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Abstract

We make use of the recent calculation of d3 by Baikov, Chetrykin and
Kuhn of N3LO QCD vacuum polarization to analyze the inclusive tau-decay
ratio R.. We perform an all-orders resummation of the QCD Adler D func-
tion for the vector correlator, in which the part of perturbative coefficients
containing the leading power of b, the first QCD beta-function equation coef-
ficient, is resummed to all-orders. We match the resummation to the exactly
known next-to-leading order (NLO), next-NLO (N2?LO) and next-N2LO
(N3LO) results, we employ the Complete Renormalization Group Improve-
ment (CORGI) approach in which all RG-predictable ultra-violet logarithms
are resummed to all-orders, removing all dependence on the renormalization
scale. Hence the NLO, N2LO and N3LO CORGI result can be obtained
and compared with the “leading 0” all-orders CORGI result. Using an ap-
propriate weight function, we can numerically integrate these results for the
Adler D function in the complex energy plane to obtain so-called "contour-
improved" results for the ratio R.+.- and its tau-decay analogue R,. A table
showing the differences of ag(M?) and ag(M%) extracted from NLO, N2LO
and N3LO CORGI as well as all-orders CORGI results were made, together
with ag(M?) and ag(M%) extracted directly from Fixed-Order Perturbation
Theory at NLO, N2LO and N3LO. We also compared the ALEPH data for
R, (s) with the all-orders CORGI result fitted at s = m2.

We then go on to study the analyticity in energy of the leading one-
chain term in a skeleton expansion for QCD observables. We show that by
adding suitable non-perturbative terms in the energy regions Q? > A? and
Q? < A% (where Q? = A% is the Landau pole of the one loop coupling), one
can obtain an expression for the observables which is a holomorphic func-
tion of @2, for which all derivatives are finite and continuous at Q% = A2
This function is uniquely constrained by the requirement of asymptotic free-
dom, and the finiteness as Q* — 0, up to addition of a non-perturabtive
holomorphic function. This full analyticity replaces the piecewise analyt-
icity and continuity exhibited by the leading one-chain term itself. Using
The Analytic Perturbation Theory (APT) Euclidean functions introduced

by Shirkov and collaborators, we finally matched the equations KI(;LT) + K](VLI)D

and UI(DLT)—i- U](VL} with a resummation of coefficients extracted from their Borel
Transform multiplied by the APT Euclidean functions in the one loop case.
For DEJLT) + D%}), it is shown that it freezes to 2/b. Considering the GDH
Sum Rule, we construct an analytic function which fits well with data from
Jefferson Laboratory (JLab) for 0 < @ < 2GeV.
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Chapter 1

QUANTUM FIELD THEORY

1.1 QUARKS AND GLUONS IN QUANTUM FIELD
THEORY

Particle physics has been a great success in modelling the interactions of
elementary particles using the formalism of quantum field theory.

Quantum Chromodynamics (QCD) provides a successful explanation re-
garding the importance of the existence of the fundamental quarks and glu-
ons, which in combination give rise to the formation of protons and neutrons,
the basic building blocks of nuclei. These particles are also the building blocks
of mesons and baryons. These hadrons interact via the strong nuclear force,
one of the four fundamental forces of nature in addition to gravitational,
weak and electromagnetic forces. The strong force is a residual effect of
interactions between quarks and gluons of different hadrons. This residual
force holds all atomic nuclei together.

A solitary quark or gluon has never been observed, this is due to con-
finement which arises from the nature of the QCD colour force which grows
linearly with the separation of coloured objects, and it is for this reason that
quarks and gluons are always confined inside hadrons.

Quarks have a fractional electric charge in units of the electron charge,
which is +§ or —%. Their presence can be recognized through electromagnetic
interactions with other charged particles. An electron fired at a hadron can
interact with a constituent quark or parton contained in the hadron. This
deep inelastic scattering can be used to infer the quark charges from the
measured cross section of the scattered electron.
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Gluons act as the mediator of strong interactions between quarks, and are
crucial in producing quark confinement, and the resulting hadrons. Particles
with an electric charge interact electromagnetically in the theory of electro-
magnetism(QED); analogously in QCD, particles have a colour charge which
comes in red, green and blue varieties. In electromagnetism, the photon
which plays the role of a mediator which has no electric charge. In QCD, the
colour charge of gluons is constructed from colour-anti-colour combinations of
the colour charges of the quarks. These colour charges result in three-point
and four-point self interactions for the gluon, making non-abelian QCD a
much more complex theory than abelian QED.

In this thesis, results obtained from the theory of QCD will be compared
with experimental results from international facilities such as Jlab and LEP
in order to test the validity of QCD.

1.2 THE DIRAC EQUATION

Prior to introducing Quantum Field Theory, we review advanced quantum
mechanics where we are in a position to write a wave equation for a particle
with no spin (a scalar particle). Having no spin implies that the field has
only one component, which we denote by ¢. The differential operators for
energy, E, and momentum, p are

E—»m%, p — iV, (1.1)

where in the relativistic case they are related by E? = p?c? + m?c* and for
the non-relativistic case, £ = p®/2m. The wave equation is then given by

1 82 2.2
(_87 _ vz) o+ g6 =0 (1.2)

which turns into the Klein-Gordon equation by setting / = ¢ = 1 (in natural
units)

(O +m*)¢ =0, (1.3)

where O = 9,,0" is the four-vector partial derivative with respect to time and
the 3 spatial dimensions. Note that we have used the covariant derivative
ot = (%80, —V). Nevertheless, the Klein-Gordon equation suffers from sev-
eral flaws in particular the probability density is not positive definite since
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it is proportional to the energy and the possibility for the occurrence of neg-
ative energy states . E = £./p2c? + m?2c* implies that the Klein-Gordon
equation contains both positive-energy and negative-energy solutions. The

Klein-Gordon equation involves the non-linear % term which needs to be
replaced with a linear %. Thus, the Klein-Gordon equation was discarded

and the Dirac equation was the fittest replacement.

(vpu —m)p = 0. (1.4)
It is then discovered that the equations turn out to be a 4 x 4 matrix, which
then deduced that the v* matrices must also be 4 x 4 matrices.

where o' are the Pauli matrices. Substituting p, with 9, into Eq. (1.4)

(140, —m) = 0. (1.6)
This equation is a 1st order differential equation. With (—i7*0, —m) acting

on the LHS of the equation shows that the Dirac equation implies the Klein
Gordon equation

(=i 0 = m) (i7" 0, = m) = (4500, +mP) = 0. (L7)

In order for v to satisfy the Klein-Gordon equation, Eq.(1.3), which can be
written in the form

(9" 0,0, + m*)¥ = 0, (1.8)

where g is a four-by-four diagonal matrix ¢* = diag(1,—1,—1,—1), the
~* matrices must satisfy,
{7} = 29", (1.9)

!The interpretation of negative energy states can be explained by Feynman-
Stueckelberg picture where its interpretation does not appeal to the exclusion principle
but rather to a causality principle. Causality ensures that positive energy states with time
dependence e *F* which propagate forwards in time is equivalent by imposing a negative
energy states propagating backwards in time e~“=F)(=Y) = ¢=#F!_ This is an acceptable
theory which is consistent with causality. We can simply view that the emission of a neg-
ative energy state particle with momentum p* can be interpreted as the absorption of a
positive energy antiparticle with opposite momentum —p#. Note that Dirac’s sea picture
which is also an attempt to explain negative energy states does not work for bosons as
they do not obey Pauli exclusion principle.
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as yHaY + Yy =0 for p # v.
We will now construct the probability current j# to check whether it is
positive. Taking the Hermitian conjugate of Eq.(1.6), this gives

Wi (=B + 70 —m) = 0. (1.10)

YT is row vector and the < shows that the operation is performed to the left.
Multiplying by 7° and using 77" = —+%¢, gives

QL(—ME +m) = 0. (1.11)

Y = ¥4 is the adjoint spinor. Using Eqgs. (1.6, 1.11), the current j# = 1))
is conserved

95" = 0. (1.12)
The current density j° is therefore

3 =07 =T = [+ ol + s + [0, (1.13)

and always positive as it is made up of the combination of absolute values.
49 is fit to be the probability density for the particle which shows the Dirac
equation is preferred to the Klein-Gordon equation in this respect.

1.3 DIRAC SPINORS

The Dirac field ¢ [1, 2| can be written as a combination of plane-wave solu-
tions since it obeys the Klein-Gordon equation.

Y(x) = u(p)e” P+, (1.14)

where p? = m?. Here we denote ¢ as a function of x. Plugging in 1 (z) into
the Eq. (1.4),

(V'pu —m)u(p) = 0. (1.15)

This equation is best analyzed in the rest frame, taking the index i = 0. p,
in the rest frame py = (m, 0)

The solutions to this equation are
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u(po) = m( § ) | (1.17)

¢ is a 2-component spinor which is normalized such that £7¢ = 1. The factor
v/m was chosen for future convenience. For further reading on the spinor &,
rapidity 7 and boost in detail, refer to [2].

Applying a boost to u(p) and after some algebraic manipulation and

simplification
1 o> 0
(T %))
VE+PP(55) +VE - pP(E5)) ¢
VE+pP )+ VE-pP () ¢

( % ) (1.18)

where we have used the boost generator

u(p)

I
&
i~

M M

—

l

0i ij__f o' 0'
=t =-5 (5 %) (1.19)

In summary, the general solution for a positive-frequency wave can be written
as a linear combination of plane waves,

d(a) =ulp)e™™,  pP=m?  p’>0. (1.20)

Thus, there are two independent solution as the spinor £ can be spin up or
spin down.

uS(ﬁ)Z(%EZ), s=1,2, 51:((1)), 51:((1))_

Applying it analogously to the negative-frequency solutions:

P(x) =v(p)et™*,  pP=m?  p’>0 (1.22)

(It is impossible to set p° < 0, the logical approach is to add a + sign into
the exponential). The 2 independent solutions are
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. VD-o? )
v = S s=1,2. 1.23
w=( h (1.23)
These u and v spinors are spin eigenstates for particles and antiparticles,
respectively.

1.4 SPIN SUMS

A crucial part of QED and QCD is the evaluation of Feynman Diagrams,
which will involve a sum over the polarization states of a fermion.

> wwee) =3 ( VB ) evimevim. e

s=1,2 s

Using the relation below

Zé‘sésT:l:(é ?) (1.25)

s=1,2

Thus, we obtain the completeness relations

Y wulp) = yp+m, (1.26)
v(pi(p) = yp—m (1.27)

7.p occurs very often and is useful to introduce a new notation p = ~v"p,,.

1.5 GAUGE INVARIANCE AND NOETHER’S THE-
OREM

Quantum Field Theory (QFT) can provide a clear description of all the
fundamental interactions with the exception of gravity.

We define a field theory as a three dimensional space time 4-vector field;
for example is the gravitational field which takes the value of a vector every-
where. The action § defined by the Hamiltonian principle (a particle travels
with the least action between two points) is the integral of the Lagrangian
density L
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S = /Ld%. (1.28)

Let us define the Lagrangian density in field theory as, £, a function of the
auxiliary fields (¢;), and their derivatives with respect to space and time

(0¢;/dx")

L = L(¢;, %), (1.29)

with the subscript j labeling different fields, and the standard z* which
denotes the space time coordinates with indices = 0,1, 2, 3. 0 denotes time
while 1, 2, 3 denotes the 3-dimensional spatial coordinates. Using Hamilton’s
Principle of least action, the Lagrangian density should remain unchanged
with respect to the field(s) as well as to a change in the field(s); this leads to
the E-L equations,

oL oL
0 _ 9=
50,8~ 96,

where 0, denotes the partial derivative with respect to x*.

0, (1.30)

Noether’s theorem states that global gauge invariance is equivalent to the
conservation of a current. Consider a complex scalar field theory given by

L =09,0"0"p —m*¢*o. (1.31)
The L remains invariant under the global transformation ¢ — ¢ = ¢e'®,

for a constant . Assuming that « is infinitesimally small, ¢/ = ¢ + iag,
thus, the Lagrangian density is changed by

oL b+ oL

— i

0¢ 9(0u)
c.c denotes its complex conjugate. For global gauge invariance of L, this
must be equal to zero up to an o term. Applying the E-L equation for the

field, the terms with « to the first power are

iad, ¢ + c.c, (1.32)

aaﬂ(ag—i@) +ee=0. (1.33)

This shows that the current density is conserved

g = (¢0u" — ¢ 0u9)

9" = 0 (1.34)
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1.6 LORENTZ INVARIANCE OF WAVE EQUATION

In this section, we will discuss the definition of "relativistically invariant"
when addressing an equation. A field or a collection of fields denoted by ¢
with an operator D acting on ¢ is said to be "relativistically invariant" if ¢
satisfies D¢ = 0, and when we apply a boost or rotation to the field to a
different frame of reference, the transformed field will still satisfy the same
equation.

Thus, by the definition above, the equation of motion is Lorentz invariant
if the Lagrangian is a Lorentz scalar. Let us consider the Klein-Gordon
equation, the corresponding Lorentz transformation is given by

ot — P = Al (1.35)

for some 4 x 4 matrix A. Assuming, we transform x by a boost, the trans-
formed field is then

b(z) — ¢/(x) = H(A'a). (1.36)

The equation shows that the transformed field (evaluated at a boosted point)
is equivalent to the original field (evaluated before boosting).

Note that the Klein-Gordon Lagrangian remains unchanged after Lorentz
transformation. The derivative of the field transforms such that

Oup(z) — 0, ($(A'2")) = (A1) (0,0) (A~ ). (1.37)

Note that one of the properties of metric tensor g is that it is Lorentz
invariant, the inverse matrices A~ must obey the identity

(AT g™ =g, (1.38)

o
while the transformation for the kinetic term of the Klein-Gordon Lagrangian
is

(Oup(@)* — g (0u¢/())(0,¢/ ()
= g"IAT)00l(A)]0,0) (A ')
97 (9,9)( o¢)(/\ ')
= (9,0 )2( ). (1.39)

Thus the Lagrangian remains unchanged
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L(x) — LA, (1.40)

Consequently, the action § found by integrating L over space time, is Lorentz
invariant. We now show that the equation of motion is also Lorentz invariant

(07 +m?)¢'(x) = [¢" (A7)0, (A7) 05 + m?Jo(A™ )
(970,05 +m®)p(A™"a")
0. (1.41)

Eq. (1.36) is the simplest transformation law for a field with just one com-
ponent ¢(z). Of course, we know examples of other multi-component fields
which transform in a much complicated manner, in particular vector fields
like the vector potential A*(z). Quantities distributed in space time are ori-
ented by performing boost or rotation, by expressing them in the form of
tensors which also obey the transformation law. Using such tensor fields, a
variety of Lorentz invariant equations can be written, a simple example is
the Maxwell’s equation

MF,, =0, or 0*4,—-0,0'A,=0. (1.42)

1.7 LoOCAL GAUGE TRANSFORMATION

The Lagrangian density for a Dirac field is

Lpirae = Y (i, 0" —m)p. (1.43)
The Dirac equation which describes free fermions in relativistic quantum
mechanics follows from the E-L equation for the field v. Under local gauge
transformation 1) — ¢’ = 1e™@ | there will be an extra term ¢y, (9*a)y
in the free Dirac Lagrangian. Nevertheless, the Lagrangian should remain
invariant and by replacing 0, with the term 0, + ieA" in Eq. (1.43), the La-
grangian density will then remain invariant under the transformation ¢y —
Y = 1e'®) with the condition that the new field transforms from A, —
A=A, — %Qba. A, is an electromagnetic field. For a free field

1
-LMaatwell - _ZFMVF

Nz

F, = 0,A, — 0,4, (1.44)
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which remains invariant under the transformation AM—>A;L = A, - %Qba.
Using Eqgs. (1.43, 1.44), the E-L equation for A, is

9, F" = ej",
" =P, (1.45)

This is Maxwell’s inhomogeneous equations in the presence of a current, the
current is also conserved by Noether’s theorem. e is a constant which is the
magnitude of the charge. In the case for several Dirac fields, the fields charge
Q should appear in the transformation for the Dirac field ¢y — 1e@*®) ag
well as the Lagrangian density 0, + ieQQA,. The electron has a charge of
Q = —1 and a proton has a charge () = +1.

Quantum Electrodynamics (QED), the quantum field theory of electro-
magnetism, results from combining separate field theories of free fields. De-
manding invariance under the local gauge transformation has introduced in-
teractions given by j*A, which will appear in the Lagrangian density in
addition to the free (non-interacting) field theory terms. In order to also
have a better description of the real world, we must include non-linear terms
into the Hamiltonian. Thus the Interacting Hamiltonian will be given by

Hipy = / BarHo[o(z)] = — / B3z Lins[0(2)], (1.46)

with the corresponding interaction Lagrangian (for further reading [2]|) given
by

Lint = —eQUn"d A, (1.47)
The E-L equation for the Dirac field with the interacting field is now given
by

(i) —m) =0, (1.48)
where we use the notation ) = D, with
D, =0, —1eQA,. (1.49)

D, = 0, +ieA, is the gauge covariant derivative which transforms under
Lorentz Gauge Transformation such that (D,y) = D,y = @ (D), so
(D) transforms in the same way as the field 1) itself.

The QED Lagrangian is given by
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-LQED = LMaatwell + LDirac + Lint7

1 _
LQED = _ZFMVF;W + w(UD - m)w, (150)
where
[D;u Dy]’QZ) = _Z.eFuuwa (].5].)
Fo = 8,4, — 0,4, (1.52)

1.8 QED LAGRANGIAN AND FEYNMAN RULES

Quantum Electrodynamics (QED) is an abelian gauge theory. The electro-
magnetic field act as a mediator for the interaction between the charged v
spin-1/2 fields. The QED Lagrangian is given by

1

Lopn = —3FuF™ + 0D —m)s = 50" AF, (153

with their corresponding Feynman rules

o — —ieQy*

Figure 1.1: QED vertex

. y _(itm)
p' s p2—m?24ie
—ighv
BANANANNNNY — S

Figure 1.2: QED Propagators
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. > — u*(p), outgoing fermion

Y
[ ]

— u®(p), incoming fermion

p—
o < — v outgoing anti-fermion
p— (p), outgoing
< o — v*(p), incoming anti-fermion
. (p) g

Figure 1.3: External Fermions

A VAVAVAVAVAVAVAY, —> €% , outgoing photon
v u (p), outgoing p

— € , incoming photon
A u(p) gp

Figure 1.4: External Photons

Y obeys the covariant derivative expression of Eq. (1.51) and A, photon
field is related to the electromagnetic tensor Eq. (1.52). The spinors and
their conjugates obey the Dirac equation. The direction of the arrow shows
whether they are fermions or anti-fermions with the vertex having an arrow
coming in and the other coming out to keep the same number of fermions
and antifermions.

One also has to impose momentum conservation at each vertex and to
integrate for each undetermined loop momentum [ g;ﬁ. Finally one needs
to divide by the symmetry factor. Note also that the QED vertex, photon
propagator as well as the external fermions (polarization vectors and its

conjugate initial- or final-state photon) arises from the interaction Lagrangian

Lint .

