
1521-009X/42/4/546–560$25.00 http://dx.doi.org/10.1124/dmd.113.056358
DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 42:546–560, April 2014
Copyright ª 2014 by The American Society for Pharmacology and Experimental Therapeutics

Special Section on Transporters in Toxicity and Disease—Minireview

The Role of Canalicular ABC Transporters in Cholestasis

Frans J. C. Cuperus, Thierry Claudel, Julien Gautherot, Emina Halilbasic, and Michael Trauner

Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal
Medicine III, Medical University of Vienna, Vienna, Austria

Received November 30, 2013; accepted January 28, 2014

ABSTRACT

Cholestasis, a hallmark feature of hepatobiliary disease, is character-
ized by the retention of biliary constituents. Some of these constitu-
ents, such as bile acids, inflict damage to hepatocytes and bile duct
cells. This damage may lead to inflammation, fibrosis, cirrhosis, and
eventually carcinogenesis, sequelae that aggravate the underlying
disease and deteriorate clinical outcome. Canalicular ATP-binding
cassette (ABC) transporters, which mediate the excretion of individual
bile constituents, play a key role in bile formation and cholestasis. The

study of these transporters and their regulatory nuclear receptors has
revolutionized our understanding of cholestatic disease. This knowl-
edge has served as a template to develop novel treatment strategies,
some of which are currently already undergoing phase III clinical trials.
In this review we aim to provide an overview of the structure, function,
and regulation of canalicular ABC transporters. In addition, we will
focus on the role of these transporters in the pathogenesis and
treatment of cholestatic bile duct and liver diseases.

Introduction

Hepatic ATP-binding cassette (ABC) transporters play a key role in
cholestatic disease and are expressed at the basolateral and apical
membrane of liver cells (hepatocytes). Canalicular ABC transporters
are responsible for the formation of bile and secrete bile acids
(ABCB11) (Gerloff et al., 1998), bilirubin (ABCC2) (Paulusma et al.,
1997), phosphatidylcholine (ABCB4) (Smit et al., 1993), cholesterol
(ABCG5/G8) (Berge et al., 2000), and drugs (ABCB1, ABCC2,
ABCG2) across the bile canalicular membrane. ABCB11 transports
bile acids against a steep (1000-fold) concentration gradient. This
gradient attracts water into the bile canalicular lumen and thereby
drives bile flow. Mixed micelles of phosphatidylcholine (ABCB4) and
cholesterol (ABCG5/8) incorporate these bile acids and thereby
mitigate their detergent effects (reviewed by Trauner et al., 2008).

Other canalicular ABC transporters (mainly ABCB1, ABCC2, and
ABCG2) play a key role in the biliary excretion of xenobiotics, which
has important implications for drug-drug interactions and the
development of multidrug resistance (reviewed by Ecker and Chiba,
2009; Keppler, 2011a). The important function of canalicular ABC
transporters is underlined by their role in cholestatic disease.
Hereditary and acquired ABC transporter defects may decrease bile
flow, increase the biliary toxicity, and/or contribute to the de-
velopment of drug-induced cholestasis (Oude Elferink et al., 2006).
Basolateral ABC transporters (e.g., ABCC3 and ABCC4) transport
bile acids into the blood, which protects hepatocytes from bile acid-
induced damage (Keppler, 2011a). The activity of ABC transporters,
in short, can either protect or damage cells of the hepatobiliary system.
Their expression is consequently tightly regulated, both by nuclear
receptors (NRs) at the transcriptional level and by various post-
transcriptional modifications, such as insertion/retrieval of the trans-
porter at the cell membrane (reviewed by Halilbasic et al., 2013).
These regulatory mechanisms ensure bile acid homeostasis and
coordinate the adaptive response to cholestatic conditions.
This review discusses the role of canalicular ABC transporters

(ABCB11, ABCC2, ABCB1, ABCG2, ABCB4, ABCG5/8) in bile

This work was supported by funding from the Austrian Science Fund (FWF)
project “Transmembrane Transporters in Health and Disease” [Grant SFBF35].

Please note that abbreviations for transporters and nuclear receptors were
capitalized throughout this article when symbols were identical for human and
rodents.

dx.doi.org/10.1124/dmd.113.056358.
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[2,1-b][1,3]thiazole-5-carbaldehyde; FXR, farnesoid X receptor; GR, glucocorticoid receptor; ICP, intrahepatic cholestasis of pregnancy; IL,
interleukin; LPAC, low phospholipid associated cholelithiasis syndrome; LXR, liver X receptor; MDR1, multidrug resistance protein 1,
P-glycoprotein; MDR2 (rodents)/MDR3 (human), multidrug resistance protein 2 (rodents)/3 (human); norUDCA, norursodeoxycholic acid; NR, nuclear
receptor; NTCP, sodium/taurocholate cotransporting polypeptide; NR, nuclear receptor; PBC, primary biliary cirrhosis; PC, phosphatidylcholine;
PFIC, progressive familial intrahepatic cholestasis; PPARa, peroxisome proliferator-activated receptor alpha; PPARg, peroxisome proliferator-
activated receptor gamma; PSC, primary sclerosing cholangitis; PXR, pregnane X receptor; RARa, retinoic acid receptor alpha; RXRa, retinoid X
receptor alpha; SHP, short heterodimer partner; SNP, single-nucleotide polymorphism; SULT2A1, sulfotransferase 2A1; TPN, total parenteral
nutrition; UDCA, ursodeoxycholic acid; UGT1A1, UDP glucuronosyltransferase 1A1; UGT2B4, UDP glucuronosyltransferase 2B4; VDR, vitamin
D receptor.
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formation and cholestasis. To provide a basis for this undertaking, we
will commence with a brief overview of bile acid metabolism.
Subsequently, we will turn our attention to the individual canalicular
transporters and review their structure, function, associated substrates,
and regulation in health and disease. In the last part of the review, we
will focus on the potential role of these transporters and the NRs that
regulate their transcription as drug targets in cholestatic disease. Many
of the studies described in this review were performed in mice, which
have a significantly different bile acid pool compared with humans.
The direct extrapolation of animal data to human physiology is
therefore not possible without their verification in human models.
Although the animal studies discussed in this review were invaluable
for our understanding of bile metabolism, their interpretation thus
needs careful appreciation of interspecies discrepancies.

Bile Acid Metabolism and Its Regulation

Bile acids are synthetized from cholesterol in the liver. This
synthesis requires 17 enzymatic steps, of which the conversion of
cholesterol into 7a-hydroxycholesterol by 7a-hydroxylase is consid-
ered to be rate limiting. Most (.99%) bile acids are directly
conjugated (either with taurine or with glycine), which necessitates
their active secretion (via ABCB11 and ABCC2) across the bile
canalicular membrane. The secreted bile acids then enter the intestinal
lumen and are efficiently (.95%) reabsorbed, mostly by the apical
sodium-dependent bile acid transporter in the terminal ileum (Dawson
et al., 2003). The reabsorbed bile acids return to the liver via the portal
circulation, from where they are extracted by the basolateral uptake
transporters of the hepatocyte. The sodium/taurocholate cotransporting
polypeptide (NTCP) transports the majority (;90%) of these bile
acids, whereas multispecific organic anion transporters play a compa-
rably modest role in hepatocellular bile acid uptake (Hagenbuch and
Meier, 1994; Kullak-Ublick et al., 1994).
NRs regulate the transcription of hepatic genes that are involved in

bile acid homeostasis (Fig. 1; reviewed by Halilbasic et al., 2013).
These receptors act as intracellular sensors and prevent the accumula-
tion of toxic biliary compounds. Activated NRs change conformation,
recruit coactivators (and/or dissociate from corepressors), and induce/
repress transcription either by binding the DNA of their target genes or
by interacting with other NRs. The role and function of NRs is
exemplified by the farnesoid X receptor (FXR), which acts as an
intracellular sensor for bile acids (Fig. 2) (Makishima et al., 1999; Parks
et al., 1999; Wang et al., 1999). Bile acid–activated FXR forms a
heterodimer with the retinoid X receptor (RXR), which then binds an
inverted repeat-1 sequence (or other response elements) in the promoter
of its target genes (Forman et al., 1995; Seol et al., 1995; Laffitte et al.,
2000). The resulting gene transcription decreases hepatocellular bile
acid uptake (NTCP) and synthesis (CYP7A1/CYP8B1), while pro-
moting canalicular (ABCB11, ABCC2) and basolateral bile acid
excretion in rodent and human hepatocytes (Ananthanarayanan et al.,
2001; Denson et al., 2001; Gerloff et al., 2002; Kast et al., 2002; Plass
et al., 2002; Eloranta and Kullak-Ublick, 2005). These effects are partly
mediated by the FXR-induced activation of the short heterodimer
partner (SHP), which represses the transcription of NTCP, CYP7A1, and
CYP8B1 (Fig. 1) (Brendel et al., 2002; Gupta et al., 2002; Abrahamsson
et al., 2005; Kir et al., 2012). FXR also induces bile acid detoxification
via CYP3A4, SULT2A1, and UGT2B4, which further protects the
hepatocyte from bile acid–induced damage (reviewed by Zollner et al.,
2006). Finally, FGF19, which is expressed in the human liver and
intestine, can also be induced by FXR (Holt et al., 2003; Inagaki et al.,
2005; Kim et al., 2007; Schaap et al., 2009). This last mechanism
represents a negative feedback loop, which can be induced by an

