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Research on micro-swimming robots without tether is growing fast owing to their potential impact on
minimally invasive medical procedures. Candidate propulsion mechanisms of robots are vastly based
on micro-organisms with rotating helical tails. For design of swimming robots, accurate models are nec-
essary to compute velocities with corresponding hydrodynamic forces. Resistive force theory (RFT) pro-
vides an excellent framework for six degrees-of-freedom (dof) surrogate models in order to carry out
effective design studies. However, resistance coefficients reported in literature are based on approximate
analytical solutions for asymptotical cases, and do not address the effect of hydrodynamic interactions
between the body and the tail, even in unbounded fluid media. Here, we use hydrodynamic interaction
coefficients that multiply the body resistance coefficients along with no further modification to local
resistance coefficients of the tail. Interaction coefficients are obtained from the solution of the inverse
problem once for a fixed representative design with a computational fluid dynamics (CFD) simulation
or an experiment. Results of the RFT-based hydrodynamic model are compared against further CFD sim-
ulations, and indicate that the model with hydrodynamic interaction coefficients obtained from a repre-
sentative design provides a viable surrogate for computationally intensive three-dimensional time-
dependent CFD models for a range of design variables. Finally, the validated hydrodynamic model is
employed to investigate efficient geometric designs with helical wave propagation method within a
wider range of design parameters.
1. Introduction

Potential advantages of micro-swimming robots can revolution-
ize the modern medicine: procedures such as kidney stone
destruction, cleaning of clogged arteries, reaching tumors deep
inside vital organs or retina restoration can be performed with
minimal side-effects [1,2]. Conventional mechanisms such as pro-
pellers cannot achieve propulsion at low Reynolds numbers in sim-
ple fluids, such as in micro-fluids, as stated by Purcell’s scallop
theorem [3]. However, propulsion mechanisms of natural micro-
swimmers are viable candidates for propulsion of autonomous
micro-swimming robots [4]. Bio-inspired propulsion mechanisms
with helical wave propagation have been demonstrated in litera-
ture: here, a representative review is presented.
Zhang et al. [5,6] manufactured artificial helical flagella as small
as a few tens of microns long. Metal and polymer layers are depos-
ited in the shape of a narrow tape and formed into a helix due to
the tensile stress exerted on the inner layers during the manufac-
turing process. A magnetic bead of 4.5 � 4.5 � 0.2 cubic microme-
ters is attached to one end of the artificial flagellum. In the
presence of a rotating external magnetic field, the torque on the
magnetic head enabled the rotation of the helical flagellum and
the forward motion of the artificial swimmer. Ghosh and Fischer
[7] demonstrated the use of glancing angle deposition on the sili-
con wafer in an electron beam evaporator to obtain about a
micro-scale helical screw like structures with diameters of a few
hundreds of nanometers. In that study, helical structures are
removed from the wafer, laid onto a surface and deposited by mag-
netic cobalt on one side. By means of a tri-axial Helmholtz coil, a
rotating magnetic field is generated and modified by an open loop
control scheme to navigate the micro-robot on a preselected path.

Furthermore, there are in vitro studies directly incorporating
bacteria species in computer controlled tasks as cargo carriers:
Martel et al. [8] and Martel and Mohammadi [9] carried out exper-
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iments with magnetotactic bacteria (MTB) species, which use
earths’ magnetic field to control their swimming path, and demon-
strated that with an induced magnetic field it is possible to control
MTBs as individuals or as a swarm to tow micro-scale objects.
These studies are particularly important to demonstrate the possi-
bility of using actual bacteria for a predefined task for which the
feasibility of deploying an artificial swimmer is unlikely due to
mission parameters or environmental conditions.

Hydrodynamic models of the propulsion of micro-organisms by
means of resistance coefficients have been studied for over sixty
years. Gray and Hancock [10] presented the application of resis-
tance coefficients to calculate fluid forces due to time-irreversible
motion of slender filaments. Force coefficients are obtained from
the approximate solution of the fluid motion represented by local
singularities, i.e., Stokeslet functions representing local point
forces, on the filament [11]. Lighthill [12] used the slender body
theory (SBT) based on the velocity field represented by distribution
of point forces on the helical tail of the swimmers. Higdon [13]
used a numerical integration method for the integrals approxi-
mated by Lighthill to calculate the velocity of a swimmer with a
spherical head and a helical tail, and reported the variation of the
swimming velocity with the tail length, wavelength and amplitude
given in dimensionless forms with respect to the diameter of the
body.

Numerical solutions of the flow coupled with the equation of
motion of the swimmer are carried out extensively in literature.
Ramia et al. [14] obtained instantaneous velocities of swimming
of micro-organisms from the solution of Stokes equations with
the boundary element method (BEM) in order to study hydrody-
namic interactions between cells and solid boundaries as well as
the interaction between the body and the tail of a cell. Goto et al.
[15] employed BEM for the solution of Stokes equations, calculated
the velocity vector of a natural micro-swimmer, compared their
results with observations of swimming bacteria, Vibrio alginolyti-
cus, and concluded that the BEM solutions agree reasonably well
with observations.

