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Statics and Stiffness Model of
Serial-Parallel Manipulator
Formed by k Parallel
Manipulators Connected in
Series
The statics and stiffness model of serial-parallel manipulators (S-PMs) formed by k
parallel manipulators (PMs) connected in series is established in this paper. The S-PMs
can provide features of both serial manipulators (SMs) and PMs. First, the unified
formulae for solving the statics and stiffness of S-PMs are derived. Second, a
k(PSþRPSþ SPS) S-PM is analyzed to illustrate this model. Finally, an analytic solved
example for 5(PSþRPSþ SPS) S-PM is given. The established model can offer an essen-
tial theoretical basis for S-PMs. [DOI: 10.1115/1.4006190]
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1 Introduction

Both SMs and PMs have their merits in robot manipulators.
The PMs have some merits such as higher stiffness, higher preci-
sion, good stability, and easier control. Recently, the theory and
application research for various novel limited-dof PMs have
became a very important research direction and a front technology
[1,2]. Some subjects, such as kinematics, singularity, stiffness,
dynamics, etc. [3–9], have been widely studied.

The S-PMs have the advantages of both SMs and PMs from
rigidity and workspace [10–18]. The fundamental theory of single
PMs has been going maturity. However, the S-PMs have not been
investigated deeply. In this aspect, Romdhane [10] designed and
analyzed a hybrid S-PM formed by a pure translational and a pure
rotational PMs, which have passive legs. Tanev [11] solved the
forward and inverse position problems of a hybrid manipulator.
Zheng et al. [12] studied the kinematics of a hybrid S-PM formed
by a pure translational and a pure rotational 3-universal jointpris-
matic pair-universal joint (UPU) PM by using quaternion. Lu and
Hu [13] solved driving forces of 2(3-spherical joint-prismatic
joint-revolute joint (SPR)) S-PM by Computer Aided Design
(CAD) variation geometry approach and solved the velocity,
acceleration, statics, and stiffness, subsequently [14,15]. Gallar-
doa et al. [16,17] studied the kinematics and dynamic of S-PM via
screw theory and principle of virtual work. Ibrahim and Khalil
[18] established inverse and direct dynamic models of hybrid
robots by means of the recursive Newton–Euler algorithms.

The previous research for such manipulators mainly focused on
the S-PM formed by 2 PMs, the S-PMs formed by any number of
PMs connected in series have been seldom studied due to their
complicated structure. In order to obtain larger workspace, high
flexibility and avoid obstacles and singularities, the k S-PMs are
more applicable than 2 S-PMs. These type manipulators can be
used as spatial truss, biomimetic snake, elephant’s trunk, biosimu-
lation manipulator, and so on [19–22].

The systemic theory for S-PMs formed by any number of PMs
has not been established. This paper focuses on establishing sys-
temic kinematics, statics and stiffness model of S-PMs. Due to the
complicated structure, the force transmission regularities of such
manipulators have not been systematically revealed. Stiffness is
one of the important indexes for evaluating performances of
S-PM, particularly when the S-PMs are used as robot arm and
machine tools. High stiffness allows higher machining speed with
high accuracy of the terminal effector. The statics and stiffness
model for S-PM is more complex than SMs and PMs. Up to now,
there is not a unified model for these problems. It is a significant
and challenging issue to establish the statics and stiffness model
for S-PM.

2 Kinematics of S-PM Formed by k PMs

Connected in Series

Suppose one S-PM is formed by k PMs connected in series. Let
the k PMs named PM 1, PM 2, …, PM k in sequence from bottom
to up. The upper platform of PM i-1 (i¼ 2, …, k) and the base of
PM i are fixed with their centers kept coincidence. Let oi denotes
the center of the upper platform of PM i.

Establishing coordinate frames {ni0} and {ni1} at the center of
the lower platform and upper platform of PM i, respectively.
Then, {n10} can be seen as the base coordinate frame and {nk1}
can be seen as the terminal coordinate frame.

The center of the terminal platform n10 ok can be expressed as
follows:

n10 ok ¼
Xk

i¼1

n10

ni0
Rni0 oi;

n10

ni0
R ¼ n10

n10
Rðn10

n11
Rn11

n20
RÞ � � � ðnði�1Þ0

nði�1Þ1 R
ði�1Þ1
ni0 RÞ;

n10

n10
R ¼ E3�3;E3�3 ¼

1 0 0

0 1 0

0 0 1
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A composite rotational matrix n10
nk1

R from {nk1} to {n10} can be
expressed as follows:

n10

nk1
R ¼ ðn10

n10
Rn10

n11
RÞðn11

n20
Rn20

n21
RÞ � � � ðnði�1Þ1

ni0 Rni0
ni1

RÞ � � � ðnðk�1Þ1
nk0 Rk0

nk1
RÞ (2)

