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ABSTRACT 

 

In recent years, there has been a significant increase in the number of bridges which are being 

instrumented and monitored on an ongoing basis. This is in part due to the introduction of 

bridge management systems designed to provide a high level of protection to the public and 

early warning if the bridge becomes unsafe. This paper investigates a novel alternative; a 

low-cost method consisting of the use of a vehicle fitted with accelerometers on its axles to 

monitor the dynamic behaviour of bridges. A simplified half-car vehicle-bridge interaction 

model is used in theoretical simulations to test the effectiveness of the approach in identifying 

the damping ratio of the bridge. The method is tested for a range of bridge spans and vehicle 

velocities using theoretical simulations and the influences of road roughness, initial vibratory 

condition of the vehicle, signal noise, modelling errors and frequency matching on the 

accuracy of the results are investigated.  

 

Keywords: bridge, damping, stiffness, vehicle-bridge interaction, damage detection, 

structural health monitoring. 



Nomenclature 

 

𝐂𝐛  damping matrix of bridge model 

𝐶𝑖    viscous damping coefficient of vehicle axle i 

𝐷𝑖    distance of axle i to o 

E   modulus of elasticity 

𝐟𝐛   
forcing vector 

fb,1  1st natural frequency of the bridge 

fv,1  body pitch frequency of the vehicle 

fv,2  body bounce frequency of the vehicle 

𝐹𝑡,𝑖   dynamic wheel contact force at wheel 𝑖 

𝐼𝑠   sprung mass moment of inertia  

J  second moment of area 

𝐊𝐛  stiffness matrix of bridge model 

𝐾𝑖    spring stiffness of vehicle axle i  

L   bridge span length 

𝑚𝑠   sprung mass 

𝐌𝐛  mass matrix of bridge model 

o   centre of gravity of vehicle 

𝑃𝑖   static axle loads of the vehicle  

𝑟𝑒𝑟𝑟𝑜𝑟  least squares error between road profile estimates 

𝑟𝑒𝑠𝑡,𝑖   road profile height estimates under wheel i 

𝑟𝑖  road profile displacement under wheel 𝑖 

𝑅𝑖    total wheel contact force at wheel 𝑖 

𝐰𝐛   vector of nodal bridge displacements and rotations 



�̇�𝐛   vector of nodal bridge velocities 

�̈�𝐛   vector of nodal bridge accelerations 

𝑤𝑏,𝑖   bridge displacement under wheel i 

𝑤𝑣,𝑖   total displacement under wheel 𝑖 

�̇�𝑣,𝑖   velocity of total displacements under wheel 𝑖 

𝑦𝑠   sprung mass bounce displacement 

�̇�𝑠   sprung mass bounce velocity 

�̈�𝑠   sprung mass bounce acceleration 

�̈�𝑠,𝑖   acceleration over vehicle axle i 

 ,  Rayleigh damping constants 

θ  time step parameter for integration  

𝜃𝑠   sprung mass pitch rotation 

�̇�𝑠   sprung mass pitch rotational velocity 

�̈�𝑠   sprung mass pitch rotational acceleration 

µ   mass per unit length of the bridge 

ξ   bridge damping ratio  

ξest   bridge damping ratio estimate  

1  first natural circular frequency of the bridge 

2  second natural circular frequency of the bridge 

 

 

 

 

 

 



1. Introduction 

 

Highway bridge structures form an intrinsic part of road networks. Throughout their lifetime 

they undergo continuous deterioration due to many factors such as ageing, increased loading 

and environmental conditions. Maintenance of these structures is essential to provide the 

required level of safety and service to road users. Increasingly over the last two decades this 

maintenance has involved the direct instrumentation of bridge structures - commonly referred 

to as Structural Health Monitoring (SHM) [1-3] - including vibration based monitoring of 

modal parameters [4,5]. The most commonly investigated parameters are natural frequencies 

and mode shapes due to the relative ease with which they can be measured and interpreted [5-

7]. However, monitoring via direct instrumentation of the bridge can be expensive and time 

consuming, requiring the installation and maintenance of sensors and data acquisition 

electronics on the bridge. 

 

Given that a high proportion of highway bridges are reaching or have exceeded their design 

lives and are not instrumented, some alternative method is needed to detect any change in 

behaviour of the structure which might be an indicator of some form of damage, e.g. 

corrosion or cracking. Here a novel low-cost method consisting of the use of a vehicle fitted 

with accelerometers on its axles is proposed to monitor the dynamic behaviour of bridges. In 

particular, the method focuses on the identification of the damping of the bridge as it has 

been shown to be a damage sensitive property [8,9], although it can be easily extended to 

other bridge parameters, i.e., stiffness, as demonstrated in the paper. The successful 

implementation of this method would facilitate efficient, widespread monitoring and 

preliminary screening of existing bridge structures in a transport network while its 

development would enable maintenance to be programmed in a more cost effective way. A 



preliminary screening of bridge condition based on one or more passes of an instrumented 

vehicle, could be used to initially target those bridges giving signs of more severe 

deterioration and to allocate further resources (i.e., through the use of specialised equipment 

installed on the bridge). 

 

The feasibility of detecting bridge dynamic parameters, such as frequency, from the dynamic 

response of an instrumented vehicle passing over a bridge has been verified theoretically [10-

12].  The method proposed by Yang et al [10], which involved an instrumented vehicle acting 

as a ‘message carrier’ of the dynamic properties of the bridge, was tested in field trials 

[13,14]. A numerical and experimental study by González et al [15] extended the analysis to 

a 3-D FEM vehicle-bridge interaction (VBI) model and they concluded that accurate 

determination of the bridge frequency is only feasible for low velocities and sufficiently high 

dynamic excitation of the bridge. Experimental investigations have also been conducted to 

check the feasibility of the approach as part of a drive-by inspection system for bridge 

monitoring [11,16,17]. 

