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 Abstract— This paper is concerned with the development of 
a novel nonlinear observer-based scheme for early Fault 
Detection and Isolation (FDI) in wind turbines. The method is 
based on designing a nonlinear observer using State Dependent 
Differential Riccati Equation (SDDRE) and a nonlinear model 
of the 5MW wind turbine.  The fault detection system is 
designed and optimized to be most sensitive to system faults and 
least sensitive to system disturbances and noises. The 
comparison of system outputs with nonlinear observer outputs 
are given to demonstrate good estimation performance. The 
residual generator based on the nonlinear observer is also 
employed to develop a monitoring system. Simulation results 
presented to illustrate that the proposed method is  robust and 
can detect and isolate a fault or multi-faults in sensors of the 
wind turbine.  

Keywords- fault detection and isolation; nonlinear observer; 

wind turbine; state dependent differential riccati equation 

Nomenclature: 

JT Turbine inertia ng Gearbox ratio 
JG Generator inertia np Pole pairs 

Ks Torsional stiffness β  Pitch angle 
Cs Torsional damping Twt

 Mechanical torque
 

sω  Synchronous speed Te
 Electrical torque

 

Rs Stator resistance Vs Stator voltage 

Rr Rotor resistance Lm Mutual inductance 

Ls Stator inductance Lr Rotor inductance 

wtω  Wind turbine speed 
mω  Generator speed 

I.  INTRODUCTION  

A nonlinear observer is a dynamic filter which estimates 
the states or outputs of the system based on a mathematical 
model, sensor measurements and input commands. In [1], a 
linear observer is designed and applied for the case where  
the rotor speed varies slowly. However, in the real case, 
wind speed and a generator’s rotor speed are both variables, 
and the behaviour of a wind turbine is nonlinear, which 
should be considered in the FDI design. 

This paper is aimed at detecting faults in wind turbine’s 
sensors. These include pitch angle, rotor angle, generator 
rotor angle, wind turbine rotor speed, generator rotor speed, 
electric torque; and wind turbine torque faults. 

This paper presents a framework for designing a 
nonlinear observer using state dependent differential Riccati 
equation rather than algebraic Riccati equations, which can 
require an overly restrictive requirement on the observability 
and controllability of the system [2]. The SDDRE, based on 
extended linearization of the process dynamics, and a 

solution of SDDRE can be solved by using numerical 
integration methods.  

The paper is organized as follows: Nonlinear model for 5 
MW wind turbine is presented in next section. Nonlinear 
observer is designed and tested in section III and IV. 
Nonlinear observer-based FDI scheme is briefly described in 
section V.  Sensor fault detection and isolation scheme and 
simulation results are demonstrated in section VI and VII, 
respectively. Finally, the conclusion is drawn in section VIII. 

 

II. NONLINEAR MODEL FOR A 5 MW WIND TURBINE  

Based on the wind turbine in [3] the differential 
equations for the subsystems are: 

A. Actuator model 

The pitch actuator consists of a mechanical and a 
hydraulic system, which is used to turn the blades along their 
longitudinal axis. The actuator model describes the dynamic 

behaviour between a pitch demand 
d

β  from the pitch 

controller and the measurement of a pitch angle β . The 

dynamics of the blades are non-linear with saturation limits 
on both pitch angle and pitch rate. This saturation is caused 
by high frequency components of the pitch demand 
spectrum, via measurement noise, and spectral peaks induced 
by rotational sampling [4]. In this paper, the constraint is not 
considered. The actuator dynamic is modelled as in [5]. The 
change in the pitch angle is: 

 
1

( )d

β

β β β
τ

= −�  (1)   

where βτ  is a time constant of the pitch actuator.  

