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Abstract: With increasing applications of hyperspectral imagery (HSI) in agriculture, 

mineralogy, military and other fields, one of the fundamental tasks is accurate detection of 

target of interest. In this paper, improved sparse representation approaches using adaptive 

spatial support are proposed for effective target detection in HSI. For conventional sparse 

representation, a HSI pixel is represented as a sparse vector whose nonzero entries correspond 

to the weights of the selected training atoms from a structured dictionary. For improved sparse 

representation, spatial correlation and spectral similarity of adjacent neighbouring pixels are 

exploited as spatial support in this context. The size and shape of the spatial support is 

automatically determined using both adaptive window and adaptive neighbourhood strategies. 

Accordingly, a solution based on greedy pursuit algorithms is also given to solve the extended 

optimization problem in recovering the desired sparse representation. Comprehensive 

experiments on three different datasets using both visual inspection and quantitative 

evaluation have fully validated the efficacy and efficiency of the proposed approaches for the 

HIS datasets used in this study.
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1. Introduction 

Hyperspectral imagery, through combining imaging and spectrum techniques, provides more details 

about the spectral variation than multispectral systems, and has great potential in deriving more 

information from the narrow spectrum interval of the imaged targets. In fact, the imaging spectrometer 

in HSI can simultaneously capture hundreds of narrow and contiguous spectral bands from a wide range 

of electromagnetic spectrum. Objects in different materials could be spectrally separable as they reflect 

their own electromagnetic energy differently at specific wavelengths. This is one of the fundamental 

properties which enable the discrimination of materials in HSI for target detection. Actually, this has 

been successfully applied in various applications such as agriculture (Tits et al. 2012), mineralogy 

(Murphy et al. 2012), and military (Eismann et al. 2009). 
As an important application of HSI, target detection, also namely object detection, can be viewed as a two-
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class classification problem, where pixels are labelled as target of interest (target present) or background 

(target absent) (Manolakis and Sbaw 2002). In the past twenty years, a number of relevant approaches have 

been proposed, including the typical RX algorithm (Reed and Yu 1990). However, the RX algorithm suffers 

from large numbers of false alarms due to the violated assumption that the local background is Gaussian and 

homogeneous, especially when the neighbourhood of a pixel contains multiple types of materials, i.e. mixed 

spectrum. Support vector machines (SVM), a powerful tool for supervised classification in HSI (Melgani and 

Bruzzone 2004), has been also applied for target detection (Banerjee et al. 2006). However, SVM usually 

relies on supervised learning, which seems infeasible when there are limited object pixels for training. In 

addition, based on statistical hypothesis testing techniques (Manolakis and Sbaw 2002), quite a few 

algorithms have been proposed for target detection, including spectral matched filters (Gu et al. 2011), 

matched subspace detectors (Scharf and Friedlander 1994), and adaptive subspace detectors (Kraut et al. 

2001).  

Recently, sparse representation has been introduced as a novel and extremely powerful tool in many 

signal processing problems, such as computer vision and pattern recognition (Wright et al. 2010). Also, 

this new algorithm has been used in several fields of HSI such as classification (Chen et al. 2011a, Haq 

et al. 2012), band selection (Li and Qi 2011), dimensionality reduction (Chen and Zhang 2011) and 

spectral unmixing (Nguyen et al. 2011). In target detection, some work using sparse representation has 

been also reported (Chen et al. 2011b). According to the theory that most natural signals can be 

represented by a few training atoms from both target and background dictionaries, the target detection 

algorithm utilizes the sparse representation by solving an optimization problem constrained by the sparse 

level and reconstruction accuracy. 

In general, HSI usually has large homogeneous regions where the neighbouring pixels within the 

regions consist of the same type of materials and share similar spectral characteristics. It is observed that 

adjacent pixels of those regions approximately lie in a same low-dimensional subspace (Basri and Jacobs 

2003), hence it is important to take into account spatial correlation information in HSI processing for 

efficacy (Tarabalka et al. 2009). In this paper, spatial correlation information is intensively exploited in 

constructing pixel based sparse representation of HSI. Based on adaptive spatial support determined by 

adaptive window and adaptive neighbourhood, respectively, two improved new sparse representation 

approaches are proposed to fully utilize the spatial consistency and spectral similarity of adjacent 

neighbouring pixels for effective target detection in HSI.  