Design of bio-inspired micro-swimming robots can benefit from
accurate hydrodynamic models that predict forward and lateral
velocities of robots. It has been demonstrated that RFT can be used
to develop real-time models to predict the full three-dimensional
trajectory of micro-swimmers [16,17]: in RFT models, hydrody-
namic forces on a flagellum are calculated from resistance coeffi-
cients, and drag forces on bodies are obtained from analytical
relationships for simple objects in viscous mediums. Models that
use several variants of resistance coefficients do not yield accurate
predictions for even the forward velocity of a swimmer for all con-
figurations of flagellum parameters in the presence of a sizable
body of the swimmer compared to the tail [17–20]. The hydrody-
namic interaction between the body and the tail is one of the key
phenomena which are not included properly in RFT models. Light-
hill [12] included the effect of the cell body on the SBT-based cal-
culations of the velocity of the swimmer and concluded that the
correction is very small compared to an isolated infinite flagellum.
Chattopadhyay and Wu [20] demonstrated that Lighthill’s correc-
tion is insufficient for micro-swimming species such as V. alginolyt-
icus. Furthermore hydrodynamic interaction between the body and
the flagellum was studied numerically by Ramia et al. [14], and
authors concluded that the presence of the cell body does not alter
the propulsion force of the flagellum significantly. However,
authors did not provide detailed results for the effect of flagellum
on the drag force on the body of the cell compared to an isolated
body with the same shape and size.

Hydrodynamic forces on tails are obtained from the integration
of local forces in tangent and perpendicular directions to the
motion and expressed by resistance coefficients over the tail. Force
coefficients can be calculated from analytical formulas available in
the literature, such as from Lighthill’s SBT analysis [12]. Body resis-
tance coefficients are known for isolated objects such as spheroids
in unbounded fluid media: for example, the resistance coefficient is
Fi/Ui = �6pla for the fluid force Fi acting on an isolated spherical
object of radius a moving with velocity Ui in an unbounded fluid
of viscosity l in an arbitrary direction [21,22].

We propose hydrodynamic interaction coefficients, ci, which
scale the resistance coefficient for the motion in an arbitrary ith
direction, i.e., Fi/Ui = �ci6pla. Hydrodynamic interaction coeffi-
cients are different for each direction due to the rotation of the
helical tail, which breaks the symmetry of the flow over the spher-
ical body. Accurate calculation of hydrodynamic interactions is
extremely difficult analytically; however, an experiment or a single
CFD simulation can be performed for a fixed representative design
in order to obtain a set of necessary coefficients.

The inverse problem is solved only once with a single CFD-sim-
ulation for a representative design with fixed design variables to
obtain unknown force coefficients and corrections. The method is
somewhat ad-hoc in prediction of hydrodynamic interaction coef-
ficients for the sake of improving the accuracy of the RFT model
which takes seconds to run instead of hours in the case of three-
dimensional CFD simulations subject to free-swimming
constraints.

Main contributions of this study are to obtain a particular con-
stant set of resistance coefficients with corrections embedded to
account for the effect of hydrodynamic interactions on the body
for a representative design, with the help of a single CFD simula-
tion, and use them in a model with reduced numerical stiffness
offering a simple and fast computational tool, which will provide
reliable calculations of time-averaged swimming velocities in a
predefined neighborhood around the representative design suit-
able for design-optimization purposes. Therefore, the RFT-based
simple model presented here serves as a surrogate for accurate
numerical models, such as computationally intensive and time
demanding finite element or boundary element simulations, and
can be used in design optimization studies to search alternative
designs in the neighborhood of the representative design.

To that end, the RFT model, which is incorporated with hydro-
dynamic interaction corrections for the body and constant resis-
tance coefficients for the tail, is validated with measurements of
Goto et al. [15] for a group of species of micro-organisms with
varying body and tail dimensions, and with three-dimensional
time-dependent CFD simulation experiments for swimmers with
geometric designs different than the representative model used
to obtain interaction coefficients. Furthermore, the validated
hydrodynamic model is used to obtain optimal efficient tail param-
eters for desired operations such as efficiency and speed within a
predefined design space with a regular grid to demonstrate its
advantage over conventional numerical simulation methods.
2. Methodology

2.1. Hydrodynamic model

Velocity vector of a two-link micro-swimmer is obtained from
the equation of motion [17,23], which balances forces on the
swimmer’s body and the tail:

Fbody þ Ftail ¼ 0 ð1Þ

where F = [F0,T0]0 is the generalized force vector, F and T are force
and torque vectors, ‘0’ is the transpose, and body and tail forces
are referred with respective subscripts ‘‘body’’ and ‘‘tail’’. For
simplicity, we assume that the body of the swimmer is a blunt
object such as a sphere, and the tail is subject to a helical wave



propagation motion, i.e., rotation, which generates propulsion force
in viscous flows as observed among micro-swimming organisms.

For creeping flows equations of motion can be cast in a linear
system of equations relating the generalized force and velocity
vectors by means of the resistance matrix, Bi, as follows:

Fi ¼ �BiVi: ð2Þ

Here, i = {body, tail}, V = [U0 X0]0 is the generalized velocity vector; U
and X are translational and rotational velocity vectors respectively.

The resistance matrix for the body of the swimmer [17], Bbody, is
simpler than the resistance matrix of tail and obtained from the
linear and rotational resistances of the body, thus, can be consid-
ered as a combination of four subcomponents which relate linear
and angular velocities to forces and torques:

Bbody ¼
DN E
E0 DR

� �
: ð3Þ

In Eq. (3), DN and DR are 3 � 3 diagonal matrices signifying the
translational and rotational resistances of the body, E, which con-
tains nonzero elements should centers of geometry of body and
swimmer be far apart.