 

Compared to frequencies and mode shapes, damping has been considered to a lesser extent in 

the field of damage detection and monitoring due to difficulty in quantifying its magnitude 

[18]. However, recent evidence suggests that damping is quite sensitive to damage in 

structural elements and in some cases, more sensitive than natural frequencies and mode 

shapes. Curadelli et al [8] describe an approach, based on a wavelet transform, to detect 

structural damage by means of the instantaneous damping coefficient identification. They 

performed experimental tests on a reinforced concrete beam and a six storey 1 bay 3D 

aluminium frame and numerical simulations of the response of a 2D reinforced concrete 

frame with strength and stiffness degradation. The technique is shown to be potentially useful 



as damping is found to be more sensitive to damage than natural frequency in the structures 

under investigation. In a study on the use of dynamic testing to identify manufacturing 

defects or structural damage in precast reinforced concrete elements, Modena et al [9] show 

that the presence of small, visually undetectable cracks cause very little variation in natural 

frequencies and require higher mode shapes to be detected but they cause considerable 

changes in damping. They observed damping changes of up to 50%. In a review of SHM 

literature from 1996 to 2001, Sohn et al. [19] suggest that crack detection in a structure based 

on damping has an advantage over detection schemes based on natural frequencies and mode 

shapes. They point out that damping changes have the ability to detect the nonlinear, 

dissipative effects that cracks produce. Gutenbrunner et al [20] perform a sensitivity study on 

damping estimation methods and they note that damping can be used as a damage indicator. 

In a case study of a single-span post-tensioned concrete bridge crossing a highway near 

Regau, Austria, they found that the damping ratio of the bridge increased from 1.19% for the 

undamaged state to 2.21% for the damaged state. Kawiecki [21] also comments that damping 

can be a useful damage sensitive feature. He reaches this conclusion in an investigation of a 

damage detection method using piezo-elements which can be applied to lightweight and 

micro-structures. Jeary [22] studies the non-linearity associated with damping in some 

structures and notes that the damping characteristic is highly indicative of the amount of 

damage that a structure has undergone during its life.  

 

In general, bridge damping identification techniques have focuses on direct instrumentation 

of bridges to measure ambient, free or forced vibration. Damping is identified using 

numerical techniques such as wavelet transforms, the Hilbert transform technique, frequency 

domain decomposition, empirical mode decomposition and the random decrement technique 

[23-26]. However, theoretical investigations on the detection of bridge dynamic parameters 



carried out by McGetrick et al [12] and González et al [27] show that it is possible to identify 

not only bridge frequencies but also changes in the bridge’s damping ratio using indirect 

measurements from an instrumented vehicle. Both conclude that the bridge’s frequency of 

vibration and changes in damping can be identified with ease from the dynamic response of a 

vehicle for a smooth road profile, while in the presence of a rough road profile the same 

properties become very difficult to establish.  One shortcoming in their approach is their 

inability to quantify damping in absolute terms, i.e., they only provide changes in damping 

relative to a previous measurement campaign. The main aim of this paper is to identify the 

absolute value of the bridge damping ratio from the dynamic response of a vehicle. For this 

theoretical investigation, a VBI model is created in MATLAB [28]. The vehicle is modelled 

as a 2-degree-of-freedom half-car and the bridge is modelled as a simply supported finite 

element (FE) beam. The damping identification procedure consists of a six step 

computational process which is outlined in Section 3. Simulations are carried out for simply 

supported bridge spans of 15, 25 and 35 metres and vehicle velocities of 10 m s
-1

 to 30 m s
-1

. 

The influence of road roughness and noise on the results is investigated. The most favourable 

site conditions are identified in which this method can be used to identify the bridge damping 

ratio with a reasonable degree of accuracy.  

 

2. Vehicle-bridge interaction model 

 

This section describes the vehicle and bridge models used in the iterative VBI procedure 

employed for this paper. Complex models have been utilised in the literature which 

incorporate a large number of degrees of freedom to take account of vehicle motions such as 

body roll or axle hop [29-31] and articulated vehicle configuration [32,33]. A comprehensive 

review of these and other coupled and uncoupled VBI models in the literature has been 



carried out by González [34]. The VBI model used for the numerical validation of the 

damping identification algorithm in this paper is similar to that used for a bridge damage 

identification approach by Kim and Kawatani [35]. 

 

2.1 Vehicle model 

 

For this investigation, a theoretical half-car model is used to represent the behaviour of the 

vehicle (Fig. 1). This simple vehicle model has the advantage of being less complex and 

hence less computationally intensive than many of the models in the literature while it is able 

to provide measurements for two axles which enables the estimation of displacements under 

each wheel. Also, while it is a simplified version of a vehicle, its response still illustrates 

many of the important characteristics of dynamic tyre forces [36]. The model has two 

independent degrees of freedom which correspond to sprung mass bounce displacement, 𝑦𝑠 

and sprung mass pitch rotation, 𝜃𝑠 . The vehicle body and axle component masses are 

represented by the sprung mass,  𝑚𝑠 . This mass connects to the road surface via a 

combination of springs of linear stiffness 𝐾𝑖  and viscous dampers with damping coefficient, 

𝐶𝑖  which represent the combined tyre and suspension components for the front and rear axles 

(𝑖 = 1,2).  

 

 

Fig. 1 2-degree-of-freedom half-car model 



Other parameters are the sprung mass moment of inertia, 𝐼𝑠, and the distance of each axle to 

the vehicle’s centre of gravity (o), i.e., 𝐷1  and 𝐷2  in Fig. 1. The natural frequencies of 

vibration of the vehicle are fv,1 = 2.39 Hz and fv,2 = 3.18 Hz which correspond to body pitch 

and bounce respectively. The half-car property values are listed in Table 1 and are based on 

values gathered from the literature [27, 32, 36].  

 

Table 1  Half-car model properties 

Property 

Body 

mass 

(kg) 

Distance of axle 

to centre of 

gravity (m) 

Suspension 

stiffness (N m
-1

) 

Suspension 

damping (N s m
-1

) 

Moment 

of inertia 

(kg m
2
) 

Symbol  𝑚𝑠 𝐷1 𝐷2 𝐾1 𝐾2 𝐶1 𝐶2 𝐼𝑠 

Value 18000 1.95 1.05 2 × 10
6
 5 × 10

6
 10 × 10

3
 20 × 10

3
 55500 

 

It follows from Table 1 that the static axle loads of the vehicle are P1 = 61778 N and P2 

  = 114730 N for axle 1 and 2 respectively. These values depend on the mass of the 

vehicle, 𝑚𝑠, and the location of its centre of gravity, o.   