increased intestinal or hepatic bile acid concentration (e.g., after a meal)
(Choi et al., 2006). Other NRs such as the pregnane X receptor (PXR)
and the constitutive androstane receptor (CAR) are also involved in bile
acid metabolism. Both receptors are best known for their role in phase I
(cytochromes P450), phase II (conjugation), and phase III (transport
proteins) drug elimination. PXR and CAR are, however, also activated
by hydrophobic bile acids (PXR) and bilirubin (indirect activation;
CAR) in rodent and human hepatocytes (Staudinger et al., 2001; Xie
et al., 2001; Huang et al., 2003b). This activation induces hepatocellular
bile acid excretion (ABCC2, ABCC3, ABCC4) and detoxification
(CYP3A4/CYP2B10/SULT2A1) (Xie et al., 2000; Marschall et al.,
2005; Chai et al., 2011, 2012) and stimulates bilirubin conjugation
(UGT1A1) and excretion (ABCC2) (Huang et al., 2003b; Marschall
et al., 2005). PXR also represses bile acid synthesis (via CYP7A1)
(Staudinger et al., 2001). The vitamin D receptor (VDR) is activated by
secondary bile acids such as lithocholic acid (Makishima et al., 2002).
The impact of VDR activation on bile acid metabolism and cholestatic
disease is difficult to predict, because it inhibited FXR-dependent gene
transactivation in vitro, but also had antifibrotic effects in a rat model of
liver fibrosis (Honjo et al., 2006; Abramovitch et al., 2011). VDR does
not seem to have a significant impact on the expression of canalicular
ABC transporters. Several nonbile acid activators, such as peroxisome
proliferator-activated receptors (PPARs) and the glucocorticoid receptor
(GR), are also involved in bile acid detoxification and elimination (Fig.
1), but an extensive discussion on their role in bile acid metabolism falls
beyond the scope of this review.

ABCB11

ABCB11 acts as the canalicular bile salt export pump and transports
conjugated monovalent bile acids from the hepatocyte into the bile.
This transport not only protects the liver from bile acid-induced
toxicity, but also represents the major driving force for (bile acid-
dependent) bile flow. As the major canalicular bile acid transporter in
humans, ABCB11 plays a key part in bile formation and (hereditary)
cholestasis.
ABCB11 is a 160-kDa member of the B subfamily (ABCB) of ABC

transporters and has a structure that consists of two nucleotide-binding
and two 6-helical transmembrane domains (Fig. 3) (Kubitz et al., 2012).
ABCB11, like ABCC2, ABCB4, ABCB1, and ABCG5/8, is an
exclusively apical transporter. Its expression pattern is restricted to
hepatocytes, which supports its role in canalicular bile acid transport
and bile formation. Human ABCB11 transports conjugated/amidated
monovalent bile acids (Table 1) in the following order of clearance:
taurochenodeoxycholic acid . glycochenodeoxycholic acid . tauro-
cholic acid . glycocholic acid (Hayashi et al., 2005). ABCB11 thus
clears chenodeoxycholic acid, which is the most toxic of these bile
acids, with the greatest efficacy (Hayashi et al., 2005; Song et al., 2011).
Interestingly, some in vitro reports suggested that ABCB11 might also
transport drugs (e.g., vinblastine, taxol, and pravastatin) (Childs et al.,
1998; Lecureur et al., 2000; Hirano et al., 2005). The impact of
ABCB11 on drug transport, however, has not been established.
A decrease in ABCB11 activity leads to bile acid accumulation and

plays an important role in the pathogenesis of acquired and hereditary
cholestatic disease. Prescription drugs, inflammation, and total parental
nutrition (TPN), for example, can all lead to acquired cholestasis. Drugs,
such as cyclosporine A, glybenclamide, rifampicin, and rifamycin, can
repress ABCB11 activity via competitive inhibition. The resulting
decrease in canalicular bile acid transport can lead to drug-induced
cholestasis, which will generally resolve quickly after drug withdrawal
(Stieger et al., 2000). Inflammation and TPN repress canalicular ABCB11
expression in rodents (Nishimura et al., 2005; Recknagel et al., 2012).
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This decrease, which occurs via various (post-) transcriptional mecha-
nisms, can contribute to the development of inflammatory/septic or TPN-
induced cholestasis. ABCB11 polymorphisms can predispose to acquired
cholestatic disease, and the single-nucleotide polymorphism (SNP)
rs2287622 has a relatively high prevalence in patients with drug-
induced cholestasis, intrahepatic cholestasis of pregnancy, liver fibrosis,

and cholangiocarcinoma (reviewed by Stieger and Beuers, 2011). Severe
ABCB11 mutations can lead to the development of hereditary cholestasis,
which covers a mild to severe phenotypical spectrum. Progressive fa-
milial intrahepatic cholestasis type 2 (PFIC2) leads to severe cholestasis
and is generally associated with a nonfunctional ABCB11 protein
(reviewed by Jacquemin, 2012). This disease usually manifests itself

Fig. 1. Nuclear receptors as key regulators of bile
homeostasis in the liver. Hepatic FXR represses bile
acid uptake (NTCP) and synthesis (CYP7A1) and
induces bile acid elimination (ABCB11, ABCC2,
ABCC3, ABCC4) and detoxification (cytochromes
P450, SULTs, UGTs). FXR also stimulates the biliary
excretion of phospholipid (ABCB4) but decreases
canalicular ABCG5/8 activity (via SHP). PXR and
CAR induce bile acid (ABCC2, ABCC3, ABCC4) and
conjugated bilirubin (ABCC2) excretion. PPARa
increases ABCB4-mediated phospholipid secretion
(ABCB4) and induces bile acid detoxification. LXR
promotes ABCG5/8-mediated cholesterol excretion.
Finally, GR decreases bile acid uptake (NTCP) and
increases basoalteral bile acid excretion (OSTa/b). For
simplicity, other uptake systems for organic anions
and cations are not shown. Black arrows, stimulatory
effects; gray lines, suppressive effects on target genes.
BAs, bile acids; Bili-glu, bilirubin glucuronide;
ABCB11, bile salt export pump; CAR, constitutive
androstane receptor; CYP7A1, cholesterol-7a-hydrox-
ylase, cytochromes P450, cytochrome P450 enzymes;
FXR, farnesoid X receptor; GR, glucocorticoid receptor;
LXR, liver X receptor; ABCB4, multidrug resistance
protein 3; ABCC2, multidrug resistance-associated pro-
tein 2; ABCC3, multidrug resistance-associated protein
3; ABCC4, multidrug resistance-associated protein 4;
NTCP, sodium taurocholate cotransporting polypeptide;
OSTa/b, organic solute transporter a and b; PC,
phosphatidylcholine; PXR, pregnane X receptor; PPARa,
peroxisome proliferator-activated receptor a; PPARg,
peroxisome proliferator-activated receptor g; SHP, small
heterodimer partner; SULTs, sulfatation enzymes; UGTs,
glucuronidation enzymes.

