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Introduction
The mammalian cell nucleus is a complex structure containing 

distinct nuclear bodies (NBs), such as nucleoli, PML bodies, 

splicing speckles, and Cajal bodies (CBs; Lamond and Earnshaw, 

1998; Dundr and Misteli, 2001; Handwerger and Gall, 2006). 

These bodies are typically enriched for specifi c proteins and 

nucleic acids, refl ecting their function. Dynamic changes in NBs 

occur under both physiological and pathological conditions. For 

example, both the number and size of nucleoli vary between 

metabolically active and inactive cells, and PML bodies are 

 altered in leukemic blasts and during virus infection (Zimber 

et al., 2004). The molecular events triggering such changes are 

not well characterized.

We examine the dynamic behavior of CBs and how their 

composition changes under stress conditions. CBs were discov-

ered in 1903 by Santiago Ramón y Cajal (Gall, 2003) and are 

involved in the assembly and maturation of small nuclear ribo-

nucleoproteins (snRNPs; Cioce and Lamond, 2005; Matera and 

Shpargel, 2006). Indeed, snRNPs are thought to accumulate in 

CBs upon their initial entry into the nucleus (Sleeman and 

 Lamond, 1999), and a class of CB-specifi c modifi cation guide 

RNAs (scaRNAs) are important for the sequence-specifi c modi-

fi cation of the snRNAs within CBs (Darzacq et al., 2002; Jady 

et al., 2003). CBs also contain survival of motor neuron (SMN), 

a protein linked to the neurodegenerative disease spinal mus-

cular atrophy (Frugier et al., 2002). The SMN complex plays an 

important role in the cytoplasmic assembly of Sm core RNPs, 

(Eggert et al., 2006) and in their nuclear reimport and targeting 

to CBs (Narayanan et al., 2004; Ospina et al., 2005).

Other CB components include fi brillarin and NOPP140, 

proteins that localize in CBs before their subsequent accumula-

tion in nucleoli. CBs likely have other functions besides snRNP 

maturation. For example, NPAT and PTFγ, which are proteins 

regulating histone and snRNA gene transcription, respectively, 

are found in CBs (Schul et al., 1998; Zhao et al., 2000). CBs can 

indeed associate with histone and snRNA gene loci (Frey and 

Matera, 1995), and they may also play a more general role in 

coordinating assembly of large multiprotein complexes in the 

nucleus (Gall, 2001). Interestingly, the presence in a subset of 

CBs of ZPR1 and FGF-2 suggests that CBs could be involved 

also in transducing proliferative signals to the nucleus (Claus 

et al., 2003; Gangwani et al., 2005).

Genetic evidence suggests that coilin, a nuclear phospho-

protein widely used as a marker for CBs, plays a role in the 

structural organization of CBs. Thus, in coilin knockout cells, 

CBs are disrupted and fail to accumulate snRNPs and SMN, 

whereas other CB components, such as fi brillarin, NOPP140, 

and scaRNAs, are redistributed in distinct subsets of remnant 

structures (Jady et al., 2003; Tucker et al., 2001). Posttransla-

tional modifi cations of coilin can affect CB integrity. For example, 

changes in the phosphorylation state of coilin affect the number 
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and  integrity of CBs in mitotic and interphase cells (Carmo-

Fonseca et al., 1993; Shpargel et al., 2003), and the extent of 

symmetrical dimethylation of arginine residues on coilin infl u-

ences the targeting of SMN and, consequently, the accumula-

tion of newly imported snRNPs in CBs (Boisvert et al., 2002; 

Hebert et al., 2002). However, coilin modifi cation is not always 

linked with CB disassembly or turnover. For example, adeno-

virus infection causes fragmentation of CBs (Rebelo et al., 

1996) without causing changes either in the levels or in the electro-

phoretic mobility of coilin.

UV irradiation represents a complex, multicomponent 

stress stimulus that subverts the metabolic activity of the cell 

 nucleus. It affects different nuclear domains including nucleoli 

(Al-Baker et al., 2004; Kurki et al., 2004) and PML bodies 

(Kurki et al., 2003; Seker et al., 2003). UV light irradiation 

causes an immediate ligand-independent activation of receptor 

tyrosine  kinases (i.e., EGF and PDGF receptors) caused by the 

inactivation of receptor- directed tyrosine phosphatases (Gross 

et al., 1999; Gulati et al., 2004). Subsequently, it triggers DNA 

damage caused by the formation of cyclobutane pyrimidine 

 dimers, (6–4) photoproducts (Tornaletti and Pfeifer, 1996), and 

reactive oxygen species generation (Nishigori, 2006), and a 

complex transcriptional response involving modulation of genes 

associated with cell proliferation and repair of damaged DNA 

(Koch-Paiz et al., 2004). The next phase is characterized either 

by repair of DNA lesions, or by apoptosis of the cells that have 

not been able to start an  appropriate response.

In this study, we show that CBs are also responsive to 

UV-C and characterize the molecular mechanism underlying 

this effect. We have identifi ed PA28γ (proteasome activator 

subunit 28S γ) as a factor whose stable association with coilin-

containing complexes is increased by UV-C treatment and show 

that PA28γ plays an important role in the mechanism under-

lying the disruption of CBs upon UV-C irradiation.

Results
UV-C treatment triggers disassembly 
of CBs and a redistribution of coilin
The effect of UV-C treatment on CB integrity was assessed by 

immunofl uorescence labeling using antibodies specifi c for 

 coilin (Fig. 1 A, top left). HaCaT (human immortalized keratin-

ocytes) cells were immunolabeled at 6 h after brief exposure 

to UV-C (30 J/m2, 254 nm; see Materials and methods). This 

changed the number and appearance of CBs, with coilin re-

distributed to hundreds of microfoci clustered throughout the 

nucleoplasm (Fig. 1 A, bottom left). Splicing speckles were also 

affected by UV-C, although less dramatically than CBs; thus, 

UV-C caused splicing speckles to become more rounded, but 

with little or no change in the mean number per nucleus (Fig. 1 A, 

compare middle images).

We noticed a similarity between the redistributed coilin 

labeling pattern and the rounded splicing speckles present after 

UV-C treatment. This was unexpected because coilin does 

Figure 1. The subnuclear distribution of coilin and SC35 is affected by UV-C irradiation. (A) HaCaT cells, either mock (top) or UV-C–treated (bottom), 
were stained with anti-coilin (red) and -SC35 (green) antibodies and counterstained with DAPI to detect the nuclei. (B) Coilin is enriched in splicing speckles 
in UV-C–treated cells. UV-C–treated HaCaT cells stained with anti-coilin (red), -SC35, -Sm proteins (Y12), -TMG cap, and -U1A antibodies (green). (C) Time-
course analysis. HaCaT cells stained with an anti-coilin antibody (red) at the indicated times after UV-C irradiation. Arrows denote intact CBs in mock-
treated cells. Arrowheads denote the UV-C–induced, coilin-containing domains. Bar, 10 μM.
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not normally colocalize with splicing speckles (Lamond and 