2. Sparse representation for HSI target detection 

In this section, we first introduce the basic concept of sparse representation for HSI data representation, 

followed by how it is applied for target detection in HSI.  

2.1 Sparse representation for HSI data 

In sparse representation of HSI dataset, the spectral signature of a pixel lies in a low-dimensional 

subspace and thus the pixel can be represented as a sparse linear combination of the atoms in the learnt 

dictionary. Suppose we have a HSI dataset X  and an over-complete dictionary dataset D  which has 

DN  training atoms i=1,2, ,{ }
Di Nd . Let x  be a B -dimensional pixel observation where B  is the number 

of spectral bands, the pixel x  can be approximately represented by a linear combination of these 

training atoms as 
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where D  is a 
DB N  matrix whose columns are the training atoms from the dictionary dataset;   is an 

unknown 
DN -dimensional vector whose entries are the weights for the corresponding atoms in D . In 

sparse representation,   is a sparse vector as it has only a few nonzero entries. 

Also, the sparse representation of the pixel x  can be written as a linear combination of only the K  

active dictionary atoms 
k

d  corresponding to the K  nonzero entries 
k

 , =1,2, ,k K
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where 
0=|| ||K   denotes the 

0l -norm of  , i.e. the number of nonzero entries in  ; the index set 

1 2={ , ,..., }K K    is the support of  ; 
KD  is a B K  matrix whose columns are the K  atoms 

{ }
Kk kd  ; and 

K  is a K -dimensional vector consisting of entries of  indexed by 
K . 

In this paper, the dictionary D  is directly collected from one part of the original HSI datasets. 

However, a more robust dictionary can be designed by dictionary-learning techniques (Aharon et al. 

2006, Rubinstein et al. 2010), or by creating dedicated subspaces for each class through principal 

component analysis (Bioucas-Dias and Nascimento 2008, Yang et al. 2010). Next, we show how to 

apply sparse representation techniques for target detection.  

2.2 Target detection via sparse representation 

Target detection is actually a two-class classification problem, i.e. any pixel in the image belongs to 

either the target or the background. Consequently, both target and background training atoms are needed 

in constructing the associated sparse representation for target detection. 

Let x  be a HSI pixel observation, which is again a B -dimensional vector whose entries respond to 

various spectral bands. If x  is a background pixel, its spectrum approximately lies in a low-dimensional 

subspace spanned by the background training atoms i=1,2, ,{ }
b

b

i Nd , the background part of the dictionary 

D . Thus the pixel x  can be approximately represented as a linear combination of the training atoms as 

follows 
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where bN  is the number of background training atoms, bD
 
refers to a bB N  dimensional background 

dictionary whose columns are the background training atoms, and 
b  is an unknown vector whose 

entries are the coefficients of the corresponding atoms in bD . In our model, 
b  turns out to be a sparse 

vector (i.e., a vector with only few nonzero entries).  

Similarly, a target pixel x  approximately lies in the target subspace spanned by the target training 

atoms i=1,2, ,{ }
t

t

i Nd , the target part of the dictionary D , which can be also sparsely represented by a 

linear combination as 

app:ds:matrix


4 

 

 

 

1 1 2 2

1 2 1 2

+ +...+

  =[   ... ][   ... ]

  =

t t

t t

t t

t t t t t t

N N

Tt t t t t t

N N

t t

  

  

D

x = d d d

d d d

D





 (4) 

where 
tN  is the number of target training samples, 

tD  is a 
tB N  dimensional target dictionary 

consisting of the target training atoms, and 
t  is a sparse vector whose entries contain the coefficients of 

the corresponding target atoms in 
tD . Note that due to the lack of availability of the target spectral 

signatures, the size of the training dictionary for targets is usually much smaller than that of the training 

dictionary for background. With the over-complete dictionary used, every pixel can be presented by the 

atoms of the dictionary. 

For an unknown test sample pixel x , in detection stage, it can be modelled to lie in the union of the 

background and target subspaces. By combining the two sub-dictionaries 
bD  and 

tD , the test sample x  

can be written as a sparse linear combination of all training atoms 
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where D  is a ( + )b tB N N  matrix consisting of both background and target training atoms, and   is a 

( + )b tN N -dimensional vector consisting of the two vectors of weights, 
b  and 

t , associated with the 

two dictionaries.  

In this model, no assumption about the target and background distributions is required, and the 

subspace model is more generalized since the independence between training samples is not necessary. 

