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Abstract 

BACKGROUND: The efficacy of commercial formulations of β-cyfluthrin and chlorpyrifos-

methyl plus deltamethrin applied to clean, concrete surfaces similar to that of empty bins against 

field strains of stored-grain insects is unknown. We exposed adults of 16 strains of the red flour 

beetle, Tribolium castaneum (Herbst); 8 strains of the sawtoothed grain beetle, Oryzaephilus 

surinamensis (L.); and 2 strains of the lesser grain borer, Rhyzopertha dominica (F.), collected 

mainly from farm-stored grain in Kansas, USA, to β-cyfluthrin and chlorpyrifos-methyl plus 

deltamethrin applied to concrete surfaces and determined knockdown and mortality. 

RESULTS: Knockdown and mortality differences among species and strains to the insecticides 

tested were significant. Mortality of all species was less than that of knockdown, suggesting 

recovery when placed on food after insecticide exposure. β-cyfluthrin was effective against R. 

dominica but ineffective against T. castaneum and O. surinamensis field strains. Chlorpyrifos-

methyl plus deltamethrin was only partially effective against field strains of the three species.   

CONCLUSION: Reduced susceptibility in field strains may be due to inherent formulation 

deficiency and low levels of tolerance or resistance to β-cyfluthrin. No single insecticide 

provided adequate control of the three species tested. 

 

Keywords: insecticides, empty-bin treatments, stored-grain insects, field strains, efficacy 

assessment               
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1 INTRODUCTION 

Stored-grain insect management, prior to storing newly harvested grain, begins with removing 

residual grain debris and application of an approved insecticide to the concrete floor and interior 

bin surfaces to kill any live insects present. This practice is followed by 78.8% of the 318 Kansas 

producers storing wheat who responded to a survey in 1987.1 Among the insecticides currently 

registered by the United States Environmental Protection Agency (US-EPA) for empty bin 

treatments, β-cyfluthrin or Tempo® SC Ultra (Bayer CropScience, Research Triangle Park, NC, 

USA), is new and an alternative to traditionally used cyfluthrin wettable powder (WP) and 

emulsifiable concentrate (EC) formulations.  β-cyfluthrin can be applied to surfaces at low and 

high application rates of 0.01 and 0.02 g (AI) m-2, respectively. These rates are 50% less than 

that of the WP or EC formulations. Chlorpyrifos-methyl at 3 ppm plus deltamethrin at 0.5 ppm 

(StorcideTM II, Bayer CropScience) was registered in 2004 for direct treatment of barley, oats, 

rice, sorghum, and wheat intended for storage and for empty bins receiving these grains. This 

combination product replaced chlorpyrifos-methyl after its tolerances were revoked.   

The efficacy of the WP and EC formulations of cyfluthrin at low (0.02 g [AI] m-2) and 

high (0.04 g [AI] m-2) labeled rates was evaluated on concrete surfaces against laboratory 

populations of the red flour beetle, Tribolium castaneum (Herbst); confused flour beetle, 

Tribolium confusum Jacquelin du Val; and Indianmeal moth, Plodia interpunctella (Hübner).2-6 

The WP formulation was more effective than the EC formulation against adults of Tribolium 

spp. probably due to greater availability of residues on treated surfaces.7 Additionally, the WP 

formulation was more persistent than the EC on both steel8 and concrete surfaces.2  Exposure of 

T. castaneum adults to the low rate of cyfluthrin WP on concrete surfaces for 0.5 to 4 h in the 

absence of flour resulted in 100% mortality; similar mortality at the high rate occurred only after 
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2 h of exposure.3  If T. castaneum adults were provided 1 g of flour for 1 wk after a 2 h of 

exposure to the low rate of cyfluthrin WP, 40% of the adults recovered.4 In another study, T. 

castaneum adults exposed for 2 h on concrete surfaces treated with low rate of cyfluthrin WP and 

then transferred to concrete dishes for 1 wk showed 60% mortality in the absence of food, 49% 

in the presence of 1 g of wheat kernels, 15% in 1 g of sawdust, and 5% in 1 g of flour.9 

Differences in insect responses in the presence of flour between the two studies may be 

attributed to the temperatures used. The former test4 was conducted at 22°C and the latter at 

28°C.9  Pyrethroids such as cyfluthrin generally are known to have a negative temperature 

coefficient. For example,  the toxicity of cyfluthrin to T. castaneum adults was found to decrease 

markedly at 25, 30 and 35°C when compared with 20°C.10  Limited studies were conducted with 

the new β-cyfluthrin formulation. β-cyfluthrin was found to be effective against the stored-

product psocid species on concrete at a rate of 2.4 mg (AI) m-2 at 30°C and 70% r.h.11 The 

efficacy of β-cyfluthrin against stored-product insects other than psocids has not been studied.  

Chlorpyrifos-methyl plus deltamethrin was effective against several stored-grain psocids 

on stored wheat.12 It was also effective against the lesser grain borer, Rhyzopertha dominica (F.); 

rice weevil, Sitophilus oryzae (L.); T. castaneum, and P. interpunctella on stored wheat, and 

against R. dominica and S. oryzae on short-grain and long-grain rices,13 but studies on its 

efficacy as a surface treatment are lacking.  

All of the studies mentioned above were conducted using laboratory reared stored-grain 

insects.  Field collected insects may differ markedly from laboratory strains in their susceptibility 

to insecticides applied to empty bins and grains due to natural tolerance or resistance.14-18 To 

date, there are no published studies documenting effectiveness of β-cyfluthrin and chlorpyrifos-

methyl plus deltamethrin on concrete surfaces similar to that of empty bins against field strains 
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of stored-grain insect populations. Such an evaluation is necessary to confirm whether or not an 

approved insecticide will work in practical field situations at the labeled rates. In the present 

investigation, we determined susceptibility of adults of T. castaneum, O. surinamensis, and R. 

dominica field strains from the United States to β-cyfluthrin and chlorpyrifos-methyl plus 

deltamethrin applied to concrete surfaces in the laboratory.       