 

It is assumed that all of the vehicle properties are known. In reality, these properties would be 

unknown and the first step towards the implementation of the algorithm would require the 

calibration of the vehicle model, which can be a challenging task. The latter involves the 

determination of the model properties based on measurements of the vehicle response to an 

excitation source, i.e., a known road profile using combinatorial optimisation [37] [37]or a 

vibration test using modal analysis [38]. 

 

The half-car equations of motion for the sprung mass bounce and pitch motions, 𝑦𝑠 and 𝜃𝑠 

respectively, are given by: 



  𝑚𝑠�̈�𝑠 +  𝐹𝑡,1 +  𝐹𝑡,2 = 0    (1) 

 

 𝐼𝑠�̈�𝑠 +  𝐷1𝐹𝑡,1 −  𝐷2𝐹𝑡,2 = 0  (2) 

 

The term 𝐹𝑡,𝑖 represents the dynamic wheel contact force at wheel 𝑖:  

 

             𝐹𝑡,𝑖 = 𝐾𝑖(𝑦𝑠 −  (−1)𝑖𝐷𝑖𝜃𝑠  − 𝑤𝑣,𝑖)  +  𝐶𝑖(�̇�𝑠 −  (−1)𝑖𝐷𝑖�̇�𝑠  −  �̇�𝑣,𝑖);  𝑖 = 1,2  (3)  

 

where 𝑤𝑣,𝑖 is the total displacement under wheel 𝑖. This parameter can be defined in terms of 

the road profile displacement and bridge displacement under wheel i: 𝑟𝑖 and 𝑤𝑏,𝑖 respectively: 

 

 𝑤𝑣,𝑖 = 𝑤𝑏,𝑖 + 𝑟𝑖;    𝑖 = 1,2  (4) 

 

The total wheel contact force is represented by 𝑅𝑖 : 

 

 𝑅𝑖 = 𝑃𝑖  − 𝐹𝑡,𝑖;  𝑖 = 1,2  (5) 

 

where 𝑃𝑖 is the static load of the vehicle at axle 𝑖. The forces  𝑅𝑖 are the total vertical forces 

applied by the vehicle to the bridge structure.  

 

2.2 Bridge model 

 

The bridge is represented by a simply supported FE beam model (Fig. 2) of total span length 

L. It consists of discretised beam elements with 4 degrees of freedom which have constant 

mass per unit length, µ, modulus of elasticity E and second moment of area J. 



 

Fig. 2 Finite element beam model  

 

The response of a discretised beam model to a series of moving time-varying forces is given 

by the system of equations: 

 

 𝐌𝐛�̈�𝐛 +  𝐂𝐛�̇�𝐛 +  𝐊𝐛𝐰𝐛 = 𝐟𝐛   (6) 

 

where 𝐌𝐛, 𝐂𝐛 and 𝐊𝐛 are global mass, damping and stiffness matrices of the beam model 

respectively,  𝐰𝐛  ,  �̇�𝐛  and  �̈�𝐛 are the global vectors of nodal bridge displacements and 

rotations, their velocities and accelerations respectively, and 𝐟𝐛 
is the global vector of forces 

applied to the bridge nodes. The set of forces acting on the bridge nodes 𝐟𝐛 is obtained from 

𝑅𝑖  
(Eq. (5)) through a location matrix that distributes the force applied to a beam element to 

equivalent forces acting on the nodes. 

 

The properties of the three bridge spans used in this investigation are given in Table 2.  

 

Table 2  Finite element beam properties 

Span 

Length, 

L (m) 

Modulus of 

elasticity, E 

(N m
-2

) 

Second 

moment of 

area, J (m
4
) 

Mass per 

unit length, 

µ (kg m
-1

) 

1st natural 

frequency of 

vibration, fb,1(Hz) 

15 3.5 × 10
10

 0.5273 28125 5.66 

25 3.5 × 10
10

 1.3901 18358 4.09 

35 3.5 × 10
10

 3.4162 21752 3.01 



The damping ratio of the bridge, ξ, is varied; this is discussed in more detail in Sections 3 and 

4. Although complex damping mechanisms may be present in the structure, viscous damping 

is typically used for bridge structures and deemed to be sufficient to reproduce the bridge 

response accurately. Therefore, Rayleigh damping is adopted here to model viscous damping 

and it is given by: 

 

𝐂𝐛 =   𝐌𝐛 +   𝐊𝐛 (7) 

 

where  and  are constants. The damping ξ is assumed to be the same for all modes and  

and  are obtained from  = 2 ξ12/(1+2) and  = 2 ξ/(1+2) where 1 and 2 are the 

first two natural frequencies of the bridge [39].   

 

2.3 Interaction procedure 

 

The dynamic interaction between the vehicle and the bridge is implemented in Matlab using 

an iterative procedure described by Cantero et al [40]. The equations of motion for the 

vehicle travelling over a road profile (ignoring the bridge) are solved using the Wilson-Theta 

integration scheme [41, 42]. The vertical forces of the vehicle calculated from Eq. (5) are 

applied to the bridge model. The differential equations of the beam (Eq. (6)) are then solved, 

also using the Wilson-Theta integration scheme. The vertical displacements of the bridge due 

to the vehicle forces are calculated and added to the road profile heights to form an updated 

‘profile’. The vertical forces applied by the wheels are re-calculated for the vehicle crossing 

the new updated profile and applied to the bridge model again to obtain updated bridge 

displacements. This process is repeated until convergence is obtained. The convergence 

criterion adopted in this paper is that the percentage difference in displacement under a 



wheel, 𝑤𝑏,𝑖, between two consecutive iterations becomes less than or equal to 0.01%. The 

optimal value of the parameter θ = 1.420815 is used for unconditional stability in the 

integration schemes [43]. 

 

In the simulations, it is assumed that there are two measurement sources; accelerations at 

each axle (Fig. 1), that are obtained as input for the algorithm. These accelerations are 

described using the following equation: 

 

 �̈�𝑠,𝑖 = �̈�𝑠 −  (−1)𝑖𝐷𝑖�̈�𝑠 ;  𝑖 = 1,2   (8) 

 

3. Damping identification methodology  

 

The novel method presented in this paper for the identification of damping involves a 

sequential procedure. For the VBI model investigated here, the average computational time is 

only 1.5 minutes and this process can be broken down into six distinct steps that are 

summarised in Fig. 3. In the first step, the damping ratio of the bridge is set equal to arbitrary 

specific value, e.g., 3%. This is the target damping ratio to be identified by the process. The 

’measured‘ vehicle accelerations, �̈�𝑠,𝑖, are generated in Matlab using the VBI model outlined 

in Section 1. These accelerations are then converted to sprung mass bounce  �̈�𝑠  and pitch 

accelerations �̈�𝑠 using Eq. (8) to be substituted into Eqs. (1) and (2).  