Spector, 2003). To investigate this further, we double labeled 

UV-C–treated cells with anti-coilin antibodies (Fig. 1 B, left) 

and antibodies specifi c for known splicing speckle components, 

i.e., anti-SC35, anti-Sm (Y12), anti– trimethylguanosine (TMG)-

cap, and anti-U1A (Fig. 1 B, middle). All four of these splicing 

speckle components showed a similar change into more rounded 

structures after UV-C treatment, and we observed a partial over-

lap between the reorganized coilin microfoci and the rounded 

splicing speckles (Fig. 1 B, compare left and middle). These 

 experiments involved immunolabeling cells at 6 h after exposure 

to UV-C because this was empirically observed as causing the 

maximum effect on coilin redistribution (Fig. 1 C). Moreover, 

the UV-C effect is at least partially reversible, with recovery 

of the normal coilin distribution evident in �40% of the irradi-

ated cells within 10–12 h. A subset of the irradiated cells, at 

8–12 h after UV-C, formed coilin-containing perinucleolar caps 

 (unpublished data). Further analysis confi rmed that the majority 

of cells remained viable after UV-C exposure, with no correla-

tion between coilin redistribution and UV-C–induced cell death 

(unpublished data). We conclude that UV-C treatment has a spe-

cifi c and reversible effect on subnuclear organization affecting 

CBs and splicing speckles.

Next, we evaluated the effects of UV-C irradiation on a 

variety of cell lines, differing in tissue of origin, growth prop-

erties, and transformation status, to determine if the UV-C–

 induced effect on CB structure is either general, or specifi c for 

HaCaT cells (Table I). This shows a similar UV-C–induced re-

distribution of coilin in all the cell lines tested, including WI-38, 

HeLa, COS-7, HaCaT, MCF-7, SAOS-2, 293T, HCT116, and 

SW480, with little variation in the percentage of responsive 

cells between each cell type (Table I). A functional p53 gene is 

not required for the coilin redistribution in response to UV-C 

because whereas the SAOS-2 cells are p53 null, the HaCaT cells 

have a mutated, functionally impaired p53 gene, and the MCF-7 

cells have a functional, wild-type p53 gene. In subsequent 

experiments, we concentrated on the HaCaT cells as the main 

experimental model to investigate the mechanisms of CB dis-

assembly after UV-C irradiation because those cells were the 

most responsive to UV-C treatment and also because, among 

those tested, they represent the tissues most exposed to sunlight 

in vivo.

To better characterize the effect of UV-C irradiation on 

CBs, we next addressed whether UV-C irradiation affected 

other CB proteins, in both HaCaT and MCF-7 cells, namely 

SMN, snRNP components, fi brillarin, NOPP140, and NPAT 

(Fig. 2). After UV-C irradiation, both SMN and snRNP factors 

are no longer concentrated in CBs (Fig. 2, compare A and B). 

SMN and the U6 snRNP-associated factor SART3 show a wide-

spread diffuse staining, whereas TMG-capped snRNAs and 

 snRNP proteins show both nucleoplasmic staining and accumu-

lation into rounded splicing speckles (Fig. 2, A and B; arrows 

and arrowheads indicate intact and rearranged CBs,  respectively). 

Surprisingly, after UV-C irradiation, CB-like structures are still 

evident as bright, coilin-negative nucleoplasmic bodies when 

detected with antibodies against either NPAT,  fi brillarin, or 

NOPP140 (Fig. 2 C, left, arrows). Thus, UV-C irradiation selec-

tively affects a subset of CB components. The small CB-like 

structures, which remain after UV-C and lack coilin, SMN, and 

snRNPs, resemble in appearance and composition the residual 

CBs observed in coilin −/− mouse cells (Tucker et al., 2001; 

Jady et al., 2003).

It is known that transcription inhibitors disrupt CBs and 

cause speckles to enlarge and round up (for review see Lamond 

and Spector, 2003). This led us to examine whether the effect of 

UV-C exposure on transcription levels could explain the 

 observed changes in CBs and in the distribution of coilin in the 

irrad iated cells. A 5-fl uorouridine (5-FU) incorporation assay 

(Fig. 3 A) confi rmed, as expected, that there was a time-dependent 

general reduction in nuclear RNA synthesis after exposure to 

UV-C. The UV-C inhibition affected primarily nucleoplasmic 

transcription, with 5-FU incorporation within nucleoli still visible. 

Double-labeling with anti-coilin antibodies, again, showed 

a time-dependent disruption of CBs after UV-C treatment, with 

most coilin relocalized to nucleoplasmic microfoci. In some 

cells, a minor fraction of coilin also localizes in dots within 

 nucleoli, distinct from perinucleolar caps (Fig. 3 A, insets). 

We compared the UV-C response directly with the effect of the 

transcription inhibitors 5,6-dichloro-1-β-D-ribobenzimidazole 

(DRB) and actinomycin D (Fig. 3 B and not depicted). Both 

 inhibitors cause coilin to relocalize and accumulate in  prominent 

perinucleolar caps (Fig. 3 B, bottom, arrowheads). However, 

we do not observe accumulation of coilin in nucleoplasmic 

 microfoci or associated with splicing speckles after exposure to 

Table I. Classifi cation of the cell lines used in this study based on tissue of origin, transformation status, and CB status upon UV-C irradiation

Cell line Cell type Tissue of origin p53 status Transformation status UV-C–induced coilin redistribution

WI-38 fi broblast lung wild type not transformed ++

HCT-116 epithelial-like colon carcinoma wild type transformed ++

HeLa epithelial cervix adenocarcinoma mut transformed (HPV) ++

COS-7 epithelial-like kidney (simian) mut transformed (SV 40) ++

MCF-7 epithelial-like breast adenocarcinoma wild type transformed ++

293 epithelial kidney wild type (delocalized) transformed (adenovirus) ++

HaCaT epithelial skin mut transformed (spontaneously) +++

SAOS-2 epithelial-like osteogenic sarcoma null transformed ++

SW 480 epithelial-like colon carcinoma mut transformed ++

++ indicates that >50% of the observed cells show CB fragmentation upon UV-C treatment. +++ indicates that >80% of the observed cells show the CB 
fragmentation phenotype.
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transcription inhibitors, which differs from the effect of UV-C 

exposure. Therefore, although some of the effects seen after 

UV-C exposure, such as the  formation of large, rounded splic-

ing speckles and possibly the appearance of coilin dots within 

nucleoli, may be attributed to the down-regulation of transcrip-

tion, our data suggest that the UV-C disruption of CBs is not 

simply an indirect result of transcription inhibition.

Effect of UV-C irradiation on coilin
Because genetic depletion of murine coilin causes a similar 

change in CB appearance and composition to that detected here 

after UV-C treatment, we tested whether UV-C irradiation af-

fected either the levels or modifi cation state of coilin. Protein 

blotting analysis using anti-coilin antibodies to probe either 

whole-cell lysates, or soluble nuclear extracts prepared from both 

untreated and UV-C–treated cells, revealed little or no change 

in the relative levels of coilin, even under different extraction 

conditions (Fig. 3 C, compare lanes 1–5 and 6–10). Moreover, 

the absence of obvious changes in the electrophoretic mobility of 

coilin suggests that it does not undergo a major change in its 

phosphoryla tion status. In contrast, a clear shift in electropho-

retic mobility of coilin was observed upon its hyperphosphoryla-

tion when cells enter mitosis (Carmo-Fonseca et al., 1993).