 

2 MATERIALS AND METHODS 

2.1 Collection of field strains 

Cooperating farm sites (Table 1) were visited on one to three occasions between July and 

November 2011 to collect adults of T. castaneum, O. surinamensis and R. dominica from farm 

bins in Kansas by inserting five perforated probe traps19 just below the grain surface to capture 

live adults of insect species. These traps were removed after 1 to 2 wk. Additionally, 1 to 2 kg 

sample of mostly wheat, and some corn and sorghum, were collected in 30.5 cm wide and 37.5 

cm long plastic Ziploc bags (Assorted Bag Company, Dallas, TX, USA). In the laboratory, 2.38-

mm diameter aluminum sieves and pans (Seedburo Equipment Company, Des Plaines, IL, USA) 

were used to separate live adults of insects from grains. In addition, five strains of T. castaneum 

and one strain of R. dominica collected from flour mills in the United States prior to 2011 were 

also included in this study, along with the laboratory strains of each species, that have been in 

rearing, without insecticide exposure, since 1999 in the Department of Grain Science and 

Industry, Kansas State University.  These laboratory strains served as the standard reference 

strains and assumed to be insecticide-susceptible.  
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2.2 Insect rearing 

Laboratory and field strains were reared on standard diets in a growth chamber at 28ºC and 65% 

r.h., respectively. Organic white wheat flour (Heartland Mills, Marienthal, KS, USA) plus 5% 

(by wt) brewer’s yeast diet was used for rearing T. castaneum, while clean organic hard red 

winter wheat (Heartland Mills, Marienthal, KS, USA) and rolled oats plus 5% brewer’s yeast 

diet were used for rearing R. dominica and O. surinamensis, respectively. 

2.3 Concrete-poured Petri dishes 

Ready-mix concrete (Rockite, Hartline Products Co., Inc., Cleveland, OH, USA) was mixed with 

tap water to make a slurry. This slurry was poured into 9 cm diameter, 1.5 cm high, and 62 cm2 

area plastic Petri dishes (Fisher Scientific, Denver, CO, USA). Concrete (3,810 g) was mixed 

with 1,905 ml of tap water to make 100 dishes. The slurry was allowed to dry and the inside 

walls of the Petri dishes were coated with polytetrafluoroethylene (Insecta-a-Slip, Bio Quip 

Products, Inc., Rancho Dominguez, CA, USA) to prevent insects from crawling on the sides of 

dishes.  

2.4 Treatment of concrete dishes with insecticides 

β-cyfluthrin (11.8% purity) and chlorpyrifos-methyl plus deltamethrin (21.6 and 3.7% purity), 

were supplied by Bayer CropScience and were diluted in distilled water. Concrete surfaces of 

dishes were treated with β-cyfluthrin at the low labeled rate of 0.01 g (AI) m-2 and the high 

labeled rate of 0.02 g (AI) m-2, and with chlorpyrifos-methyl plus deltamethrin at the labeled rate 

of 0.12 plus 0.02 g (AI) m-2 by applying 255 µl spray solution per dish using a Badger 100 

artist’s airbrush (Model 100, Franklin Park, IL, USA). Dishes sprayed with 255 µl of distilled 

water served as the control treatment. Treated dishes were allowed to dry under room conditions 

(25°C and 25% r.h.) for 24 h before exposing insects. 
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2.5  Time-response tests with laboratory strains  

The laboratory strains of T. castaneum, O. surinamensis, and R. dominica were used to establish 

a time at which 100% or close to 100% knockdown and mortality of adults occurred when 

exposed to labeled rates of β-cyfluthrin and chlorpyrifos-methyl plus deltamethrin. This time was 

used to expose field strains of each species to concrete treated with the two insecticides. Ten 

unsexed (1- to 2-wk-old) adults each of T. castaneum, O. surinamensis, or R. dominica from 

laboratory cultures were introduced into each dish and the dishes were covered with Petri dish 

lids. Adults were exposed to treated dishes for 1, 2, 4, 8, 12, 16, 20 and 24 h. Separate dishes 

were used for each time period.  Each exposure time and species combination included an 

untreated control dish that was sprayed with aliquots of distilled water.  Each species, 

insecticide, rate, and time combination, including the control treatment, was replicated three 

times.  Dishes were arranged on a laboratory table and HOBO® data loggers (Onset Computer 

Corp., Bourne, MA, USA) indicated the mean ± SE (n = 4) temperature and relative humidity in 

the laboratory room during insect exposure were 24.3 ± 0.04°C (range, 20.0 - 28.5°C) and 23.4 ± 

0.06% r.h. (range, 15.0 - 31.3%), respectively.  

At each exposure time, adults of each species that were knocked down and active were 

counted.  After counting, all adults were transferred to 150-ml round plastic containers with 30 g 

of the respective insect diet. The plastic containers had perforated lids with wire-mesh screens to 

facilitate air diffusion.  Containers were incubated at 28°C and 65% r.h. for 1 wk to determine 

end-point mortality following insect recovery on rearing diets.  

2.6 Exposure of field strains at labeled rates for a fixed time 

The time at which knockdown and mortality of adults was 100%, or near 100%, for a given 

species and insecticide combination was used to expose adults of field strains of stored grain 
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insect species.  Ten adults of each species and field strain, along with the corresponding 

laboratory strain, were tested following protocols mentioned above.  The low labeled rate of β-

cyfluthrin gave poor control of T. castaneum and O. surinamensis laboratory strains with 

mortalities of 47 and 83%, respectively, at the maximum exposure time of 24 h. Therefore, 

adults of these two species were exposed for 24 h to concrete treated only with the high labeled 

rate of β-cyfluthrin, while R. dominica was exposed to this insecticide for 2 h because of its high 

susceptibility. All three species were exposed for 8 h to concrete treated with chlorpyrifos-

methyl plus deltamethrin.  Each insecticide, species, and strain combination was replicated five 

times. Knockdown and mortality of field strains were determined as explained above. Tests with 

field strains of the three species and the laboratory strains were performed in the laboratory room 

where mean ± SE (n = 4) temperature and relative humidity were 25.4 ± 0.02°C (range, 23.4 - 

26.9°C) and 17.2 ± 0.1% (range, 15.0 - 27.9%), respectively, and also at constant conditions in a 

growth chamber at 28°C and 65%  r.h.  At room conditions, low mortality was observed, so the 

tests were also done at constant conditions to see if there was any temperature effect as these 

insecticides are applied to empty bins 3 to 4 wk prior to storing new grain after harvest during 

the summer months of June and July. At room conditions, each strain had its respective control 

treatment.  At constant conditions only the laboratory strain served as the control for all strains 

because knockdown and mortality of field strains in the control treatments in tests at room 

conditions were less than 10%.    

