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Abstract

Methods and results are presented for applying supervised machine learning techniques
to the task of predicting the need for repairs of air compressors in commercial trucks
and buses. Prediction models are derived from logged on-board data that are down-
loaded during workshop visits and have been collected over three years on large num-
ber of vehicles. A number of issues are identified with the data sources, many of which
originate from the fact that the data sources were not designed for data mining. Nev-
ertheless, exploiting this available data is very important for the automotive industry
as means to quickly introduce predictive maintenance solutions. It is shown on a large
data set from heavy duty trucks in normal operation how this can be done and generate
a profit.

Random forest is used as the classifier algorithm, together with two methods for
feature selection whose results are compared to a human expert. The machine learning
based features outperform the human expert features, wich supports the idea to use data
mining to improve maintenance operations in this domain.

Keywords: Machine Learning, Diagnostics, Fault Detection, Automotive Industry,
Air Compressor

1. Introduction

Today, Original Equipment Manufacturers (OEMs) of commercial transport vehi-
cles typically design maintenance plans based on simple parameters such as calendar
time or mileage. However, this is no longer sufficient in the market and there is a need
for more advanced approaches that provide predictions of future maintenance needs of
individual trucks. Instead of selling just vehicles, the sector is heading towards sell-
ing complete transport services; for example, a fleet of trucks, including maintenance,
with a guaranteed level of availability. This moves some of the operational risk from
the customer to the OEM but should lower the overall cost of ownership. The OEM

Email addresses: rune .prytz@volvo.com (Rune Prytz), slawomir.nowaczyk@hh. se
(Stawomir Nowaczyk), thorsteinn.rognvaldsson@hh. se (Thorsteinn Rognvaldsson),
stefan.byttner@hh. se (Stefan Byttner)

Preprint submitted to Engineering Applications of Artificial Intelligence 11 February 2015



has the benefit of scale and can exploit similarities in usage and wear between different
vehicle operators.

Predicting future maintenance needs of equipment can be approached in many dif-
ferent ways. One approach is to monitor the equipment and detect patterns that signal
an emerging fault, which is reviewed by Hines and Seibert|(2006), Hines et al. (2008al),
Hines et al.[(2008b)), and Ma and Jiang| (2011). A more challenging one is to predict
the Remaining Useful Life (RUL) for key systems, which is reviewed by [Peng et al.
(2010), S1 et al.| (2011), |Sikorska et al.[(2011) and |Liao and Kottig|(2014). For each of
these approaches there are several options on how to do it: use physical models, expert
rules, data-driven models, or hybrid combinations of these. The models can look for
parameter changes that are linked to actual degradation of components, or they can
look at vehicle usage patterns and indirectly infer the wear on the components. Data-
driven solutions can be based on real-time data streamed during operation or collected
historical data.

We present a data-driven approach that combines pattern recognition with the RUL
estimation, by classifying if the RUL is shorter or longer than the time to the next
planned service visit. The model is based on combining collected (i.e. not real-time)
data from two sources: data collected on-board the vehicles and service records col-
lected from OEM certified maintenance workshops. This presents a number of chal-
lenges, since the data sources have been designed for purposes such as warranty anal-
ysis, variant handling and financial follow-up on workshops, not for data mining. The
data come from a huge set of real vehicles in normal operation, with different operators.
The challenges include, among others, highly unbalanced datasets, noisy class labels,
uncertainty in the dates, irregular readouts and unpredictable number of readouts from
individual vehicles. In addition, multiple readouts from the same truck are highly cor-
related, which puts constraints on how data for testing and training are selected. We
specifically study air compressors on heavy duty trucks and the fault complexity is
also a challenge; air compressors face many possible types of failures, but we need to
consider them all as one since they are not differentiated in the data sources.

Predictive maintenance in the automotive domain is more challenging than in many
other domains, since vehicles are moving machines, often operating in areas with low
network coverage or travelling between countries. This means few opportunities for
continuous monitoring, due to the cost of wireless communication, bandwidth limita-
tions, etc. In addition, both the sensors and computational units need to fulfil rigorous
safety standards, which makes them expensive and not worth adding purely for diag-
nostic purposes. Those problems are amplified due to a large variety of available truck
configurations. Finally, heavy duty vehicles usually operate in diverse and often harsh
environments.

The paper is structured as follows. A survey of related works introduces the area of
data mining of warranty data. This is followed by an overview of the data sets and then
a methodology section where the problem is introduced and the employed methods are
described. This is finally followed by a results section and a conclusion section.

Related Work

There are few publications where service records and logged data are used for pre-
dicting maintenance needs of equipment, especially in the automotive industry, where



wear prediction is almost universally done using models that are constructed before
production.

In a survey of artificial intelligence solutions in the automotive industry, \Gusikhin
et al.|(2007) discuss fault prognostics, after-sales service and warranty claims. Two rep-
resentative examples of work in this area are Buddhakulsomsiri and Zakarian| (2009)
and Rajpathak (2013). Buddhakulsomsiri and Zakarian| (2009) present a data min-
ing algorithm that extracts associative and sequential patterns from a large automotive
warranty database, capturing relationships among occurrences of warranty claims over
time. Employing a simple IF-THEN rule representation, the algorithm filters out in-
significant patterns using a number of rule strength parameters. In their work, how-
ever, no information about vehicle usage is available, and the discovered knowledge is
of a statistical nature concerning relations between common faults. Rajpathak| (2013)
presents an ontology based text mining system that clusters repairs with the purpose
of identifying best-practice repairs and, perhaps more importantly, automatically iden-
tifying when claimed labour codes are inconsistent with the repairs. Related to the
latter, but more advanced, is the work by Medina-Oliva et al.| (2014) on ship equip-
ment diagnosis. They use an ontology approach applied to mining fleet data bases and
convincingly show how to use this to find the causes for observed sensor deviations.

Thus, data mining of maintenance data and logged data has mainly focused on
finding relations between repairs and operations and to extract most likely root causes
for faults. Few have used them for estimating RUL or to warn for upcoming faults. We
presented preliminary results for the work in this paper in an earlier study (Prytz et al.|
2013). Furthermore, [Frisk et al|(2014) recently published a study where logged on-
board vehicle data were used to model RUL for lead-acid batteries. Their approach is
similar to ours in the way that they also use random forests and estimate the likelihood
that the component survives a certain time after the last data download. Our work is
different from theirs in two aspects. First, a compressor failure is more intricate than a
battery failure; a compressor can fail in many ways and there are many possible causes.
Secondly, they also attempt to model the full RUL curve whereas we only consider the
probability for survival until the next service stop.