Symmetric dimethylarginine (sDMA) modifi cation of 

coilin has been linked to the ability to recruit SMN to coilin-

containing CBs. Either drug-induced hypomethylation of 

 coilin (Boisvert et al., 2002; Hebert et al., 2002), or transient 

expression of mutant forms of the protein (Hebert et al. 2001), 

prevented SMN recruitment to CBs but, notably, did not 

cause CBs to fragment. Therefore, we investigated whether 

sDMA modifi cation of coilin was affected by UV-C irradiation. 

Coilin was immunoprecipitated from nuclear extracts  prepared 

from  either control or UV-C irradiated cells, and the eluted 

proteins were blotted and probed with both anti-coilin and 

anti-sDMA antibodies (Fig. 3 D). This showed a minor reduc-

tion in sDMA levels. However, when whole-cell lysates ob-

tained in denaturing conditions (9 M urea) from irradiated and 

mock-treated cells were separated by SDS-PAGE, transferred 

to nitrocellulose fi lters, and probed with anti-coilin and anti-

sDMA antibodies, any differences in the extent of sDMA 

modifi cation were less evident (Fig. 3 E). Given the absence 

of CB fragmentation in cells with hypomethylated coilin 

 (Hebert et al. 2002), we infer that although minor changes in 

the sDMA status of coilin may take place in UV-C–treated 

cells, this does not likely play a major role in determining the 

fragmentation of CBs.

Figure 2. UV-C irradiation triggers a dramatic redistribution of the CB-
 associated pool of SMN, TMG cap-containing RNAs, and SART3. (A and B) 
HaCaT cells, either mock- (A) or UV-C–treated (B), were stained with 
anti-SMN, anti-TMG-cap and anti-SART3 (red), and anti-coilin (green) 
 antibodies, respectively. Arrows denote intact CBs in mock-treated cells. 
Arrowheads denote the UV-C–induced coilin-containing domains. (C) UV-C 
irradiation does not trigger a redistribution of the CB-associated pool of 
NPAT, fi brillarin, or NOPP140. UV-C–treated HaCaT cells stained with anti-
coilin (red), -NPAT, -fi brillarin, and -NOPP140 antibodies (green). Arrows 
denote NPAT, fi brillarin and NOPP140-containing remnant (coilin- negative) 
CBs in the irradiated cells. Bar, 10 μM.
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UV-C induces changes in the protein 
composition of coilin-containing complexes
We tested whether UV-C irradiation causes a change in the pro-

tein composition of nuclear complexes containing coilin. Coilin 

complexes were affi nity purifi ed from cells expressing FLAG-

tagged coilin (see Materials and methods). Silver staining of the 

eluted, affi nity-purifi ed material from both mock-treated and 

UV-C–treated cells revealed that a protein band of �32 kD was 

enriched specifi cally in the eluate from the irradiated cells (Fig. 

4 A, arrow). Peptide mass fi ngerprinting was performed on the 

enriched band isolated from a large-scale preparation of UV-C–

treated cells and identifi ed as proteasome activator subunit γ 

(PA28γ). To validate the identifi cation of PA28γ as a novel 

component of coilin complexes, and to test whether coilin and 

PA28γ associate in the absence of UV-C, immunoprecipitation 

experiments were performed with anti-PA28γ polyclonal anti-

bodies and extracts from nonirradiated HaCaT and MCF-7 

cells. The immunoprecipitated material was separated by SDS-

PAGE, transferred to a nitrocellulose membrane, and probed 

with anti-coilin antibodies. Coilin was coimmunoprecipitated 

with PA28γ (Fig. 4 B, compare lanes 2 and 3), confi rming that 

coilin and PA28γ are present in a common complex in vivo, 

even in the absence of UV-C treatment. Furthermore, the com-

plex containing PA28γ and coilin was resistant to 1 M KCl, 

 indicating a stable interaction (Fig. 4 B, lanes 4 and 5).

Gel fi ltration analysis of nuclear extracts reveals that, 

 under steady-state conditions, coilin is present in two different 

regions of the column eluate (Fig. 4 C). The fi rst region corre-

sponds to very high molecular weight complexes, of �2 MD 

(Fig. 4 C, lanes 8–10). The second region corresponds to com-

plexes �200–300 kD in size (Fig. 4 C, lanes 13–16). Consistent 

with previous studies (Tanahashi et al., 1997), we found PA28γ 

in molecular weight fractions corresponding to a size range of 

�250 kD (Fig. 4 C, lanes 12–17). Therefore, PA28γ cofraction-

ates with the smaller-sized pool of coilin complexes.

Immunoprecipitation with anti-PA28γ antibodies in 

 extracts prepared from mock-treated and UV-C–treated cells 

confi rmed the result shown in Fig. 4 A, i.e., that the level of 

PA28γ isolated in a stable complex with coilin is signifi cantly 

increased by UV-C treatment (Fig. 5 A, compare lanes 5 

and 7; and Fig. S1, available at http://www.jcb.org/cgi/

content/full/jcb.200604099/DC1). Thus, the amount of coilin 

complexed with PA28γ is maximal at 6 h after UV-C treatment 

and decreases at later time points (12 h; Fig. 5 A, lane 9), when 

Figure 3. UVC irradiation triggers transcriptional inhibition. (A) HaCaT cells were UV-C–treated and stained with an anti-coilin antibody. Nuclei were 
 labeled with 5-FU to monitor ongoing transcription at the indicated times following UV-C irradiation. (B) Inhibition of transcription does not trigger a UV-C–
like fragmentation of CBs. HaCaT cells were either mock or DRB–treated for 3 h and stained with an anti-coilin antibody. Arrows denote intact CBs. Arrow-
heads denote the UV-C–induced, coilin-containing perinucleolar caps. Bars, 10 μM. (C) UV-C irradiation does not alter the levels, solubility, or subnuclear 
partitioning of coilin. Whole-cell lysates and subcellular fractions from either mock- (lanes 1–5) or UV-C–treated (lanes 6–10) HaCaT cells were analyzed 
by Western blot with an anti-coilin antibody. (D) UV-C irradiation triggers a reduction in the sDMA modifi cation state of coilin. Nuclear extracts obtained 
from either mock or UV-C–treated HaCaT cells were immunoprecipitated with anti-coilin antibodies and an anti-GFP antibody (as a control), and the eluted 
material was analyzed by Western blot with anti-coilin and -sDMA rabbit polyclonal antibodies. (E) Whole-cell lysates obtained in denaturing conditions 
(9 M Urea) were probed with anti-coilin and -sDMA rabbit polyclonal antibodies. 
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the majority of the cells show complete or partial recovery 

of the normal coilin labeling pattern. Under these conditions 

we  observe only a small increase in the total cellular level of 

PA28γ after UV-C, as judged by immunoblotting (Fig. 5 D), 

and infer that the enhanced PA28γ association with coilin is 

unlikely to arise only through changes in PA28γ protein levels 

(see Discussion).