2.7 Dose-response tests with β-cyfluthrin on laboratory and least susceptible field strains 

 Based on field strain responses to insecticides, three least susceptible strains of T. castaneum 

and two of O. surinamensis, along with corresponding laboratory strains, were exposed to β-

cyfluthrin-treated concrete dishes at one to four times the high labeled rate (0.02 to 0.08 g [AI] 
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m-2) to assess knockdown and mortality. Dishes sprayed with distilled water served as the control 

treatment for all strains. All dose-response tests were performed at 28°C and 65%  r.h.  There 

were five replications for each species, strain, and β-cyfluthrin rate combination, and 10 adults 

were exposed in each replication.    

2.8 Data analysis 

Adults of each species that were knocked down and those that died after 1 wk recovery on diets 

out of the total exposed were calculated as a percentage.  In the time-response tests with the 

laboratory strains, there was no knockdown and mortality in the control treatment for T. 

castaneum and R. dominica during 1 to 24 h exposures. The maximum mean knockdown of O. 

surinamensis in the control treatment was 3% and mortality was 10%. Therefore, knockdown 

and mortality data were not corrected for these responses in the control treatment. Linear (y = a + 

bx) or nonlinear (y = a + b/x2) models were fit to knockdown and mortality responses over time 

for each species of laboratory strains by insecticide and rate using Table Curve 2D software 

(Jandel Scientific, San Rafael, CA, USA). Models were not fit to data when knockdown or 

mortality was 100% at all exposure times; for example this occurred with R. dominica mortality 

and with O. surinamensis knockdown at both rates of β-cyfluthrin.  Linear or nonlinear models 

fit to data allowed for statistical comparison of knockdown and mortality responses for each 

insect species and insecticide, and for comparison of knockdown or mortality responses between 

insecticides, between the two β-cyfluthrin rates, and between species by insecticide and rate. 

These pair-wise comparisons involved comparing individual models fit to data20 with a pooled 

model fit to data of the pairs being compared.21 Individual models were considered different 

from one another if the F-test showed the individual models deviated significantly (P ≤ 0.05) 

from the pooled model. 
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The mean knockdown and mortality of all T. castaneum, O. surinamensis, and R. 

dominica field strains in the control treatment at room conditions ranged from 0 to 2%, 0 to 7%, 

and 0 to 4%, respectively. So the knockdown and mortality data of field strains at room 

conditions were not corrected for these responses in the control treatment. At constant 

conditions, the mean mortality of T. castaneum in the control treatment was 0%, but that of O. 

surinamensis and R. dominica was 14% and 21%, respectively. Therefore, the mortality data of 

O. surinamensis and R. dominica at constant conditions were corrected for control mortality.22 

The knockdown and mortality data of field strains at room and constant environmental 

conditions at established fixed times were analyzed by species after transformation to angular 

values23 for normalizing heteroscedastic treatment variances. For each insecticide and species, 

knockdown or mortality data at room or constant conditions were analyzed by one-way analysis 

of variance (ANOVA), and Dunnett’s procedure was used to determine if responses of each field 

strain differed from that of the corresponding laboratory strain.20 

In dose-response tests with β-cyfluthrin at constant conditions, knockdown and mortality 

responses of T. castaneum and O. surinamensis strains were not corrected for the corresponding 

control responses as the mean knockdown was 0% and mortality ranged from 0 to 8% for strains 

of both species. Knockdown or mortality data for each species and strain were subjected to one-

way ANOVA, and the least squares means test was used to determine differences (P ≤ 0.05) 

among the four β-cyfluthrin rates.  
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3 RESULTS 

3.1 Time-mortality responses of laboratory strains  

 Knockdown of T. castaneum adults during the 1 to 24 h exposures ranged from 20 to 100% at 

the low β-cyfluthrin rate and 43 to 100% at the high labeled rate (Fig. 1A). Mortality of T. 

castaneum adults at the low and high β-cyfluthrin rate increased linearly with time but never 

reached 100% (Fig. 1B). The increase in knockdown and mortality of T. castaneum adults with 

time when exposed to chlorpyrifos-methyl plus deltamethrin-treated concrete surfaces was 

nonlinear, and 100% knockdown and mortality were achieved at 4 h and 8 h, respectively.  

Knockdown of O. surinamensis adults was 100% at all times when exposed to both the low and 

high labeled rates of β-cyfluthrin (Fig. 1C). Adult mortality increased in a nonlinear fashion and 

failed to reach 100% at the low rate, and reached 100% only with the high rate at 24 h (Fig. 1D).  

Complete knockdown of O. surinamensis adults occurred at 8 h (Fig. 1C) and complete mortality 

at 4 h (Fig. 1D) on chlorpyrifos-methyl plus deltamethrin-treated concrete. Unlike T. castaneum 

and O. surinamensis, adults of R. dominica were extremely susceptible to β-cyfluthrin, and all 

adults died at low and high β-cyfluthrin rates irrespective of the exposure time (Fig. 1F).  

However, with chlorpyrifos-methyl plus deltamethrin, mean knockdown and mortality at all 

exposure times ranged from 17 to 100% (Fig. 1E) and 7 to 100% (Fig. 1F), respectively. Except 

for R. dominica adults exposed to β-cyfluthrin, adults of T. castaneum and O. surinamensis 

exposed to β-cyfluthrin and chlorpyrifos-methyl plus deltamethrin recovered when placed on 

diets. The overall recovery ranged from 0 to 76%, and the degree of recovery did not follow any 

consistent trend as it varied with the species, exposure time, and insecticide.   

Knockdown and mortality responses for each insect species-insecticide combination were 

satisfactorily described by linear or nonlinear models (r2 = 0.80 - 0.99) (Fig. 1A-F), and the 
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model parameters are given in Table 2. Knockdown responses over time for T. castaneum 

exposed to β-cyfluthrin low and high rate were nonlinear, whereas mortality responses at each 

rate were linear. Therefore, for β-cyfluthrin, at each rate, statistical comparison between 

knockdown and mortality was not possible. Comparisons between knockdown and mortality at 

each β-cyfluthrin rate could not be made because of 100% mortality of R. dominica  or 100% 

knockdown of O. surinamensis at all exposure times.  Knockdown and mortality responses of T. 

castaneum, O. surinamensis, or R. dominica adults exposed to chlorpyrifos-methyl plus 

deltamethrin were not significantly different from one another (F, range among species = 0.94 - 

3.30; df = 2, 12; P, range = 0.072 - 0.417).  

β-cyfluthrin at the high rate caused significantly greater knockdown (P < 0.05) of T. 

castaneum adults than β-cyfluthrin low rate and chlorpyrifos-methyl plus deltamethrin (Table 3).  

