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The statics and stiffness model of serial-parallel manipulators (S-PMs) formed by k
parallel manipulators (PMs) connected in series is established in this paper. The S-PMs

can provide features of both serial manipulators (SMs) and PMs. First, the unified
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formulae for solving the statics and stiffness of S-PMs are derived. Second, a
k(PS 4+ RPS + SPS) S-PM is analyzed to illustrate this model. Finally, an analytic solved

example for 5(PS + RPS + SPS) S-PM is given. The established model can offer an essen-
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1 Introduction

Both SMs and PMs have their merits in robot manipulators.
The PMs have some merits such as higher stiffness, higher preci-
sion, good stability, and easier control. Recently, the theory and
application research for various novel limited-dof PMs have
became a very important research direction and a front technology
[1,2]. Some subjects, such as kinematics, singularity, stiffness,
dynamics, etc. [3-9], have been widely studied.

The S-PMs have the advantages of both SMs and PMs from
rigidity and workspace [10—18]. The fundamental theory of single
PMs has been going maturity. However, the S-PMs have not been
investigated deeply. In this aspect, Romdhane [10] designed and
analyzed a hybrid S-PM formed by a pure translational and a pure
rotational PMs, which have passive legs. Tanev [11] solved the
forward and inverse position problems of a hybrid manipulator.
Zheng et al. [12] studied the kinematics of a hybrid S-PM formed
by a pure translational and a pure rotational 3-universal jointpris-
matic pair-universal joint (UPU) PM by using quaternion. Lu and
Hu [13] solved driving forces of 2(3-spherical joint-prismatic
joint-revolute joint (SPR)) S-PM by Computer Aided Design
(CAD) variation geometry approach and solved the velocity,
acceleration, statics, and stiffness, subsequently [14,15]. Gallar-
doa et al. [16,17] studied the kinematics and dynamic of S-PM via
screw theory and principle of virtual work. Ibrahim and Khalil
[18] established inverse and direct dynamic models of hybrid
robots by means of the recursive Newton—Euler algorithms.

The previous research for such manipulators mainly focused on
the S-PM formed by 2 PMs, the S-PMs formed by any number of
PMs connected in series have been seldom studied due to their
complicated structure. In order to obtain larger workspace, high
flexibility and avoid obstacles and singularities, the £ S-PMs are
more applicable than 2 S-PMs. These type manipulators can be
used as spatial truss, biomimetic snake, elephant’s trunk, biosimu-
lation manipulator, and so on [19-22].
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The systemic theory for S-PMs formed by any number of PMs
has not been established. This paper focuses on establishing sys-
temic kinematics, statics and stiffness model of S-PMs. Due to the
complicated structure, the force transmission regularities of such
manipulators have not been systematically revealed. Stiffness is
one of the important indexes for evaluating performances of
S-PM, particularly when the S-PMs are used as robot arm and
machine tools. High stiffness allows higher machining speed with
high accuracy of the terminal effector. The statics and stiffness
model for S-PM is more complex than SMs and PMs. Up to now,
there is not a unified model for these problems. It is a significant
and challenging issue to establish the statics and stiffness model
for S-PM.

2 Kinematics of S-PM Formed by k PMs
Connected in Series

Suppose one S-PM is formed by k£ PMs connected in series. Let
the kK PMs named PM 1, PM 2, ..., PM £ in sequence from bottom
to up. The upper platform of PM i-1 (i=2, ..., k) and the base of
PM i are fixed with their centers kept coincidence. Let o; denotes
the center of the upper platform of PM i.

Establishing coordinate frames {n;o} and {n;;} at the center of
the lower platform and upper platform of PM i, respectively.
Then, {n;o} can be seen as the base coordinate frame and {n;;}
can be seen as the terminal coordinate frame.

The center of the terminal platform "0, can be expressed as
follows:
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A composite rotational matrix ;"R from {ny} to {n;o} can be
expressed as follows:

MR — nmRnloR)(ﬂanzoR) ( ((l;l)
1 n;

N1 ("10 i n20

'RI°R) - (ny 'Ry R

mR) ()
The angular velocity of the terminal platform relative to 7, can be
derived as
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Differentiating both sides of Eq. (1) with respect to time, "y ,
can be expressed as follows:
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Differentiating both sides of Eq. (3) with respect to time, '¢ can
be expressed as follows:
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Lett = [t 1, )7, s = [s¢ Sy s.]7 be two arbitrary vectors, S(¢) be a
skew-symmetric matrix. There must be
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Differentiating both sides of Eq. (4) with respect to time and com-
bining with Eq. (6), "°a,, can be expressed as follows:
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g, "y ., "o, "vg, and "a,; can be solved in PM i when given
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the corresponding acceleratlon velocity, and position of

actuators.