It is impossible to obtain the photon propagator from the first two terms
of the Lagrangian as the inverted matrix has zero determinant [3]. This is
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due to gauge invariance but in order to have a defined photon propagator,
we need to fix the gauge by adding a gauge-fixing term

1
2§
¢ is the gauge-fixing parameter defining a class of covariant gauges satisfying
the Lorentz condition d,A" = 0, { = 1 corresponds to Feynman gauge and
¢ = 0 to Landau gauge. The third term does not change physics: physical
results are gauge-invariant and gauge-independant. The complication that

arises is not easily defined but the photon propagator should be the solution
for the function D,,,(z,y) such that

(0, A")2. (1.54)

(Og"” — 010") /d4yDW(:E,y)A(y) = ig, A(z). (1.55)

A(x) is an arbitrary function. Eq. (1.55) has no solution. Adding the term
Eq. (1.54) into the Lagrangian alters Eq. (1.55) to

(O = (1= 1/©)90) [ duD,plw ) Aly) = igiA).  (156)

Eq. (1.56) has the solution
d'k _id;w(k) —ik.(z—
D, (z,y) :/(2ﬂ)4 e © (=), (1.57)

where d,, = g — (1 =& )k‘éf” A more straightforward derivation proposed
in [1] is to consider

-L - Lclassical + -Lgauge—fixinga

_ %A“ [gw,D 4 (% - 1) aﬂay] A, (1.58)
Taking & to be finite, the quadratic operator in momentum space is
— kg + (1 — %) Kk, (1.59)
and its corresponding inverse gives the propagator
D(k)uw = —% {gw +(€— 1)%} : (1.60)

¢ is an arbitrary parameter, thus results from QED calculations for physical
quantities are totally independent of £&. Note that we have used Feynman
gauge in defining the photon propagator in Fig. (1.2).
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1.9 QCD LAGRANGIAN AND FEYNMAN RULES

Just as in QED, the calculation of physical process in QCD requires Feynman
rules which describe the interactions of quarks and gluons. The Lagrangian
[4] which describes strong interactions is given by

-LQC’D = Lclassical + Lgauge—fixing + -Lghost- (161)

This Lagrangian is based on the SU(N) group non-abelian gauge theory. The
classical part of the QCD Lagrangian density is given by

classzcal Z 1/1f2 ny,u mf52 J)wfj - titha (162)
f is the number of quark flavours. wfﬂ- is the quark field (fundamental rep-
resentation) with colour index 7 = 1, . . . ,N and Af is the gluon field
(adjoint representation) runs over N 2 _ 1 degrees of freedom a=1,. .
,N? - 1 described by SU(N) group. As in QED, the ~, satisfy the D1rac antl
commutation relation

{77} ="+ =29 (1.63)
The covariant derivative in the non-abelian gauge theory is defined as

DZ = 8“5@' - igAMTa (164)

a~“ij"

g is the strong coupling constant which determines the strength of interaction
between quanta. 7T'* are matrices which can be expressed in the form of
Hermitian traceless Gell-Mann matrices. They are generators of the SU(N)
group which satisfy the commutation relation

[TaaTb] = Z.fabcjﬁca (165)

where f,,. are the structure constant. As in QED, the commutator of two
covariant derivatives is related to the field strength tensor F, of the gluon
fields, from which we can build the kinetic energy part in the classical La-
grangian of QCD,

[D,.D,) = iT"F}, (1.66)
1
tr(T°T") = 55“*’, (1.67)
i N2 -1
Y TETh = Crpow, Cp= T (1.68)
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where

Fp, = 0,A5 — 0,A% + g fane A AS- (1.69)

Unlike photons in QED, the non-abelian property of the last term in Eq. (1.69)
gives rise to triplet and quartic gluon self interactions and also asymptotic
freedom. Note that the Lagrangian has mass dimension of 4, thus it should
follow that 1) and Aj have mass dimensions of 3/2 and 1 separately. As
required, £ should be locally gauge invariant and all of their components
transform under these local gauge transformations,

vy — Ma)iy, (1.70)
T*A% — A(z) (T“AZ — %A_1<SL’)8“A<SL’)> A (), (1.71)
A(z) = exp(—iT*0%(z)), (1.72)

where 6%(x) is a space time dependent function. Like QED, a gauge fixing
term which satisfies the Lorentz gauge condition 9, A% = 0 has to be added.
The physical reason for such a choice is to put a constraint on AZ (which has
2 polarization states) to avoid any unphysical states

1 a\2
Lyaugefizing = _2_§(8MAM) : (1.73)
In QCD, the longitudinal part of the gluon field can interact with the trans-
verse (physical) component of Af, this results in gluon loops and a subtrac-
tion is of these contributions is necessary. Therefore, we will now introduce

a ghost field called the Faddeev-Popov ghost which acts like a scalar field.

Lghost = (a,una*)<aﬂ5ab + gfabcAg)nb' (174)

The origin of the Faddeev-Popov ghosts is to ensure consistency with the
path integral formulation which demands an unambiguous and non-singular
solutions. The presence of gauge symmetry makes this impossible to con-
struct. This is because there is no particular procedure for selecting a so-
lution from a choice of equivalently physical solutions (all derived by gauge
transformation). Such problem occurs from the path integrals overcounting
field configurations due to gauge symmetries. This will correspond to the
same physical state as the measurement of the path integrals contain fac-
tors prohibiting to extract various results from the action obtained from the
Feynman diagrams. One possible choice is to modify the action by applying
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additional fields, breaking the gauge symmetry as a consequence. Such tech-
nique is called the Faddeev-Popov procedure with the additional fields being
called the ghost fields. Ghosts field do not interpret into any physical real
particle in the external states. Their appearance only in the form of virtual
particles in Feynman diagrams. Nevertheless, their presence are a necessity
to preserve unitarity of the S-matriix. The approach in the formulation of
ghosts varies and is dependent on the choice of gauge, however, the same
results must be obtained for all choices. The simplest choice for this purpose
is the Feynman-'t Hooft gauge.

Thus, we have the final form of the Lagrangian

1 1

Loop = ) pinuD" =mydi s = FLEly = 52 (0" AL+ (@) Dy
f

4 a
(1.75)

where 1 is a complex scalar field obeying Fermi statistics. The Feynman
rules corresponding to this QCD Lagrangian are

(ig+m)
p2+m2tie

> ° —

®
Y

Figure 1.5: Quark propagator

M v _Z'ab v v
A 0T T 0 5 T 5 0 b —>p2—jl.€<gﬂ —(1—5)%)

Figure 1.6: Gluon propagator

Figure 1.7: Ghost propagator
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a, fu
/R — igy" T
a, i
— gf"[g" (k — p)*
—g9"(p — " + g™ (q — k)"]
b, v c, p

Figure 1.9: 3-Gluon Vertex

— —gfp

Figure 1.10: Gluon-Ghost Vertex

a, p b, v

— G fuaeg" 9" — 9" 9"

+1 foae (9" 977 — 9"7g"")

d, o C, p + fade o (gh gP7 — ghPgh?)]
Figure 1.11: 4-Gluon Vertex
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1.10 SUMMARY

Quantum field theory (QFT) is an essential guide in constructing quantum
mechanical models of systems parametrized by an infinite number of dynam-
ical degrees of freedom and variables, that is, fields and spinors in QED and
QCD. It is found that the forces between particles are mediated by the pres-
ence of other particles. In QED, the electromagnetic force is mediated by
the exchange of photons, in QCD gluons mediate the strong force. In this
Chapter, we briefly summarized the important points selected from various
textbooks of QFT which are relevant to the topic of this research.

We reviewed the fundamentals of relativistic quantum mechanics where
we can write a wave equation for scalar particles. The energy and momentum
operator is analogous to the ones in Classical Mechanics and the wave equa-
tion is the Klein-Gordon equation. Nevertheless, the equation has a probabil-
ity which is not positive definite and there is the possibility of the occurrence
of negative energy states. The interpretation on negative energy states was
discussed using the Feynman-Stueckelberg picture base on the principle of
causality. The Dirac equation was introduced as an extra equation to be sat-
isfied in addition to the Klein-Gordon equation. The Dirac current density
is a combination of absolute values implying that it will always be positive,
although there are still negative energy states which correspond to antiparti-
cles. It was through Dirac’s equation that the prediction of antiparticles was
made and they were subsequently found. This seems a good indicator that
particle physics is on the right track experimentally.

The Dirac field obeys the Klein-Gordon equation and can be expressed
as a combination of plane-wave solutions. Plugging this solutions into the
Dirac equation provides us a four component spinor which obeys the rotation
and boost generators. Considering the positive and negative frequency and
the spinor ¢ which might be spin up or down. There will be four spinors
altogether. A crucial part of QED and QCD is the evaluation of the Feynman
Diagrams which we sum over the polarization states of the fermions.

We define a field as a 3-dimensional 4-vector field, for example is the
gravitational field which takes the value of a vector everywhere. Hamilton’s
Principle of least actions states that particle travels with the least action
between two points. The action S is the integral of the Lagrangian density
L, a function of auxiliary fields. Using the Lagrangian of the Klein-Gordon
equation as an example, the conserved current can be derived from its E-L
equation since there is a global symmetry for the field, undergoing global
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gauge transformations. Such transformations do not alter the action. This is
due to Noether’s theorem which states that the global symmetry is equivalent
to the conservation of current.

A field is "relativistically invariant" if an operator acting on the field
satisfies D¢ = 0, and when we apply rotations or boosts to the field in
different frames of reference, the transformed field will still satisfy D¢’ = 0.
We show that the Klein-Gordon equation is relativistically Lorentz invariant
under rotations and boosts along the axis. In short, quantity distributed in
space time is oriented by performing rotation or boost by expressing them in
the form of tensors which also obeys the transformation law. Many examples
can be made, a famous one is the Maxwell’s equation.

We further showed that the Dirac Lagrangian is invariant under gauge
transformations. Demanding invariance under local gauge transformation
has introduced an interaction term. Thus, this non linear interaction term
is added to the Lagrangian. This interaction term is then absorbed into
the Dirac equation since its partial derivative is modified into a covariant
derivative. Finally, in order to have a gauge independent and gauge invariant
Lagrangian, —2—15(6“14#)2 is added to the Lagrangian where the choice of the
gauge fixing parameter ¢ will not alter the physics. The sets of Feynman
Rules can be read directly from the QED Lagrangian.

QED is based on an abelian theory but QCD in contrast is derived from
non-abelian theory. In QCD, the existence of the gluon field give rise to triplet
and quartic interactions gluon self interactions and ultimately asymptotic
freedom. Similarly like in QED, a gauge fixing Lagrangian is also needed
but a further complication occurs since unphysical gluon polariztion states
can propagate . To remedy this a ghost field is then introduced called the
Fadeev-Popov ghost which acts like a scalar field. This also ensures that the
unitarity of the S-matrix is not violated. The sets of Feynman Rules can be
read directly from the QCD Lagrangian.



Chapter 2

PERTURBATIVE QCD

2.1 DIMENSIONAL REGULARIZATION

In computing Feynman diagrams beyond the tree-level one inevitably en-
counters divergences when one integrates over undetermined loop momenta.
One encounters both ultraviolet (UV) and infra-red (IR) divergences from
the large and small momentum regions, respectively. To control these one
needs to “renormalize” the theory, introducing infinite so-called counterterms
to convert the infinite parameters (masses, couplings, charges) in the origi-
nal “bare” Lagrangian to finite “renormalized” parameters. This procedure
involves a “renormalization procedure” or renormalization scheme (RS). An
essential ingredient is that of “regularization”. To handle such divergences
the simplest approach is to introduce an upper cutoff on the loop-momenta
integrated over. This is referred to as “Pauli-Villars” regularization. We shall
work with a more sophisticated approach called “dimensional regularization”
which has the major merit of manifestly preserving gauge invariance, which
is violated with the naive Pauli-Villars method.

To understand "dimensional regularization", it is best to see how this
technique works at the calculational level. A d-dimensional space time has 1
time dimension and (d-1) space dimensions. We Wick'-rotate the Feynman
integral over a d-dimensional Fuclidean space, consider

ddlE 1 d$) 00 ldE—l
[ermear =] @), “mar 1)

'Wick’s rotation is a method of solving problem in a Minkowski space from a solution
to a problem in an Euclidean space by substituting a real variable with an imaginary
variable, example is ds? = —(dt)? + dx? + dy® + dz* = dt* + dx? + dy® + dz* by considering
t to be imaginary

26



CHAPTER 2. PERTURBATIVE QCD 27

2 2

where A = m* — z(1 — x)¢®. x is the variable that occurs when combining
denominators through introduction of Feynman parameter and is related to
the shifted momentum | = k + gx. The first factor in Eq. (2.1) can be
expressed as the area of a unit sphere in d dimensions. We show the proof
below

war = ([ e ) = [t st
= /de /OOO dra®le™ = (/ de) %/OOO d(2?)(22)3 e
(/

de) T(d/2). (2.2)

Thus the area of the unit sphere is

27Td/2
/ 1% = sy (2.3)

The second factor is algebraically derived as follows

00 ldfl _ 1 0 ) (p)%fl
/0 dl(l“rA)2 B 2/0 d(l)(l2+A)2

LOINTE .
= §<Z) /dmcl_5(1—:p)5_1, (2.4)
0

by making the substitution z = A/(I? + A). By using the Beta function
studied by Euler and Legendre

/0 dea® (1 —z)P1 = %, (2.5)

the integral is simply

dy 1 1 TE-9/1\*:
/(2w)d (12, + A)? - (4m)42 T(2) (Z) ) (2.6)

having evaluated Eq. (2.5) over the variable x. Since T'(z) has poles at
z =0,—1,—2,-3,...., this integral also has a pole at d = 4,6,8...... Using
the approximation

[e.e]

ﬁ _ e H <1 n %) e/, (2.7)

n=1
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and d = 4 — 2e = with v ~ 0.5722 (Euler constant), the integral will be of
the form

/ (2m)d (12, 4 N\)2 - (47)? (E —log(A) — v + log(4m) + O(e)) . (2.8)

1/e will still make the integral divergent when ¢ — 0. This corresponds to
a logarithmic divergence in the momentum integral which can be absorbed
by using the Modified Minimal Subtraction Scheme (M S) [5].

2.2 RENORMALIZATION THEORY

QCD and QED are renormalizable theories. After divergences are regular-
ized, the troublesome divergent contributions correspond to redefining the
fundamental constants of the theory like the coupling ¢ and quark masses
m in QCD. In other words, physical quantities are expressed in terms of
renormalised parameters and do not involve any UV divergences anymore,
examples are g.e, and m;q,. The renormalised constants which depends on ¢
(dimensional regularization parameter), g (the bare coupling ), m (the bare
mass) and p (an arbitrary scale) absorb all such divergences.

Rigorously demonstrating the renormalizability of QED is a hard prob-
lem, and the non-abelian complications inherent in QCD make this an even
harder problem. A good book to refer for a detailed demonstration of QED’s
renormalizability can be found in [1]. We will not demonstrate anything in
detail here but we will provide rather a heuristic physical explanation. Large
loop momenta produce UV divergences. In the event that the loop momenta
are much larger than the characteristic external momenta, the loop loses its
structure and can be considered as a point.

—)«/\/vvvvx‘/v\wvv»

Figure 2.1: Example of a counterterms

Figure (2.1) shows the idea of renormalization. By considering the loop as
a point, a new quadratic contribution to the Lagrangian emerges. Due to
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Lorentz and gauge invariance, the contribution is of the form ~ (9,4, —

0,A,)2.

Renormalizability is related to the notion of an effective Lagrangian, refer
to [6] for more detail. To understand more clearly how this technique works
it is useful to consider the QCD effective Lagrangian extracted from the
Green’s functions which can be obtained from the QCD Feynman diagrams,

1 g
Leff —_ _ A VAa 2 abc Al AbuAcu
ZA (8M v a ,u) Z3A f (8M 1/)
g2 fabcfcdeAaAbAucAud 1 (auAa>2 + 1 Re oMY
Z4A | Zai % 2£ 1] Zn u"? 77
9 abc —a Ab. .c = m - g n
4+ L paegupapbpe — g+ A (29

Z3a, Zan, Zigma and Zyg, 4 correspond to the 3-gluon, 4-gluon, ghost-ghost-
gluon and quark-quark-gluon vertices renormalization parameters. Z4, Z,
and Z, corresponds to the gluon, quark and ghost propagators renormaliza-
tion parameters while Z,, is the renormalization parameter for quark mass.
Ensuring the Kinetic terms are reduced to the standard form, we should
redefine the fields

Apy — ZY*A,, g — ZYn, s — 2% (2.10)

Such renormalization procedure are necessary to ensure the Lagrangian (de-
rived from action) to remain physical and finite. Any infinities that occur
corresponding to the vertices and propagators must be renormalized as a con-
sequence. This subsequently result in a sensible and physical quark masses
and coupling constants. We will now discuss how renormalization is imple-
mented in practice in QED |[2]:

1) Rescaling the fields in the Lagrangian.

2) The Lagrangian is split into 2 pieces to absorb infinities and unobservable
shifts into counter-terms.

3) Selecting a specific renormalization conditions which defines the physical
mass and coupling constant while ensuring the field-strength renormaliza-
tions equal to 1.

4) Introduce new Feynman Rules, then compute its new amplitude.

5) Finally, adjust the counter-terms appropriately.
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One of the method of renormalization is regularization. We will present
the detail calculation of o(ee™ — ¢q,qgg) in Section 2.7, now it will be
just suffice to quote the result to show how regularization works in general.
One of the initially proposed regularization method is the introduction of
gluon mass

m) = es (2.11)
which we will then have,
Oggg = aong—; (log2 % — 3log% +7— %2 + O(e)) (2.12)
O = aong—; (— log® % + 3log% - % + %2 + O(e)) (2.13)
ot = O—OCF;)‘—; (; + 0(6)) (2.14)

Unfortunately, despite such regularization gives a finite answer as ¢ — 0 in
this case, it violates gauge invariance and therefore does not generalize. A
much preferred regularization will be touched in Section 2.3 and Section 2.7.

2.3 RENORMALIZATION EXAMPLE - ONE LooP
VACUUM POLARIZATION IN QED

p

— N
H NMWWNvﬂWWMA, v
p+k

Figure 2.2: The one loop vacuum polarization diagram

For revision, we consider a typical QED one loop correction to the photon
propagator shown in Fig. (2.2). Using the Feynman Rules for QED in Section
1.8, this particular diagram is represented by the expression

I (k?) =

4 . i(pHm) g . i(pHk+m) o
(—1)f (;lTI)Z(—ZG"y“)O/ﬁ p27m/52’/8 (—Ze’y )BIQW (215)
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where « and 3 are the spinor indices. Note that we will simplify the expres-
sion further by assuming a negligible mass by setting m = 0. Note also that
a = % and since that it is a fermion loop, there is a factor of (-1). The
integral is divergent and has to be renormalized. The first step in renormal-
izing ths expression is to regularize the divergent integrals by the common
method of "dimensional regularization"? in which the integral is performed
in d = 4 — 2¢ space time dimensions and then the limit ¢ — 0 is taken.

Thus, an evaluation of the expression

d*n Trivpy” (p +
T (k2) = —62/ L by + 0l (2.16)
@2m)t p*(p+ k)2
One then needs to use the trace identity given by
Ty " y’) = 4(g" 9" — g" g™ + 9" g™). (2.17)

This further reduces the expression to

AT () = —4¢? / (d“p ' (p + k)" = g [p(p + k)] + (p + k)"p"]

2m)* P*(p + k)

(2.18)
The denominator can be solved using a Feynman parameter
1 ! 1

—_—— = d . 2.19
ﬁ@+m2lé =2 + 2o+ k) (219

Changing the variable [ = p + kx, the numerator is then
21 — g"1? — 22(1 — )K"k + g" (2(1 — 2)k?), (2.20)

where the terms that are odd under [ — —[ which vanish on integration have
been dropped from the expression. After performing a Wick’s rotation where
1° =419 and applying the identity

/ Ay 1 L _Tn—d/2) Ly (2.21)

oI+ Ay (n? Thm) A
and also
Ay 12 1 T=d/2—=1),1 4
/ 2m)d (I3 + A (4m)¥2  T(n) (F) (2.22)

2[2] The idea of "dimensional regularization" is such that the Feynman diagrams are
computed as an analytic function with space time dimension d. Assuming that d is rel-
atively small, the loop-momentum integral will converge, thus the Ward identity proven.
Hence, the observable will have a well defined limit as d — 4. The reason when to switch
from 4 dimensions to d = 4 — 2¢ will be shown clearer when introducing Eq. (2.21) and
Eq. (2.22).
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reduces Eq. (2.18) to
—iII" (k?) = [kME” — g™ k*]illy(K?), (2.23)

which we note that I'(z) has isolated poles at z = 0, —1, —2, =3, ... from [2].
Thus for n = 2 which has been used for this particular calculation, both
integrals Eq. (2.21) and Eq. (2.22) will have poles at d = 4,6, 8, .... In order
to find the behavior near d = 4, we therefore define d = 4 — 2¢ by using
the approximation I'(¢) = + — v + O(e) with v being Euler-Mascheroni
constant. Continuation to d-dimension endows the dimensionless coupling e
with a mass dimension, [¢] = 2 — d/2 = ¢, which needs to be replaced with
e — eu. Straightforward calculation of IT,(k?) yields

2
Iy (k?) = —% [ - % +1In (_M—IZ) + ﬁnite]. (2.24)
Counterterms are introduced to remove the % divergences, the finite contribu-
tion they also cancel is arbitrary and determines the subtraction procedure.
Modified minimal subtraction (MS) absorbs the In(47) — vz term, minimal
subtraction (MS) does not. The logarithm in Eq. (2.24) is absolutely crucial
in discussing the concept of Renormalons(Chains and Bubbles) with QFT
in subsequent chapters, and re-summing powers of logarithms will generate
factorial growth of large-order perturbative coefficients.

2.4 THE RUNNING COUPLING CONSTANT

In QCD, asymptotic freedom and confinement arise. Confinement explains
why no solitary quarks are observed and why quarks are always bound within
the hadrons by the strong force carried by gluons. It is important to stress
that perturbation theory is a great mathematical tool to analyze QCD . A
renormalized coupling constant is said to “run” with energy. As we shall see
in QCD the renormalized coupling has a logarithmic running in energy @
and is large at low energy and gradually deceases as energy increases. This
physical behavior is called Asymptotic Freedom. This weak coupling at large
energy scale property is crucial for the validity of fixed-order perturbative
QCD calculations.

Prior to introducing the running coupling, we need to introduce R. R
has to be a physical observable, dimensionless, a function dependent on the
energy scale (which we will denote ). We will assume that the energy @ is
much larger than the quark masses and that massless quarks can be assumed.
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In QCD, the observable R is expanded as a perturbative series of the fine
structure constant ag = ¢*/4m where g is the bare coupling. This shows
that R has to be renormalized to remove its UV divergences by introducing
a second mass scale - a renormalization scale p through the renormalization
procedure and subtraction scheme discussed previously. Therefore, R in QCD
is dependent on the ratio @*/u* and the renormalized coupling a.