RecentlyChoudhary et al.|(2009) presented a survey of 150 papers related to the use
of data mining in manufacturing. While their scope was broader than only diagnostics
and fault prediction, they covered a large portion of literature related to the topic of this
paper. Their general conclusion is that the specifics of the automotive domain make
fault prediction and condition based maintenance a more challenging problem than in
other domains; almost all research considers the case where continuous monitoring of
devices is possible.

Jardine et al.| (2006)) present an overview of condition-based maintenance (CBM)
solutions for mechanical systems, with special focus on models, algorithms and tech-
nologies for data processing and maintenance decision-making. They emphasize the
need for correct, accurate, information (especially event informaton) and working tools
for extracting knowledge from maintenance databases. [Peng et al.|(2010) also review
methods for prognostics in CBM and conclude that methods tend to require extensive
historical records that include many failures, even “catastrophic” failures that destroy
the equipment, and that few methods have been demonstrated in practical applications.
Schwabacher] (2005) surveys recent work in data-driven prognostics, fault detection



and diagnostics. |Si et al.|(2011)) and |Sikorska et al.| (201 1)) present overviews of meth-
ods for prognostic modelling of RUL and note that available on-board data are seldom
tailored to the needs of making prognosis and that few case studies exist where algo-
rithms are applied to real world problems in realistic operating environments.

When it comes to diagnostics specifically for compressors, it is common to use
sensors that continuously monitor the health state, e.g. accelerometers for vibration
statistics, see |[Ahmed et al.| (2012)), or temperature sensors to measure the compres-
sor working temperature, see Jayanth| (2010 (filed 2006)). The standard off-board tests
for checking the health status of compressors require first discharging the compressor
and then measuring the time it takes to reach certain pressure limits in a charging test,
as described e.g. in a compressor trouble shooting manual Bendix| (2004). All these
are essentially model-based diagnostic approaches where the normal performance of a
compressor has been defined and then compared to the field case. Similarly, there are
patents that describe methods for on-board fault detection for air brake systems (com-
pressors, air dryers, wet tanks, etc.) that build on setting reference values at installment
or after repair, see e.g. [Fogelstrom| (2007 (filed 2006).

In summary, there exist very few published examples where equipment mainte-
nance needs are estimated from logged vehicle data and maintenance data bases. Yet,
given how common these data sources are and how central transportation vehicles are
to the society, we claim it is a very important research field.

2. Presentation of Data

Companies that produce high value products necessarily have well-defined pro-
cesses for product quality follow-up, which usually rely on large quantities of data
stored in databases. Although these databases were designed for other purposes, e.g.
analysing warranty issues, variant handling and workshop follow-up, it is possible to
use them also to model and predict component wear. In this work we use two such
databases: the Logged Vehicle Data (LVD) and the Volvo Service Records (VSR). In
this work we have used data from approximately 65000 European Volvo trucks, models
FH13 and FM13, produced between 2010 and 2013.

LVD

The LVD database contains aggregated information about vehicle usage patterns.
The values are downloaded each time a vehicle visits an OEM authorised workshop
for service and repair. This happens several times per year, but at intervals that are
irregular and difficult to predict a priori.

During operation, a vehicle continuously aggregates and stores a number of param-
eters, such as average speed or total fuel consumption. In general, those are simple
statistics of various kinds, since there are very stringent limitations on memory and
computing power, especially for older truck models. Most parameters belong to one
of the following three categories: Vehicle Performance and Utilisation, Diagnostics
or Debugging. This work mainly focused on the first category, which includes over
two thousand different parameters. They are associated with various subsystems and
components. The following four example ones have been identified as important for
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Figure 1: Vehicle age distribution, based on readouts in LVD. The left panel shows the number of vehicles,
with data readouts, at different ages: dark blue are vehicles with any data; light blue are vehicles with
consecutive data. The right panel shows the age of vehicles at data readouts for the subset of vehicles that
have any readouts beyond age of two years (warranty period).

predicting air compressor failures by a domain expert: Pumped air volume since last
compressor change, Mean compressed air per distance, Air compressor duty cycle, and
Vehicle distance.

The vehicles in our data set visit a workshop, on average, every 15 weeks. This
means that the predictive horizon for the prognostic algorithm must be at least that
long. The system needs to provide warnings about components with an increased risk
for failing until the next expected workshop visit. However, if the closest readout prior
to the failure is 3-4 months, then it is less likely that the wear has had visible effects on
the data.

This time sparseness is a considerable problem with the LVD. The readout fre-
quency varies a lot between vehicles and changes with vehicle age, and can be as low
as one readout per year. They also become less frequent as the vehicle ages. Figure/[]]
illustrates how many vehicles have data in LVD at different ages. Some vehicles (dark
blue in the Figure) have consecutive data, defined as at least one readout every three
months. They are likely to have all their maintenance and repairs done at OEM autho-
rised workshops. Many vehicles, however, only have sporadic readouts (light blue in
the Figure).

For data mining purposes are the vehicles with consecutive data most useful. They
have readouts in the LVD database and repairs documented in the VSR system. They
contribute with sequences of data that can be analysed for trends and patterns. On the
other hand, from the business perspective it is important that as many trucks as possible
are included in the analysis.

The right panel of Figure [I] illustrates two different maintenance strategies. The
three peaks during the first year correspond to the typical times of scheduled mainte-
nance. Repairs then get less frequent during the second year, with the exception of just
before the end of it. This is probably the result of vehicles getting maintenance and
repairs before the warranty period ends. In general, all vehicles visit the OEM autho-
rised workshops often during the warranty period. After that, however, some vehicles
disappear, while the remaining ones continue to be maintained as before, without any
significant drop in visit frequency. This loss of data with time is a problematic issue.



Plenty of valuable LVD data is never collected, even after the first year of vehicle oper-
ation. A future predictive maintenance solution must address this, either by collecting
the logged data and the service information using telematics or by creating incentives
for independent workshops to provide data.

Finally, the specification of parameters that are monitored varies from vehicle to
vehicle. A core set of parameters, covering basic things like mileage, engine hours
or fuel consumption, is available for all vehicles. Beyond that, however, the newer
the vehicle is, the more LVD parameters are available, but it also depends on vehicle
configuration. For instance, detailed gearbox parameters are only available for vehicles
with automatic gearboxes. This makes it hard to get a consistent dataset across a large
fleet of vehicles and complicates the analysis. One must either select a dataset with
inconsistencies and deal with missing values, or limit the analysis to only vehicles
that have the desired parameters. In this work we follow the latter approach and only
consider parameter sets that are present across large enough vehicle fleets. Sometimes
this means that we need to exclude individual parameters that most likely would have
been useful.