For a spherical isolated body in an unbounded fluid, each diag-
onal element of DN is 6plrbody and each diagonal element of DR is
8pl(rbody)3, where l is the dynamic viscosity and rbody is the radius
of the spherical body [21,22]. However, even for a simple body
such as a sphere, resistance matrices DN and DR must be modified
due to motion of the tail attached to the body as well as for flows
inside channels and nearby boundaries [24,25]. In effect, the inter-
action coefficients are only applied to the body resistances and
they need to be estimated well in order to ensure accuracy of the
hydrodynamic model.

Time-dependent resistance matrix of the tail [17], Btail in Eq. (2),
is obtained by integration over local forces:

Btail ¼
Z L

0

RCR0 �RCR0S
SRCR0 �SRCR0S

" #
ads ð4Þ

where a is the ratio between apparent and actual lengths of the tail,
L is the apparent length of the tail in the s-direction, S is the skew-
symmetric matrix that corresponds to the cross product with the
position vector on the tail, R is the rotation matrix from the local
Frenet–Serret frames with local tangential, t, bi-normal, b, and nor-
mal, n, vectors [26], and the sqr-coordinate frame of the swimmer
and signified as position, s, and time, t, dependent functions as
R = [t(s, t) n(s, t) b(s, t)] (see Fig. 1).

The local resistance matrix at a given position on the tail, signi-
fied by C in Eq. (4), is a diagonal matrix of local resistance coeffi-
cients in the tangent, ct, bi-normal and normal directions, c{n,b}.
Local resistance coefficients are assumed identical in the bi-normal
Fig. 1. Swimmer with a rotating helical tail: XYZ is the stationary frame; sqr is
located at the joint and translates with the body; and tnb denotes the local time-
dependent Frenet–Serret coordinates on the tail.
and normal directions due to the symmetry of the induced flow
field.

Accurate calculation of the resistance coefficients is extremely
difficult. Lighthill [12] derived resistance coefficients from the dis-
tribution of point forces on an infinite helix in an unbounded fluid,
and the local normal and tangential components of the resistance
coefficients are obtained as follows:

cfn;bg ¼
4pl

� ln eþ ð2a2 � 1ÞA1 þ 2ð1� a2ÞA2
; ð5Þ

ct ¼
2pl

� ln e� 0:5þ a2A1 þ ð1� a2ÞA2
: ð6Þ

Here, e is given by e ¼ 5:2aa=k; where a denotes the filament radius
of the tail, and k is the wavelength. A1 and A2 are periodic integrals
of the functions of assumed local flow field along the helical tail,
which are discussed by Lighthill [12] in great detail.

Local velocity on the tail is the summation of the swimmer’s net
velocity and the motion of the tail with respect to the sqr-frame in
Fig. 1:

Utail ¼ Ubody þ û ð7Þ

where û is the local velocity on the tail, and can be obtained from or
the rotation of the tail with û ¼ ½x00�0 � P, where x = 2pf, and f
denotes the actuation frequency of the tail. For example for a left-
handed helical tail as shown in Fig. 1, the position vector P is spec-
ified in the sqr-coordinate frame as follows:

P ¼
s

qðs; tÞ
rðs; tÞ

2
64

3
75 ¼

s
bsðsÞ cosðks�xtÞ
�bsðsÞ sinðks�xtÞ

2
64

3
75: ð8Þ

where k is the wave number and bs(s) is the local radius of the helix,
which is modified with a ramp function to ensure a fixed connec-
tion with the body (see Fig. 1), e.g. bs(s) = 10b(s/L) for s/L < 0.1 and
bs(s) = b for (s/L) P 0.1.

Forces on the tail can be decomposed into propulsion and drag
forces. According to the linear relations given by Eqs. (2) and (7),
then, we have:

F
T

� �
tail

¼ �Btail
U
X

� �
tail

¼ �Btail
U
X

� �
body

þ û

 !
¼ �Btail

U
X

� �
body

�
Fp

Tp

� �
:

ð9Þ

The first term in the right-hand-side of Eq. (9) is the total drag
force on the tail due to its motion with the body, and the second
term is the propulsion force, Fp, and propulsion torque, Tp, gener-
ated by the tail due to its motion relative to the body, and obtained
from Eq. (4) as follows:

Fp

Tp

� �
¼
Z L

0

RCRû
ðP� PcomÞ � ðRCRûÞ

� �
ds ð10Þ

where C denotes the local resistance matrix, and Pcom is the position
of the center of mass of the swimmer in sqr-coordinates.

Substituting Eqs. (2)–(4) and Eq. (9) into Eq. (1), one obtains
the instantaneous velocity vector of the swimmer in the sqr-
coordinates:

Ubody

Xbody

� �
¼ Bbody þ Btail

� ��1 Fp

Tp

� �
: ð11Þ
2.2. CFD model

CFD model is used to compute reliable fluid forces especially at
low Reynolds number flows. In order to model the motion of a
swimming robot in an unbounded fluid, here, we use a relatively



Fig. 2. Swimmer in the channel: governing equations, i.e., Navier–Stokes, subject to continuity and ALE deformation with respective boundary conditions exerted on each
moving or stationary surface of the viscous medium, U(t).
large channel around the swimmer with the diameter as large as
ten times the diameter of the body, and length five times the total
length of the swimmer with negligible distortion to the flow field
nearby the swimmer (see Fig. 2).