The vector   is a concatenation of the two vectors associated with the background and target 

dictionaries and is also a sparse vector. Since the background and target pixels usually consist of 

different materials, they have distinct spectral signatures and thus their spectrum profiles lie in different 

subspaces. For example, if x  is a target pixel, then ideally it cannot be represented by the background 

training samples. In this case, 
b  is a zero vector and 

t  is a sparse vector; on the other hand, if x  

belongs to the background, then 
b  is a sparse vector and 

t  is a zero vector. Therefore, the test sample 

x  can be sparsely represented by combined background and target dictionaries, and the locations of 

nonzero entries in the sparse vector   actually contains critical information about the class that the test 

pixel x  belongs to. 

Next, we demonstrate how to obtain   and how to label the class of a test pixel. Given the dictionary 

of training atoms D , the representation   satisfying =D x  can be obtained by solving the following 

optimization problem for the sparsest vector: 

 
0=argmin|| ||   subject to =D x  (6) 

where 0||  || denotes 
0l -norm which is defined as the number of nonzero entries in the vector (also 

called the sparse level of the vector). The above problem of minimizing the 
0l -norm is a NP-hard 

problem. If the solution is sufficiently sparse, this NP-hard problem can be relaxed to a linear 
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programming problem by replacing the 
0l -norm by 

1l -norm, which can then be solved efficiently by 

convex programming techniques. Alternatively, the problem can be also approximately solved by greedy 

pursuit algorithms such as orthogonal matching pursuit (OMP) (Tropp and Gilbert 2007) or greedy 

subspace pursuit (SP) (Dai and Milenkovic 2009). 

The sparse vector   is recovered by decomposing the pixel x  over the given dictionary D  to find 

the few atoms in D  that best represent the test pixel x . The recovery process implicitly leads to a 

competition between the two subspaces. Therefore, the recovered sparse representation is naturally 

discriminative. Once the sparse vector   is obtained, the class of x  can be determined by comparing 

the two residuals below 

 
2( )=|| - ||b b br x x D   (7) 

 
2( )=|| - ||t t tr x x D  (8) 

where 
b  and 

t  represent the recovered sparse coefficients corresponding to the background and target 

dictionaries, respectively. Therefore, the output of detector is obtained as 

 ( )= ( )- ( )b tR r rx x x  (9) 

If ( )>R x  with   being a prescribed threshold whose value is near zero, then x  is determined as a 

target pixel; otherwise, x  is labelled as background. 

3. Improved sparse representation using adaptive spatial support 

Spatially adjacent pixels in HSI usually consist of similar materials, and thus, their spectral 

characteristics are highly correlated. In conventional sparse representation, the target detector is applied 

to each pixel in the test region, independently, without considering the correlation between its 

neighbouring pixels. As a result, the overall detection accuracy is very limited. How to incorporate the 

spatial correlation information into sparse representation algorithms for improved target detection forms 

our proposed work in this paper. In this section, we firstly show the theoretical base of using 

neighbouring pixels information to improve the effectiveness of the detection algorithm, followed by 

two proposed approaches using adaptive spatial support to achieve better detection results. 

3.1 Theoretical base of using neighbouring pixels information 

Regardless of sensor noise and/or atmospheric variation, spatially neighbouring pixels in HSI should 

have similar spectral characteristics if they consist of similar materials. Assume 
ix  and jx  are two 

neighbouring pixels consisting of similar materials, we will illustrate the similarity of the sparse 

representations of these two pixels as follows.  

For a given 
DB N  dimensional structured dictionary D , the sparse representation of 

ix  can be 

written by 
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As ix  and jx  consist of similar materials, jx  can be also approximated by the same atoms from 

dictionary D , but with a different vector of coefficients as 
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The sparse representations of the two pixels are of small difference, as illustrated in Fig 1, where the 

two adjacent pixels are randomly selected from the third HSI dataset used in this paper (see for details in 

Section 4.1). In Fig. 1(a), the x-axis and y-axis respectively denote the index of image band and the 

reflectance value, whilst in Fig. 1(b) the two axes are the index of dictionary atoms and the 

corresponding weights, respectively. From Fig. 1, we can clearly see the similar spectral profiles of the 

two pixels and the limited difference between their sparse representations. 

 

 
(a)                                                   (b) 

Fig. 1 Spectral profiles (a) and the corresponding sparse representations (b) of two adjacent pixels. 