VSR

The VSR database contains repair information collected from the OEM authorised
workshops around the world. Each truck visit is recorded in a structured entry, labelled
with date and mileage, detailing the parts exchanged and operations performed. Parts
and operations are denoted with standardised identification codes.

The database contains relevant and interesting information with regards to vehicle
failures, information that is sometimes exploited by workshop technicians for diagnos-
tics and to predict future failures. However, the work presented here is only using the
dates of historic repairs. Those dates form the supervisory signal for training and val-
idating the classifier, i.e. to label individual LVD readouts as having either faulty or
healthy air compressor, based on the time distance to the nearest replacement.

Unfortunately, however, there are no codes for reasons why operations are done.
In some cases those can be deduced from the free text comments from the workshop
personnel, but not always. The quality and level of detail of those comments vary
greatly. This is a serious limitation since it introduces a lot of noise into the training
data classification labels. In the worst case can a perfectly good part be replaced in the
process of diagnosing an unrelated problem.

Undocumented repairs are also a problem. They rarely happen at authorised work-
shops since the VSR database is tightly coupled with the invoicing systems. On the
other hand, there is seldom any information about repairs done in other workshops.
Patterns preceding faults that suddenly disappear are an issue, both when training the
classifier and later when evaluating it.

Much of the information in the VSR database is entered manually. This results in
various human errors such as typos and missing values. A deeper problem, however,
are incorrect dates and mileages, where information in the VSR database can be several
weeks away from when the matching LVD data was read out. This is partly due to
lack of understanding by workshop technicians; for the main purposes, invoicing and
component failure statistics, exact dates are not overly important. In addition, the VSR



date is poorly defined. In some cases the date can be thought of as the date of diagnosis,
i.e. when the problem was discovered, and it may not be the same as the repair date,
i.e. the date when the compressor was replaced.

3. Problem Formulation

Much diagnostics research focuses on predicting Remaining Useful Life (RUL) of
a component, and, based on that, deciding when to perform maintenance or component
replacement.

The RUL is usually modelled as a random variable that depends on the age of the
component, the environment in which it operates, and the partially observable health
state, which is continuously monitored or occasionally measured. Using the same no-
tation as|Si et al.|(2011)) we define X; as the random variable of the RUL at time ¢, and
Y, is the history of operational profiles and condition monitoring information up to that
point. The probability density function of X conditional on Y; is denoted as f(z:|Yz).

The usual RUL approach is to estimate f(z;|Y;) or the expectation of the RUL.
However, the setting we consider in this paper, this approach is unnecessarily compli-
cated; we do not need to calculate the perfect time to perform repair since it is un-
practical to do a repair at arbitrary times. Repairs are preferably done during planned
maintenance events. The truck is in workshop on a particular date and the decision
is a binary one: either to replace the component now or not. It should be replaced if
the risk that it will not survive until the next planned maintenance is sufficiently high
(in relation to the cost for repairing it in an unplanned service). That is, we need to
estimate the posterior probability

A
P(X; < AY) = [ flaif¥da (1)
0

where A is the time horizon. This is the probability that the RUL does not exceed
the time horizon A, conditioned on the operation history and maintenance information
Y;. Based on this probability, we can make a decision of whether to flag individual
component as faulty or healthy, during every workshop visit of a given vehicle.

In the following sections we make two simplifying assumptions. First, we use the
same prediction horizon A for all vehicles. Even though some vehicles are in the work-
shop more often than others, the main driving factor is the cost of wasting component
life and the acceptable level can be defined globally. The other simplification is that
Y} only contains the currently downloaded LVD data. This can be viewed as a form
of Markovian condition, we have no memory of previous maintenance events in LVD,
VSR or any other database. This latter assumption is for practical reasons; a system
like this should be possible to implement in a workshop tool, without the need to access
a historical database.

One simplification that we cannot assume is that of a single failure mode. We
must determine whether the component (air compressor in this case) will fail or not,
regardless of mode. It is impossible to get information on single failure modes from
the maintenance records.



As described in the next section, we do not explicitly estimate the posterior proba-
bility P(X; < A[Y:), butinstead use a supervised classifier to predict the faulty/healthy
decision directly.

4. Methods

Machine learning algorithm and software

All experimental results are averages over 10 runs using the Random Forest (Breiman),
2001) classifier, with 10-fold cross validation. We used the R language (R Core Team)
2014) including caret, unbalanced, DMwR and ggplot?2 librariesﬂ

Random Forest are decision trees combined by bagging but with an additional layer
of randomness ontop of what is added by the boostraping of training data. The addi-
tional randomness is added by only considering subset of features at each node split.
The considered features are randomly selected at each node and is normally few com-
pared to the available features in the training data.

Evaluation criteria

Supervised machine learning algorithms are typically evaluated using measures like
accuracy, area under the Receiver Operating Characteristic (ROC) curve or similar.
Most of them, however, are suitable only for balanced datasets, i.e. ones with simi-
lar numbers of positive and negative examples. Measures that also work well for the
unbalanced case include, e.g., the Positive Predictive Value (PPV) or F}-score:

2TP TP
A= PPV = —— . @)
2TP + FN + FP TP + FP
where TP, FP and FN denote true positives, false positives and false negatives, respec-

tively.

However, the prognostic performance must take business aspect into account, where
the ultimate goal is to minimise costs and maximise revenue. In this perspective, there
are three main components to consider: the initial investment cost, the financial gain
from correct predictions, and the cost of false alarms.

The initial investment cost consists of designing and implementing the solution, as
well as maintaining the necessary infrastructure. This is a fixed cost, independent of
the performance of the method. It needs to be overcome by the profits from the mainte-
nance predictions. In this paper we estimate it to be €150,000, which is approximately
one year of full time work.

The financial gains come from correctly predicting failures before they happen and
doing something about them. It is reported in a recent white paper by Reimer| (2013)
that wrench time (the repair time, from estimate approval to work completion), is on
average about 16% of the time a truck spends at the workshop. Unexpected failures
are one of the reasons for this since resources for repairs need to be allocated. All
component replacements are associated with some cost of repair. However, unexpected

http://cran.r-project.org/web/packages/
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breakdowns usually cause additional issues, such as cost of delay associated with not
delivering the cargo in time. In some cases, there are additional costs like fowing. Fixed
operational costs correspond to the cost of owning and operating a vehicle without
using it. This includes drivers wage, insurances and maintenance. A European long-
haul truck costs on average €1,000 per day in fixed costs.

False alarms are the most significant cost, since when good components are flagged
by the system as being faulty, an action needs to be taken. At best this results in ad-
ditional work for workshop personnel, and at worst it leads to unnecessary component
replacements.