Fig. 2. The principal structure and function of
nuclear receptors, as exemplified by FXR. The
structure and function of NR can be exemplified by
FXR. Bile acid ( )-activated FXR heterodimerizes
with RXR, recruits coactivators/dissociates from
corepressors, and induces transcription of its target
genes. The upper left panel shows the general
structure of a nuclear receptor, consisting of an ac-
tivation function domain-2 (AF-2), a ligand-binding
domain, a hinge region, a DNA-binding domain, and
an AF-1. The DNA- and ligand-binding domains rec-
ognize (promoter) DNA and NR ligands, and AF-1
and AF-2 induce ligand-independent nuclear receptor
transactivation.
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within the first 6 months of life. Patients typically suffer from
cholestasis, fat malabsorption, growth retardation, and an increased risk
for hepatocellular carcinoma (Knisely et al., 2006). The initial treatment
usually consists of ursodeoxycholic acid (UDCA), fat-soluble vitamins
(D, K), cholestyramine (for pruritus), and biliary diversion (Emond and
Whitington, 1995). Most patients, however, will require liver trans-
plantation in the first 2 decades of life. Some transplanted patients
develop rebound cholestasis due to formation of anti-ABCB11 antibodies
(Keitel et al., 2009). Treatment options for PFIC2 patients with
a nonfunctional protein remain limited in the absence of gene therapy.
Patients with residual ABCB11 activity, however, may benefit from
ABCB11 activation via chaperones in the future. Treatment of MDCK
cells harboring a (E297G or D482G) mutant form of ABCB11 with
4-phenylbutyrate, for example, led to an increase in apical ABCB11
incorporation (Hayashi and Sugiyama, 2007). PFIC2 patients with
residual ABCB11 activity are also more likely to benefit from UDCA,
because tauroursodeoxycholic acid relies on a functional protein for its
transport (Gerloff et al., 1998). UDCA shifts the bile acid pool to a more
hydrophilic (i.e., less toxic) composition and promotes apical ABCB11
insertion (see below), which induces choleresis (Kurz et al., 2001;
Dombrowski et al., 2006). Benign recurrent intrahepatic cholestasis 2
belongs to the same phenotypical continuum as PFIC2 and is
characterized by mild and self-limiting episodes of cholestasis (Lam
et al., 2006). Notably, ABCB11 knockout mice display a significantly
milder phenotype compared with their human PFIC2 counterparts (Lam
et al., 2005). This discrepancy could partly be attributed to the formation
of less toxic polyhydroxylated bile acids in mice (Perwaiz et al., 2003).
These hydrophilic bile acids could, in theory, be excreted via alternative
hepatocellular bile acid transporters, such as ABCC2 and ABCB1.
The activity of ABCB11 is tightly regulated at the level of its

transcription and by several posttranscriptional modifications. ABCB11
transcription is mainly regulated by FXR, as stated above. Other tran-
scriptional factors, however, influenced the interaction of FXR with the
ABCB11 promoter in vitro and in rodents. VDR activation, via 1,25-
dihydroxyvitamin D3, inhibits FXR-induced ABCB11 transactivation
(Honjo et al., 2006). Activating signal cointegrator-2-containing complex
recruitment by chenodeoxycholic acid increases FXR-induced trans-
activation, because this coactivator complex methylates the ABCB11
promoter histones (Ananthanarayanan et al., 2011). Steroid receptor
coactivator-2 activation by liver kinase B1 and AMP-activated protein

kinase also promotes FXR-induced transactivation by acetylation of
promoter histones (Chopra et al., 2011). The liver receptor homolog-1
and the oxidative stress sensor nuclear factor erythroid 2–related factor
2 finally transactivate ABCB11 by binding to specific response
elements in the ABCB11 promoter (Weerachayaphorn et al., 2009).
The rapid, short-term, adaptation of canalicular ABCB11 expression is
mainly regulated at the posttranscriptional level. This regulation
involves the shuttling of ABCB11 between its intracellular pool and
the canalicular membrane and may be triggered by hormones
(Crocenzi et al., 2003), oxidative stress (Pérez et al., 2006), hydration
(Schmitt et al., 2001), and cell swelling (Häussinger et al., 1993), as
demonstrated in vitro and in rodent studies. Cell swelling can occur in
response to a meal and lead to a rapid canalicular insertion of
ABCB11, which increases the postprandial excretion of bile acids.
UDCA treatment, in addition, also increases bile flow partly via (post-
transcriptional) canalicular ABCB11 insertion. The regulation of
these posttranslational mechanisms involves the induction of integrins
by cell swelling, which triggers focal adhesion kinase, proto-oncogene
tyrosine-protein kinase, mitogen-activated protein kinases, extracellu-
lar signal-regulated kinases, and p38 mitogen-activated protein kinase
(Kurz et al., 2001; Häussinger et al., 2003; Schliess et al., 2004).
Tauroursodeoxycholic acid acts via the same pathway but also via the
activation of various protein kinase C isoforms. Protein kinase Ca
recruitment by estradiol-17b-D-glucuronoside decreases canalicular
ABCB11 expression in rodents, which could partly be responsible for
its cholestatic properties (Crocenzi et al., 2008). Inflammation-induced
cholestasis finally can lead to a decreased ABCB11 insertion into the
canalicular membrane in vitro and in rodents. Inflammatory cytokines
(e.g., IL-1, IL-6), however, can also decrease ABCB11 (and ABCC2)
transcription by their inhibitory effect on key transcriptional networks
(e.g., retinoic acid receptor-a [RARa], RXRa, FXR, PXR, CAR)
(reviewed by Wagner et al., 2010) and (especially in human ABCB11)
via posttranscriptional mechanisms (Elferink et al., 2004).

ABCC2

ABCC2 (multidrug resistance-associated protein 2) is expressed at
critical sites of uptake and elimination and is involved in the excretion
and detoxification of endo- and xenobiotics. Hepatic ABCC2 plays an
important role in the canalicular excretion of glutathione and conjugated

Fig. 3. The principal structure of canalicular ABC
transporters. The structure of canalicular ABC
transporters can consist of 1, 2, or 3 transmembrane
domains (for details kindly refer to the text). The
ABCB (B1, B11) and ABCG (G2, G5, G8)
transporter family members mentioned in the text
have comparable structures and are therefore not
shown separately in this figure.
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bilirubin. ABCC2 mutations can cause the Dubin-Johnson-syndrome,
which is characterized by a mild conjugated hyperbilirubinemia.
ABCC2 is a 190-kDa member of the C subfamily (ABCC) of ABC

transporters. Its structure consists of two nucleotide-binding and three
(instead of the normal two) transmembrane domains (Fig. 3). The
function of the third transmembrane domain, which consists of 5 instead
of 6 helices, is still being investigated (Fernández et al., 2002; Westlake
et al., 2005). ABCC2 is expressed at the apical membrane of intestinal
epithelial cells (Fromm et al., 2000; Sandusky et al., 2002), hepatocytes
(Keppler and Kartenbeck, 1996), renal proximal tubule epithelial cells
(Schaub et al., 1997, 1999), gallbladder epithelial cells (Rost et al.,
2001), and placental syncytiotrophoblast cells (Keppler, 2011b). This

expression pattern at major barrier sites results in a decreased uptake
(i.e., bioavailability) and an increased excretion of its various endo- and
exogenous substrates. Although these mechanisms protect the body, they
may also decrease treatment efficacy and/or lead to the development of
multidrug resistance. The development of drug resistance, however, has
mainly been associated with the overexpression of other multidrug
transporters (i.e., ABCB1 and ABCG2) (Gerhard Ecker, 2009; Marquez
and Van Bambeke, 2011).
ABCC2 transports various amphiphilic anions but displays a prefer-

ence for phase II (e.g., glucuronic acid, sulfuric acid, or glutathione
conjugated) metabolites (Table 1). Its endogenous substrates include
tetrahydroxylated bile acids (Megaraj et al., 2010), divalent bile acids

TABLE 1

Selected endogenous and exogenous canalicular ABC transporter substrates

ABCB11 ABCC2 ABCB1 ABCG2 ABCB4 ABCG5/G8

Endogenous substrates
Glycocholic acida Bilirubin mono- and

diglucuronidea
Aldosteronea Cholic acida Phosphatidylcholinea Cholesterola

Taurocholic acida Cholecystokinin-8-sulfatea Cholesterola Estradiol-17b-
glucuronidea

Glycochenodeoxycholic acida Estradiol-17b-glucuronidea Cortisola Estrone-3-sulfatea

Taurochenodeoxycholic acida Estrone-3-sulfatea Estradiol-17b-glucuronidea Folic acid glutamatesa

Glycodeoxycholic acida Glutathione disulfidea Estronea Glycocholic acida

Taurodeoxycholic acida Hyodeoxycholic acid
glucuronidea

Ethinylestradiola Hemea

Tauroursodeoxycholic acida Leukotriene C4
a Opioid peptidesa Protoporphyrin IXa

Taurolithocholate-3-sulfatea Prostaglandin E2a Short-chain phospholipidsa Taurocholic acida

Taurolithocholatic
acid sulfatea

Unconjugated bilirubina Taurolithocholic acid
sulfatea

Tauroursodeoxycholic
acida

6a-OH-taurocholic acid Uratea

6a-OH-taurocholic acid

Exogenous substrates
Calcein-AM Acetaminophen glucuronide Calcein-AMa 4-Methylumbelliferone

glucuronidea
Digoxina 24-Methylene

cholesterola

Pravastatina Acetaminophen glutathione Colchicine 4-Methylumbelliferone
sulfatea

Paclitaxela Brassicasterola

Taxol Acetaminophen sulfate Daunorubicina Albendazole sulfoxidea Vinblastinea Campesterola