Knockdown responses of R. dominica adults at β-cyfluthrin low and high rate were essentially 

similar (P > 0.05), but at each rate the knockdown responses were significantly greater (P < 

0.05) than that of chlorpyrifos-methyl plus deltamethrin.  The high rate of β-cyfluthrin caused 

significantly greater mortality of O. surinamensis adults when compared with the low rate.  

Knockdown responses of R. dominica exposed to β-cyfluthrin at the low or high rate 

were greater (P < 0.05) than that of T. castaneum (Table 4). Knockdown responses of O. 

surinamensis exposed to chlorpyrifos-methyl plus deltamethrin were significantly greater (P < 

0.05) when compared with that of T. castaneum or R. dominica. Similarly, mortality responses of 

O. surinamensis were significantly greater (P < 0.05) than that of R. dominica but not T. 

castaneum.   
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3.2 Responses of field strains at room conditions  

 The mean knockdown of all T. castaneum field strains exposed to the high rate of β-cyfluthrin-

treated concrete ranged from 90 to 98%, and mean mortality ranged 16 to 67% (Fig. 2A) with 

recovery on diet ranging from 32 to 83%. One-way ANOVA by insecticide showed that 

knockdown among T. castaneum strains exposed to the high rate of β-cyfluthrin was not 

significant (F= 1.56; df = 16, 73; P = 0.101), but mortality differences among strains were 

significant (F= 2.14; df = 16, 73; P = 0.015).  Although ANOVA showed mortality differences 

among strains, Dunnett’s test20 showed that the mortality of each field strain did not differ 

significantly (P > 0.05) from that of the laboratory strain.  

The mean knockdown of five of the seven O. surinamensis field strains exposed to β-

cyfluthrin was 100%, whereas it was 71% for AB1 and 76% for AB2 strain (Fig. 2B). The mean 

mortality for the five strains that showed 100% knockdown ranged from 86 to 100%, whereas it 

was 36 and 49% for AB1 and AB2 strains, respectively, indicating recovery when placed on diet. 

The seven strains of O. surinamensis exposed to β-cyfluthrin showed significant differences in 

knockdown (F= 17.71; df = 7, 32; P < 0.0001) and mortality (F= 13.98; df = 7, 31; P < 0.0001). 

Knockdown and mortality responses of AB1 and AB2 field strains differed significantly from 

that of the laboratory strain (P < 0.05; Dunnett’s test).  

β-cyfluthrin was extremely effective against R. dominica field strains with more than 

98% knockdown and 100% mortality (Fig. 2C). Knockdown responses among strains exposed to 

the high rate of β-cyfluthrin were not significantly different (F= 1.00; df = 2, 14; P = 0.397).  

The knockdown of 11 out of 16 T. castaneum field strains exposed to chlorpyrifos-methyl 

plus deltamethrin was greater than 90%, and only eight strains had mortality greater than 90% 

(Fig. 2D). Mortality was less than 50% in AB1 and KC field strains, and the overall recovery on 
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diet ranged from 0 to 50%. One-way ANOVA showed significant differences among field strains 

in knockdown (F= 4.60; df =16, 73; P < 0.0001) and mortality (F= 4.36; df = 16, 73; P < 

0.0001).  Knockdown response of AB1strain and mortality of AB1 and KC strains differed from 

that of the laboratory strain (P < 0.05; Dunnett’s test).  

The mean knockdown of seven O. surinamensis field strains exposed to chlorpyrifos-

methyl plus deltamethrin ranged from 68 to 96%, and the mortality ranged from 38 to 98% with 

a recovery of 0 to 44% on diet (Fig. 2E). Field strains of O. surinamensis exposed to 

chlorpyrifos-methyl plus deltamethrin showed differences in knockdown (F= 2.67; df = 7, 32; P 

= 0.027) and mortality (F= 5.33; df = 7, 31; P = 0.0004).  Knockdown of AB1 strain and 

mortality of AB1 and CF strains were significantly different from that of the laboratory strain (P 

< 0.05; Dunnett’s test).  

The two field strains of R. dominica showed reduced susceptibility to chlorpyrifos-methyl 

plus deltamethrin (Fig. 2F), because knockdown ranged from 84 to 90% and mortality from 7 to 

22%. The recovery of the two field strains on diet ranged from 74 to 92%. One-way ANOVA 

showed knockdown (F= 17.31; df = 2, 12; P = 0.0003) and mortality (F= 21.31; df = 2, 12; P = 

0.0001) responses of laboratory and two field strains (CF and RL) to be significantly different. 

Mortality responses of both the field strains differed significantly from that of the laboratory 

strain (P < 0.05; Dunnett’s test).  

3.3 Responses of field strains at constant conditions 

β-cyfluthrin was less effective against T. castaneum field strains at constant conditions when 

compared with room conditions since knockdown was less than 90% in five of the 16 field 

strains and mortality was less than 51% in all strains including the laboratory strain (Fig.3A). In 

contrast, at room conditions knockdown of all strains was more than 90% and mortality of only 
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11 strains was less than 50%. There were significant differences among T. castaneum strains 

exposed to β-cyfluthrin in knockdown (F= 2.14; df = 16, 68; P = 0.016) and mortality (F= 2.26; 

df = 16, 68; P = 0.011).  

The knockdown of six out of eight O. surinamensis field strains (one extra strain than 

those tested at room conditions) exposed to β-cyfluthrin was greater than 94% and for AB1 and 

AB2 strains it was 53 and 58%, respectively (Fig. 3B).  Mortality among the eight field strains 

ranged from 5 to 82%, and the recovery on diet ranged from 18 to 90%. Knockdown (F = 27.38; 

df = 8, 36; P < 0.0001) and mortality (F = 15.80; df = 8, 35; P < 0.0001) responses among O. 

surinamensis strains exposed to β-cyfluthrin were highly significant. Knockdown of AB1 and 

AB2 strains and mortality of AB1, AB2 and MN strains were significantly different from that of 

the laboratory strain (P < 0.05; Dunnett’s test).  

β-cyfluthrin was extremely effective against the two R. dominica field strains and the 

laboratory strain with 98 to 100% knockdown and 100% mortality (Fig. 3C); similar responses 

were observed under room conditions.  