3 Statics and Stiffness of S-PM Formed by k PMs
Connected in Series

From Eq. (4) leads to

k
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By combining Eq. (3) with Eq. (8a), the terminal velocity can be
expressed as follows:
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From Eq. (8b) and the principle of virtual work lead to
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From Eq. (9) leads to
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From Eq. (10) leads to
R
_I\T o
—(Jridy") ”“Tj (11)
The statics of PM i can be solved from Eq. (11).
For single PM i, the following formulae are satisfied
nE N
o =K T = —TF (12)
" Toi " Toi
From Eqgs. (11) and (12) lead to
iy o ' oy
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" Toi " To
From Egs. (8b), (12), and (13) lead to
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From Eq. (14) leads to
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A,

Fig.1 Sketch of PS + RPS + SPS PM

Equation (15) is the stiffness matrix of a S-PM formed by &
PMs connected in series.

4 Statics and Stiffness of a k(PS + RPS + SPS) PM

In this section, the k(PS+RPS+SPS) PM formed by &k
PS + RPS + SPS PMs is analyzed to illustrate the model (see Fig. 1).

4.1 Analysis of PS + RPS + SPS PM. The PS +RPS + SPS
PM includes a moving platform m, a base B, and three different
type active legs ry, 1, and r3. Here, m is a regular triangle with o
as its center and three vertices a; (i=1, 2, 3), B is a regular trian-
gle with O as its center and three vertices A; (i =1, 2, 3). The first
active limb r; is a PS-type limb, this limb connects m with B by
using a spherical joint S at @; on m, a prismatic joint P, and be
perpendicularly fixed at A; on B. The second active limb r, is a
RPS-type limb, 7, connects m with B by using a spherical joint §
at a, on m, a prismatic joint P along r,, and a revolute joint R, at
A, on B. The revolute joint is lying in B and perpendicular to
A1A,. The third active limb r3 is a SPS-type limb, this limb con-
nects m with B by using a spherical joint S at a3z on m, a prismatic
joint P along r3, and a spherical joint S at A3 on B.

Let L be a perpendicular constraint and || be a parallel con-
straint, respectively. Then, there must be some geometrical con-
straint as follows:

rlJ_B,I‘zJ_Rl,RlLAlAZ (16)

4.1.1 Inverse and Forward Position Analysis  of
PS +RPS + SPS PM. Let {B} be a frame O-XYZ attached on B at
O, {m} be a frame o-xyz attached on m at 0. Some geometrical
conditions (xLajas, y|layaz, zLm, X 1A A,, Y||A1As, ZLB) are
satisfied.

The coordinate A; (=1, 2, 3) and o in {B} can be expressed as
follows:

M X417 L X L
A= | Yu :% —qL |, Ay= |Ya :% qL
LZ41 0 % 0
[ X437 —L X
As=|Ys3 | =] 01|, o=1Y, (17a)
L Z3 0 Z,
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The point a; (i=1, 2, 3) in {m} can be expressed as follows:

Xal 1 l Xa2 1 l
"a) = Yal | = z 7(1[ 7ma2 = |V | = 5 ql ’
| Zal | 0 Zag2 0
_)‘a3 1 —1
"az = |y | =1]0 (17b)
| Za3 | 0

where L is the distance from O to A;, [ is the distance from o to a;,
and ¢ is a constant with g =32
a; (i=1,2,3)and o in {B} can be expressed as follows:

ey — qlyr + 2X, I + qlys + 2X,
@ =7 Iy — qlym +2Y, |, ar = % Ixp + qlym +2Y, |,
Ixy — qlyn + 22, Ixy + qlyn + 22,
—Ix;+ X,
az = | —Ix, +7Y, (17¢)
—Ix, +Z,

here, o is the position of the center of m and f;lR is the rotational
transformation matrix from {m} to {B}. (X;s X,us Xn> Yis Yis Y Z1
Zns Z,) are nine orientation parameters of m, their constrained
equations can be derived in Refs. [1,2].