 

In the second step, the total wheel contact forces ( 𝑅𝑖 ) are calculated. By solving Eqs. (1) and 

(2) simultaneously, the dynamic forces 𝐹𝑡,𝑖 can be obtained for each instant in time. The total 

wheel contact forces can then be obtained from Eq. (5). The total displacements under each 

wheel (𝑤𝑣,𝑖) are calculated in the third step by solving Eq. (3) as a 1
st
 order differential 



equation in 𝑤𝑣,𝑖. This equation is solved using the Runge-Kutta method. The sprung mass 

bounce and pitch velocities (�̇�𝑠, �̇�𝑠) and displacements (𝑦𝑠, 𝜃𝑠) are obtained by integration of 

the measured accelerations from the first step. A linear correction is then applied to 𝑤𝑣,𝑖 

which ensures that it is not affected significantly by any drift error arising from the 

integration. 

 

In the fourth step, the contact forces  𝑅𝑖  obtained in step 2 are applied to the FE beam model 

described in Section 2.2. An initial estimate of the damping ratio ξest is given to the beam 

based on typical values, to obtain the displacements due to the moving loads (Eq. (6)). Then, 

the displacement response of the beam, 𝑤𝑏,𝑖, under each force is calculated. This process is 

repeated for a range of damping estimates ranging from 0.5% up to 6% in steps of 0.1%, 

giving a total of 56 estimates. The fifth step involves rearranging and evaluating Eq. (4) to 

obtain estimates of the values of 𝑟𝑖 for each damping estimate by subtracting each range of 

𝑤𝑏,𝑖 (step 4) from the solution of 𝑤𝑣,𝑖 obtained in step 3.  

 

  𝑟𝑒𝑠𝑡,𝑖 = 𝑤𝑣,𝑖 −  𝑤𝑏,𝑖       i = 1,2  (9) 

 

The resulting values of 𝑟𝑒𝑠𝑡,𝑖   are effectively road profile height estimates under each wheel; 

there are 56 road profile estimates under each wheel corresponding to the 56 damping 

estimates. In the sixth and final step, the bridge damping ratio is found. As the wheels follow 

each other along the same wheel path, the profile estimates under each wheel 

( 𝑟𝑒𝑠𝑡,1 and 𝑟𝑒𝑠𝑡,2) should be equal for the correct damping ratio. To identify the optimal value 

for damping from the range of 56 estimates investigated, a least squares error minimisation 

process is used, summing over all measurements in time, t, to obtain the error function rerror 

(Eq. (10)). This process results in 56 values of the least squares error function rerror , 



corresponding to the 56 road profile estimates under each wheel. The optimal damping ratio 

is identified as that which corresponds to the minimum least squares error between profile 

estimates under each wheel, i.e., the minimum value of the error function rerror in Eq. (10).  

 

 𝑟𝑒𝑟𝑟𝑜𝑟 = ∑(𝑟𝑒𝑠𝑡,1 − 𝑟𝑒𝑠𝑡,2)
2

 

𝑡

 (10) 

 

 

Fig. 3 Damping identification algorithm  



4. Results and discussion 

 

In this section, the damping identification method outlined in Section 3 is tested via 

theoretical simulations using the VBI model described in Section 1. The properties varied in 

the simulations are the bridge span, vehicle velocity and the damping ratio of the bridge. A 

road profile is included in simulations and the irregularities of this profile are randomly 

generated according to the ISO standard [44] for a road class ‘A’ (very good profile, as 

expected in a well maintained highway) unless otherwise stated. 

 

4.1 Generation of vehicle axle accelerations 

 

The method proposed in this paper requires only the measurement of a vehicle’s axle 

accelerations to identify the damping ratio of the bridge. For the purposes of this theoretical 

investigation, ‘measured’ axle accelerations are simulated artificially at a scanning frequency 

of 8192 Hz for bridge spans of 15, 25 and 35 metres and vehicle velocities from 10 m s
-1

 to 

30 m s
-1

. The damping ratio of the bridge is varied between 1% and 5% in steps of 0.5%, 

these values representing the damping which the proposed method aims to identify. An 

example of the simulated axle accelerations generated by the VBI model for a damping ratio 

of 3% is shown in Fig. 4. 

 



 

Fig. 4 ‘Measured’ axle accelerations for vehicle travelling at 10 m s
-1 

across a 15 m 

bridge with 3% damping.  

 

4.2 Total contact forces  

 

The total contact forces, 𝑅𝑖, are calculated from the equations of motion of the vehicle in the 

second step of the algorithm (Eqs. (1), (2) and (5)).  Fig. 5 shows an example of the 

calculated forces for the vehicle travelling across a 15 m bridge span at 10 m s
-1

. Again, the 

bridge’s damping ratio is 3%.  



 

Fig. 5  Calculated total wheel contact forces,  𝑅𝑖 , for the vehicle travelling at 10 m s
-1 

across a 15 m bridge with 3% damping; (a) 1
st
 axle, (b) 2

nd
 axle. 

 

4.3 Total displacement under the wheel 

 

Fig. 6 illustrates an example of the total displacements under each wheel of the vehicle which 

are calculated in the third step of the algorithm (Eq. (3)). The displacements shown are 

calculated for the same vehicle crossing the same 15 m bridge with 3% damping at 10 m s
-1

.  

As the contact point of each wheel experiences the same road profile, the only differences are 

due to differences in bridge displacement. Given the axle spacing of 3 m, the 2
nd

 axle reaches 

a given point 0.3 seconds after the 1
st
 at which time the vehicle has moved and the bridge has 

undergone a change in displacement. The method calculates the high and low frequency 

components of these displacements very accurately. The average error of the calculated 

displacements in Fig. 6 is 1.5 × 10
-6

 m, which corresponds approximately to an average 

percentage error of 0.1%. This level of accuracy is consistent for almost all properties 

investigated although a low frequency drift error is evident at particular velocities and spans. 