Fluid forces are calculated from the finite-element method solu-
tion of incompressible Navier–Stokes equations subject to continu-
ity in the moving domain due to the motion of the tail and the
overall swimmer, and arbitrary Lagrangian Eulerian (ALE) scheme
[27] is used in order to handle the deforming mesh as given in
Eq. (12). Equations are written in dimensionless form with the
diameter of the body, Dbody, as the length-scale and 2p/x as the
time-scale; hence, the velocity-scale is xDbody/2p, which varies lin-
early with the frequency, and the final scaling Reynolds number is
found to be Re = qx (Dbody)2/2pl. Complete list of variables used in
the representative base-case design is shown in Table 1.

q @U
@t þ ðU� _xmeshÞ � rU
� �

¼ �rpþ lr2U;
r � U ¼ 0:

ð12Þ

The boundary conditions imposed on stationary and moving
boundaries are depicted in Fig. 2. Fluid and mesh deformation
velocities, i.e., U and u, are set to zero on channels walls to ensure
no-slip boundary conditions and constant channel geometry dur-
ing time-dependent solution of the governing equations. Akin to
Table 1
Parameters and their dimensionless values for the base-case swimmer studied with
the CFD model.

Parameter name Dimensionless
value

Radius of the spherical body, rbody 0.5
Chord radius of the tail, rtail 0.05
Apparent tail length, L 2
Apparent wavelength, k 2/3
Wave amplitude, b 0.1
Actuation frequency of the tail, x/2p 1
Fluid density, q 1
Scaling Reynolds number, Re = qx(Dbody)2/2pl 10�2

Channel length, Lch 10
Channel diameter, 2rch 10
Spherical body resistance coefficients,

{6plrbody, 8pl(rbody)3}
{942.5,314.2}
the walls, mesh deformation is completely restricted at the inlet
and outlet of the channel; however, the hydrodynamic stress vec-
tor is set to zero to ensure open-boundary condition on both sides
with the following set of equations:

�pIþ lðrUþ ðrUÞ0Þ
� �

n ¼ 0;
U ¼ 0:

ð13Þ

The velocity boundary conditions on the surface of the body are
given in Eq. (14), and the velocity boundary conditions on the sur-
face of the tail are specified in Eq. (15). It is noted that the mesh
velocity u on the body surfaces does not incorporate its s-rotation
due to symmetry of the spherical geometry.

Ubody ¼ V þXbody � ðx� xcomÞ;
Ubody ¼ V:

ð14Þ
Utail ¼ Utail ¼
dP
dt
þ V: ð15Þ

Here, x is local the position vector, and xcom is the position of the
center of mass, which is assumed to be the geometric center of the
spherical body. Hydrodynamic forces on the swimmer are com-
puted from the integration of the stress distribution over the sur-
face of the swimmer, and set to zero in order to satisfy force-free
swimming constraints [23] and obtain swimming velocities with
proper no-slip moving boundary conditions, i.e., Eq. (11) imposed
on body surfaces and Eq. (7) imposed on tail surfaces, as follows:

F
T

� �
tail

þ
F
T

� �
body

¼
R

tailþbodyrn dAR
tailþbodyðx� xcomÞ � rn dA

" #
¼ 0: ð16Þ

Here, r is the total fluid stress tensor with pressure, p, and
shear, s, terms such that r = �pI + s. Time-dependent three-
dimensional local surface normal is denoted by the vector n.
Rigid-body translations of the swimmer and the rotation of the
body along the s-axis are obtained by means of Eq. (16), which is
analogous to Eq. (1). The numeric procedure, i.e., the two way cou-
pling between hydrodynamic forces and rigid body kinematics,
used in the commercial software COMSOL Multiphysics [28] to cal-
culate the swimmer velocity vector is presented in Algorithm 1.



Here we did not take the lateral rotations of the swimmer into
account by simply excluding corresponding constraints from the
solution given the fact that helical tail and body are collinear [29].

Algorithm 1. Calculating time-dependent swimming velocity
vector in COMSOL Multiphysics.
1
 do

2
 if t = 0 then

3
 Initialize: V(t = 0) = 0 & u(t = 0) = 0 & r(t = 0) = 0 &

x(t = 0) = 2pf.

4
 else

5
 x = 2pf

6
 Compute the total hydrodynamic force induced

with the helical tail by its rotation with the angular
velocity, x, and by the swimmers’ rigid body
velocity vector, V.
7
 Compute the rigid body velocity vector V that
would satisfy the constraint equations

Fbody + Ftail = 0 and Tbody + Ttail = 0.
8
 end

9
 Update surface velocity boundary conditions on the

helical tail with computed swimming velocities, i.e.,
U = V + dP/dt, and update the surrounding mesh with
ALE, for the consecutive time increment, t = t + dt.
10
 Update the velocity on the moving/deforming surfaces
of the swimmer
11
 while t 6 tfinal
Table 2
Geometric parameters of selected V. alginolyticus specimens [15].