The geometric constraint for PS 4 SPR + SPS parallel manipu-
lator can be written as follows:

A1a1 J_X7 A1a1 J_Y, Azllz 1X (180)

A1a1 X:O, A|a| YZO, A2a2-X=O (18[7)
The constraint equations are derived from constrained equa-

tions of (X;, X,s Xs Yis Yims Yns Zis Zm» Zn) and Eq. (18b) as follows:

ex; —qly; +2X,—L=0

X — qlym +2Y, + gL =0 (19)
ex;+qly;+2X,—L=0
From Egs. (19), the following equations can be derived:
L-1 Lym — Xy — qL
w=0 X,==—— y,=Lr—m—E o

Let three Euler angles o, f8, and / rotate about the x-, z-, and
y-axis of the moved reference frame. Thus, the rotational transfor-
mation matrix can be expressed as follows:

CpCy —Sp CpSy
BR = | cuspci+ Su85  CaCp CuSpSi — S4C, 21
SuSECL — CuS) SuCp SuSpS, + CyC),
From Egs. (20) and (21) lead to
p=0 22)

Then, the rotational transformation matrix can be predigested
as follows:
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0 s =X Y4 22 L4 P = 20(Xox; + Yo + ZoX,)
Bp _ ) e
PR=| 45, €y —54C; (23) +2L(—Ix; +X,) (26¢)
—CyS) Sy CoC),
When given the independent parameters (o, 4, Z,), X,, Y, and the
From Egs. (20) and (23) lead to items of ﬁR can be expressed by the three independent parameters
o, 4, and Z,. Then, from Egs. (26a) to (26¢), r; (i=1, 2, 3) can be
X L—Iy L-—Ic; derived.
°T oy T 24) As ry L B leads to
Y, = qlym — lzxm —qL _ qlc, — [SZozS). —qL 0 le; +2X, — L
1
|0 =a —A; == |Isys) —qlcy +2Y, + gL 27
The inverse kinematics can be derived as follows: 2
1 —lcys) — qlsy, + 27,
2 2 .
ri=la, —A; i=1,2,3 25)
! la I ) ( From Eq. (27) leads to
Equation (25 b ded as follows:
quation (25) can be expanded as follows , 21— It alya 2+ lesi + s, o8
L, = =
PP =P L4 (X4 Y2+ 22) + 1(Xox) + Yoo + Zox,) 2 2
— LiIx; /2 + qLIx, /2 — ql(Xoy1 + Yoym + Zoyn) From Egs. (24), (28), and (26a)—(26¢) lead to
+qLI(y1 — qym)/2 — L(X, — q¥,) (26a) 2 =12 =3(L2 + ) + 2qlr s, — 6LIc, 29)
2,2 2 .
I'% = 12 + L2 + (Xlz) + Yg + Z(%) + I(anl + Yoxm + Zoxn) 2 + - 2)”3 - —3[(2}’16(1 + qu“)SA
—3Llcy + 10LIc; — 3(L* + I* (30)
— LIx;/2 — qLIxn /2 + ql(Xoy1 + YoYym + ZoYu ” ‘ ( )
— gLI(y; + qyn)/2 — L(X, + qY,) (26b) Then, o and 4 can be derived as follows:
~2qiry F 1/ 2qril)? + 36122 — [ + 3(L2 + P) — 13
o = 2arctan 5 5
rf +3(L* + ) — r3 + 6LI
[—31(2r1cy + qLs,)]) + 81L212 31

31(2ricy + qLsy) F

A = 2arctan

—[2r3 =1} =2 = 3LIc, - 3(L* + P))

2r2 — 13 —r} —3Llc, — 3(L* + I2) — 9Ll

After « and / are solved from Egs. (31), Z, can be solved from
Eq. (28) and X,, Y, can be solved from Eq. (24).

4.1.2 Velocity and Acceleration Analysis of PS+ RPS + SPS
PM. Let v and o be the linear velocity and angular velocity of
moving platform, v,; (i=1, 2, 3) are the velocity along r;. The
inverse velocity of r; (i =1, 2, 3) can be as follows [5]:

Vil 5T (el X 51)T
v
V2 - Jo(V7 V= :| 3 Ja - 52 (82 X 52)T (32)
w
Vi3 o (e xdy)
here, §; :ﬁ,ei =a; —o.