The latter is attributed to the double integration of accelerations by the Runge - Kutta method 

used to solve for the displacements. However, it is observed that this error does not 

significantly affect the accuracy of the damping identification.  

 

 

Fig. 6 Calculated total wheel displacements, 𝑤𝑣,𝑖, for a 15 m bridge.   

 

4.4 Estimated bridge displacements 

 

Once the contact forces 𝑅𝑖  have been calculated using the ‘measured’ accelerations, it is 

possible to calculate bridge displacements under each wheel for a range of damping ratios 

using Eq. (6). Fig. 7 shows the bridge displacements calculated under each wheel due to the 

contact forces shown in Fig. 5 when assuming a 3% damping ratio. Since the true damping 

used in the simulations is 3%, the displacements in this figure are expected to be the most 

accurate estimates obtained from the range of damping ratios considered. It is important to 

note the magnitude of the bridge displacement in Fig. 7 compared to that of the total 



displacements in Fig. 6 - the contribution of the bridge response to the total displacement is 

small in comparison to the road profile component. In past studies [12,15,27], this difference 

in magnitude was credited as being one of the sources of difficulty in detecting bridge 

dynamic parameters from the vehicle response in the presence of a rough road surface profile. 

However, the algorithm presented in this paper minimizes the impact of this problem. Instead 

of the road profile just adding an extra input excitation to the VBI model, the algorithm 

identifies the correct value for the damping ratio of the bridge by considering the differences 

in displacement under the two wheels which effectively removes the influence of road 

profile. 

 

 

Fig. 7 Estimated bridge displacements, 𝑤𝑏,𝑖, under each wheel for a 15 m bridge. 

Vehicle velocity is 10 m s
-1

. Damping ratio estimate is 3%.  

 

 

 



4.5 Estimated road profile heights 

 

From step 4 of the identification algorithm, a series of estimated bridge displacements under 

each wheel exist, i.e., one pair of bridge displacements for every damping ratio estimate (est) 

used in simulations. As discussed in Section 3, a series of estimated road profile heights, 

𝑟𝑒𝑠𝑡,𝑖 , are obtained in step 5 of the algorithm by subtracting the series of estimated bridge 

displacements, 𝑤𝑏,𝑖 , from the calculated total displacements, 𝑤𝑣,𝑖  (Eq. (9)). Fig. 8 shows the 

full series of estimated road profile heights under each wheel for the vehicle crossing the 15 

m bridge at 10 m s
-1

. These correspond to damping ratio estimates ranging from 0.5% to 6% 

in steps of 0.1%. This means that there are 56 estimated road profiles plotted in both Fig. 8(a) 

and Fig. 8(b), although they are so similar that they are indistinguishable at the scale of the 

figure.  

 

Fig. 8  Estimated road profile heights, 𝑟𝑒𝑠𝑡,𝑖 , under (a) first wheel (b) second wheel 

for vehicle crossing 15 m bridge at 10 m s
-1

. Damping range is from 0.5% to 

6% in steps of 0.1%. 



From Fig. 8 it can be seen that the variation in the estimated road profile heights with 

damping is very small. This relates to the point raised in Section 4.4 regarding the bridge 

contribution to the total displacement under the wheel. The variation in the damping estimate 

affects the bridge displacement response directly. As the bridge contribution to 𝑤𝑣,𝑖 is small 

compared to that of the road profile component, it follows that the contribution of the 

variation of the bridge response with damping is small in the resulting road profile estimates. 

However, this does not affect the accuracy of the algorithm as it is the difference between the 

estimates of road profile under each wheel that is important for the identification of the 

correct value for damping. The least squares error between the profile heights under the first 

and second wheels (Eq.(10)) is plotted against damping in Fig. 9 and shows that the 

minimum, as expected, corresponds to the true damping of 3%. 

 

 

Fig. 9 Least squares error, 𝑟𝑒𝑟𝑟𝑜𝑟, (▪▪▪▪ ) versus damping estimates (est ). Target 

damping ratio is 3% (▪▪▪). 

 



4.6 Bridge damping estimates  

 

Fig. 10 shows the final output of the algorithm – the optimal values of the estimated damping 

ratios – identified for all bridge spans and velocities investigated. The target value of 

damping for the results shown is 3%. Overall, the damping estimates are very accurate. For 

the 15 m span the average absolute percentage estimation error is 8% and the standard 

deviation of this error is 6.5%. The results shown for the 25 m span have an average absolute 

percentage estimation error of 1.7% and the standard deviation of this error is 3.2%. Finally, 

the average absolute percentage estimation error obtained for the 35 m span is 2% with a 

standard deviation of 1.4%. Similar results are obtained for other target values of damping: 

1% to 5% in steps of 0.5%. The algorithm is generally less accurate for shorter bridge spans.  

 

 

Fig. 10 Optimal bridge damping estimates for bridge spans of 15 m () 25 m () and 

35 m (). Target damping ratio is 3% (▬ ▬ ▬ ). ISO Class ‘A’ road profile.  

 



Until this point, results have only been shown for a target value of 3% damping. Fig. 11 

summarises the results for the other damping levels through histograms for each bridge span. 

The histograms show the frequency of the occurrence of particular percentage errors in 

damping identification. The total number of simulations represented in Fig. 11 is 567; this 

number consists of the combination of 21 velocities (10 m s
-1

 to 30 m s
-1

) and 9 target 

damping values (1% to 5% in steps of 0.5%) for each of the three bridge spans.  Overall, the 

results are quite positive. 88% of the total number of simulations are less than 10% inaccurate 

in damping estimation. For the 25 m span (Fig. 11(b)) 96% of the errors in damping 

identification are less than 10%. The 35 m span (Fig. 11(c)) provides the most accurate 

results with 100% of errors in damping identification less than 10%. The wide spread of 

percentage errors in Fig. 11(a) provides evidence of the reduced accuracy of the algorithm for 

shorter spans. The reason for this is that the shorter span is stiffer and as a result it does not 

produce a sufficiently large dynamic response under the forced excitation by the vehicle. 