The observed association between coilin and PA28γ in 

control, nonirradiated cells likely does not occur within CBs, 

as we observe by immunofl uorescence no accumulation of 

PA28γ in CBs (Fig. 5 B, top). However, upon UV-C treatment, 

coilin and PA28γ show enhanced colocalization in the irradi-

ated cells, supporting the aforementioned biochemical evidence 

for a UV-C–induced increase in the association between coilin 

Figure 4. The composition of coilin-containing 
complexes changes upon UV-C treatment. 
(A) Silver staining of the immunoaffi nity eluates 
from either mock- or UV-C–treated 293 cells 
transiently transfected with a FLAG-coilin ex-
pression vector. Arrows indicate the protein 
band corresponding to FLAG-coilin and 
PA28γ, respectively (the latter is enriched in 
the complexes isolated from UV-C–treated 
cells). (B) Endogenous PA28γ and coilin form 
a high-salt–resistant complex in vivo. Nuclear 
extracts obtained from MCF-7 cells were im-
munoprecipitated with a mix of two anti-PA28γ 
polyclonal antibodies, as described in Mate-
rials and methods. Blotting analysis reveals 
the presence of both coilin and PA28γ in the 
 immunoprecipitated material (lanes 2–3). The 
copurifi cation of coilin and PA28γ is not pre-
vented by high-salt treatment of the beads 
(lanes 4–5). (C) PA28γ is present in a subset of 
coilin-containing complexes. Nuclear extracts 
derived from 293 cells were fractionated by 
gel-fi ltration chromatography and subjected to 
Western blot analysis with anti-coilin and -PA28γ antibodies (upper and lower panels, respectively) showing that PA28γ cofractionates with a subset of 
 coilin-containing complexes.

Figure 5. UV-C irradiation enhances the formation of the PA28𝛄-coilin complex. (A) Nuclear extracts obtained at the indicated times from irradiated 
 HaCaT cells were immunoprecipitated with polyclonal anti-PA28γ antibodies. Western Blot analysis shows that the amount of coimmunoprecipitated coilin 
peaks at 6 h after UV-C irradiation. (B) PA28γ and coilin partially colocalize in UV-C–treated cells. HaCaT cells were either mock- or UV-C–treated and 
stained with anti-coilin (red) and -PA28γ (green) antibodies. Arrowheads indicate the UV-C–responsive domains containing both PA28γ and coilin. 
(C) PA28γ is partially colocalized with the splicing speckles of UV-C–treated cells. HaCaT cells were either mock- or UV-C–treated and stained with anti-
PA28γ (red) and anti-SC35 (green) antibodies. (right) Merged image. Arrowheads indicate the UV-C–responsive domains containing both PA28γ 
and SC35. (D) UV-C irradiation triggers a slight increase in the levels of PA28γ. Western blot analysis with an anti-PA28γ antibody of whole-cell-lysates 
(lanes 1–2) obtained from mock- and UV-C–treated HaCaT cells reveals a minor accumulation of PA28γ in the irradiated cells (top). Ponceau staining of 
the transferred proteins was used as a loading control (bottom). Bars, 10 μM.
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and PA28γ (Fig. 5 B, bottom, arrowheads). Consistent with 

our  observation that coilin partially colocalizes with rounded 

splicing speckles in UV-C–treated cells (Fig. 1), a double-

 immunofl uorescence labeling with anti-PA28γ and –SC35 anti-

bodies  revealed that PA28γ also shows a UV-C–induced partial 

colocalization with splicing speckles (Fig. 5 C, arrowheads). 

This is further supported by double-labeling experiments 

showing  partial colocalization of PA28γ with SC35, U1A, and 

TMG cap RNAs in UV-C–treated cells (Fig. S2, available 

at http://www.jcb.org/cgi/content/full/jcb.200604099/DC1). 

Colle ctively, the data indicate that coilin and PA28γ are present 

in a common complex in vivo whose levels are increased by 

UV-C treatment.

Increased levels of PA28𝛄 trigger an UV-C 
like redistribution of coilin
We hypothesized that the increased formation of complexes 

containing coilin and PA28γ upon UV-C treatment could con-

tribute to the mechanism of UV-C–induced CB disruption and 

coilin redistribution. Therefore, we studied whether altering 

PA28γ expression levels could affect CB integrity and the dis-

tribution of coilin in the absence of UV-C treatment. Strikingly, 

transient overexpression of exogenous PA28γ in both HaCaT 

and MCF-7 cells triggered a similar redistribution of coilin to 

that observed in UV-C–irradiated cells (Fig. 6 A). Thus, the 

more brightly stained cells overexpressing PA28γ (Fig. 6 A, 

 arrowheads) have lost the bright coilin foci (arrows) seen in un-

transfected cells. To test whether overexpression of PA28γ also 

induces a reduction in transcription, similar to that caused by 

UV-C treatment, we analyzed 5-FU incorporation in both trans-

fected and untransfected cells (Fig. 6 B). This showed clearly 

that cells overexpressing PA28γ had similar levels of nuclear 

transcription to untransfected cells (Fig. 6 B, bottom). This thus 

demonstrates that the PA28γ-mediated disruption of CBs and 

relocalization of coilin is independent of changes in transcrip-

tion levels.

To characterize further the effect of increased PA28γ 

 expression levels, we used two experimental models.

First, because growth stimuli can increase PA28γ levels 

(Nikaido et al., 1989), we treated serum-starved MCF-7 cells 

for 72 h with either PDGF or EGF at the indicated doses for 30 h 

(Fig. 6 C and not depicted). The majority (>80%) of treated 

cells showed a brighter signal for PA28γ in the nucleus (Fig. 6 C, 

left), and almost all cells with an increased PA28γ signal showed 

a redistribution of coilin identical to that elicited by UV-C 

 ir radiation (Fig. 6 C, bottom).

Second, because PA28γ levels are increased in thyroid neo-

plasms and correlate with the tumor stage (being low in differenti-

ated and very high in anaplastic thyroid carcinoma; Okamura 

et al., 2003), we tested whether PA28γ levels were also elevated 

in a thyroid tumor–derived cell line, FTC133 (follicular thyroid 

carcinoma; Fig. 6 D). Immunofl uorescence analysis revealed high 

levels of endogenous PA28γ in FTC133 nuclei in unstressed 

 control cells (Fig. 6 D, top). Intriguingly, in most FTC133 cells 

CBs are fragmented and coilin is distributed in a widespread 

 nucleoplasmic pattern similar to that observed in other cell lines 

Figure 6. Increased levels of PA28𝛄 triggers fragmentation of CBs, but does not block transcription. (A and B) MCF-7 cells, transfected with a FLAG-PA28γ 
expression vector and stained with anti-PA28γ (green) and anti-coilin (red) antibodies as indicated. (B) Cell nuclei were also stained with anti-PA28γ (green) 
antibodies and labeled with 5-FU (red) to monitor ongoing transcription (bottom). Arrows indicate intact CBs in the untransfected cells. Arrowheads indicate 
the transfected cells (revealed also by the higher intensity of staining for PA28γ compared with the untransfected cells). (C) A PDGF-stimulated increase in 
the levels of endogenous PA28γ triggers fragmentation of CBs. MCF-7 cells treated with PDGF and stained with anti-PA28γ (green) and anti-coilin (red) 
 antibodies. In cells treated with PDGF for 30 h (bottom), increased levels of PA28γ correlate with the fragmentation of CBs (middle bottom). (D) A decrease 
in the levels of PA28γ promotes the restoration of CB integrity in FTC-133 cells. FTC-133 cells were either mock- or IFNγ-treated for 72 h, stained with 
anti-PA28γ (green) and -coilin (red) antibodies. In IFNγ-treated cells (bottom), the resulting reduction in the levels of PA28γ correlates with the reappearance 
of intact CBs (arrows).Bars, 10 μM.
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only after UV-C irradiation. Furthermore, treatment of the FTC-133 

cells with  interferon γ (IFNγ), a stimulus known to down- regulate 

PA28γ levels (Tanahashi et al., 1997), for 72 h caused down-

 regulation of nuclear PA28γ and the reappearance of intact 

CBs in >70% of the treated cells (Fig. 6 D, bottom).