 

Although in general spatially adjacent pixels have similar spectral characters to enable the spatial 

correlation information used for target detection, for a given pixel there is still a problem as how to 

choose its spatial context. Sometimes spatially adjacent pixels may belong to two or more kinds of 

different materials, especially when a large local region is used for detection, hence it is hard to 

accurately approximate these pixels using the training atoms dictionary D . On the other hand, a small 

local region may also produce inaccurate detection as the spatial correlation information used in the 

algorithm is fractional. In the next two subsections, two new approaches to determine spatial support for 

improved sparse representation are proposed, using adaptive window and neighbourhood for effective 

target detection in HSI. 

3.2 Determining spatial support based on adaptive window 

Here, for a given pixel, a local window centred by this pixel is used to obtain an optimized sparse 

representation. The size of the window used is adaptively determined by considering the similarity 

between the central pixel and any adjacent ones. For a given pixel 
1x , the adaptive window is 

determined as follows. 

Firstly, the window is initialized to contain the pixel of interest, i.e. 
1x . Secondly, we examine all its 

directly neighbouring pixels ix , 2,3,...,8i  , as shown in Fig. 2. If all the neighbouring pixels are 

sufficiently similar to 
1x , i.e. exceed a given threshold, then the window is enlarged by including all 

these neighbouring pixels. Please note this enlargement will continue until it reaches the image boundary 

or there is at least one pixel whose is dissimilar to ix . Then, the window is determined. 
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Fig. 2 Pixel under test and neighbouring pixels 

 

In fact, the spectral angel cosine (SAC) is used to determine the similarity between the pixel spectra. 

The SAC of 
1x  and ix  is obtained as 

 
1

1

1 1

,
( , )

, ,

i

i

i i

SAC 
x x

x x
x x x x

 (12) 

A prescribed threshold   is used to measure the similarity of 
1x  and ix  by comparing whether 

1( , )iSAC x x . Since the spectral profiles of all pixels in the window are similar to that of the central 

pixel, all pixels in the window will together participate in the sparse representation of the central pixel as 

presented in Section 3.4. 

3.3 Determining spatial support based on adaptive neighbourhood 

Rather than using a rectangle window as spatial support for a given pixel of interest, the seed, adaptive 

neighbourhood allows a region of arbitrary shape and size extracted as the spatial support. This again is 

defined based on the similarity of any neighbouring pixels to the seed pixel, provided that the pixel 

under consideration has spatial connectivity to the seed one.  

In order to maintain a good connectivity of neighbouring pixels, only the four-directly neighboured 

pixels, as shown in Fig. 3, are examined in determining the spatial support, where again the spectral 

angel cosine (SAC) in Equation (12) is used to determine the similarity. If 
1( , )iSAC x x , the pixel 

will be included in the spatial support as it is similar to the seed one. For any newly added pixel to the 

spatial support, its 4-neighbouring pixels are iteratively examined to check whether they should be 

included in spatial support. The whole process would stop when there are no new pixels can be extended 

to the spatial support. Of course, the prescribed threshold   can be changed adaptively according to the 

local spatial and spectral information. 

 

1x

5x

4x

3x

2x

 
Fig. 3 Pixel under test and neighbouring pixels 
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3.4 Solve sparse representation problem with spatial support 

With spatial support determined by either the adaptive window or adaptive neighbourhood, all pixels in 

the spatial region would participate in the calculation for the sparse representation of the pixel of interest. 

Thus, the reconstructed pixel is forced to have similar spectral characteristics to all neighbour pixels 

within the local spatial support. The proposed reconstruction problem with the adaptive local support 

constraint can be reformulated as a standard sparse representation optimization problem and then solved 

efficiently by available optimization tools as follows. 

Let 
1 2=[ , , , ]NM x x x  be a B N  matrix, where the columns 

=1,2, ,{ }t t Nx  are pixels from any spatial 

support determined by aforementioned adaptive window or adaptive neighbourhood approach. Due to 

high similarity of their spectral profiles, these pixels are very likely to consist of the same material. As a 

consequence, they can be approximated by the same dictionary D , but with a different set of 

coefficients 
=1,2, ,{ }t t N , as follows 

 
,1 1 ,2 2 ,= = + +...+

D Dt t t t t N N  x D d d d  (13) 

Therefore, X  can be approximately represented by 

 
1 2 1 2

1 2

=[ , , , ]=[ ... ]

= [ ... ]=

N N

N

S

M x x x D D D

D DS

  

    (14) 

Given the training dictionary D , the matrix S  can be recovered by solving the following sparse 

representation problem 

 
,0=argmin|| ||rowS S  subject to =DS M  (15) 

where the notation 
,0|| ||rowS  denotes the number of nonzero rows of S . Note that the solution to the 

above problem 
1 2=[ ... ]NS     is a 

DN N  sparse matrix with only few nonzero rows. 