The angular velocity of the terminal platform relative to no can be
derived as

n10

nk1
x ¼

Xk

i¼1

n10

ni0
Rni0

ni1
x;

n10

ni1
R ¼ n10

ni0
Rni0

ni1
R; n10

ni1
R ¼ n10

n11
Rðn11

n20
Rn20

n21
RÞ � � � ðnði�1Þ1

ni0 Rni0
ni1

RÞ

(3)

Differentiating both sides of Eq. (1) with respect to time, n10 vok
can be expressed as follows:

n10 vok ¼
Xk

i¼1

n10

ni0
Rni0 voi þ ðn10

ni0
x� n10

ni0
RÞni0 oi

h i
(4)

Differentiating both sides of Eq. (3) with respect to time, n0
nk

e can
be expressed as follows:

n10

nk1
e ¼

Xk

i¼1

n10

ni0
Rni0

ni1
eþ n10

ni0
x� n10

ni0
R

� �
ni0
ni1

x
h i

(5)

Let t ¼ [tx ty tz]
T, s ¼ [sx sy sz]

T be two arbitrary vectors, S(t) be a
skew-symmetric matrix. There must be

SðtÞ ¼

0 �tz ty

tz 0 �tx

�ty tx 0

2
664

3
775; SðtÞ ¼ �SðtÞT ; t � s ¼ SðtÞs (6)

Differentiating both sides of Eq. (4) with respect to time and com-
bining with Eq. (6), n10 aok can be expressed as follows:

n10 aok ¼
Xk

i¼1

n10
ni0

Rni0 aoi þ 2 n10
ni0

x� n10
ni0

R
� �

� ni0 voi

þ n10
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e� n10
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x� n10
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x� n10
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R
� �h i

� ni0 oi
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>>:
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� �
� n10

ni0
x

�Sðn10
ni0

Rni0 oiÞn10
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ni0

Rni0 oi

8><
>:

9>=
>; (7)

ni0 oi,
ni0 voi,

ni0
ni1

x, ni0
ni1

e, and ni0 aoi can be solved in PM i when given
the corresponding acceleration, velocity, and position of
actuators.

3 Statics and Stiffness of S-PM Formed by k PMs

Connected in Series

From Eq. (4) leads to

n10 vok ¼
Xk

i¼1

n10

ni0
Rni0 voi

�
Xk�1

i¼1

Xk�1

j¼i

S n10

nðjþ1Þ0
Rnðjþ1Þ0 ojþ1

� �" #
n10
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Rni0
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x

( )
ðk � 2Þ

(8a)

By combining Eq. (3) with Eq. (8a), the terminal velocity can be
expressed as follows:
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5ði ¼ kÞ (8b)

From Eq. (8b) and the principle of virtual work lead to

FT
s1vs1 þ FT

s2vs2 þ � � � þ FT
skvsk ¼ �

n0 Fo

n0 To

" #T n0 vok

n0
nk

x

" #

¼ �
n0 Fo

n0 To

" #TXk

i¼1

JRi

ni0 voi

ni0
ni1

x

" #

¼ �
n0 Fo

n0 To

" #TXk

i¼1

JRiJ
�1
si vsi

(9)

From Eq. (9) leads to

FT
s1 � � � FT

sk

� � Vs1

..

.

Vsk
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From Eq. (10) leads to

Fsi ¼ �ðJRiJ
�1
si Þ

T
n0 Fo

n0 To

" #
(11)

The statics of PM i can be solved from Eq. (11).
For single PM i, the following formulae are satisfied

dqi ¼ K�1
i

ni Foi

ni Toi

" #
;

ni Foi

ni Toi

" #
¼ �JT

siFsi (12)

From Eqs. (11) and (12) lead to

ni Foi

ni Toi

" #
¼ JT

Ri

n0 Fo

n0 To

" #
(13)

From Eqs. (8b), (12), and (13) lead to

dq ¼
Xk

i¼1

JRidqi ¼
Xk

i¼1

ðJRiK
�1
i JT

RiÞ
n0 Fo

n0 To

" #
(14)

From Eq. (14) leads to

n0 Fo

n0 To

" #
¼ Kdq; K ¼

Xk

i¼1

JRiK
�1
i JT

Ri

 !�1

(15)
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Equation (15) is the stiffness matrix of a S-PM formed by k
PMs connected in series.

4 Statics and Stiffness of a k(PS 1 RPS 1 SPS) PM

In this section, the k(PSþRPSþ SPS) PM formed by k
PSþRPSþ SPS PMs is analyzed to illustrate the model (see Fig. 1).

