there is a H′′ such
that H w H′′ · H′′ and C, H′′ · H′′ →? C′, H′′. By using the rule Ttell we can
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conclude that Γ; K ` e′s : unit . H′s and H′s = H′′ · ∑F∈φ tell F. It remains to

prove that H ·∑F∈φ tell F < H′′ · H′′ ·∑F∈φ tell F. Since H < H′′ · H′′ the thesis
follows by Lemma 4.5.13.

– rule tell2
We now that e′ = F, e′s = () and C′ = C ∪ {F}. We need to prove that
Γ; K ` e′s : unit . H′′, but from the rule Tconst we know that this holds
with H′′ = ε. It remains to show that there is H such that Hs w H · ε and
C, H · ε →? C′, ε. Choosing H = tell F and by using Lemma 4.5.7(4), the
equational properties of history expressions (Definition 3.3.2) Lemma 4.5.13
we can conclude H ·∑F∈φ tell F < H · tell F < ε · tell F = tell F = tell F · ε and
C, tell F · ε→? C′, ε.

• rule Tretract

Similar to Ttell rule (retract substitutes tell)

• rule Tappend es = e1 ∪ e2 Γ; K ` e1 : τ1
K′|∆1
===⇒ τ2 . H1 Γ; K ` e2 : τ1

K′|∆2
===⇒

τ2 . H2

There are three rules only by which ρ ` C, es → C′, e′s can be derived.

– rule append1
We know that e1 and e2 are expressions and e′s = e′1 ∪ e2. By applying the

induction hypothesis Γ; K ` e′1 : τ1
K′|∆1
===⇒ τ2 . H′1 with H1 < H′1 · H′1 and

C, H′1 · H′1 →? C′, H′1. By applying the Tappend rule we can conclude that

Γ; K ` e′1 ∪ e2 : τ1
K′|∆1⊗∆2
=====⇒ τ2 . H′1 · H2 and since H1 < H′1 · H′1, H1 · H2 <

H′1 · H′1 · H2 follows by Lemma 4.5.13.

– rule append2
We know that e′s = (x){Va1} ∪ e′2. By applying the induction hypothesis

Γ; K ` e′2 : τ1
K′|∆2
===⇒ τ2 . H′2 with H2 < H′2 · H′2 and C, H′2 · H′2 →? C′, H′2.

By applying Lemma 4.5.11 we know that Γ; K ` (x){Va1} : τ1
K′|∆1
===⇒ τ2 . ε

and by applying the rule Tappend we can claim that Γ; K ` (x){Va1} ∪ e′2 :

τ1
K′|∆1⊗∆2
=====⇒ τ2 . ε ·H′2. H1 ·H2 < H′2 · (ε ·H′2) holds by applying the equational

theory and Lemma 4.5.13.

– rule append3
We know that es is

(x){G1.e1, . . . , Gn.en} ∪ (y){G′1.e′1, . . . , G′n.e′n}

and that e′s is

(z){G1.e1{z/x}, . . . , Gn.en{z/y}, G′1.e′1{z/y}, . . . , G′n.e′n{z/x}}.

By the premise of the rule Tvariation, we also know that ∀i ∈ {1, . . . , n} we
have Γ, x : τ1,~yi : ~τi; K′ ` ei : τ2 . Hi and ∀j ∈ {1, . . . , m} we have Γ, y :
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τ1, ~yj : ~τj; K′ ` e′j : τ2 . Hj. By Lemma 4.5.10 it holds that ∀i ∈ {1, . . . , n} Γ, z :
τ1,~yi : ~τi; K′ ` ei{z/x} : τ2 . Hi and ∀j ∈ {1, . . . , m} Γ, z : τ1, ~yj : ~τj; K′ `
e′j{z/x} : τ2 . Hj. So by applying the rule Tvariation for all judgements

indexed by i and j we can conclude that Γ; K ` e′s : τ1
K′|∆1⊗∆2
=====⇒ τ2 . ε. Since

Hs < ε and C, ε→? C, ε the thesis holds.

• rule Tvapp es = #(e1, e2) Γ; K ` e1 : τ1
K′|∆
==⇒ τ2 . H1 Γ; K ` e2 : τ1 . H2

K′ v K
There are three rules only by which ρ ` C, es → C′, e′s can be derived.

– rule vapp1

We know that e′s = #(e′1, e2). By the induction hypothesis Γ; K ` e′1 : τ1
K′|∆
==⇒

τ2 . H′1 with H1 < H′1 · H′1 and C, H′1 · H′1 →? C′, H′1. By Tvapp rule we have
Γ; K ` e′s : τ2 . H′1 · H2 ·∆ and by Lemma 4.5.13 we can conclude H1 · H2 ·∆ <
H′1 · H′1 · H2 · ∆.

– rule vapp2
We know that e′s = #((x){Va}, e′2). By using Lemma 4.5.11 we have Γ; K `
(x){Va} : τ1

K′|∆
==⇒ τ2 . ε and by the induction hypothesis Γ; K ` e′2 : τ1 . H′2

with H2 < H′2 ·H′2 and C, H′2 ·H′2 →? C′, H′2. By Tvapp Γ; K ` e′s : τ2 . ε ·H′2 ·∆
holds. Since H′2 · ε · H′2 = H′2 · H′2 by the equational theory, we can conclude
by Lemma 4.5.13 H1 · H2 · ∆ < H2 · ∆ < H′2 · H′2 · ∆ = ε · H′2 · H′2 · ∆.

– rule vapp3
We know that es = #((x){Va}, v) where Va = G1.e1, . . . , Gn.en, e′s = ej{v/x, ~c/~y}
for j ∈ {1, . . . , n} and ρ ` C, es → C, e′s. From our hypothesis and from
Lemma 4.5.8(2) we have that for all i ∈ {1, . . . , n} it holds Γ, x : τ1,~yi : ~ti; K `
ei : τ2 . Hi. By Lemma 4.5.11 we also know that Γ; K ` v : τ1 . ε. So by
Lemma 4.5.9 we have that for i ∈ {1, . . . , n} Γ; K ` ei{v/x,~τ/~y} : τ . Hi.
Since ε · Hi = Hi and since H1 · H3 · ∆ < ∆ < Hi for all i ∈ {1, . . . , n} the
thesis holds with H = ε.

• rule Tdlet γ(G) = ~y : ~τ Γ,~y : ~τ; K ` e1 : τ1 . H1 Γ; Kx̃, (x̃, τ1 ∆′) ` e2 : τ . H
If the last rule in the derivation is Tdlet we know that ∆′ = askG.H1 when x̃ /∈
dom(K) or ∆′ = askG.H1 ⊗ ∆ when K(x̃) = (τ1, ∆). There are two rules by which
ρ ` C, es → C′, e′s can be derived.

– rule dlet1
We know that e′s = dlet x̃ = e1 when G in e′2 and ρ′ ` C, e2 → C′, e′s with
ρ′ = ρ[G.e, ρ(x̃)/x̃]. By Lemma 4.5.1 Γ ` ρ : K′ with K′ = Kx̃, (x̃, τ, ∆′)
and by Lemma 4.5.2 we know that Γ ` ρ′ : K′. So by induction hypothesis
Γ; K′ ` e′2 τ . H′ with H < H′ · H′ and C, H′ · H′ →? C′, H′. The judgement
Γ; K ` e′s : τ . H′ follows by applying the rule Tdlet.

– rule dlet2
We know that e′s = v and ρ ` C, es → C, e′s. By hypothesis we know that
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Γ; Kx̃, (x̃, τ1, ∆′) ` v : τ . H and by the Lemma 4.5.12 we have Γ; K ` v : τ . H
and the thesis follows by choosing H = ε.

• rule Tdvar K(x̃) = (τ, ∆)
We assume that ∆ =

⊗
i∈{1,...,n} ask Gi.Hi ⊗ fail. We have to prove that if ρ ` C, x̃ →

C′, e then Γ; K ` e, : τ . H′. By the premise of the rule we know that ρ(x̃) =

G1.e1, . . . , Gn.en and that there exists a j ∈ {1, . . . , n} such that e = ej. Since
Γ ` ρ : K we have that for all i ∈ {1, . . . , n} it holds Γ,~yi : ~τi ` ei : τ . Hi where
γ(Gi) = ~yi : ~τi and by Lemma 4.5.9 we conclude that Γ; K ` ei{~ti/~yi} : ei . Hi
for all i ∈ {1, . . . , n}. Since ε · Hi = Hi and

⊗
∀i∈{1,...,n} ask Gi.Hi < Hi for all

i ∈ {1, . . . , n} the thesis holds with H = ε.

• rule Tapp Γ; K ` e1 : τ1
K′|H3−−−→ τ2 . H1 Γ; K ` e2 : τ1 . H2 K′ v K

There are three rules only may drive ρ ` C, es → C′, e′s.

– rule app1
We know that e′s = e′1 e2. By using the induction hypothesis we have that

Γ; K ` e′1 : τ1
K′|H3−−−→ τ2 . H′1 with H1 < H′1 · H′1 and C, H′1 · H′1 →? C′, H′1. By

the Tapp rule we have Γ; K ` e′s : τ2 . H′1 · H2 · H3 and by Lemma 4.5.13 we
can conclude H1 · H2 · H3 < H′1 · H′1 · H2 · H3.

– rule app2
We know that e′s = (λ f x.e) e2. By using Lemma 4.5.11 we have Γ; K ` λ f x.e :

τ1
K′|H3−−−→ τ2 . ε and by the induction hypothesis Γ; K ` e′2 : τ1 . H′2 with

H2 < H′2 · H′2 and C, H′2 · H′2 →? C′, H′2. By Tapp Γ; K ` e′s : τ2 . ε · H′2 · H3

holds. Since H′2 · ε · H′2 = H′2 · H′2 by the equational theory, we can conclude
by Lemma 4.5.13 H1 · H2 · H3 < H2 · H3 < H′2 · H′2 · H3 = ε · H′2 · H′2 · H3.

– rule app3
We know that e′s = e{v/x, (λ f x.e)/ f } and ρ ` C, es → C, e′s. We prove that
Γ; K ` e{v/x, (λ f x.e)/ f } : τ2 . H3. By Lemma 4.5.11 we know that Γ; K `

e1 : τ1
K′|H3−−−→ τ2 . ε and Γ; K ` e2 : τ1 . ε. By hypothesis and Lemma 4.5.8

we conclude that Γ, x : τ1, f : τ1
K′|H3−−−→ τ2; K ` e : τ2 . H3. The thesis follows

because we have that Γ; K ` e{v/x, (λ f x.e)/ f } : τ2 . H3 by Lemma 4.5.9 and
that H1 · H2 · H3 < ε · H3 and C, ε→? C, ε.

• rule Tlet es = let x = e1 in e2 Γ; K ` e1 : τ1 . H1 Γ, x : τ1; K ` e2 : τ2 . H2

There are only two rules by which ρ ` C, es → C′, e′s can be derived.

– rule let1
We know that e′s = let x = e′1 in e2. By the induction hypothesis we have
that Γ; K ` e′1 : τ1 . H′1 and H1 < H′1 · H′1 and Γ; K ` e′s : τ2 . H′1 · H2, since
H1 < H′1 · H′1 from Lemma 4.5.13 we can conclude that H1 · H2 < H′1 · H′1 · H2

holds.
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– rule let2
We know that e′s = e2{v/x}, ρ ` C, es → C, e′s, Γ; K ` v : τ1 . H1 and Γ, x :
τ1; K ` e2 : τ2 . H2. By Lemma 4.5.11 Γ; K ` v : τ1 . ε and by Lemma 4.5.9
Γ; K ` e2{v/x} : τ2 . H2. The thesis follows since by Lemma 4.5.13 H1 · H2 <
ε · H2 and C, ε · H2 →? C, H2.

• rule Tif es = if e1 then e2 else e3 Γ; K ` e1 : bool . H1 Γ; K ` e2 : τ . H2

Γ; K ` e3 : τ . H3

There are three rules only by which ρ ` C, es → C′, e′s can be derived.

– rule If1
We know that e′s = if e′1 then e2 else e3. By using the induction hypothesis
we have that Γ; K ` e′1 : bool . H′1 with H1 < H′1 · H′1 and C, H′1 · H′1 →?

C′, H′1. So by rule Tif we conclude that Γ; K ` e′s : τ . H′1 · (H2 + H3) and by
Lemma 4.5.13 that H1 · (H2 + H3) < H′1 · H′1 · (H2 + H3).

– rule If2
We know that e′s = e2, ρ ` C, es →? C, e′s and Γ; K ` e2 : τ . H2. The thesis is
immediate because H1 · (H2 + H3) = H1 · H2 + H1 · H3 < H1 · H2 < ε · H2 and
C, ε · H2 →? C′, H2.

– rule If3
Similar to rule If2

• rule Tsub Γ; K ` es : τ′ . H′ τ′ ≤ τc Hs = H′ + H̃ so H′ 4 Hs

Then by the induction hypothesis Γ; K ` e′s : τ′ . H′1, H′ < H′1 · H′1 and C, H′1 ·
H′1 → C′, H′1. Since Hs < H′ < H′1 · H′1 the thesis holds.

Corollary 1 (Over-approximation). Let e be a closed expression. If Γ; K ` e : τ . H ∧ ρ `
C, e →? C′, e′, for some ρ such that Γ ` ρ : K, then there exists a sequence of transitions
C, H →? C′, H′, for some H′.

Proof. We first prove the statement for a single computation step. By using Lemma 4.4.1
we have that Γ; K ` e′ : τ . H′ with H < H′ ·H′ and C, H′ ·H′ →? C′, H′. Consider now
H, the form of which can be either cases:

• H = H′ · H′ + H
C, H′ · H′ + H → C, H′ · H′ →? C′, H′

• H = H · H′ · H′ It is sufficient to take H = ε because C, H →? C, ε, so that

C, H · H′ · H′ →? C, H′ · H′ →? C′, H′

• H =
⊗

i∈{1,...,n} ask Gi.Hi ⊗ fail and Hi = H′ · H′ for some i

C,
⊗

i∈{1,...,n}
ask Gi.Hi ⊗ fail→? C, Hi →? C′, H′
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An easy inductive reasoning on the length of the computation then suffices to prove the
statement.

Lemma 4.4.2 (Progress). Let es be a closed expression such that Γ; K ` es : τ . Hs; and let ρ

be a dynamic environment such that dom(ρ) includes the set of parameters of es, and such that
Γ ` ρ : K. If ρ ` C, es 9 and H is viable for C, i.e. C, Hs 9+ C′, fail, then es is a value.