Overexpression of PA28γ recapitulates many, but not all, of 

the changes in subnuclear structure induced by UV-C treatment. 

Thus, TMG-capped snRNAs, SMN and SART3 (Fig. 7 A), were 

each relocalized out of CBs upon transient overexpression 

of PA28γ, whereas NPAT, fi brillarin, and NOPP140 remained 

localized in residual CBs (Fig. 7 B). However, it did not cause 

snRNPs to accumulate in enlarged splicing speckles. A likely 

explanation for this difference is that PA28γ overexpression, un-

like UV-C, does not cause inhibition of transcription (Fig. 6 B).

We observe that the effect of PA28γ is specifi c for CBs. 

Thus, transient overexpression of PA28γ had little or no effect on 

the number, integrity, or morphology of PML bodies,  paraspeckles, 

or nucleoli in MCF-7 cells (Fig. 7 C). In summary, multiple in-

dependent lines of evidence strongly suggest that PA28γ can 

specifi cally affect CB integrity and coilin subnuclear localization.

Knock down of PA28𝛄 attenuates 
the UV-C–induced redistribution of coilin
If PA28γ is the mediator of the UV-C effect on CBs, we postu-

lated that RNA interference (RNAi)–mediated knock down of 

PA28γ should attenuate this effect. Therefore, we performed 

PA28γ knockdown experiments in both MCF-7 and HaCaT 

cells before and after UV-C treatment (Fig. 8 and not depicted). 

Initial experiments identifi ed two double-stranded RNA oligo-

nucleotides able to reduce the levels of PA28γ in transfected 

cells after 72 h. To monitor the transfection effi ciency, a plasmid 

vector expressing YFP alone was cotransfected together with 

the RNAi duplexes. Protein blotting analysis showed that both 

RNAi duplexes specifi cally decreased PA28γ protein levels, but 

not the levels of either endogenous lamin B1 or transiently ex-

pressed YFP (Fig. 8 A). Immunofl uorescence analysis with anti-

coilin antibodies showed that the degree of UV-C–induced 

disassembly of CBs and coilin redistribution was reduced 

(>50% of the transfected cells do not show CB disassembly 

upon UV-C) in the cells transfected with either of the specifi c 

RNAi oligos (Fig. 8 B, arrows). In contrast, cells transfected 

with the control oligonucleotides are indistinguishable from the 

adjacent untransfected cells in terms of their UV-C response 

(Fig. 8 B, bottom). We note that neither the specifi c nor the con-

trol siRNAs altered the integrity of CBs in mock-treated cells 

(unpublished data). We conclude that PA28γ contributes to the 

mechanism that modulates the response and/or the sensitivity of 

CBs to UV-C irradiation.

Discussion
In this study, we have detected a novel effect of UV-C irradiation, 

showing that it disrupts CBs, causing a selective redistribution of 

Figure 7. The overexpression of PA28𝛄 alters the CB localization of 
TMG-capped RNAs, SMN, and SART3. (A) MCF-7 cells cotransfected with 
FLAG-PA28γ and pEYFP-C1 expression vectors (green) and stained with 
anti-TMG-cap, -SMN, and -SART3 antibodies (red). Arrows indicate intact 
CBs in the untransfected YFP-negative cells. (B) The overexpression of 
PA28γ does not alter the CB localization of NPAT, fi brillarin, and NOPP140. 
MCF-7 cells, cotransfected with FLAG-PA28γ and pEYFP-C1 expression 
vectors, were stained with anti-NPAT, anti-fi brillarin, and anti-NOPP140 
antibodies (red). Arrows indicate intact CBs in both the untransfected (YFP-
negative) and transfected (YFP-positive) cells. (C) Overexpression of PA28γ 
does not alter the integrity of PML bodies, paraspeckles, and nucleoli. 

MCF-7 cells cotransfected with FLAG-PA28γ and pEYFP-C1 expression 
 vectors (green) were stained with anti-PML, anti-PSP1, and anti-fi brillarin 
antibodies (red). Little or no change was observed for any of these struc-
tures in the transfected YFP-positive cells. Bars,10 μM.
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a subset of CB components. Coilin, snRNPs, and other CB pro-

teins involved in snRNP assembly and/or maturation are displaced 

from CBs after UV-C treatment, whereas other CB factors, in-

cluding fi brillarin, NOPP140, and NPAT, remain in residual CB-

like bodies. This effect is reversible, with maximum disruption 

evident within 6 h after treatment of cell lines in culture with UV-C 

and partial recovery within 12 h. We identify a novel coilin-

 associated factor, PA28γ, whose association with coilin complexes 

is increased by UV-C treatment, and we show that it is an impor-

tant mediator of the molecular mechanism leading to UV-C–

 induced CB fragmentation. Furthermore, a transient increase in 

the level of PA28γ expression, in the absence of UV-C, is suffi -

cient to trigger a similar CB disruption and relocalization of the 

same subset of CB components to that seen in response to UV-C.

PA28γ was originally discovered as a target of human 

 autoantibodies in serum from patients suffering from systemic 

lupus erythematosus and as a proliferation-associated antigen 

(Ki antigen; Nikaido et al., 1989, 1990). It was named PA28γ 

because of its homology to the known proteasome activators 

PA28α and β, which share �40% amino acid identity. This 

similarity was also supported by the independent observation 

that PA28γ enhances the trypsin-like activity of the proteasome 

toward small peptides in vitro (Wilk et al., 2000). However, it 

remains unclear whether the only in vivo role of PA28γ is to 

 activate the proteasome. For example, purifi ed PA28γ activates 

the isolated proteasome to a lesser extent than PA28α and β, 

(Realini et al., 1997). Moreover, although expression of both 

PA28α and β is up-regulated by IFNγ, the protein levels of 

PA28γ, in contrast, drop dramatically after treatment with this 

chemokine (Tanahashi et al., 1997). This effect of IFNγ reduc-

ing the levels of PA28γ was also observed in this study using 

FTC133 cells. Another difference is provided by the phenotype 

of both PA28 α and β −/− mice, which have major immuno-

logical problems, including impaired antigen processing, cyto-

toxic T cell activation, and assembly of the proteasome subunits 

(Preckel et al., 1999). This phenotype is not evident in either of 

the two PA28γ knockout mice models generated, only one of 

which showed relatively modest immune defects, namely a 

slight reduction in the levels of CD8+ T cells and slower clear-

ance of an experimental lung infection (Barton et al., 2004); 

in both cases, PA28γ −/− mice are viable (Murata et al., 1999; 

Barton et al., 2004).