4.1 Analysis of PS 1 RPS 1 SPS PM. The PSþRPSþ SPS
PM includes a moving platform m, a base B, and three different
type active legs r1, r2, and r3. Here, m is a regular triangle with o
as its center and three vertices ai (i¼ 1, 2, 3), B is a regular trian-
gle with O as its center and three vertices Ai (i¼ 1, 2, 3). The first
active limb r1 is a PS-type limb, this limb connects m with B by
using a spherical joint S at a1 on m, a prismatic joint P, and be
perpendicularly fixed at A1 on B. The second active limb r2 is a
RPS-type limb, r2 connects m with B by using a spherical joint S
at a2 on m, a prismatic joint P along r2, and a revolute joint R1 at
A2 on B. The revolute joint is lying in B and perpendicular to
A1A2. The third active limb r3 is a SPS-type limb, this limb con-
nects m with B by using a spherical joint S at a3 on m, a prismatic
joint P along r3, and a spherical joint S at A3 on B.

Let \ be a perpendicular constraint and k be a parallel con-
straint, respectively. Then, there must be some geometrical con-
straint as follows:

r1?B; r2?R1;R1?A1A2 (16)

4.1.1 Inverse and Forward Position Analysis of
PSþRPSþ SPS PM. Let {B} be a frame O-XYZ attached on B at
O, {m} be a frame o-xyz attached on m at o. Some geometrical
conditions (x\a1a2, yka1a2, z\m, X\A1A2, YkA1A2, Z\B) are
satisfied.

The coordinate Ai (i¼ 1, 2, 3) and o in {B} can be expressed as
follows:

A1 ¼

XA1

YA1

ZA1

2
664

3
775 ¼ 1

2

L

�qL

0

2
664

3
775; A2 ¼

XA2

YA2

ZA2

2
664

3
775 ¼ 1

2

L

qL

0

2
664

3
775;

A3 ¼

XA3

YA3

ZA3

2
664

3
775 ¼

�L

0

0

2
664

3
775; o ¼

Xo

Yo

Zo

2
664

3
775 (17a)

The point ai (i¼ 1, 2, 3) in {m} can be expressed as follows:

ma1 ¼
xa1

ya1

za1

2
64

3
75 ¼ 1

2

l

�ql

0

2
64

3
75; ma2 ¼

xa2

ya2

za2

2
64

3
75 ¼ 1

2

l

ql

0

2
64

3
75;

ma3 ¼
xa3

ya3

za3

2
64

3
75 ¼

�l

0

0

2
64

3
75 (17b)

where L is the distance from O to Ai, l is the distance from o to ai,
and q is a constant with q¼ 31/2.

ai (i¼ 1, 2, 3) and o in {B} can be expressed as follows:

a1 ¼
1

2

lxl � qlyl þ 2Xo

lxm � qlym þ 2Yo

lxn � qlyn þ 2Zo

2
6664

3
7775; a2 ¼

1

2

lxl þ qlyl þ 2Xo

lxm þ qlym þ 2Yo

lxn þ qlyn þ 2Zo

2
6664

3
7775;

a3 ¼

�lxl þ Xo

�lxm þ Yo

�lxn þ Zo

2
6664

3
7775 (17c)

here, o is the position of the center of m and B
mR is the rotational

transformation matrix from {m} to {B}. (xl, xm, xn, yl, ym, yn, zl,
zm, zn) are nine orientation parameters of m, their constrained
equations can be derived in Refs. [1,2].

The geometric constraint for PSþ SPRþ SPS parallel manipu-
lator can be written as follows:

A1a1?X; A1a1?Y; A2a2?X (18a)

A1a1 � X ¼ 0; A1a1 � Y ¼ 0; A2a2 � X ¼ 0 (18b)

The constraint equations are derived from constrained equa-
tions of (xl, xm, xn, yl, ym, yn, zl, zm, zn) and Eq. (18b) as follows:

exl � qlyl þ 2Xo � L ¼ 0

exm � qlym þ 2Yo þ qL ¼ 0

exl þ qlyl þ 2Xo � L ¼ 0

(19)

From Eqs. (19), the following equations can be derived:

yl ¼ 0; Xo ¼
L� lxl

2
; Yo ¼

qlym � lxm � qL

2
(20)

Let three Euler angles a, b, and k rotate about the x-, z-, and
y-axis of the moved reference frame. Thus, the rotational transfor-
mation matrix can be expressed as follows:

B
mR ¼

cbck �sb cbsk

casbck þ sask cacb casbsk � sack

sasbck � cask sacb sasbsk þ cack

2
664

3
775 (21)

From Eqs. (20) and (21) lead to

b ¼ 0 (22)

Then, the rotational transformation matrix can be predigested
as follows:

Fig. 1 Sketch of PS 1 RPS 1 SPS PM

Journal of Mechanisms and Robotics MAY 2012, Vol. 4 / 021012-3



B
mR ¼

ck 0 sk

sask ca �sack

�cask sa cack

2
64

3
75 (23)

From Eqs. (20) and (23) lead to

Xo ¼
L� lxl

2
¼ L� lck

2

Yo ¼
qlym � lxm � qL

2
¼ qlca � lsask � qL

2

(24)

The inverse kinematics can be derived as follows:

r2
i ¼ jai � Aij2 ði ¼ 1; 2; 3Þ (25)

Equation (25) can be expanded as follows:

r2
1 ¼ l2 þ L2 þ ðX2

o þ Y2
o þ Z2

oÞ þ lðXoxl þ Yoxm þ ZoxnÞ

� Llxl=2þ qLlxm=2� qlðXoyl þ Yoym þ ZoynÞ

þ qLlðyl � qymÞ=2� LðXo � qYoÞ (26a)

r2
2 ¼ l2 þ L2 þ ðX2

o þ Y2
o þ Z2

oÞ þ lðXoxl þ Yoxm þ ZoxnÞ

� Llxl=2� qLlxm=2þ qlðXoyl þ Yoym þ Zoyn

� qLlðyl þ qymÞ=2� LðXo þ qYoÞ (26b)

r2
3 ¼ X2

o þ Y2
o þ Z2

o þ L2 þ l2 � 2lðXoxl þ Yoxm þ ZoxnÞ

þ 2Lð�lxl þ XoÞ (26c)

When given the independent parameters (a, k, Zo), Xo, Yo and the
items of B

mR can be expressed by the three independent parameters
a, k, and Zo. Then, from Eqs. (26a) to (26c), ri (i¼ 1, 2, 3) can be
derived.

As r1\B leads to

r1

0

0

1

2
664
3
775 ¼ a1 � A1 ¼

1

2

lck þ 2Xo � L

lsask � qlca þ 2Yo þ qL

�lcask � qlsa þ 2Zo

2
664

3
775 (27)

From Eq. (27) leads to

Zo ¼
2r1 � lxn þ qlyn

2
¼ 2r1 þ lcask þ qlsa

2
(28)

From Eqs. (24), (28), and (26a)–(26c) lead to

r2
2 � r2

1 ¼ 3ðL2 þ l2Þ þ 2qlr1sa � 6Llca (29)

r2
2 þ r2

1 � 2r2
3 ¼ �3lð2r1ca þ qLsaÞsk

� 3Llca þ 10Llck � 3ðL2 þ l2Þ (30)

Then, a and k can be derived as follows:

a ¼ 2arctan
�2qlr1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2qr1lÞ2 þ 36L2l2 � ½r2

1 þ 3ðL2 þ l2Þ � r2
2 �

2
q

r2
1 þ 3ðL2 þ l2Þ � r2

2 þ 6Ll

0
@

1
A

k ¼ 2arctan

3lð2r1ca þ qLsaÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½�3lð2r1ca þ qLsaÞ�2 þ 81L2l2

�½2r2
3 � r2

2 � r2
1 � 3Llca � 3ðL2 þ l2Þ�2

vuut
2r2

3 � r2
2 � r2

1 � 3Llca � 3ðL2 þ l2Þ � 9Ll

0
BBBBBB@

1
CCCCCCA

(31)

After a and k are solved from Eqs. (31), Zo can be solved from
Eq. (28) and Xo, Yo can be solved from Eq. (24).

4.1.2 Velocity and Acceleration Analysis of PSþRPSþ SPS
PM. Let v and x be the linear velocity and angular velocity of
moving platform, vri (i¼ 1, 2, 3) are the velocity along ri. The
inverse velocity of ri (i¼ 1, 2, 3) can be as follows [5]:

vr1

vr2

vr3

2
6664

3
7775 ¼ JaV; V ¼

v

x

" #
; Ja ¼

dT
1 ðe1 � d1Þ

T

dT
2 ðe2 � d2Þ

T

dT
3 ðe3 � d3Þ

T

2
66664

3
77775 (32)

here, di ¼ ai�Ai

ai�Aij j ; ei ¼ ai � o.