Proof. By induction on the depth of the typing derivations and then by cases on the last
rule applied. The cases Tconst, Tfact, Tabs, Tvariation are immediate since es is a value.
The case Tvar cannot occur because es is closed with respect to identifiers. So we assume
that es is not a value and it is stuck in C.

• rule Tif es = if e1 then e2 else e3

If es is stuck, then it is only the case that e1 is stuck. By induction hypothesis this
can occur only when e1 is a value. Since Γ; K ` e1 : bool . H1 by our hypothesis and
v = true or v = f alse by Lemma 4.5.7(1), either rule if2 or if3 applies, contradiction.

• rule Tlet es = let x = e1 in e2

If es is stuck, then it is only the case that e1 is stuck. By induction hypothesis this
can occur only when e1 is a value, hence let2 rule applies, contradiction.

• rule Ttell es = tell(e)
If es is stuck, then it is only the case that e is stuck. By induction hypothesis this
can occur only when e is a value v and by Lemma 4.5.7(4) v = F, so the rule tell2
applies, contradiction.

• rule Tretract es = retract(e)
Similar to the Ttell case.

• rule Tappend es = e1 ∪ e2

If es is stuck then there are only two cases: (1) e1 is stuck; (2) e1 is a value and e2

is stuck. If e1 is stuck by induction hypothesis e1 is a value and by Lemma 4.5.7(3)
e1 = (x){Va}. If e2 reduces, rule vappend2 applies, contradiction. If e2 is stuck
we are in case (2). By induction hypothesis e2 is a value and Lemma 4.5.7(3)
e2 = (y){Va}, hence, rule vappend3 applies, contradiction.

• rule Tsub

Straightforward by induction hypothesis

• rule Tapp es = e1 e2

If es is stuck then there are only two cases: (1) e1 is stuck; (2) e1 is a value and e2

is stuck. If e1 is stuck by induction hypothesis e1 is a value and by Lemma 4.5.7(2)
e1 = fun f x ⇒ e. If e2 reduces, rule app2 applies, contradiction. If e2 is stuck we
are in case (2). By induction hypothesis e2 is a value, hence, rule app3 applies,
contradiction.

• rule Tdvar es = x̃
If es is stuck we can have two cases only. The first case is that x̃ /∈ dom(ρ). But this
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is not possible because DFV(es) ⊆ dom(ρ) by our hypothesis. The second case
is that ρ(x̃) = Va and dsp(C, Va) is not defined. But this is not possible because
C, Hs 9? C′, fail by our hypothesis, so the dsp(C, Va) is defined and dvar rule
applies, contradiction.

• rule Tvapp es = #(e1, e2)

If es is stuck then there are only two cases: (1) e1 is stuck; (2) e1 is a value and e2

is stuck. If e1 is stuck by induction hypothesis e1 is a value and by Lemma 4.5.7(3)
e1 = (x){Va}. If e2 reduces, rule VaApp2 applies, contradiction. If e2 is stuck we
are in case (2). By induction hypothesis e2 is a value, hence, rule VaApp3 applies,
contradiction.

• rule Tdlet es = dlet x̃ = e1 when G in e2

If es is stuck, then it is only the case that e2 is stuck. By the premise of Tdlet rule
and by Definition 4.4.1 Γ ` ρ′ : K′ with ρ′ = ρ[G.e, ρ(x̃)/x̃] and K′ = Kx̃, (x̃, τ, ∆′).
Since DFV(e2) ⊆ DFV(es) ⊆ dom(ρ) ⊆ dom(ρ′) we can apply the induction hy-
pothesis so e2 is a value. In this case the dlet2 rule applies, contradiction.

Theorem 4.4.3 (Correctness). Let es be a closed expression such that Γ; K ` es : τ . Hs; let
ρ be a dynamic environment such that dom(ρ) includes the set of parameters of es, and that
Γ ` ρ : K; and let C be a context such that Hs is viable i.e. C, Hs 9+ C′, fail. Then either the
computation terminates yielding a value (ρ ` C, es →? C′′, v) or it diverges, but it never gets
stuck.

Proof (By contradiction). Assume that ρ ` C, es →i C′′, ei
s 9 for some i ∈ N where ei

s is
a non-value stuck expression. By Corollary 1 we have Γ; K ` ei

s : τ . Hi
s and C, Hs →?

C′′, Hi
s, and since C, Hs 9 C′, fail we have also C, Hi

s 9 C′, fail. Then, Lemma 4.4.2
suffices to show that ei

s is a value (contradiction).

4.6 Loading-time Analysis

As said in Section 4.1, in the execution model of MLCoDa the compiler produces a
triple (Cp, ep, Hp) made of the application context, the object code and the effect over-
approximating the behaviour of the application. Using it, the virtual machine of MLCoDa

performs a linking and verification phases at loading time. During the linking phase,
system variables are resolved and the initial context C is constructed, combining Cp and
the system context. Regarding the verification phase, we check whether applications
adapt to all evolutions of C that may occur at runtime, i.e., that all dispatching invo-
cations will always succeed. Only programs which pass this verification phase will be
run. To do that efficiently and to pave the way for checking further properties (e.g. see
Section 4.8), we build a graph G describing all possible evolutions of the initial context,
exploiting the history expression Hp. Technically, we compute G through a static anal-
ysis, specified in terms of Flow Logic. Below, we first describe the specification of our
analysis and then an algorithm for it.
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C, (� · H)l → C, H C, εl → C, � C, tell Fl → C ∪ {F}, �

C, retract Fl → C\{F}, �
C, H1 → C′, H′1

C, (H1 + H2)
l → C′, H′1

C, H2 → C′, H′2
C, (H1 + H2)

l → C′, H′2

C, H1 → C′, H′1
C, (H1 · H2)

l → C′, (H′1 · H2)
l C, (µh.H)l → C, H[(µh.H)l/h]

C � G

C, (ask G.H ⊗ ∆)l → C, H

C 2 G

C, (ask G.H ⊗ ∆)l → C, ∆

Figure 4.8: New semantics of History Expressions

4.6.1 Analysis Specification

Here, we introduce our analysis of history expression and define the notion of viability
on them. Intuitively, a history expression is viable for an initial context if the dispatching
mechanism always succeeds.

To support the formal development, we assume that history expressions are uniquely
labelled on a given set of Lab as follows

H ::=� | εl | hl | (µh.H)l | tell Fl | retract Fl | (H1 + H2)
l | (H1 · H2)

l | ∆

∆ ::=(ask G.H ⊗ ∆)l | faill

In addition, we introduce for technical reasons a new empty history expression � which
is unlabelled. This is because our analysis is syntax-driven, and we need to distinguish
when the empty history expression comes from the syntax (εl) and when it is instead
obtained by reduction in the semantics (�). The semantics of history expressions is
accordingly modified, and Figure 4.8 displays it (apart from labels and �, this semantics
and the old one clearly coincide). Furthermore, without loss of generality, we assume
that all bound variables occurring in a history expression are distinct. To keep trace of
the history expression (µh.Hl1

1 )
l2 where the a bound variable hl is introduced, we shall

use a suitable function, called K.
A result of the analysis is a pair of functions Σ◦, Σ• : Lab→ ℘(Context ∪ {•}) where

• is the distinguished “failure” context representing a dispatching failure. For each label
l, the set Σ◦(l) over-approximates the set of contexts that may arise before evaluating Hl

(call it pre-set); instead Σ•(l) over-approximates the set of contexts that may result from
the evaluation of Hl (call it post-set).

We define the specification of our analysis through the validity relation

� ⊆ AE ×H

where AE = (Lab→ ℘(Context∪ {•}))2 is the domain of the results of the analysis and
H the set of history expressions. We write (Σ◦, Σ•) � Hl , when the pair (Σ◦, Σ•) is an



112 A Declarative approach to Context-Oriented Programming

acceptable analysis estimate for the history expression Hl . The notion of acceptability
will then be used in Definition 4.6.2 to check whether the history expression Hp, hence
the expression e it is an abstraction of, will never fail in a given initial context C.

In Figure 4.9 we give the inference rules that inductively define the validity relation
�. Now, we briefly comment on them, where E denotes the estimate (Σ◦, Σ•).

The rule Anil says that every pair of functions is an acceptable estimate for the
“semantic” empty history expression �. The estimate E is acceptable for the “syntactic”
εl if the pre-set is included in the post-set (rule Aeps). By the rule Atell/Aretract, E is
acceptable if for all context C in the pre-set, the context C ∪ {F}/C\{F} is in the post-
set. The rules Aseq1 and Aseq2 handle the sequential composition of history expressions.
The rule Aseq1 states that (Σ◦, Σ•) is acceptable for H = (Hl1

1 · H
l2
2 )

l if it is valid for both
H1 and H2. Moreover, the pre-set of H1 must include that of H and the pre-set of H2

includes the post-set of H1; finally, the post-set of H includes that of H2. The rule Aseq2
states that E is acceptable for H = (� · Hl2

1 )
l if it is acceptable for H1 and the pre-set of

H1 includes that of H, while the post-set of H includes that of H1. By the rule Asum, E is
acceptable for H = (Hl1

1 + Hl2
2 )

l if it is valid for H1 and H2; the pre-set of H is included
in the pre-sets of H1 and H2; and the post-set of H includes those of H1 and H2. The
rules Aask1 and Aask2 handle the abstract dispatching mechanism. The first states that
the estimate E is acceptable for H = (ask G.Hl1

1 ⊗ ∆l2)l , provided that, for all C in the
pre-set of H, if the goal G succeeds in C then the pre-set of H1 includes that of H and
the post-set of H includes that of H1. Otherwise, the pre-set of ∆l2 must include the one
of H and the post-set of ∆l2 is included in that of H. The rule Aask2 requires • to be in
the post-set of fail. By the rule Arec E is acceptable for H = (µh.Hl1

1 )
l if it is acceptable

for Hl1
1 and the pre-set of H1 includes that of H and the post-set of H includes that of

H1. The rule Avar says that a pair (Σ◦, Σ•) is an acceptable estimate for a variable hl if
the pre-set of the history expression introducing h, namely K(h), is included in that of
hl , and the post-set of hl includes that of K(h).

We are now ready to introduce when an estimate for a history expression is valid for
an initial context.

Definition 4.6.1 (Valid analysis estimate). Given Hlp
p and an initial context C, we say that

a pair (Σ◦, Σ•) is a valid analysis estimate for Hp and C iff C ∈ Σ◦(lp) and (Σ◦, Σ•) � Hlp
p .

The following theorems state the correctness of our approach. The first guarantees
that there exists a minimal valid analysis estimate. Its existence is proved by showing
that the set of acceptable analyses forms a Moore family [NN02].

Theorem 4.6.1 (Existence of solutions). Given Hl and an initial context C, the set {(Σ◦, Σ•) |
(Σ◦, Σ•) � Hl} of the acceptable estimates of the analysis for Hl and C is a Moore family; hence,
there exists a minimal valid estimate.

As expected, we have a standard subject reduction theorem, saying that the informa-
tion recorded by a valid estimate is correct with respect to the operational semantics of
history expressions.
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Anil

(Σ◦, Σ•) � �

Aeps

Σ◦(l) ⊆ Σ•(l)

(Σ◦, Σ•) � εl

Atell

∀C ∈ Σ◦(l) C ∪ {F} ∈ Σ•(l)

(Σ◦, Σ•) � tell Fl

Aretract

∀C ∈ Σ◦(l) C\{F} ∈ Σ•(l)

(Σ◦, Σ•) � retract Fl

Aseq1
(Σ◦, Σ•) � Hl1

1
(Σ◦, Σ•) � Hl2

2 Σ◦(l) ⊆ Σ•(l1) Σ•(l1) ⊆ Σ◦(l2) Σ•(l2) ⊆ Σ•(l)

(Σ◦, Σ•) � (Hl1
1 · H

l2
2 )

l

Aseq2
(Σ◦, Σ•) � Hl2

2 Σ◦(l) ⊆ Σ•(l2) Σ•(l2) ⊆ Σ•(l)

(Σ◦, Σ•) � (� · Hl2
2 )

l

Asum

(Σ◦, Σ•) � Hl1
1 Σ◦(l) ⊆ Σ◦(l1) Σ•(l1) ⊆ Σ•(l)

(Σ◦, Σ•) � Hl2
2 Σ◦(l) ⊆ Σ◦(l2) Σ•(l2) ⊆ Σ•(l)

(Σ◦, Σ•) � (Hl1
1 + Hl2

2 )
l

Aask1
∀C ∈ Σ◦(l) (C � G =⇒ (Σ◦, Σ•) � Hl1 Σ◦(l) ⊆ Σ◦(l1) Σ•(l1) ⊆ Σ•(l))

(C 2 G =⇒ (Σ◦, Σ•) � ∆l2 Σ◦(l) ⊆ Σ◦(l2) Σ•(l2) ⊆ Σ•(l))

(Σ◦, Σ•) � (ask G.Hl1 ⊗ ∆l2)l

Aask2
• ∈ Σ•(l)

(Σ◦, Σ•) � faill

Arec

(Σ◦, Σ•) � Hl1 Σ◦(l) ⊆ Σ◦(l1) Σ•(l1) ⊆ Σ•(l)

(Σ◦, Σ•) � (µh.Hl1)l

Avar

K(h) = (µh.Hl1)l′ Σ◦(l) ⊆ Σ◦(l′) Σ•(l′) ⊆ Σ•(l)

(Σ◦, Σ•) � hl

Figure 4.9: Specification of the analysis for History Expressions
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Σ1
◦ Σ1

•
1 {{F2, F5, F8}} {{F1, F2, F5, F8}}
2 {{F1, F2, F5, F8}} {{F1, F5, F8}}
3 {{F1, F5, F8}} {{F1, F5}}
4 ∅ {•}
5 {{F1, F5, F8}} {{F1, F5}}
6 {{F1, F2, F5, F8}} {{F1, F5}}
7 {{F2, F5, F8}} {{F1, F5}}
8 {{F2, F5, F8}} {{F2, F5}}
9 ∅ ∅
10 ∅ {•}
11 ∅ ∅
12 {{F2, F5, F8}} {{F2, F5}}
13 {{F2, F5, F8}} {{F1, F5},{F2, F5}}

{F2, F5, F8}

{F1, F2, F5, F8} {F2, F5}

{F1, F5, F8}

{F1, F5}

tell F1 ask F5 ∧ retract F8

retract F2

ask F8 ∧ retract F5

Figure 4.10: The analysis result (on top) and the evolution graph (on bottom) for the
context C = {F2, F5, F8} and the history expression Ha.