We provide evidence demonstrating both a physical and 

a functional link between coilin and PA28γ. Evidence for a 

physical link came from biochemical affi nity purifi cation and 

proteomic analysis, which revealed PA28γ as the most promi-

nent protein whose copurifi cation with FLAG-tagged coilin 

was increased by UV-C irradiation. The endogenous forms of 

both proteins are also coimmunoprecipitated with antibodies 

specifi c for either coilin or PA28γ, and they form a stable, 

salt-resistant complex in vivo, even in the absence of UV-C 

 irradiation. We examined whether PA28γ binds directly to coilin 

using several independent in vitro assays and purifi ed recombi-

nant proteins (unpublished data). In all cases, we see no evi-

dence for direct binding. Therefore, although we cannot 

exclude that these negative results are caused by technical lim-

itations in the binding assays, it is also possible that the associ-

ation between coilin and PA28γ in vivo involves additional 

nuclear components and/or posttranslational modifi cations of 

one or both proteins.

Although PA28γ associates with coilin-containing com-

plexes in the absence of UV-C treatment, we do not observe colo-

calization or accumulation of PA28γ in CBs. Instead, PA28γ in 

untreated cells is widely distributed throughout the nucleoplasm. 

Despite the obvious concentration of coilin in bright CB foci 

when viewed by immunofl uorescence, it is known that the major 

fraction of coilin is also present in a diffuse nucleoplasmic pool 

Figure 8. Knockdown of PA28𝛄 attenuates the UV-C–induced redistribution 
of coilin. (A) MCF-7 cells were cotransfected with a pEYFP-C1 expression 
vector and with either PA28γ-specifi c RNAi oligonucleotides (oligos 1 and 2) 
or a control oligonucleotide (CT). Western blot analysis revealed a dra-
matic reduction in the PA28γ protein levels after 72 h in the cells trans-
fected with the RNAi-specifi c oligonucleotides (top). Anti-LaminB1 and 
anti-GFP antibodies were used to assess equal loading of the samples and 
the effi ciency of transfection, respectively (middle and bottom). (B) MCF-7 
cells cotransfected with a pEYFP-C1 expression vector (green) and with 
 either anti–PA28γ-specifi c RNAi oligonucleotides (top and middle) or a 
control oligonucleotide (bottom) were UV-C irradiated and stained 6 h later 
with an anti-coilin antibody (red). Arrows indicate intact CBs in the irradi-
ated cells transfected with anti-PA28γ specifi c dsRNAs. Arrowheads  denote 
the UV-C–induced, coilin-containing domains in the irradiated cells trans-
fected with control dsRNAs. Bars, 10 μM.
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(Ogg and Lamond, 2002). We infer from this that the complexes 

containing both coilin and PA28γ are present in this diffuse nucleo-

plasmic pool. Considering that our gel fi ltration chromatography ex-

periments showed that only the smaller size class of coilin complexes 

cofractionates with PA28γ, it is possible that these smaller complexes 

may form at least part of this pool.

The level of complexes containing coilin and PA28γ 

clearly increases after UV-C treatment. Interestingly, the ki-

netics of this complex formation tightly parallel the kinetics of 

CB disruption, which is consistent with a functional  connection. 

Further evidence for a functional role for PA28γ in CB in-

tegrity was provided by our discovery that RNAi-mediated 

knockdown of PA28γ either prevents or reduces the effect of 

UV-C treatment on CBs in irradiated cells. Although loss of 

PA28γ by RNAi prevents the UV-C response, we also show that 

an increase in the levels of PA28γ, either through transient over-

expression, growth factor treatment, or in the transformed cell 

line FTC133, is suffi cient to trigger a similar disruption of a 

subset of CB components to that induced by UV-C. However, it 

is unlikely that the effect of UV-C irradiation on CBs results 

from a large increase in intracellular PA28γ levels. Indeed, we 

observe only a small increase in PA28γ levels during the time 

course of the UV-C response. Instead UV-C may lead to an in-

crease in  affi nity of PA28γ for the coilin complexes. For ex-

ample a UV-C–induced phosphorylation mechanism could be 

involved. In this regard, it is interesting that a physical and func-

tional interaction of PA28γ with MEKK3 has been reported 

(Hagemann et al., 2003). MEKK3 is a kinase involved in trans-

ducing both mitogenic (serum and FGF-2) and stress signals 

(UV-C and osmotic stress; Adams et al., 2002; Uhlik et al., 

2003; Gilmore et al., 2004). Our preliminary  results indicate 

that overexpression of MEKK3 increases the UV-C–induced 

interaction of PA28γ and coilin (unpublished data). Further-

more, we have also observed that hyperosmotic stress, induced 

by treating both HaCaT and MCF7 cells with 0.5 M sorbitol, 

resulted in a similar disruption of  coilin from CBs to that caused 

by UV-C (Fig. S3, available at http://www.jcb.org/cgi/content/

full/jcb.200604099/DC1). The fact that MEKK3 is known to 

be activated by both UV-C and hyperosmotic shock may not be 

a coincidence. Therefore, future studies will examine in more 

detail the role and mechanism of PA28γ in regulating CB integ-

rity and the potential role of MEKK3 in signaling to CBs.

Interestingly, we observe that overexpression of PA28γ 

causes CB disruption without reducing nuclear transcription 

 levels. It also acts specifi cally on CBs without changing the mor-

phology or number of PML bodies, paraspeckles, or nucleoli. 

Based on our results, we infer that the novel effect of UV-C we 

have detected on CBs involves a specifi c PA28γ-dependent 

 pathway. Although UV stress causes a complex set of cellular re-

sponses, affecting multiple targets and down-regulating nuclear 

transcription, our analysis of PA28γ should allow us to dissect 

a subset of these cellular events and the mechanisms involved.

Materials and methods
Cell culture, treatments, and transfections
WI 38, HeLa, COS-7, HaCaT, SAOS-2, and 293T cells were cultured as 
monolayers in DME (Invitrogen) supplemented with 10% fetal bovine 

 serum, nonessential amino acids, penicillin-streptomycin, and L-glutamine 
(Invitrogen) in a humidifi ed incubator at 37°C with 5% CO2. HCT116 and 
SW480 cells were cultured as monolayers in McCoy 5A medium (Invitrogen), 
supplemented like the aforementioned cells. MCF-7 cells were grown in 
RPMI medium (Invitrogen) supplemented as like the aforementioned cells. 
PDGF and EGF (Millipore) were added to the medium of serum-starved 
MCF-7 cells to a fi nal concentration of 25 and 100 ng/ml, respectively. 
DRB was added to the cells at a fi nal concentration of 30 μg/ml, 
for 3 h. Actinomycin D was added to the cells at a fi nal concentration of 
10 μg/ml for 2 h.

FTC-133 cells were treated with 500 U/ml of human recombinant 
IFN γ (PBL Laboratories). When indicated, cells were transfected with 
250–500 ng /90-mm dish of the appropriate plasmid DNA using Effectene 
transfection reagent (QIAGEN) according to the manufacturer’s instructions.