The value selected for u is part of the specification of the renormalization
scheme. In fact, the QCD Lagrangian is independent of u, but u is required
to define the theory of QCD. The u-independence of R is expressed by

d
2 27,2 _
1 d;ﬁR(Q /p as) = 0,
0 Jag 0
2 2 0 _
[u B +u B 804JR = 0. (2.25)

Note that the 2nd line just simply shows a transformation of the derivative
d/dp? into separate partial derivatives. We rewrite Eq. (2.25) as
[ 0 0

% - ﬁ(&s)@

by introducing the beta function § as a derivative of the running coupling
with respect to the renormalization scale

]R —0, (2.26)

dag
B0 = 155, (2.27)
Note that we can also write
2
r=In <Q_2> (2.28)
i

as a function of Q2 as 7 must also be dimensionless. This operation is allowed
as

0 0

R 2—
or a ou?’
remains unchanged by adding an additional term In(Q?)to 7. We will use
the same notation 7 and the beta function g throughout this thesis. Note
that Eq. (2.26) is a 1st order partial differential equation which can be now
solved by integrating the bracketed terms

(2.29)
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C“S(Q2) d
= / o (2.30)
a2y B)

We have to be slightly clearer about what we are doing, we now redefine

as(p?) = a, as the lower limit and the running coupling as a,(Q?) as the
upper limit for the integral. Differentiating Eq. (2.28), we have

Dovs (Q?
009 _ pan(@) 2.31)
-
Note that in perturbative QCD, 3 is expanded as a series of o, and truncated
at order n.

Figure 2.3: 1-loop B function contribution

2.5 THE CALLAN—SYMANZIK EQUATION

The Callan—Symanzik equation is a differential equation describing the evo-
lution of the n-point correlation Green G™ functions under different energy
scales. The theory involves the definition of the beta-function. This equation
has the structure

,u% + 5% +ny| G™(zy, ..., z0; 1, 9) = 0. (2.32)
The parameter S and ~ remains unchanged for any n chosen. This simply
implies that both # and v are independent of the field’s momenta denoted
by x;. Since the Green’s function must be renormalized, 5 and ~ are both
independent of the cut off scale and with dimensional analysis must also be
independent of the renormalization mass scale u. This leads to a universal
function namely 3(g) and an anomalous dimension v(g) which depends on
the Green function concerned with g as the renormalized coupling.

This leads on to our discussion on the 8 function in the next section.
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2.6 THE [ FUNCTION

We have shown that in renormalization theory, there is a clear distinction
between a bare Lagrangian Lp,,. and the renormalized effective Lagrangian
Le.sr. Eq. (2.10) shows that such infinite re parameterization is carried out
via the introduction of counterterms in Fig. (2.1). As discussed, there is
no specific way of choosing a scheme with counterterm coefficients to cancel
the 1/e divergences. The ( function expanded perturbatively on the RHS of
Eq. (2.31) is

da
dIn(p)

= B(a) = —ba*(1 + ca + cpa® + cza® + ...). (2.33)

Notice that the LHS of Eq. (2.32) is the coupling a running logarithmically
with p. a will be referred as the coupling throughout this thesis. Here we
explicitly relate the coupling with u, a(u?) = a,(u?)/7 = ¢*(u?)/4n%. The
coefficients in the corresponding  function have been algebraically derived
in the MS renormalization scheme [7] and [8], and [9, 10, 11]

b= %(110A—2Nf), (2.34)
c = %Qb(_gCA[?CA+110F]+3b[5CA+3CF]>’ (2.35)
' = il e} %N’%, (2.36)
64D
IS _ [35 64¢, + 1496753 B (6228 ot 10;2261> N,
+ <6§IQC3 + %)Nﬁ + %Nﬂ /256b. (2.37)

b and ¢ are Renormalization Scheme (RS) invariant whilst ¢, and c3 are RS
dependent their values above are calculated in the MS scheme. Cy = N (N
is the number of colours) and Cr = (N?—1)/2N are adjoint and fundamental
Casimirs, respectively, of the QCD SU(N) theory. Eq. (2.34) to Eq (2.37)
can be rewritten as expansions in powers of b, a form of expansion that will
play a pivotal role in our later discussions of renormalons.
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107 19
N A 2.38
¢ TR (2.38)
- 37117 243 325
MS
2 6% 32 192" (2.39)

S 1218587 4+ 138948685 5857771 4 9324005

. 13824b 27648
7761 + 16186, 1093 ,
b g2, 2.40
+ 576 6912 (2.40)

The N color-dependent contribution arises from gluon and ghost vacuum po-
larization contributions, while the Ny is the number of active quark flavours.
If b is required to be positive, corresponding to Ny < 33/2 >~ 17. a(p) — 0
as 1> — oo which is a clear indication of Asymptotic Freedom. (, in the
above is the Riemann zeta function. Integrating the beta function, then one
obtains

“ dx

i M = F +In(u/A) (2.41)

where the constant of integration F' contain its infinite part. It is reason-
able to make the choice F = [ dx/(—bxz*(1 + cz)) and the dimensional

transmutation parameter A be replaced by A defined by [12].

~ % c/b
AMS:(E) Asrs. (2.42)

Using F' and A, we have

In (%) B /aoo m * /Oa [bx2(11+ cx) * B(lx) dz. (243)

Eq. (2.43) has two properties, first note that second integral vanishes when
a — 0, the second property is that the second integral also vanishes again
when we choose the a so-called ’t Hooft scheme setting ¢y = ¢3... = ¢, = 0.

The solution for Eq. (2.33) at one loop level (retaining just the first term
on the RHS of Eq. (2.33)) is

oy 2
CL(/,L ) - bln(,u2/A2)’

and for the two loop level (retaining two terms), the solution may be written
in terms of the Lambert W-function

(2.44)
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1

W)= T WEG) (2.45)
Ap) = —é(%)? (2.46)

defined implicitly by W (z)e" ) = 2. For higher loops, a(u?) will be de-
pendent on the choices of ¢y, c3...c,,. A useful feature is that in 't Hooft
scheme, a(p?) may be written explicitly in terms of W (z) as above. To en-
sure asymptotic freedom, it is the W; branch of the Lambert W-Function
which is required [13, 14].

2.7 e'e” INTO HADRONS AND R+ -

e (q1) et (q2)

Figure 2.4: ete”™ — putu~ in QED

q(p1) q(p2)
8
e (q) e*(q2)
Figure 2.5: The leading order contribution to the ete™ — hadrons in
QCD

Using the Feynman Rules derived in Section 1.8 and Section 1.9, we can at
once draw the diagram and write down the amplitude for the ete™ — putpu—
process in QED:

_gMv

M = {v(g2)evuu(a)} )2{@(191)6%0(192)}- (2.47)

(p1 + p2
Rearranging and leaving the spin superscripts implicitly, we have
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-2
. _ _ we” _
iM(ete” — ptum) = — (0(@)y"ular)) (a(p1)7v(p2)) (2.48)
where s = (p; + p2)?. In order to compute the differential cross section,

we need |M|* which require us to find the complex conjugate of M. The
bi-spinor product of (oy*u)* can be complex conjugated as follows

(07" u)* = uT(v)'(v") 1o = uT (") 0 = uly 9" 0 = ayto. (2.49)

Thus the squared matrix element is

IMF = 5 () aata) @) wo(@) (o)1 o) o) () .- (2:50)

4
Note that we are still free to specify any spinors to any desired spin states
of the fermions. In real experiments, it is difficult to retain control over the
spin states. In most experiments, the beams are unpolarized, thus the cross
section measured is an average over the spins. We will assume to throw away
the spin information since muon detectors are normally blind to polarization.
The expression for |M|? simplifies by computing

L) B) PILVENTTD 251

Using the completeness relations Eq (1.26) and Eq (1.27) from Section 1.4,
and working with the first half of Eq (2.50) by writing in spinor indices so
we can move from one v to the next v, we have

Z 775(‘12)’751;“5(‘]1)775 (%)’Y&z”i(%) = (¢2 - m)dwﬁb(gl + M)beYogs

= trace[(d, — m)y"(¢, + m)7"].
(2.52)

Evaluating the second half the same manner, we arrived at desired simplifi-
cation
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Thus, we have

1 8e?
1 Z |M[* = ?{pl-quz-ql + P1-q1P2-G2 + mi(éh-(h) +mZ(prpa)}, (2.54)

spins

using the cyclic property on Eq (2.53) (and trace identity) by bringing it to
the left hand side

tr[(% - mE)'YM(ﬁl + me)%/] = 4[q2,uq1,v + G201 — g;W(qqu + mi)]?
(2.55)
tr[(p, +mv (P, —mu)y"] = 4ApEps + pivh — g™ (p2.p1 + m3)].
(2.56)

Neglecting fermion masses, we obtained

1 8et
1 Z ‘MP = ?{pl-(hpz-(h + P1-1p2-G2 }- (2.57)

spins

In order to calculate i ST |M|? explicitly, suppose

¢ = (F,0,0,p) (neglecting fermion mass p = E) ,  (2.58)
¢y = (E,0,0,—E) (center of mass frame), (2.59)
then the total center of mass energy is
1
s=(q+ @) =2q.¢o=4E> - E = 5\/5. (2.60)

The muon has momentum

pi = (F', E'sin(¢)sin(f), E'cos(¢)sin(9), E'cos(6)), (2.61)
Py = (F',E'sin(0), E'sin(f), E'cos(0)), (due to cylindrical symmetry)

(2.62)
Py = &+ — 1,

= (Vs — FE',0,—F'sin(f), E'cos())). (by energy conservation) (2.63)

Since the anti-muon is massless
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1
ph.pa, = (s — E')? — E”sin*(0) — E”%cos*(0) =0 - E' = FE = 5\/5. (2.64)

Inserting all the relevant expressions into Eq (2.57), the squared matrix ele-
ment is simply

1 8et
4 Z |M? = ?{pl-%pz-(h + P1-q1P2-Q2 },
spins

4

- %{<1 + cos(0))* 4 (1 — cos(6))*},
= ¢*(1+cos?()) (2.65)

The total cross section will not be possible to be calculated without deriving
the two-body phase space, let

d’py d*py
@nV2E, @k, 2 @ e =), (2.66)

integrating dggﬁ on three spatial -functions, yields

dPS =

d*py
(2m)34 1 Ey
Expressing E; and FEs in terms of integration variables, and using spherical
coordinates:

dPS = 5(v/s — By — Ey). (2.67)

By = |pi| =p, By = |p2| = | —p1] = p, (2.68)

d*py = p* dp dcos(0) d, (2.69)

the two-body phase space can be written as

1 do
PSS = — — 2.
dPS 1(-?malcos(ﬁ)%r, (2.70)
dcos(0)
PSS = 2.71
S T (2.71)
using the integration of [ % = 1 (due to cylindrical symmetry) and inte-

grating out the final 6-function [ dp §(1/s — 2p) = 3. The phase space PS is
related to squared matrix element and differential equation by the relation
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11 )
do = (Z > M| ) PS, (2.72)

plugging in |M|? and PS, the differential cross section and then the cross
section are simply

do 1 11 9
_ 0 2.73
dcos(f)  2s 167‘(‘42‘ L+ cos™(9)) (2.73)
+l do 4o’
teo tuT,s) = dcos(f = . 2.74
0(6 € —pup 78) /1 COS( )dCOS(Q) 3s ( 7 )

For the leading order contribution to Figure (2.5), o(eTe™ — hadrons, s),,,
intuitively we can replace the muon charge e with the quark charge Qy|e| (f
denotes the flavour) and count each quark three times, one for each color,
while finally summing up the relevant flavours:

o(ete” — hadrons, s);, = 3 ZQf (2.75)

Here we have not included the emission of real and virtual gluon into the
calculations. Figure 2.6 depicts the Feynman diagrams of real gluon emission
which leads to 3-jets events in international laboratory.

q(p) gk} qlp2)  a(pr) \g(k) q(p2)
X X
e (q) e (q2) e (q1) e’
Figure 2.6: Real gluon emission
We can now write the amplitude for the real gluon emission (which con-

tributes partially to next leading order correction) by referring to the QCD
Feynman Rules

a | - — 9w
M = €QsgTi{v(qg2)vuulqs)} Sﬂ

X (ﬂl(p1> [70%%/ - f)/u%fyo] Uj(p2)> Eg<k)'

p+k
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Thus, the squared matrix element is

1 464Q292N
L - N,

(P1-q1)* + (P1.g2)* + (P2.1)* + (p2-q2)*

(p1-k)(p2-k) ’

where we have used the colour algebra Y T@(T2)x = T2T4 = 15 =
$(N? — 1) = N.Cp. Performing all the necessary steps as discussed in the
calculation of o(ete™ — hadrons, s);, using phase space integral as well as

spinor algebra, we finally arrive at

(2.77)

1 dcos(0)d(¢)d(a) 1
et =4t o = oo [ dendn A S e

2516(27)3 2(2)?
471'042@2]\7 v x2—|—x2
f s 1 2
= — 2 Cp—= [ drid
35 Fop | P T — 1)
« x2+x2
= 0oCr— [ dxyd L2 2.78
70 F27T/ o x2(1 —5701)(1 —$2)7 ( )

where x; = 2p;/+/s is the energy fraction and o, = ¢*/4r is the strong-
interaction analogue of fine structure constant with g2 as the strong interac-
tion coupling. In a 3-jets event, the cross section diverges where the gluon
is collinear (results in divergences when the momentum vector of the gluon
k is parallel to p; or py) with the quark or anti-quark. These events cannot
be distinguished experimentally from 2-jets events. To ensure consistency,
we have to compute all contributions to quark-anti-quark production of the
same order of g. This involves also loop diagrams in Figure 2.7

q(p1) 9(k) q(p2) a(p1) \9(k)e d(p2) alpr) \_9(k) ~q(p2)
% Y Y
e (q1) e (q2) e (q1) e (q2) e (q1) e (g2)
Figure 2.7: Virtual gluon emission
in addition to the real gluon emission in Figure 2.6. Naively, one will think

since the loop diagrams are of order e2g? or e2ay, therefore the contribution
must be of order etg? or e*a?, implying higher order than the real gluon
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emission which of order e2g? or e?a,. Nevertheless, there are interference
S )

terms with the leading order diagrams, such interference contributes to the
cross section of order e?g® or e’a, equivalent to real gluon emission. This
is because in the loop diagrams, there are contributions which the gluon is
almost collinear with the quark and anti-quark. This gives rise to a similar
divergence in the infrared region but negative. This gives us some hope in
canceling the real divergence to obtain a finite answer. With the fact that
both have the same physical origin: soft (soft divergences are divergences
which arises from a zero energy gluon E, = 0, implying z3 = 0) and collinear
virtual gluons, this furthers increases our hope of cancellation.

The last divergences we will discuss are ultraviolet divergences contribution
from the first two diagrams in Figure 2.7.

k

£

pP1— p1+/€—>

Figure 2.8: Ultraviolet divergences

These two diagrams do not contribute as they vanish during renormalization
process by introducing a counterterm normally being labeled as d5 plus finite
terms. The ¢, is gauge dependent. For example, it has no one loop divergence
in Landau gauge £ = 0.

—9—

Figure 2.9: The dy counterterm

Noticing that the two diagrams do not contribute and regularizing both real
and virtual cross sections, adding them together, a finite answer will be
obtained and the regularization can be removed later on. This underpin the
foundation of Bloch-Nordsieck theorem. This is only true when one sums
over the final states that cannot be distinguishable but not in the initial
state. Using d space time dimensions d = 4 — 2¢,¢ < 0,
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as, (22 3 19
olete™ — qqg, $)nto = 00Cr— ( —+ =+ = —7>+ O(e) |,
2w\ € € 2
(2.79)
s 22 3
olete” — qq, 8)nio = UOC’FQ— (—— — = -8+ 4+ O(e)) .
2T € €

(2.80)

Note that adding them up together Eq (2.79) and (2.80) yield a finite answer

_ _ _ ag (3
olefe™ — qqg +qq, $)ne = 00Cr— (—) :
21 \ 2

Qs

= - 2.81
0o T ) ( )

where in the last line, we have made the substitution of C'r for QCD with
N =3

N—1 32-1 4
2N 2(3) 3
Adding the leading order Eq (2.75) and next leading order contribution Eq

(2.81), divided by Eq (2.74), we have the next leading order of the R.+.-
ratio

Cp = (2.82)

Re+e‘,nlo =3 Z Q?ﬁ [1 + %] . (283)
f

We have not consider 4-jets and 5-jets events in our calculation, the ratio
itself is still a complicated matter at present time of writing and our main
study will be the higher order perturbative corrections R(s) denoted by

R(s) = a(s) + r1a*(s) + m9a*(s) + r3a*(s) + ... (2.84)

with r1, 79 and r3 computed in the M S scheme. R(s) is related to the R +,.-
ratio by

Rete- =3Y Q7 [L+ R(s)]. (2.85)
f

Discussions in highlighting the differing approaches to the R.+.- ratio will
dominate the content of our study. It is worth to note that the R.+.- ratio
dominates at energies far below the Z pole and for energy on the Z pole,
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the analogous quantity is the ratio of the partial decay widths of the Z to
hadrons and to pu*u~ pairs. These results are valid for massless quarks.
For ¢ = u,...,b, Re+e- = 11/3 and R; = 20.09 while the measured value
at LEP is much higher by 3% to 4% due to higher-order QCD corrections.
These provide guidances in modifying our o(ee”™ — ¢7) when making
comparisons to experimental LEP results to test as.

2.8 SUMMARY

We made in this Chapter a brief introduction into some selective interesting
topics of perturbative QCD. We began with dimensional regularization and
then moved into renormalization theory and discussed different renormaliza-
tion schemes. The [ function was then introduced, which was then used to
define the perturbative correction to the R.+.- ratio, R(s).

QCD and QED are renormalizable theories. After divergences are regular-
ized, the troublesome divergent contributions can be removed by an infinite
redefinition of the fundamental constants of the theory like the coupling and
the quark mass in QCD. In other words, physical quantities are expressed
in terms of renormalized parameters and do not involve any UV divergences
anymore. Demonstrating the renormalizability of QCD can be an extremely
rigorous theorem. We provided rather a heuristic physical explanation. Large
loop momenta produces UV divergences. In the event that the loop momenta
are much larger than its characteristic external momenta, the loop loses its
structure and can be considered as a point. We then showed a brief example
of how renormalization is implemented in practice in the next section.

We then considered a QED one loop correction to the photon propagator.
Using the QED Feynman Rules, we can write its full expression. We then
performed some complicated algebraic manipulation and notice that a coun-
terterm needs to be introduced to remove the 1/e divergences. This serves as
an early exercise to picture the concept of Renormalons(Chains and Bubbles)
with QFT in subsequent chapters.

In QCD, asymptotic freedom and confinement are introduced. Confine-
ment explains why no solitary quarks are observed and why quarks are always
bound within the hadrons by the strong force carried by gluons. It is im-
portant to stress that perturbation theory is a great mathematical tool to
analyze QCD. A coupling constant is said to run by being large at low energy
and gradually deceases as energy increases. This physical behavior is called
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Asymptotic Freedom. We introduce R a physical observable, dimensionless,
a function dependent of energy (which we will denote as @Q)and we took a
zero quark-mass limit. We made the assumption that the energy () is much
larger than the quark masses and that the quark mass can be neglected. R
in QCD is dependent on the ratio Q?/u* and the renormalized coupling «g.
The choice of selecting p is part of specifying the renormalization scheme.

We finally provide a detail calculation of the R.+.- ratio by first calcu-
lating the cross section of ee™ — pp~ which then generalizes to Re+c— 4,
ratio at the lowest order by considering )y and number of colours. Real and
virtual gluon emissions are then considered to wrap up the calculation of
Re+ e nio ratio at the next lowest order before highlighting the importance of
perturbative correction R(s).



Chapter 3
MS AND CORGI

3.1 MINIMAL SUBTRACTION SCHEME

The most common scheme preferred is the (M S) modified minimal subtrac-
tion scheme [5]. In MS, the factors In(47w) — g which appear together with
the pole 1/e are not subtracted, in M S these factors are completely removed
together with the pole 1/e. These two schemes have been popular among
particle physicists as they facilitate the calculation and computational pro-
cedure. Nevertheless, there are no theoretical arguments to uniquely prefer
these schemes over any other. There is a complete democracy in the choice
of scheme.

As we shall see in Sec 3.2 the MS and MS renormalization schemes can
be related exactly to each other given a NLO calculation (e.g. the coefficient
r1 in Eq. (2.84)) [15, 16].

rMS _ TM_S
Ay = Ars xp [ S (1) 1 w)] | )
< b
P15 () = () = 2 (n(dm) — 7). (32)
where the relation
Am =V 47T€7A/E/2AM57 (33)

obtained is completely independent of N and Ny. The only difference is the
renormalization scale g which arises due to the selection of scheme. This
implies that by selecting 16 in MS, we have

47
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tars = 2.66pnrs, (3.4)

this emphasises that the meaning of the renormalization scale pu is correlated
with the chosen subtraction procedure. The use of a physical scale choice re-
lated to the energy of the process, e.g. p = /s for the perturbative correction
R(s), does not ,therefore, uniquely specify the scheme.