Specimen Frequency
(Hz)

Tail
length
(lm)

Body s-semi-
axis, rs (lm)

Body q and r-semi-
axes rq (lm)

A 187.70 4.89 1.885 0.415
B 123.20 4.90 1.320 0.380
C 73.95 5.24 1.380 0.405
D 244.70 5.19 1.975 0.400
E 126.20 5.03 1.785 0.405
F 220.10 5.07 2.260 0.380
G 477.10 4.87 2.280 0.410
CFD simulations are carried out for the left-handed helical tail rotat-
ing in the positive direction with respect to the s-coordinate as
shown in Fig. 1. Commercial software COMSOL Multiphysics [28],
which is based on the finite-element method, is used to perform
the simulations with the second order Lagrangian tetrahedral ele-
ments with 300,000 dof. Linear system of equations is solved with
the PARDISO linear solver [30] and a second order backward differ-
ence formula with variable time-stepping for the numerical integra-
tion in time (maximum time step is set to 0.0025). Simulations
require up to twenty hours on a high-end workstation in order to
complete two full periods of the wave propagation on the tail
depending on its geometric parameters. In effect, the CFD model
is employed to verify our novel approach to use a single set of con-
stant force coefficients for a range of design parameters.

We used a similar CFD model in [17] to obtain an improved
resistance matrix for the body which predicts the time-dependent
hydrodynamic forces accurately as opposed to conventional RFT
method. The improved resistance matrix approach incorporates
complex-impedance analysis leading to amplitude and phase-
angle corrections which are essential to obtain the time-dependent
velocity vector and the trajectory of the swimmer. However, in
[17], corrections are obtained for each individual swimmer in a
limited design space; a task proved to be laborious due to numer-
ical stiffness, mesh generation issues, and convergence problems.
Although amplitude correction is employed extensively to achieve
accurate prediction of the time-averaged hydrodynamic forces in
this study, the procedure is carried out only once for a single geo-
metric design of choice along with calculation of the local resis-
tance coefficients of the tail constituting a unique set of
coefficients together which then validated in respect of accuracy
against a set of CFD simulations by means of time-averaged quan-
tities. Further discussion on the CFD model with validation by
means of in-channel swimming experiments is provided by Tabak
and Yesilyurt [17].
3. Results

3.1. Validation of the hydrodynamic model with measurements

Hydrodynamic surrogate model is compared against measure-
ments reported in literature. Resistance coefficients from Light-
hill’s SBT analysis [12] are used for the helical tail in this part.

Goto et al. [15] measured forward velocity and body rotation
rates for a number of specimens of V. Alginolyticus, whose dimen-
sions and tail rotation rates vary. Authors could not measure the
frequency of rotations of the helical tail, due to relatively high fre-
quency of tail rotations compared to body rotations, and used a
BEM model to calculate the tail-rotation frequency from the mea-
sured frequency of body rotations. Table 2 shows reported [15]
geometric parameters of individual organisms: for all cases, radius
of the tail is 16 nm, wavelength of the helical waves is 1.37 lm and
the amplitude, i.e., the helical radius, is 0.1487 lm.

Translational and rotational resistance coefficients of the body
in the swimming direction (see s-direction in Fig. 1) are calculated
with the use of drag coefficients for oblique spheroids [22] from:

DN;s ¼ CN;s4Plrs=ðlogð2rs=rqÞ � 0:5Þ; ð17Þ
DR;s ¼ CR;sð16=3ÞPlrsr2
q : ð18Þ

In Eqs. (17) and (18), rfs;qg denote the radii of the body in the s-
and q-directions respectively, and CfN;Rg;s are the hydrodynamic
interaction coefficients, that correspond to the deviations in the
fluid resistance acting on the isolated body ideally submerged in
an unbounded fluid. In essence, interaction coefficients quantify
variations in translational and rotational body drag coefficients
due to the flow field realized by the rotating tail attached to the
body: if interaction coefficients in Eqs. (17) and (18) are set to
unity, translational and rotational drag factors, DN;s and DR;s, would
be those of isolated spheroids in infinite media.

Time-averaged forward velocity and the body-rotation rate of
natural swimmers are calculated from Eq. (11) and compared with
the measurements of Goto et al. [15] in Fig. 3. There is a significant
discrepancy between the measurements and model results when
interaction coefficients are set to unity, i.e., for CfN;Rg;s = 1: maxi-
mum error is 87% in the average forward velocity for specimen-
G, and 47.2% in the body-rotation rate for specimen-B.

Values of two interaction coefficients, CN;s and CR;s, can be
determined from the solution of the inverse problem for observed
values of the forward velocity and the body rotation rate of a
selected swimmer as the representative design. Here, specimen-C
is used as the representative design of choice due to lowest margin
of error in the measurements, and the interaction coefficients in
translational and rotational drag relationships given by Eqs. (17)
and (18) are calculated as CN;s = 2.37 and CR;s = 1.49, respectively,
from the solution of the inverse problem. As shown in Fig. 3, the
agreement between the hydrodynamic model and measurements



Fig. 3. Comparisons on: the time-averaged forward velocity (a); and angular
velocity of the body (b); between the measurements reported by Goto et al. [15]
and the surrogate model results with unmodified and corrected body drags.
is very good with updated resistance coefficients of the body: max-
imum error is 8.2% in the average forward velocity for specimen-G,
and 6.5% in the body rotation rate for specimen-F.