The PCDNA3-FLAG-PA28γ expression vector was a kind gift of 
M. Rechsteiner (University of Utah School of Medicine, Salt Lake City, UT). 
For PA28γ RNAi experiments, the following oligonucleotides targeting 
PA28γ have been used: OLIGO 1 (5-GAA GCC UUC CAA GGA ACC 
ATT-3) and OLIGO 2 (5-ACA UCC AUG ACC UAA CUC ATT-3; MWG 
Biotech). As a control (“off-target”), a dsRNA oligonucleotide targeting the 
Photinus pyralis luciferase gene was used (5-CGU ACG CGG AAU ACU 
UCGA-3). dsRNA oligonucleotides were transfected by using the RNAiFect 
transfection reagent (QIAGEN). dsRNAs were cotransfected with a highly 
purifi ed (CsCl gradient) plasmid vector encoding YFP (p-EYFP-C1; CLONTECH 
 Laboratories, Inc.), at a molar ratio of 1:40 (YFP: RNAi oligonucleotide) 
to facilitate the identifi cation of transfected cells and to evaluate the effect 
of the transfection on the viability of the cells.

Reagents
Except when stated otherwise, all of the chemicals used were from 
Sigma-Aldrich.

Biochemical fractionation of isolated nuclei
Subcellular fractions were obtained from either mock- or UV-C–treated cells 
as follows: in brief, cell nuclei isolated in hypotonic/detergent containing 
buffer were subjected to DNase/RNase treatment and high salt extraction 
with (NH4)2SO4 and NaCl, respectively. The remaining material was solu-
bilized with urea-containing buffer (10 mM Tris-Cl, pH 8.0, 9 M urea, 
IGEPAL AC-630, 100 mM KCl, 50 mM DTT, 50 mM NaF, 1 mM NaVO4, 
1 mM MgCl2). Before SDS-PAGE analysis, the fi nal salt concentration of the 
samples was normalized by the addition of 2 M (NH4)2SO4.

UV-C irradiation
In brief, semiconfl uent cells were washed with PBS and incubated for 8–12 h 
in DME (or RPMI or McCoy 5A) supplemented with 0.5% FBS (serum 
starvation). Medium was collected and kept at 37°C and the PBS-washed 
cells irradiated in a UV Stratalinker 2400 oven with 254-nm bulbs (Stratagene) 
at 30 J/m2. After that, the old medium was quickly added back into the 
dishes and the cells were incubated for the indicated times.

Sorbitol treatment
Semiconfl uent cells were washed with PBS and incubated for 8–12 h in 
DME (or RPMI or McCoy 5A) supplemented with 0.5% FBS (serum 
 starvation). After that, medium was collected and cells were washed once 
with PBS and either mock-treated (old medium added back) or incubated 
with 0.5 M sorbitol (Sigma-Aldrich) dissolved in the previously collected 
medium for the indicated times.

Cell fi xation and immunofl uorescence microscopy
Adherent cells grown on glass coverslips were fi xed for 10 min in freshly 
prepared PBS/3.7% paraformaldehyde at RT. Permeabilization was per-
formed with PBS /1% IGEPAL AC-630 for 10 min at RT. After extensive 
washing, samples were blocked with PBS /2% BSA (Sigma-Aldrich) for 
at least 1 h at RT, and then incubated with the indicated antibodies at RT. 
When indicated, cell nuclei were stained with DAPI (0.3 μg/ml; Sigma-
Aldrich) diluted in PBS for 3 min at RT. Coverslips were mounted in Vecta-
shield medium (Vector Laboratories) and stored protected from light 
at 4°C.

Polyclonal antibodies used were as follows: anti-coilin 204/10 
(1:300; Bohmann et al., 1995; Fig. 1, A and B [top and middle] and C; 
Fig. 2, A and B [top and middle] and C [middle and bottom]; Fig. 3, A and B; 
Fig. 5 B; Fig. 6, B–D; Fig. 8 B), anti-NPAT (1:500; a gift from J. Zhao, 
University of Rochester, Rochester, NY; Fig. 2 C; Fig. 7 B) anti–SART3 
(1:200; a gift from D. Stanek and K. Neugebauer, Max Planck Institute, 
Dresden, Germany; Fig. 2, A and B; Fig. 7 A); anti-PSP1 (1:400; Fig. 7 C; 
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Fox 2002); and anti-PA28γ (1:400; Affi niti Research Products; Fig. 5 C; 
Fig. 6 B; Fig. S2, top and bottom).

Monoclonal antibodies used were as follows: anti-coilin 5P10 
(1:300; Fig. 1 B bottom; Fig. 2, A and B [bottom] and C [top]; Rebelo et al., 
1996); anti-fi brillarin 72B9 (1:25; Fig. 2 C; Fig. 7, Band C; Reimer 
et al., 1987), anti-SC35 (1:400; Sigma-Aldrich; Fig. 1, A and B; Fig. 5 C; 
Fig. S2); anti PSME3 (PA28γ; 1:100; BD Biosciences; Fig. 5 B; Fig. 6, A, C, 
and D; Fig. S2, bottom); anti-SMN (1:100; BD Biosciences; Fig. 2, A and B; 
Fig. 7 A); anti-2,2,7 TMG (1:300; Oncogene; Fig. 2, A and B; Fig. 7 A; 
Fig. S2); anti-PML (1:100; Santa Cruz Biotechnologies, Inc.; Fig. 7 C).

Secondary antibodies used were FITC- or TRITC-conjugated goat anti–
mouse or anti–rabbit IgGs (1:500; Jackson ImmunoResearch Laboratories).

5-FU incorporation assay
HaCaT or MCF-7 cells, either mock-treated or treated with UV-C or DRB for 
the indicated length of time, were incubated with 2 mM 5-FU (F5130) for 
30 min at 37°C. Subsequently, cells were fi xed, permeabilized, and incu-
bated with primary anti-BrdU antibody (B2531; 1:500). Immunofl uores-
cence microscopy was performed as indicated (see previous section). For 
transfected cells, 5-FU labeling was performed at 24 h after transfection.

Whole-cell lysate preparation and Western blotting
In brief, enzymatically detached cells were pelleted and resuspended in 
2× reducing loading buffer (Invitrogen) and denatured at 80°C for 5 min. 
When indicated, cells were previously resuspended in urea-containing buffer 
(see Biochemical fractionation of isolated nuclei). For Western blot  analysis, 
proteins resolved by SDS-PAGE were transferred to nitrocellulose fi lters 
(Schleicher and Schuell) and probed with specifi c primary antibodies and 
the corresponding horseradish peroxidase-conjugated secondary anti-
bodies (GE Healthcare). An enhanced chemiluminescence reagent (ECL; 
GE Healthcare) was used to visualize protein bands, according to manu-
facturer’s instructions. Red Ponceau staining of the transferred proteins was 
used to assess equal loading of the samples. Monoclonal antibodies used 
for Western blot analysis were as follows: anti-coilin 5P10 (1:100; Bohmann 
et al., 1995; Fig. 4 B; Fig. 5 A); anti-LaminB1 (1:200; Zymed Laboratories; 
Fig. 8); anti-GFP (1:500; Roche; Fig. 8), anti-PSME3 (PA28γ; 1:500; BD 
Biosciences; Fig. 4 B; Fig. 5, A and D). Polyclonal antibodies used for 
Western blot analysis were as follows: anti-coilin 204/10 (1:2,000 Fig. 3, 
C–E; Fig. 4 C; Fig. 8), anti-PA28γ (1:2,000; Affi niti Research Products; Fig. 
4 C; Fig. 8); and anti-sDMA (SYM10; 1:500; Millipore; Fig. 3, D and E).