B.   Two-mass drive-train model  

When compared with other mechanical models of the wind 

turbine, our first concern is the dynamic model of the drive-

train. The reason is to give priority to the parts of the 

dynamic structure of the wind turbine which contributed to 

grid integration [6, 7]. Often, a two-mass drive-train model 

is applied when analysing the interaction of the wind turbine 

with the grid. Therefore, the drive train has a significant 

influence on the power fluctuations [8].  In addition, the 

torque control can assist in dampening the mechanical 

oscillations. A two-mass drive-train can be described as a 

mathematical model in equation (2). 
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where c

e
T is a control signal for electrical torque. b is 

damping coefficient. The difference between turbine rotor 

angle and generator rotor angle ( Kθ ) is: 

 m

k wt

g
n

ω
θ ω= −�  (3) 

C. Doubly fed induction generator model 

State equations of the 4
th
 order doubly fed induction 

generator model can be expressed in d, q frame as [13]:  
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where , , , , , , , , , , ,ds qs dr qr ds qs dr qr ds qs dr qri i i i v v v vψ ψ ψ ψ� � � � are stator 

and rotor flux, current and voltage are expressed by the d-
axis and q-axis components. 

By computing the observability matrix for state-space 
model, for an n-by-n matrix A and a r-by-n matrix C,  

 2 1[ ]n Tob C CA CA CA −= �  (5) 

where n and r are dimensions of state and output. 

The system described in equation (1) to (4) is not 
completely observable. Therefore, we need to revise the 
model. The order of the DFIG model can be modified by 
assuming: 

• The stator magnetizing current space is phasor 

ms ms
i i=
� �

. In the steady state,  it is 
ms

i
�

=constant, 

• The frequency of the power supply to the stator is 

constant ( f =50Hz) and, consequently, 
2

s

p

f

n

π
ω = .   

• The stator resistance Rs can be disregarded (usually 
acceptable where a generator power is very high). 

Then, from stator and rotor flux ψ  equation (4) can be 

rewritten as [9]: 

 
2

, 0

,

ds m ms qs s qs m qr

dr m ms r dr qr r qr

L i L i L i

L i L i L i

ψ ψ

ψ σ ψ σ

= = + =

= + =

�

�  (6) 

where
s
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s m
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i
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,  leakage coefficient 
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s r

L

L L
σ = −  

and 3s sv V=
�

 .  Vs is the stator voltage. 

State equations of the 4
th
 order DFIG model (4) after 

some substitutions can be written as [3]: 
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The nonlinear model of a 5 MW wind turbine can now be 
written as:  

 ( , ), ( , )x f x u y g x u= =�  (8) 

where 
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 The output equation is: 

 
1 2 3 4 2 3 44 6

3
[ ; ; ; ; ; ]

p m s Ts

s s

g s s

n L VC
y x x x x K x C x x x

n L ω
= + −  (10) 

The state vector, input vector and output are defined as: 
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  Nonlinear observer design 

The nonlinear dynamic model (9) can be represented by 
the following  structure having state-dependent coefficients: 

 ( ) ( ) ,x A x x B u u y Cx�= + =  (12) 

where:  
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After bringing the system to the states dependent 
coefficient form as in equation (12), we constructed an 
observer which has the same structure as equation (12) plus 
the driving feedback term whose role is to reduce the 
observation error to zero, i.e. as: 

 ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )[ ]x A x x B u u K x y Cx�= + + -  (16) 

The nonlinear observer gain matrix in equation (17) is 
solved using the Riccati differential equation (18) to find 

matrix ˆ( )P x  using A(x), C and 0TQ C C= ≥ , and  R(x) > 0 

for all x.  

 1ˆ ˆ( ) ( ) TK x P x C R−=  (17) 

 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )T TP x P x A x A x P x P x C R CP x Q� -
= + - +  (18) 

 

III. NONLINEAR OBSERVER SIMULATION RESULTS  

Simulation at different wind speeds from cut-in to cut-out 
(3m/s -25m/s) are investigated in order to assess the 
performance of the nonlinear observer in comparison with 
the output of the wind turbine. For instance, Fig. 1 shows the 
simulation results for R=10

6
. These figures show a 

comparison of system outputs and estimated states. The 
following sub figures confirm the good performance of the 
nonlinear observer, (a) Pitch angle; (b) difference between 

turbine rotor angle and generator rotor angle ( Kθ ); (c) wind 

turbine rotor speed; (d) generator rotor speed; (e) electric 
torque and (f) wind turbine torque where the effective wind 
speed  is 15 m/s. sub-figures (b, c, d and e) the outputs are 
similar. Estimate states values converge rapidly to the 
nonlinear model output. Therefore, we can conclude that the 
nonlinear observer match well to estimate states of the wind 
turbine. 