The workloads can be simplified as a wrench (F, T) applied
onto m at 0. Where F is a concentrated force and T is a concen-
trated torque. (¥, T) are balanced by three active forces F,; (i=1,
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2, 3), and three constrained forces F; (j=1, 2, 3). Each of F; is
applied on and along the active leg r;. Based on the observe
method for finding constrained force/torque [5], we find that the
F,, and F, are exerted on r; at a;. Fp3 is exerted on r, at a,.
From the geometric constraints, the unit vectors f; of F,; (j=1, 2, 3)
are determined as

fi=fr=X=[ 00", f,=¥Y=0 1 0" (33

As the constrained forces do no work to the center of the moving
platform, we obtain

Foif i v+ (e X Fpif ;) -0 =0

(34)
[fiT (e, Xfi)T]VZO

The inverse/forward velocities can be derived from Egs. (32) and
(33) as follows:
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V,=Jv, v=J1lv,

5T (e, x 51)T- RAE

55 (ey x 51)T V2

o7 (eyxd) Vi3 (35)
J= .V, =

f1T (e, Xfl)T 0

fg (e, sz)T 0

Lf5 (e xf3) | L O

here, J is a 6 x 6 Jacobian matrix.
Differentiating both sides of Eq. (34) with respect to time leads

to
0=[fT (e xf)IA+[f (6, xf +exf) IV
0 0 (36)
U (e xf)TA VT{,zxa 33 ]
P e AV eSSt ) e
here

fT=05, ¢ =(@wxe) =[-S(e)o]" =o"S(e)
(€ xfi+exf)' = (& xf) =[-S(f)e]"
= ES() = oTS(e)S ()

Based on Eq. (36) and some results in Ref. [5], the acceleration of
this PM can be derived as follows:

A, =JA+VIHV, A=J"'A, - V'HV),

A, =layr a2 a3 0 0 O}T,

H=[h h, hs hy hs hg,

WL [ —5(8:)° $(0:)*S(e:)

’ —S(e)S(8:)  riS(e)S(8:) + S(e)S(8:)2S(er) | o

033 033
hi ;=
033 S(e)S(F))

)

(37

6x6

where a,; (i=1, 2, 3) are the acceleration along r. H is a
6 x 6 X 6 Hessian matrix.

4.1.3 Deformation and Stiffness Analysis of PS+ RPS+ SPS
Parallel Manipulator. Based on virtual work, the formula for
solving the statics can be derived as follows:

F

T
FTv, + [T

T
_ _ —I\T F
} V=0 F ——@J" M (38)

here, F, = [Fa1 Fuz Fus Fp1 Fpa Fpal”.
Let or; (i=1, 2, 3) denotes the flexibility deformation along
r{i=1,2,3) due to the active force F,,(i=1, 2, 3) lead to

Fai = kiéri(17273)’ ki = f (39a)

here, E is the modular of elasticity and S; is the i-th leg’s cross
section.

The constrained forces in (i =1, 2) produce flexibility defor-
mation. Let dd; (i =1, 2, 3) denotes the bending deformation of r;
due to the constrained forces F,,;. The direction of this deforma-
tion can be considered along F,;, see Fig. 3.
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Fig. 3 Solved results of elastic deformations of EF model of

5(PS + RPS + SPS) S-PM

The relation between F,; and dd; can be expressed as

Fp,‘ = Siédi(1,2,3), Si =

here, I is the moment of inertia.
From Egs. (39a) and (39b) lead to

or } o

od
0 0
ky 0
0 ks
0 0
0 0
0 0

3r_§] (39b)
or ody
=|ornp|, od=|dd |,
ors dds
0 0 0]
0 0 O (40)
0 0 0
si1 0 O
0 s, O
0 0 s3]
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Table 1 The length, velocity, and acceleration of r; for single PS + RPS + SPS PM