Similar to the pixel wise sparse recovery problems, the simultaneous sparse recovery problems are 

NP-hard problems, which can be approximately solved by greedy algorithms or relaxed to convex 

programming and solved in polynomial time. In this paper, the NP-hard problem is resolved by replacing 

0|| ||  with || ||F , where || ||F  denotes the Frobenius norm. 

 ,=argmin|| ||row FS S  subject to =DS M  (16) 

After the sparse matrix S  is recovered, for any test sample the label can be determined based on the 

characteristics of the sparse coefficients as follows. Firstly, we calculate and compare the total error 

residuals between the original test sample and the approximations obtained from the reconstruction by 

the background and target sub-dictionaries. Then, the output of the proposed detector is computed by the 

difference of the total residuals from all pixels within the spatial support by 

 ( )=|| - || -|| - ||b b t t

F FR x M D S M D S  (17) 

where b
S  consists of the first 

bN  rows of the recovered matrix S  corresponding to the background sub-

dictionary b
D  and t

S  consists of the remaining 
tN  rows in S  corresponding to the target sub-

dictionary t
D . If the output is greater than a prescribed threshold, then the test sample is labelled as a 

target; otherwise, it is labelled as background. If the pixels in M  belong to the background, the value of 
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|| - ||b b

FM D S  approximately equals to zero, whilst the value of || - ||t t

FM D S  remains large. As a result, 

( )R x  would exceed the threshold. Otherwise, for target pixels ( )R x  would be below the threshold.  

4. Experiments and Analysis 

To validate the effectiveness of the proposed approaches, a series of experiments are carried out on three 

different HSI datasets as described below. For each HSI dataset, targets are detected using three sparse 

representation approaches, the benchmarking one without spatial support and the two proposed ones, 

where the BP algorithm (Dai and Milenkovic 2009) and SSP algorithm (Chen et al. 2011a) are used to 

solve the problems as defined in Equation (6) and (16). In addition, all target pixels are employed when 

the receiver operating characteristics (ROC) curves are determined for comparisons.  

4.1 HSI datasets 

In our experiments, three HSI datasets are used as shown in Fig. 4. The first dataset in Fig. 4(a) is a 

simulated dataset with a size of 30×30 pixels, including 6 targets which lie in two columns. In each row, 

the two targets are of the same size varying from 3×3 to 4×4 and 5×5 pixels, thus all together we have 

100 target pixels and 800 background pixels. Actually, the spectral data contained in this image are 

randomly selected form the third HSI dataset used in this paper as follows: Firstly, we arbitrarily select 

100 target pixels from the original dataset, airport HSI dataset, based on the targets positioned in Fig. 

4(c), and arrange them in rectangle windows as illustrated in Fig. 4(a). Secondly, 800 background pixels 

are also randomly chosen from the original dataset and arranged around the target pixels. Thus, the 

simulated dataset is constituted, where the number of spectral band, spectral and spatial resolution are all 

the same as them of the original dataset. 

 

 
(a)                                   (b)                                    (c) 

Fig. 4 Experimental dataset (band 60), (a) Imaging of simulated dataset, (b) Imaging of corn kernel 

dataset, (c) Imaging of airport dataset 

 

The second HSI dataset, as shown in Fig. 4(b), is the corn kernel dataset, containing two corns in an 

image sized of 85×100 pixels. This dataset has 160 spectral bands and was obtained from Texas Agrilife 

Research (Texas A&M University). The HSI data were acquired with a line-scanning hyperspectral 

camera (PIKA II, www.resonon.com), which had 640 sensors producing HSI within a spatial resolution 

of 169 pixels/cm
2
 and a wavelength range from 405nm to 907 nm, i.e. a spectral resolution of 3.1 nm. 

The angular field of view was set as 7 and the focal length of the objective lens was 35mm, optimized 

for the visible and near-infrared (NIR) spectra.  