It is worth noting that the above analysis does not account for false negatives,
i.e. for cases where actual component failures were not detected. This is somewhat
counter-intuitive, in a sense that one can think of them as missed opportunities, and
missing opportunities is bad. In the current analysis, however, we focus on evaluating
the feasibility of introducing a predictive maintenance solution in a market where there
is none.

At this stage, our goal is much less finding the best possible method, but rather on
presenting a convincing argument that a predictive maintenance solution can improve
upon existing situation. In comparison to the current maintenance scheme, where the
vehicles run until failure, those false negatives maintain status quo.

This is of course a simplification, since there is certain cost associated with missing
a failure. We could elaborate about the value of customer loyalty and quality reputation,
but they are very hard to quantify. Therefore, in the results section, we use both the
above-defined profit, as well as more “traditional” evaluation metrics (accuracy and
F1i-score), and point out some differences between them.

In this respect is the predictive maintenance domain for the automotive industry
quite different from many others. For instance, in the medical domain, false negatives
correspond to patients who are not correctly diagnosed even though they carry the
disease in question. This can have fatal consequences and be more costly than false
positives, where patients get mistakenly diagnosed. It is also similar for the aircraft
industry.

Among others, Sokolova et al.| (2006) analyse a number of evaluation measures
for assessing different characteristics of machine learning algorithms, while [Saxena
et al| (2008)) specifically focus on validation of predictions. They note how lack of
appropriate evaluation methods often renders prognostics meaningless in practice.

Ultimately, the criterion for evaluation of the model performance is a cost function
based on the three components introduced at the beginning of this section. The func-
tion below captures the total cost of the implementation of the predictive maintenance
system:

Profit = TP x ECUR — FP x CPR — Investment, 3)

where ECUR stands for extra cost of unplanned repair and CPR stands for cost of
planned repair. Each true positive avoids the additional costs of a breakdown and each
false positive is a repair done in vain, which causes additional costs.

It is interesting to study the ratio between the cost of planned and unplanned repairs.
It will vary depending on the component, fleet operator domain and business model, et
cetera. On the other hand, the cost for a breakdown for vehicles with and without pre-



dictive maintenance can be used to determine the “break even” ratio required between
true positives and false positives.

Prediction Horizon

We define the Prediction Horizon (PH) as the period of interest for the predictive
algorithm. A replacement recommendation should be made for a vehicle for which the
air compressor is expected to fail within that time frame into the future. As described
earlier, the vehicles visit the workshop on average every 15 weeks and the PH needs to
be at least that long. The system should provide warnings about components that are
at risk of failing before the next expected workshop visit.

It is expected that the shorter the PH, the more likely it is that there is information
in the data about upcoming faults. It is generally more difficult to make predictions
the further into the future they extend, which calls for a short PH. However, from a
business perspective it is desireable to have a good margin for planning, which calls for
a long PH. We experiment with setting the PH up to a maximum of 50 weeks.

Independent data sets for training and testing

A central assumption in machine learning (and statistics) it that of independent and
identically distributed (IID) data. There are methods that try to lift it to various degrees,
and it is well known that most common algorithms work quite well also in cases when
this assumption is not fully fulfilled, but it is still important, especially when evaluating
and comparing different solutions.

The readouts consist of aggregated data that have been sampled at different times.
Subsequent values from any given truck are highly correlated to each other. It is even
more profound in case of cumulative values, such as total mileage, a single event of
abnormal value will directly affect all subsequent readouts. Even without the aggrega-
tion effect, however, there are individual patterns that are specific to each truck, be it
particular usage or individual idiosyncrasies of the complex cyber-physical system. It
makes all readouts from a single vehicle dependent. This underlying pattern of the data
is hard to visualize by analysing the parameter data as such. However, a classifier can
learn these patterns and overfit.

A partial way of dealing with the problem is to ensure that the test and train dataset
be split on a per vehicle basis and not randomly among all readouts. It means that if one
or more readouts from a given vehicle belong to the test set, no readouts from the same
vehicle can be used to train the classifier. The data sets for training and testing must
contain unique, non-overlapping, sets of vehicles in order to guarantee that patterns
that are linked to wear and usage are learned, instead of specific usage patterns for
individual vehicles.

Feature selection

The data set contains 1,250 unique features and equally many differentiated fea-
tures. However, only approximately 500 of them are available for the average vehicle.
It is clear that not all features should be used as input to the classifier. It is important
to find the subset of features that yields the highest classification performance. Addi-
tionally, the small overlap of common features between vehicles makes this a research
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challenge. It is hard to select large sets of vehicles that each share a common set of
parameters. Every new feature that gets added to the dataset must be evaluated with
respect to the gain in performance and the decrease in number of examples.

Feature selection is an active area of research, but our setting poses some specific
challenges. (Guyon and Elisseeff| (2003) and |Guyon et al.|(2006) present a comprehen-
sive and excellent, even if by now somewhat dated, overview of the feature selection
concepts. [Bolon-Canedo et al.| (2013) present a more recent overview of methods.
Molina et al.[(2002) analyse performance of several fundamental algorithms found in
the literature in a controlled scenario. A scoring measure ranks the algorithms by tak-
ing into account the amount of relevance, irrelevance and redundance on sample data
sets. [Saeys et al.[(2007)) provide a basic taxonomy of feature selection techniques, and
discuss their use, variety and potential, from the bioinformatics perspective, but many
of the issues they discuss are applicable to the data analysed in this paper.

We use two feature selection methods: a wrapper approach based on the beam
search algorithm, as well as a new filter method based on the Kolmogorov-Smirnov
test to search for the optimal feature set. The final feature sets are compared against
an expert dataset, defined by an engineer with domain knowledge. The expert dataset
contains four features, all of which have direct relevance to the age of the vehicle or
the usage of the air compressor.

The beam search feature selection algorithm performs a greedy graph search over
the powerset of all the features, looking for the subset that maximises the classification
accuracy. However, at each iteration, we only expand nodes that maintain the data set
size above the given threshold. The threshold is reduced with the number of parameters
as shown in equation (). Each new parameter is allowed to reduce the dataset with a
small fraction. This ensures a lower bound on the data set size. The top five nodes,
with respect to accuracy, are stored for next iteration. This increased the likelihood of
finding the global optimum. The search is stopped when a fixed number of features is
found:

Ndataset = Nall X constraintFactor™rerems )

Many parameters in the LVD dataset are highly correlated and contain essentially
the same information, which can potentially lower the efficiency of the beam search.
Chances are that different beams may select different, but correlated, feature sets. In
this way the requirement for diversity on the “syntactic” level is met, while the algo-
rithm is still captured in the same local maximum. We have not found this to be a
significant problem in practice.