However, 68% of the estimate errors in Fig. 11 (a) are still less than 10%.  In total in Fig. 11, 

0.88% of the bridge/velocity combinations, i.e., 5 out of the 567 simulations provide damping 

estimation error greater than 30%. It is recommended in practice to cross the vehicle over the 

bridge at more than one velocity to ensure consistency between estimates and eliminate error.   

 



 

Fig. 11 Histograms of damping estimate percentage error for bridge spans of (a) 15 m 

(b) 25 m and (c) 35 m. 

 

4.6.1 Sensitivity to road roughness 

 

As past studies encountered difficulties in detecting bridge dynamic parameters from the 

vehicle response in the presence of a rough surface profile, this section tests the sensitivity of 

the algorithm to the road profile roughness. Results presented thus far were for an ISO class 

‘A’ road profile. Here, an ISO class ‘C’ (average) road profile is randomly generated 

according to the ISO standard [44] and included in the simulations. The road irregularities are 

higher than for a road class ‘A’, but they induce larger vehicle dynamic forces and bridge 

displacements. The results of the damping identification algorithm for this road profile are 

shown in Fig. 12. The target damping ratio is 3%. A comparison of Figs. 10 and 12 shows 

that the accuracy of the algorithm is not significantly affected by road profile roughness 

which is a big advantage of the approach. Also, the average absolute percentage errors of 



damping estimates shown in Fig. 12 are 13%, 0.7% and 2.1% corresponding to the bridge 

spans of 15 m, 25 m and 35 m respectively. As before, the least accurate results are obtained 

for the shortest span due to its stiffness and the small differences in deflected shapes when 

damping changes. The average error for the 15 m span has increased compared to the 

corresponding average error for the very good road profile but the accuracy for the 25 m and 

35 m spans has not been affected significantly by the increase in road roughness. Compared 

to results for the very good road profile, the standard deviation for the 15 m span has 

increased from 6.5% in Fig. 10 to 13% in Fig. 12. The standard deviation of the errors for the 

25 m and 35 m bridge spans are 1.3% and 1.4% respectively. 

 

 

 

Fig. 12 Optimal bridge damping estimates for bridge spans of 15 m () 25 m () and 

35 m (). Target damping ratio is 3% (▬ ▬ ▬ ). ISO Class ‘C’ road profile.  

 

 

 



4.6.2 Sensitivity to random noise 

 

In practice, it is expected that the accuracy of the algorithm will be lower than in theoretical 

simulations due to errors such as those associated with modelling approximations (e.g., 

incorrect values of model parameters) and random noise. The latter is investigated by 

corrupting the measured acceleration signals from step 1 of the algorithm with an additive 

noise model based on a signal-to-noise ratio (SNR) of 20 (i.e., relative error in the 

measurements of 5%). Noise is randomly added to the true accelerations by sampling a 

normal distribution of zero mean and standard deviation equal to the standard deviation of the 

true acceleration data divided by 20 [37]. The results of the damping identification algorithm 

using the corrupted accelerations are shown in Fig. 13. An ISO class ‘A’ road profile is used 

in simulations and the target damping ratio is 3%. Before application of the algorithm, a low 

pass filter (with cut-off frequency of 100 Hz) is applied to the vehicle accelerations which 

were contaminated with noise. The accuracy of the algorithm is similar to that obtained for 

noise-free accelerations in Fig. 10, except for the 15 m bridge. The average percentage errors 

in damping estimation for the 25 m and 35 m spans are 3.8% and 2.3% respectively which 

compare very well to the accuracy of the noise-free results. The standard deviations of the 

error for the 25 m and 35 m bridge spans are 3.7% and 2.8% respectively.  

 



 

Fig. 13 Optimal bridge damping estimates obtained from noise corrupted accelerations 

with SNR = 20 for bridge spans of 15 m () 25 m () and 35 m (). Target 

damping ratio is 3% (▬ ▬ ▬ ).  ISO Class ‘A’ road profile.  

 

The accuracy of damping estimates for the 15 m bridge has decreased – considerably so 

between 13 m s
-1 

and 15 m s
-1

 - due to the corruption of the measured accelerations with 

noise. Overall, the addition of noise has increased the average absolute percentage error in 

damping estimation from 8% for the noise – free simulations to 35% for the 15 m bridge 

results in Fig. 13. The standard deviation of this error is 31%. The low dynamic excitation of 

the bridge at some velocities is further hidden by the noise in the corrupted vehicle 

acceleration signal, which prevents a correct identification of damping. For longer bridge 

spans, the dynamic excitation of the bridge is larger and therefore is not as sensitive to noise.  

 

 

 

 



4.6.3 Sensitivity to initial conditions 

 

The proposed algorithm requires a double integration of measured accelerations to obtain the 

velocities and displacements of the vehicle degrees of freedom. In practice, this can be a 

difficult procedure as knowledge of the Initial Conditions (ICs) of the velocity and 

displacement signals is necessary [45]. The investigation thus far assumed knowledge of the 

true ICs. To account for a scenario in which the ICs are unknown, the algorithm is 

implemented with an assumed IC. An assumed IC for body bounce displacement of 2 × 10
-3 

m is adopted here while null initial conditions are assumed for the remaining ICs of body 

pitch velocity and displacement and the body bounce velocity. 

 

The true IC of the vehicle can be obtained directly from the VBI model. They will vary 

between simulations as they are a function of the velocity of the vehicle and the road profile. 

It should be noted that the estimated body bounce displacement IC has been selected to be ten 

times the average true IC of the same degree of freedom. The results are shown in Fig. 14. 

The estimates are almost identical to those observed in Fig. 10 using true ICs. This can be 

illustrated by the average absolute percentage errors of the damping estimates shown in Fig. 

14; 8%, 1.7%, 2% corresponding to the 15 m, 25 m and 35 m spans respectively. Also, the 

standard deviations of these errors are identical to the results obtained using the true ICs. 

Therefore, it is found that the algorithm is insensitive to the ICs chosen here.  This is due to 

the mathematical basis of the algorithm which employs the difference between the estimated 

road profiles under each wheel to estimate damping. This difference is not affected by 

choosing incorrect ICs as long as a linear correction is applied to the calculated displacements 

under the wheels in step 3 of the algorithm. This linear correction effectively renders the 

algorithm solution independent of the ICs.  