Nuclear extract preparation and immunoprecipitation
Enzymatically detached cells were pelleted and resuspended in hypotonic 
buffer (10 mM Tris-Cl, pH 7.1, 10% glycerol, 4 mM DTT, 50 mM NaF, 
1 mM NaVO4, 1 mM MgCl2, and Roche protease inhibitors). IGEPAL AC-
630 was added dropwise while mixing to a fi nal concentration of 0.5%. 
Cells were gently resuspended for 3 min on ice and crude nuclei were pel-
leted by centrifugation (3,000 rpm for 5 min at 4°C) and resuspended in 
two bead volumes of ice-cold digestion buffer (2 mM Tris-Cl, pH 8.5, 20% 
glycerol, 10 mM DTT, 50 mM NaF, 1 mM NaVO4, 1 mM MgCl2, 5 mM 
CaCl2, Roche protease inhibitors, and 75 U/ml micrococcal nuclease; GE 
Healthcare). Samples were allowed to digest at 25°C for 15 min with con-
tinuous mixing, and then ice-cold extraction buffer (2 mM Tris-Cl, pH 8.5, 
50 mM NaF, 1 mM NaVO4, 1 mM MgCl2, 20 mM EDTA, pH 8.0, 0.84 M 
KCl, and Roche protease inhibitors) was added vol/vol. Samples were 
then incubated on ice with frequent mixing for 20 min. Finally, the nuclear 
lysate was clarifi ed by ultracentrifugation at 50,000 rpm for 30 min at 4°C 
in a fi xed-angle rotor (TLA 100.3; Beckman Coulter). Supernatant was col-
lected and used immediately or fl ash frozen in liquid nitrogen.

For size fractionation of nuclear extracts, cleared nuclear extract 
(0.5 ml) was loaded into a Superose 6 (GE Healthcare) gel fi ltration col-
umn equilibrated with 2 mM Tris-Cl, pH 8.5, 50 mM NaF, 1 mM NaVO4, 
1 mM MgCl2, 20 mM EDTA, pH 8.0, 0.5 M KCl, and Roche protease in-
hibitors by using a FPLC system (GE Healthcare). 1-ml fractions were col-
lected, and the size of the eluted complexes calculated according to the 
elution profi le of known molecular weight markers (Fig. 4C).

For immunoprecipitation studies, in brief, unconjugated antibodies 
were added to the cleared nuclear extracts on ice for 45 min. After that, 
protein A– or G–agarose beads (GE Healthcare) preblocked for 30 min at 
RT with 2% BSA in hypotonic buffer, were added to the solution, and the 
mixture was incubated for 3 h at 4°C with slow agitation. The beads were 
then collected by low-speed centrifugation (1,000 rpm for 3 min at 4°C) 
and washed three times with high-salt washing buffer (2 mM Tris-Cl, 
pH 8.0, 10% glycerol, 50 mM NaF, 1 mM NaVO4, 1 mM MgCl2, 0.3 M KCl, 
0.05% IGEPAL AC-630, protease inhibitor cocktail [Roche]) and twice with 
low-salt washing buffer (2 mM Tris-Cl, pH 8.0, 10% glycerol, 50 mM NaF, 

1 mM NaVO4, 1 mM MgCl2, 0.1 M KCl, 0.2% IGEPAL AC-630, and 
Roche protease inhibitor cocktail). Immunoprecipitated material was eluted 
by incubating the beads with reducing loading buffer at 70°C for 5 min. 
Primary antibodies used for immunoprecipitation studies were as follows: 
a mixture (1:1) of mouse monoclonal anti-coilin antibodies (1:50 [BD Bio-
sciences] and 1:50 [Sigma-Aldrich], respectively: Fig. 3 D); anti-FLAG M2 
agarose conjugated (Sigma-Aldrich; Fig. 4 A), rabbit polyclonal anti-
PA28γ antibodies (a mix of MBL [1:100] and Affi niti Research [1:150], 
 respectively; Fig. 4 B and Fig. 5 A). For control immunoprecipitations, 
equivalent amounts of a rabbit polyclonal anti-GST antibody (GE Healthcare; 
Fig. 4 B) or a mouse monoclonal anti-GFP antibody (Roche; Fig. 3 D and 
Fig. 5 A) were used, respectively.

Image acquisition and manipulation
All images were acquired with a Deltavision Restoration Microscope 
 (Applied Precision) and a camera (Micromax KAF1400; Kodak). Imaging 
was performed at RT using either a 40× Plan-Neofl uar or a 63× Plan-
Apochromat (Carl Zeiss MicroImaging, Inc.) objective lens. Images were 
acquired as TIFF fi les using SoftWorX (Applied Precision) and Photoshop 
(Adobe) used for composing the panels shown in the respective fi gures.

Isolation of coilin-containing complexes
Semi-confl uent 293 cells transiently transfected with a PCDNA3-FLAG-coilin 
expression vector, were either mock- or UV-C–treated. The derived cleared 
nuclear extracts (typically 50 mg of protein) were loaded into a 5-ml heparin–
Sepharose CL 4B column (GE Healthcare) by using a FPLC system. The re-
tained protein complexes were eluted with a gradient of increasing ionic 
strength (10 mM Tris-Cl, pH 7.1, 10% glycerol, 4 mM DTT, 50 mM NaF, 
1 mM NaVO4, 1mM MgCl2, 0.15% IGEPAL AC-630, 50–600 mM KCl, and 
Roche protease inhibitors cocktail) and the coilin-containing fractions (eluted 
in a peak at �200–250 mM KCl) were subsequently incubated with M2 
anti-FLAG antibody conjugated agarose beads (Sigma-Aldrich) for 3 h at 4°C 
with gentle agitation. Immunoprecipitated material was processed as previ-
ously described (see Nuclear extract preparation and immunoprecipitation) 
and collected by a three-step elution with two bead volumes of 100 mM 
 glycine-HCl, pH 3.0., 1 M Tris-Cl, pH 8.5, and 100% glycerol (Sigma-
Aldrich) were added to the eluted fractions to a fi nal concentration of 100 mM 
and 10%, respectively, before further use or fl ash freezing in liquid nitrogen.

Mass spectrometry and identifi cation of PA28𝛄
Purifi ed protein complexes were separated on SDS-PAGE gels and stained 
with Colloidal Coomassie (Invitrogen). The chosen protein bands were ex-
cised and subjected to trypsin digestion, and the derived peptides were 
analyzed by matrix-assisted laser desorption/ionization time-of-fl ight 
(Perspective Biosystems) at the Peptide Mass Fingerprinting facility at 
the University of Dundee (http://www.dundee.ac.uk/biocentre/services_
 proteomics.htm). Protein identifi cation was made with the ProteinProspector 
software MS-FIT (http://prospector.ucsf.edu/prospector/4.0.7/html/ msfi t.htm) 
using the NCBInr (nonredundant) and Swissprot databases.

Online supplemental material
Fig. S1 shows that UV-C enhances PA28γ in coilin complexes. Fig. S2 
shows that PA28γ redistributes to splicing speckles in irradiated cells. 
Fig. S3 shows that hyperosmolar shock triggers fragmentation of CBs. 
Online supplemental material is available at http://www.jcb.org/cgi/
content/full/jcb.200604099/DC1.
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