Chlorpyrifos-methyl plus deltamethrin was more effective against T. castaneum field 

strains at constant conditions than at room conditions with 94 to 100% knockdown.  The 

mortality ranged from 90 to 100% among the strains (Fig.3D). There were significant differences 

(P < 0.05) among field strains of T. castaneum exposed to chlorpyrifos-methyl plus deltamethrin 

in knockdown (F = 1.82; df = 16, 68; P = 0.047) and mortality (F = 3.93; df = 16, 68; P < 

0.0001).  The knockdown and mortality of TP strain differed significantly from that of laboratory 

strain (P < 0.05; Dunnett’s test).  

The knockdown and mortality of the eight O. surinamensis field strains exposed to 

chlorpyrifos-methyl plus deltamethrin ranged from 77 to 92% and 67 to 98%, respectively (Fig. 
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3E). Knockdown (F = 2.41; df = 8, 36; P = 0.034) and mortality (F = 3.29; df = 8, 36; P = 

0.007) responses were highly significant among the strains. Dunnett’s test showed that none of 

the strains was different in both knockdown and mortality from that of the laboratory strain. 

Chlorpyrifos-methyl plus deltamethrin produced higher knockdown (98 to 99%) and mortality 

(38 to 40%) in the two R. dominica field strains at constant than room conditions (Fig. 3F).  The 

three strains of R. dominica exposed to chlorpyrifos-methyl plus deltamethrin differed 

significantly in mortality (F= 17.10; df = 2, 12; P = 0.0003), but not in knockdown (F= 0.51; df 

= 2, 12; P = 0.614).  Only mortality responses of both field strains were significantly different 

from that of the laboratory strain (P < 0.05; Dunnett’s test).  

3.4 Dose-response tests with β-cyfluthrin at constant conditions 

Exposing the three least susceptible strains of T. castaneum (CF, PD1, and TP) to up to four 

times the high rate of β-cyfluthrin resulted in 96 to 100% knockdown and 54 to 90% mortality 

(Table 5). The knockdown and mortality of the corresponding laboratory strain at all rates of β-

cyfluthrin ranged from 96 to 100% and 72 to 90%, respectively. Except for the mortality of TP 

strain which was different among the four β-cyfluthrin rates (F= 5.55; df = 3, 16; P = 0.008), the 

knockdown (F, range among strains = 0.76 - 2.67; df = 3, 16; P = 0.083 - 0.532) and mortality 

(F, range among strains = 0.91 - 2.11; df = 3, 16; P = 0.139 - 0.459) responses of all strains were 

similar among β-cyfluthrin rates.  In the TP strain, there were no significant differences (P > 

0.05) in mortality at 0.04 to 0.08 g (AI) m-2  rates, but only mortality at rates of 0.04 and 0.08 g 

(AI) m-2 was significantly greater (P < 0.05) than mortality at 0.02 g (AI) m-2. 

There was complete knockdown and mortality of the laboratory strain of O. surinamensis 

at all β-cyfluthrin rates (Table 5).  The knockdown of field strains AB1 and AB2 among β-

cyfluthrin rates was 71 to 100% while the mortality was 36 to 76%.  Knockdown responses of 
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the strains differed significantly among β-cyfluthrin rates (F, range among strains = 3.87 - 4.63; 

df = 3, 16; P = 0.016 - 0.03), but mortality responses were not different among rates (F, range 

among strains = 1.22 - 2.62; df = 3, 16; P = 0.087 - 0.336).  In strain AB1, knockdown at rates of 

0.04 to 0.08 g (AI) m-2 was similar (P > 0.05) and knockdown at rates of 0.04 and 0.08 g (AI) m-2 

was significantly greater (P < 0.05) than at 0.02 g (AI) m-2. In strain AB2, knockdown at rates of 

0.04, 0.06 and 0.08 g (AI) m-2 was similar and significantly greater (P < 0.05) than at 0.02 g (AI) 

m-2.  

 

4 DISCUSSION 

Adults of field strains of T. castaneum and O. surinamensis were generally less susceptible to 

chlorpyrifos-methyl plus deltamethrin and β-cyfluthrin. Field strains of R. dominica showed 

reduced susceptibility to chlorpyrifos-methyl plus deltamethrin but not to β-cyfluthrin. Variation 

in susceptibility of different insect species and strains to insecticides could be due to the bioassay 

technique used, natural tolerance, and/or resistance.18  The use of two different bioassay 

methods, filter paper and treated grain assays, against same strains of O. surinamensis revealed 

that the resistance ratios for pyrethroids from both assays were not correlated. The probit 

regression slopes were 1.2 - 3 times higher for grain assays indicating greater susceptibility than 

filter paper assays.24  Field strains of the granary weevil, Sitophilus granarius (L.), from different 

locations in the former Yugoslavia were 0.5 to 30 times less susceptible to the organophosphates 

dichlorvos, malathion, chlorpyrifos-methyl, and pirimiphos-methyl, and to the pyrethroids 

deltamethrin and cypermethrin than the laboratory strain based on discriminating-dose tests with 

treated filter papers.16  
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Adults of four field strains of O. surinamensis collected from stored barley on Minnesota 

farms showed 8 to 40% mortality when exposed to chlorpyrifos-methyl at a discriminating dose 

of 0.09 mg/7 cm diameter filter paper disc (38.5 cm2) compared with a laboratory strain which 

showed 100% mortality even before the insecticide was registered for use on this commodity, 

indicating natural tolerance.17 The wild strains of O. surinamensis in Australia showed low 

resistance levels (<10-fold) to chlorpyrifos-methyl in treated filter-paper assays.25 Strains of R. 

dominica from Brazil were found to be 2 to 874 times more resistant to deltamethrin than a 

susceptible laboratory strain.26 Resistance to chlorpyrifos-methyl was detected in R. dominica 

strains collected from Brazil and Kansas, USA, with resistance ratios at the median lethal 

concentration (LC50) ranging from 5.6 to 167.9. 27 A low level of resistance (1.2 to 1.8-fold) was 

observed to deltamethrin in 11 field strains of the maize weevil, Sitophilus zeamais Motschulsky, 

collected from nine states in Mexico.28 

In Australia, resistance to cyfluthrin has been reported in O. surinamensis24 and T. 

castaneum 29 using filter paper and grain assays. Resistance to cyfluthrin was also reported in 

other insect species such as the housefly, Musca domestica L.;30 German cockroach, Blattella 

germanica (L.);31,32 beet armyworm, Spodoptera exigua (Hübner),33 and lesser meal worm, 