Theorem 4.6.2 (Subject Reduction). Let Hl be a closed history expression such that (Σ◦, Σ•) �
Hl . If for all C ∈ Σ◦(l) it is C, Hl → C′, H′l

′
then (Σ◦, Σ•) � H′l

′
and Σ◦(l) ⊆ Σ◦(l′) and

Σ•(l′) ⊆ Σ•(l).

Now we can define when a history expression Hp is viable for an initial context C,
i.e. when it passes the verification phase. In the following definition, let lfail(H) be the
set of labels of the fail sub-terms in H:

Definition 4.6.2 (Viability). Let Hp be an history expression and C be an initial context.
We say that Hp is viable for C if there exists the minimal valid analysis estimate (Σ◦, Σ•)
such that ∀l ∈ dom(Σ•)\lfail(Hp) it is • /∈ Σ•(l).

Example 4.6.1. We illustrate how viability is checked through a couple of examples.
Consider the history expression

Ha =((tell F1
1 · (retract F2

2 · (ask F8.retract F3
5 ⊗ fail4)5)6)7+
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Σ2
◦ Σ2

•
1 {{F2, F5, F8}} {{F1, F2, F5, F8}}
2 {{F1, F2, F5, F8}} {{F1, F5, F8}}
3 {{F2, F5, F8}} {{F1, F5, F8}}
4 {{F2, F5, F8}} {•}
5 ∅ ∅
6 {{F2, F5, F8}} {•}
7 {{F2, F5, F8}} {{F1, F5, F8}, •}

{F2, F5, F8}

{F1, F2, F5, F8} •

{F1, F5, F8}

tell F1 ask F3

retract F2

Figure 4.11: The analysis result (on top) and the evolution graph (on bottom) for the
context C = {F2, F5, F8} and the history expression H′a

(ask F5.retract F8
8 ⊗ (ask F3.retract F9

4 ⊗ fail10)11)12)13

and the initial context C = {F2, F5, F8}, consisting of facts only. For each label l occurring
in Ha, Figure 4.10 shows the corresponding values of Σ1

◦(l) and Σ1
•(l), respectively. The

column describing Σ• contains • only for l ∈ {4, 7} which are the labels of fail, so Ha is
viable for C.

Now consider the following history expression that fails to pass the verification
phase, when put in the same initial context C used above:

H′a = ((tell F1
1 · retract F2

2 )
3 + (ask F3.retract F5

4 ⊗ fail6)4)7

Indeed H′a is not viable because the goal F3 does not hold in C, and this is reflected by
the occurrences of • in Σ2

•(4) and Σ2
•(7) as shown in Figure 4.11.

Now we exploit the result of the above analysis to build up the evolution graph G de-
scribing how the initial context C evolves at runtime. The abstract machine can use G to
study how the application interacts with and affects the context. Reachability of specific
contexts is easily checked on this graph. It can help verifying, besides viability, various
other properties of the application behaviour, both functional and non-functional. For
example, we could equip the language with security policies, and exploit the evolution
graph to statically detect which context changes may lead to security violations (see ??).

In the following let Fact∗ and Lab∗ be the set of facts and the set of labels occurring in
Hp, the history expression under verification. Intuitively, G is a direct graph, the nodes
of which are the set of contexts reachable from an initial context C, while running Hp.
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There is an arc between two nodes C1 and C2 if C2 is obtained from C1 through telling
or removing a fact F.

Definition 4.6.3 (Evolution graph). Let Hp be a history expression, C be an initial con-
text, and (Σ◦, Σ•) be a valid analysis estimate.
The evolution graph of C is G = (N, E), where

N =
⋃

l∈Lab∗
(Σ◦(l) ∪ Σ•(l))

E = {(C1, C2) | ∃F ∈ Fact∗, l ∈ Lab∗ such that C1 ∈ Σ◦(l) ∧ C2 ∈ Σ•(l) ∧
((C1 = C2 \ {F}) ∨ (C2 = C1 \ {F}) ∨ (C2 = •))}

Example 4.6.2. As examples of evolution graphs consider the context C and the history
expressions Hp and H′p introduced above. The Figure 4.10 depicts the evolution graph
of C for Hp. For the sake of clarity we put a label on the arc to specify which action
changes the context. Since the node • is not reachable, Hp is viable for C. Instead, in the
evolution graph of C for H′p, displayed in Figure 4.11, the node • is reachable, showing
H′p not viable for C. Also in this case, we labelled for readability.

4.6.2 Analysis Algorithm

The idea underlying the construction of the analysis algorithm consists in reformulating
the analysis specification as a constraint satisfaction problem: its minimal solution yields
the minimal valid analysis estimate.

Given a history expression Hp we generate constraints of the form E ⊆ X ∈ SC
where E is a set-expression and X a variable, both denoting sets of contexts. Intuitively,
the set denoted by E is constrained to be a subset of the set denoted by X.

To formalize the analysis as a constraint satisfaction problem, we first define the syn-
tax of set-expressions and their semantics (Definition 4.6.4); the function C [_] : H→ SC
which generates constraints from a history expression (Definition 4.6.5); the constraints
satisfaction relation �sc⊆ AE × SC saying when a set of constraints is satisfied by an
analysis estimate (Definition 4.6.6); finally, we prove that the valid estimates of the analy-
sis (Definition 4.6.1) coincide with the solutions of the constraint system (Theorem 4.6.3).

Let Hp be the history expression to be analysed, and let Goal∗, Fact∗ and Lab∗ be the
goals, the facts and the labels occurring in Hp, respectively; furthermore, let Context∗ be
the set of all contexts that may be generated from the initial context Cp by asserting and
retracting the facts in Fact∗. Note that all the sets above are finite. Our set-expressions
are defined as

X ∈ SetVar C ∈ Context∗ G ∈ Goals∗ F ∈ Facts∗

E ::= X | {•} | {C} | E t F | E \ F | E � G | E 2 G | E1 ⇒ E2

where X is a variable; {•} is the singleton containing the bullet; the expression E t F
denotes the set of contexts of E where we have added the fact F to each element; the
expression E \ F denotes the set of contexts of E where we have removed the fact F from
each element; the expression E � G denotes the subset of E containing only the contexts
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satisfying the goal G; the expression E 2 G denotes the subset of E containing only the
contexts not satisfying the goal G; the expression E1 ⇒ E2 is a conditional expression:
intuitively, the result is empty if the set E1 is such, otherwise it is E2.

The idea underlying our representation is based on the fact that the analysis is de-
fined on the syntax. Consequently, the labels relevant for computing the estimates of
the analysis are those in Lab∗, and the contexts occurring therein are those belonging to
Context∗. Since Lab∗ is finite we can represent a function Σ : Lab∗ → ℘(Context∗ ∪ {•})
through a set of variables. The value of each variable is intended to be the set of contexts
associated with a given label. To make this link manifest, we define SetVar as

SetVar = { Σ̂◦(l) | l ∈ Lab∗ } ∪ { Σ̂•(l) | l ∈ Lab∗ }

For the sake of clarity, we subscript variables with ◦ and • to indicate to which element
of analysis estimate the variable refers.

The meaning of a set-expression is formalized as follow

Definition 4.6.4 (Set-expression semantics). Given an analysis estimate (Σ◦, Σ•) the se-
mantics of set expressions is specified by the function J_K : E → AE → ℘(Context∗ ∪
{•}) defined as

JΣ̂◦(l)K(Σ◦, Σ•) = Σ◦(l)

JΣ̂•(l)K(Σ◦, Σ•) = Σ•(l)

J{•}K(Σ◦, Σ•) = {•}
J{C}K(Σ◦, Σ•) = {C}
JE t FK(Σ◦, Σ•) = {C ∪ {F} | C ∈ JEK(Σ◦, Σ•)}
JE \ FK(Σ◦, Σ•) = {C \ {F} | C ∈ JEK(Σ◦, Σ•)}
JE � GK(Σ◦, Σ•) = {C ∈ JEK(Σ◦, Σ•) | C � G}
JE 2 GK(Σ◦, Σ•) = {C ∈ JEK(Σ◦, Σ•) | C 2 G}

JE1 ⇒ E2K(Σ◦, Σ•) =

{
JE2K(Σ◦, Σ•) if JE1K(Σ◦, Σ•) 6= ∅

∅ otherwise

Given a history expression H, the function C [_] : H→ SC generates the wanted set
of constraints, mimicking the specification rules in Figure 4.9.

Definition 4.6.5 (Generation function). Given a history expression Hlp
p and an initial

context C, the set of constraints for Hlp
p and C is S = {{C} ⊆ Σ̂◦(lp)} ∪ C

[
Hlp

p

]
, where

the function C [_] : H→ SC is inductively defined as follow

C [�] = ∅

C
[
εl
]
= {Σ̂◦(l) ⊆ Σ̂•(l)}
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C
[
tell Fl

]
= {Σ̂◦(l) t F ⊆ Σ̂•(l)}

C
[
retract Fl

]
= {Σ̂◦(l) \ F ⊆ Σ̂•(l)}

C
[
(Hl1

1 · H
l2
2 )

l
]
= C [H1] ∪ C [H2] ∪ {Σ̂◦(l) ⊆ Σ̂•(l1), Σ̂•(l1) ⊆ Σ̂◦(l2), Σ̂•(l2) ⊆ Σ̂•(l)}

C
[
(Hl1

1 + Hl2
2 )

l
]
= C [H1] ∪ C [H2]∪

{Σ̂◦(l) ⊆ Σ̂◦(l1), Σ̂•(l1) ⊆ Σ̂•(l), Σ̂◦(l) ⊆ Σ̂◦(l2), Σ̂•(l2) ⊆ Σ̂•(l)}

C
[
(µh.Hl1)l

]
= C [H] ∪ {Σ̂◦(l) ⊆ Σ̂◦(l1), Σ̂•(l1) ⊆ Σ̂•(l)}

C
[

hl
]
= {Σ̂◦(l) ⊆ Σ̂◦(l1), Σ̂•(l1) ⊆ Σ̂•(l)} K(h) = (µh.H)l1

C
[
(askG.Hl1 ⊗ ∆l2)l

]
= C [H] ∪ C [∆] ∪ {Σ̂◦(l) � G ⇒ Σ̂◦(l) ⊆ Σ̂◦(l1), Σ̂◦(l) � G ⇒ Σ̂•(l1) ⊆ Σ̂•(l),

Σ̂◦(l) 2 G ⇒ Σ̂◦(l) ⊆ Σ̂◦(l2), Σ̂◦(l) 2 G ⇒ Σ̂•(l2) ⊆ Σ̂•(l)}

C
[
faill
]
= {•} ⊆ Σ̂•(l)

In the following, it is convenient to assume that C
[

Hlp
p

]
includes also {C} ⊆ Σ̂◦(lp).

By using the semantics of set-expressions, we define the relationship �sc⊆ AE × SC
specifying when an analysis estimate (Σ◦, Σ•) satisfies a set of constraints

Definition 4.6.6 (Constraints satisfaction). Given an analysis estimate (Σ◦, Σ•) and a set
of constraints sc ∈ SC, the relation �sc is defined as

(Σ◦, Σ•) �sc sc ⇐⇒ ∀E1 ⊆ E2 ∈ sc JE1K(Σ◦, Σ•) ⊆ JE2K(Σ◦, Σ•)

The following theorem ensures that the two formulations of the analysis are equiva-
lent

Theorem 4.6.3 (Equivalence). Let H be a history expression and let (Σ◦, Σ•) be an analysis
estimate, then

(Σ◦, Σ•) � H ⇐⇒ (Σ◦, Σ•) �sc C [H]

The above theorem guarantees that the solutions of the set constraints C [H] are valid
analysis estimates and vice versa.

As an example, consider the history expression Hp = (tell F1
1 · retract F2

2 )
3 and the

initial context C = {F2, F3, F5}, made of facts only. The table at the top of Figure 4.12
shows the constraints generated for each subterm of Hp, whose union gives the con-
straints for Hp. For the subterm tell F1

1 we generate Σ̂◦(1) t F1, the set of contexts where
the fact F1 is added to each element of Σ̂◦(1), so mimicking the premise of the rule
Atell. Analogously, for the subterm retract F2

2 : the constraint Σ̂◦(2) \ F2 records that the
fact F2 is removed from each element of Σ̂◦(2)) (see the premise of the rule Aretract).
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Subterms of Hp Constraints
tell F1

1 { Σ̂◦(1) t F1 ⊆ Σ̂•(1) }
retract F2

2 { Σ̂◦(2) \ F2 ⊆ Σ̂•(2) }
(tell F1

1 · retract F2
2 )

3 { Σ̂◦(3) ⊆ Σ̂◦(1), Σ̂•(1) ⊆ Σ̂◦(2),
Σ̂•(2) ⊆ Σ̂•(3), {F2, F3, F5} ∈ Σ̂◦(3) }

1 2 3
Σ◦ {{F2, F3, F5}} {{F1, F2, F3, F5}} {{F2, F3, F5}}
Σ• {{F1, F2, F3, F5}} {{F1, F3, F5}} {{F1, F3, F5}}

Figure 4.12: The constraints (on top) and their solution (on bottom) for the history
expression Hp = (tell F1

1 · retract F2
2 )

3 and the context C = {F2, F3, F5}.

The constraints in the last row correspond to the preconditions of the rule ASeq1. Addi-
tionally, they include the constraint {F2, F3, F5} ∈ Σ̂◦(3) as required by the definition of
valid estimate (Definition 4.6.1).