With the Kolmogorov-Smirnov method, we are interested in features whose distri-
butions vary in relation to oncoming failures of air compressors. Based on the expertise
within OEM company we know that there are two main reasons for such variations. On
the one hand, they may be related to different usage patterns of the vehicle. As an ex-
ample, air compressors on long-haul trucks typically survive longer than on delivery
trucks, due to factors like less abrupt brakes usage and less often gear changes. On
the other hand, early symptoms of component wear may also be visible in some of the
monitored parameters. For example, as worn compressors are weaker than new ones,
it often takes them longer time to reach required air pressure.

To identify these features, we define normal and fault data sets, and compare their
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Figure 2: Differences due to usage. The left panel shows the normal and fault distributions for the feature
Compressor Duty Cycle (CUF) when the fault sample (light blue) is drawn from periods 0-5 weeks prior to
the compressor repair. The right panel shows the same thing but when the fault sample (light blue) is drawn
from 0-25 weeks prior to the repair. The normal sample (grey) is in both cases selected from vehicles that
have not had any air compressor repair.

distributions using the Kolmogorov-Smirnov (KS) test (Hazewinkel, 2001).

The normal sample is a random sample of fault-free LVD readouts, while the fault
sample are LVD readouts related to a compressor repair. The fault sample is drawn
from vehicles with a compressor change and selected from times up to PH before the
repair. This is done in the same way for both usage and wear metrics. The normal sam-
ple, on the other hand, is drawn either from all vehicles that have not had a compressor
change, or from vehicles with a compressor change but outside of the PH time window
before the repair. In the first case, the difference in distributions between normal and
fault data corresponds to parameters capturing usage difference that is relevant for air
compressor failures. In the second case, it is the wear difference.

The two samples are compared using a two-sample KS test and a p-value is com-
puted under the null hypothesis that the two samples are drawn from the same distri-
bution. The p-value is a quantification of how likely it is to get the observed difference
if the null hypothesis is true and a low p-value indicates that the null hypothesis may
not be true. Features with low p-values are therefore considered interesting since the
observed difference may indicate a fundamental underlying effect (wear or usage). The
lower the p-value, the more interesting the feature. The KS filter search is terminated
when a predetermined number of features has been reached.

Figure 2] illustrates the case with the feature Compressor Duty Cycle (CUF) when
evaluated as relevant from the usage point of view. There is a clear difference 0-5
weeks before the repair and there is also a difference 0-25 weeks before the repair.
Figure[Jillustrates the same case but when evaluated from the wear point of view. This
is done for the illustrative purposes; CUF is a parameter that shows both usage and
wear metrics, but there are other interesting parameters that are only discovered in one
or the other.

It is important to note that the distribution of vehicle ages in the fault set is different
from the normal set. We are working with real data, and old vehicles are more likely to
fail than newer ones. This difference is clearly important when doing the classification,
since the RUL depends on the age of the truck. However, in the feature selection, this
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Figure 3: Differences due to wear. The left panel shows the normal and fault distributions for the feature
Compressor Duty Cycle (CUF) when the fault sample (light blue) is drawn from periods 0-5 weeks prior to
the compressor repair. The right panel shows the same thing but when the fault sample (light blue) is drawn
from 0-25 weeks prior to the repair. The normal sample (grey) is in both cases selected from vehicles that
have had an air compressor repair, but times that are before the PH fault data.

effect is undesirable: we are interested in identifying parameters that differ between
healthy and failing vehicles, not those that differ between new and old vehicles.

We propose a methods for reducing the risk for such spurious effects, by re-sampling
the normal group so that it has the same mileage or engine hour distribution as the fault
group. We call this age normalisation, and present evaluation of it in the Results sec-
tion. The sampling is done in two steps. The first step is to re-sample the reference
distribution uniformly. In the second step is the uniform reference distribution sampled
again, this time weighted according to the distribution of the test set. In cases with a
narrow age distribution for the fault set will only a fraction of the normal data be used.
This requires a substantial amount of normal data which, in our case, is possible since
the dataset is highly unbalanced and there is much more normal data than fault data.
The effect of age normalisation is illustrated in Fig. 4]
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Figure 4: Illustration of the effect of age normalisation. The left panel shows the normal (grey) and the fault
(light blue) distributions for a feature without age normalisation. The right panel shows the result after age
normalisation. Here age normalisation removed the difference, which was a spurious effect caused by age.
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Balancing the dataset

Machine learning methods usually assume a fairly balanced data distribution. If
that is not fulfilled, then the results tend to be heavily biased towards the majority
class. This is a substantial problem in our case, since only a small percentage of the
vehicles experience compressor failure and, for any reasonable value of the PH, only a
small subset of their readouts is classified as faulty.

Imbalanced datasets require either learning algorithms that handle this or data pre-
processing steps that even out the imbalance. We chose to use the latter. There are many
domains where class imbalance is an issue, and therefore a significant body of research
is available concerning this. For example, He and Garcia|(2009) provide a comprehen-
sive review of the research concerning learning from imbalanced data. They provide a
critical review of the nature of the problem and the state-of-the-art techniques. They
also highlight the major opportunities and challenges, as well as potential important
research directions for learning from imbalanced data. [Van Hulse et al.| (2007) present
a comprehensive suite of experimentation on the subject of learning from imbalanced
data. |Sun et al.|(2007) investigate meta-techniques applicable to most classifier learn-
ing algorithms, with the aim of advancing the classification of imbalanced data, explor-
ing three cost-sensitive boosting algorithms, which are developed by introducing cost
items into the learning framework of AdaBoost. Napierala and Stefanowski (2012)
propose a comprehensive approach, called BRACID, that combines multiple differ-
ent techniques for dealing with imbalanced data, and evaluate it experimentally on a
number of well-known datasets.

We use the Synthetic Minority Over-sampling TEchnique (SMOTE), introduced by
Chawla et al.|(2002). It identifies, for any given positive example, the k nearest neigh-
bours belonging to the same class. It then creates new, synthetic, examples randomly
placed in between the original example and the k neighbours. It uses two design pa-
rameters: number of neighbours to take into consideration (k) and the percentage of
synthetic examples to create. The first parameter, intuitively, determines how similar
new examples should be to existing ones, and the other how balanced the data should
be afterwards. SMOTE can be combined with several preprocessing techniques, e.g.
introduced by |Batista et al.[{(2004) and some others, aggregated and implemented in a R
library by |Dal Pozzolo et al.. We tried and evaluated four of them: The Edited Nearest
Neighbour (ENN), the Neighbourhood Cleaning Rule (NCL), the Tomek Links (TL),
and the Condensed Nearest Neighbour (CNN).