Alphitobius diaperinus (Panzer).34In the present study, R. dominica showed reduced 

susceptibility to chlorpyrifos-methyl plus deltamethrin. Some previous studies have reported the 

field strains of R. dominica to be resistant to chlorpyrifos-methyl27,35,36 and to deltamethrin26 but 

not to the binary mixture.  Chlorpyrifos-methyl at 3.0 mg(AI) kg-1 of grain was effective against 

T. castaneum and O. surinamensis on stored wheat but not against R. dominica.37  

The results on insect susceptibility to the tested insecticides on concrete surfaces are at 

variance from that observed with the same insecticides on stored grain. For example, on stored 
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rice and wheat, chlorpyrifos-methyl plus deltamethrin was effective against the psocids 

Lepinotus reticulatus Enderlein, Liposcelis entomophila (Enderlein), Liposcelis bostrychophila 

Badonnel, and Liposcelis paeta Pearman.12 It was also effective at the labeled rate against adults 

of R. dominica, S. oryzae, and T. castaneum on wheat and R. dominica and S. oryzae adults on 

short-grain and long-grain rices.13 The reduced susceptibility of adults of T. castaneum and O. 

surinamensis strains to chlorpyrifos-methyl plus deltamethrin and β-cyfluthrin on concrete 

surfaces as opposed to grain could be due to absorption or loss of the sprayed solution into the 

porous concrete. The concrete surface is also alkaline (pH ~10.5) and may have hydrolyzed the 

insecticide.38 The persistence of cyfluthrin can be increased by sealing concrete with various 

commercial sealants.2 An additional factor reducing the efficacy of insecticides on concrete may 

be uneven spray deposition during application, leading to areas with little or no insecticide 

deposit.  Insects seeking such areas may not receive a lethal dose of the insecticide.    

On grain, both contact and ingestion toxicity are important, whereas on concrete there is 

only contact toxicity. On grain, insects are typically exposed for 1 wk or more, but on concrete 

surfaces the maximum exposure time in our study was 24 h. Such short exposures may have 

been sublethal39 and allowed insect recovery when placed on diets. The exposure of R. dominica 

adults for 24 h or less on wheat treated with an emulsifiable concentrate of cyfluthrin at 1, 2, and 

4 mg(AI) kg-1 gave less than 90% mortality.40  

 The poor effectiveness of β-cyfluthrin against T. castaneum field strains at 0.02 to 0.08 

g (AI) m-2 rate in this study is in contrast to excellent control shown by cyfluthrin wettable 

powder at 0.04 g (AI) m-2 against a laboratory strain of T. castaneum.3 The wettable powder 

formulation gave 90% mortality of T. castaneum adults when exposed for 0.5 to 4.0 h on 

deposits aged for 8 to 24 wk.3 Similar data on O. surinamensis with a wettable powder 
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formulation are not available for comparisons.  β-cyfluthrin, an enriched isomeric form of the 

two biologically active diastereoisomeric pairs of isomers of cyfluthrin, should perform better or 

as well as the wettable powder formulation.  For example, β-cyfluthrin showed high short-term 

efficacy with time to 95% mortality (LT95) of 12 to15 h against stored-product psocids, L. 

bostrychophila and L. entomophila, when applied at a low rate of 0.002 g (AI) m-2 on concrete.11 

Kaufman and Rutz41 reported the wettable powder formulation of cyfluthrin to be more toxic 

than the suspension concentrate formulation when applied to painted and unpainted plywood 

panels against M. domestica collected from dairies in the State of New York. 

Except for R. dominica strains exposed to β-cyfluthrin, in our study percentage mortality 

of T. castaneum and O. surinamensis strains was generally lower than knockdown indicating 

recovery when placed on diets. Recovery of insects on food after a brief insecticide exposure 

may be due to absorption of insecticide from the insect’s integument by the food particles, or an 

increase in insect’s ability to detoxify the insecticide after removal from treated substrates.9 The 

time for 90% mortality of beetles (LT90) placed on wheat flour for 1 wk after exposure to 0.02 

g(AI) m-2 of cyfluthrin wettable powder for 0.5 to 2.0 h was 195 min, whereas LT90 for those 

without flour was 19 min.4 The presence of wheat flour on methoprene-treated concrete surfaces 

reduced the efficacy of methoprene against T. castaneum larvae (10 to 12 d old after eclosing 

from eggs).42  Therefore, sanitation of empty storage surfaces is very important to improve 

effectiveness of residual insecticides. The fact that there is recovery indicates that the 

insecticides did not exhibit any delayed effects. Delayed mortality effects have been reported in 

R. dominica43,44 but not in S. oryzae after short exposures to spinosad-treated wheat.44   

In the present study, β-cyfluthrin was found to be more effective at the room temperature 

of 24-25°C than at 28°C against T. castaneum and O. surinamensis. These strains and those of R. 
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dominica were more susceptible at 28°C than at 25°C when exposed to chlorpyrifos-methyl plus 

deltamethrin.  In tests at 20, 25, 30, and 35°C, cyfluthrin toxicity was negatively correlated with 

temperature in tests with adults of T. castaneum,10 T. confusum, the larger grain borer, 

Prostephanus truncatus (Horn) and larvae of P. interpunctella and the almond moth, Cadra 

cautella (Walker)45. Cyfluthrin toxicity was unaffected by temperature in tests with R. dominica 

adults.45 Organophosphate insecticides such as chlorpyrifos-methyl were more toxic at higher 

(25°C)  than lower (17.5 and 10°C) temperatures against adults of O. surinamensis,46 T. 

castaneum, and S. granarius.47 A positive correlation was found between temperature and 

effectiveness of organophosphate insecticides such as malathion, pirimiphos-methyl, and 

fenitrothion against adults of  T. confusum.48 Deltamethrin displayed a negative temperature 

coefficient (more toxic at 15.6 than at 37.8°C) against the third instar larvae of cabbage looper, 

Trichoplusia ni (Hubner), and adults of the boll weevil, Anthonomus grandis grandis Boheman, 

but exhibited either a neutral or a positive temperature coefficient against third instar larvae of 

the fall armyworm, Spodoptera frugiperda (J. E. Smith), and tobacco budworm, Heliothis 

virescens (F.).49,50  An overall negative temperature coefficient was observed for deltamethrin 

emulsifiable concentrate formulation when tested against 2nd instar nymphs of the grasshopper 

Melanoplus spp. at 15.6 to 37.8°C, with a slight positive temperature coefficient at 21.1 to 

26.7°C.51 However, a neutral or positive temperature coefficient was reported with a flowable 

formulation of deltamethrin when tested at 15 to 31°C against Melanoplus spp.52 Based on these 

studies we hypothesize that deltamethrin in the combination product may have exhibited either 

neutral or positive temperature coefficient.  