The valid analysis estimate displayed at the bottom of Figure 4.12 is a solution to the
constraints for Hp. Below we verify the satisfaction for the constraints of Hp by using
Definition 4.6.4:

(Σ◦, Σ•) �sc Σ̂◦(1) t F1 ⊆ Σ̂•(1) ⇔ JΣ̂◦(1) t F1K (Σ◦, Σ•) ⊆ JΣ̂•(1)K (Σ◦, Σ•)

⇔ {{F1, F2, F3, F5}} ⊆ {{F1, F2, F3, F5}}
(Σ◦, Σ•) �sc Σ̂◦(2) \ F2 ⊆ Σ̂•(2) ⇔ JΣ̂◦(2) \ F2K (Σ◦, Σ•) ⊆ JΣ̂•(2)K (Σ◦, Σ•)

⇔ {{F1, F3, F5}} ⊆ {{F1, F3, F5}}
(Σ◦, Σ•) �sc Σ̂◦(3) ⊆ Σ̂◦(1) ⇔ JΣ̂◦(3)K (Σ◦, Σ•) ⊆ JΣ̂◦(1)K (Σ◦, Σ•)

⇔ {{F2, F3, F5}} ⊆ {{F2, F3, F5}}
(Σ◦, Σ•) �sc Σ̂•(1) ⊆ Σ̂◦(2) ⇔ JΣ̂•(1)K (Σ◦, Σ•) ⊆ JΣ̂◦(2)K (Σ◦, Σ•)

⇔ {{F1, F2, F3, F5}} ⊆ {{F1, F2, F3, F5}}
(Σ◦, Σ•) �sc Σ̂•(2) ⊆ Σ̂•(3) ⇔ JΣ̂•(2)K (Σ◦, Σ•) ⊆ JΣ̂•(3)K (Σ◦, Σ•)

⇔ {{F1, F3, F5}} ⊆ {{F1, F3, F5}}
(Σ◦, Σ•) �sc {F2, F3, F5} ⊆ Σ̂◦(3) ⇔ J{F2, F3, F5}K (Σ◦, Σ•) ⊆ JΣ̂◦(3)K (Σ◦, Σ•)

⇔ {{F2, F3, F5}} ⊆ {{F2, F3, F5}}

To solve a system of constraints we define a worklist algorithm by instantiating the
general schema in [NNH05] (Chapter 6). Given a set of constraints S , it produces as
solution an assignment E for the variables (represented as an array) occurring in the
constraints. The algorithm is displayed in Figure 4.13. It uses three data structures: the
list W which records the constraints to be further elaborated; the array E , indexed by
variables, which represents the current (partial) solution; and the array A which stores
for each variable which constraints its value influences.

In the first step we initialize our data structures. At the end of this stepW stores the
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constraint {C} ⊆ X, put on the initial context C; E gets the value ∅ for each element;
each element X of A contains the constraints where X occurs in the left-hand side.

In the second step of the algorithm we compute the solution by stepwise refinements
of E ; at the end of the execution E stores the minimal solution of the constraints in S . In
each iteration we extract a constraint E ⊆ X from W and compute the value of E (new)
in the current solution E through the semantic function J_K. Note that for readability we
assume an implicit type coercion from the array E to an analysis estimate (Σ◦, Σ•). If
the value new is not included in the assignment for the variable X (the constraint is not
satisfied), we update its value by adding the one of E (E [X] ∪ new). Changing the value
for variable X may affect the satisfiability of the constraints E′ ⊆ X′, in which X occurs
in E′. For this reason, we add to W all the constraints A[X]. The algorithm terminates
whenW is empty, i.e. when all the constraints are satisfied.

Figure 4.14 shows the iterations of the algorithm to solve the constraints in Fig-
ure 4.12. After the initialization (iteration 0), W contains the constraint {C} ⊆ Σ̂◦(3),
the array E gets ∅ for all elements and A is initialized as shown at the bottom of Fig-
ure 4.14. After the iteration 1, we have that {C} ⊆ Σ̂◦(3) is removed from W , E [Σ̂◦(3)]
includes the context C and the constraint Σ̂◦(3) ⊆ Σ̂◦(1) is inserted into W . The algo-
rithm terminates at the iteration 6 whenW becomes empty.

Our algorithm inherits the correctness and the properties from the general schema.
In particular, the following theorem holds:

Theorem 4.6.4 (Termination and Correctness of the Analysis Algorithm). Let H be a
history expression of size n and let h be the height of the complete lattice ℘(Context∗ ∪{•}). The
algorithm in Figure 4.13 always terminates and computes the minimal solution of the constraints
C [H] in time O(h · n).

The complexity of our algorithm depends on the value of height h of ℘(Context∗ ∪
{•}). We conjecture that this value depends on the size n of the history expression to
be analysed. If this value is large, the algorithm will perform many iterations before
converging to the solution. Several approaches have been proposed to keep efficient the
execution of the algorithm in practice, e.g. [Bou93, AS13]. These approaches consists
of introducing a widening operator to speed up the fixed point calculation, but in this
thesis we omit that optimisation.

4.7 Properties of the Analysis

In this we prove the correctness and some properties about our loading time analysis,
in particular Theorems 4.6.1 and 4.6.2.

4.7.1 Analysis specification

First of all, we define the complete lattice of the analysis estimate by ordering ℘(Context)
by inclusion and by exploiting the standard construction of cartesian product and func-
tional space [DP02].
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Input: A set S of constraints E1 ⊆ X1, . . . , En ⊆ Xn
Output: The least solution E

Step 1: Initialization ofW , E and A;

W := ∅;
for Xi do A[Xi] = ∅;

for E ⊆ X ∈ S do
E [X] := ∅;

for X′ ∈ vars(E) do
A[X′] := A[X′] ∪ {E ⊆ X};

end

if E = {C} then
W := W ∪ {E ⊆ X};

end

Step 2: Iteration (updating W and E );

whileW = {E ⊆ X} ∪W ′ do
W := W ′;
new := JEK E ;

if new * E [X] then
E [X] := E [X] ∪ new;

for E′ ⊆ X′ ∈ A[X] do

W := W ∪ {E′ ⊆ X′};
end

end

Figure 4.13: The worklist algorithm to solve constraints over set-expression

Definition 4.7.1 (Analysis Estimates Order). Given two analysis estimates (Σ1
◦, Σ1

•) and
(Σ2
◦, Σ2

•) we say (Σ1
◦, Σ1

•) v (Σ2
◦, Σ2

•) iff Σ1
◦(l) ⊆ Σ2

◦(l) and Σ1
•(l) ⊆ Σ2

•(l) for all l ∈
Lab, where ⊆ is the order of ℘(Context). Furthermore, we define (Σ1

◦, Σ1
•) u (Σ2

◦, Σ2
•) =

(Σ1
◦ u Σ2

◦, Σ1
• u Σ2

•) = (λl.Σ1
◦(l) ∩ Σ2

◦(l), λl.Σ1
•(l) ∩ Σ2

•(l)).

By exploiting standard lattice theory results it is straightforward prove that analysis
estimates are a complete lattice [DP02]. In the following we denote the top of this lattice
with (Σ>, Σ>).

Lemma 4.7.1.

1. Let be (Σ>, Σ>) the top of lattice of the analysis estimates, then (Σ>, Σ>) � Hl for all Hl

2. Let be (Σ1
◦, Σ1

•) and (Σ2
◦, Σ2

•), if (Σ1
◦, Σ1

•) � Hl and (Σ2
◦, Σ2

•) � Hl then (Σ1
◦ u Σ2

◦, Σ1
• u

Σ2
•) � Hl
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Iteration W Σ̂◦(1) Σ̂◦(2) Σ̂◦(3) Σ̂•(1) Σ̂•(2) Σ̂•(3)
0 {C} ⊆ Σ̂◦(3) ∅ ∅ ∅ ∅ ∅ ∅
1 ��

���
�

{C} ⊆ Σ̂◦(3) Σ̂◦(3) ⊆ Σ̂◦(1) ∅ ∅ C ∅ ∅ ∅
2 ((((

(((Σ̂◦(3) ⊆ Σ̂◦(1) Σ̂◦(1) t F1 ⊆ Σ̂•(1) C ∅ C ∅ ∅ ∅
3 (((

((((
(

Σ̂◦(1) t F1 ⊆ Σ̂•(1) Σ̂•(1) ⊆ Σ̂◦(2) C ∅ C C1 ∅ ∅
4 ((((

(((Σ̂•(1) ⊆ Σ̂◦(2) Σ̂◦(2) \ F2 ⊆ Σ̂•(2) C C1 C C1 ∅ ∅
5 (((

((((
(

Σ̂◦(2) \ F2 ⊆ Σ̂•(2) Σ̂•(2) ⊆ Σ̂•(3) C C1 C C1 C2 ∅
6 ((((

(((Σ̂•(2) ⊆ Σ̂•(3) ∅ C C1 C C1 C2 C2

C = {F2, F3, F5}, C1 = {F1, F2, F3, F5}, C2 = {F1, F3, F5}

Σ̂◦(1) Σ̂◦(2) Σ̂◦(3) Σ̂•(1) Σ̂•(2) Σ̂•(3)
Σ̂◦(1) t F1 ⊆ Σ̂•(1) Σ̂◦(2) \ F2 ⊆ Σ̂•(2) Σ̂◦(3) ⊆ Σ̂◦(1) Σ̂•(1) ⊆ Σ̂◦(2) Σ̂•(2) ⊆ Σ̂•(3) ∅

Figure 4.14: The iterations of the worklist algorithm to solve constraints in Figure 4.12
(top) and the content of the corresponding array A (bottom).

Proof. The thesis can be proved by induction on the structure of Hl and by using the
analysis rules. The proof is quite standard and below we only discuss the case Hl =

(Hl1
1 · H

l2
2 )

l .

1. By induction hypothesis we know that (Σ>, Σ>) � Hli
i for i ∈ {1, 2}. By definition

of Σ>, it holds that ∀l′ ∈ Lab Σ>(l′) = Context. Then, it holds Σ>(l) ⊆ Σ>(l1) and
Σ>(l1) ⊆ Σ>(l2) and Σ>(l2) ⊆ Σ>(l). These inclusions satisfy the premise of the
rule Aseq1, then we conclude (Σ>, Σ>) � Hl . The others cases follows the same
schema.

2. From hypothesis (Σ1
◦, Σ1

•) � Hl and the premise of rule Aseq1, we know that
Σ1
◦(l) ⊆ Σ1

◦(l1), Σ1
•(l1) ⊆ Σ1

◦(l2), Σ1
•(l2) ⊆ Σ1

•(l) and that Σ2
◦(l) ⊆ Σ2

◦(l1), Σ2
•(l1) ⊆

Σ2
◦(l2), Σ2

•(l2) ⊆ Σ2
•(l). Since ∩ is monotonic with respect ⊆ it holds Σ1

◦(l) ∩
Σ2
◦(l) ⊆ Σ1

◦(l1)∩Σ2
◦(l1), Σ1

•(l1)∩Σ2
•(l1) ⊆ Σ1

◦(l2)∩Σ2
◦(l2), Σ1

•(l2)∩Σ2
•(l2) ⊆ Σ1

•(l)∩ ⊆
Σ2
•(l). Then by the induction hypothesis and by the above inclusions we satisfy

the premise of rule (Aseq1) and we conclude (Σ1
◦ u Σ2

◦, Σ1
• u Σ2

•) � Hl .

By exploiting the above two lemmata we can prove:

Theorem 4.6.1 (Existence of solutions). Given Hl and an initial context C, the set {(Σ◦, Σ•) |
(Σ◦, Σ•) � Hl} of the acceptable estimates of the analysis for Hl and C is a Moore family; hence,
there exists a minimal valid estimate.

Proof. We need to show that given a set of solutions Y = {(Σi
◦, Σi

•) | i ∈ {1, . . . , n}} ⊆
{(Σ◦, Σ•) | (Σ◦, Σ•) � Hl}, uY ∈ {(Σ◦, Σ•) | (Σ◦, Σ•) � Hl}. By applying n + 1 times
Lemma 4.7.1 we have that (Σ>, Σ>) u (Σ1

◦, Σ1
•) u · · · u (Σn

◦ , Σn
•) � Hl holds.

The following definition and lemmata helps us to prove the subject reduction result.
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Definition 4.7.2 (Immediate subterm). Let H and H1 be history expressions (for sim-
plicity we ignore labels). We say that H1 is an immediate subterm of H if H = H1 + H2,
H = H2 + H1, H = H1 · H2, H = H2 · H1, H = µh.H1, H = askG.H1 ⊗ ∆.

Lemma 4.7.2 (Pre-substitution). Let Hl , Hl1
1 and Hl2

2 be history expressions such that Hl1
1 is

an immediate subterm of Hl ; let (Σ◦, Σ•) � Hl , (Σ◦, Σ•) � Hl1
1 and (Σ◦, Σ•) � Hl2

2 , for some
(Σ◦, Σ•).
If Σ◦(l1) ⊆ Σ◦(l2) and Σ•(l2) ⊆ Σ•(l1) then (Σ◦, Σ•) � Hl [Hl2

2 /Hl1
1 ].

Proof. The proof is by cases on the structure of Hl .

• case �, εl , tell Fl , faill , retract Fl , hl

straightforward

• case Hl = (Hl1
1 + Hl3

3 )
l

From the hypothesis and from the premise of rule Asum it holds Σ◦(l) ⊆ Σ◦(l1) ⊆
Σ◦(l2) and Σ•(l2) ⊆ Σ•(l1) ⊆ Σ•(l). So by applying the rule Asum with the new
inclusions we conclude (Σ◦, Σ•) � (Hl2

2 + Hl3
3 )

l

• case Hl = (Hl3
3 + Hl1

1 )
l

Similar to the previous case.

• case Hl = (Hl1
1 · H

l3
3 )

l

From the hypothesis and by the premise of rule Aseq1 we have Σ◦(l) ⊆ Σ•(l1) ⊆
Σ◦(l2) and Σ•(l2) ⊆ Σ•(l1) ⊆ Σ•(l3). So by applying the rule Aseq1 with the new
inclusions we conclude (Σ◦, Σ•) � (Hl2

2 · H
l3
3 )

l .

• case Hl = (Hl3
3 · H

l1
1 )

l

From the hypothesis and by the premise of rule Aseq1 we have Σ•(l3) ⊆ Σ◦(l1) ⊆
Σ◦(l2) and Σ•(l2) ⊆ Σ•(l1) ⊆ Σ•(l). So by applying the rule Aseq1 with the new
inclusions we conclude (Σ◦, Σ•) � (Hl3

3 · H
l1
1 )

l .