5. Results

Cost function

The cost of planned repair CPR, cost of unplanned repair CUR, and extra cost of
unplanned repair ECUR can be split up into the following terms:

CPR = Cpm”t + Ciork + Ccligowntime (5)
CUR = CPGT't + Cgork + CdUowntime + Ceatra (6)
ECUR = CUR - CPR 7
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Here, Cpqr¢ is the cost of the physical component, the air compressor, that needs
to be exchanged. We set this to €1000. It is the same for both planned and unplanned
repairs. C\,ork 1 the labour cost of replacing the air compressor, which takes approx-
imately three hours. We set C£ . to €500 for planned repairs and CY_ , to €1,000
for unplanned repairs. If the operation is unplanned, then one needs to account for
diagnosis, disruptions to the workflow, extra planning, and so on.

Cowntime 18 the cost for vehicle downtime. Planned component exchanges can
be done together with regular maintenance; C . s therefore set to zero. It is
included in equation () since it will become significant in the future, once predictive
maintenance becomes common and multiple components can be repaired at the same
time. The downtime is a crucial issue for unplanned failures, however, especially road-
side breakdown scenarios. Commonly at least half a day is lost immediately, before
the vehicle is transported to the workshop and diagnosed. After that comes waiting for
spare parts. The actual repair may take place on the third day. The resulting 2-3 days
of downtime plus a possible cost of towing, Cc%wmime, is estimated to cost a total of
€3,500.

The additional costs, C;¢rq, are things like the delivery delay, the cost for damaged
goods, fines for late arrival, and so on. This is hard to estimate, since it is highly
dependent on the cargo, as well as on the vehicle operator’s business model. The just in
time principle is becoming more widespread in the logistics industry and the additional
costs are therefore becoming larger. We set C.,4,-, to €11,000.

Inserting those estimates into equations (3), (6) and (7) yields CPR = €1,500, CUR
=€16,500 and ECUR = €15,000. The final Profit function, eq. (3), becomes (in Eu-
ros):

Profit(TP, FP) = TP x 15,000 — FP x 1,500 — 150, 000. ®)

Obviously, the Profit function (@) is an estimate and the numbers have been chosen
so that there is a simple relationship between the gain you get from true positives and
the loss you take from false positives (here the ratio is 10:1). A more exact ratio is
hard to calculate since it is difficult to get access to the data required for estimating
it (this type of information is usually considered confidential). Whether the predictive
maintenance solution has a profit or loss depends much on the extra cost Cytrq -

The importance of data independence

The importance of selecting independent data sets for training and testing cannot be
overstated. Using dependent data sets will lead to overly optimistic results that never
hold in the real application. Figure [5]shows the effects from selecting training and test
data sets in three different ways.

The random method refers to when samples for training and testing are chosen
completely randomly, i.e. when examples from the same vehicle can end up both in the
training and the test data set. These data sets are not independent and the out-of-sample
accuracy is consequently overestimated.

The one sample method refers to when each vehicle provides one positive and one
negative example to the training and test data, and there is no overlap of vehicles in the
training and test data. This leads to independent data sets that are too limited in size.
The out-of-sample performance is correctly estimated but the data set cannot be made
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Figure 5: Comparison of strategies for selecting training and test data. The Expert feature set was used for
all experiments and the data sets were balanced. The x-axis shows the size of the training data set.

large. The all sample method refers to the case when each vehicle can contribute with
any number of examples but there is no overlap of vehicles between the training and
test data. This also yields a correct out-of-sample accuracy but the training data set can
be made larger.

Feature selection

The different feature selection approaches, and the age normalisation of the data,
described in the Methods section produced six different feature sets in addition to the
Expert feature set.

The beam search wrapper method was performed with five beams and a size re-
duction constraint of 10%. The search gave five different results, one from each beam,
but four of them were almost identical, differing only by the last included feature. The
four almost identical feature sets where therefore reduced to a single one, by includ-
ing only the 14 common features. The fifth result was significantly different and was
kept without any modifications. The two feature sets from the beam search are denoted
Beam search set 1 and Beam search set 2, respectively; they each had 14 features (the
limit set for the method). Three out of the four features selected by the expert were
also found by the beam search.

The KS filter method was used four times, with different combinations of wear
features, usage features, and age normalisation (the reader is referred to the Methods
section for details). This gave four feature sets: Wear, Usage, Wear with age normali-
sation, and Usage with age normalisation.

Figure [6] show the results when using the seven different feature sets. The overly
optimistic result from using randomly selected data sets is shown for pedagogical rea-
sons, reiterating the importance of selecting independent data sets. The data sets were
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Figure 6: Comparison of feature selection methods when measuring the accuracy of the predictor. The left
panel shows the result when training and test data are chosen randomly, i.e. with dependence. The right
panel shows the result when the training and test data are chosen with the one sample method, i.e. without
dependence.

balanced in the experiments. The Usage features performed best and the Expert fea-
tures were second (except when an erroneous method for selecting data was used).
As an example, the following 14 parameters have been included in the Beamseach
1 feature set:
BIX: Pumped air volume since last compressor change
CFZ: Timestamp at latest error activation
CHIJ: Engine time at latest error activation (diff)
CUD: Max volume for air dryer cartridge
KJ: Fuel consumed in Drive
MT: Fuel consumed in PTO
OA: Total Distance in PTO (diff)
OF: Total time in Coasting
OL: Total time using pedal
OQ: Fuel consumed in Econ mode (diff)
OR: Fuel consumed in Pedal mode (diff)
NDI: Number of Times in Idle Mode (diff)
NDIJ: Total Time in Idle Mode Bumped (diff)
NDP: Total Time in Idle Mode Parked (diff)
Where (diff) denote that the parameter has been diffrentiated and reflect the parametric
change since the previous readout.

Accuracy vs. Prediction Horizon

Two experiments were done to gauge how the Prediction Horizon (PH) affects the
classification results. In the first experiment were all available readouts used, while
in the second experiment was the training set size fixed at 600 samples. Balanced
data sets were used throughout why the number of available fault readouts were the
limiting factor. As PH increased could more samples be used since more readouts
were available for inclusion in the fault data set.