3.2 COMPLETE RENORMALIZATION GROUP IM-
PROVEMENT

The original idea of complete renormalization group improvement(CORGI)
[17] was motivated by the problem of scheme dependence in perturbative
QCD. Truncated perturbative series depend on the chosen renormalization
scheme (RS), which as we shall discuss below, can be specified by the vari-
able 7 = bln(u/A), related to the renormalization scale x, and by the non-
universal beta-function coefficients (cq, cs,...). The standard approach used
by experimentalists is to use M S subtraction with a “physical” scale choice
p =@ , where @ is a “natural” energy scale of the process, e.g. /s for the
R(s) ratio as noted above. Our attitude will be that the scheme-dependence
can be avoided if instead of truncating the series one resum to all-orders
parts of the higher perturbative coefficients which are renormalization group
(RG)-predictable. As we shall discuss this predictability reflects the self-
consistency of perturbation theory. This resummation removes the 7 and ¢;
dependence and leads to unique predictions whose uncertainty is determined
by unknown but RS-invariant higher corrections. In contrast theoretical un-
certainties in the standard approach are dealt with by arbitrary variation of
the scale u, typically taking © = @ as the central value, and y = 2Q) and
= %Q to provide upper and lower error estimates. This approach can give
extremely misleading estimates of the underlying Agcp parameter, and the
“theoretical error” has no real meaning.

Without loss of generality, consider R(s), Eq. (2.84) as perturbative series
where a = a,(p) /7 is the RG improved coupling satisfying Eq. (2.33). We
shall use the notation of Stevenson [18], we label the 7 = bln(z/A) which
can be obtained as the solution of the transcendental equation

2+cln(liaca):7'—/oa dx(_B(lx) +x2(11+cx))’ (3.5)

with the non-universal beta-function coefficients ¢y, cs, .....a(7, ¢2, c3, ...) and
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B(z) = 2*(1 + cv + co2® + c32® + ...). (3.6)
Eq. (3.5) is obtained by integrating Eq. (2.33) with a suitable choice of bound-

ary condition. Since 7 is dependent on A, so must be the boundary condition.

As we shall discuss, associated with a given observable R one has a di-
mensionful parameter Ap (dependent on the particular observable) which
is independent of the renormalization scheme and can be related to the di-
mensional transmutation parameter in a particular subtraction scheme , e.g.
Azrs by

Ag = " Ayps, (3.7)

where we set r = rM¥(u = Q) with a preference of r; (NLO perturbative
coefficient) rather than 7. This is possible because [18]

=1 = po(Q) = bIn(Q/Ap). (3.8)

po is RS invariant which implies that 7 can be traded for ;. By evaluating
the RHS of Eq. (3.7) in two different schemes one arrives at the Celmaster
Gonsalves relation of Eq. (3.1) [16].

Note that the RHS of Eq. (3.7) is independent of the subtraction scheme
applied. Thus we can now define a(ry, ¢z, ¢3, ...) using Eqs. (3.5, 3.8). For the
perturbative coefficients r;, there must be a cancellation of the RS-dependent
a when the series is resummed to all-orders. Perturbation theory requires self
consistency during calculation. This results in a demand that the result of
a N"LO(truncating at 7, 1a""2) calculation in two different schemes should
have a difference of O(a™*?). This leads to the following dependence of the
r; on the scheme parameters

7“2(7“1, 02),
7“3(7“1, C2, 03),
*9
*9

Tn(T1, 02, Cy ey Cn). oy (3.9)

To find the general structure of r,, on the scheme parameters, we differentiate
Eq. (3.5) w.r.t ¢,
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862 / o (3.10)

Consistency of perturbation theory for an O(a™ ) calculation then translates
into the statement that

OR™ OR™
or dc;
Using Eq. (3.10) and Eq. (3.11) we have for the n =1 case

= O(a™*"), = O(a"*). (3.11)

RW = g+ rd? B(a) = —ba*(1 + ca), (3.12)
OR() , AR ,
5 = O(a”), 9o O(a®), (3.13)
8r1 8r1
1 — =0. .14
87’ ’ 802 0 (3 )

The last equation is obtained by performing a partial differentiation on
Eq. (3.13). Integrating the conditions Eq. (3.14), we have
T1 :T—XQ. (315)

Inserting into Eq. (3.8), we will now have

Xo(Q) = bln (/&) (3.16)

this shows that Xj is an RS-invariant and has a genuine physical signifi-
cance. Repeating a similar procedure for n = 2 we will have a further set of
conditions

ors orsy Ory
=2 =-1,—=0. 3.17
8r1 T1‘|—C 8 Co 7603 0 ( )

Integrating all these conditions and repeating the procedure up to arbitrary
rn, One obtains

2
ro(r1,c2) = ri+eri+ Xy — o

5 1
ra(ry,co,c3) = 10+ 2cr1 + (3Xs — 2¢9)r1 + X3 — 63

(3.18)
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where the structure can be generalized as
Tn(71, €25 oy Cn) = Tp(T1,Cos ooy Cne)) + X — /(0 — 1), (3.19)

7, is an nth order polynomial in r;. 7, can be determined given a com-
plete N""1LO calculation. These are the “RG-predictable” pieces of higher
coefficients that we alluded to earlier.

X, is a constant of integration and is determined when given a complete
N"LO calculation. X, is Q-independent and RS-invariant. Given a N?LO
calculation in the usual MS scheme, the RS invariant X, will be determined
as the combination

Xo == Q) = ("= Q) — e =Q) + &, (3.20)

with the renormalization scale u = Q(energy). A complete N™LO calculation
means we have a set of calculated ¢, to ¢, and a computed set of r; up to r,.

Eq. (2.84) can then be written in the form

R(Q*) = a+rad*+ (ri+cer+ Xo—c)a?

+ (P + gcrf + (3Xy — 2¢9)r1 + X5 — %c;»,)a‘l, (3.21)
where each term exhibits the RS-dependence explicitly. a depends on the
scheme parameters such that

a = a(ry, co,cs, ... (3.22)

Given a Feynman diagram of a given order one should resum all known RG-
predictable terms. At NLO, ry is determined but X5, X3, ... remain unknown.
Setting R(Q?) = ag and Xy, X3, ..., X,, = 0, the complete subset of known
terms in Eq. (3.21) at NLO is

5 1
ap = a+mra® + (1] +corp — c)a’ + (1) + écrf — 2c911 — §C3)a4 + ... (3.23)
The justification to sum these terms, ag, can be understood by the following

arguments. ag consist of infinite subsets of terms where summation of all the
terms leads to an RS independent result, as the X5, X3, ..., X,, = 0 dependent
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terms cannot cancel their RS-dependence and the fact that Eq. (3.21) is RS-
invariant to all-orders. RS-independence allows us to set 71 = 0,¢c0 =0, ¢35 =
0, ...,, so that all the terms except the first in Eq. (3.23) vanish and we obtain

ag =a(r; =0,c0 =0,c53=0,...,¢,, = 0). (3.24)
This is equivalent to 't Hooft scheme with ¢y, ....,c, = 0 and 1 = 0. Setting
r1 = 0 yields the MS scale i = e™"/*Q) by simple manipulation of Eq. (3.8).
ap also immediately satisfies
1 Q
— 1 =bln(—). 3.25
el — in(s) (3.9
Thus ap is given by Eq. (2.45) and Eq. (2.46) involving the Lambert W-
function, with A replaced by Ag. A from Eq (3.7) is based on Stevenson’s
[17] definition which is different than the standard Aj;g, so now we redefine

Cayp

2c

Ap =Y ; )" Agre. (3.26)

Given a N2LO calculation, X, can be computed. Resumming the augmented
set of Xs-dependent RG-predictable terms using Eq. (3.20), we have

XQG,S = X20,3 + 3X2r1a4 + ceouy (327)
and consequently at N2LO one has

R(Q%) = ag + Xaay, (3.28)
which the observable R(Q?) in N2LO form.

Repeating this procedure continuously, we will have the CORGI version
of R(Q?) given by

R(Q*)corar = ao + Xoa) + Xszag + ... + Xpag ™ + .., (3.29)

which is simply the perturbation series in the RS with ry = ¢, =c3 = ... =
¢p = ... = 0. This immediately results in

ag(p?) = a(u?). (3.30)
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3.3 DIscussioNsS ON CORGI AND EFFECTIVE
CHARGES

A detailed introduction on CORGI and its motivation has been given. It
is worthwhile to review the closely related method of Effective Charges dis-
cussed by Grunberg [19] and to highlight its relationship with the CORGI

approach.

The main idea of the method of Effective Charges is to recognize that
there is a choice of RS in which the QCD observable R(Q?) is equal to the
coupling . That is in the Effective Charge (EC) scheme the higher perturba-
tive coeficients vanish, 7 = 0,79 = 0,73 = 0,.... The CORGI approach , as
we have seen, corresponds to a choice of RS with r; = 0,¢c0 = 0,¢c3 =0, ....
This means that at NLO level CORGI and EC give exactly the same result.

The application of Effective Charges is highlighted in [20] which in the
paper considers the dimensionless QCD observable D(Q) = a + Y ;° d,a™*™
(related to the Adler D-function and to be discussed in Chapter 4) is equiv-
alent to the renormalized coupling itself. The couplings a, @ in the M S and
EC scheme are related by

3(@) = 2 (a(m) (3.31)

where the beta-function in the EC scheme is given by

B(a) = —ba*(1 + ca + pa@ + ... + pra” + ...), (3.32)

with D = @ ( the QCD observable being the coupling itself ). Note that
¢ = p; ensuring scheme invariance. Then Eq (3.31) gives

o(D) = 52 5(a(D)), (33)

where a(D) is the inverted perturbation series. Expanding the above equa-
tion on both sides and then making re-arrangements gives
do(di,c0) = d% + cdy + (p2 — ¢2)

5 1
ds(di,ca,c3) = di + §Cd? + (3p2 — 2¢2)dy + 5(/?3 —¢3)

(3.34)
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One finds that the @-independent and RS-invariant EC beta-function coef-
ficients po, ps, ..., are closely related to the CORGI invariants X5, X3, ... of
Eq.(3.18). One has ps = X5 and p3 = 2X3. The connection between the
two approaches may be further clarified by considering that the coupling in
a general RS labelled by a(rq, ¢, c3,...) can be expanded in powers of the
CORGI coupling ag of Eq.(3.24). One has that

a(0, ¢y, c3,...) = ag + coap + %aé + ... (3.35)
Since ag can be written analytically in terms of the Lambert W-function as
in eqs.(2.14),(2,15), this enables one to obtain the coupling in a general RS
without solving transcendental equations. We shall exploit this approach in
our work on tau decays in Chapter 6. In the EC scheme @ = a(0, pa, ps, ..),
and so the above equation reproduces the CORGI expansion of Eq.(3.20).
Comparing coefficients one sees that po = X5 and ps = 2X3, as claimed
above. This shows in particular that at NNLO the CORGI and EC results
differ by O(aj), and that in general they will be close to each other.

3.4 SUMMARY

The most common renormalization scheme among phenomenologists is the
modified minimal subtraction scheme. In MS, the factor In(47) — v which
appears together with the pole 1/e is preserved. In MS, this factor is com-
pletely removed together with the pole 1/e. Nevertheless, there is no com-
pelling theoretical argument to prefer this scheme over any other scheme.

The original idea of a complete renormalization group improvement (CORGI)

was motivated by problems arising from renormalization scheme dependence
of fixed order perturbative QCD which leads to a dependence of fixed-order
predictions on the RS, with consequent large theoretical errors if the stan-
dard physical scale approach of choosing = @ is used. An infinite subset
of RG-predictable terms should be identified and resummed, resulting in
RS-invariant estimates, with the uncertainty due to remaining uncalculated
terms in perturbation theory now involving RS-invariant quantities such as
X5. In Chapter 6 we shall apply CORGI to the inclusive 7-decay ratio R,
where the perturbative corrections are rather large.

At the end of this chapter, we wrap up the similarities and differences
between CORGI and Effective Charges.



Chapter 4

REVIEW OF RENORMALONS

4.1 DIVERGENT SERIES IN PERTURBATION THE-
ORY

Divergent series are common in mathematics and theoretical physics. Feyn-
man argued that QED can be considered equivalently to the theory of the
motion of charges acting on each other by direct action from a distant, for
example is the interaction between two like charges which is proportional
to e where e is the electron charge. This led Dyson [21] to propose that
suppose the conditions are such to verify Feynman formulation of the theory,
let (the series in €?)

F€) =" fue™, (4.1)

be a physical quantity calculated by performing an integration over the equa-
tions of motion of the theory over time which can be finite or infinite. e? is
always positive. Suppose that the series prescribed above converges for some
e?, f(e?) is then an analytic function of e at e = 0.

Then, we can say that for small values of e, f(—e?) is then a well-behaved an-
alytic function which expands as a convergent power-series. This statement
is not true as the argument presented by Dyson was as follows. Consider a
system of N interacting electrons, from thermodynamics, it is obvious that
the energy of the electrons will be given by

1
E~ NT + §N2Vez. (4.2)

%)



CHAPTER 4. REVIEW OF RENORMALONS 56

where 7T is the mean kinetic energy and V' is the mean coulomb potential of
the particle. The number of interacting particle pairs is equivalent to ~ %N 2,
e? > 0 corresponds to the usual world where like charges repel and unlike
charges attract. The condition —e? < 0, however, corresponds to a situation
where like charges attract and unlike charges repel resulting in an unstable
vacuum state which is prone to the creation of more and more particle pairs.
This immediately results in f(—e?) as being an impossible candidate to be
convergent. To find the N which maximizes F, we differentiate Eq. (4.2)
equation and set it to 0, we will then obtain

dE

= ~T 4+ NVe? = 4.
N + NVe* =0, (4.3)
T 1
N, ~ ~ 4.4
Viel? — e? (44)

This implies that there is no stable minimum and the divergent nature of per-
turbative series emerges when more terms are taken into account. Therefore
we have

fn+1 i

as the f,e?" terms decrease for n < N,,q.. This can lead us to conclude that
perturbation series in QED are divergent with coefficients growing like n! in
nth order. This n! growth is connected with a “vacuum instability” cut at
e? = 0. Tt is suffice to end the discussions here on the relationship between
energy and divergent series in perturbation theory without discussions on the
alternatives prescribed in [21].

4.2 ASYMPTOTIC SERIES AND BOREL SUMMA-
TION

Consider the dimensionless observable R, a divergent series expanded as

R= irna”. (4.7)

n=0
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This series is said to be asymptotic inside the domain C of the complex a-
plane if the series diverges for all a0, and there exist coefficients ry such
that

N

[R= raa"| £ rypalal N (4.8)

n=0

There will be error which arises from the truncation of the series but the
error is much less than the neglected terms. This allows us to truncate the
series at n = N, rather than taking n to oo, where N,, corresponds to
truncation at one term before the smallest in magnitude. This then provides
the optimal approximation.

Discovered by Emile Borel, an asymptotic function can be transformed
into a series by using the method of Borel Summation. If r,, ~ n!, the Borel
transform of the series is then defined as

[e.9]

BIR|(z) =Y %z”. (4.9)

We will normally arrange our QCD perturbation series so that ro = 1. The
RHS of this equation will now have a finite radius of convergence, allowing
us to write

*® dz 2. r
o —z/a n _n
R_/O —e n§_ =, (4.10)

This is permitted since integrating the expression term by term and using
the result

/ dze /2" = pla™tt, (4.11)
0

reproduces the original series for R. If this has a finite radius of convergence
then B[R](z) will have an infinite radius of convergence. The usual sum of
the series for R is then equal to the Borel sum. Borel summation is said to
be a “regular” summation method.

R= /oo %ez/“B[R](z). (4.12)
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For the case of interest where R has a zero radius of convergence, B[R](z)
will have a finite radius of convergence, and may be analytically continued
outside of the radius of convergence onto the whole integration range [0, o).

Tdz .,
R =~ —e *“B[R](2). (4.13)
0 a
~ means "asymptotic to". So the idea is that the divergent asymptotic
series is asymptotic to the function corresponding to the Borel integral. The
application of Borel transformation to the Adler D function will be discussed
in the next chapter.

4.3 BUBBLES AND CHAINS

Renormalons are a certain pattern of divergence of perturbative expansions
in quantum field theories present at all orders and arising from a certain class
of diagrams, and related to their small and large momentum behavior. To
demonstrate the mechanism of how such divergences emerge, we return to the
example of a QED one loop correction in Chapter 2 and shown in Fig. (2.2).
Fig. (2.2) can be represented by the diagram illustrated in Fig. (4.1), by mak-
ing clear that we do not include the external gauge QED photon propagator
(denoted as chain) coupled to both sides of the fermion loop which we will
denote as the (bubble). Fig. (4.1) shows a diagram of a fermion loop and a
photon propagator.

= —ill,, (k?)
= —i(k?g — Kk, )y

ANANANNNANNNAN = — PR (|?)

=i (% - (1-9F)

Figure 4.1: A fermion loop diagram and the photon propagator with their
ETPTESSIONS

Any class of diagrams which contains chains of bubbles were discovered to
produce renormalon divergences. Fig. (4.2) gives a clearer picture of an n-
bubble chain. The complete vacuum polarization function TI(k?) contains
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contribution from the diagram containing just a single n-bubble chain which

is shown in Fig. (4.3).
K MW@/\/\/\/\/\/ \Y :B(n)u\I(kz)

Figure 4.2: A single n bubble chain

Figure 4.3: An n-bubble chain inserted into a fermion loop

Such contributions can be classified as diagrams containing an internal,
complete gauge boson propagator. The n-bubble chain in Fig. (4.2) can be
expressed as

B0 -
(__i})ﬂﬁl)(__iI161a2)(__i1)a262)(__iIIB2a3)'“(__i})aan)(—_iIIBnan+1)(__i})an+ly)7

and then further simplified into

B (k) = [ [I(=iP*™) (=il 5,0y, )] (=i PO 1"). (4.14)

k=1
Substituting g = a; and after some simple algebra, it is obvious that

1
PoPRIg o = S TI%k (4.15)

k2 Q41
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O EVIVIVV VI W\QVW

Figure 4.4:  Summing bubble chains from n =0 to oo

Note that the product PP II%*+1 is gauge-independent despite the fact
that it consists of strings of propagators which are gauge £-dependent. Eval-
uating the product of Eq. (4.15) yields

ﬁ[l‘[ak ] =112 Tp~ ' (k)" (4.16)

Q41 Qn+1
k=1

Thus, Eq. (4.14) can be expressed as

v —1" @ n— D1V
By (k) = e gt It (—iPone?)
n n 4 v k* k"
= (el - B, (@17

which in fact corresponds to evaluation in the Landau gauge, £ = 0. One has

B () = (=1)" (o) (33)[~iP* (k. & = 0)] (4.18)
This is the complete gauge boson propagator. It is the sum of all possible
diagrams with two external photon lines only and such exact calculations
would corresponds to truncating the perturbative series at the ooth order.
This is something which we will not do. Therefore, we restrict the calcula-
tion to just include one loop diagrams without considering any higher-loop
diagrams for simplicity. This means performing the construction of diagrams
with only the above “bubble’ corrections to the “bare” gauge boson propaga-
tor. As demonstrated in Fig. (4.4), summing over B% (k?) from n = 0 to oo
and including one loop contributions only, the complete photon propagator.
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B*(k?) can be expressed as

V(1.2 . . V(1.2 v 2
B (k) = —iP* (k) + Y B (k)
n=1
—i o kPR S N el
= (ﬁ)[gu —?]Z(—l) (ITp) +(ﬁ) R
n=0
—i R —i KMk

= R -t E = (4.19)
It is interesting to see how a single fermion bubble diagram containing a
single internal, complete gauge boson propagator contributes to the vacuum
polarization function II(¢?) as represented in Fig. (4.5). This represents the
entire set of diagrams with the nth order contribution of Fig. (4.3). The
diagram in Fig. (4.5) has an nth order term associated with an n! factor, this
contributes to what we have discussed in length as "renormalon divergences".

4.4 LARGE-NF APPROXIMATION FOR VACUUM PO-
LARIZATION

Instead of considering the vacuum polarization function itself, it is useful to
study a closely related object known as the Adler D function. The Adler D
function plays a crucial role in providing a theoretical description of strong
interaction processes like the e™e™ annihilation into hadrons which is heav-
ily based on this function. At high energies, perturbation theory remains
the most reliable tool for calculating the Adler D function. The Adler D-
function is proportional to the logarithmic derivative of I1(s) with respect to
s. This allows us to avoid an unspecified constant associated with II(s). We
shall define it more carefully in Chapter 5. Expanded in the coupling a in
perturbative QCD we have

D=a+) dyat. (4.20)
n=1

We will explain its relation to the parton model result and R(s) in Chapter
6.