• case Hl = (µh.Hl1
1 )

l

From the hypothesis and from the premise of rule Arec we have Σ◦(l) ⊆ Σ◦(l1) ⊆
Σ◦(l2) and Σ•(l2) ⊆ Σ•(l1) ⊆ Σ•(l). So by applying the rule Arec with the new
inclusions we have (Σ◦, Σ•) � (µh.Hl2

2 )
l

• case Hl = (askG.Hl1
1 ⊗ ∆l3)l

From the hypothesis and from the premise of rule Aask1 we have Σ◦(l) ⊆ Σ◦(l1) ⊆
Σ◦(l2) and Σ•(l2) ⊆ Σ•(l1) ⊆ Σ•(l). So by the rule Aask1 with the new inclusions
we conclude (Σ◦, Σ•) � (askG.Hl2

2 ⊗ ∆l3)l

Lemma 4.7.3 (Substitution). Le Hl , Hl1
1 and Hl2

2 be history expressions such that Hl1
1 is a

subterm of Hl ; let (Σ◦, Σ•) � Hl , (Σ◦, Σ•) � Hl1
1 and (Σ◦, Σ•) � Hl2

2 , for some (Σ◦, Σ•).
If Σ◦(l1) ⊆ Σ◦(l2) and Σ•(l2) ⊆ Σ•(l1) then (Σ◦, Σ•) � Hl [Hl2

2 /Hl1
1 ].
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Proof. Since Hl1
1 is subterm of H, there exists then another subterm of H, say Hl3

3 , such
that Hl1

1 is an immediate subterm of Hl3
3 . Since (Σ◦, Σ•) � Hl , there exists then a sub-

derivation with conclusion (Σ◦, Σ•) � Hl3
3 . Since Hl1

1 is an immediate subterm of Hl3
3

there exists another subderivation with conclusion (Σ◦, Σ•) � Hl1
1 . So by applying

Lemma 4.7.2, we have (Σ◦, Σ•) � Hl3
3 [H

l2
2 /Hl1

1 ]. Since our analysis is defined on the
history expressions syntax and since Σ◦(l3) and Σ•(l3) have not changed, we can reuse
the same steps used for (Σ◦, Σ•) � Hl to prove (Σ◦, Σ•) � Hl [Hl2

2 /Hl1
1 ]

Theorem 4.6.2 (Subject Reduction). Let Hl be a closed history expression such that (Σ◦, Σ•) �
Hl . If for all C ∈ Σ◦(l) it is C, Hl → C′, H′l

′
then (Σ◦, Σ•) � H′l

′
and Σ◦(l) ⊆ Σ◦(l′) and

Σ•(l′) ⊆ Σ•(l).

Proof. By induction on the depth of the analysis derivation and then by cases on the last
rule applied.

• rule Anil

The statement vacuously holds.

• rule Aask2
The statement vacuously holds.

• rule Aeps

We know that in this case C, εl → C, �, then the statement vacuously holds.

• rule Atell

We know that in this case C, tell Fl → C ∪ {F}, �, then the statement vacuously
holds.

• rule Aretract

Similar to Atell rule

• rule Aseq1
In this case we have H = (Hl1

1 · Hl2
2 )

l and H′ = (Hl3
3 · Hl2

2 )
l . We have to prove

(Σ◦, Σ•) � (Hl3
3 · H

l2
2 )

l , Σ◦(l) ⊆ Σ◦(l) (trivial) and Σ•(l) ⊆ Σ•(l) (trivial). By Aseq1

premise it holds that (Σ◦, Σ•) � Hl1
1 , (Σ◦, Σ•) � Hl2

2 , Σ◦(l) ⊆ Σ◦(l1), Σ•(l1) ⊆ Σ◦(l2)
and Σ•(l2) ⊆ Σ◦(l). By the premise of the semantic rule it holds C, H1 → C′, Hl3

3 .
The by the induction hypothesis we have (Σ◦, Σ•) � Hl3

3 , Σ◦(l1) ⊆ Σ◦(l3) and
Σ•(l3) ⊆ Σ•(l1). So

Σ◦(l) ⊆ Σ◦(l1) ⊆ Σ◦(l3) =⇒ Σ◦(l) ⊆ Σ◦(l3)

Σ•(l3) ⊆ Σ•(l1) ⊆ Σ◦(l2) =⇒ Σ•(l3) ⊆ Σ◦(l2)

Then, by applying Aseq1 rule (Σ◦, Σ•) � (Hl3
3 · H

l2
2 )

l holds.

• rule Aseq2
In this case we know Hl = (� · Hl2

2 )
l and H′l

′
= Hl2

2 . The thesis is straightforward
by the premise of Aseq2 rule.
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• rule Asum

In this case we have Hl = (Hl1
1 + Hl2

2 )
l and two cases for H′l

′
:

1. case H′l
′
= H′l

′
1

1 . By semantic rule we know C, Hl1
1 → C′, H′l

′
1

1 , and by induc-

tion hypothesis (Σ◦, Σ•) � H′l
′
1

1 , Σ◦(l1) ⊆ Σ◦(l′1) and Σ•(l′1) ⊆ Σ•(l1). Since

Σ◦(l) ⊆ Σ◦(l1) ⊆ Σ◦(l′1) =⇒ Σ◦(l) ⊆ Σ◦(l′1)

Σ•(l′1) ⊆ Σ•(l1) ⊆ Σ◦(l) =⇒ Σ•(l′1) ⊆ Σ◦(l)

the thesis holds.

2. case H′l
′
= H′l

′
2

2 . Similar to case (1).

• rule Aask1
In this case we have Hl = (askG. Hl1

1 ⊗ ∆l2)l and two cases for H′l
′
:

1. case H′l
′
= Hl1

1 . In this case we know C � G and by the premise of Aask1 rule
we trivially (Σ◦, Σ•) � Hl1

1 , Σ◦(l) ⊆ Σ◦(l1) and Σ•(l1) ⊆ Σ•(l).

2. case H′l
′
= ∆l2 . Similar to case (1) but we know C 2 G.

• rule Arec

In this case we know Hl = (µ.Hl1
1 )

l and H′l
′
= Hl1

1 [(µ.Hl1
1 )

l/h]. By rule premise
we know (Σ◦, Σ•) � Hl1

1 , Σ◦(l) ⊆ Σ◦(l1) and Σ•(l1) ⊆ Σ•(l). We have two cases

1. h does not occur in H1. In this case the thesis trivially follows since Hl1
1 [(µ.Hl1

1 )
l/h] =

H1.

2. h occurs n times with labels l1, . . . , ln. Since (Σ◦, Σ•) � Hl1
1 and since our

analysis rules are defined on the syntax of history expressions, there exists a
subderivation of (Σ◦, Σ•) � Hl1

1 proof with conclusion (Σ◦, Σ•) � hli
. By the

premise of the rule Avar we know Σ◦(li) ⊆ Σ◦(l) and Σ•(l) ⊆ Σ•(li). So by
applying the Lemma 4.7.3 n-times, we have (Σ◦, Σ•) � Hl1

1 [(µ.Hl1
1 )

l/hli
] for

i ∈ {1, . . . , n} and Σ◦(l) ⊆ Σ◦(l1) and Σ•(l1) ⊆ Σ•(l) follow by the premise of
rule Arec.

4.7.2 Analysis Algorithm

Here, we present some properties about our constraints and the correctness of our algo-
rithm. The following lemma establishes the height of our property domain ℘(Context∗ ∪
{•}). Recall that Context∗ is the set of all contexts may be generated from the initial con-
text by a given history expression.

Lemma 4.7.4 (Height of Context Lattice). The height of the complete lattice ℘(Context∗ ∪
{•}) is #Context∗ + 1.

Proof. The longest chains of ℘(Context∗ ∪ {•}) can be built iteratively from the bottom
element ∅ by adding a element of Context∗ ∪ {•} which is not in the previous element
of the chain. These kind of chains are #Context∗ + 1 in length.
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Definition 4.7.3 (History expression size). Given a history expression H its size is given
by the function size : H→N inductively defined as

size(�) = size(εl) = size(tell Fl) = size(retract Fl) = size(faill) = size(hl) = 1

size((Hl1
1 · H

l2
2 )

l) = size((Hl1
1 + Hl2

2 )
l) = size(Hl1

1 ) + size(Hl2
2 ) + 1

size((ask G.Hl1 · ∆l2)l) = size(Hl1
1 ) + size(∆l2) + 1

size((µh.Hl1)l) = size(Hl1) + 1

The constraints generated by C [_] enjoy the following properties. The first one gives
us an upper bound to the size and to the number of variables of left-hand-size of a
constraint.

Lemma 4.7.5 (Constraints Size). Let H a history expression and let C [H] be the generated
constraints for H. Then for all E ⊆ X ∈ C [H] the size of E is at most 3 and the number of
variables in E, i.e. vars(E), is at most 2.

Proof. By Definition 4.6.5 it is easy to see that the left-hand-size of all generated con-
straints can be a variable X, a a term X� F for some fact F and � ∈ {t, \}, a term X�G
and a term X1�G ⇒ X2 with � ∈ {�, 2} for some G and X1 6= X2. The thesis follows
by considering the case X1�G ⇒ X2.

The second property says that the function C [_] generates a linear number of con-
straints with respect to the size of the history expression.

Lemma 4.7.6 (Number of Constraints). Let Hlp
p be a history expression such that size(Hp) =

n, then the cardinality of C [H] is at most 4n + 1.

Proof. By induction over the structure of Hp we prove that #(C [H] \ {{C} ⊆ Σ̂◦(lp)}) is
at most 4n. So the thesis of the lemma trivially follows.

• cases H = �, H = εl , H = hl , H = tell Fl , H = retract Fl , H = faill

In this case #C [H] ∈ {0, 1, 2} and size(H) = 1, hence, it holds #C [H] ≤ 4.

• case H = (H1 · H2)l

We have size(H) = n = n1 + n2 + 1 where ni = size(Hi) for i ∈ {1, 2}. By
induction hypothesis it holds #C [Hi] ≤ 4ni for i ∈ {1, 2}. By Definition 4.6.5 we
have

#C [H] = #C [H1] + #C [H2] + 3 ≤ 4n1 + 4n2 + 3 ≤ 4(n1 + n2 + 1) = 4n

• case H = (H1 + H2)l

Similar to that of H = (H1 · H2)l except for #C [H] = #C [H1] + #C [H2] + 4.

• case H = (ask G.H ⊗ ∆)l

Similar to that of H = (H1 · H2)l except for #C [H] = #C [H] + #C [∆] + 4.
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• case H = (µh.H1)
l

We have size(H) = n = n1 + 1 where n1 = size(H1). By induction hypothesis it
holds #C [H1] ≤ 4n1. By Definition 4.6.5 we have

#C [H] = #C [H1] + 2 ≤ 4n1 + 2 ≤ 4(n1 + 1) = 4n

Theorem 4.6.3 (Equivalence). Let H be a history expression and let (Σ◦, Σ•) be an analysis
estimate, then

(Σ◦, Σ•) � H ⇐⇒ (Σ◦, Σ•) �sc C [H]

Proof. The proof is in two parts. In the first part, we prove

(Σ◦, Σ•) � H =⇒ (Σ◦, Σ•) �sc C [H]

• case H = �
Trivial since C [�] = ∅ and (Σ◦, Σ•) �sc ∅.

• case H = εl

We need to prove (Σ◦, Σ•) �sc {Σ̂◦(l) ⊆ Σ̂•(l)}, i.e. by Definition 4.6.6 JΣ̂◦(l)K(Σ◦, Σ•) ⊆
JΣ̂•(l)K(Σ◦, Σ•). The thesis follows from the premise of the rule Aeps.

• case H = tell Fl

We have that (Σ◦, Σ•) �sc {Σ̂◦(l)t F ⊆ Σ̂•(l)} is equivalent to JΣ̂◦(l)t FK(Σ◦, Σ•) ⊆
JΣ̂•(l)K(Σ◦, Σ•) by Definition 4.6.6, {C ∪ {F} | C ∈ Σ◦(l)} ⊆ Σ•(l) . The thesis fol-
lows from applying the premise of the rule Atell.

• case H = retract Fl

Similar to the case H = tell F, replace Σ̂◦(l) \ F with Σ̂◦(l) t F and C ∪ {F} with
C \ {F}.

• case H = (Hl1
1 · H

l2
2 )

l

We need to prove (Σ◦, Σ•) �sc C [H1]∪C [H2]∪{Σ̂◦(l) ⊆ Σ̂◦(l1), Σ̂•(l1) ⊆ Σ̂◦(l2), Σ̂•(l2) ⊆
Σ̂•(l)}. By the premise of rule Aseq1 we know that it holds (Σ◦, Σ•) � Hi for
i = 1, 2; so by applying the induction hypothesis we have (Σ◦, Σ•) �sc C [Hi] for
i = 1, 2. It remains to prove (Σ◦, Σ•) �sc {Σ̂◦(l) ⊆ Σ̂•(l1), Σ̂•(l1) ⊆ Σ̂◦(l2), Σ̂•(l2) ⊆
Σ̂•(l)}, i.e. by Definition 4.6.6 and Definition 4.6.4 Σ◦(l) ⊆ Σ◦(l1), Σ•(l1) ⊆ Σ◦(l2)
and Σ•(l2) ⊆ Σ•(l). These inequalities hold by the premise of the rule Aseq1, so
the thesis follows.

• case H = (Hl1
1 + Hl2)l

We need to prove (Σ◦, Σ•) �sc C
[

Hl1
1

]
∪ C

[
Hl2

2

]
∪ {Σ̂◦(l) ⊆ Σ̂◦(l1), Σ̂•(l1) ⊆

Σ̂•(l), Σ̂◦(l) ⊆ Σ̂◦(l2), Σ̂•(l2) ⊆ Σ̂•(l)}. By the premise of the rule Asum we know
(Σ◦, Σ•) � Hi for i = 1, 2; by applying the induction hypothesis (Σ◦, Σ•) �sc C

[
Hli

i

]
holds for i = 1, 2. It remains to prove (Σ◦, Σ•) �sc {Σ̂◦(l) ⊆ Σ̂◦(l1), Σ̂•(l1) ⊆
Σ̂•(l), Σ̂◦(l) ⊆ Σ̂◦(l2), Σ̂•(l2) ⊆ Σ̂•(l)}. By applying Definition 4.6.6 and Defini-
tion 4.6.4, we have the inequalities Σ◦(l) ⊆ Σ◦(l1), Σ•(l1) ⊆ Σ•(l), Σ◦(l) ⊆ Σ◦(l2)
and Σ•(l2) ⊆ Σ•(l). These inequalities are true by the premise of the rule Asum.
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• case H = hl

Knowing K(h) = (µh.H)l1 we need to prove (Σ◦, Σ•) �sc {Σ̂◦(l) ⊆ Σ̂◦(l1), Σ̂•(l1) ⊆
Σ̂•(l)}, i.e. by applying Definition 4.6.6 and Definition 4.6.4 Σ◦(l) ⊆ Σ◦(l1), Σ•(l1) ⊆
Σ•(l)

• case H = faill

By Definition 4.6.6 and Definition 4.6.4 (Σ◦, Σ•) �sc {•} ⊆ Σ̂•(l) holds iff {•} ⊆
Σ•(l). The thesis follows from the premise of the rule Aask2.