 

Fig. 14 Optimal bridge damping estimates obtained using incorrect initial vehicle 

conditions for bridge spans of 15 m () 25 m () and 35 m (). Target 

damping ratio is 3% (▬ ▬ ▬ ).  ISO Class ‘A’ road profile.  

 

The correction is based on the true bridge displacement being zero at the entrance and the exit 

to the bridge, i.e., at 0 m and 15 m respectively in Fig. 6,  therefore the only displacement 

each wheel experiences at these locations is the road profile height. This means that the (true) 

total displacements under each wheel should be equal when located over the supports. A 

linear correction technique is used to maintain this relationship. The correction is a linear 

function which varies with distance along the bridge and it is defined by its first and last 

values. The first value is the difference between the total calculated displacements under 

wheel 1,  𝑤𝑣,1 , and wheel 2,  𝑤𝑣,2 , at the entrance to the bridge. The last value is the 

corresponding difference between 𝑤𝑣,1  and 𝑤𝑣,2  at the exit of the bridge. Then, when 

applying the algorithm, 𝑤𝑣,1 remains unaltered but  𝑤𝑣,2 is corrected by subtracting the values 

corresponding to the linear variation suggested above. This ensures that the difference 



between displacements under the wheels is not affected significantly by any drift error arising 

from the integration. 

 

4.7 Modelling inaccuracies 

 

It has already been noted that in practice, the accuracy of the algorithm is expected to be 

lower than in theoretical simulations. It was shown in Section 4.6.2 that in general, the 

damping identification algorithm is not very sensitive to errors associated with low levels of 

signal noise. This section addresses errors which are associated with modelling 

approximations; specifically, the effects of using incorrect values of bridge and vehicle model 

parameters are investigated. Unless otherwise stated, results are presented in this section for 

simulations using an ISO class ‘A’ road profile, vehicle velocity of 20 m s
-1

 and the target 

damping ratio is 3%. 

 

4.7.1 Bridge stiffness 

 

A reduction in bridge stiffness can occur due to the loss of cross-section or cracking [46] and 

with increased loading this reduction can worsen [47]. As a result, this property has been the 

focus of numerous damage assessment techniques [5]. Here, the uncertainty associated to the 

bridge stiffness is addressed by varying it along with damping when running the computer 

model. These simulations allow investigating the efficiency of the algorithm in predicting 

both stiffness and damping. Fig. 15(a) shows a 2D contour plot of the log of the least squares 

error (Eq. (10)) between road profile heights for varying damping ratio estimates and errors 

in the stiffness of the 15 m bridge model. It can be seen that the minimum occurs for a 

damping ratio of 2.7% and stiffness error of +0.5%, i.e., the small error in stiffness does not 



have a significant effect on the damping estimate (matching the corresponding estimate in 

Fig. 10 where the exact value of bridge stiffness is employed). This figure suggests that an 

uncertainty in the bridge stiffness can be overcome by testing a range of stiffness values, 

whereby the values of stiffness and damping ratio providing a minimum least squares error 

(𝑟𝑒𝑟𝑟𝑜𝑟) are reasonable measures of their true values. Fig. 15(b) shows a 3D surface plot of 

the data in Fig. 15(a), including a wider range of percentage errors. This figure illustrates that 

an underestimation of the bridge stiffness provides larger least squares error than an 

overestimation of the same percentage. This can be explained by analysing Eqs. (9) and (10). 

An overestimation provides a stiffer bridge than reality, hence the bridge displacements under 

each wheel, 𝑤𝑏,𝑖 (𝑖 = 1,2), and consequently the differences between them, will be smaller 

having less of an influence on 𝑟𝑒𝑟𝑟𝑜𝑟.  

 

   

Fig. 15 (a) Contour plot and (b) Surface plot of the log of least squares error, 

log (𝑟𝑒𝑟𝑟𝑜𝑟), varying bridge stiffness. Target damping ratio is 3% (─). Vehicle 

velocity is 20 m s
-1

. Bridge span is 15 m.  

 

Figs. 16 and 17 illustrate results for the other two bridge spans defined in Table 2. Here, the 

error function reaches a minimum for the true values of stiffness and damping (3%), 



indicating that the identification algorithm has the potential to predict the bridge stiffness in 

addition to the bridge’s damping ratio accurately. 

 

 

Fig. 16 (a) Contour plot and (b) Surface plot of the log of least squares error, 

log (𝑟𝑒𝑟𝑟𝑜𝑟), varying bridge stiffness. Target damping ratio is 3% (─). Vehicle 

velocity is 20 m s
-1

. Bridge span is 25 m.  

 

 

Fig. 17 (a) Contour plot and (b) Surface plot of the log of least squares error, 

log (𝑟𝑒𝑟𝑟𝑜𝑟), varying bridge stiffness. Target damping ratio is 3% (─). Vehicle 

velocity is 20 m s
-1

. Bridge span is 35 m.  

 

 



4.7.2 Vehicle suspension stiffness 

 

To investigate the effect of using incorrect vehicle model parameters in the damping 

identification algorithm, the suspension stiffness, 𝐾1, used for the first axle of the vehicle 

model is varied. Fig. 18(a) shows a 2D contour plot of the log of the least squares error 

between road profile heights (Eq. (10)) for varying damping ratio and errors in suspension 

stiffness. As expected, the identification algorithm is more sensitive to errors in vehicle 

suspension parameters than to errors in damping (i.e., small changes in stiffness or damping 

lead to large or small changes in the objective function respectively). Similar to Figs. 15 to 

17, Fig. 18(b) shows a 3D surface plot of the data in Fig. 18(a). This figure does not illustrate 

a difference between the least squares error obtained for an under- or over-estimation of the 

suspension stiffness as significant as for bridge stiffness in Section 4.7.1. In any case, a 

minimum can be found for an error of +0.1% in stiffness and a damping ratio of 3.2%, the 

accuracy being similar to those values obtained when optimising for incorrect values of 

bridge stiffness. Once again, similar results are obtained in simulations using other bridge 

spans and vehicle velocities. These results imply that, similar to errors in bridge stiffness, 

errors in the vehicle model suspension stiffness can be overcome by optimising over a wide 

range of values, where those values minimizing the error function can be used as reasonable 

estimators of suspension stiffness and damping ratio. 