Figures [7] and [§] show the result of the two experiments. The accuracy (Fig. [7)
is best at lower PH and decreases as the PH increases. This is probably due to the
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Figure 7: Prediction accuracy vs. prediction horizon. The left panel shows how the prediction accuracy
decreases with PH when the training data set size is not limited. The right panel shows how the prediction
accuracy decreases with PH when the training data set size is limited to 600 samples.
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Figure 8: Profit vs. prediction horizon. The left panel shows how the profit increases with PH when the
training data is not limited. The right panel shows how the profit increases with PH when the training data is
limited to 600 samples. The PH required to achieve 600 samples varies between the datasets, which explains
the differences in starting positions of individual lines.

training labels being more reliable closer to the fault. Accuracy decreases somewhat
less rapidly in the first experiment with unlimited training data set size (left panel of
Fig.[7). Figure[8|shows the result when evaluated with the profit measure. Interestingly,
from this point of view, the system performance improves with larger PH. This appears
to be, at least partially, caused by a larger number of false negatives. In particular,
the further away data readout is from compressor replacement, the less indications of
problems it contains. Thus a classifier will consider them to be negative examples, but
if it was trained on data with sufficiently large prediction horizon, they will be false
negatives. Large number of them will lower accuracy significantly, but will not affect
profit.

SMOTE

The SMOTE oversampling method depends on two parameters: the percentage of
synthetic examples to create and the number of neighbours to consider when generating
new examples.

Figure[9]shows F}-score (as defined in equation[2)) and Profit (as defined in equation
[B) when the SMOTE percentage is varied but & is kept constant at 20, for three different
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Figure 9: Evaluation of SMOTE percentage settings, using the Expert dataset. The number of SMOTE
neighbours is fixed to 20.

5 5
15 15
020- 35 25
1.2-
o @'
5 =
So.18 =
2 =
g o038
b @

0.16-

o
S
L

0.14 . ; : ;
0 15 20 10 15 20
Number of neighbours Number of neighbours

Figure 10: Evaluation of the number of SMOTE neighbours (k) using the Expert dataset and with the
SMOTE% fixed at 900.

values of the PH. All results improve significantly with the percentage of synthetic
examples, all the way up to a ten-fold oversampling of synthetic examples. A lower PH
is better from the F-score perspective but worse from the Profit perspective. Figure[I0|
shows the effect of varying k, the number of SMOTE neighbours, when the SMOTE
percentage is kept fixed at 900%. The results are not very sensitive to k although a
weak increase in performance comes with higher k.

The four SMOTE preprocessing methods mentioned in section ] were evaluated
using a PH of 25 weeks and a SMOTE percentage of 900% (the best average settings
found). Nearly all feature sets benefitted from preprocessing but there was no single
best method.

Final evaluation

A final experiment was done, using the best settings found for each feature set, in
order to evaluate the whole approach. The best SMOTE settings were determined by
first keeping k fixed at 20 and finding the best SMOTE%. Then the SMOTE% was
kept fixed at the best value and the k value varied between 1 and 20 and the value that
produced the best cross-validation Profit was kept. The best SMOTE preprocessing
determined in the previous experiments was used for each feature set. The final best
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Feature set Samples | Features %o k | Prepr | Profit | nProfit
Wear 10,660 20 700 | 14 | TL 1.59 86
Wear AN 10,520 20 1000 | 12 | ENN 0.62 22
Usage 12,440 20 1000 | 16 | TL 1.94 114
Usage AN 12,440 20 1000 | 20 | CNN 1.60 110
Beam search 1 | 14,500 14 800 | 20 | NCL 1.66 116
Beam search 2 14,500 15 800 | 16 | TL 0.75 54
Expert 14,960 4 900 | 20 | ENN 0.84 64

Table 1: The best settings for each of the feature sets (AN denotes age normalised). The total number of
samples (second column) depends on the method used for selecting the data. The columns marked with %
and k show the SMOTE parameter settings and the column labelled Prepr shows the SMOTE preprocessing
method used. The Profit is evaluated for a PH of 15 weeks and the optimal training data set size (see Fig. [TT]
and the discussion in the text). The Profit (M€) depends on the test data set size, which depends on the
method used for selecting the data. The rightmost column, labeled nProfit, shows per vehicle Profit (in €)
which is the Profit normalised with respect to the number of vehicles in the testsets.
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Figure 11: Final evaluation of all feature sets. The left panel shows how the Profit varies with the training
data set size using a prediction horizon of 15 weeks. The right panel shows how the Profit changes with PH.
The settings for each feature set are listed in TableE}

settings for each feature set are summarised in Table[I] together with the basic data for
each feature set.

The left panel of Fig. [[T] shows how varying the training data set size affects the
Profit. The PH was set to 15 weeks, which is a practical PH, even though many of the
feature sets perform better at higher values of PH. From a business perspective is a PH
of 30 weeks considered too long, since it leads to premature warnings when the vehicle
is likely to survive one more maintenance period. The ordering of feature selection
algorithms is mostly consistent; Usage is best, with the exception of very small data
sizes where it is beaten by Beam search 1.

The left panel of Fig. [IT]also shows an interesting phenomenon where profit grows
and then drops as the data set size increases. This is unexpected, and we are unable to
explain it. It may be related, for example, to the k& parameter of the SMOTE algorithm.
The right panel of Fig. [IT] illustrates how varying the prediction horizon affects the
Profit, using all available data for each feature set. In general, the longer the PH the
better the Profit. The relative ordering among feature sets is quite consistent, which
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Table Profit increases from lower left towards the upper right.

indicates that neither of them focus solely on patterns of wear. Such features would be
expected to perform better at lower PH when the wear is more prominent.

The performances listed in Table |I| are for one decision threshold. However, the
classifiers can be made to be more or less restrictive when taking their decision to
recommend a repair, which will produce different numbers of true positives, true neg-
atives, false positives and false negatives. Figure [T2] shows the sensitivity—specificity
relationships for each feature set (i.e. each classifier using each feature set). The per-
fect classifier, which certainly is unachievable in this case, would have both sensitivity
and specificity equal to one. It is, from Fig.[T2] clear that the feature sets Beam search
I and Usage, with or without age normalisation, are the best from the perspective of
sensitivity and specificity. All three are better than the Expert feature set. Profit is not
uniquely defined by specificity and sensitivity; it depends on the data set size and the
mix of positive and negative examples. However, Profit increases from low values of
specificity and sensitivity to high values.
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6. Conclusions

Transportation is a low margin business where unplanned stops quickly turn profit
to loss. A properly maintained vehicle reduces the risk of failures and keeps the vehicle
operating and generating profit. Predictive maintenance introduces dynamic mainte-
nance recommendations which react to usage and signs of wear.