ri (m) r2 (m) r3 (m) Ve (m/s) Via (m/s) V3 (m/s) ay (m/s7) ay, (m/s?) a3 (m/s?)
PM 1 1.20 1.40 1.50 0.2 0.2 0.2 0.1 0.1 0.1
PM2 1.10 1.30 1.40 0.2 0.2 0.2 0.1 0.1 0.1
PM 3 1.00 1.20 1.30 0.2 0.2 0.2 0.1 0.1 0.1
PM 4 0.90 1.10 1.20 0.2 0.2 0.2 0.1 0.1 0.1
PM 5 0.80 1.00 1.10 0.2 0.2 0.2 0.1 0.1 0.1
Table 2 The pose of single PS + RPS + SPS PM
here or(i=1, 2, 3) denotes the flexibility deformation produced by -
active force F(i=1, 2, 3) and dd(i=1, 2, 3) denotes the bending o (deg) 4 (deg) X, (m) Y, (m) Z (m)
formation pr nstrained forces F,(i=1, 2, 3).
del?et ;;0: [Iz))(c) %I;C%(;]?_y gg =St[?39€((1390 gzs] (li(el:noté tﬁj )linear and TMI 12.496 ~126.66 0.4438 —0.01557 10939
. [ X Ty T .. . 12.496 14.832 0.037524 —0.0751 1.3623
angle deformations of moving platform. From the principle of vir- 11288 _37.821 0.083446 _0.8218 0.8474
tue work leads to ~112.88 131.74 0.46163 —0.4964  0.7100
Sr F T Sx PM2 14.04 —129.7 0.40732 —0.0188 1.0247
F,T {&i} + {T} [50} =0 “41) 14.04 16.756 0.038673 —0.0781 1.2616
—115.46 —39.438 0.081448 —0.7544 0.8019
—115.46 136.32 0.42683 —0.4780 0.6703
From Egs. (38), (40), and (41) lead to PM 3 16.025 ~1335 0.37004 00231 09557
16.025 19.272 0.040191 —0.0820 1.1607
ox] _ jfor Fl_gl** ~11871  —41538 0079686 —0.6857 07574
o0 od |’ T 50|’ ) —118.71 141.91 0.38998 —0.4588 0.6331
ox L [F r ( PM 4 18.673 —13843 033165 —0.0290  0.8872
sol =K | g K=-TKJ 18.673 2718 0042306  —0.0872  1.0594
—122.92 —44.398 0.078318 —0.6148 0.7140
, _ ) _ o ) —122.92 148.9 0.35038 04380  0.5996
K = —J'K,J is the stiffness matrix considering both active
forces and constrained forces. PM5 22392  —14512 029162 —0.0374  0.8190
22.392 27.764 0.045484 —0.0945 0.9574
—128.65 —48.561 0.07768 —0.5407 0.6724
4.2 Analysis of k(PS+ RPS + SPS) S-PM. The k(PS+ —128.65 157.97 0.307 —0.4139 0.5709

RPS +SPS) S-PM is formed by k& PS+RPS+ SPS PMs con-
nected in series. The lower platform of PM i (i =2,..., k) can be
obtained by the upper platform of PM i-1 anticlockwise rotate
with the its perpendicular by 60 x (—1)" deg.

LetAjand B;; (i=1,2,..., k; j=1, 2, 3) denote three vertices of
the lower platform and upper platform of PM i, respectively. Let
i1, I'ins and 13 (i =1, 2,...,k) denote the PS, RPS, and SPS leg and
their length, respectively, in PM i. Let L; be the distance from the
center of lower platform to A;. Let /; be the distance from the
center of upper platform to Bj;.

Let {n;o} be a coordinate 0;.1-X;Y;,Z; (i=1, 2,..., k) fixed on the
center of lower platform of PM i with some conditions
(X; LA, Ap, Y||[AjAn, ZL X, Z1 Y;) for its coordinate axes are
satisfied. Here, oy is the center of base. Let {n;;} be a coordinate
0;-x;yz; fixed on the center of upper platform of PM i with some
conditions (x; LB 1B, y||BiiBia, zL x;, zL y;) for its coordinate
axes are satisfied.