Vinblastine Ampicillin Digoxina Anthracenesa 5a-Campestanola

Arsenitea Diltiazema Anthracyclinesa 5a-Cholestanola

Bromosulfophthalein
glutathionea

Docetaxela Camptothecin derivatesa 22-Dehydrocholesterola

Cadmiuma Doxorubicina Daunomycina Sitosterola

Carboxydichlorofluorescein-
diacetate

Erythromycina Dinitrophenyl
glutathionea

5a-Sitostanola

Ceftriaxone Ethidium bromidea Doxorubicina Stigmasterola

Dibromosulfophthalein Etoposidea E3040-glucuronide
Dinitrophenyl glutathionea Gramicidin Da Hoechst 33342a

Indomethacin glucuronide Hoechst 33342a Irinotecan (SN-38
metabolite)a

Methotrexatea Indinavir Imatiniba

Morphine glucuronidea Ivermectina Lysotracker greena

Mycophenolic acid
glucuronide

Losartan Methotrexatea

Paclitaxela Methotrexatea Mitoxantronea

Phenobarbital glucuronide Mitomycin Ca Nucleoside analogsa

Phenolphthalein sulfate Opioid peptidesa Pheophorbide aa

2-amino-1-methyl-
6-phenylimidazo
[4,5b]pyridine (PhIP)

Paclitaxela PhIPa

Phytoestrogen glucuronides Rhodamine 123a Pitavastatina

Pravastatina Ritonavira Rhodamine 123a

Probenecida Saquinavira Topotecana

Resveratrol sulfatea Teniposidea

Sulfinpyrazonea Topotecana

Vinblastinea Valinomycina

Zinc Verapamila

Vinblastinea

Vincristinea

aDemonstrated in ABC human transporter studies.
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(Kuipers et al., 1988), glutathione (Oude Elferink et al., 1990), bilirubin
glucuronosides (Paulusma et al., 1997), eicosanoids (prostaglandin E2,
leukotriene C4) (Cui et al., 1999), and conjugated steroids [estrone
3-sulfate (Kopplow et al., 2005), estradiol-17b-glucuronate (Cui et al.,
1999)]. Exogenous ABCC2 substrates are mostly conjugated, either
with glucuronic acid [e.g., phytoestrogens (Krumpochova et al., 2012),
acetaminophen (Xiong et al., 2000), indomethacin (Kouzuki et al.,
2000), morphine (van de Wetering et al., 2007)], sulfuric acid [e.g.,
acetaminophen (Zamek-Gliszczynski et al., 2005), resveratrol (Kaldas
et al., 2003)], or with glutathione [e.g., acetaminophen (Chen et al.,
2003a), bromosulfophthalein (Jansen et al., 1987), dinitrophenyl
(Elferink et al., 1989)]. However, ABCC2 also transports unconjugated
anionic drugs, such as pravastatin (Yamazaki et al., 1997), ampicillin
(Verkade et al., 1990), and methotrexate (Hooijberg et al., 1999). In
addition, it transports uncharged (vinblastine, sulfinpyrazone) (Evers
et al., 2000) or positively charged (Cd2+ and Zn2+) (Houwen et al.,
1990; Dijkstra et al., 1996) substrates that require glutathione-complex
formation to obtain a negative charge, which is necessary for ABCC2-
mediated transport.
Hepatic ABCC2 plays an important role in the development of

acquired and hereditary jaundice. Sepsis, inflammatory cholestatic
disease (e.g., alcoholic hepatitis, chronic hepatitis C), TPN, and ob-
structive cholestasis are all associated with a decrease in canalicular
ABCC2 expression in rodents (Hinoshita et al., 2001; Denson et al.,
2002; Elferink et al., 2004; Nishimura et al., 2005). This decrease in
ABCC2, which occurs via several (post-) transcriptional mechanisms,
provides a molecular explanation for the conjugated hyperbilirubinemia
that can be observed under inflammatory conditions (Hinoshita et al.,
2001; Zollner et al., 2001; Denson et al., 2002). Septic hyper-
bilirubinemia, for example, is largely induced by a cytokine-mediated
decrease in ABCC2 expression and is considered to be a poor
prognostic sign in critically ill patients (Trauner et al., 1997; Recknagel
et al., 2012). Hepatic ABCC2 also transports glutathione and bile acids.
ABCC2-mediated glutathione transport helps to create an osmotic
gradient in the bile canalicular lumen and is mainly responsible for the
instigation of the bile acid–independent bile flow (Chu et al., 2006;
Vlaming et al., 2006). The ABCC2-mediated transport of divalent bile
acids complements the monovalent bile acid transport by ABCB11 but
plays a minor role in bile flow. Animal models that lack a functional
ABCC2 transporter, such as ABCC2-deficient (Wistar) rat strain rats,
mutant Eisai hyperbilirubinemic (Sprague-Dawley) rats, and ABCC2
knockout mice, fail to secrete glutathione and bilirubin into the bile
(Büchler et al., 1996; Paulusma et al., 1996; Chu et al., 2006; Vlaming
et al., 2006). Their phenotype is consequently characterized by a 30%
decrease in bile flow and a permanent conjugated hyperbilirubinemia.
The important role of ABCC2 in bilirubin metabolism is further
illustrated by the Dubin–Johnson syndrome, which is caused by
mutations that result in an inactive form of ABCC2. These patients
are unable to excrete glucuronidated bilirubin into the bile and
consequently develop a permanent isolated conjugated hyperbilirubi-
nemia (Dubin and Johnson, 1954; Paulusma et al., 1997). ABCC2
deficiency is partly compensated by the activity of alternative
transporters, which may be responsible for the absence of a severe
(liver) phenotype in Dubin–Johnson patients. Basolateral ABCC3, for
example, decreases various intracellular ABCC2 substrates, such as
bilirubin to nontoxic levels (Konig et al., 1999; Johnson et al., 2006).
ABCC2 SNPs, which can reduce ABCC2 activity, occur in a higher
frequency in patients with nonfatty alcoholic liver disease (rs17222723
and rs8187710) (Sookoian et al., 2009), intrahepatic cholestasis of
pregnancy (rs3740066) (Sookoian et al., 2008), bile duct cancer
(rs3740066) (Hoblinger et al., 2009), and diclofenac-induced hepato-
toxicity (rs717620) (Daly et al., 2007). Several of these SNPs are also

associated with altered pharmacokinetics of ABCC2 substrate drugs,
such as methotrexate and pravastatin. ABCC2 polymorphisms also lead
to a decreased biliary excretion of toxic metabolites during irinotecan
treatment, which protects patients from irinotecan-induced diarrhea (de
Jong et al., 2007; Gradhand and Kim, 2008; Megaraj et al., 2011).
ABCC2 gene transcription is regulated by FXR, PXR, and CAR.

These NRs heterodimerize with RXR after their activation and
subsequently bind a shared 26-bp sequence hormone response element
(ER-8) in the ABCC2 promoter (Kast et al., 2002). FXR (e.g.,
chenodeoxycholic acid), PXR (e.g., rifampicin), and CAR (e.g.,
phenobarbital) agonists thus increased ABCC2 expression in human
and rodent livers (Fardel et al., 2005). Inflammatory cholestasis, sepsis,
and obstructive cholestasis can decrease ABCC2 expression by
a cytokine-induced repression of transcriptional networks in vitro and
in rodents (RARa, RXRa, FXR, PXR, CAR) (reviewed by Wagner
et al., 2010). Bile duct ligation or lipopolysaccharide (LPS) treatment
resulted in an IL-1b–mediated RARa/RXRa downregulation, which in
turn decreased ABCC2 transcription in rats (Denson et al., 2002).
Oxidative stress (e.g., via toxic bile acids) can increase ABCC2
transcription via nuclear factor erythroid 2–related factor 2 in rodents
(Maher et al., 2007; Okada et al., 2008). Posttranscriptional mechanisms
fine tune the canalicular ABCC2 expression. Lipopolysaccharide
treatment, cytokines, estradiol-17b-D-glucuronoside, and hyperosmolar
conditions all decreased the canalicular ABCC2 expression via
posttranscriptional mechanisms in rodent models (Kubitz et al., 1999;
Dombrowski et al., 2000; Paulusma et al., 2000; Mottino et al., 2002;
Crocenzi et al., 2003; Fickert et al., 2006). These posttranscriptional
modifications were associated with membrane retrieval and cytoplasmic
accumulation of ABCC2, which was indicated by a “fuzzy” immune-
staining pattern. A similar fuzzy pattern was observed in cholestatic
patients (e.g., in primary biliary cirrhosis and obstructive cholestasis)
(Zollner et al., 2001; Kojima et al., 2003).