 

 
Fig. 1. Comparison of system outputs with nonlinear observer estimation, 

where the effective wind speed is equal 15 m/s 

 

IV. NONLINEAR OBSERVER-BASED FDI SCHEME  

The state space model of the wind turbine in the equation 
(12) can be extended to include faults and disturbances as 
follows: 

 
1

2

( ) ( )x A x x B u u R f d

y Cx Du R f

= + + +

= + +

�
 (19) 

The equation of the observer  using this model for d = f = 
0, will be:   

 
ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )[ ]

ˆ ˆ

x A x x B u u K x y Cx

y Cx Du

�= + + -

= +

 (20) 

f is the fault vector which is considered to be an unknown 
time function. The vector d is the disturbance vector which 
can be written as: 

 ( ) ( )d A x x B u u= ∆ + ∆  (21) 

The residual generator, studied in this section, is based on 
a nonlinear observer. It is applied to the monitoring system 
represented by equation (19). To define the error, equation 
(20) is subtracted from equation (19) to obtain the estimated 
error equation (22) and residual equation (23): 
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1 2
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and residual equation is: 

 2
ˆ[ ] [ ]r Q y y Q Ce R f= − = +  (23) 

where Q is the residual weighting factor matrix; 1R  and 

2R  are fault matrices; 
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To implement FDI, two steps should be taken. Firstly, 
sensitive and insensitive relationships between residuals and 
faults for each type of faults (actuator, sensor, and 
component faults.) should be defined by rewriting equation 
(19) in the form as:  

 1 1 1

2 2 2

( ) ( ) a a s s c c

a a s s c c

x A x x B u u R f R f R f d

y Cx Du R f R f R f

= + + + + +

= + + + +

�
 (24) 

a, s and c denote actuator, sensor and component, 
respectively. 

Secondly, a set of residuals based on equation (24) 
should be defined. Faults are classified into three groups of 
actuator, sensor, and component faults and performance 
indices are then defined as in equations (25), (26) and (27) as 
follows [1]:  
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where ( , , ), ( , , ), ( , , )
a f a sf s cf c

J P R Q J P R Q J P R Q are  actuator, 

sensor component performance indices and   
( , )dJ P R

 is a 
disturbance performance index. Qa, Qs and Qc are the 
residual weighting factor matrices for the actuator, sensor 

and component, respectively. {.}σ denotes to maximal 

singular value. 

 The actuator, sensor and component fault matrices are 
defined as[1]: 

 

0

( ) ,
1 2

( ) 0

sensor fault C sensor fault

R B u actuator fault R D actuator fault

A x component fault component fault

 
 

= = 
 
 

 (29) 

 

From equations (26) and (28), the performance indices 

( , , )
sf s

J P R Q and ( , )dJ P R  are functions of ( )P x , R and Qs. 

Therefore, these parameters should be optimised for stability 
of the nonlinear observer and optimised by maximising the 
effect of the sensor faults and minimising the effect of 
disturbance [10]. Hence, we have a multi-objective 

optimisation problem. Firstly, ( )P x  and R, which are 

represented in the Riccati equation (18), are optimised to find 

the best nonlinear observer gain matrix ˆ( ).K x  

The initial matrix P0 is assumed to be zero matrix. P(x) is 
a function of states. Consequently, we can only optimise R, 
which gives better sensitivity to faults.  

Secondly, define the residual weighting factor matrix Qsk 
which gives the appropriate residual dimensions for all 
output via simulating the simulink model. The values of Qsk 
are defined in the equation (30). 

 [ ]1 6....
sk

Q diag q q=  (30) 

where 5 5 5 2

1 2 3 4 5 610 , 10 , 10 , 5x10 , 10, 1.q q q q q q= = = = = =  

 

V.  NONLINEAR OBSERVER-BASED SENSOR FAULT 

DETECTION AND ISOLATION SCHEME  

A. Fault model 

Faults are modelled as unknown change in signals as an 
additive fault. This fault can be classified according to their 

source as an actuator ( )u t∆ , sensor ( )y t∆  or component 

( )cu t∆  faults [5]. The component faults affect both the true 

output (y(t))and the observed output ( c

oy (t)). The observed 

signals for the input and output can be rewritten as below [1]. 