The workloads can be simplified as a wrench (F, T) applied
onto m at o. Where F is a concentrated force and T is a concen-
trated torque. (F, T) are balanced by three active forces Fai (i¼ 1,

2, 3), and three constrained forces Fpj (j¼ 1, 2, 3). Each of Fai is
applied on and along the active leg ri. Based on the observe
method for finding constrained force/torque [5], we find that the
Fp1 and Fp2 are exerted on r1 at a1. Fp3 is exerted on r2 at a2.
From the geometric constraints, the unit vectors fj of Fpj (j¼ 1, 2, 3)
are determined as

f 1 ¼ f 3 ¼ X ¼ 1 0 0½ �T ; f 2 ¼ Y ¼ 0 1 0½ �T (33)

As the constrained forces do no work to the center of the moving
platform, we obtain

Fpif i � vþ ðei � Fpif iÞ � x ¼ 0

f T
i ðei � f iÞ

T
� �

V ¼ 0
(34)

The inverse/forward velocities can be derived from Eqs. (32) and
(33) as follows:
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Vr ¼ JV; V ¼ J�1Vr

J ¼

dT
1 ðe1 � d1Þ

T

dT
2 ðe2 � d1Þ

T

dT
3 ðe3 � d1Þ

T

f T
1 ðe1 � f 1Þ

T

f T
2 ðe2 � f 2Þ

T

f T
3 ðe3 � f 3Þ

T

2
6666666666666664

3
7777777777777775

; Vr ¼

vr1

vr2

vr3

0

0

0

2
66666666666664

3
77777777777775

(35)

here, J is a 6� 6 Jacobian matrix.
Differentiating both sides of Eq. (34) with respect to time leads

to

0 ¼ ½ f T
i ðei � f i Þ

T�Aþ ½ _f
T

i ð _ei � f i þ ei � _f iÞ
T �V

¼ ½ f T
i ðei � f i Þ

T�Aþ VT 03�3 03�3

03�3 SðeiÞSðf iÞ

� �
6�6

V
(36)

here

f T
i ¼ 03�1; _eT

i ¼ ðx� eiÞT ¼ ½�SðeiÞx�T ¼ xTSðeiÞ
ð _ei � f i þ ei � _f iÞ

T ¼ ð _ei � f iÞT ¼ ½�Sðf iÞ _ei�
T

¼ _eT
i Sðf iÞ ¼ xTSðeiÞSðf iÞ

Based on Eq. (36) and some results in Ref. [5], the acceleration of
this PM can be derived as follows:

Ar ¼ JAþ VTHV; A ¼ J�1ðAr � VTHVÞ;
Ar ¼ ar1 ar2 ar3 0 0 0½ �T ;
H ¼ h1 h2 h3 h4 h5 h6½ �;

hi ¼
1

ri

�SðdiÞ2 SðdiÞ2SðeiÞ
�SðeiÞSðdiÞ2 riSðeiÞSðdiÞ þ SðeiÞSðdiÞ2SðeiÞ

" #
6�6

;

hiþ3 ¼
03�3 03�3

03�3 SðeiÞSðFiÞ

" #
6�6

(37)

where ari (i¼ 1, 2, 3) are the acceleration along ri. H is a
6� 6� 6 Hessian matrix.

4.1.3 Deformation and Stiffness Analysis of PSþRPSþ SPS
Parallel Manipulator. Based on virtual work, the formula for
solving the statics can be derived as follows:

FT
r Vr þ

F
T

� �T

V ¼ 0; Fr ¼ �ðJ�1ÞT F
T

� �
(38)

here, Fr¼ [Fa1 Fa2 Fa3 Fp1 Fp2 Fp3]T.
Let dri (i¼ 1, 2, 3) denotes the flexibility deformation along

ri(i¼ 1, 2, 3) due to the active force Fai(i¼ 1, 2, 3) lead to

Fai ¼ kidrið1;2;3Þ; ki ¼
ESi

ri
(39a)

here, E is the modular of elasticity and Si is the i-th leg’s cross
section.

The constrained forces in ri(i¼ 1, 2) produce flexibility defor-
mation. Let ddi (i¼ 1, 2, 3) denotes the bending deformation of r1

due to the constrained forces Fpi. The direction of this deforma-
tion can be considered along Fpi, see Fig. 3.

The relation between Fpi and ddi can be expressed as

Fpi ¼ siddið1;2;3Þ; si ¼
3EI

r3
i

(39b)

here, I is the moment of inertia.
From Eqs. (39a) and (39b) lead to

Fr ¼ Kp

dr

dd

" #
; dr ¼

dr1

dr2

dr3

2
664

3
775; dd ¼

dd1

dd2

dd3

2
664

3
775;

Kp ¼

k1 0 0 0 0 0

0 k2 0 0 0 0

0 0 k3 0 0 0

0 0 0 s1 0 0

0 0 0 0 s2 0

0 0 0 0 0 s3

2
666666666664

3
777777777775

(40)

Fig. 2 5(PS 1 RPS 1 SPS) S-PM

Fig. 3 Solved results of elastic deformations of EF model of
5(PS 1 RPS 1 SPS) S-PM
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here dri(i¼ 1, 2, 3) denotes the flexibility deformation produced by
active force Fai(i¼ 1, 2, 3) and ddi(i¼ 1, 2, 3) denotes the bending
deformation produced by constrained forces Fpi(i¼ 1, 2, 3).