Despite that the selected specimens have different body, tail
and wave configurations (see Table 2), interaction coefficients
obtained from the solution of the inverse problem for an arbitrary
selected specimen work very well with other specimens as well.
Furthermore, agreements of results with specimens-A, B and E
are remarkable; therefore, specimens-A, B, C and E have similar
hydrodynamic interactions, and using anyone of them as the rep-
resentative case would not make any difference. Thus, once the
resistance coefficients of the body are obtained accurately, the sur-
rogate model would perform sufficiently well in subsequent
analyses.

3.2. CFD simulations

3.2.1. Estimation of resistive force coefficients and hydrodynamic
interaction corrections

Two sets of resistance coefficients are used in the hydrody-
namic model: the first set is by Lighthill [12] and obtained from
Eqs. (5) and (6), and the second set is obtained from the CFD sim-
ulation for a stationary swimmer. The helical radius, i.e., wave
amplitude, of the tail is set to 0.1 and the wavelength to 2/3 as
the base case design. Complete list of base-case design parameters
and their values are listed in Table 1.

Stationary swimmer in the CFD simulation is not subject to
force-free swimming constraints given by Eq. (16), thus the rotat-
ing left-handed helical tail generates a net propulsion force in the
opposite direction of the helical-wave propagation. The propulsion
force and the propulsion torque on the swimmer’s body can be cal-
culated from the integration of the stress field over the tail in the
CFD model. Then, integrations on the right-hand-side of Eq. (10)
are carried out explicitly only in the swimming direction (see s-
direction in Fig. 1) to obtain a closed-form expression for the force
and the torque generated by the tail and the rotation and the trans-
lation velocities as follows:

Ftail;s

Ttail;s

" #
¼ �aL

b2k2 1
b2k �b2k

" #
�us þ

k �k

1 b2k2

� �
b2x

( )
cn

ct

� �
: ð19Þ
where a ¼ ð1þ b2k2Þ
�1=2

is the ratio of the apparent length of the
helix to the actual rod length of the tail. Here, b is the helical radius,
which is 0.1 for the base case, k is the wave number, which is 3 for
the base case, �us is the average swimming speed, which is zero for
the stationary swimmer, and x is the frequency of rotations of
the tail. Once the left-hand-side of Eq. (19) is computed from the
CFD model for the stationary swimmer, resistance coefficients,
c{n,b} and ct are, then, easily calculated as 995.5 and 775.2, respec-
tively. Arguably, the constant pair of force coefficients, which are
obtained from the CFD simulation, incorporates realistic flow condi-
tions such as the trailing-edge force due to the motion of the tip of
the tail, which is not taken into account in the derivation of the
resistance coefficients from the SBT [12].

Resistance coefficients of the body are obtained from the well-
known drag coefficients of spherical objects, which are multiplied
by translational and rotational hydrodynamic interaction coeffi-
cients, cN;fs;q;rg and cR;fs;q;rg, respectively, as:

DN ¼ 6Plrbody

cN;s 0 0
0 cN;q 0
0 0 cN;r

2
64

3
75; ð20Þ

DR ¼ 8Plr3
body

cR;s 0 0
0 cR;q 0
0 0 cR;r

2
64

3
75: ð21Þ

Furthermore, strictly-diagonal form of the body resistance
matrix, which is considered here, can be viewed as an alternative
to a general full-matrix of fluid resistance that includes all hydro-
dynamic interactions and is investigated for real-time trajectory
prediction and planning purposes elsewhere [17].

For helical propulsion, only one translational correction in lat-
eral directions, i.e., cN;q ¼ cN;r , is necessary due to flow symmetry,
along with the correction for forward translation, cN;s, and the cor-
rection for the body rotation, cR;s, given the fact that lateral rigid-
body rotations are eliminated for simplicity in the numerical
procedure.

Interaction coefficients for the spherical body of the free swim-
mer that corresponds to the base-case representative design are
calculated directly from the ratio of forces and velocities obtained
from the CFD simulation. Time-dependent forward velocity of the
swimmer is nearly constant, i.e., �0.038, varying within 0.6% of
its average value. The net hydrodynamic drag force in the swim-
ming direction on the spherical body of swimmer is obtained as
81.7, which corresponds to 2.28 times the well-known drag force
on spherical objects. Therefore, the interaction coefficient in the
swimming direction is obtained as, cCFD

N;s = 2.28. Similarly, the angu-
lar velocity of the swimmer is almost constant, i.e., �0.4, varying
within 0.2% of its time-averaged value, and the torque exerted on
the spherical body is 1.09 times its well-known value for spherical
objects and sets the value interaction coefficient for rotations in
the swimming direction as cCFD

R;s = 1.09.
Lateral (see q- and r-directions in Fig. 1) velocities and forces

are sinusoidal in time with zero mean and amplitude of 0.015
and 7.235, respectively. Here, we use the interaction coefficient
from the solution of the inverse problem and obtained as
cCFD

N;q = cCFD
N;r = 1.24 based on the amplitudes of the lateral forces

and the lateral velocities.
Calculated values of interaction coefficients vary with the

choice of resistance coefficients used for the tail, since the effect
of hydrodynamic interactions between the body and the tail is
evaluated by the interaction coefficients applied only to body resis-
tances. Therefore, a new set of interaction coefficients is necessary
for the resistance coefficients obtained from Lighthill’s SBT [12]. In
this case, we solve the inverse problem, i.e., Eq. (11), for already
calculated velocities and obtain interaction coefficients for the