• case H = (µh.Hl1
1 )

l

We need to prove (Σ◦, Σ•) �sc C [H] ∪ {Σ̂◦(l) ⊆ Σ̂◦(l1), Σ̂•(l1) ⊆ Σ̂•(l)}. By the
premise of the rule Arec we know (Σ◦, Σ•) � H1 holds, so by applying the induc-
tion hypothesis we have that (Σ◦, Σ•) �sc C [H1] holds too. It remains to prove
(Σ◦, Σ•) �sc {Σ̂◦(l) ⊆ Σ̂◦(l1), Σ̂•(l1) ⊆ Σ̂•(l)}, i.e. by Definition 4.6.6 and Defini-
tion 4.6.4 Σ◦(l) ⊆ Σ◦(l1), Σ•(l1) ⊆ Σ•(l). These inequalities hold by the premise of
the rule Arec.

• case H = (ask G.Hl1
1 ⊗ ∆l2)l

We need to prove (Σ◦, Σ•) �sc C [H]∪ C [∆]∪ {Σ̂◦(l) � G ⇒ Σ̂◦(l) ⊆ Σ̂◦(l1), Σ̂◦(l) �
G ⇒ Σ̂•(l1) ⊆ Σ̂•(l), Σ̂◦(l) 2 G ⇒ Σ̂◦(l) ⊆ Σ̂◦(l2), Σ̂◦(l) 2 G ⇒ Σ̂•(l2) ⊆ Σ̂•(l)}.
By the premise of the rule Aask1 we know (Σ◦, Σ•) � H and (Σ◦, Σ•) � ∆ hold, so
by applying the induction hypothesis we have (Σ◦, Σ•) �sc C [H] and (Σ◦, Σ•) �sc

C [∆]. It remains to prove (Σ◦, Σ•) �sc {Σ̂◦(l) � G ⇒ Σ̂◦(l) ⊆ Σ̂◦(l1), Σ̂◦(l) � G ⇒
Σ̂•(l1) ⊆ Σ̂•(l), Σ̂◦(l) 2 G ⇒ Σ̂◦(l) ⊆ Σ̂◦(l2), Σ̂◦(l) 2 G ⇒ Σ̂•(l2) ⊆ Σ̂•(l)}, i.e.
by Definition 4.6.6 and Definition 4.6.4 Σ◦(l) ⊆ Σ◦(l1), Σ•(l1) ⊆ Σ•(l) if at leaf a
C ∈ Σ◦(l) satisfies G, Σ◦(l) ⊆ Σ◦(l2) and Σ•(l2) ⊆ Σ•(l) if at least a C ∈ Σ◦(l)
does not satisfy G. The thesis follows by the premise of the rule Aask1.

In the second part, we prove by structural induction over H that

(Σ◦, Σ•) �sc C [H] =⇒ (Σ◦, Σ•) � H

• case H = �
trivial since the rule Anil is an axiom.

• case H = εl

By our assumption and by Definition 4.6.6 and Definition 4.6.4 we know Σ◦(l) ⊆
Σ•(l), so by applying the rule Aeps we have (Σ◦, Σ•) � εl .

• case H = tell Fl

By our assumption and by Definition 4.6.6 and Definition 4.6.4 we have {C ∪ {F} |
C ∈ Σ◦(l)} ⊆ Σ•(l). So the premise of the rule Atell is satisfied and it holds
(Σ◦, Σ•) � tell Fl .

• case H = retract Fl

Similar to the case of H = tell Fl
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• case H = faill

By our assumption and by Definition 4.6.6 and Definition 4.6.4 we know {•} ⊆
Σ•(l), so by applying the rule Aask2 we have (Σ◦, Σ•) � faill .

• case H = hl

By our assumption and by Definition 4.6.6 and Definition 4.6.4 knowing K(h) =

(µh.H)l1 we have Σ◦(l) ⊆ Σ•(l1) and Σ•(l1) ⊆ Σ•(l). The premise of the rule Avar

thus is satisfied and we conclude (Σ◦, Σ•) � hl .

• case H = (Hl1
1 · H

l2
2 )

l

By our assumption we know (Σ◦, Σ•) �sc C [Hi] for i = 1, 2 and (Σ◦, Σ•) �sc

{Σ̂◦(l) ⊆ Σ̂•(l1), Σ̂•(l1) ⊆ Σ̂◦(l2), Σ̂•(l2) ⊆ Σ̂•(l)}. By induction hypothesis we
have (Σ◦, Σ•) � Hi for i = 1, 2 hold. Also by Definition 4.6.4 we know that inequal-
ities Σ◦(l) ⊆ Σ◦(l1), Σ•(l1) ⊆ Σ◦(l2), Σ•(l2) ⊆ Σ•(l) hold. So the premise of the
rule Aseq1 is satisfied and we conclude the thesis.

• case H = (Hl1
1 + Hl2

2 )
l

By our assumption we know (Σ◦, Σ•) �sc C [Hi] for i = 1, 2 and (Σ◦, Σ•) �sc

{Σ̂◦(l) ⊆ Σ̂•(l1), Σ̂•(l1) ⊆ Σ̂•(l), Σ̂◦(l) ⊆ Σ̂•(l2), Σ̂•(l2) ⊆ Σ̂•(l)}. By induction hy-
pothesis we have (Σ◦, Σ•) � Hi for i = 1, 2 hold. Also by Definition 4.6.4 we know
that inequalities Σ◦(l) ⊆ Σ◦(l1), Σ•(l1) ⊆ Σ•(l), Σ◦(l) ⊆ Σ◦(l2), Σ•(l2) ⊆ Σ•(l)
hold. So the premise of the rule Asum is satisfied and the thesis holds.

• case H = (µ.Hl1
1 )

l

We know that (Σ◦, Σ•) �sc C [H1] and (Σ◦, Σ•) �sc {Σ̂◦(l) ⊆ Σ̂◦(l1), Σ̂•(l1) ⊆ Σ̂•(l)}
hold by our assumption. By induction hypothesis we have (Σ◦, Σ•) � H1 and by
Definition 4.6.4 we have Σ◦(l) ⊆ Σ◦(l1), Σ•(l1) ⊆ Σ•(l). The thesis follows by the
rule Arec.

• case H = (ask G.Hl1
1 ⊗ ∆l2)l

By our assumption we know (Σ◦, Σ•) �sc C [H1], (Σ◦, Σ•) �sc C [∆], (Σ◦, Σ•) �sc

{Σ̂◦(l) � G ⇒ Σ̂◦(l) ⊆ Σ̂◦(l1), Σ̂◦(l) � G ⇒ Σ̂•(l1) ⊆ Σ̂•(l), Σ̂◦(l) 2 G ⇒ Σ̂•(l) ⊆
Σ̂◦(l2), Σ̂◦(l) 2 G ⇒ Σ̂•(l2) ⊆ Σ̂•(l)}. By applying induction hypothesis we have
(Σ◦, Σ•) � H1 and (Σ◦, Σ•) � ∆. Also by Definition 4.6.4 we know that inequalities
A◦ ⊆ Σ◦(l1), A• ⊆ Σ•(l) where A◦ = Σ◦(l) and A• = Σ•(l1) if there exists a
C ∈ Σ◦(l) otherwise A◦ = A• = ∅; also, B◦ ⊆ Σ◦(l2) and B• ⊆ Σ•(l) where
B◦ = Σ◦(l) and B• = Σ•(l2) if there exists a C ∈ Σ◦(l) otherwise B◦ = B• = ∅. So
the premise of the rule Aask1 is satisfied and the thesis holds.

Theorem 4.6.4 (Termination and Correctness of the Analysis Algorithm). Let H be a
history expression of size n and let h be the height of the complete lattice ℘(Context∗ ∪{•}). The
algorithm in Figure 4.13 always terminates and computes the minimal solution of the constraints
C [H] in time O(h · n).

Proof. Since our algorithm is an instance of the general schema displayed in Table 6.1
of [NNH05], the termination and the correctness follows from Lemma 6.4 of [NNH05].
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Furthermore, they prove that the time complexity of the general schema is O(h ·M · N)

where h is the height of the property lattice; M is an upper bound to the size of the
left-hand-size of constraints; and N is the number of constraints. In our case we have
M = 3 by Lemma 4.7.5 and N = O(n) by Lemma 4.7.6, thus the complexity is O(h · n).
Moreover, by Lemma 4.7.4 we have that h = O(#Context∗), hence the overall complexity
becomes O(#Context∗ · n). As we said in Section 4.6 we conjecture that #Context∗ is a
function f (n) of history expression size and we plan either to compute f (n) or give a
good upper bound.

4.8 Security in MLCoDa

In this section we extend MLCoDa for addressing security issues, in particular for enforc-
ing security policies over the context. Our idea consists of expressing policies in Datalog
as we did for the context. The version of Datalog used in MLCoDa, i.e. Stratified Datalog
with Negation, is sufficiently expressive for security policies. Indeed, many logical lan-
guages for defining control access policies compile in it, e.g. [LM03, DeT02, BDCDVS02].
Furthermore, in this way MLCoDa requires few extensions to deal with security because
we can reuse our logical machinery.

We can distinguish two classes of policies: those specified by the system to control
the user’s behaviour, and those expressed by the application. We are only interest in
system policies. This is because the application developer has full knowledge of his
policies, and so he can directly specify them through behavioural variation constructs.
Instead, the application has no a priori knowledge about system policies; there is no
warranty then that the application was designed according to them. Hence, here we
assume a scenario in which the application is not malicious but it can violate a system
policy Φ because at development time this policy is unknown.

In this new setting, an application can also fail due to a policy violation (non-
functional failure). One would like to predict as earlier as possible if this case may occur,
but because of the open context notion of MLCoDa a fully static approach is not feasible.

Our solution consists of introducing a sort of runtime monitor that is switched on
and off at need. As we will see, the dispatching mechanism of MLCoDa suffices for
natively supporting it. However, we extend our static analysis to detect in which parts
of the code there may be policy violations, in order to provide the monitor with the
information needed to check the possible risky activities. In particular, we modify the
type and effect system so that it also computes a labelling environment, i.e. a function
storing the correspondence between the program code and the history expression. We
use this labelling environment at loading time to annotate the edge of the evolution
graph G with references (labels) to the tell and retract operations in the code. Before
launching the execution, now we also detect the unsafe operations by checking the
system policy Φ on each node of G. Our runtime monitor can guard them, while it will
be switched off on the remaining (safe) actions. Actually, we collect the labels of the
risky operations and associate the value on with them, and off with all others.

To make the above effective, we introduce a compilation schema where the compiler
substitutes a behavioural variation bv for each occurrence of a tell/retract. A runtime,
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{F5, F8}

{F1, F5, F8}

{F1, F2, F5, F8} {F1, F3, F5, F8}

{F1, F2, F4, F5, F8} {F1, F3, F4, F5, F8}

{1, 4}

{2} {5}

{8} {8}

Figure 4.15: The evolution graph for the context {F5, F8} and for the history expression
Ha = (((tell F1

1 · tell F2
2 )

3 + (tell F4
1 · tell F5

3 )
6)7·tell F8

4 )
9

bv checks if the policy Φ holds in the current context, but only when the label of is on.
In the following we first explain our approach through a running example, then we

extend the semantics of MLCoDa and its static analysis.

4.8.1 Security in the museum

Consider the museum scenario described in Section 4.2; assume that the context also
stores information about the room in which the user is through the predicate current_
room. If the user moves from the room delicate paintings to the one sculptures, the appli-
cation updates the context by executing

retract current_room(delicate_paintings)
tell current_room(sculptures).

Assume that one can take pictures in every room, but that in the delicate paintings
room it is forbidden to use the camera flash, not to damage the paintings. This policy is
specified by the museum (the system) and it must be enforced during the user’s tour. As
said policies predicate on the context, so they are easily expressed as Datalog goals. If
the fact flash_on holds when the flash is active and if button_clicked holds when the
user presses the button of the camera. The above policy phi, intuitively, corresponds to
the logical condition current_room(delicate_paintings)⇒ (button_clicked⇒ ¬ f lash_on)
and it can be expressed in Datalog by the clauses

phi ← ¬ current_room(delicate_paintings).
phi ← ¬ flash_on.
phi ← ¬ button_pressed.

Of course, the museum can specify other policies, but for simplicity we assume that there
is a unique global policy Φ, obtained by suitably combining all the required policies. The
enforcement is obtained by querying the validity of Φ in the current context. The risky
operations are those which modify the context possibly leading to a violation. Hence,
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we need to carry checks out only before every tell/retract. To better understand this
point, take the following expression ea:

let x =
if always_flash then

let y = tell photocamera_started1 in
tell flash_on2

else
let y = tell mode_museum_activated3 in

tell photocamera_started4

in
tell button_pressed5

For clarity, here (and in the syntax later), we show the labels of tell/retract in the code,
inserted by the compiler while parsing. Intuitively, the expression simulates the actions
done in order to take a picture: if the user has specified he wants the flash to be always
used, then the camera is activated and the context is informed that the flash is on;
otherwise, the camera is activated and the context is informed that we have chosen a
modality which is suitable for museums. Finally, in both cases the context is informed
we are about to take the picture.

Consider a context satisfying the policy phi and where the fact current_room(
delicate_paintings) holds. If we evaluate the above code in this context, it is easy
to observe that carrying out tell button_pressed may cause a violation, depending on
the actual value of always_flash. Thus, we have to activate the runtime monitor to
check it. However, other tells lead to no violation, hence, we do not need to check them.

To gather the needed information for the runtime monitor at compile time computes
a type, an annotated history expression and a labelling environment. The type of ea is
unit, as well as that of tell F4, and its history expression is

Ha = (((tell F1
1 · tell F2

2 )
3 + (tell F4

1 · tell F5
3 )

6)7 · tell F8
4 )

9

The labels of history expressions allow us to link the actions in histories to the cor-
responding actions of the code, e.g. the first tell F11 in Ha, corresponds to the first
tell in ea, that is also labelled by 1, while the tell F84 in Ha, is linked to the action
with label 5 in ea. All the correspondences are stored in the labelling environment
Λa = {1 7→ 1, 2 7→ 2, 4 7→ 3, 5 7→ 4, 8 7→ 5} (the abstract labels that do not annotate
tell/retract actions have no counterpart).