ABCB1

ABCB1 (MDR1; MDR1a/MDR1b in rodents) protects the body
from a broad variety of hydrophobic drugs and plays a key role in the
development of multidrug resistance. ABCB1 also interacts with
several biliary constituents (e.g., cholesterol, bile acids, phospholi-
pids), but its contribution to bile formation and cholestasis remains to
be established.
ABCB1, a 170-kDa member of the B subfamily (ABCB) of ABC

transporters, consists of two nucleotide-binding and two 6-helical
transmembrane domains (Fig. 3). ABCB1 is expressed at the apical
membrane of intestinal epithelial cells, hepatocytes, renal tubular
epithelial cells, endothelial vascular cells of the blood-brain and blood-
testis barriers, and in cells of the adrenal gland, pancreas, lung, and
placenta (Thiebaut et al., 1987; Sugawara et al., 1988). This ex-
pression pattern allows ABCB1 to inhibit the uptake of drugs from the
intestinal lumen (bioavailability), decrease their entry in sanctuary
organs, such as the brain and testes (distribution), and increase their
renal and biliary elimination.
ABCB1 is a highly promiscuous transporter that interacts with nearly

half of all registered pharmaceutical compounds (Nicolaou et al., 2012).
ABCB1 transports mainly neutral or positively charged amphipathic
compounds, although transport of negatively charged compounds (e.g.,
methotrexate) has been reported (Table 1) (de Graaf et al., 1996; Huang
et al., 1998; Gerhard Ecker, 2009). Its unusual promiscuity has made it
hard to find compounds that are not substrates. Accordingly, ABCB1
has been implicated in the transport of various endogenous compounds,
such as cholesterol (Lee et al., 2013), steroids [e.g., cortisol,
aldosterone, ethinylestradiol, estrone, estriol (Ueda et al., 1992; Kim
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and Benet, 2004)], short-chain (not long-chain) phospholipids (van
Helvoort et al., 1996; Morita et al., 2007), opioid peptides (Oude
Elferink and Zadina, 2001), unconjugated bilirubin (Jetté et al., 1995;
Watchko et al., 2001), and tetrahydroxylated bile acids (Megaraj et al.,
2010). Most of these compounds were only investigated in vitro and/or
showed a low affinity for ABCB1. For several of these substrates (e.g.,
phospholipids, unconjugated bilirubin, tetrahydroxylated bile acids) it
consequently remains to be determined if ABCB1 actually contributes
to their in vivo metabolism. Exogenous ABCB1 substrates include
chemotherapeutics [e.g., paclitaxel (Fellner et al., 2002), topotecan (Li
et al., 2008), etoposide (Takeuchi et al., 2006), teniposide (Vasanthakumar
and Ahmed, 1989), doxorubicin (Ueda et al., 1987), vincristine
(Cisternino et al., 2001), vinblastine (Cisternino et al., 2001),
daunorubicin (Takeuchi et al., 2006), docetaxel (Shirakawa et al.,
1999), mitomycin C (Hayes et al., 2001)], cytotoxic drugs [e.g.,
colchicines (Cisternino et al., 2003)], antihypertensives [e.g., losartan
(Soldner et al., 1999), diltiazem (Katoh et al., 2006)], antiarrhythmics
[e.g., verapamil (Soldner et al., 1999), digoxin (Pauli-Magnus et al.,
2000)], antibiotics [e.g., erythromycin (Schuetz et al., 1998)], HIV-
protease inhibitors [e.g., indinavir, ritonavir (Lee et al., 1998)], and
various other xenobiotic compounds [rhodamine 123 (Bachmeier
et al., 2005), Hoechst 33342 (Chen et al., 1993), calcein-AM (Holló
et al., 1994)].
The physiologic function of ABCB1 has been extensively studied in

mice. Mice possess, in contrast to humans, two genes that code for two
ABCB1 proteins, namely ABCB1a and ABCB1b. Together, these
proteins fulfill the same function as ABCB1 in humans. The deletion of
these genes in mice did, somewhat surprisingly, not lead to a severe
phenotype. ABCB1a/ABCB1b compound knockout mice were fertile,
displayed a normal biliary composition and flow, and showed a normal
life span under laboratory conditions. The absence of ABCB1a and
ABCB1b, however, did result in an altered pharmacological profile of
substrate drugs. This altered profile generally led to an increased
bioavailability, an increased distribution volume (mainly to the brain),
and a decreased renal/biliary elimination of ABCB1a/b substrates
(Schinkel, 1998; Chen et al., 2003b). As a consequence, these animals
displayed higher plasma and tissue (e.g., brain) levels of ABCB1a/b
substrate drugs compared with their wild-type controls. Human ABCB1
mutations and polymorphisms have also been extensively investigated
and were (similarly) not associated with any severe phenotype
(reviewed by Ieiri, 2012). ABCB1 SNPs did affect the pharmacokinetic
profile of several drugs, but results were equivocal and differed
significantly between studies. Consequently, ABCB1 genotype-directed
drug dosing is not (yet) recommended in routine clinical practice (Wolf
et al., 2011; Ieiri, 2012). ABCB1 SNPs have also been associated with
an increased susceptibility to various diseases, such as inflammatory
bowel disease and colorectal cancer (Schwab et al., 2003; Andersen
et al., 2009). The validity of these associations, however, remains to be
established and deserves further investigation. The above-mentioned
considerations do not infer that alterations in ABCB1 expression are of
no consequence. Indeed, drug resistance that results from intrinsic (e.g.,
untreated) and acquired (e.g., drug-induced) ABCB1 overexpression
remains a major problem in brain-targeted therapies and in anticancer
treatment (Chan et al., 1991; Shukla et al., 2011). An increased
expression of ABCB1 in tumor cells, for example, confers drug
resistance by promoting the efflux of anticancer drugs (Gottesman et al.,
2002; Sikic, 2006). Indeed, ABCB1 tumor overexpression has been
associated with nonresponse to chemotherapy and a poor clinical
prognosis in various cancers (Chan et al., 1991; Penson et al., 2004;
Sikic, 2006). These considerations led to the development of ABCB1
inhibitors, which overcame drug resistance in animal models and tumor
cell lines. Unfortunately, these inhibitors remained unsuccessful in

clinical trials because of side effects and toxicity (reviewed by Shukla
et al., 2011; Falasca and Linton, 2012). This lack of success may be due
to the complexity of multidrug transport, in which the inhibition of one
transporter may lead to compensatory effects that can alter drug han-
dling and promote toxicity.
The role of ABCB1 in bile formation and cholestasis has yet to be

elucidated. Bile formation seems unaffected in ABCB1a/ABCB1b
knockout mice, as discussed above. ABCB1 is, however, significantly
upregulated in the liver of cholestatic animal models and in liver
specimens of patients with obstructive cholestasis, biliary atresia, and
primary biliary cirrhosis (PBC) (Schrenk et al., 1993; Shoda et al.,
2001; Zollner et al., 2003; Barnes et al., 2007). The reason for this
upregulation remains unclear, but it might result in an increased
canalicular excretion of toxins under cholestatic conditions. Interest-
ingly, ABCB1a/b was shown to transport tetrahydroxylated bile acids in
mice, albeit with a much lower affinity than ABCC2 (Megaraj et al.,
2010). This transport could, as discussed in our section on ABCB11,
mitigate the phenotype of ABCB11 knockout mice. This hypothesis was
supported by the observation that 1) ABCB1 was markedly upregulated
in ABCB11 knockout mice, and 2) that ABCB11/ABCB1a/ABCB1b
compound knockout mice displayed a more severe cholestatic
phenotype than single ABCB11 knockouts ( Wang et al., 2009b).
ABCB1 may also protect hepatocytes against apoptosis under
cholestatic conditions by exporting toxins (Sakaeda et al., 2002). Taken
together, these observations support a compensatory role for ABCB1
during cholestasis. Its role in bile acid transport, however, is likely more
important in mice than in humans, inasmuch as only mice are able to
generate hydrophilic tetrahydroxylated bile acids as part of their adap-
tive response to cholestasis (Perwaiz et al., 2003).
ABCB1 transcription is mainly regulated via PXR, CAR, VDR, and