 

 ( ) ( ) ( ) ( )ou t u t u t u tδ∆= + +  (31) 

 ( ) ( ) ( ) ( )c

o o c c
y t u t u t u tδ∆= + +  (32) 

 0( ) ( ) ( ) ( )c

o
y t y t y t y tδ∆= + +  (33) 

 

where 0( )u t , 0 ( )c
y t  and ( )oy t are the actuator, component 

and sensor outputs respectively. ( )u tδ and ( )cu tδ  are 

actuator and component disturbance signals, ( )y tδ is a 

sensor noise signal. 

 

B. Wind turbine control 

Below rated wind speed, optimising the power output of the 

wind turbine is optimised by using the torque control 

scheme for a variable-speed wind turbine, which is written 

as [11]: 
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( ) 3 3

P 0.5
w p m
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ρπ ω

ω λ
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where Te(ref)  is the reference electrical torque, Cp_max  is 

the maximum power coefficient, and opt
λ is the tip speed 

ratio at Cp_max. The torque controller is designed and 
investigated in [3] By using the Internal Model Control 
based PI controller. 

Above rated wind speed, the rotor power must be kept at 
below design limits by using the pitch angle controller. Fig. 2 
shows the block diagram of the mathematical models for the 
main components of 5MW wind turbine system, particularly 
aerodynamic, two-mass drive train and generator. The Pitch 
angle torque controller is designed and investigated in [12].   



 

 

Fig. 2. Block diagram for the control of the mechanical part of 5MW wind 

turbine in a strong wind. vr and ir are voltage and current of the DFIG rotor 

respectively. 

C. Designing robust sensor based FDI 

To simplify the steps of designing robust sensor based 
FDI, we assume all actuators and components are fault free. 
Equations (19) can then be simplified to: 

 2( ) ( ) ,x A x x B u u d y Cx R f= + + = +�  (35) 

The residual generator for each sensor will be:  

2[( )( )]k sk m kr Q Ce R f C C= + −  (36) 

where k is the number of the measurement sensor; Ck is 
obtained from the matrix C by assuming the kth row equal 
zero. Cm  is equal to the matrix C. 

 From equation (36), it is obvious that each residual 
generator is driven, so that all other residuals equal zero. 
From the above, a set of robust and observer-based sensor 
fault isolation schemes were designed, as illustrated in Fig. 3.  

Each sensor residual ( kr ) is separated from the output of the 

residual (r) by r x ( )- ,
m k

C C  and then dimension of kr  is 

modified using .skQ  

 Compared to unknown input observers, this scheme is 
more relaxed. In this approach, instead of decoupling state 
estimations from unknown inputs, the residual signal is made 
independent of unknown inputs such as the effective wind 
speeds on the blades of a wind turbine.  

In practice, it was insufficient to identify faults based on 
residual curves because the system was non-linear, and it 
worked at different operating points; it was necessary to 
design a dynamic threshold for each sensor taking into 
account individual sensor accuracy, supplied by the 
manufacturer. Therefore, residuals were tested using an 
interval test dynamic threshold (see Fig. 3). This test gave an 
output of one (no sensor faults occurred) if the input of the 
measurement output signals did not exceed the absolute 
value of the sum of the estimated value, sensor accuracy and 
sensor noises. The test gave an output of zero (case of sensor 
fault) if the input of the measurement output signal exceeded 
the absolute value of the sum of the estimated value, sensor 
accuracy and sensor noises. The mathematical model of an 
interval test dynamic block output is based on equation: 

 

ˆ( ) ( ) ( ) ( ) 1 fault free

ˆ( ) ( ) ( ) ( ) 0 fault

k k k k k

k k k k k

y t y t y t f t

y t y t y t f t

δ η

δ η

≤ + + ⇒ =

> + + ⇒ =
 (37) 

 

where ( )ky t  is a measurement output signal; ˆ ( )ky t  

estimated value;  kη is sensor accuracy; and ( )ky tδ is sensor 

noise. 