When 7y, 11, and 15 (i =1, 2,...,k) are given, "0, can be solved
from Eqs. (31) and (24). ;"R can be solved from Egs. (31) and

(23). Then, Z,'(?R and ™o, can be solved from Eq. (1), where
_ cos[60 deg x (—1)'} — sin[60 deg x (—1."] 0
m R=1sin[60 deg x (—1)]  cos[60 deg x (—=1)'] 0
0 0 1

Let v,;; and a,;; be the velocity and acceleration of r;, respec-
tively. When given v,;; (i=1, 2, ..., k; j=1, 2, 3), "0y, Z;?w,
a;, Z;‘l‘s can be solved from Egs. (35) and (37). Then, Z;ﬁ’w and
"oV, can be solved from Egs. (3) and (4), ;¢ and "°a,, can be
solved from Eqs. (5) and (7).

From Egs. (35) and (8b), J; and Jg,; can be solved. When given
"F,and ™T , the statics can be solved form Eq. (11).

Let ory; (i=1,2, ...,k j=1,2,3) and éd;; be the flexibility and
bending deformations of PM i, the deformations can be solved
from Egs. (39a) and (39b), the stiffness matrix K; and the defor-
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Table 3 The position, velocity, and acceleration of terminal
platform of 5(PS + RPS + SPS) S-PM

0}y (m) "0y, (m/s) (00} (deg/s) 0y g (m/sz) n0}g (deg/sz)
3.0208 0.53502 0.25454 0.2669 0.0422
—0.7363 —0.08853 0.83891 —0.0432 0.1599
4.0243 0.68036 0.15453 0.3385 0.0556

Table 4 Active force and constrained force of single
PS + RPS + SPS PM

FaMN)  Fo(N)  Fa(N)  Fu(N)  FoN) F3(N)
PM1 19204 —29.151 —103.54 15264  20.307  12.507
PM2 16227 —105.78 —1.5083  11.063 5.739 28.67
PM 3 95.23 87.201  —123.75 —45.554 327767  43.748
PM4 13292 54.616  —148.57 7.8862  39.738  36.908
PM5 —181.23 224.2 —9.1093  —4.5507 75215 —36.853

mation Jp, of upper platform of PM i can be solved from Eq.
(42).Then, the deformation dp of the terminal platform and the
stiffness matrix of this S-PM can be solved Egs. (14) and (15),
respectively.

5 Example

A 5PS+RPS+SPS) S-PM in Fig. 2 is formed by 5
PS + RPS + SPS PMs connected in series. Set L;=1—0.1 x (i — 1),
=09—-0.1x(—1). E=211x10"" Pa, E[=26502 Nm?
§;=0.0013 m*. G =80 x 10° Pa, 1, =2.5120 x 10~ " m*. The length,
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Table 5 Deformations in the legs for single PS + RPS + SPS
PM (10™* m)

5)‘[ (5)‘2 (5’”3 5[1[ (5d2 5d3

PM 1 0.0086956 —0.0015399 —0.0058604 3.3175 4.4136 4.3165
PM2 0.0067353 —0.005189 —0.0000797 1.8521 0.96077 7.9226
PM 3 0.0035934 0.0039485 —0.0060703 —5.7297 4.1214 9.5084
PM 4 0.004514  0.002267 —0.0067272 0.7231 3.6437 6.1787
PM 5 —0.0054707 0.0084599 —0.0003781 —0.29306 4.8438 —4.6353

velocity, and acceleration of r; for PM i (i=1,2,...,5) are given in
Table 1.

The poses of PM i (i=1, 2, ..., 5) are solved from Egs. (24), (28),
and (31), see Table 2. The results show that the single
PS + RPS + SPS PM have four solutions. By using cAp software, the
simulation mechanism can be created [13], and the forward
kinematic can also be solved by the simulation mechanism. From the
results of the simulation and the analytic methods, it can be seen that
the simulation solution is identical with the analytic solution. The
second solution is selected for subsequent calculation, see Table 2.

Table 6 The simulated result based on finite element model
and the calculated result based on stiffness model for the defor-
mation of m

Elastic deformation of o (mm)

FE model Analytics
ox —0.0563 —0.0669
oy —2.225 —2.5736
0z —0.0141 —0.0101

The position, velocity, and acceleration of terminal platform of
5(PS +RPS + SPS) S-PM are solved from Egs. (3)—(5) and (7),
see Table 3. When given the workloads applied at o,
nof  =[—20—30 —60]" N, "°T, = [—30 —30 100]” N-m, the active
forces and constrained forces of r; for PM i can be solved from
Eq. (38), see Table 4. The deformations of r; for PM i can be
solved from Eqs. (39a) and (39b), see Table 5.