FXR. PXR induced ABCB1 transcription in the intestine, liver, and
kidney. Its agonists (e.g., rifampicin) consequently decreased the
intestinal uptake (bioavailability) and increased the (biliary/renal)
elimination of ABCB1 ligands in healthy volunteers (Chen, 2010).
CAR agonists (e.g., CITCO [6-(4-chlorophenyl)-imidazo[2,1-b][1,3]
thiazole-5-carbaldehyde]) induced ABCB1 expression in brain capillary
cells (Chen, 2010; Lemmen et al., 2013). VDR activation, via 1,25-
dihydroxyvitamin D3, induced ABCB1 in the kidney and brain of mice
(Chow et al., 2011). Chenodeoxycholic acid, a potent FXR agonist,
induced ABCB1 expression in HepG2 cells (Martin et al., 2008). FXR
knockout mice showed almost no increase in hepatic ABCB1 after bile
duct ligation, which demonstrates that cholestatic upregulation of
ABCB1 is largely FXR dependent in this animal model (Stedman et al.,
2006). ABCB1 (post-) transcriptional regulation is certainly not the
exclusive domain of these NRs. The tumor suppressor protein p53, for
example, downregulates ABCB1a and ABCB1 and may influence drug
resistance in cancer (Bush and Li, 2002). Rat ABCB1b is upregulated
during endotoxin-induced cholestasis via tumor necrosis factor-a,
which requires nuclear factor kB signaling (Ros et al., 2001). P53
actually increases ABCB1b and endotoxin treatment does not affect
ABCB1a, which illustrates that the two rodent ABCB1 genes are
differentially regulated. Indeed the (post-) transcriptional regulation of
human ABCB1 is highly complex and influenced by epigenetic
methylation, micro-RNA expression, and various other mechanisms
(reviewed by Labialle et al., 2002; Baker and El-Osta, 2004; Toscano-
Garibay and Aquino-Jarquin, 2012).

ABCG2

ABCG2 (breast cancer resistance protein) is the final canalicular
multidrug transporter that will be discussed in this review. Its main
function is similar to that of ABCC2 and ABCB1, namely the
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protection of the body against xenobiotics. ABCG2 does not seem to
have a significant role in the adaptive response to cholestasis in the
liver, although recent studies suggest that it is capable of bile acid
transport. This transport, however, likely is more relevant in the
placenta than in the liver.
ABCG2 is a 72-kDa member of the G subfamily (ABCG) of ABC

transporters. Its structure consists of one N-terminal nucleotide-binding
domain, and one C-terminal (6-helical) transmembrane domain (Fig. 3)
(McDevitt et al., 2006; Ni et al., 2010). This structure is somewhat
aberrant, because in most ABC transporters the transmembrane domain
is located at the N-terminal end and the nucleotide-binding domain at
the C-terminal end of the protein. ABCG2 is a half-transporter, like all
members of the ABCG subfamily, and must at least dimerize to become
functional. It is expressed at the apical membrane of intestinal epithelial
cells (Gutmann et al., 2005), hepatocytes (Hilgendorf et al., 2007), renal
tubular epithelial cells (Huls et al., 2008), endothelial vascular cells of
the blood-brain and blood-testis barriers (Cooray et al., 2002; Fetsch
et al., 2006), and cells of the placenta and mammary gland (Allikmets
et al., 1998; Robey et al., 2011). Its expression pattern, at critical sites
of uptake and elimination, resembles that of ABCB1. ABCG2 has
consequently a similar effect on the bioavailability, distribution, and
elimination of its ligands as ABCB1 (Vlaming et al., 2009; Agarwal
et al., 2011). Because ABCG2 and ABCB1 are often colocalized and
because they share many substrates, they can team up at critical barrier
sites (Agarwal et al., 2011). This cooperation protects sanctuary organs,
such as the brain, but may also prevent entry of chemotherapeutic drugs,
which can lead to treatment failure (e.g., in brain cancer) (Agarwal
et al., 2011).
ABCG2 is, like ABCB1, somewhat promiscuous when it comes to

its exogenous substrates. In addition, it has been implicated in the
transport of several endogenous compounds, including heme (Jonker
et al., 2002), porphyrins (Jonker et al., 2002), folates (mono-, di-, and
tri-glutamates of folic acid) (Lemos et al., 2009), urate (Woodward
et al., 2009), sulfated steroids (Suzuki et al., 2003), and bile acids
(Blazquez et al., 2012) (Table 1). Exogenous ABCG2 substrates
include sulfuric acid [e.g., E3040S (Suzuki et al., 2003)]-, glucuronic
acid [e.g., E3040G (Suzuki et al., 2003)]-, or glutathione-conjugated
[e.g., dinitrophenyl glutathione (Suzuki et al., 2003)] compounds.
ABCG2 also transports various unconjugated drugs, sometimes in
cotransport with glutathione. It is, however, best known for its ability
to transport chemotherapeutics, such as methotrexate (Chen et al.,
2003c), topotecan (Maliepaard et al., 1999), mitoxantrone (Doyle
et al., 1998), and the SN-38 metabolite of irinotecan (Maliepaard et al.,
1999).
ABCG2 knockout mice did not, much like ABCC2 and ABCB1a/b

knockout mice, display a severe phenotype. This may well be because
multidrug transporters have a considerable overlap in their substrates
and sites of expression. If one gene is deleted, other transporters can
compensate for its loss. A single gene deletion will therefore only have
a limited phenotypic effect. ABCG2 knockout mice did accumulate
endogenous (i.e., protoporphyrin X) and dietary (i.e., pheophorbide)
porphyrins, which induced protoporphyria (via protoporphyrin X) and
phototoxic skin lesions (via pheophorbide) (Jonker et al., 2002).
These mice also showed an increased bioavailability, an increased
distribution volume (e.g., to the brain), and a decreased biliary/
urinary elimination of ABCG2 substrate drugs (reviewed by Vlaming
et al., 2009). ABCG2 gene mutations and polymorphisms were
(similarly) not associated with a severe phenotype in humans. ABCG2
SNPs, however, were associated with an altered pharmacological
profile of ABCG2 substrate drugs (e.g., sulfalazine, topotecan, statins)
(reviewed by Ieiri, 2012). Interestingly, recent studies have demon-
strated an association between ABCG2 SNPs (e.g., rs2231142) and the

development of gout (Dehghan et al., 2008; Woodward et al., 2009).
These studies also identified uric acid as an ABCG2 substrate.
ABCG2, like ABCB1, has been implicated to promote the efflux of
anticancer drugs in tumor cell lines. Its role in drug resistance,
however, remains to be established in a clinical setting, and clinical
trials with ABCG2 inhibitors are currently not advisable (Falasca and
Linton, 2012).
The role of ABCG2 in bile formation and cholestasis has been

extensively debated. Mennone et al. (2010) failed to find a liver
phenotype in bile duct-ligated or sham-operated ABCG2 knockout
mice. This result pleaded against a significant role of hepatic ABCG2 in
the adaptive response to cholestasis. A recent study in pregnant ABCG2
knockout mice by Blazquez et al. (2012), suggested that ABCG2 might
affect bile acid transport in the placenta but not in the liver. This study
also demonstrated bile acid transport by recombinant ABCG2 in WIF-
B9/R cells, in Chinese hamster ovary cells, and in Xenopus laevis
oocytes. Other in vitro studies have shown ABCG2-mediated bile acid
transport in bacteria (Janvilisri et al., 2005), liver flukes (Kumkate et al.,
2008), and transfected plasma membrane vesicles (Imai et al., 2002).
Some in vitro studies, however, failed to demonstrate a role of ABCG2
in bile acid transport (Suzuki et al., 2003; Vaidya and Gerk, 2006).
However, the majority of the available data from in vitro and animal
studies suggests that ABCG2 is capable of bile acid transport. The
importance of this transport may depend on the relative coexpression of
other bile acid exporters (e.g., ABCB11, ABCC2) in the apical
membrane (Mennone et al., 2010; Blazquez et al., 2012). The relative
contribution of ABCG2 to bile acid transport will consequently be
minimal in the liver because of to the presence of ABCB11 (and
ABCC2). Placental ABCC2, however, has no (significant) coexpression
of ABCB11 and may consequently play a major role in (local) bile acid
transport (Patel et al., 2003).
ABCG2 transcription is regulated via CAR and PXR. CAR

(phenobarbital, CITCO) and PXR (rifampicin and 2-acetylaminofluo-
rene) ligands can thus increase ABCG2 expression in vitro (Jigorel et al.,
2006; Lemmen et al., 2013). Other transcription factors can also induce
ABCG2, and its promoter contains hypoxia, estrogen, progesterone,
PPARg, and aryl hydrocarbon receptor response elements (Ebert et al.,
2005; Szatmari et al., 2006; Robey et al., 2011; To et al., 2011).
Cytokines, growth factors, and micro-RNAs affected gene expression in
various ways, whereas promoter methylation increased ABCG2
expression in vitro (Le Vee et al., 2009; Robey et al., 2011).