Let dx¼ [dx dy dz]T, dh¼ [dhx dhy dhz]
T denote the linear and

angle deformations of moving platform. From the principle of vir-
tue work leads to

FT
r

dr
dd

� �
þ F

T

� �T
dx
dh

� �
¼ 0 (41)

From Eqs. (38), (40), and (41) lead to

dx

dh

� �
¼ J

dr

dd

� �
;

F

T

� �
¼ K

dx

dh

� �
;

dx

dh

� �
¼ K�1

F

T

� �
; K ¼ �JTKpJ

(42)

K ¼ �JTKpJ is the stiffness matrix considering both active
forces and constrained forces.

4.2 Analysis of k(PS 1 RPS 1 SPS) S-PM. The k(PSþ
RPSþSPS) S-PM is formed by k PSþRPSþ SPS PMs con-
nected in series. The lower platform of PM i (i¼ 2,…, k) can be
obtained by the upper platform of PM i-1 anticlockwise rotate
with the its perpendicular by 60� (�1)i deg.

Let Aij and Bij (i¼ 1, 2,…, k; j¼ 1, 2, 3) denote three vertices of
the lower platform and upper platform of PM i, respectively. Let
ri1, ri2, and ri3 (i¼ 1, 2,…,k) denote the PS, RPS, and SPS leg and
their length, respectively, in PM i. Let Li be the distance from the
center of lower platform to Aij. Let li be the distance from the
center of upper platform to Bij.

Let {ni0} be a coordinate oi-1-XiYiZi (i¼ 1, 2,…, k) fixed on the
center of lower platform of PM i with some conditions
(Xi\Ai1Ai2, YkAi1Ai2, Z\ Xi, Z\ Yi) for its coordinate axes are
satisfied. Here, o0 is the center of base. Let {ni1} be a coordinate
oi-xiyzi fixed on the center of upper platform of PM i with some
conditions (xi\Bi1Bi2, ykBi1Bi2, z\ xi, z\ yi) for its coordinate
axes are satisfied.

When ri1, ri2, and ri3 (i¼ 1, 2,…,k) are given, ni0 oi can be solved
from Eqs. (31) and (24). ni0

ni1
R can be solved from Eqs. (31) and

(23). Then, n10
ni0

R and n0 ok can be solved from Eq. (1), where

ði�1Þ1
ni0 R ¼

cos½60 deg� ð�1Þi� � sin½60 deg� ð�1Þi� 0

sin½60 deg� ð�1Þi� cos½60 deg� ð�1Þi� 0

0 0 1

2
4

3
5

Let vrij and arij be the velocity and acceleration of rij, respec-
tively. When given vrij (i¼ 1, 2, …, k; j¼ 1, 2, 3), ni0 voi,

ni0
ni1

x,
ni0 aoi,

ni0
ni1

e can be solved from Eqs. (35) and (37). Then, n10
nk1

x and
n10 Vok can be solved from Eqs. (3) and (4), n10

nk1
e and n10 aok can be

solved from Eqs. (5) and (7).
From Eqs. (35) and (8b), Jsi and JRi can be solved. When given

n0 Fo and n0 To, the statics can be solved form Eq. (11).
Let drij (i¼ 1, 2, …, k; j¼ 1, 2, 3) and ddij be the flexibility and

bending deformations of PM i, the deformations can be solved
from Eqs. (39a) and (39b), the stiffness matrix Ki and the defor-

mation dqi of upper platform of PM i can be solved from Eq.
(42).Then, the deformation dq of the terminal platform and the
stiffness matrix of this S-PM can be solved Eqs. (14) and (15),
respectively.

5 Example

A 5(PSþRPSþ SPS) S-PM in Fig. 2 is formed by 5
PSþRPSþ SPS PMs connected in series. Set Li¼ 1� 0.1� (i� 1),
li¼ 0.9� 0.1� (i� 1). E¼ 2.11� 1011 Pa, EI¼ 26,502 N m2,
Si¼ 0.0013 m2. G¼ 80� 109 Pa, Ip¼ 2.5120� 10�7 m4. The length,

Table 1 The length, velocity, and acceleration of ri for single PS 1 RPS 1 SPS PM

r1 (m) r2 (m) r3 (m) vr1 (m=s) vr2 (m=s) vr3 (m=s) ar1 (m=s2) ar2 (m=s2) ar3 (m=s2)