 



   

Fig. 18 (a) Contour plot and (b) Surface plot of the log of least squares error, 

log (𝑟𝑒𝑟𝑟𝑜𝑟), varying vehicle suspension stiffness. Target damping ratio is 3% 

(─). Vehicle velocity is 20 m s
-1

. Bridge span is 15 m. 

 

4.8 The effect of a pothole and frequency matching 

 

The dynamic interaction between the vehicle and the bridge is a critical part of the damping 

identification algorithm. It follows that a change in this dynamic interaction, i.e., due to a 

deteriorated expansion joint prior to the bridge, will have an effect on the performance of the 

algorithm. To address this, simulations are carried out which incorporate a 0.02 m deep 

pothole in the road profile, corresponding to a deteriorated expansion joint. This pothole is 

modelled as a bump of a total width of 0.3 m, as described by Cantero et al [40]: a 0.1 m 

length of gradual decrease down to 0.02 m, a constant depression of 0.02 m for another 0.1 m 

and then, 0.1 m of an incremental increase in height until reaching the road level. It is located 

0.5 m from the midpoint of the support bearing at the bridge entrance. In addition to this 

pothole, the properties of the vehicle are selected such that the bounce frequencies of the 

vehicle match the 1
st
 natural frequency of the bridge. Frequency matching has been 

highlighted as beneficial for the extraction of bridge dynamic parameters from the vehicle 



response as it increases the dynamic response of the bridge [27]. Therefore, it is expected that 

the existence of a pothole and frequency matching will improve the accuracy of the 

estimation of damping. 

 

Fig. 19(a) shows a 2D contour plot of the log of the least squares error between road profile 

heights (Eq. (10)) for varying damping ratio and errors in the stiffness of the 15 m bridge 

model. The vehicle used to generate these results has its bounce frequency matched with the 

first natural frequency of the 15 m bridge, i.e., 5.66 Hz. The properties of this vehicle are the 

same as those given in Table 1, but the suspension stiffness, 𝐾1 and 𝐾2, which are increased 

to 7.96 × 10
6
 N m

-1 
and 1.48 × 10

7
 N m

-1
 respectively for the purposes of frequency 

matching. This figure illustrates that a clear minimum is obtained with 0% stiffness error at 

the true damping ratio of 3%. Also, a 3D surface plot of the data in Fig. 19(a) is shown in Fig. 

19(b), with bridge stiffness percentage errors included up to ±20%. Comparing Fig. 19 to Fig. 

15, it is clear that frequency matching and the inclusion of a pothole in the road profile 

significantly improve not only the accuracy of the damping identification but also the 

accuracy of the bridge stiffness associated to the minimum value of the error function. This 

improvement can be explained by the increase in bridge excitation caused by the large 

dynamic response of the vehicle induced by the pothole and the frequency matching between 

the vehicle and bridge.  Therefore it can be concluded that overall, an increased excitation of 

the bridge response is beneficial for the successful identification of bridge parameters. 



     

Fig. 19 (a) Contour plot and (b) Surface plot of the log of least squares error, 

log (𝑟𝑒𝑟𝑟𝑜𝑟), for frequency matched vehicle and pothole. Target damping ratio 

is 3% (─). Vehicle velocity is 20 m s
-1

. Bridge span is 15 m. 

 

5. Conclusions 

 

This paper presents a novel method for the identification of the damping ratio of a bridge 

using acceleration measurements from a moving vehicle. The method is carried out in 6 

sequential steps and numerically validated for a range of bridge spans, vehicle velocities and 

damping ratios. In the case of simulations for a class ‘A’ road profile, 21 vehicle velocities 

between 10 m s
-1

 and 30 m s
-1

, 9 levels of damping and noise free data, 88% of all 

simulations identified the correct damping ratio within a 10% margin of error.  In addition, 

40% of all simulations identified the correct value within a 1% margin of error. The method 

performs less accurately for shorter bridge spans and at certain vehicle velocities as a result 

of a low dynamic excitation of the bridge and the integration process respectively. There are a 

very small number of the bridge/velocity combinations which provide damping estimation 

error greater than 30%. In practice, these outliers can be identified and overcome by carrying 

out multiple crossings of the bridge at more than one vehicle velocity. 

 



As past studies encountered difficulties with road profile roughness, the sensitivity of the 

method to road roughness has been analysed. Results for ISO class ‘A’ and class ‘C’ road 

profiles have exhibited similar levels of accuracy and this is highlighted as a big advantage of 

the method. For example, for a target damping value of 3%, 89% of simulations for both the 

class ‘A’ and ‘C’ road profiles identified the correct damping ratio within a 10% margin of 

error. 

 

It has also been found that overall the method is not very sensitive to the addition of low 

levels of noise to the measured accelerations, except for the 15 m bridge at particular 

velocities which experienced an increase in average absolute percentage error from 8% for 

the noise-free damping estimates to 35% for the noise corrupted estimates. As the algorithm 

described in this paper requires the double integration of accelerations, the effect of an 

incorrect assumed value for the initial conditions of the vehicle degrees of freedom has been 

investigated. Given that the method calculates the damping based on the difference between 

the predictions of road irregularities between two axles, accuracy is not sensitive to the 

selected initial conditions provided a linear correction technique is applied.  

 

A number of difficulties are expected in the field that will reduce the accuracy of the 

algorithm, i.e., deviations between mathematical models and reality. Inaccuracies in the 

assumed bridge or vehicle model have been addressed by varying the bridge stiffness and 

vehicle suspension stiffness respectively with respect to their true value. It has been found 

that neither affects the damping estimate significantly. Also, varying these stiffness values 

highlighted the potential of the proposed algorithm to identify not also damping but also other 

bridge parameters such as  stiffness within a reasonable level of accuracy.  

 



Finally, a pothole has been incorporated in the road profile prior to the bridge to investigate 

its effect on the performance of the algorithm. A vehicle model has also been frequency 

matched with the 15 m bridge in simulations. It has been found that the increased excitation 

caused by the pothole and the resonance due to frequency matching improved the accuracy of 

the damping ratio estimate and the bridge stiffness estimate considerably, indicating that they 

could be beneficial for the implementation of this algorithm in practice. Overall, the positive 

results of the algorithm proposed in this theoretical investigation suggest that an instrumented 

vehicle has the potential to be implemented as a sensitive low-cost method of identifying 

bridge parameters such as damping and stiffness in short to medium span bridges.  
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