Fig. 4. Time-averaged forward velocity (a) and (d); amplitude of the lateral velocity (b) and (e); and rotation of the body (c) and (f): against, the wave amplitude (a)–(c); and
number of waves (d)–(f). The circles (s) signify CFD results, the solid lines (–) are for hydrodynamics model with resistance coefficients obtained from the CFD simulation for
a stationary swimmer, and dashed lines (– –) are for hydrodynamic model results with resistance coefficients obtained from Lighthill’s SBT analysis [12]. Black arrows point
data points corresponding to the base-case design.
body resistance matrices, which are calculated as cSBT
N;s = 3.35,

cSBT
N;q = cSBT

N;r = 1.1, and cSBT
R;s = 0.85.
3.2.2. Validation of the hydrodynamic model with CFD simulations
The hydrodynamic model is validated with additional CFD sim-

ulations for swimmer tails with different amplitudes and wave-
lengths than the ones used in the representative design, which is
used for the estimation of interaction coefficients for the body
and resistance coefficients for the tail. Here, we considered only
the wavelength and amplitude for clarity and conciseness as
design variables of propulsion invoked by the flagellum; however,
study can be extended to other parameters such as the body radius,
and tail length. Moreover, frequency, diameter of the body and
fluid properties are already lumped into the scaling Reynolds num-
ber used in simulations: for small Reynolds numbers, the velocity
of the robot scales linearly with the frequency of tail rotations
and its body size.

For swimmers with helical tails, hydrodynamic model results
are compared with CFD simulation results in Fig. 4(a)–(f). Average
forward velocity (see Fig. 4(a)), amplitude of the lateral velocity
(see Fig. 4(b)) and the body rotation rate (see Fig. 4(c)) are plotted
against the wave amplitude. According to the results obtained by
the surrogate model with resistance coefficients from Lighthill’s
SBT [12], magnitude of the time-averaged forward velocity
increases with the amplitude with a rate that slows down at higher
values. The model results with CFD-based force coefficients also
show that the average velocity increases with the amplitude. In
this case, a slightly better agreement with actual simulation results
is observed than the case with SBT-based force coefficients. The
agreement between the hydrodynamic surrogate model and simu-
lation results is better at small values of the amplitude than large
ones (see Fig. 4(a)), thus, indicating that as the helical radius
increases and the flow induced by the tail gets stronger than the
case used for the estimation of interaction coefficients the accuracy
of the surrogate model deteriorates.

Time-dependent lateral motion of the swimmer is periodic with
zero mean-value. However, the amplitude of the lateral velocity
increases almost linearly with the amplitude of the helical waves.
The agreement is slightly better for the force coefficients from the
SBT than the force coefficients obtained from the CFD simulation
for the stationary swimmer (see Fig. 4(b)). Similarly, in Fig. 4(c),
model results with analytically obtained force coefficients from
SBT agree with simulation results for large wave amplitudes better
than the results with constant force coefficients, i.e., 11.8% error vs.
42.7% error; agreement is poorer for both sets of coefficients at
small amplitudes.

Average forward velocity, amplitude of the lateral velocity and
the average body rotation rate are plotted against the number of
waves in Fig. 4(d)–(f), respectively. The forward velocity predicted
by the hydrodynamic model indicates that the wavelength does
not have a significant effect, and agrees well with CFD simulation
results for both sets of parameters as depicted in Fig. 4(d) (with
6.9% error for constant c{n,b} and ct, and with 9.3% error for c{n,b}

and ct from the SBT). The amplitude of the lateral velocity peaks
at half integer values of the number of waves, i.e., for Nk = 0.5,
1.5, 2.5, 3.5, etc., and falls at full integer values, which is already
confirmed in [22]. When the helical waves are in full-periods,
forces in the lateral directions are minimal due to hydrodynamic
symmetry.

Overall, the hydrodynamic model predicts the lateral motion
well especially with analytical resistance coefficients compared
to resistance coefficients computed from the CFD simulation for
the stationary swimmer (see Fig. 4(e)). Lastly, the rotation rate of
the body does not vary with the number of waves on the tail sig-
nificantly, and is predicted reasonably well with the hydrodynamic
model as shown in Fig. 4(f).

Summary of the performance of the hydrodynamic surrogate
model is presented in Table 3. Overall, the surrogate model agrees
very well with CFD model results for both sets of resistance coeffi-
cients used in the model.

4. Surrogate model for efficient geometric designs

Here, a representative demonstration of the use of surrogate
model for design purposes is presented: geometric design of a
robotic micro-swimmer system, e.g. bio-mimetic robots [5–7],
genetically modified cells for specific tasks [31], or cybernetic com-
binations of computers and bacteria [8,9,32], can be carried out
with the validated surrogate model that can replace the computa-
tionally exhaustive three-dimensional CFD model. For instance,
energy consumption of the robot, for which the base case parame-
ters are given in Table 1, can be minimized with the maximization
of its efficiency. Efficiency is given by:



Table 3
Errors in predictions of the hydrodynamic model, (absolute error, error range).