The  deformation of the terminal platform  of
5(PS + RPS + SPS) S-PM is derived from Eq. (14) as

dp=10"3[-0.0669 —2.5736 —0.0101 —1.2025 0.9403 —3.0546]T

The stiffness matrix of S(PS + RPS + SPS) S-PM is derived from Eq. (15) as follows:

—0.57209  0.12852 —0.085354 —0.036468 —0.56074 —0.18826
0.12852  —0.15185 —0.0023684 —0.053095 0.34759 0.35124
K — 10° —0.08535 —0.002368 —0.7545 —0.009258 0.071977 0.22857
—0.03647 —0.053095 —0.0092575 —0.14603  —0.1821 0.14521
—0.56074  0.34759 0.071977 —0.1821 —3.0485 —1.0493
—0.18826  0.35124 0.22857 0.14521 —1.0493  —1.0001

To verity the stiffness model, A 3D assembly mechanism and a fi-
nite element (FE) model of 5(PS + RPS + SPS) S-PM is generated
in SoldWork7/Simulation according to relative geometry and ma-
terial parameters described above. In the FE model, the spherical
joint is replaced by three revolute joints. The linear active leg
with prismatic joint is formed using the elastic linear rod. A fixed
constraint is added onto base. The simulated result based on finite
element model for the deformation of m is solved as shown in
Fig. 3 and Table 6.

It is well known that the solved results of FE model are related
to finite element dimension and type, solver, reasonable boundary
constraints, and connection constraints. Therefore, in most cases,
the solved results of FM model are approximate of analytical solu-
tions. From the calculated results and simulated values, it is
known that established stiffness model are basically coincident
with that of the FE model, which is acceptable for stiffness
analysis.

6 Conclusions

The statics and stiffness model of S-PMs formed by £ PMs con-
nected in series is established. This model is based on the analyti-
cal result of single PM. To illustrate this model, a novel
k(PS + RPS + SPS) S-PM is analyzed.

The kinematics of single PS+RPS+SPS PM is solved in
closed form. It is shown that the forward kinematics of the
PS +RPS + SPS manipulator has apparent analytical form and
has four solutions. The stiffness of the PS + RPS + SPS PM is an-
alyzed by taking into account the deformation produced both by

Journal of Mechanisms and Robotics

active forces and constrained forces, and the 6 x 6 stiffness matrix is
derived subsequently. On analyzing the single PS 4+ RPS + SPS PM,
the kinematics, statics, and stiffness of A(PS + RPS + SPS) S-PM are
solved. The analytic results are verified by its simulation mechanism.
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Nomenclature
"o, = the position vectors of the center of PM i
relative to {np} (=1, ...,k b=0,1)
"g,,"0; = the position vectors for the center of
upper platform of PM i relative to {70}
and {no}
Zﬁ’jR = the rotational matrixes of {n.}
(s=1,...,k; ¢ =0, 1) relative to {n,}
1R = the rotational matrix from upper
platform to lower platform for PM i
1°R = the rotational matrix from terminal
platform to base
"y ."a,; = the linear velocity and acceleration of
the upper platform of PM i relative to
{njh}
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njp nj
{ b
Ny W5 ng &

the angular velocity and acceleration of
{ng} relative to {n,}

Mo voi,zf}’ w,"a,, Z;‘I’s = the linear velocity, angular velocity, lin-
ear acceleration, and angular
acceleration of upper platform relative
to lower platform of PM i

oY s Z;‘]’w, 2228’ f,"”ao,< = the linear velocity, angular velocity, lin-
ear acceleration, and angular accelera-
tion of terminal platform relative to base
coordinate n;q
F,, T, = the external force and torque applied on
terminal platform
F,; = the six dimensional vector formed by
active and constrained forces/torques
Vi = the six dimensional vector formed by ac-
tuator velocities and 0 elements
J,; = the inverse Jacobian matrix of PM i
dp;, 0p = the vectors of deformation associate
with the moving platform of PM i and
the whole S-PM
K, K = the stiffness matrix of PM i and the
whole S-PM
"F,,™T, = the workloads F, and T, expressed in
{no}
"F,;"T, = the concentrative force and torque at the
upper platform for PM i expressed in

{n;}
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