The third HSI dataset is a subset of the well-known AVIRIS data, which was collected in Santiago 

airport in the United States. The data, as shown in Fig. 4(c), was acquired using an airborne imaging 

spectrometer with a spatial resolution of 20m
2
/pixel and a spectral resolution of about 10nm ranging 

from 400nm to 1800nm, i.e. covering from visible to infrared wavelength. By removing bands with 

http://www.resonon/
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absorption of water and low signal-to-noise, we use only 126 bands in our experiments. The image size 

is 100×100 pixels, containing 38 planes as targets for detection. 

4.2 Experimental results and analysis 

For performance evaluation, the experimental results are compared using both subjective and objective 

criteria. Visual inspection is employed for subjective evaluation of the detected target pixels, where the 

accuracy and robustness can be observed from the detected results. Quantitative comparison is utilized 

for objective evaluation, where the receiver operating characteristics (ROC) curves are used to present 

the probability of detection (PD) as a function of the probability of false alarms (PFA). The PFA is 

calculated by the number of false alarms (background pixels determined as target) over the total number 

of pixels in the test region, and the PD is the ratio of the number of hits (correctly detected target pixels) 

and the total number of true target pixels. To plot ROC curves, thousands of results in pairs of (PD, PFA) 

under various thresholds are generated, thus the ROC curves here are also able to validate the robustness 

of the algorithms towards any possible combination of thresholds. In addition, the running time of each 

approach is compared as an indicator of complexity.  

For the three HSI datasets, one simulated one and two real ones, three approaches are applied for 

sparse representation based target detection, including the basic one without spatial support, namely 

BSR, and two improved ones. In order to facilitate analysis and discussion, we also denote sparse 

representation approaches using adaptive window and adaptive neighbourhood as AWSR and ANHSR, 

respectively. The percentage of pixels from the image to compose the dictionary is about 10%. And 

for the simulated and airport datasets, because of the spatial resolution, some pixels contained in 

them must be mixed pixels which contain the different kind information of the materials. Usually, 

the effect of mixing is highly dominant in HSI. However, in sparse representation, the atoms or 

pixels in dictionary are selected form the original image and they also contain the mixing 

information. Considering the same material of the airport background and the planes as targets, the 

mixing level would affect the results but it not very severe factor. So in this paper, the pixels are all 

considered as individuals to participate into experiments. Please note that for these three approaches 

the experimental settings are identical, i.e. the same target and background training atoms are used for all 

these three detectors. 

For the first HSI dataset, the spectral signatures of the dictionary are collected directly from the top 

left corner region of the simulated HSI data. The number of atoms in the dictionary is 100 with =9tN  

and =91bN , i.e. 9 pixels from the targets and 91 pixels from the background in the region. The BP 

algorithm (Dai and Milenkovic 2009) is used to solve the sparse representation problem in Equation (6), 

while the sparse representation problem in Equation (16) is solved by using the simultaneous subspace 

pursuit (SSP) algorithm (Chen et al. 2011a).  

Under the best prescribed threshold  , the detected results from the three approaches are the same as 

illustrated in Fig. 5(a), where Fig. 5(b) shows the 60
th
 band image of the simulated HSI dataset. From 

Fig. 5 we can see, all the target pixels have been successfully detected without any false alarms. This is 

mainly due to the simplicity of the case where the background pixels seem uniform and different from 

the target pixels. 
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(a)                                     (b) 

Fig. 5 Detection result (a) for the simulated HSI dataset, where (b) is the 60
th
 band image. 

 

To better illustrate the detection effect, the results are also plotted in 3-D and shown in Fig. 6, where 

more details can be observed than those from Fig. 5. As can be seen, the results from both ANHSR and 

AWSR have much higher and flat peaks. Higher peaks than those from BSR here mean the detected 

results are more robust as it allows a larger threshold to be applied to filter any potential false alarms. On 

the other hand, flat peaks mean that the results tend to be consistent to all target pixels, whilst results 

from BSR have much uneven peaks, which may lead to missing detection when a high threshold is 

applied as explained below. 

 

 
(a)                                                (b)                                                (c) 

Fig. 6 Experiment result for simulated HSI dataset in 3D version, (a) AWSR, (b) ANHSR, (c) BSR 

 

For the results from each of the three approaches above, the minimum and the maximum values of 

( )R x  are firstly obtained to determine the data range for any possible threshold. Then, we uniformly set 

100 thresholds within the data range. Under each threshold, which corresponds to a percentage within 

the data range, we can check the probability of detection measured as a percentage of correctly detected 

target pixels. With the 100 thresholds, 100 pairs of data are generated and plotted as shown in Fig.7. 