Consider now an initial context C that includes the facts F5 (irrelevant here), and F8 ≡
current_room(delicate_paintings), but no facts in {F1, F2, F3, F4}. Starting from C
(and from Ha) our loading time analysis builds the graph described in Figure 4.15. Nodes
represent contexts, possibly reachable at runtime, while edges represent transitions from
one context to another. But now each edge is annotated with the set of actions in Ha that
may cause that transition, e.g. from C it is possible to reach the context also including
the fact F1, because of the two tell operations labelled by 1 and by 4 in Ha. Therefore,
an edge can have more than one label (e.g. the one labelled {1, 4}). Note also that the
same label may occur in more than one edge (e.g. the label 8).

By visiting the graph, we observe that the context {F1, F2, F4, F5, F8} (the blue and
double circled node in Figure 4.15) violates our no-flash policy. At runtime the action
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Tell2
dsp(C ∪ {F}, Φ.()) = ((), ∅)

ρ ` C, tell(F)→ C ∪ {F}, ()

Retract2
dsp(C\{F}, Φ.()) = ((), ∅)

ρ ` C, retract(F)→ C\{F}, ()

Figure 4.16: The modified rules for updating the context

labelled with 8 (underlined and in blue), corresponding to tell F4 must be blocked. For
preventing this violation, all we have to do is activating the runtime monitor, right before
executing this risky operation.

4.8.2 Extending MLCoDa semantics

The syntax of MLCoDa is almost unchanged apart from the fact that we associate each
tell/retract with a label l ∈ LabC.

As we said, we implement our runtime monitor exploiting the dispatching mecha-
nism. The idea is that given the system policy Φ we build the special variation Φ.(),
through which we invoke the dsp function: if Φ does not hold in the current context C
the dispatching mechanism fails meaning that we have a violation. To do that we need
only modify the rules Tell2 and Retract2 in the semantics.

The new versions of the rules are in Figure 4.16. The new context C′, obtained from
C by adding/removing F, is checked against Φ in the premise of the rules. If this call
produces a result, then the evaluation yields the unit value and the new context C′ as
done in Section 4.3.

The following example shows the reduction of a retract construct violating the policy
Φ ← F4. Let C be {F3, F4, F5} and apply f = fun fx⇒ if e1 then F5 else F4 to unit,
assuming that the evaluation of e1 reduces to false without changing the context:

ρ `C, retract(f ())l →+ C, retract(F4)l 6→

Since Φ requires the fact F4 to always hold, every attempt to remove it from the context
violates Φ. Consequently, the evaluation gets stuck because dsp(C\{F4}, Φ.()) fails. If
e1 reduces to true, there is no policy violation and the evaluation reduces to unit:

ρ `C, retract(f ())l →+ C, retract(F5)l → C\{F5}, ()

4.8.3 Extending the static analysis

Type and Effect system We modify the type and effect system in such a way it com-
putes labelled History Expressions, and also a function called labelling environment.
This function stores the correspondence between the labels of History Expressions and
labels of the code.

The syntax and the semantics of History Expression are unchanged but we assume
them labelled as done in Section 4.6 on a given set of LabH. Consider as given the
function h : LabH → H that recovers a construct in a given history expression h ∈ H

from a label l.
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Srefl

τ ≤ τ

Sfact

φ ⊆ φ′

factφ ≤ factφ′

Sfun

τ′1 ≤ τ1 τ2 ≤ τ′2
K v K′ H v H′

τ1
K|H−−→ τ2 ≤ τ′1

K′|H′−−−→ τ′2

Sva

τ′1 ≤ τ1 τ2 ≤ τ′2
K v K′ ∆ v ∆′

τ1
K|∆
==⇒ τ2 ≤ τ′1

K′|∆′
===⇒ τ′2

(Tsub)
Γ; K ` e : τ′ . H′; Λ′

τ′ ≤ τ H′ v H Λ′ v Λ

Γ; K ` e : τ . H; Λ

Tconst

Γ; K ` c : τc . ε;⊥

Tvar

Γ(x) = τ

Γ; K ` x : τ . ε;⊥

(Tif)
Γ; K ` e1 : int . H1; Λ Γ; K ` e2 : τ . H2; Λ Γ; K ` e3 : τ . H3; Λ

Γ; K ` i f e1 then e2 else e3 : τ . H1 · (H2 + H3); Λ

(Tlet)
Γ; K ` e1 : τ1 . H1; Λ1 Γ, x : τ1; K ` e2 : τ2 . H2; Λ2

Γ; K ` let x = e1 in e2 : τ2 . H1 · H2; Λ1 ]Λ2

Tabs

Γ, x : τ1, f : τ1
K′|H−−→ τ2; K′ ` e : τ2 . H; Λ

Γ; K ` fun f x ⇒ e : τ1
K′|H−−→ τ2 . ε; Λ

Tapp

Γ; K ` e1 : τ1
K′|H3−−−→ τ2 . H1; Λ1 Γ; K ` e2 : τ1 . H2; Λ2 K′ v K

Γ; K ` e1 e2 : τ2 . H1 · H2 · H3; Λ1 ]Λ2

Figure 4.17: Extending the typing rules for standard ML construct

Definition 4.8.1 (Labelling environment). A labelling environment is a (partial) function
Λ : LabH → LabC, defined if h(l) = tell(F) or h(l) = retract(F) for some fact F.

Note that a labelling environment needs not to be injective. Furthermore, as usual we
denote with Λ[l1 7→ l2] the environment Λ extended with the binding between l1 and l2.
We introduce the following ordering vΛ for labelling environment:

Λ1 vΛ Λ2 iff ∃Λ3 such that dom(Λ3) ∩ dom(Λ1) = ∅ ∧Λ2 = Λ1 ]Λ3

The syntax of type is unchanged respect to Section 4.4 but type judgements now
have the form Γ; K ` e : τ . H; Λ, expressing that in the environments Γ and K the
expression e has type τ, effect H and yields a labelling environment Λ.

The typing rules, displayed in Figures 4.17 and 4.18, are only extended to deal with
the labelling environment. We comment on the most interesting cases only. The la-
belling environment generated by the rules (Tfact) is ⊥ (the function always undefined),
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(Tfact)

Γ; K ` F : f act{F} . ε; ⊥

(Tpar)
K(x̃) = (τ, ∆)

Γ; K ` x̃ : τ . ∆; ⊥

(Ttell)
Γ; K ` e : f actφ . H; Λ

Γ; K ` tell(e)l : unit .

(
H ·
(

∑
Fi∈φ

tell Fli
i

))l′

; Λ
⊎

Fi∈φ

[li 7→ l]

(Tretract)
Γ; K ` e : f actφ . H; Λ

Γ; K ` retract(e)l : unit .

(
H ·
(

∑
Fi∈φ

retract Fli
i

))l′

; Λ
⊎

Fi∈φ

[li 7→ l]

(Tvariation)
∀i ∈ {1, . . . , n} γ(Gi) = ~yi : ~τi

Γ, x : τ1,~yi : ~τi; K′ ` ei : τ2 . Hi; , Λi ∆ = ask G1.H1 ⊗ · · · ⊗ ask Gn.Hn ⊗ f ail

Γ; K ` (x){G1.e1, . . . , Gn.en} : τ1
K′|∆
==⇒ τ2 . ε;

⊎
i∈{1,...,n}

Λi

(Tvapp)

Γ; K ` e1 : τ1
K′|∆
==⇒ τ2 . H1; Λ1 Γ; K ` e2 : τ1 . H2; Λ2 K′ v K

Γ; K ` #(e1, e2) : τ2 . H1 · H2 · ∆; Λ1 ]Λ2

(Tappend)

Γ; K ` e1 : τ1
K′|∆1
===⇒ τ2 . H1; Λ1 Γ; K ` e2 : τ1

K′|∆2
===⇒ τ2 . H2; Λ2

Γ; K ` e1 ∪ e2 : τ1
K′|∆1⊗∆2
=====⇒ τ2 . H1 · H2; Λ1 ]Λ2

(Tdlet)
Γ,~y : ~̃τ; K ` e1 : τ1 . H1; Λ1 Γ; K, (x̃, τ1, ∆′) ` e2 : τ . H; Λ2

Γ; K ` dlet x̃ = e1 when G in e2 : τ . H; Λ1 ]Λ2

where γ(G) = ~y : ~̃τ
if K(x̃) = (τ1, ∆) then ∆′ = G.H1 ⊗ ∆
else (if x̃ /∈ K then ∆′ = G.H1 ⊗ f ail)

Figure 4.18: Extending the typing rules of the constructs for adaptation
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because there is no tell or retract. Instead both (Ttell) and (Tretract) update the cur-
rent environment Λ by associating all the labels of the facts which e can evaluate to,
with the label l of the tell(e) (retract(e), respectively) being typed. The rule (Tlet) pro-
duces an environment Λ that contains all the correspondences of Λ1 and Λ2 coming
from e1 and e2; note that uniqueness of the labelling is guaranteed by the condition
dom(Λ1) ∩ dom(Λ2) = ∅. The other rules are trivial.

Also this new version of the type and effect system is sound and as usual this result
derives from the following lemmata:

Lemma 4.8.1 (Preservation). Let es be a closed expression; and let ρ be a dynamic environment
such that dom(ρ) includes the set of parameters of es and such that Γ ` ρ : K.
If Γ; K ` es : τ . Hs; Λs and ρ ` C, es → C′, e′s then Γ; K ` e′s : τ . H′s; Λ′s and
(i) ∃H, s.t. H · H′s 4 Hs and C, H · H′s →+ C′, H′s and (ii) Λ′s v Λs.

Proof (Sketch). The proof is an extension of the one of Lemma 4.4.1. Here, we report only
a sketch showing how to deal with (ii).

• rule Ttell es = tell(e′) Γ; K ` e : f actφ . H; Λ Hs =
(

H ·
(

∑Fi∈φ tell Fli
i

))l′

There are two rules through which ρ ` C, es → C′, e′s can be derived:

– tell1
For the premises we have ρ ` C, e′ → C′, e′′, then e′s = tell(e′′). By inductive
hypothesis we have Γ; K ` e′′ : f actφ . H′′; Λ′′ with Λ′′ v Λ. By rule Ttell

it follows that Γ; K ` e′s : unit . H′s; Λ′s with H′s = (H′′ · ∑Fi∈φ tell Fli
i )

l and
Λ′s = Λ′′ ]Fi∈φ [li 7→ l]. Since Λ′′ ]Fi∈φ [li 7→ l] v Λ ]Fi∈φ [li 7→ l] = Λs the
thesis follows.

– tell2
We have es = tell(F) so e′s = () and C′ = C ∪ {F}. It follows that Γ; K ` () :
unit . ε; ⊥, and since ⊥ v Λs the thesis follows.

The other cases follow the same schema.

Lemma 4.8.2 (Progress). Let es be a closed expression such that Γ; K ` es : τ . Hs; Λs; and let
ρ be a dynamic environment such that dom(ρ) includes the set of parameters of es, and such that
Γ ` ρ : K. If ρ ` C, es 9, H is viable for C (i.e. C, Hs 9+ C′, fail) and there is no policy
violation then es is a value.

Proof. The proof is the same of Lemma 4.4.2.

Since as said it is not feasible to verify statically the compliance with the security
policy, the Progress Lemma requires that no violation occurs. However, if during the
loading-time analysis it turns out that the monitor could be always off, this assumption
is always satisfied.
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Loading-time analysis The analysis specification and the analysis algorithm are un-
changed, we need only to label the evolution graph with set of labels. These labels
denote which actions tell/retract are involved in the changes of the context. Formally,
the labelled evolution graph is defined as

Definition 4.8.2 (Labelled Evolution Graph). Let Hp be a history expression, C be a
context, and (Σ◦, Σ•) be a valid analysis estimate.
The evolution graph of C is G = (N, E, L), where

N =
⋃

l∈Lab∗H
(Σ◦(l) ∪ Σ•(l))

E = {(C1, C2) | ∃F ∈ Fact∗, l ∈ Lab∗H s.t. C1 ∈ Σ◦(l) ∧ C2 ∈ Σ•(l) ∧
(h(l) ∈ {tell(F), retract(F)} ∨ (C2 = •))}

L : E→ P(Labels)
∀t = (C1, C2) ∈ E, l ∈ L(t) iff C1 ∈ Σ◦(l) ∧ C2 ∈ Σ•(l) ∧ h(l) 6= fail

Consider again the history expression Ha and its evolution graph G of Figure 4.15. In
G from the initial context C = {F5, F8} there is an arc labelled {1, 4} to C′ = {F1, F5, F8}
because of tell F1

1 and tell F4
1 .

As done in Section 4.6 we can use this graph to verify that the dispatching mech-
anism always succeeds, but also to detect which contexts violate the policy Φ and to
drive the runtime monitor, as we will see in the following.

4.8.4 Code instrumentation

Once detected the potentially risky operations through the evolution graph G, we can
instrument the code of an application e and switch on our runtime monitor only to guard
them. First, since a node n of G represents a context reachable while executing e, we
verify at static time whether n satisfies Φ. If this is not the case, we consider all the edges
with target n and the set R of their labels. The labelling environment Λ, computed
while type checking e, determines those actions in the code that require to be monitored
during the execution, indexed by the set Risky = Λ(R).

Actually, we will guard all the tell/retract actions in the code, but our runtime mon-
itor will only be invoked on the risky ones. To do that, the compiler (labels the source
code as said in Section 4.8.2 and) generates specific calls to trampoline-like procedures.
We offer a lightweight form of code instrumentation that does not operate on the object
code, differently from standard instrumentations. More in detail, we define a procedure,
called check_violation(l), for verifying if the policy Φ is satisfied. It takes a label l
as parameter and has unit as return type. Our compilation schema requires to replace
every tell(e)l in the source code with the following:

let z = tell(e) in
check_violation(l)

where z is fresh. Similarly for retract(e)l :

let z = retract(e) in
check_violation(l)
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where z is fresh too. At loading time, a global mask risky[l] will be assigned for each
label l in the source code, by using the information stored in the set Risky, as follows:

risky[l] =

{
true if l ∈ Risky

false otherwise

Intuitively the procedure check_violation looks at risky[l]: if the value is false,
then the procedure returns to the caller and the execution goes on normally; otherwise
it calls for a check on Φ. Its code in a pseudo MLCoDa is:

fun check_violation l =
if risky[l] then ask phi.()
else ().