ABCB4

ABCB4 (MDR3; MDR2 in rodents) plays a key role in bile
formation. Although ABCB11 transports bile acids, ABCB4 secretes
phosphatidylcholine (PC). PC and cholesterol form mixed stable
micelles with bile acids, which protect the biliary tree from their
detergent effects.
ABCB4, a 170-kDa member of the B subfamily (ABCB) of ABC

transporters, consists of two nucleotide-binding and two 6-helical
transmembrane domains (Fig. 3) (Zhang, 1996). ABCB4 is pre-
dominantly expressed in the apical membrane of hepatocytes
(Yoshikado et al., 2011; Pasmant et al., 2012), although low levels
of mRNA transcripts have been detected in the adrenal glands, heart,
striated muscles, tonsils, placenta, and brain (Smit et al., 1994; Patel
et al., 2003; Augustine et al., 2005; Kim et al., 2008; Cui et al., 2009).
This expression pattern supports its role as the major canalicular PC
transporter in humans. ABCB4, a so-called floppase, translocates
("flops") PC from the inner to the outer leaflet of the canalicular
membrane, from where it is extracted by bile acids (Smit et al., 1993).
The association of PC with bile acids (and cholesterol) results in the
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formation of mixed and stable micelles (Wang et al., 2009a). These
micelles protect the epithelial lining of the biliary tree from bile acid–
induced toxicity and phospholipid extraction (reviewed by Trauner
et al., 2008). Although ABCB4 is a particularly specific PC trans-
porter, it has a weak affinity for some ABCB1 substrate drugs (e.g.,
digoxin, paclitaxel, vinblastine; Table 1) (Smith et al., 2000). The
clinical relevance of this transport, however, has not been established.
Other drugs, such as oral contraceptives and itraconazole, can inhibit
ABCB4 activity, which may result in drug-induced liver damage
(Yoshikado et al., 2011; Pasmant et al., 2012).
A loss in ABCB4 function is not readily compensated and leads to

severe hepatobiliary pathology in animal models and patients. ABCB4
knockout mice are unable to excrete PC and consequently produce toxic
bile. This toxicity is due to the relatively high nonmicellar ("free") bile
acid concentration and leads to an increased permeability of the biliary
epithelium, bile leakage, pericholangitis, periductal fibrosis, sclerosing
cholangitis, and finally (in older mice) to hepatocellular carcinoma
(Mauad et al., 1994; Fickert et al., 2002, 2004; Katzenellenbogen et al.,
2007). The micro- and macroscopic damage observed in these animals
closely resembles that of (primary) sclerosing cholangitis in humans
(PSC). The impaired PC/bile acid micelle formation also decreases the
canalicular extraction (i.e., secretion) and solubility of cholesterol. The
latter results in the recurrent formation of cholesterol gallstones
(Trauner et al., 2008). Patients with progressive familial intrahepatic
cholestasis type 3 (PFIC3) are the human counterparts of ABCB4
knockout mice. PFIC3 usually has a similar clinical presentation as
PFIC2 (see ABCB11 section) but may also present with recurrent
choledocholithiasis in older children and adults (reviewed by
Jacquemin, 2012). Although UDCA treatment can be helpful in the
presence of a partial ABCB4 defect, hepatic transplantation will remain
the only definitive therapy before gene therapy becomes available in
most patients (Deleuze et al., 1996; De Vree et al., 1998). Patients with
misfolding of the transporter, such as the reported PFIC3 heterozygous
mutation I541F, may benefit from chaperone treatment to correct these
folding defects in the future (Delaunay et al., 2009; Gautherot et al.,
2012). Cyclosporine A was indeed able to restore a correct maturation
of the endoplasmic reticulum sequestered I541F mutant in vitro
(Gautherot et al., 2012). Less severe ABCB4 mutations can lead to
the low phospholipid associated cholelithiasis syndrome (LPAC) and
intrahepatic cholestasis of pregnancy (ICP). LPAC is characterized by
the formation of cholesterol gallstones and may lead to progressive
fibrosing cholestatic liver disease and portal hypertension (Zakim et al.,
2011). ICP usually manifests in the second or third trimester of
pregnancy and is associated with itching, abnormal liver biochemistry,
and jaundice. Although it usually resolves spontaneously after delivery,
it is associated with fetal risk (e.g., prematurity, neonatal respiratory
distress syndrome) (Dixon et al., 2000). Both LPAC and ICP are treated
with UDCA, which prevents gallstone formation in LPAC and
improves symptoms and liver biochemistry in ICP. Bile duct ligation
or partial hepatectomy only slightly enhanced ABCB4 expression in
mice (Stedman et al., 2006; Csanaky et al., 2009), whereas TPN
decreased ABCB4 expression in rats (Nishimura et al., 2005). Several
other cellular stress conditions (e.g., endotoxin treatment) were not
associated with an altered ABCB4 expression in animal studies (Vos
et al., 1998).
ABCB4 regulation is still poorly understood but occurs partly via

FXR and PPARa. FXR agonists (cholate, GW4064) transactivate the
human ABCB4 gene in vitro, which results in an increased maximal
biliary PC secretion (Huang et al., 2003a). FXR thus regulates both
biliary bile acid (ABCB11) and phospholipid (ABCB4) excretion.
PPARa agonists (fibrates) also increased ABCB4 expression in
human hepatocytes (Ghonem et al., 2012).

ABCG5/8

ABCG5/8 is the main sterol transporter and plays a key role in the
biliary excretion of cholesterol and plant sterols (i.e., phytosterols).
Mutations in the ABCG5 or ABCG8 gene lead to the development of
sitosterolemia, which is characterized by sterol accumulation and
atherosclerosis.
ABCG5 (73 kDa) and ABCG8 (76 kDa) are both members of the G

subfamily of ABC transporters. Members of this transporter family are
half transporters as mentioned in our section on ABCG2. ABCG5 and
G8, which each consist of one nucleotide-binding and one 6-helical
transmembrane domain, consequently need to combine to become
functional (Fig. 3) (Graf et al., 2002). The ABCG5/8 heterodimer
transports sterols (i.e., phytosterols and cholesterol; Table 1) and is
expressed in the apical membrane of hepatocytes and enterocytes
(Berge et al., 2000). This expression pattern allows ABCG5/8 to
promote sterol excretion in the bile and to prevent sterol uptake from the
intestinal lumen. ABCG5/8 knockout mice displayed a 75% decrease in
biliary cholesterol excretion, which showed a large but not exclusive
role for ABCG5/8 in biliary cholesterol transport (the remaining 25%
was partly transported by canalicular scavenger receptor B1) (Yu et al.,
2002a; Klett et al., 2004; Wiersma et al., 2009; Dikkers et al., 2013).
These mice do not display a severe cholestatic phenotype like ABCB4
knockout mice, which indicates that mixed micelle formation remains
adequate in the absence of this transporter (Yu et al., 2002a; Klett et al.,
2004; Wiersma et al., 2009; Dikkers et al., 2013). Other studies in mice
showed that ABCG5/8 overexpression protected against atherosclerosis.
This protective effect was only present in mice that overexpressed this
transporter both in the bile canaliculus and in the intestine, which
illustrated the complementary effect of canalicular and intestinal
ABCG5/8-mediated sterol transport (Yu et al., 2002b; Wilund et al.,
2004). The role of ABCG5/8 in sterol transport was first discovered in
sitosterolemia, which is characterized by an increased dietary absorption
and a decreased biliary excretion of sterols (Berge et al., 2000; Lee
et al., 2001). Patients with this rare inherited disease consequently
accumulate phytosterols (e.g., sitosterol, stigmasterol, campesterol, 5a-
cholestanol, 5a-campestanol, 5a-sitostanol, 22-dehydrocholesterol,
brassicasterol, and 24-methylene cholesterol) and cholesterol in their
blood and suffer from premature development of atherosclerosis (Berge
et al., 2000). Because sitosterolemia is caused by mutations in the
ABCG5 or ABCG8 gene, it was concluded that cholesterol and the
above-mentioned plant sterols are ABCG5/G8 substrates. ABCG5/8
polymorphisms, such as the common SNP rs11887534, also increase
the risk of cholesterol gallstones (and lead to obstructive cholestasis),
likely by increasing the biliary cholesterol content (Grünhage et al.,
2007). Apart from its role in gallstone formation, ABCG5/8 does not
seem to be a major contributor to cholestatic disease, as illustrated by
the absence of a cholestatic phenotype in ABCG5/8 knockout mice and
sitosterolemia patients.
ABCG5/8 transcription is mainly regulated via the liver X receptor