 

Fig. 3. Robust nonlinear observer-based fault detection and isolation 

scheme. , ,d fη are disturbance, sensor noise and sensor fault signals 

respectively.  Here, is indicated “0” in the display of Pitch angle and 

turbine speed sensor faults happened. 

Fixed point wind speed model is modelled as a non 
stationary random process which, as shown in equation (37),  
is generated by two components (low frequency component 
(vs) and turbulence component (vt)) [3]. 

 ( ) ( ) ( )s tv t v t v t= +  (37) 

VI. SIMULATION RESULTS 

A nonlinear observer-based residual generator was 
designed, as shown in Fig. 3. In order to assess the 
performance of the method, different types of additive sensor 
fault were applied. The fault types were pitch angle, the 
difference between turbine rotor angle and generator rotor 
angle, wind turbine rotor speed, generator rotor speed, 
electric torque and wind turbine torque. In all simulation 
cases, we assumed that disturbance and sensor noises are 
present. 

 For example, from the behaviour of the residuals curves 
in Fig. 4, where both wind turbine and electric torque faults 
occurred at the same time. Here, first the turbine rotor torque 
sensor apparent and, then, after a few seconds, the electric 
torque, with its slow response, becomes apparent. In the case 
of multi-malfunction, the result of the simulation 
demonstrated that detection and isolation are achieved, as 
illustrated in Fig. 5 when more than one sensor fault occurred 

(10% , 10% , 10% , 9% , 10%k wt m eTβ θ ω ω at the time 250s, 

220s, 200s 180s and 150s, respectively for an effective wind 
speed of 12 m/s). For example, Fig. 5 clearly illustrates the 
robustness of this method when compared to FDI. It 
demonstrates that as pitch angle and rotor speed sensor faults 
occur, they are represented as zeroes in the fault display, as 
shown in Fig. 3.   
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Fig. 4. Residual norms when an 8% wind rotor torque and a 10% electric 

torque sensor fault occur at time-point (t)=150 s with an effective wind 

speed of 12 m/s for (a) pitch angle, (b) difference between turbine rotor 

angle and generator rotor angle, (c) wind turbine rotor speed, (d) generator 

rotor speed, (e) electric torque and (f) wind turbine torque 

 

Fig. 5. Residual norms for 10% pitch angle, 0.1 difference between turbine 

rotor angle and generator rotor angle, 10% wind turbine rotor speed, 9% 

generator rotor speed and 10% electrical torque sensor faults occurring at 

time-points (t)=250, 220, 200, 180 and 150 s, respectively, with an 

effective wind speed of 12 m/s for (a) pitch angle, (b) difference between 

turbine rotor angle and generator rotor angle, (c) wind turbine rotor speed, 

(d) generator rotor speed, (e) electric torque and (f) wind turbine torque 

VII. CONCLUSIONS 

State-dependent nonlinear observer-based scheme is 
developed for early FDI in wind turbine rotor, drive-train and 
generator sensors. A nonlinear observer is designed using 
state dependent differential Riccati equation  rather than 

algebraic Riccati equations, which can require an overly 
restrictive requirement on the observability and controll-
ability of the system. This paper is aimed at detecting faults 
in wind turbine’s sensors. Therefore, The fault detection 
system is designed and optimized to be most sensitive to 
system faults and least sensitive to system disturbances and 
noises. The residual generator based on the nonlinear 
observer is employed to develop a monitoring system. 
Simulation results illustrated that the proposed method is a 
robust method to detect faults in sensors of the wind turbine.  

The advantages of this scheme are that it is systematic to 
design and implement the algorithm in a practical way. Also, 
by using return of ‘1’ for each non-faulty sensor and ‘0’ for a 
faulty sensor, both single and multiple faults can be located 
quickly. In this approach, instead of decoupling state 
estimations from unknown inputs, the residual signal is made 
independent of unknown inputs such as the effective wind 
speeds on the blades of a wind turbine.  
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