Our results show that β-cyfluthrin is an ideal insecticide to use in clean, empty bin floors 

prior to storing wheat only to control R. dominica adults but not T. castaneum and O. 
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surinamensis strains. The reduced susceptibility of field and laboratory strains of the latter two 

species may be due to an inherent formulation deficiency or resistance, since four times the 

labeled rate failed to provide complete control. Chlorpyrifos-methyl plus deltamethrin was only 

partially effective against strains of all three species. There is documented evidence of resistance 

in field strains of these three species to one or both active ingredients. This is the first report that 

characterized susceptibility, or lack thereof, of field strains of three insect species from Kansas 

and other parts of the United States to two approved insecticides used for empty-bin treatments. 

According to surveys of wheat stored on-farm and elevators in Kansas, the most common insect 

species associated with stored wheat are R. dominica, S.oryzae, and T. castaneum. In addition, 

Oryzaephilus spp. and Cryptolestes spp. are also found in stored grain in Kansas.53,54 Based on 

our results, no single insecticide can be recommended to provide adequate control of all species 

tested. More work is needed on the mechanism of detoxification of these chemicals by the three 

species to understand why some chemicals are effective against some species and strains and not 

against others. Evaluation of other recommended empty-bin insecticides with the field strains is 

also needed to identify a broad-spectrum insecticide that is effective against species commonly 

found in empty bins.   
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Table 1. Sites and year of collection of adult T. castaneum, O. surinamensis, and R. dominica 

field strains  

Species    Strain ID County, State Location Commodity Collection year   

T. castaneum AB1 Dickinson, KS Abilene  Wheat 2011  

 AB2 Dickinson, KS Abilene  Wheat 2011   

 AZ Maricopa, AZa ____b Flour mill 2009 

 CF Washington, KS Clifton Wheat 2011 

 CN McPherson, KS Canton  Wheat 2011 

 GH Russell, KS Gorham  Wheat 2011 

 HN Stafford, KSa ____  Flour mill 2001 

 IL Cook, ILc Bridgeview Rice facility 2011 

 KC Jackson, MOa  ____  Flour mill 2005 

 MN1 Ottawa, KS Minneapolis Wheat  2011 

 MN2 Ottawa, KS Minneapolis Wheat 2011 

 PD1 Russell, KS Paradise     Wheat 2011 

 PD2 Russell, KS Paradise     Corn 2011 

 PO KSa  ____  Flour mill 2001 

 SR Dickinson, KSa ____  Flour mill 2001 

 TP Mitchell, KS Tipton Wheat 2011 

O. surinamensis AB1 Dickinson, KS Abilene  Wheat 2011 

 AB2 Dickinson, KS Abilene Wheat 2011 

 CF Washington, KS Clifton Wheat 2011 

 CN McPherson, KS Canton  Wheat 2011 



32 
 

 

 aThese strains were collected prior to 2011 and were provided by Dr. James Campbell, USDA-

ARS, Center for Grain and Animal Health Research, Manhattan, KS, USA. 

bExact city name is not disclosed at the request of the mill manager. 

cStrain collected by one of the authors (Bhadriraju Subramanyam) during a visit to a rice-

processing facility in 2011. 

 

 

 MN1 Ottawa, KS Minneapolis Wheat 2011 

 PD1 Russell, KS Paradise     Wheat 2011 

 PD2 Russell, KS Paradise     Corn 2011 

 TP Mitchell, KS Tipton Wheat 2011 

R. dominica CF Washington, KS Clifton Wheat 2011 

 RL Riley, KSa ____  Flour mill 2007 
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Table 2.  Parameter estimates for regression models fit to knockdown and mortality data of the 

laboratory strains of three insect species exposed to insecticide deposits on concrete  

Species Insecticide  Response n Mean ± SE for parametersa r2

a b 

T. castaneum β-cyfluthrin low rate Knockdown 8 99.5 ± 1.1 -78.9 ± 3.0 0.99 

Mortalityb 6 22.3 ± 7.8 3.2 ± 0.8 0.81 

β-cyfluthrin high rate Knockdown 8 99.6 ± 1.7 -54.7 ± 4.6 0.96 

Mortalityb 8 21.6 ± 5.1 2.4 ± 0.4 0.87 

Chlorpyrifos-methyl 

plus deltamethrin  

Knockdown 8 102.8 ± 2.2 -86.4 ± 6.1 0.97 

Mortality 8 99.6 ± 0.9 -84.1 ± 2.4 0.99 

O. surinamensis β-cyfluthrin low rate Knockdown  — c —  

Mortality 6   91.0 ± 2.4 -23.9 ± 5.9 0.80 

β-cyfluthrin high rate Knockdown  — —  

Mortality 5 101.5 ± 1.7 -1655. 8 ± 211.6 0.95 

Chlorpyrifos-methyl 

plus deltamethrin  

Knockdown 8 100.0 ± 0.2 -39.6 ± 0.6 0.99 

Mortality 8   98.2 ± 3.7 -56.8 ± 10.1 0.84 

R. dominica  β-cyfluthrin low rate Knockdown 8 100.4 ± 0.4 -9.9 ± 1.0 0.94 

Mortality  — —  

β-cyfluthrin high rate Knockdown 8 100.4 ± 0.4 -9.6 ± 1.0 0.94 

Mortality  — —  

Chlorpyrifos-methyl 

plus deltamethrin  

Knockdown 8 103.1 ± 2.6 -82.8 ± 7.1 0.96 

Mortality 8 89.4 ± 5.8 -87.6 ± 15.9 0.83 

 

 



34 
 

aAll regression ANOVA values were significant indicating that the slope (b) is not equal to zero 

(F, range among species, insecticides, and responses = 17.32 – 1232.66; df = 1, 6 except for T. 

castaneum and O. surinamensis mortality with β-cyfluthrin at low rate where df = 1, 4; and O. 

surinamensis mortality with β-cyfluthrin at high rate where df = 1, 3; P ≤ 0.016).  

bLinear equation  y = a + bx  was  fit to the data; all other responses were fit to the nonlinear 

equation  y = a + b/x2. 