Number of waves Amplitude

CFD-based constant c{n,b}, ct Analytical c{n,b}, ct CFD-based constant c{n,b}, ct Analytical c{n,b}, ct

�us .0025, [�.0327,�.0393] .0033, [�.0319,�.03939] .0047, [�.0011,�.0596] .0046, [�.0008,�.0597]
vq;max .0085, [.0073, .0435] .0102, [.0052, .0356] .003, [.002, .0251] .00074, [.002, .0212]
�Xs .0011, [�.0574,�.0694] .00843, [�.0708,�.4783] .0516, [�.0009,�.1722] .00143, [�.0009,�.1349]

Fig. 5. Time-averaged forward velocity, us, (a); and hydrodynamic efficiency, g, (b);
obtained by the surrogate model. Highest possible hydrodynamic efficiency for the
proposed geometric design space is 2.5% (dark red region in (b)). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
g ¼ Pbody

Ptail
: ð22Þ

where Pbody = Fsus is the average rate of work done to move the
body of the robot with the velocity of us against the drag force on
the body, Fs, and Ptail is the rate of work done to actuate the tail
of the robot and calculated from Ptail = Tsx for helical tails, where
Ts denotes the torque needed to rotate the tail with angular velocity,
x.

Time-averaged forward velocity (see Fig. 5(a)) and the hydrody-
namic efficiency of swimmers (see Fig. 5(b)) are calculated with
the surrogate model for amplitudes varying between 0.01 and
0.25 and for number of waves varying between 0.5 and 5. Accord-
ing to Fig. 5(a), the maximum velocity of 0.08 is computed for
b = 0.25 and Nk = 1.25. Therefore, in order to manufacture a swim-
mer with the fastest forward velocity within the predefined design
space depicted by Fig. 5, one has to build a tail with one and a quar-
ter helical turn and the largest possible amplitude. Furthermore,
from Fig. 5(b), the maximum efficiency is obtained as 2.5% for
the robots with parameters as presented in Table 1. It is noted that
Fig. 5 is composed of data points more than a thousand which
would require an overwhelming time to carry out the CFD simula-
tions provided that numerical convergence and meshing issues are
completely resolved; however, with the validated RFT model it
takes only a couple of hours to obtain a surface such as depicted
in Fig. 5 for design and optimization purposes. Moreover, the RFT
model can be directly invoked by formal search algorithms, such
as steepest descent, if necessary.

Furthermore, it is known that the presence of channel walls
alters the induced flow field around the swimmer [33] and the
hydrodynamic force acting on the swimmer [34,35]. Here, the
RFT-based model is employed to investigate hydrodynamic effi-
ciency and speed of free swimmers. Therefore, swimming near
boundaries requires a separate study to obtain a constant set of
force coefficients that would serve as a surrogate for a limited
design space.
5. Conclusions

Time-averaged forward translation and rotation with maximum
instantaneous lateral translation of bio-inspired micro-swimmers
that consist of a body and an actuated helical tail are predicted
with the surrogate model, which is based on a number of parame-
ters used in the linear relationship between the force and velocity
vectors. The hydrodynamic model runs essentially in real-time
unlike the three-dimensional CFD model that completes the solu-
tion of the governing equations in hours.

Two sets of resistance coefficients are used for the actuated tail
of the swimmer: one set is from the SBT analysis of Lighthill [12],
and the second set is directly calculated from a representative CFD
simulation for a stationary swimmer with a helical tail for which
the amplitude and wavelength are set to 0.1 and 2/3, respectively
in non-dimensional units. For each set of force coefficients, hydro-
dynamic interaction coefficients are estimated for the body of the
swimmer from the solution of the inverse problem for the base-
case values of the amplitude and the wavelength. Then the hydro-
dynamic model is validated directly with parameterized CFD
model results for swimmers, for which the wavelength is varied
between 0.5 and 1 and the amplitude is varied between 0.01 and
0.15. For all cases, the surrogate hydrodynamic model results agree
reasonably well with CFD model results. Moreover, variations on
wave amplitude, b, also imply variations on the amplitude to body
diameter ratio, i.e., b/Dbody. Therefore, one may conclude from
Fig. 4(a)–(c) that swimming velocities converge to zero as the body
diameter becomes relatively larger and vice versa; a natural result
of hydrodynamic forces acting on the body combined with equa-
tion of motion.

Furthermore, experimentally measured time-averaged forward
velocity and body rotation rates for certain micro-organisms that
are presented in literature are compared with the results of the
hydrodynamic model with resistance coefficients obtained from
SBT. Once the hydrodynamic interaction coefficients of the body
are determined from the inverse problem for a fixed specimen, pre-
dicted forward velocities and body rotation rates agree very well
with the measurements for other species with different body and
tail dimensions.

Lastly, we demonstrated the application of validated surrogate
models in geometric design of bio-mimetic robots to obtain opti-
mal propulsion type. Therefore, optimal geometric configurations
can be easily determined for various application purposes with
the help of the surrogate-based approach. Based on the resistance



coefficients and hydrodynamic interaction corrections obtained
from a single representative CFD simulation, it is possible to oper-
ate within a predefined design space in the neighborhood of that
representative design. It is also noted that the surrogate model is
a suitable tool to be incorporated in more sophisticated search
algorithms as auxiliary tools for optimal design.

Moreover, in order to ensure the accuracy of the surrogate
model calculations in a much larger design space, one may coarsely
discretize the region of interest such that CFD simulations can be
utilized to obtain correction coefficients at selected few local
base-case design points. Then the surrogate model can be utilized
perform computations in the neighborhood of the nodes with a
much finer resolution as the study may demand.
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