The call ask phi.() triggers the dispatching mechanism to check the policy Φ: if the call
fails then a policy violation is about to occur. Then the computation is aborted or a
recovery mechanism is possibly invoked.

An easy optimisation is possible when Risky is empty, i.e. when the analysis ensures
that all the tell/retract actions are safe, i.e. when no execution path leads to a policy
violation. To do that, we introduce the flag always_ok, whose value will be computed
at linking time: if it is true, no check is needed. The previous compilation schema
is simply refined by testing always_ok before calling check_violation. Thus, every
tell(e)l becomes:

let z = tell(e) in
if not(always_ok) then

check_violation(l).

Similarly, every retract(e)l becomes:

let z = retract(e) in
if not(always_ok) then

check_violation(l).

In this way, the execution time is likely to be reduced, because some costly, and useless
security checks are not performed

4.9 Remarks

First of all, we compare MLCoDa with ContextML and the calculi described in Sec-
tion 1.1.5. All these approaches differ from MLCoDa in a main aspect, namely the context,
that for them is a stack of layers carrying no data. Furthermore, their notion of context
only captures what we called the application context: all the properties holding in the
running context are determined by only considering the code of the application. MLCoDa

instead introduces the notion of open context, the properties of which not only depend
on the application code, but also on the actual shape of the system context, where the
application is about to run. This difference is reflected in the two stages of the static
analysis, and justifies the need for a loading time analysis.
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Furthermore, in MLCoDa behavioural variations not are partially defined methods,
but they are first-class citizens and there is the notion of context-dependent binding.

Note that the proceed construct is strictly related to the idea of representing the
context as a stack of layers and it is still open whether it is possible and it makes sense to
introduce a similar construct also when the context is a full-fledged declarative database.

Several proposals have been recently put forward to model the context, in most
cases, considered a computational entity with its own data model, and rigidly sepa-
rated from the programming language. These proposals introduce a context manager
that essentially acts as an interface between the application and the context hosting it.
In [CFJ03, WZGP04, GWPZ04], the context is a collection of ontologies, specified in
suitable description logic. The burden of serialising data is often demanded to the ap-
plication programmer. We avoid the impedance mismatch, because our two-component
language has a single data model, implemented by the virtual machine. Also other
proposals, e.g., [vWPK+10, DL05] aim at mitigating the impedance mismatch by rep-
resenting the context through objects. However, in these last approaches it may be not
easy to make complex queries to the context, involving convoluted deductions. The
Datalog machinery is an asset of our proposal.
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Chapter 5

Conclusion

Self-adaptive software modifies its own behaviour in response to changes in its opera-
tional environment. Our work stems from the idea that developing this kind of software
requires a shift in programming technologies and methodologies. Consequently, here
we addressed some foundational issues of self-adaptability, by adopting an approach
firmly based on programming languages and formal methods. In particular, our main
concerns was two:

1. introducing appropriate linguist primitives and abstractions to describe the envi-
ronment hosting the application and to effectively express adaptation;

2. using static analysis techniques, in order to ensure that software adequately reacts
to changes in its execution environment.

To do that, we adopted the Context-oriented paradigm which introduces intro pro-
gramming languages the notions of context and behavioural variations. We discussed
and formally tackled the following open issues of this class of languages:

1. semantics foundations have not been sufficiently studied so far;

2. security and formal verification are not main concerns in the design of COP lan-
guages;

3. primitives to describe the context are too low level and not powerful enough to
model complex working environments, that may include heterogeneous informa-
tion;

4. the current implementation of behavioural variations, e.g. done trough partial def-
inition of methods or classes, are not sufficiently expressive.

For (1) and (2) in Chapter 2 and Chapter 3 we introduced ContextML, a core of ML.
ContextML includes layers as first class values; behavioural variation at expression level;
simple constructs for resource manipulation; mechanisms to declare and enforce secu-
rity policies; and abstract primitives for communicating with other parties by message
exchanging. Furthermore, we provided ContextML with a static technique ensuring that
software will be able to:
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• run in every context arising at runtime;

• communicate with other parties correctly;

• manipulate resources in accordance with security constraints.

In addition, in Chapter 3 we defined an operational semantics for ContextML and
proved the correctness of its static analysis.

For addressing also (3) and (4) in Chapter 4 we introduced MLCoDa, an two compo-
nent language: a declarative constituent for programming the context and a functional
one for computing. MLCoDa is an evolution is a redesign of ContextML. Its bipartite
nature stems from the observation that the context requires special constructs and ab-
stractions for its description. For these reasons, we decided the introduction of a logical
constituent for the context. Indeed, in MLCoDa it is a knowledge base implemented as a
Datalog program, where the holding properties not only depend on the software code,
but also on the system, where it is about to run (open context). Instead, in the func-
tional part the novel constructs are context-dependent binding and first-class behavioural
variations. The first feature allows program variables to assume different values depend-
ing on the context. The second one introduces behavioural variations as values, allowing
us to easily express dynamic and compositional adaptation patterns as well as reusable
and modular code.

Furthermore, MLCoDa is equipped with a (proved sound) static technique to ensure
that software will not fail due to an unexpected context arising at runtime. To effectively
manage the notion of open context, we perform the static analysis in two phases: at
compile time, where we compute an abstraction over-approximating the capabilities
required at runtime through a type and effect system; and at loading time where we
verify that no failure will arise, because the actual hosting environment satisfies all the
required capabilities.

Additionally, we defined a operational semantics for MLCoDa, we proved the sound-
ness of its analyses and we defined a correct algorithm for the loading time phase.

In this thesis we did not consider context-aware systems in which the occurrence
of an event may trigger context changes and vice versa. Event-based systems could be
encoded in our calculi, by introducing two threads sharing the context. The first senses
the external world and listens for incoming events. The second thread runs the code of
the program. In this thesis we were only interested in abstractions for programming and
in verification techniques, thus we did not consider any construct for events and their
management. Introducing in MLCoDa mechanisms for tackling event-based adaptivity is
an interesting future work.

The ongoing research activities consist of:

• designing an inference algorithm for the type and effect systems of our languages
(see below);

• evaluating through a proof-of-concept implementation in F# the analysis algorithm
presented in Section 4.6;

• speeding up this algorithm by adopting the approaches described in [NNH05,
Bou93, AS13].
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5.1 Future Work

Besides the introduction of event-based adaptivity in MLCoDa there are other extensions
we plan to investigate. In this section we consider those we intend to address in the
foreseeable future because we judge them the most interesting.

5.1.1 MLCoDa Inference Algorithm

We have already started defining an inference algorithm for MLCoDa. Its design is deeply
affected by the subtyping relation and by the need for managing the guessed precondi-
tion K′ in the premises of the rules Tabs (Figure 4.6) and Tvariation (Figure 4.7).

The notion of subtyping we adopted (see rules Srefl, Sfact, Sfun and Sva in Fig-
ure 4.6) is known in the literature as shape conformant subtyping [NNH05]. A peculiar-
ity of this relation is that when τ1 ≤ τ2 the annotated types τ1 and τ2 have the same
shape, i.e. a “pure” type purged by annotations. For example, when τ1 = fact{F1} and
τ2 = fact{F1,F2} we have τ1 ≤ τ2 and their shape is fact.

To deal with the precondition in the functional and behavioural variation types we
need to introduce special variables which represent parameter environments and con-
straints over these variables which describe the bindings the parameter environment
represented by a given variable have to contain.

We follow the approach proposed by Tang and Jouvelot in [TJ95], whose idea is
to carry out the inference in two steps: the first computes the type of an expression
e with no annotation, the second one reconstructs the annotations and the effect of e.
In each step we generate constraints and then solve them. The constraint generation
algorithms are formalized by a set of syntax-directed inference rules. In the first step
the rules are characterized by judgements having the form A; ξ `u e : t & U, where
A is a type environment, ξ is a variable denoting the current parameter environment,
e is the expression, t is the type with no annotations and U are the constraints to be
solved (elements after the column : are output of the algorithm, the others are input).
These constraints are on types and parameter environments. For example, consider the
following rule

uTell

A; ξ1 `u e : t & U

A; ξ `u tell(e) : unit & (U ∪ {t = fact} ∪ {ξ1 v ξ})
ξ1 fresh

To compute the constraints for the expression tell(e), we recursively invoke the al-
gorithm over e (for technical reason we pass a fresh variable ξ1 to the recursive call) and
then return unit as type and the constraints U of e extended with the requirements that
the type of e must be fact and that the environment denoted by ξ1 must be included
in the one denoted by ξ. To solve the generated constraints U we use the unification
algorithm [MM82] for types and an instance of the worklist algorithm for parameter
environments.

We use the type t computed by this step to annotate an expression e, in symbols et.
This annotated expression is used in the second step, to generate the constraints about
the annotations and the effects. The constraint generation algorithm of the second step
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is formalized by a set of inference rules having the form Γ̃; ζ `a et : τ̃ . & S, where Γ̃
is a type environment, ζ is a variable denoting the current parameter environment, et

is the annotated expression, τ̃ is the type with annotations, H̃ is the effect and S are
the constraints to be solved (elements after the column : are output of the algorithm,
the others are input). The constraints in S are about annotations, effects and parameter
environments. For example, consider the following rule

aFact

Γ̃; ζ `a Ffact : factβ . ε & {{F} ⊆ β}
β fresh

For the annotated expression Ffact the algorithm, mimicking the rule Tfact of Figure 4.7,
returns the annotated type factβ where β is an annotation variable, the empty effect ε

and a constraint requiring that the annotation denoted by the variable β includes the
fact F. As a further example, consider the rule for functional abstraction

aAbs

τ̃1
ζ ′|h−−→ τ̃2 = new(t1 −→ t2) Γ̃, xt1 : τ̃1, f : τ̃1

ζ ′|h−−→ τ̃2; ζ ′ `a et2 : τ̃3 . H̃ & S

Γ̃; ζ `a fun f xt1 ⇒ et2 : τ̃1
ζ ′|h−−→ τ̃2 . ε & S ∪ E ff (τ̃3 ≤ τ̃2) ∪ {H̃ v h}

First, we use the “pure” type t1 and t2, labelling the variable x and the expression e re-
spectively, to build an annotated type through the function new. This function annotates
the pure type passed as parameter with fresh annotation variables to be constrained.
Then we invoke recursively the algorithm on the expression e, passing a type environ-
ment extended with the bindings for x and f , and the parameter environment variable
ζ ′ (returned by the function new). For a functional abstraction the algorithm returns the
annotated type constructed by the new and the empty effect and the constraints result-
ing from the recursive call suitably extended with constraints implementing the shape
conformant subtyping relation (E ff (τ̃3 ≤ τ̃2)) and requiring that the latent effect of the
function includes the effect of e (H̃ v h). The call E ff (τ̃3 ≤ τ̃2) generates constraints im-
posing that the annotations of τ̃3 (the type resulting from the recursive call) are included
in the one of τ̃2. The solution of the constraints generated during this phase allow us to
reconstruct the type and effect of an expression.

At the moment, we are completing the proof of the correctness of the algorithm with
respect to the logical representation and the “principality” property of the computed
solution. Intuitively, this property ensures us that for a given expression e we can obtain
every type and effect deduced from the logical system possibly enlarging the result of
the algorithm.

5.1.2 Quantitative MLCoDa

As said in Chapter 4, representing the context as a Datalog program allows us to easily
describe complex situations. Unfortunately, the real world is characterized by scenarios
where an answer true/false is not fully adequate, because either the knowledge is often
not completely available or there are some preferences we need to take into account. For
example, consider the following snippet of code from Section 4.2, in a context where the
facts device(irda) and device(bluetooth) hold:
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direct_comm() ← device(irda).
direct_comm() ← device(bluetooth).
direct_comm() ← device(rfid_reader).

By using the standard Datalog evaluation (top-down), the goal direct_comm() will be
satisfied by the first clause. Thus, the application will download the URL from the
exhibit through IRDA. If many people are observing the same exhibit and are down-
loading the URL through IRDA, the chosen communication mechanism could be very
slow and thus annoying for the user. Indeed, he needs to position his smartphone near
the IRDA sensor of the exhibit, and he must wait for his turn because of high number of
visitors. Hence, in this scenario Bluetooth could be a better communication mechanism.

A naive solution consists of changing the order of clauses that specify the predicate
direct_comm. This approach has at least two drawbacks:

1. the programmer has to decide which is the best choice a priori, but often he does
not have this knowledge at design/programming time;

2. the top-down Datalog evaluation always selects the first true alternative, that may
not be the better one, as we argued previously.

A better solution could be to assign to each fact occurring in the definition of
direct_comm a numerical weight (e.g. bandwidth, or number of users who are using
that communication channel, etc.) which is updated by the system and which indicates
how good that alternative is:

device(irda) ← s1.
device(bluetooth) ← s2.
device(rfid_reader) ← s3.

direct_comm() ← device(irda).
direct_comm() ← device(bluetooth).
direct_comm() ← device(rfid_reader).

Assuming that we want to select the alternative with maximum weight and that the
weights above satisfy s2 > s1 and s2 > s3, our application will use bluetooth.

Also the dispatching mechanism of MLCoDa has the same limitation: indeed, it selects
the first case of a behavioural variation which holds in current context. For example,
consider the function (already defined in Section 4.2)

fun getExhibitData () =
let url = (_){
← direct_comm().

let c = getChannel () in
receiveData c,

← use_qrcode(decoder), camera(cam).
let p = take_picture cam in

decode_qr decoder p }
in

getRemoteData #url
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If the smartphone can directly communicate with the exhibit, the first case is selected
and the other one is not taken into account. As argued above, there may be situations
where the first alternative is not the best one. To address this, we could modify the
dispatching mechanism making it parametric with respect a choice function. Then, the
new dispatching mechanism evaluates all goals of a behavioural variation and exploits
the choice function to select the best alternative.

To extend MLCoDa to a quantitative version, we can take advantage of the notion of
semiring, i.e. a domain plus two operations satisfying certain axioms, which has been
exploited to model many quantitative scenarios. Indeed, the domain of the semiring pro-
vides the level of consistency, which can be interpreted as cost, degrees of preferences,
probabilities, and others. The two operations define how combine elements together.

In particular, we plan to adopt ideas from Semiring-based Constraint Logic Program-
ming [BMR01] to implement our context and to provide programmers with means to
define their own choice functions.
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