Note that the nth term in D(¢?) and II(¢?) are derived from the same
diagram. So d,a""! will contain contributions from diagram in Fig. (4.6)
the calculation of which simply involves combining the expression for an n-
bubble chain, Bé‘n”)(kQ) with the relevant fermion propagators of the loop and
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then integrating over the loop momentum of the fermion loop p and that of
the photon momentum k. This leads to

op (1.2 1 1 1 1
< [B T, ey L=y
+ QBETnp)<k2)TT(7uﬁfYﬂ%fYoﬁ7P%>:| (4'21)

d4]{; d4p op 1o e
a (27T)4 (271')4 B(n)(k )Xupua -+ QB(n)(k )XV;LO'p:| . (422)

X and X are the tensor structures found by evaluating

1 1 1 1
Xup,ua T'f’(% /ﬁ+ ,é+ /kf)/pp+ /q’m%%m)a (423)
— 1 1 1 1
Xopop = TT(%m%%%m%%)- (4.24)

Each coefficient d,, may be expanded in powers of Ny
dy = dVING + dPINT o d (4.25)

The leading dr }N;} term corresponds to evaluating the one-chain diagrams
of Fig(4.6). The sub-leading N]’?’l term arises from two-chain diagrams as in
Fig. (4.7) , which generates a contribution of order a!™™ 2N ~ gn ™ N7~
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p SRS k+p /\
q / \ q q q
AVAVAVAV AVAVAVAVEY] AVAVAVAV.
k+p+q
p+c\1\\ // N
p+q

Figure 4.6 : Contribution to d,a™™*

The large-N; all-orders result can describe QED vacuum polarization, but
for QCD the corrections to the gluon propagator involve gluon and ghost
loops (see Fig(2.3)), and are gauge (£)-dependent. The result for TIy(k?) cf.
Eq. (2.24) is proportional to —N¢/3 which is the first QED beta-function
coefficient, b. In QCD one expects large-order behaviour of the form d, ~
Kn"(b/2)"n! (v is the fractional exponent related to the anomalous dimen-
sion) involving the QCD beta-function coefficient b = (33 —2N;)/6 [22], it is
natural to replace Ny by (33/2 — 3b) to obtain an expansion in powers of b

dy = db" +d" V7 4 d O, (4.26)

The leading-b term AP =M = (—3)"d£?]b” can then be used to approxi-
mate d,, to all-orders. One imagines that the fermion bubble chains in QED
are replaced by chains of effective QCD bubbles involving gauge invariant
combinations of gluon and ghost contributions, so that for both QED and

QCD

ba . —k?
2y
with either b = —%, or b = (33—2Ny)/6. It is convenient to use a particular

choice of RS, the VV-scheme which corresponds to using the MS scheme with
a scale p? = Q%e~%/3. This ensures that C' = 0, so that

ba . —k?
2
We have

dPINFa™ ~

a
d*k d4p " . o
<[ i BT ) X+ 2B K ey 1(0.29)

_ . / P 2y ) (4.30)

iz
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where we integrate over fermion loop momenta p and the angle of the gluon
momentum k. F(k?) itself is complicated and its exact expression can be
found in [23]. Here we have introduce the notation k> = —k?/Q>. The
coefficient dgl](V) is explicitly given by [24, 25|

dm(v) = _—2(n+1)(_—1>n

3 6
n+6 16 —9m 2m—n—2
x| =2n- o e > om(l—27m)(1-2 )Coms1 | | nl.
2 41>m>0

(4.31)

This has n! growth and can be resummed using Borel summation as we shall
see in Chapter 5. Hence, using the presentation in [26],

27, 7202,-5/3\ "
drinng st — o [ T pgy (2 BTNy g9
n f 2 ,uz

< > Eh o, (ba . B2Q% 3\
éD:ZdL}Nfa S Za — F(k?) <EIBT .
(n=0) (n=0)
(4.33)

Figure 4.7 : A double chain contribution to D(k?)

Provided that the renormalization scale u is kept fixed to the order of per-
turbation theory, the dominant contributions to the integral come from both
regions of small k£ < @ and large k > @Q behavior of F(k?).

F(E*) = 3Cpk*+ O(kIn(k?)) (4.34)
F(k?) = %% (m(l%?) + g) +0 <1ng )> (4.35)

This concludes that the ultraviolet and infrared finiteness of the Adler D
function implies that F'(k?) must have a power like approach to zero in both
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regions. Splitting the integral of Eq. (4.33) at k2 in both regions, we will
obtain

3 Q2 2 b " 1 (92 -~ 11
D = n+1 5/3 _ ! I 5/3 - “nll .
—CF(EO)CL [— (—,u2€ ) ( 2) n+3(,u2€ n -+ b"n

. . (4.36)
The first term from small k£ and the second from large k. The singularities
in the Borel plane lie at ¢t = —2/b for IR renormalon and ¢ = 1/b for UV
renormalon with the Borel transform given by

2 —2
1
B[D](u) = % (%6_5/3) 5 (1st IR Renormalon)
Cr (Q? 53 1 5 1
+ 3 (ﬁe / TERnE + 611 a (1st UV Renormalon)
(4.37)
Here we define ©w = —bt. Note that this is not the exact Borel transform

for Fig. (4.6). The exact Borel transform for the Adler D function will be
defined in Chapter 5.

Multi-chain diagrams in QED have been analyzed that higher order correc-
tions in 1/N; do not modify renormalon singularities except their strength
indicated by b. As the location of the singularities are a function of b, we will
have different location of UV and IR renormalons in QED and QCD. We will
highlight a few important characteristics of UV renormalons, IR renormalons
as well as their differences with instantons in QCD briefly.

Ultraviolet renormalons are located at ¢ = m/b, m are positive integers
implying u = —1, —2,... UV renormalons produce alternating sign factorial
divergences. All UV renormalons are double poles, restricting oneself to the
bubble diagram of Fig. (4.6). The first singularity « = —1 has been analyzed
in detail using renormalization group method, which turned out to be a com-
plicated branch point structure attaching to it. They are theory-specific but
process-independent (process-dependence factorizes and is calculable). In 4-
dimensions, UV renormalons are always located at positive integer multiples
of 1/b although there are exceptional cases if the theory contains power di-
vergences (begins at some negative integer multiples of 1/b) or in the case of
heavy quark effective theory (can occur at half-integer u).
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Infrared renormalons are located at t = —m/b, with m = 2,3, ... implying
u = 2,3, ... This result in the minimal term associated with this subseries is
of order (A/Q)?* (this will be clearer as we go along Chapter 5 and 7) due
to the first IR renormalon. Contrary to UV renormalons, IR renormalons
are p-independent suggesting that its ambiguities might have physical signif-
icance. For the Adler function, we can associate them with the absence of
dimension-2 condensate in the OPE as the u = 1 singularity is absent. All
IR renormalons are double poles except for u = 2, which is a single pole.
The first singularity has been analyzed in detail using renormalization prop-
erties of gluon condensate which it was concluded that the pole turned into
a branch cut with structure simpler than the first UV renormalon.

Instantons are also known to produce divergent series but as they carry
topological charge, they are unrelated to perturbative expansion in QCD. In
QCD, instanton singularities are far away from the origin of Borel plane im-
plying that it plays insignificant role in large-order behaviour of perturbative
expansion in QCD.

Instantons-anti-instantons

singularities at 4w, 87

N\

UV renormalons IR renormalons

t=m/b,m=1,2,.. t=—-—m/b,m=23,..

Figure 4.8: Singularities in the Borel plane of TI(k?), the correlator function
in QCD. Shown are UV renormalons, IR renormalons and instantons

4.5 SUMMARY

We began this chapter by introducing divergent series in perturbation theory
and the application of the Borel method to define an asymptotic series as a
function. We later explained bubbles and chains in a very informal manner
showing all the details step by step and its relation to the Adler D function.
A brief introduction to the Adler D function as a divergent series was made
and we finally pointed out what a "renormalon" is, distinguishing between
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UV and IR renormalons corresponding to large and small momenta- k£ flow-
ing through the fermion or effective QCD bubble chains.

We end the chapter by highlighting the theoretical analysis on UV and IR
renormalons while making a brief introduction to instantons.



Chapter 5

IR FREEZING OF EUCLIDEAN
QCD OBSERVABLES

5.1 INTRODUCTION

Fixed-Order Perturbation Theory in QCD has proved successful in making
accurate approximations to physical observables at large energies, Q?. Nev-
ertheless, such a perturbative approach breaks down below the Landau pole
Q? = A2, this is due to non-perturbative effects in the Infrared region. Non-
perturbative information is essential to make perturbation theory sensible
as higher perturbative coefficients exhibit factorial growth making the series
not convergent. Resummed perturbation series can be represented by a Borel
integral which is ambiguous due to singularities on the positive real axis (also
known as Infrared Renormalons) of the Borel plane. These ambiguities are
in the form of powers of A?/Q? and we will discuss them in more detail in
Chapter 7. In this chapter, we will demonstrate how to use Borel summation
to resum the “leading-b” terms in perturbative corrections to the Polarized
Bjorken Sum Rule K, 5;, Unpolarized Bjorken Sum Rule U,p; and the Adler
D function to all orders. We begin by defining the three Euclidean quantities
of interest but firstly with a heuristic detailed description on deep inelastic
scattering, structure functions, parton distribution function and an overview
of sum rules.

5.2 DIS AND SumMm RULES

Deep inelastic scattering (DIS) or high energy lepton-nucleon scattering plays
a role in understanding the partonic structure of the proton. We will not
touch on the detailed kinematics of DIS. Deep inelastic structure functions

68
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provide not only some of the most precise test to the theory but also mo-
mentum distributions of partons in hadrons. The structure function Fj(z, Q?)
(where Q* = —¢* with ¢ as the four-momentum transfer from an exchanged
particle like photon or Z to the nucleon and x is the fraction of nucleon’s
momentum carried by struck quark) which parameterize the structure of the
target as ’seen’ by the virtual photon - are defined in terms of lepton scatter-
ing cross sections. In the hadronic region Q% << A2, the wavelength of the
photon is too small to resolve the structure of the nucleon and the nucleon
simply undergoes elastic scattering. At higher values of Q%, Q? > A2, the
scattering becomes inelastic as the photon starts to resolve the substructure
of the nucleon and, in particular, the momentum fraction carried by the par-
tons.

The Bjorken limit (or Bjorken scaling) is defined as the independence of the
structure function on Q? where Fy(z, Q%) — Fi(x) and Fy(x, Q*) — Fy(x)
implying scattering from point-like constituents within the proton. In this
limit, the structure function obey an approximate scaling law. The partic-
ipating structure function for an unpolarized (neutral- and charged-current
DIS on unpolarized nucleons) proton target are Fy, zFY, Fy, xFj, F§™
and 2xF; = F,. em denotes neutral current arises from neutral current
eN — eX (N denotes nucleon and X denotes hadrons) processes which
involves photons and Z exchange. v denotes charge current structure func-
tions which exclusively derived from W exchange processes like eN — v X
or YN — eX. Polarized DIS involve the helicities (£1) of the incoming
lepton and nucleon with five structure functions gl,____5(:c,Q2). For e~ or v
initiated processes, the difference to the polarized cross section arises from
the difference of anti-parallel minus parallel spin, for e™ or v initiated pro-
cesses, this is the opposite. Note that there is the same tensor structure
between the spin-dependent and spin-independent parts of hadronic tensor,
thus the substitution of F}, — —g5, F5» — —g4 and F3 — —2¢; in calcu-
lation of the cross section is allowed. g, and g3 are suppressed by powers of
M?/@Q?* (M denotes nucleon mass) for longitudinal nucleon while for trans-
verse nucleons, the cross section difference vanishes as M/ — 0. Using
the Callan-Gross relations F; = 0 and the Dicus relations g; = 0, there are
two independent polarized structure functions g; (conserves parity) and gs
(violates parity), in analogy to F} and Fj.

In quark-parton model, F; and g; are expressed in parton distribution func-
tions q(z, Q?) of the proton where ¢ = u,u,d,d, s,c,b and g. q(z, Q?)dx is
the number of that particular parton carrying a momentum fraction between
x and z + dz of the proton’s momentum in a frame in which the proton
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momentum is large.

Integrals over certain combinations of parton distribution functions had par-
ticular values in the parton model, such integrals are called sum rules. In
QCD, these sum rules remain valid up to perturbative corrections. This sum
rules provide constraints on parton distributions and tests of conservation law
up to the measurement of a,. Most of the famous sum rules are combination
of these sum rules

/luv(x)dx = 9, /Oldv(x)dle,

Z/o zlg(z) + q(x)]de = /0 zluy(x) + dy(z) + 65(x)]dx ~ 0.5.

Here, we have assumed the sea of quarks of the particle (in this case a pro-
ton) to be symmetric in quark flavors (which the particle has an infinite sea
of light ¢g pairs) where we have u(z) = wu,(z) + S(x), d(z) = d,(z) + S(x)
and S(z) = u(x) = d(z) = s(xr) = 5(x). The subscript v denotes the word
valence. Note the last sum rule > fol zlq(x) + q(z)]dx is obtained through
experiment. The interpretation of the sum rule indicates the percentages of
the particle’s momentum (in this case a proton) carried by the partons (in
this case quarks) which is equivalent to 50%. And the rest are carried away

by gluons.

In the partonic region Q? >> A2, the shape of the quark and gluon dis-
tributions changes quickly at very low z. The sea becomes more flavour
symmetric. This is because at low x, the evolution is flavour-independent,
and there are more and more sea quarks and gluons. This confirms the foun-
dational prediction of QCD which was verified by the HERA experiments at
DESY.

However, there is not a unique set of Parton Distribution Functions being
commonly accepted. There are several groups competing to provide the best
parametrization of the parton distributions. They do not use the same input
data, parameterisation, treatment of heavy quarks, value of the coupling con-
stant as well as the way the estimation of the experimental and theoretical
errors are treated. A recommended on line program written by professional
groups is at the link:

http://hepdata.cedar.ac.uk/pdf/pdf3.html
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By changing the parameters set in the program, we did not just verify all the
facts on the parton distribution function but also from the shape and area
under the curve, we can predict the expectation values of the sum rules.

5.3 THE GROSS-LLEWELLYN-SMITH SUM RULE

The GLS Sum Rule applies to the Fj structure function measured in neutrino-
and antineutrino-proton scattering, in the parton model, it has a value of 3.
The sum rule is defined as

1

1
GGLS = 5/ F§p+yp<l’,Q2)d.T. (51)
0

In the parton model this is given by,

Gors = | (ulo) o) +dle) - ),
but incorporating QCD corrections we have,
Cors = 31— S05G(Q),
where G(Q?) is defined as,

G(Q*) =a+ Gia® + Gya® + ... (5.2)

G1, Go and G are the coefficients calculated in the M S scheme.

5.4 THE GERASIMOV-DRELL-HEARN SUM RULE

The GDH Sum Rule is explicitly discussed in [27]. The GDH Sum Rule
relates the helicity structure of the cross sections in the inelastic region with
ground state properties. Base on the physics law like Lorentz and gauge
invariance, causality and unitarity, GDH Sum Rule is important for us to
check our understanding on the hadronic structure. There are many forms
of GDH Sum Rule written in different forms and notations. In general, the
GDH Sum Rule is expressed as

2 1 2 2
h(@%:%ﬁ / {W,Qa-“@? oo, Q) | d, (5.3)
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where r = Q?/2Mv with M being the nucleon mass and v being the energy
transfer. Note that the quark distribution function are related to densities
for longitudinal and transverse quark polarization denoted by fI"* and f;7*.
e denotes the value of the charges of the quarks while ¢ denotes the quark
flavour

G(r.Q7) — gi(x) = %Z 2 (fT - fi) (5.4)

92(z, Q) — ga(2 Ze - 91(). (5.5)

We will revisit GDH Sum Rule in Chapter 7 under usual experiment condition
by neglecting g»(z, Q%) contribution and relating it to the polarized Bjorken
Sum Rule.

5.5 POLARIZED BJORKEN SUM RULE

The polarized Bjorken Sum Rule is defined via the spin-dependent proton
and neutron structure functions ¢¥, ¢g¢"with * = Q?/2Mv, v denotes the
energy transfer and M is the nucleus mass. At extremely large Q?, K, g
arrived at its renowned value of = |g4/6gy|. At finite Q >> A, K,p; is
dominated by perturbative corrections K (Q?) to the parton model sum rule
in a"

Ko = / D-en (1 02)d
! (1——0FK<Q >) (5.6)

6

where gy and g4 are the nucleon vector and axial vector couplings. K (Q?)
is defined as,

K(Q*) =a+ Kia* + Kya® + ... (5.7)

K1, Ky and K3 are the coefficients calculated in the M S scheme. Higher-twist
terms are not taken into account. [28, 29|
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5.6 UNPOLARIZED BJORKEN SUM RULE

The unpolarized Bjorken Sum Rule for Fj structure function of v/N deep
inelastic scattering still remains experimentally unchecked. However at Neu-
trino Factories, there is a possibility to determine the zF*" and xF"" struc-
ture functions which provides the first experimental determination of the
unpolarized Bjorken Sum Rule. The unpolarized Bjorken Sum Rule is given
by

1
Uupj = /Fl”"”p(a:,@2)da:.
0

In the parton model, this is given by

Ui = /0 (u(z) — u(z) — d(z) + d(z)) dz.

U.py is related to the Adler isospin Sum Rule U,pj> and the Callan-Gross
relation for N deep inelastic scattering U, ;1 by

Uupi(@Q%) = Uupja(Q%) 4 Uup;(Q7),
where,

dx

1
(0% = e N2~ 1
UuB]?(Q ) /0 2 (SL’,Q )21‘ )

dx

1
Uupirn(Q%) = /OFLVP_WCQQQ)%-

Incorporating QCD corrections we have [30],
1
V(@) = (1-5Ch0@). (5:5)
where higher-twist terms are neglected and

U(Q*) =a+Uia®> + Usa® + ........ (5.9)

Ui, Uy and Us are coefficients also calculated in the M.S scheme [28, 29).
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5.7 (*—~DEPENDENCE OF THE EUCLIDEAN OB-
SERVABLES

We follow the presentation and notation of [31] [32] very closely, and refer
the reader there for more details. The Adler D function D(Q?) is defined as
the logarithmic derivative of I1(Q?) with respect to the energy Q2

d
dQ)?
where T1(Q?) is the QCD vacuum polarization function. I1(Q?) is related to
the correlator of the two vector currents

Q) = ~5Q* o TI(QY), (5.10)

(990 — 9,w@*)T(Q?) = 167r2/ d'ze'™ < 0|T[J,(2), J,(0)]]0 >,  (5.11)

where ¢* is a vector satisfying ¢> = Q. The function II1(Q?) can be calcu-
lated from the diagrams in Fig. (5.1).

Eq. (5.10) consists of the parton model result and the QCD corrections,
D(@?), ;
D@)=N> Q%1+ ZCFD(QZ)). (5.12)
f

N is the number of colours and @); is the charge of quark flavour f. We
neglect here “light-by-light” terms which will be mentioned in Chapter 6.
Here D(Q?) is given by two terms

D(Q*) = Dpr(Q) + Dnp(Q?), (5.13)

where the first term is the perturbative term and the second term is the
non-perturbative term. The perturbative term is given by

Dpr(Q%) = (@) + ) dna™(Q7), (5.14)

n>0

where a(Q?) = a,(Q?)/7 is the renormalized coupling and for one loop ap-
proximation (which we have discussed in Section 2.6)

2

(@) = bln(Z)

(5.15)

as the plots in this chapter will just be a simple model using just one loop
approximation. Use of the one loop coupling together with the “leading-b”
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contributions to the perturbative coefficients automatically ensures that the
all-orders resummations are independent of the RS scale p, which is the only
source of RS-dependence at the one loop level. Q? = —¢? > 0 is the single
space like energy scale. D(Q*) — 0 as Q> — oo thanks to asymptotic
freedom. We will not take into account non-perturbative contributions aris-
ing from the OPE (Operator Product Expansion). These will be covered in
Chapter 7. In this chapter we shall be concerned with trying to resum to all-
orders the perturbative “leading-b" terms discussed in Chapter 4 Eq. (4.26).

The polarized Bjorken (K,5;) Sum Rule is defined in Eq. (5.6) and the
corresponding GLS Sum Rule in Eq. (5.1). G(Q?) and U(Q?) are split into
perturbative (PT) and non-perturbative (NP) parts just like the case for
D(Q?). Note that contributions due to "light-by-light" diagrams are omitted
for the perturbative corrections to the Ggrs and K, p;.

q @ q q q
N/\/\/\/Vm/\/\/\/w wm
@
q q

O\~ @

Figure 5.1: Leading large Ny contributions of II(Q?) at nth order

PR OS S S

Figure 5.2: Leading large Ny contributions to K,py, U,ps and Gars at nth
order

Fig. (5.2) provides the leading N; contributions to all these sum rules.
These large Ny results will be used to compute the leading-b all-orders re-

summation of these perturbative corrections denoted by DE;LT)(Q2), K;LT) (Q?)
and U (Q?).

We recall from Chapter 4 that in the large Ny limit, we can expand d,, as
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dp = dUINT 4+ dlTINTT L dl, (5.16)
where d is the leading large Ny coefficient which can be computed to all-
orders from a set of Feynman diagrams Fig(5.1). Replacing Ny = (33/2—3b),

we will then obtain an expansion of the form

dy = d™p" +d" "Vt 4+ dO, (5.17)

where computation of the “leading-b”, d'P = d™p" to all-orders based on
large-Ny results is possible. One can then arrive at an all-orders leading-b

result by resumming the AP ar ! terms using a Borel transform technique.