(LXR) and FXR (Janowski et al., 1996; Lehmann et al., 1997; Janowski
et al., 1999; Gupta et al., 2002; Freeman et al., 2004). LXR is activated
by oxysterols and promotes sterol excretion (ABCG5/8) and the
conversion of cholesterol into bile acids (CYP7A1) in rodents (Gupta
et al., 2002). FXR inhibits liver receptor homolog-1 (via SHP), which
decreases ABCG5/8 expression in human liver and intestinal cell lines
(Freeman et al., 2004). FXR also inhibits CYP7A1 and CYP8B1, which
leads to a reduced bile acid synthesis (Gupta et al., 2002). FXR and
LXR thus have opposite effects on ABCG5/8 and bile acid synthesis.
Several other transcription factors also play a role in ABCG5/8
transactivation. GATA-binding protein 4 (GATA4), GATA6, and
hepatocyte nuclear factor 4-a synergistically induce human ABCG5/8
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transcription in vitro (Sumi et al., 2007). Thyroid hormone also
increased biliary cholesterol excretion in animal models by increasing
ABCG5/8 expression, although the exact mechanism remains to be
elucidated (Gälman et al., 2008; Bonde et al., 2012). Treatment with
thyroid hormone and its liver specific agonists (e.g., eprotirome,
sobetirome) significantly lowered cholesterol in various animal models,
although its use in humans will be limited because of potential side
effects and the safety and efficacy of statin treatment. Insulin resistance
can, finally, increase ABCG5/8 expression in mice via disinhibition of
the forkhead box O1A transcription factor by insulin (Biddinger et al.,
2008).

Canalicular ABC Transporters and Their Regulatory NRs as
Drug Targets

Canalicular ABC transporters and their NRs play a key role in bile
formation and cholestasis. As such they are attractive targets for the
treatment of cholestatic disease. We will therefore briefly discuss the
effect of several important (experimental) treatment strategies on their
expression.
UDCA, the only Food and Drug Administration–approved drug for

cholestasis, promoted the canalicular insertion of ABCB11, ABCC2, and
ABCB4 in rodents (Beuers et al., 2001; Fickert et al., 2001; Kurz et al.,
2001). This posttranscriptional modification stimulated bile flow
(ABCB11, ABCC2) and promoted the excretion of various biliary
constituents (e.g., bile acids, glutathione, phospholipids) (reviewed by
Poupon, 2012). Although UDCA has limited transcriptional effects, it
also acts as a weak FXR and (after intestinal conversion to lithocholic
acid) PXR agonist in in vitro and animal studies (Staudinger et al., 2001;
Lew et al., 2004). The activation of these NRs increased the canalicular
(e.g., ABCB11, ABCC2) and basolateral (e.g., ABCC3, ABCC4)
expression of bile acid exporters (reviewed by Poupon, 2012; Halilbasic
et al., 2013). UDCA has, in addition, various other beneficial effects, such
as increasing the hydrophilicity of the circulating bile acid pool,
cytoprotection against bile acids and cytokines, immune modulation,
and anti-inflammatory effects (reviewed by Poupon, 2012). In PBC
patients, UDCA combined with budesonide (but not UDCA or
budesonide alone) restored the activity of cholangiocyte anion exchanger
2, which mitigated the impaired choleresis in these patients (Arenas et al.,
2008). UDCA also induced the antimicrobial peptide cathelicidin in PBC
patients, presumably via VDR activation (D’Aldebert et al., 2009).
The development of norUDCA, a side chain shortened UDCA

analog, represents a promising new treatment strategy for cholestatic
bile duct diseases. NorUDCA does not exert its primary therapeutic
effects via canalicular ABC transporters, although it did increase
ABCB11 activity in vitro (Kagawa et al., 2013). Nevertheless, it almost
completely reversed sclerosing cholangitis in the ABCB4 knockout
mouse model for PFIC3/PSC (Fickert et al., 2006). Its suggested
therapeutic mechanisms include an increased hydrophilicity of the
circulating bile acid pool, protection of injured bile ducts by
a bicarbonate-rich choleresis, a decreased hepatocellular bile acid load
by the induction of basolateral bile acid efflux transporters and bile acid
detoxification pathways (phase I and II enzymes), and various anti-
inflammatory and antifibrotic properties (reviewed by Trauner et al.,
2008). NorUDCA supposedly has an intrinsic capacity to undergo
cholehepatic shunting, which is essential for several of its beneficial
effects (e.g., biliary HCO3

2 output) (Halilbasic et al., 2009). The above-
mentioned beneficial effects clearly favor its therapeutic potential, and
norUDCA treatment is currently being evaluated in PBC and PSC
patients.
The past years have witnessed the development of several synthetic

FXR activators. These activators have a far higher affinity for FXR

than natural bile acids and can be either bile acid- or non-bile acid-
derived. The hepatoprotective effects of these activators have been
convincingly demonstrated in animal studies. FXR activation in
rodents promoted bile formation via ABCB11, ABCC2, ABCB1, and
ABCB4. FXR also repressed hepatocellular bile acid uptake and
synthesis and promoted bile acid elimination and detoxification, as
discussed in our section on bile acid metabolism. GW4064, a non-bile
acid-based FXR activator, and 6E-chenodeoxycholic acid (INT747),
a synthetic bile acid analog, ameliorated obstructive and chemically
induced cholestasis in rats (Liu et al., 2003; Fiorucci et al., 2005).
INT767, another synthetic bile acid analog, mitigated biliary fibrosis
and portal inflammation in the ABCB4 knockout mouse. INT767
increased, among others, the biliary bicarbonate content in these
animals, which decreased biliary toxicity (Baghdasaryan et al., 2011).
FXR activation also has anti-inflammatory properties, because
chenodeoxycholic acid treatment induced the expression of the
antimicrobial peptide cathelicidin in the human biliary epithelium
(D’Aldebert et al., 2009). Finally, FXR activation via GW4064
counteracted bacterial overgrowth in bile duct–ligated rodents (Ogata
et al., 2003). FXR activation thus promotes bile formation, decreases
the hepatocellular bile acid load, decreases biliary toxicity, and has
anti-inflammatory and antimicrobial effects. In recent phase II clinical
trials, INT747 with or without UDCA cotreatment ameliorated the
biochemical markers of liver damage in PBC patients that were
nonresponsive to UDCA alone. Results of a multicenter INT747 trial
in UDCA-responsive PBC patients are currently awaited (Mason et al.,
2010; Hirschfield et al., 2011; Kowdley et al., 2011).
PXR and CAR induce bile acid detoxification, bile acid elimination,

and bilirubin glucuronidation, as discussed in our section on bile acid
metabolism. Several PXR and CAR ligands have been used to treat
pruritus or jaundice long before their mode of action became known.
Rifampicin, a classic PXR agonist, is used to treat pruritus in
cholestatic patients and ameliorated biochemical markers of liver
damage in PBC patients (Bachs et al., 1989; Cançado et al., 1998;
Yerushalmi et al., 1999). Rifampicin induced bile acid and bilirubin
elimination via canalicular ABCC2. In addition, it induced bile acid
detoxification (CYP3A4) and bilirubin conjugation (UGT1A1) in
rodents (Marschall et al., 2005). Its antipruritic effect may partly
involve PXR-mediated transactivation of autotaxin, a recently iden-
tified mediator of pruritus (Kremer et al., 2012). Phenobarbital,
a potent CAR agonist, was used to treat neonatal jaundice in the 1960s
and exerts its hypobilirubinemic effect by inducing ABCC2 and
UGT1A1 (reviewed by Cuperus et al., 2009).
PPARs, finally, are fatty acid-activated NRs that play an important

role in lipid homeostasis. These NRs, however, also play a role in bile
formation and cholestasis. Treatment with the PPARa agonist
fenofibrate increased the canalicular expression of ABCB4 in human
hepatoma cells, which may be beneficial in patients with inherited
ABCB4 defects (i.e., PFIC3, LPAC, and ICP) (Ghonem et al., 2012).
In addition, PPARa decreased bile acid synthesis (CYP7A1) and
induced bile acid detoxification (SULT2A1, UGT2B4, UGT1A3) in
animal models (Patel et al., 2000; Jung et al., 2002; Barbier et al.,
2003; Fang et al., 2005). The PPAR agonist bezafibrate showed
beneficial effects in PBC patients in pilot trials, although these results
need to be confirmed by larger randomized-controlled clinical trials
(Honda et al., 2013).

Conclusion and Perspectives

Canalicular ABC transporters and their regulatory transporters play
a key role in the pathogenesis and pathophysiology of cholestatic
disorders. The study of these transporters has provided researchers and
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clinicians with a molecular framework that allows the development of
novel treatment strategies. The clinical implementation of some of
these treatments (e.g., FXR agonists, norUDCA) will likely benefit
cholestatic patients in the near future.
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