cKnockdown or mortality at all observation times was 100%. 
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Table 3. Comparison of knockdown or mortality responses of three insect species between 

insecticides and rates  

Species  Response  Insecticides compared F-value df P-valuea 

T. castaneum Knockdown β-cyfluthrin high rate vs β-cyfluthrin 

low rate  

12.16 2, 12 0.001  

β-cyfluthrin low rate vs Chlorpyrifos-

methyl plus deltamethrin 

1.05 2, 12 0.380 

β-cyfluthrin high rate vs 

Chlorpyrifos-methyl plus 

deltamethrin 

8.81 2, 12 0.004  

Mortality β-cyfluthrin low rate vs β-cyfluthrin 

high rate 

1.52 2, 10 0.266 

O. surinamensis Mortality β-cyfluthrin high rate vs β-cyfluthrin 

low rate  

9.18 2, 7 0.011 

β-cyfluthrin low rate vs Chlorpyrifos-

methyl plus deltamethrin 

3.59 2, 10 0.067 

β-cyfluthrin high rate vs 

Chlorpyrifos-methyl plus 

deltamethrin 

3.77 2, 9 0.065 

R. dominica Knockdown β-cyfluthrin low rate vs β-cyfluthrin 

high rate 

0.03 2, 12 0.971 

β-cyfluthrin low rate vs Chlorpyrifos-

methyl plus deltamethrin 

59.83 2, 12 <0.001 
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β-cyfluthrin high rate vs 

Chlorpyrifos-methyl plus 

deltamethrin 

60.39 2, 12 <0.001 

 

aIn cases where the P-values were significant (< 0.05), the insecticide listed first caused 

significantly greater knockdown and/or mortality than the other in the pair being compared.  

Some insecticide combinations were not compared because of 100% knockdown or mortality at 

all observation times. 
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Table 4. Comparison of knockdown or mortality responses between insect species by 

insecticides and rate  

Insecticide    Response  Species compared F-value df P-valuea 

Cyfluthrin low rate Knockdown R. dominica vs T. castaneum  307.95 2, 12 <0.0001 

Cyfluthrin high rate Knockdown R. dominica vs T. castaneum   60.44 2, 12 <0.0001 

Chlorpyrifos-methyl 

plus deltamethrin 

Knockdown T. castaneum vs R. dominica   0.11 2,  12 0.895 

O. surinamensis vs T. castaneum 31.90 2, 12 <0.001 

O.surinamensis vs R. dominica  19.87 2, 12 0.0001 

Mortality T. castaneum vs R. dominica  2.15 2, 12 0.159 

T. castaneum vs O. surinamensis  3.87 2, 12 0.050 

O. surinamensis vs R. dominica   3.91 2, 12 0.049 

 

 

aIn cases where the P-values were significant (< 0.05), the insect species listed first showed 

significantly greater knockdown and/or mortality than the other in the pair being compared. 
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Table 5. Knockdown and mortality of laboratory and select least susceptible field strains of T. castaneum and O. surinamensis 

exposed to concrete surfaces treated at or above the high labeled rate of β-cyfluthrina,b  

Strain 

 

Mean ± SE knockdown (%) at β-cyfluthrin rate (g[AI]m-2) of:  
 

Mean ± SE mortality (%) at β-cyfluthrin rate (g[AI]m-2) of:  

0.02 0.04 0.06 0.08 0.02 0.04 0.06 0.08 

T. castaneum 

Lab. 96.0 ± 2.4c 100   98.0 ± 2.0  98.0 ± 2.0 72.0 ± 10.7d 74.0 ± 5.1 84.0 ± 10.3 90.0 ± 7.7

CF 98.0 ± 2.0c 100   100   100   54.5 ± 12.6d 61.0 ± 10.5 55.1 ± 17.0  77.6 ± 12.4 

PD1 98.0 ± 2.0c 100   100   100   66.0 ± 12.5d 90.0 ± 7.7 72.0 ± 7.3 78.0 ± 4.9 

TP 96.0 ± 2.4c 100   100   100   54.0 ± 9.3b 82.2 ± 5.0a 74.7 ± 7.1ab 90.0 ± 3.2a 

O. surinamensis 

Lab. 100   100   100   100   100   100   100   100   

AB1 71.3 ± 3.9b 93.9 ± 2.5a 85.8 ± 6.8ab 92.0 ± 3.7a 58.7 ± 4.9e 76.9 ± 9.3 57.1 ± 10.7 70.9 ± 9.9 

AB2 80.0 ± 8.4b 98.0 ± 2.0a 100.0a 96.0 ± 2.4a 36.0 ± 10.3e 71.4 ± 7.2 60.0 ± 10.5 70.2 ± 6.5 

 

aEach mean is based on n = 5. 

bFor each strain and response (knockdown or mortality), means among rates followed by different letters are significantly different (P 

< 0.05; by least squares means test). 
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cFor each T. castaneum strain, knockdown among rates was not significant (F, range among strains = 0.76 - 2.67; df = 3, 16; P, range 

= 0.083 - 0.532; one-way ANOVA). 

dFor T. castaneum Lab., CF, or PD1 strain, mortality among rates was not significant (F, range among strains = 0.91 - 2.11; df = 3, 16; 

P, range = 0.139 - 0.459; one-way ANOVA). 

eFor O. surinamensis AB1 or AB2 strain, mortality among rates was not significant (F, range between strains = 1.22 - 2.62; df = 3, 16; 

P, range = 0.087 - 0.336; one-way ANOVA). 
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Figure captions 

Figure 1. Mean ± SE (n = 3) observed and predicted adult knockdown and mortality of 

laboratory strains of three insect species as a function of time when exposed to β-cyfluthrin and 

chlorpyrifos-methyl plus deltamethrin treated concrete surfaces at 24.3°C and 23.4 % r.h.   

 

Figure 2. Mean ± SE (n = 5) knockdown and mortality of adults of laboratory and field strains of 

three insect species exposed to β-cyfluthrin and chlorpyrifos-methyl plus deltamethrin treated 

concrete surfaces at room conditions (25.4°C and 17.2% r.h.) For each species and response, 

means for a strain followed by an asterisk (*) is significantly different from the corresponding 

laboratory strain (P < 0.05; by Dunnett’s test). 

 

Figure 3. Mean ± SE (n = 5) knockdown and mortality of adults of laboratory and field strains of 

three insect species exposed to β-cyfluthrin and chlorpyrifos-methyl plus deltamethrin treated 

concrete surfaces at constant conditions (28°C and 65% r.h.). For each species and response, 

means for a strain followed by an asterisk (*) is significantly different from the corresponding 

laboratory strain (P < 0.05; by Dunnett’s test).  
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Figure 3 
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