We have presented a data driven method for predicting upcoming failures of the air
compressor of a commercial vehicle. The predictive model is derived from currently
available warranty and logged vehicle data. These data sources are in-production data
that are designed for and normally used for other purposes. This imposes challenges
which are presented, discussed and handled in order to build predictive models. The re-
search contribution is twofold: a practical demonstration on these practical data, which
are of a type that is abundant in the vehicle industry, and the techniques developed and
tested to handle; feature selection with inconsistent data sets, imbalanced and noisy
class labels and multiple examples per vehicle.

The method generalises to repairs of various vehicle components but it is evaluated
on one component: the air compressor. The air compressor is a challenge since a
failing air compressor can be due to many things and can be a secondary fault caused
by other problems (e.g. oil leaks in the engine that cause coal deposits in the air pipes).
Many fault modes are grouped into one label. Components with clearer or fewer fault
causes should be easier to predict, given that the information needed to predict them is
available in the data sources, and given that the fault progresses slow enough. We have
not tested it on other components but plan to do so in the near future.

The best features are the Beam search 1 and the Usage sets, with or without age
normalisation. All three outperform the Expert feature set, which strengthens the argu-
ments for using data driven machine learning algorithms within this domain. There is
an interesting difference between the Wear and Usage feature sets. In the latter, there is
little effect of doing age normalisation while on the first the age normalisation removes
a lot of the information. This indicates that important wear patterns are linked to age,
which in turn is not particularly interesting since age is easily measured using mileage
or engine hours. It is possible that trends due to wear are faster than what is detectable
given the readout frequency. This could partly explain the low performance of the wear
features.

All feature sets show a positive Profit in the final evaluation. However, this depends
on the estimated costs for planned and unplanned repair. There are large uncertainties
in those numbers and one must view the profits from that perspective. The investment
cost can probably be neglected and the important factor is the ratio in cost between
unplanned and planned repair.
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Changes to the manuscript (2014-01-18)

Reviewer #2: [...]Thus one interesting and valuable contribution would be a
clear and rigorous formalization of the prognosis problem in the original setting
considered by the authors. But this formalization is far from being complete.
The general idea and general technical choices (ie working with available -but
imperfect- data) are interesting, well presented and motivated, but it is rather dif-
ficult to have a clear idea of the technical developments made and implemented
for this work. Indeed, a clear formulation of the prognostics problem as a clas-
sification problem is missing in the paper and would be really required to fully
understand the work and assess the contribution: without this clear formulation,
it is rather difficult to fully understand and assess the presented work(...]

We have addressed this issue together with remark 3, see below for an explanation.

1) The authors mention several times that “’the specifics of the automotive do-
main make fault prediction and condition based maintenance a more challenging
problem than in other domains”. It would be interesting if they could further de-
velop what are these ”’specifics” and explain why and in what these specifics make
the problem more challenging.

We have added a paragraph to the Introduction explaining some of the difficulties.

2) Section 2 ”’Presentation of Data’ presents the two used databases (VSR and
LVD), but not really the data selected within these databases and used for the
work. This presentation is really missing before Section 3 Methods” and should
be added to the paper.

We have added two paragraphs to Section 2, presenting in some more detail what
is available in each of those databases, and how do we use this information. However,
the data is considered sensitive by Volvo, which limits how descriptive can we be.

3) In this work devoted to RUL prognosis, the authors adopt an original prob-
lem setting: they do not want to predict the RUL, but rather to determine whether
the item will survive until the next stop and the probability of this survival. The
formalization of this original problem setting is not presented in the paper ; it
would be an interesting complement to the paper to give a complete formalization
of the considered problem, before presenting the methods used to solve it and the
obtained results.

We have added a new section, E] “Problem Formulation”, where we present the
formal definition of the setting, and present the exact question we aim to answer.

4) Page 7 - I am not fully convinced by the explanation about not taking into
account “’false negative” : even if from this point of view there is a status quo wrt to
a more classical maintenance strategy, not taking them into account does not allow
for a complete performance evaluation of the proposed predictive maintenance
approach. Would it be difficult to take them into account and why?

We have expanded on the paragraph explaining this choice (now it’s three para-
graphs), to better rationalise our decision in this regard.

5) Section 3 ”Methods” - Paragraph ”Machine Learning Algorithm” : the
method used (ie Random Forest) could be presented in mode detailed to make the
paper more self-content.

We have added a description of the method.
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6) Page 10 - 2nd paragraph below Figure 2 : I do not understand clearly the
difference between the cases referred to as usage difference and wear difference,
respectively, and why they are named in this way. What do the authors want to
show by distinguishing these two cases. Further information on this would be
welcome.

We have provided additional explanation concerning the rationale for the chosen
names, and made it clear that we do not (as of yet, at least, we have some ideas for the
future) make any use of this distinction — we consider both kinds of relations interest-
ing.

7) Page 11 : The “age normalisation” effect & objective are not clear to me
: does this operation remove the effect of the item age on the prognostic output
? If yes, this could be a problem, as the RUL depends on the age of the item. I
am quite sure that my understanding is not correct here, but it could nice if the
authors could explain the role of the age normalisation operation.

We have simplified this paragraph a little bit, and in particular made it clear that age
normalisation is only done in the feature selection step, not in the actual classification.

8) Figures 5, 6, 7 : How is defined the ’Accuracy” plotted in these figures. How
does this ”accuracy” relates to the prognostics problem considered at the begin-
ning of the paper. Here again a clear formalization of the considered problem is
missing to clearly understand the results. A clear formulation of the prognostics
problem as a classification problem is required, and a clear explanation on how
the performance of the prognosis is assessed (accuracy) is also required. With-
out this, it is really difficult to have a clear idea of the interest of the proposed
approach and of its benefits

We have addressed this issue together with remark 3: we hope that the new section
provides a better explanation.

9) Page 14 - Subsection Feature selection” : it could be interesting to have a
description of the selected features in at least one feature set.

We have listed the parameters that are included in the “Beamsearch 17 feature set.

10) Page 16 - Figure 8 : Any comments on figure 8) ? It is rather surprising to
see that the ’profit” increases with the PH, whereas at the same time the accuracy
decreases. These figures would require further explanations. I have not enough
explanations both on the prognosis method and on the performance evaluation
(profit evaluation) to understand these results.

We have expanded the explanation, and provided our best intuition, but we cannot
yet fully explain this result.

Some minor remarks

a) References: Some references are not detailed enough in the reference list,
and should be completed to be useful for the reader (eg : Dal Pozzolo, A ; Jayanth,
N ; Medina-Oliva, G. ; Reimer, M. ; Schwabacher, M. ; ....). Problem also with the
first reference (missing line?)

Unclear references has been updated with suffient information such that they are
easier found by the reader.

d) Figure 9 : F-score not defined

We have added reference to equations[2]and[8]to the description of the figure.
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