Apparently, for the majority of the thresholds, BSR fails to generate good detection results. On the 

contrary, both AWSR and SNHSR have yielded significantly improved results with SNHSR slightly 

outperforming AWSR. 
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Fig. 7 Probability of detection under different thresholds 

 

For the second dataset, the spectral signatures of the dictionary are collected directly from pixels of 

the leftmost region in the given HSI. The number of atoms in the dictionary is 850, one over ten of all 

pixels, with =292tN  and =558bN , i.e. 292 target pixels and 558 background pixels are respectively 

selected from the region. The detection results under the best prescribed threshold are shown in Fig. 8, 

and the 3-D version of the results are plotted in Fig. 9. In this group of experiments, AWSR and ANHSR 

produce very comparable results, and both of them outperform BSR in generating more accurate results 

with much less false alarms.  

 

 
(a)                                       (b)                                       (c) 

Fig. 8 Detection results for corn kernel dataset using AWSR (a), ANHSR (b) and BSR (c) methods. 

 

 
(a)                                                (b)                                                (c) 

Fig. 9 Experiment results for corn kernel dataset in 3-D version, (a) AWSR, (b) ANHSR, (c) BSR 

 

For the third HSI dataset, the airport imagery, the spectral signatures of the dictionary are also 

collected directly from pixels of the leftmost region of the image. The number of atoms in the dictionary 
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is 1000, one over ten of all pixels, with =41tN  and =959bN , i.e. 41 target pixels and 959 background 

pixels. The detection results for this dataset under the best prescribed threshold are given in Fig. 10, and 

the 3-D version of the detected results are also illustrated in Fig. 11. Again, we can easily find that 

AWSR and ANHSR yield much improved results than BSR, where more accurate results with much less 

false alarms are detected as shown in Fig. 10. 

 

 
(a)                                 (b)                                    (c) 

Fig. 10 Detection results for airport dataset, (a) AWSR, (b) ANHSR, (c) BSR 

 

 
(a)                                                (b)                                                (c) 

Fig. 11 Experiment results for airport dataset in 3D version, (a) AWSR, (b) ANHSR, (c) BSR 

 

To further compare the performance of these three approaches, the ROC curves for the last two test 

imaging are produced and plotted in Fig. 12. Apparently, thanks to the spatial support involved, both 

AWSR and ANHSR consistently outperform BSR in producing better results. In addition, ANHSR also 

yields better results than AWSR for the third dataset, a more complex one, though they generate almost 

the same results for the second dataset, a much simpler one.  
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(a)                                                                             (b) 

Fig. 12 ROC curves using AWSR, ANHSR and BSR approaches for the corn kernel dataset (a) and the 

airport dataset (b). 

 

Finally, the running time of the three approaches on the three datasets are compared in Table 1 as an 

indicator of computational complexity. Although the absolute time used also depends on the pixels and 

bands of the dataset, for a given dataset the running time still provides a consistent measurement of 

complexity in this context. As can be seen, AWSR and ANHSR need much less time to achieve 

significantly improved results, whilst the reason behind is that the spatial support used has helped to 

smooth the inconsistency among spatial neighbouring pixels. As a result, the process of sparse 

representation can be easily recovered. In addition, it is found ANHSR is not only the most effective but 

also the most efficient approach for target detection from HSI datasets used in this study. 

 

Table 1. Running time in seconds of the three approaches over the three datasets 

Images and their pixels/bands BSR AWSR ANHSR 

simulated HSI dataset 900/126 14.67 11.66 1.28 

corn kernel dataset 8500/160 816.43 160.57 154.09 

airport dataset 10000/126 937.76 214.45 170.08 

5. Conclusion 

In this paper, we propose two new sparse representation approaches based on adaptive window and 

neighbourhood for effective target detection in HSI. With the spatial support provided, both spatial 

correlation and spectral similarity of adjacent neighbouring pixels are used in constructing the optimized 

sparse representation. Using both visual inspection for subjective evaluation and ROC for quantitative 

evaluation, it is found the proposed approaches have significantly outperformed the conventional sparse 

representation method where spatial support is absent. In addition, sparse representation with adaptive 

neighbourhood support is found to be the best in dealing with complex cases, also the most efficient one 

with minimum running time required in recovering the sparse representation for fast and effective target 

detection. 
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