We will now write the Borel transform of DEJLT) found in [33],

BIDEIE) = 3 Al = Al A

~ A+ (1+2)
. ; By(n +B:> n)z, ﬁl(_n)_z,; (5.18)
where
~8(=1)"(3n* 4 6n+2)
Aol = S P 1 22
8 b(-1)"(n+2)
A = S TR 1 2
By(1) =0,
By(2) =1,
By(n) = —Ay(—n),n >3 (5.19)
Bi(1) =0,
b
Bi(2) =7
Bi(n) =—-Ai(—n),n >3
_2n
o=

Here 2z, = 27” give the positions of IR renormalons at z = 2, and UV renor-
malons at z = —z, in the Borel plane. We will derive the Borel transform
of DEDLT) explicitly in the next section by using a skeleton expansion and con-
verting it to the Borel representation by a change of variable. This turns out
to be much easier than evaluating the result using the two loop one-chain
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result for dgﬂ(V) in Eq. (4.31). The Borel transform of K}DLT) and UI(DLT) which
have a simpler structure structure than that for the Adler D function can be
written as [34]

1 L1
1+2 181+2Z

B = 5

and
1 1 4 1 1 1

61+= 31-=2 21-3

22

BlUS)(2) = (5.21)

They are much simpler as they come from inserting chain of n-bubbles into
a tree level diagram shown in Fig. (5.2), rather than inserting into a quark
loop. Eq. (5.20) has 4 poles while Eq. (5.21) has three poles in contrast to
Eq. (5.18) which has an infinite amount of poles.

The following resummed expressions for D;LT)(QQ),K%T) (Q?) and UI(Jsz (Q%)

DEAQY) = Z { (en/a(@? >E1(az5’;)) la(Zan)(Ao(n)—zlAl(n)—znAl(n))]

+ (Ao(n) = zadi(n }+Z%{e(‘““@2”Ei (Q(ZQ"Z)) L(ZQ"Q)<BO<n>+lel<n>

— anl(n))] — (Bo(n) + anl(n))}, (5.22)
K(L)(QQ) _ i _ 8e(=21/a@) Ry ( ) + 2¢(- 22/a(Q*) Ry (l)
o 9b (@?) a(@?)
+ 16eH/U@DE; (a (22)) — 10e(22/ @) (a (22)) ] (5.23)
1 2
U@ = g [86( e ()

— gel-=2/d@))E; (i) 9¢(22/a(@)) i ( 2 ) 5.24
a(@?) (@%) 24

can easily be obtained using the standard integrals involving the Fi(z) func-
tion
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/0 dz(li:in) = et Bi(—z/a), (5.25)

/wd s 1+ 2% Bi(—2/a)] (5.26)
2 = z, —ea Fi(—2z,/a)l. .

0 (lJri)2 a

The Ei(z) function known as the exponential integral function [35] is defined
as

Ei(z) = — /OO dte—_t, (5.27)

Lt

for x < 0. For = > 0, only the principal value of the integral is considered
and can be expanded such that

Fi(z) =In|z| 4+ v + O(x), (5.28)

for small values of z. For the region Q* < A?, the one loop coupling Eq. (5.15)
changes sign on passing through Q? = A? and we need to introduce a modified
Borel representation introduced and motivated in [31], expanded in powers
of |a| given by

D@ == [ dze @I BDE) (), (5.20)

by making a change of sign on

a(Q*) — —a(Q),

Zn — —Zn,

and then adding an overall (-) in Egs. (5.22), (5.23) and (5.24). It is straight-
forward to see that these equations are invariant under these changes. We

explicitly checked this by making these alteration to the codes in Maple re-
quired to plot Egs. (5.22), (5.23) and (5.24). This worked successfully.

Changing Ay — —A; and B; — —B; in Eq. (5.22) are necessary as
they contain z, in their definitions. 1/b also needs to change sign since it has
been factorized from zj, 2 in Egs. (5.23) and (5.24).

[31] provides a deeper analytical discussion on Egs. (5.20), (5.21) and
(5.18). Our plots of Eqs. (5.22), (5.23) and (5.24) obtained with Maple are
shown in Fig. (5.3). [31] and [32] clearly explains and discusses the analytical
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behavior of Egs. (5.22), (5.23) and (5.24) such that they obey the following
relations when Q? — A2,

DEAQ* =AY = > z[Ag(n) — Bo(n)] = Y 22[As(n) — Bi(n)] In(n)

0.679938
b
(5.30)
8
KR(@Q* =A% ~ —5p 102 (5.31)
8
UD(Q>* =AY =~ gy In2 (5.32)

These leading-b results change sign in the vicinity of Q? = A2, where they
remain finite , and as Q% — 0 they approach the freezing limit of 0. The
(Q-dependence is only piecewise analytic, with only the first three derivatives
ﬁ for D) (Q?) being finite, and only the first derivative for the sum rules.
The full result including non-perturbative effects must be an analytic function
of Q2. This will be further discussed in Chapter 7.

5.8 SKELETON EXPANSION AND BOREL REPRE-
SENTATIONS FOR THE ADLER FUNCTION

We begin by re-writing the leading Adler D function expressed in leading
term of the skeleton expansion which arises from the integral corresponding
to a chain of bubbles

D) = / h dtw(t)a(e“tQ?). (5.33)
0

Here t = k?/Q?. w(t) is the characteristic function and C' is the standard
M S subtraction scheme constant = —5/3. In this thesis, we will set C' = 0.
This corresponds to the V-scheme with the renormalization scale

p? = e 3Q2 (5.34)
)i

The characteristic function w(t) is normalised such that

/ " dt(t) = 1. (5.35)
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Figure 5.3: Q?-dependence of the perturbative corrections to the observables
in Egs. (5.22), (5.23)and (5.24), resummed to all orders in the leading-b
approximation. All plots by Maple 11

We will now demonstrate how to convert the skeleton expansion into a
Borel representation by introducing the vacuum polarization function IT1(Q?)
of Eq. (5.11) being re-defined as,

I1(Q?) = /O h dtwr (t)a(tQ?). (5.36)

where the characteristic function wr(t) in the ¢ < 1 <— IR region is given
by

wr(t) = —t%tE(t), (5.37)

and for the ¢t > 1 <+— UV region

wn(t) = =5 5t2(3). (5.38)

10
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Nevertheless, these 2 regions are related by the conformal symmetry ¢ —
1/t.

Classic QED work in [36] shows that Eq. (5.36) can be obtained simply by
adding appropriate color factors. This is related to the Bethe-Salpeter kernel
for the scattering light-by-light. It is also the first term in a well-defined QED
skeleton expansion. Fig. (5.4) is the diagram of the relevant kernel

q K q
AVAVAVAV AVAVAVAVERAVAVAVAV
q k g

AVAVAVAV.

Figure 5.4: Light-by-light scattering diagrams for wy(t) calculation

The diagrams in Fig. (5.4) can reproduce the topology of Fig. (5.1). The
QCD skeleton expansion is problematic and we will avoid its detailed discus-
sion completely. Let us define Z(¢)

4 5 3 1+1)?
=(t) = 5[1—1n(t)+(§—§ ln(t))t+( ) [Lo(—t)+1In(t) In(1+¢)]], (5.39)
with Ly(z) as the dilogarithmic function given by
T In(1 —
Lo(z) = —/ dy%. (5.40)
0

The relation between the Adler D function and the vacuum polarization
function I1(Q?) given by Eq. (5.5) will have a one-chain skeleton expansion
term associated with wp(#?) where

DH(Q?) = / h dtwp (£)a(tQ?). (5.41)

0
wp(t) is obtained by applying Eq. (5.5) on wr(¢)

~ 2

3 o d [* .d
— +5@ / dt [wn (1)1 n[a(tQ?)].

(5.42)
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and then integrating by parts

3

= -3 /OOO dt[wn (t) + t%wn(t)]a(th)-

This induces a transformation in wyy(t) such that

4

Q) — Q'@ = —5D(Q) = walt)
— wn(t) + t%wn(t) = —%wD(t), (5.43)

spoiling the conformal symmetry present in wy(t). wp(t) are more compli-
cated in the UV and IR regions

8,7

wp(t) = sl(7 = @)t + (1 +H)[La(=1) + () In(1 + )]}, (5.44)
W5V (1) = [+ + (3 I(0) 5 + (0 +OLa(~) ~ Ine) In(1 + 7]

(5.45)
We will now expand wr(t)in powers of ¢t. The expressions in both the IR
and UV regions consists of expansion in ¢ and an expansion multiplied by a
logarithm which is

[e.e]

=3 ant"+ln )DLt (5.46)

n=2

By the conformal symmetry expressed in Eq. (5.37) and Eq. (5.38) implies
that the UV part can be written in terms of &, and &,

%(Z Gt " —In(t) Y &t ™). (5.47)

This steps are necessary to ensure us to write the Borel representations of

DE(Q?) = / dze"/*@) BIDE) (2), (5.48)

in the region Q% > A% and
D@ = = [ dze @ B (—2), (5.49)

in the region Q?> < A2, converted from skeleton expansion. This is done by
making a change of variables.
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&, and &, are extracted by comparing Eq. (5.39) to Eq. (5.47) and Eq. (5.48)
and are found to be

42— 6n?)(—1)"
Sn>1 = 3(n—12n2(n+1)%
. 4 2(—1)"
En>1 3= Ut 1)’ (5.50)
é;l = 17
& o= 0.

As we have discussed previously an induced transformation through Eq. (5.44)
is necessary, this permits us to express wp(t) in a similar expansion

[e.e]

w(t) = Z[gnu +n) 4+ &+ In(t Z n+ 1)t (5.51)
WY () = €1 —n) = &Jt "+ In(t Z (n—1)t™". (5.52)

With the above expansions, we can now represent DEDLT)(QQ) in terms of

a Borel integral. Expressing DEDLT)(QZ) in terms of wp(t) which is then split
into the IR and UV regions

DG = / " dop(altQ?)
—Zacf [ o ey

2
+§%a<@2> [ et moy
) kf;(—b D[ dt(g[é’“(l o) £
Fin(t) fj o+ )+ [ dt(nf;[sna ) £
() Y — D) (1n(0) (5.53
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We have used the mathematical relation below in deriving the above expres-

sion
o0

aay) = a() 3 (-2 1n(a) (5.54)
k=0
Using the fact that at n =1
[fn(l - n) - én] =0,

this allows us to omit the term from the D{(Q2).

DE;L%(QZ) can be transformed into a Borel integral of the form Eq. (5.49)
with a changes of variables

z = —a(Q* x (n+1)In(t) — IR,
: = a@)m-Dh(),  —UV,
in their respective regions. Using integration by parts, we manage to remove

the extra In(¢) term in the integral. The standard Borel representation should
be of the form

D02 = [ duesta@)] Gl +n)+&] 1
Dpp(Q7) = /0 dze /@) ; nt1 1 z(sil)
> én(nJr 1) 1
R SR rE
n /Oo dzez/a(Q2)[§: (60 (1= n) = & 1 _
0 — n—1 1+ )
Enln —1) 1

WK

+ ], (5.55)

(
(n— 1P (1+ 72 )?

3
[|
N

for Q* > A%, a(Q?) > 0 of Eq. (5.49), and for Q* < A?, a(Q?) < 0, we will
have the modified Borel representation of Eq. (5.50) with its upper limit at
—o00. Making contact with Eq. (5.18), the following relations can be identified

Eull + 1) + &,
n+1

= —Bl(TL+ ]-)Zn—i—h (556)

forn>1 R
gn(l _n) _gn

n—1

=Ai(n—1)z,_1, (5.57)
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for n > 2, for the single pole residues and

T nt1? Bo(n+1) + Bi(n +1)zn1, (5.58)
forn > 2 ” |
o1 A= D, (5.59)

for n > 2, for the double pole residues. The equations above are verified by
substituting &, and &, given by Eq. (5.19) into Eq. (5.51).

Note that explicit derivation of all relations have been performed with pencil
and paper as well as solved in Maple for exercise.

For further details, please refer to [31] whose calculational steps we have
largely followed.

5.9 SUMMARY

We begin with a brief introduction on deep inelastic scattering, structure
functions, sum rules and then discussing the significance of fixed-order Per-
turbation Theory in QCD which has been very successful in making accurate
approximations to physical observables at large energies, Q%. Nevertheless,
such a fixed-order perturbative approach breaks down below the Landau
pole. Non-perturbative information is essential to make perturbation theory
sensible as higher perturbative coefficients exhibit factorial growth making
the series not convergent. Resummed perturbation series can be represented
by a Borel integral which is ambiguous due to singularities on the positive
real axis (also known as Infrared Renormalons) of the Borel plane.

We then moved on to introduce the Polarized Bjorken Sum Rule K,p;
and the Unpolarized Bjorken Sum Rule U,p;, relating them to the Parton
model and their corresponding perturbative corrections.

The Adler D function is first introduced as a logarithmic derivative of the
QCD vacuum polarization function with respect to the energy. The function
itself is calculated from a set of diagrams in Fig. (5.1). It is then fairly
straightforward that from the parton model result, the QCD corrections can
be split into perturbative PT and non perturbative NP parts. Let us just
focus on the PT part for now whilst discussion of the physical interpretation
of the NP part will be made in Chapter 7. Fig. (5.2) shows the leading Ny
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contributions for the K,p;, U,ps; and Ggrs sum rules at leading order. A
very brief introduction on leading-b approximation is then made which is
essential because all these large Ny results will be used to compute leading-b
all orders resummations of the perturbative corrections discussed. We then
write the Borel transform of B[DI(DLT)](z), B[KI()LT)](z) and B[UI(;LT)](z) where the
structure for the last two are simpler with a finite number of poles in contrast
to B [DEDLT)](Z) which has an infinite number. The reason that they are much
simpler comes from the fact that one is inserting a chain of n-bubbles into a
tree level diagram shown in Fig. (5.2) which is much simpler than insertion
into a quark loop. A brief analysis of its mathematical behavior makes a
completion to the section. Fig(5.3) shows the leading-b approximations for

DEDLT), and the K](DLT) and UI(DLT) Sum Rules.

The rigorous mathematical derivation of the Borel transform for DEDLT)
was performed by using a one-chain skeleton expansion. We begin this task
by re-writing the leading Adler D function expressed in leading term of the
skeleton expansion which arises from the integral corresponding to the chain
of bubbles. The computation has been carried out in the V-scheme where
C = 0 which we were using throughout this thesis. The characteristic func-
tion is then introduced for IR and UV regions which they also fulfill the
renormalization condition setting them equal to 1 when integrated from 0
to oo. The vacuum polarization function is dependent on the characteristic
function and upon completing certain equations, direct comparisons could
be made to verify the Borel transform of the Adler D function discussed in
the previous section. We finally show the existence of single and double pole
behavior in its corresponding Borel transform.

The Borel transform of the Adler D function is the main ingredient of
this thesis for our N®*LO Renormalon resummations and our derivation for
fully analytic perturbative QCD.



Chapter 6

NUMERICAL CALCULATION OF
R(s) AND R;

6.1 R.+.- IN 4 SCHEMES

We begin with the definition of the dimensionless observable the R.+.- ratio
for some value of the center of mass energy /s

Rovo-(s) = 220 (e 2 hadvons) _ 5= g2y g+ (Z @f> R (s),
f f

olete — u+ p—)

(6.1)
where )y is the electric charge of each quark flavour and the sum is over
the different flavours. R(s) denotes the QCD perturbative corrections to the
parton model result and can be expressed as

R(s) =a+ Z rpa™ (6.2)

where quarks produced in electromagnetic interactions become part of the
final-state hadrons. a = a,(u?)/7 is the renormalized coupling. The coeffi-
cients r, 75 and 73 are computed in the (MS) scheme using the renormaliza-
tion scale u? = s. Full expressions of the coefficients will be provided in the
next section. K (s) comes from the "light-by-light" part in the figure below,
and has a (3. Q;)” dependence.

87
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Figure 6.1 :  Light-by-light corrections diagram

The ratio R.+.- is related directly to the transverse part of the correlator
of two vector currents in the Euclidean region with the condition that s =
—q¢* > 0. In order to avoid an unspecified constant, the logarithmic derivative
with respect to s was considered and the Adler D function was defined and
given by Eq. (5.12). We now can replace the perturbative correction R(s)
with D(s) written as a perturbative series

D(s)=a+» da"™ (6.3)

n>0

By analytical continuation from Euclidean to Minkowskian, one may notice
that the Minkowskian observable R(s) can be related to D(—s) by the dis-

persion relation,
1 s+ie D(—t)
R(s) = — dt———=. 6.4
() 271 /s t (6.4)

It is very clear from the expression above that the ’landau pole’ in the cou-
pling a(s) laying along the positive real s-axis can now be well-defined. Thus
R(s) will be defined for all s. The dispersion relation can now be explicitly
expressed as

—1€

R(s) = QL /ﬂ dfD(se'), (6.5)

™ —T

where we perform an integration around a circular contour in the complex
energy-squared s-plane. It is worth noting that the dispersion relation of
Eq. (6.5) is valid for values of s > A? above the 'Landau pole’. The idea
which leads to the ’contour-improved’ perturbation series comes from the
expansion of D(se?) as a power series in @ = a(se), and performing the
integration of 6 term-by-term, where at each order, an infinite subset of ana-
lytical continuation terms present in Eq. (6.2) are resummed. This complete
analytical continuation, as we shall see, serves to freeze R(s) with an infrared
limit as s — 0 of R(0) = 2/b.

As an example, we begin by considering the 'contour-improved’ series for
a one loop coupling. The one loop coupling which we have introduced in the
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[ function section is given by
2

a(s) = WA?M—S) (6.6)

Now, we will consider the "contour-improved" perturbation series for R(s)
by rewriting

R(s) = Au(s) + ) dnAnia(s), (6.7)
n=1
where the function A,(s)
| 1 [ a(s)
An(s) = — "o — .
n(5) =50 /_7r W = o | O a2 (6.8)

are obtained by applying the contour integration on the coupling. Such
integral are evaluated in closed-form as

2 mha(s)
A = —
1(s) 7Tba’r’cian( 5 ),
20" 1(s) ibma(s) .,
A, = ——Iml|(1 1=n], 6.9
() = Sl = (6.9)
We can then obtain the one loop "contour improved" series for R(s),
2 mha(s) a’(s) a(s)
R(s) = —arct d d
(s) —parc an( 5 )+ 1[<1 T b27r2a2(3)/4)2]+ 2[(1 - b27r2a2(3)/4)2]+
(6.10)

As s — 0 one has A;(0) = 2/b as the freezing limit, whereas A;(0) = 0 for
the higher ¢ > 1 functions. We see that this procedure resum in each order
an infinite set of terms involving powers of 72b?, which arise from the ana-
lytical continuation. Since these terms are large they should be resummed
to all-orders to achieve accurate approximations, and this is precisely what
the Contour Improved (CIPT) approach achieves.

We will move now to a consideration of the two loop "contour improved"
perturbation series to calculate results in the M S, CIPT, CORGI and CIPT
+ CORGI scheme. Further discussions on the physical behavior of the one
loop "contour improved" perturbation series are presented in Ref. [37, 38|.

Beyond the simple one loop approximation, the freezing could be analyzed by
selecting a renormalization scheme with the beta function equation written
in its two loop form

) = =51+ caly?). (6.11)
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This is the 't Hooft scheme in which we set all the non-universal beta-
function coefficients to zero. Here ¢ = (153 — 19Ny)/12b is the second
universal beta function coefficient. In these schemes, the coupling can be
expressed analytically in closed form in terms of the Lambert W function
where W(z)exp(W(z)) = z [13]. Note that In(z), as all logarithms has
different branches, thus the branches can be selected so that Re(WW) has
the interval [—oo,00] and Im(W) with the interval [—im,im|. The other
branches has the same interval for Re(1¥') with the imaginary part taking
a set of intervals [im,3im], [—im, —3im| and etc. These corresponds to the
branches having a branch cut along the negative real axis in the z-plane.
The Lambert-W function has a similar structure assuming the function is
large and real. For the limit Re(W) — oo and Im(W) with the interval
[—im,im] corresponds to the principal branch denoted by Wy. In the simi-
lar limit Re(W) — oo, Wy have the interval [+im, +3im]. Analogously,
W, have the interval [£nim, £(n + 2)in] where n is a positive integer for
Re(W) — oo. Nevertheless, for the limit Re(W) — —oo, W4, have an-
other imaginary intervals running from [0, £2i7] with [£2i7, +4in] for Wi,
and so on. The principal branch W, closes up at the point on the real axis
where Re(IW) = —1 and is the only branch with a branch cut along the neg-
ative real axis starting at z = —é while the other branches have their branch
cuts along the negative real 2z axis in the z plane. One of the important
characteristic is W,,(z) = W*, (2*). Other important properties essential to
the algebraic manipulation will be pointed out as the thesis proceeds.