PM 1 1.20 1.40 1.50 0.2 0.2 0.2 0.1 0.1 0.1
PM 2 1.10 1.30 1.40 0.2 0.2 0.2 0.1 0.1 0.1
PM 3 1.00 1.20 1.30 0.2 0.2 0.2 0.1 0.1 0.1
PM 4 0.90 1.10 1.20 0.2 0.2 0.2 0.1 0.1 0.1
PM 5 0.80 1.00 1.10 0.2 0.2 0.2 0.1 0.1 0.1

Table 2 The pose of single PS 1 RPS 1 SPS PM

a (deg) k (deg) Xo (m) Yo (m) Zo (m)

PM 1 12.496 �126.66 0.4438 �0.01557 1.0939
12.496 14.832 0.037524 �0.0751 1.3623
�112.88 �37.821 0.083446 �0.8218 0.8474
�112.88 131.74 0.46163 �0.4964 0.7100

PM 2 14.04 �129.7 0.40732 �0.0188 1.0247
14.04 16.756 0.038673 �0.0781 1.2616
�115.46 �39.438 0.081448 �0.7544 0.8019
�115.46 136.32 0.42683 �0.4780 0.6703

PM 3 16.025 �133.5 0.37004 �0.0231 0.9557
16.025 19.272 0.040191 �0.0820 1.1607
�118.71 �41.538 0.079686 �0.6857 0.7574
�118.71 141.91 0.38998 �0.4588 0.6331

PM 4 18.673 �138.43 0.33165 �0.0290 0.8872
18.673 22.718 0.042306 �0.0872 1.0594
�122.92 �44.398 0.078318 �0.6148 0.7140
�122.92 148.9 0.35038 �0.4380 0.5996

PM 5 22.392 �145.12 0.29162 �0.0374 0.8190
22.392 27.764 0.045484 �0.0945 0.9574
�128.65 �48.561 0.07768 �0.5407 0.6724
�128.65 157.97 0.307 �0.4139 0.5709

Table 3 The position, velocity, and acceleration of terminal
platform of 5(PS 1 RPS 1 SPS) S-PM

{n0}ok (m) {n0}vk (m=s) {n0}xk (deg=s) {n0}ak (m=s2) {n0}ek (deg=s2)

3.0208 0.53502 0.25454 0.2669 0.0422
�0.7363 �0.08853 0.83891 �0.0432 0.1599
4.0243 0.68036 0.15453 0.3385 0.0556

Table 4 Active force and constrained force of single
PS 1 RPS 1 SPS PM

Fa1 (N) Fa2 (N) Fa3 (N) Fr1 (N) Fr2 (N) Fr3 (N)

PM 1 192.04 �29.151 �103.54 15.264 20.307 12.507
PM 2 162.27 �105.78 �1.5083 11.063 5.739 28.67
PM 3 95.23 87.201 �123.75 �45.554 32.767 43.748
PM 4 132.92 54.616 �148.57 7.8862 39.738 36.908
PM 5 �181.23 224.2 �9.1093 �4.5507 75.215 �36.853
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velocity, and acceleration of ri for PM i (i¼ 1,2,…,5) are given in
Table 1.

The poses of PM i (i¼ 1, 2, …, 5) are solved from Eqs. (24), (28),
and (31), see Table 2. The results show that the single
PSþRPSþ SPS PM have four solutions. By using CAD software, the
simulation mechanism can be created [13], and the forward
kinematic can also be solved by the simulation mechanism. From the
results of the simulation and the analytic methods, it can be seen that
the simulation solution is identical with the analytic solution. The
second solution is selected for subsequent calculation, see Table 2.

The position, velocity, and acceleration of terminal platform of
5(PSþRPSþ SPS) S-PM are solved from Eqs. (3)–(5) and (7),
see Table 3. When given the workloads applied at ok
noFo¼ [�20�30�60]T N, noTo¼ [�30�30 100]T N�m, the active
forces and constrained forces of ri for PM i can be solved from
Eq. (38), see Table 4. The deformations of ri for PM i can be
solved from Eqs. (39a) and (39b), see Table 5.

The deformation of the terminal platform of
5(PSþRPSþ SPS) S-PM is derived from Eq. (14) as

dq¼10�3 �0:0669 �2:5736 �0:0101 �1:2025 0:9403 �3:0546½ �T

The stiffness matrix of 5(PSþRPSþ SPS) S-PM is derived from Eq. (15) as follows:

K ¼ 105

�0:57209 0:12852 �0:085354 �0:036468 �0:56074 �0:18826

0:12852 �0:15185 �0:0023684 �0:053095 0:34759 0:35124

�0:08535 �0:002368 �0:7545 �0:009258 0:071977 0:22857

�0:03647 �0:053095 �0:0092575 �0:14603 �0:1821 0:14521

�0:56074 0:34759 0:071977 �0:1821 �3:0485 �1:0493

�0:18826 0:35124 0:22857 0:14521 �1:0493 �1:0001

2
6666664

3
7777775

To verify the stiffness model, A 3D assembly mechanism and a fi-
nite element (FE) model of 5(PSþRPSþ SPS) S-PM is generated
in SoldWork7/Simulation according to relative geometry and ma-
terial parameters described above. In the FE model, the spherical
joint is replaced by three revolute joints. The linear active leg
with prismatic joint is formed using the elastic linear rod. A fixed
constraint is added onto base. The simulated result based on finite
element model for the deformation of m is solved as shown in
Fig. 3 and Table 6.