Solving, the two loop beta function, one will then have

o 1
W) = T (612)

) = — (), (6.13)

by solving the beta function. Aj;g is defined conventionally in Ref. [39] and
is related to the standard definition

Agrs = (2¢/b)"" Ay, (6.14)

provided in [12]. The "-1" subscript corresponds to the branch cut of the
Lambert W function and is the branch cut which will preserve asymptotic
freedom. Intuitively, the selection was made based on the necessity to have a
real coupling with large p. The only 3 branches of the Lambert-W function
which can take real values are W, and W,,. W, will not provide asymptotic
freedom as — 0, p — 0 giving a non-zero coupling. W_; is chosen as we
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demand W (z(u)) to be continuous against x in the complex plane. The W)
branch will return non-zero imaginary part for ;1 = || when expecting a real
coupling. For a detail technical discussion on the selection of the branches,
we advise reader to refer [14]. Reader can also convince themselves by mak-
ing a plot of Eq. (6.12) with real positive coupling in different branches to
understand the selection of the branches better.

We select the renormalization scale > = s, where x is an arbitrary dimen-
sionless constant, for the perturbation series of D(s) in Eq. (6.2). Expanding
the integrand in Eq. (6.4) for R(s) in powers of @ = a(wse'?) expressed in
terms of Lambert W function using Eq. (6.12), we will obtain

-1

4T T W(AQ)eRn)] (6.15)

where

As) = 1(*/7) be K = -t (6.16)

e Ay 2c

Using Egs. (6.12), (6.13) and (6.15), the function A,(s) in the "contour
improved" series are computed

A@):% wz—/

v oo [l ageno (6.17

L+ Wi(A(s)e™?)

It is necessary to apply the appropriate branches of the Lambert-W function
in the two different regions of integration and by making a change of variable
w = W (A(s)e'™?), one will obtain

(1) /W—1<A<s>e““> duw

A,(s) = —
(5) 20K Sy agsyeinmy w1+ w)rt

(6.18)

Noting the relationship between the +1 and the -1 branch cuts in the Lambert-
W function Wy (A(s)e %) = [W_,(A(s)e'5?)]*, we can then evaluate the
elementary integral

2 1
Ails) = b mKc

for n = 1, where 2/b is the residue of the pole at w = 0. For n > 1, we have

Im[In(W_,(A(s)e™™™))], (6.19)

2

W_1(A(s)eE™) — 1
1( ( 2K7r +Z iKm k]’
T W 1 (A(s)e 2 B+ W1 (A(5) o))
(6.20)

A,(s) = %[m[ln(
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where the first four functions A; (s), As(s), As(s) and A4(s) are plotted versus
S"E/K?w_s in Fig. (6.2) with Ny = 5 flavours of quark. Note that the figures
show that the A;(Q) all show the behavior of asymptotic freedom, approach-
ing zero as Q — oo. A1(0) = 2/b, whereas for i > 1 one has A;(0) = 0.

Note that we only compute A,(s) in the 't Hooft scheme where we only
consider a two loop beta function. To avoid confusions with n > 2 loops, we
set the two loop A, (s) function as

Aon(s) = Ails), (6.21)
Aon(s) = An(s). (6.22)

For higher loops beta function, our current interest is the 4 loop beta function
to match the latest calculation for ds given in Ref. [40], we have

gﬁff;z) = —ga2(u2)(1 + ca(p?) + coa?(p?) + csa®(u?)). (6.23)

Theoretically, the solution for a(u?) in a 4 loop beta function can be solved
by considering a(u?) as a perturbative series of a(u?) = —1/c[1+ W_1(2(n))]
(the solution for a(u?) in a 2 loop beta function) which for convenience and
to avoid confusion is set such that a(u?) = —1/c[1 + W_1(2(u))] = ap. Thus
as(p1?) (the solution of a in 4 loop beta function) is

as(1?) = ao(2®) + a3 (n?) + ko) + kaad(?) + kaal(1?).  (6.24)

By equating the coefficients of the beta function on both sides of this expres-
sion we can fix the k; as

kl = Oa
k2 = C,
1
ks = 5037
1 1 4 2
k4 = gcg + 563 + gCCQ — 5663. (625)

Expressions for ¢y, c¢3 and all the corresponding variables required to fit for
a, using the MS, CIPT, CORGI and the CIPT + CORGI versions of PT
will be given in the next section. Since we can expand ay(p?) = ag(p?) +
kiad(p?) + kaad (1?) + ksag (4?) + kaad (%), we can write our 4-loop coupling as
a sum of ag terms. Since ag is known analytically in terms of the Lambert-WW
function we avoid having to solve the transcendental 4-loop beta-function
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equation, which makes calculations more straightforward. Similarly a 4-loop
Ayn(s) function can be expanded perturbatively with a two loop Ay, (s)
function such that

A(4)1(S) = A(0)1<8) + kgA?o)l(S) + kgA?0)1<8) + k4A?0)1<8), (626)
An(s) = Awn(s) + kAl (5) + ks Afg) () + ksdfy, (s).  (6.27)

Note that Eqs. (6.21) and (6.22) are essential for the calculation in the
CORGI and CIPT + CORGI version while Eqgs. (6.26) and (6.27) are needed
for the CIPT version. Thus, the correction R(s) to the 4-loop R.+.- in the
MS (version 2) and CIPT (version 3) are

R(shyrs = aa(p®) +mai(u®) + roag(u®) + raaz(p’) (6.28)
R(S)C’IPT = A(4)1(8) + dlA(4)2(S) + dQA(4)3(8) + d3A(4)3(S) (629)

while the correction R(s) to the 4-loop Re+.- in the CORGI(version 1) de-
rived with great detail in Chapter 3 and CIPT + CORGI (version 4) is given
by

R(s)corar = a(i®) + Xoga(u?)® + Xzpa(p?)* (6.30)
R(s)ciprscorar = Awi(s) + XapAw)s(s) + XspAa(s) (6.31)

The last equation is the application of the "contour improved technique" in
the CORGI scheme (version 1).
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Figure 6.2 :  The function Ay(s), Aa(s), As(s) and As(s) against sx/KM—S -
showing asymptotic freedom behaviour. All plots by Maple 11
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6.2 ANALYTICAL PREDICTIONS OF 7 IN 4 VER-
SIONS

It is useful to fit data for R(s) to the parameter 7, = bln(y/s/Azrg). This
is a convenient choice which can easily be converted into ay(Myz) or Agrs
as required. As discussed, we shall consider four versions of perturbation
theory for R(s), and make fits for the corresponding values of 7 which we

denote Ty75, Torpr, Tcorar and Terpricorar Which can be extracted from
Eqgs. (6.28), (6.29), (6.30) and (6.31). Regrouping all the essential equations

R(s)ars = aa(p®) +riad(p?) + raai(p?) + r3ay(p?)
R(s)erpr = Aw@i(s) + diAwz(s) + daAwys(s) + dzAgs(s)
R(s)corar = a(p®) + Xora(p®)® + Xspa(p?)?
R(s)crprecorar = Aw)1(s) + XopAw)s(s) + XspAoya(s)

R(s = M%)=0.03904-0.00087 is the value considered by Baikov and collabo-
rators [40] using the value of a,(MZ)VVLO extracted from the working group
of [41] including terms up to O(a?). The main reason we are considering to
use this value is to ensure the consistency with the latest ds calculation as
well as to check in the later Section 6.5 if the value of as(M2) we obtained will
be agreeable with value obtained by Baikov and collaborators by performing
a shift of da, (M%) = 0.0005 implying a,(MZ)FNNEO = (0.1190 £ 0.0026°.
We believe that using the latest d, calculation will not change the result sig-
nificantly or changing the conclusion of our predictions. Ignoring the error,
we will set R(s) = R(s = M%) = 0.03904 and the rest of the versions having
the equivalent value to test the value of oy extracted from its version,

R(M3)ars = R(M3)cipr = R(M3)crpricorar = R(M3)crpricorar = 0.03904
(6.32)
This will be the value we use throughout our calculation to extract 7 from
each of the 4 versions. All 4 taus are solved with Maple 11 by using approriate
commands and techniques. The coefficients b, ¢, ¢o, c3, 71, 12, T3, dy, da, d3,
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Xogr, X3r, Xop, Xsp are

b

C2

C3

(]
)

rs

dy

ds

Xor
X3r
XQD
Xsp

%(11@1 — 2Ny) (6.33)
%%(—SCAWCA +11CH] + 3b[5C4 + 3Cx)) (6.34)
2857 — XN, + ZEN? (6.35)
64b
1218587 + 13894865 5857771 + 932400
oL+ 16186, 1003, o
5176 b— 691262 (6.36)

dy — Ew%? (6.37)
dy — 2—14(6d1 + 5¢)m?b? (6.38)
ds — 2—14(12d2 + 1ded; + 3¢ + 6c) 720 + %#‘b‘* (6.39)
(14—1 —283)b+ % - % (6.40)
(% - 1—3?53)52 + CA(% - gfs - gfs)b
Cp(z—g - gfs +1085)b + Ci(% —&3)
CACr(~ oo + 56) + Ch(~ ) (6.41)
N[-gs + 226+ 6]

T TR C

- 1310043460807 . 1212205 6 5521 % bt 6% .

144939499 5693495 5445 65945 7315
— 53 + 2 —

6.42
20736 864 3 Gt g & T g Sr(6:42)
rg —ri —cr 4 e (6.43)
T3 — 7"1 — 57"1 — (3X2R — 202)T1 + 5 (644)
dg — d% - Cd1 + o (645)

Having all these equations, fits to 7 of each version (performed with Maple
11 to 100 digit precision) could be obtained where in this particular case, we
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set Ny = 5. We find fitting to R(Myz) = 0.03904

s = 22.561 (6.47)

Tcrpr = 22.569 (6.48)
Tcorcr = 22.544 (6.49)
TeIPT+CORGI = 22.574 (6.50)

The value of 7’s show that all four versions are quite consistent to one another
as might be expected for a N3>LO calculation at a large /5. All the values are
consistent with a(Myz) = 0.119. Clearly the impact of resumming analytical
continuation terms 72b? is not great at this order and energy. We will see
much larger differences when we go on to apply similar fits to the much lower
energy inclusive R, observable.

6.3 CONTOUR INTEGRAL REPRESENTATION OF MINKOWSKI
OBSERVABLES

Among all the leptons, only the tau particle can decay into hadrons as it
is the heaviest lepton and therefore has the necessary mass. Some of the
common leptonic decays are into a tau neutrino, electron and electron anti
neutrino (7- — wv,e"7.) or tau neutrino, muon and muon anti neutrino
(17 — vypu~7,). The possibility for the decay of tau into a tau neutrino,
electron and electron anti neutrino is only slightly higher than the decay of
tau into tau neutrino, muon and muon anti neutrino [42]. The creation of a
tau neutrino is due to the conservation of lepton number in weak interaction
whereas the creation of electron or muon is due to the conservation of charge
by the emission W~ gauge boson. The Feynman diagram below represents
the possibility of some of the decay modes.

Vr

e >
67/’L7d78

Ve, Uy, U

Figure 6.3: Feynman diagram of the tau decay
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While the hadronic decay modes(7~ — v, dpu) will produce quark-antiquark
pairs dominated by u, d and s where dy = cos(0¢)d + sin(6¢)s. Note that
since mesons must be colorless, the pair must have the color anti-color com-
bination. Thus, the possible mesons that can be created are 7~ (ud), K~ (us),
p~(ud) and K*~(us). Despite that p~(ud) and K*~ (us) have the same quark
content as 7~ (ud) and K~ (us), they differ by parity. Other mesons involved
are 'r](%dgm) and w(“t4) There are other decay modes which required
detail explanation which will not be discussed here like 3 charged tracks and
5 charged tracks decay modes. Hence, the branching ratios for the different

channels are expected to be approximately [43]:

1
B, = Br(tm —v.ly) = = 20% (I=e,p), (6.51)

B I'(t~ — v, + hadrons) ~ N =3, (6.52)
(= — vre 1)

which are consistent with experimental averages [44]. The agreements are
relatively good and taking notice that the measured 7 hadronic width pro-
vides evidence for the color degree of freedom. Note the measured value of
RT at its lowest order prediction RT ~ N and the branching ratio of the
leptonic channel B; is dominated by the dynamics of QCD perturbative cor-
rection R, = 0.2038 (the leading order + other orders, which the leading
order contributes most) show that the tau decay is a good choice to extract
QCD strong coupling. For reviews of tau decays into hadrons see [45, 46].

The ratio R, is defined analogously to R(s) as the ratio of the total 7 hadronic
decay width to its leptonic decay width,

I'(1 — v, 4+ hadrons)

R, = 6.53
R (1 = vee ) (6.53)
R. involves 2 two-point correlation functions
1 (0) = [ e QT (VY 0)) ) (654
ala) =i / d* e (0|T (Al (x) A% (0)1)]0), (6.55)

where V}; = ¥ v"; is the vector and A = Vi yHys1; is the axial vector
with the indices 7, j correspond to the flavour u,d, s. We will then have the
Lorentz decompositions
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HZVV/A(Q) = (_gﬂl’qz + qﬂq )HZ] V/A( ) + q q Hz] V/A( 2)7 (656)

where 0 and 1 are the angular momentum J in the hadronic rest frame. Note
that the imaginary part of the two-point functions are proportional to the
spectral functions for hadrons with the quantum numbers 0 and 1. Thus the
tau decay rate can be written as the integral of these spectral functions over
the invariant mass of the final-state hadrons

2 2
~ " ds s s 1 :
(6.57)

The combinations of correlators are

I (s) = [Vaa [N (5) + ) 1 (8)] + [V P () + 11D, (5)]. (6.58)

The inclusive contributions associated to different quarks can be separated:

R,=R.y+R.a+Rs (6.59)

RTV and RTA are the first two terms of Eq. (6.58). RTS is the suppressed
Cabbibo contribution. R. v and R. .4 are measured experimentally from the
even or odd pions in the hadronic final state while Rﬂs is measured from
the number of odd kaons. The hadronic spectral function is sensitive to-
wards non-perturbative effects of QCD, this makes the calculation of integral
Eq. (6.57) to be impossible at present. The best approach is to analyze the
analytic properties of the correlators I1/)(s). For more detail, [43] will be
a recommended reference, at the moment it will be suffice to express E’T’V/A

and R; g as

5 _ 3 2 5 a(m?)

Rrvja= §|Vud| Sew (1 tg— R, +dpc |, (6.60)
% 2 5 a(m?)
RT,S = 3|Vus| SEW 1 + Ei + R + 5PC (661)

Adding all the three terms, the total ratio R, can be expressed perturba-
tively as

- 5 a(m
R (|Vud| + |Vu8| )SEW [1 + 12 ( )
T

+RT(5)+5PC] ,(6.62)
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with V,4 and V,, are elements extracted from the CKM mixing matrix. s =
m? lies below the threshold for charmed hadron production. Therefore, only
three flavours u,d and s which are active. The electroweak correction is
given by 15—2‘“77”3) ~ 0.001 with the factor Sgy = 1.0194 [43]|. dpc are power
corrections which arises from the leading quark-mass corrections which are
extremely small for up and down quarks but extremely large for strange
decays (5&? ~ 20%). Nevertheless, the value was suppressed by the factor
sinf2 which affects the total R, ratio only by ~ —1%. The value of such non-
perturbative corrections can be obtained from the invariant-mass distribution
of the final hadrons in tau decay, although it is still unpredictable currently,
it can be calculated the same way like R,. R.(s) is the purely perturbative
correction ignoring quark masses, which can be expanded as

R.(s)=a(l+ ) ria"). (6.63)

n>0

Since summation over the u,d and s quarks leads to (3> Q)’=0, there will
be no "light-by-light”. This permits us to directly express both R and R, in
terms of the transverse part of the correlator of two vector currents in the
Euclidean region.

We can now relate both Minkowskian observables denoted by R(sq) to D(—s)
by analytical continuation from the Euclidean to Minkowskian region which
is formulated as an integration around a circular contour in the complex
energy squared s-plane [47],

Rlso) = % /_ W(0) D (s06)d | (6.64)

W () is the weight function which is dependent on the observable R with
so as the initial energy extracted from 7 then inserting into the initial cou-
pling a(sg) (which is required for recursion relation). Evaluating the above
equation with W () = 1 one will produce R(sy) = R(so) while using the
expression W (0) = (14 2¢ — 2¢3¢ — %) one will then have R(m2) = R,.
Expanding D(s¢e™) perturbatively in a=a(soe?) and performing numerically
the # integration term-by-term, one will then obtain “contour-improved” per-
turbative results. Note that at each order, an infinite subset of analytical
continuation terms present in R(s) and R, are resummed. We have dis-
cussed in the previous sections that such terms must not be ignored as they
are potentially quite large, involving powers of 72 and other beta-function
coefficients. This is easily seen by expanding a in powers of a(sg) and then
performing integration. We shall focus on this "contour-improved" version
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of perturbation theory throughout this thesis. Comparisons of the two ver-
sions were made in great detail and length together with an emphasis of the
importance of resummation of the analytical continuation terms, in [47].

The basic numerical algorithm we shall use for the evaluation of the inte-
gral in Eq. (6.65) is to split the range from 6 = 0 to 7 into K steps of size
Af = w/K and then perform a sum over the integrand evaluated at 0,, = nA#
where n = 0,1, ..., K. Thus the integral can represented as

é(so)zg—f[W(O)D(so) +2ReY W (0,)D(s,)], (6.65)

where s,=s¢e™>". In practice, we perform such trivial algorithm with all
sorts of numerical packages as well as coding manually in Mathematica 6.0
and Maple 11. Rewriting D(s,) as a perturbative expansion, one will then
have

D(sp) = @y + d1a2 + do@> + . .. . (6.66)

Here a,, is defined as a(s,). Using Taylor’s theorem in evolving a,, to a,1,
we will begin with ag = a(sg), the following recursion relation is then given
by

Ab AB? AG?
Qg1 = an—z'?bB(dn)—szB(dn)B’(an)+i4—8b3[B(dn)B’(an)2

+B(a,)’B" (@,)] + O(A0*) + ., (6.67)

with B(z) being defined as

B(z) =2+ e et +... (6.68)
so that a will satisfy
da b b
v —5(52 +ca® + cpat +..) = _EB@) : (6.69)

b= (33—2Ny)/6, and ¢ = (153 — 19N;)/12b are the first two universal beta-
function coefficients with the subsequent coefficients ¢;,7 > 1 being scheme-
dependent. We will now move on to the application of CORGI to the contour
integral representation of the Minkowski observables.
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6.4 ALL ORDERS AND FIXED-ORDER D(s) IN
THE CORGI APPROACH

Our previous discussion has shown that in the CORGI approach, the renor-
malization scale p-dependence could be avoided completely by performing
a complete resummation of the UV logarithms. It is such a resummation
which builds the dependence of the observable on the physical energy scale
[48]. [49] demonstrates the direct relation between the observable and the
direct transmutation parameter of the theory Aj;5. This allows us to define
the CORGI version of D(s),

D(s) = ao(s) + Xaad(s) + Xzag + ... + Xpaf ™ + ... . (6.70)

Here ag(s) is the CORGI coupling in terms of the Lambert W-function,

1
I+ W(z(s))]

! (Aij) o (6.71)

I
—~
»
~—

I

e

where Ap=e¥*(2¢/b) /" Ayss. d is defined as the NLO perturbative coeffi-
cient d, for D(s) in the MS scheme with u? = s. ao(s) is the coupling in
the scheme with p? = e~2#*s with all the other coefficient ¢;, (i > 1) set
to zero in the 't Hooft scheme. In the CORGI scheme d; = 0, and is ex-
actly equivalent at NLO to the Effective Charge approach discussed in [50]
whereas conventional RG-improvement in this scheme completely resum all
ultraviolet logarithms. This is equivalent to the CORGI approach and can
be formulated in any scheme [48]. X, and X3 are the N*LO and N3LO
scheme-invariant coefficients

X2 = cy+ dg - Cd1 - d?, (672)
5
R TR S (&)

built from the coefficients d; and d, and beta-function coefficients. Note
that X5 and X3 are equivalent to X,p and X3p in Section 6.1. dq, dy and ds
are known exactly and have been calculated in [40]. Therefore, the N3LO
contour-improved CORGI model can be obviously constructed for Minkowski
observables E’(so), using the numerical approach described in Section 6.3.
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The fact that knowing ag(s) in closed form expressed in terms of the Lambert
W -function, which has a well-defined branch structure in the complex plane,
one can evaluate it directly avoiding the numerical approach of evolving a,
in Eq. (6.71). It is worth mentioning again that the selection of the W_;
branch of the function on the range of integration |0, 7|, and the W; branch
on the range [—, 0] are necessary to ensure asymptotic freedom as well as a
sensible value of integration. We will not discuss the possibility of avoiding
the use of Simpson’s Rule integration in the R.+.- ratio for W (6) = 1 in this
thesis, for interest, one can refer to [51].

We will now test the accuracy of the fixed-order perturbative approximation
by attempting to approximate the still uncalculated coefficients d;, (i > 2)
in D(s) using the suggested “leading-b" approximation. As we have previ-
ously discussed, d,, can be written as an expansion in powers of Ny, given
by Eq. (5.16). These large-N; coefficients d™ are calculated exactly to all-
orders. We are motivated by the structure of renormalon singularities in the

Borel plane which lead to find it possible to convert this expansion into the
leading-b expansion described in Eq. (5.17) by using N; = (33/2 — 30).