It is well known that the solved results of FE model are related
to finite element dimension and type, solver, reasonable boundary
constraints, and connection constraints. Therefore, in most cases,
the solved results of FM model are approximate of analytical solu-
tions. From the calculated results and simulated values, it is
known that established stiffness model are basically coincident
with that of the FE model, which is acceptable for stiffness
analysis.

6 Conclusions

The statics and stiffness model of S-PMs formed by k PMs con-
nected in series is established. This model is based on the analyti-
cal result of single PM. To illustrate this model, a novel
k(PSþRPSþ SPS) S-PM is analyzed.

The kinematics of single PSþRPSþSPS PM is solved in
closed form. It is shown that the forward kinematics of the
PSþRPSþ SPS manipulator has apparent analytical form and
has four solutions. The stiffness of the PSþRPSþ SPS PM is an-
alyzed by taking into account the deformation produced both by

active forces and constrained forces, and the 6� 6 stiffness matrix is
derived subsequently. On analyzing the single PSþRPSþ SPS PM,
the kinematics, statics, and stiffness of k(PSþRPSþ SPS) S-PM are
solved. The analytic results are verified by its simulation mechanism.
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Nomenclature
njb oi ¼ the position vectors of the center of PM i

relative to {njb} (j¼ 1, …, k; b¼ 0, 1)
ni0 oi,

n10 oi ¼ the position vectors for the center of
upper platform of PM i relative to {ni0}
and {n10}

njb
nsc R ¼ the rotational matrixes of {nsc}

(s¼ 1,…, k; c ¼0, 1) relative to {njb}
ni0
ni1

R ¼ the rotational matrix from upper
platform to lower platform for PM i

n10
ni1

R ¼ the rotational matrix from terminal
platform to base

njb voi,
njb aoi ¼ the linear velocity and acceleration of

the upper platform of PM i relative to
{njb}

Table 5 Deformations in the legs for single PS 1 RPS 1 SPS
PM (1024 m)

dr1 dr2 dr3 dd1 dd2 dd3

PM 1 0.0086956 �0.0015399 �0.0058604 3.3175 4.4136 4.3165
PM 2 0.0067353 �0.005189 �0.0000797 1.8521 0.96077 7.9226
PM 3 0.0035934 0.0039485 �0.0060703 �5.7297 4.1214 9.5084
PM 4 0.004514 0.002267 �0.0067272 0.7231 3.6437 6.1787
PM 5 �0.0054707 0.0084599 �0.0003781 �0.29306 4.8438 �4.6353

Table 6 The simulated result based on finite element model
and the calculated result based on stiffness model for the defor-
mation of m

Elastic deformation of o (mm)

FE model Analytics

dx �0.0563 �0.0669
dy �2.225 �2.5736
dz �0.0141 �0.0101
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njb
nscx,

njb
nsce ¼ the angular velocity and acceleration of

{nsc} relative to {njb}
ni0 voi,

ni0
ni1

x,ni0 aoi,
ni0
ni1

e ¼ the linear velocity, angular velocity, lin-
ear acceleration, and angular
acceleration of upper platform relative
to lower platform of PM i

n10 vok, n10
nk1

x, n10
nk0

e, n10
nk

aok ¼ the linear velocity, angular velocity, lin-
ear acceleration, and angular accelera-
tion of terminal platform relative to base
coordinate n10

Fo, To ¼ the external force and torque applied on
terminal platform

Fsi ¼ the six dimensional vector formed by
active and constrained forces/torques

Vsi ¼ the six dimensional vector formed by ac-
tuator velocities and 0 elements

Jsi ¼ the inverse Jacobian matrix of PM i
dqi, dq ¼ the vectors of deformation associate

with the moving platform of PM i and
the whole S-PM

Ki, K ¼ the stiffness matrix of PM i and the
whole S-PM

n0 Fo, n0 To ¼ the workloads Fo and To expressed in
{n0}

ni Foi,
ni Toi ¼ the concentrative force and torque at the

upper platform for PM i expressed in
{ni}
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