We will construct an all-orders "leading-b" resummation as discussed in
Chapter 5. One can use the exact V-scheme leading-b result of [24].

-2 (n+1) n+ 6
dDW) = ?n‘ o [—2n — iz
16
+— D s(1 =27 (1= 22 )b . (6.74)
n+ 241>s>0

The resulting leading-b resummation of D(s) can be expressed as

DW = a(1+ Y dPa"), (6.75)

where the principal value (PV) is regulated by the Borel Sum,

DV (1/a) = PV / Oodze_z/“B[D(L)](z) , (6.76)

where B[D™](z) is the Borel transform which behaviour has been discussed
extensively in Chapter 5, where its structure is Eq. (5.18)

(e o]

7j=1 zj ) Z2 7j=3 zj )
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Note that the residues of these poles can be computed from the exact all-
orders large- N result which makes it easy to compute the UV and IR renor-
malon contributions, expressed in terms of the exponential integral function,

Bi(z) = — / wdt%t | (6.78)

—X

We recall that for I R renormalons where x > 0, the Ei(z) function is defined
by taking the Cauchy principal value of the integral. Such arbitrariness in
regulating the IR renormalon contributions implies that the perturbative
series is lacking the power corrections of the operator product expansion
(OPE) which are essential in order to have a sensible result. There is no
relevant operator in dimension of two in the Operator Product Exapansion
for the vector correlator. This is therefore in accordance with the fact that
the singularity I R, is absent , and the nearest smgularlty to the origin in the
Borel plane is UV;. This generates the leading 't asyrnptotlc behaviour
[49]7

L 2n+22) (1N
AP ) (D) (6.79)

The UV renormalon and IR renormalon can be expressed as the contribu-
tions of infinite sums of the Ei functions,

DBI(F)|yy = Zz]{e V% Bi(—Fz)[Fz(Ao(j) = 2jA1(5)) — 2 A1(j)]

(Ao( ) — 2 A1)}, (6.80)

and

DYN(F)|,, = e '22By(2)Ei(Fz)

N e T Ei(F2) [F2(Bo(j) + 2B1(j)) — 2 B1(j)

~(Boli) + 5B ()} (6.81)

where we have used F=1/ay with ay denoted as the coupling in the V-
scheme. Referring to [49], Ao(j), A1(j) are related to the residues of the UV ;
poles by

L8 (=352 +6j +2) N
Ao(7) = 3 RGP Ai(7)

4 b(=1)"(2j +3)
372(7 +1)°(j +2)°

(6.82)
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The UV residues are related to the IR residues with By(j) = —Ao(—j) and
Bl(j) = —Al(—j) for j>2, and Bo(l) = Bl(]_) = 31(2) = 0, and Bo(2) =1
[49] by conformal symmetry [52] of the vector correlator . The contour inte-
gral is then evaluated using the D)(F) result by modifying the definition
of the Ei functions in accord to their argument involving 1/ay (soe®) which
is complex for € not equal to zero. Therefore, it is best to generalize the E7
function Ei(n, z) such that

eftz

A

Bi(n, z) = / i (6.83)
1

which is analytic in the complex z-plane with a branch cut along the nega-
tive real axis as what we required. The replacement of the Ei(—F'z;) in the
UV contribution with —Ei(1, F'z;), and Ei(Fz;) in the I R contribution with
—FEi(1,—Fz;) +insign(Im(F'z;)) are necessary as this is where the discon-
tinuities across the branch cut are removed with the final iw contribution
[49]. The final result for D) (F) is simply the sum of the UV and IR con-
tributions. Eqs. (6.80) and (6.81) have rapidly convergent behavior since the
A(j) and B(j) coefficients have a j~* dependence for large j. For the nu-
merical computation which will be discussed in Section 6.5, we will truncate
Eq. (6.80) and Eq. (6.81) at Nyy = 15 and N;r = 17 respectively. Such an
arrangement N;r = Nyy + 2 is sensible as the symmetry properties imply
that Ay(j) = —Bo(j + 2) ensuring that the first O(a) term in the perturba-
tion series has the correct unit coefficient By(2) = 1.

Our last step is to use the results above to perform an all-orders CORGI
resummation which can formally be expressed as

Dcorar = ag + Xoai + Xzag + ZX}LL)CLQ“ , (6.84)

n>3

where the exactly known N2LO X, and N*LO X3 coefficients are included
and the remaining unknown coefficients are approximated at leading-b, X iL)

X Note that ag is the full CORGI coupling of Eq. (6.71) in which all
the Renormalization Group-predictable UV logarithms containing the exact
d; are resummed. Note that such a resummation is achieved by taking note
of the combination suggested in [39]

o = bln (%) —di(), (6.85)

which is scheme-independent. The coupling a)(s) is defined as
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aP(s) = _ (6.86)

bln(y/s/A)
at the leading-b level for a simple case of one loop. Note that in the CORGI
scheme, dgL) = 0, and by evaluating the invariant py in the V' scheme and
the CORGI scheme, the relations between the couplings in the two schemes
are clear and can be expressed as

11
5=+ (). (6.87)
ay, Qo

Now it is straightforwardly follows that the formal resummation in Eq. (6.84)
is simply

1
Dcorar = DV (a— + dgL)(V)) + (X2 — XZ(L)>G’8 + (X3 — X?EL))ag , (6.88)
0

where the D) term with the exact X, and X3 are replaced by X2(L) and

X?EL). This expression is corrected by the corresponding second and third
term. Now it is possible to approximate N*LO and higher CORGI results by
the truncation of Eq. (6.84). The X5” can then be evaluated immediately
by using the leading-b of Eq. (6.87) where one will then find

xXH=c, ., id,&”(m (ﬁ) . (6.89)

1+ adgL)
The symbol C,[f(a)] is the coefficient of a™ expanded in power series of f(a)
which the expression of d\” (V) can be directly obtained from Eq. (6.74).

With the above results of Eq. (6.89), we can generate all-orders resummed
and fixed-order contour-improved CORGI results for the Minkowski observ-
able R, to perform phenomenological studies in the next two sections.

6.5 ALL-ORDERS CORGI VERSUS NLO, N?LO
AND N?*LO CORGI RESULTS

The observable R, has been the subject of experimental study by the ALEPH
collaboration via eTe™ — 777~ on the Z resonance [53]. If data consisting of
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Figure 6.4 :  All Orders CORGI resummation versus N"LO fized order
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strange quarks are omitted (this is necessary as the strange quarks are much
heavier than the up and down quarks, thus its inclusion will affect our predic-
tion) from the data. The latest value is given by R, = 3.47940.011 [54]. We
use the values of the variables V,,; = 0, and V4 = 0.97418-+0.00027 [55] from
the CKM matrix. The estimated power correction contribution is given by
dpc = —0.003+0.004 [54]. Plugging in all the values collected, one finds from
Eq. (6.62) that the experimental value is then given by R, = 0.2038+0.004.
Note that we have neglected the QED contribution to the experimental value.
By doing so, we will be able to obtain an all-orders “leading-b” resummation
of the contour-improved CORGI as well as the fixed-order version where we
will truncate the series at corresponding terms of NLO, N?LO and N3LO
described in Sections 6.3 and 6.4. As a generalization, we will set N; = 3 per-
manently throughout the calculations except when making flavour threshold
calculations. We will fix A% where our goal is to make a theoretical com-
parison of the all-orders CORGI versus fixed-order truncated CORGI result
in reproducing the measured central value R, = 0.2038. We present the re-
sults in Fig. (6.4) with the solid red line representing the all-orders CORGI
result fixed to the data, and the red points are the N" LO fixed-order CORGI
results. In this case, we select the N>LO (n = 3) fixed-order result as a com-
parison, which is the highest order exactly known to date. It turns out to be
in exceptionally good agreement with the all-orders CORGI resummation.
Nevertheless, such a leading-b approximation N"LO eventually shows an os-
cillatory behavior which becomes more and more explosive for n > 7. This is
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Figure 6.5 : R, as a function of as(m?2). All Orders CORGI (solid blue
curve), dense dotted lines are the NLO, N*LO and N°LO truncated
fizxed-order CORGI result.

when fixed-order CORGI eventually breaks down. Such oscillatory behavior
is exactly what we could predict from the alternating positive and negative
sign factorial growth of the contribution from the leading UV'; renormalon
of Eq. (6.82).

We will now make an attempt to estimate the uncertainty in a,(m?) ex-
tracted from R, measurements. The difference between the all-orders CORGI
and the exact N*LO fixed-order CORGI results will be used in the estima-
tion of uncalculated higher order terms. Fig. (6.5) represents R, versus
as(m?) where the upper solid curve is the all-orders CORGI result while
dense dotted lines are the NLO, N?LO and N3LO truncated fixed-order
CORGI result. From the plot, we can deduce that by having more of the ex-
act higher n order terms will lead us to conclude that the fixed-order CORGI
gets closer to the all-orders CORGI result. Note also that the separation be-
tween the curves increases rapidly as R, increases. As the experimentally
measured R,~0.2038, we are therefore quite fortunate that the separation
of the curves is reasonably small in this region. Using data collected from
ALEPH, we extract a,(m?) for all-orders CORGI and the fix order CORGI
in Table 6.1. Note that the right hand column of Table 6.1 represents the
value of a,(m?) extracted from the standard MS fixed-order perturbation

theory calculation which we denote as FOPT, which clearly shows that it is
badly defined at the N3LO truncation as well as the all-orders FOPT which
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Figure 6.6 : R, as a function of a,(M?).All Orders CORGI (solid blue
curve), dense dotted lines are the NLO, N*LO and N°LO truncated

fizxed-order CORGI result.

settles at a higher value than the all-orders CORGI. This clearly shows the
motivation of CORGI as a substitute to the standardized FOPT. Now, evolv-
ing these a,(m?) results through flavour thresholds up to u = My using the
three-loop matching conditions [56], we present values of a,(M%) in Table
6.2.

0 (13 )giforders = 0-315%0035 | 0 (m3)giiorers = 0-321 00653
o (m2)§975" = 0.343755051 | o (m2) 3915 = 0.263
as (M) FE7ET = 0.351700685 | au(m2)if)5 = 0.316
o (m2)F26! = 0.376 55063 | 0a(m)N76" = N/A

Table 6.1 a,(m?) extracted from All-orders CORGI(red) versus
Fixed-Order NLO, N?2LO and N3LO CORGI with comparison to Fixed
Order Perturbation Theory(blue)
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T2\CORGI __ +0.0004 INFOPT __ +0.0004
()éb’(A[Z)allm‘ders = 0.118%5 0004 | s MZ)allorders = 0.1197 55004
2\CORGI __ +0.0005 2\FOPT __
aS(MZ)N3LO = 0.1217 0007 | as(M7)y3; o = 0.110
7)

2\CORGI _ ++0.0005
as(M7)5315" = 0.1227 56006

Q

s N2LO

(
(M3)
(MZ2)LOPT = (0.118
(M3)

2\CORGI __ +0.0006 2\FOPT __
aS(MZ)NLO = 0.125" 50006 | @s(MZ)nzo™ = N/A

Table 6.2 as(Myz) extracted from All-orders CORGI(red) versus
Fixed-Order NLO, N?2LO and N3LO CORGI with comparison to Fixed
Order Perturbation Theory(blue)

Our main interest is in the estimation of the uncertainty in a (M%) due to
missing higher-order corrections. We can take this to be a(MZ){9EG" —
a(MZ)SPEGT = §a,(M2)~0.003. A plot showing the resummed all-orders
CORGI versus the fixed-orders CORGI results for R, versus a4(M2) is shown
in Fig. (6.6). We should compare our fit for a,(m2)$FES" = 0.343 £ 0.0051
in Table 6.1 with other comparable a,(m?) determinations based on the use
of CIPT and FOPT. Baikov et al [40] find 0.332 £ 0.0043, Davier et al [54]
find 0.344 4+ 0.009, Menke [57] gives 0.342 + 0.010 while Pich [58] reports
0.342 £ 0.012. Our determination is seen to be consistent with these. There
are other determinations not using CIPT, but using FOPT augmented by
renormalon or power correction models [59, 60, 61]. These tend to find lower
values of as(m?), but these values are highly dependent on the models used.
The values found are actually similar to our all-orders leading-b CORGI re-
sult o, (m2)SPECT = 0.315 + 0.0033 found in Table 6.1. We would stress

that our CORGI result uses CIPT and so all RG-predictable terms and all
analytical continuation terms known at N2LO are resummed to all-orders.

We define the quantity R, (so) as

- (71—, + hadrons; Speq < So) /Sod déT(s)
= s
0

Br(s0)= L(T—v, ev,) ds (6.90)

% is the inclusive hadronic spectrum. E’T(so) can be extracted from
the experimental data for dd% using the procedure outlined in [62], i.e., mul-

tiplying the normalised distribution by the world average for R, and inte-
grating (summing) bins.
In terms of the various theoretical contributions, we have

where

~ 3
RT(S()) = N(‘Vud‘Q)SEwKQ.T — 2373 + 1’4) + ZCFRT(SO) + 5PC] , (691)



CHAPTER 6. NUMERICAL CALCULATION OF R(S) AND R, 111

w
o
T

10k .
@

o.sE-’ \

05 10

\\\\\\\\\\\\\\\\\H‘Q(Gev2>
15 2.0 25 3.0

Figure 6.7 : R.(s) as a function of energy s (GeV?) versus ALEPH data
extracted from [53] using the procedure of [62].

with x=so/m2. It is then possible to compute R,(s¢) from Eq. (6.64) with
the appropriate weight function,

W(0) = 2x(1 4 €) — 223(1 + %) + 24 (1 — ) . (6.92)

Fig. (6.7) shows the close fit of the all-orders leading-b CORGI resummation
(solid line) in comparison to the ALEPH data for R, (s) (red dots) extracted
from [53] using the procedure of [62] with data fitted at s = m? and where
we have R.(m2) = R.. Referring to Eq. (6.71), the CORGI coupling has
a Landau pole at /s = Ap and by fitting to the experimental value of R,
we determine the value of Ap = 0.725GeV. This implies that the prediction
is valid only for s > 0.525 GeV?2. This shows an excellent agreement with
the data. On the scale chosen for the plot the fixed-order CORGI or FOPT
result would be indistinguishable from the all-orders CORGI result and so

we have not displayed them separately.

6.6 SUMMARY

We began this chapter with the definition of the dimensionless R.+.- ratio
for some value of the center of mass energy /s where R(s) denotes the QCD
perturbative corrections to the parton model result. This could be related to
the Adler D-function D(—s) by performing an analytical continuation from
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Euclidean to Minkowskian regions represented by a contour integral in the
complex s-plane. This enabled us to introduce contour improved perturba-
tion theory (CIPT) which resum to all-orders known and large analytical
continuation terms involving powers of 72b%. We could also write a simi-
lar contour integral for the inclusive tau-decay ratio R,. Using the recently
computed N3LO corrections dj of [40], a good description of R(My) and R,
were also obtained. Various different versions of perturbation theory involv-
ing CIPT , and also using the CORGI approach described in Chapter 3, were
employed to extract a,(m?2). We also used leading-b renormalon techniques
discussed in Chapter 5 to construct all-orders CORGI and CIPT resum-
mations which could be compared with fixed-order N3LO results. We also
evolved through flavour thresholds to obtain corresponding a,(M32) values
and estimated an uncertainty da,(M2) &~ 0.003. These «, values below and
above threshold are tabulated in Tables 6.1 and 6.2. We saw that the N3LO
CORGI result for a,(m?) was consistent with other determinations using
CIPT and FOPT. Fits to the 7 spectral function R,(s) were also performed.



Chapter 7

FULLY ANALYTIC IR FREEZING

7.1 INTRODUCTION

In Chapter 5, it has been shown that in the leading-b approximation, pertur-
bative corrections to the GLS and unpolarized' Bjorken Sum Rules (denoted

by KI(;LT) and U I(DLT) respectively) are simply linear combinations of the following

functions,
F"(Q%) = (g—Z)nEl (n In %) : (7.1)
and
F'(Q%) = (%) i (—nln %) . (7.2)

Where Ei(z) is the Exponential Integral function, defined for z < 0 by

oo —t
Fi(z) :—/ dt—. (7.3)
Here we assume that the principal value (PV) of Ei(z) is taken for x > 0.
The Fi")(QQ) terms correspond to contributions from the IR renormalon
singularities , located at z, = 2n/b on the positive real semi-axis of the
Borel plane. Equivalently, the F™((?) terms are the contributions from UV
renormalon singularities, located at z, = —2n/b on the negative real semi-

axis of the Borel plane. The leading-b form of Adler D function, DE;LT), can also

!Perturbative corrections to the polarized Bjorken Sum Rules are identical to those of
the GLS Sum Rule, up to a series of ’light-by-light’ corrections which we do not consider
here.

113
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be written as a combination of F\") terms, but with additional (1/a(Q?))F\™
2 contributions.

These leading-b results are finite overall when all contributions are com-
bined, furthermore, they are also continuous at Q? = A2, due to cancella-
tions between potentially divergent IR and UV renormalon contributions as
demonstrated in Chapter 5. Additionally, one finds smooth infrared freez-
ing behaviour, with the corrections to the parton model result vanishing as
Q? — 0.

The first logarithmic derivative in Q? is also continuous at Q? = A2,
however higher derivatives are neither finite or continuous, and hence there is
only piecewise continuity and finiteness. The true result, of course, should be
an analytic function in the Q?-plane, with all derivatives finite and continuous

at Q% = A2,
With the PV definition one has
Ei(z) = In|z| + v + O(x). (7.4)

It is then straightforward to show that one can rewrite the Fi(z) functions
in Fip(Q?) as,

Ei (n In A_j) = Ei (—nln g—i)

= In -n (1 — g—Z) +98 + fn (1 — g—Z) (7.5)

= In -n (1 - %) + 98 + fn (1 — %) (7.6)
- . 2

B 2\ T 2
= In K (1—%)_ + 8 + fn (1—%) +ln%,
(7.7)

2(1/a(Q2))Fj([") is required to be treated separately to avoid singularity at @ = 0, more

detailed discussion on (1/a(Q?))F\™ will be made in explaining the relevance of adding a
non-perturbative term to this equation.
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= In -n (1 — g—Z) + 78 + f (1 - g—Z) (7.8)
= ln-n<1_g_Z)-+7E+f"(1_%)+ln%
_ _ (7.9)

i ] o’
= In n(l—p) +7E+fn(1—ﬁ). (7.10)

Here, f,(1—A?/Q?) and f,(1—Q?/A?) are power series in (1—A?/Q?) and (1—
Q?/A\?), respectively. As such, they are fully differentiable at Q? = A? with
all derivatives finite. In contrast, the In[n(1 — A%/Q?)] and In[n(1 — Q*/A?)]
terms diverge at Q* = A%. As was discussed in [40], relations between IR and
UV renormalon residues ensure that these In terms cancel for the combined
F™ terms, and also for their first logarithmic Q2 derivative. However, similar
cancellations do not take place for higher derivatives, which are therefore not
finite at the Landau pole.

As is well known these renormalon resummations of perturbation theory
will also have to be combined with the non-perturbative contributions of the
OPE which are required in order to remove IR renormalon ambiguities due to
poles on the positive axis in the Borel z-plane. These ambiguities are easily
seen to be ~ (g—z)n effects for an IR renormalon. For Q2 > A? one therefore
expects a standard OPE of the form

00 A2 n
DNP - ch <_2)
n=1 Q

In reality the coefficients are actually coefficient functions of the coupling.
For Q> < A? one needs to switch to a modified Borel representation where
the contour of integration is along the negative z-axis (see Eq. (5.29)) [37].
There will then be Borel ambiguities associated with UV renormalons. It
is easily seen that these ambiguities will be of the form ~ (ff—j)" One then
anticipates a modified OPE for Q% < A? of the form

o Q2 n
Dyp = ch (F)
n=0
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Notice that a constant n = 0 first term is allowed in this expansion, but of
course is absent in the regular OPE which must vanish as Q? — oo due to
asymptotic freedom.

Our crucial observation is that for @* > A?, the In[n(1 — A%/Q?)] term in
Egs. (7.5, 7.8, 7.9) has a valid expansion in powers of A?/Q?, of the same form
as the standard operator product expansion (OPE) above. Thus, by adding
a suitable non-perturbative contribution to the perturbative component, the
In term can be cancelled, and a function F*(Q?) is obtained all of whose
derivatives are finite at Q% = A2. Similarly for Q? < A?, the In[n(1 — Q?/A?]
term in Eqs. (7.6, 7.7, 7.10) has a valid expansion in powers of Q?/A?, which
is of the same form as the modified non-perturbative OPE expansion above.
Again, by adding a suitable non-perturbative term to the perturbative com-
ponent, one can arrange that the In term is cancelled. Hence by adding
suitable compensating non-perturbative terms in the two regions Q? > A2
and Q% < A2, one can arrange that a single analytic function Fi™(Q?) is
obtained which is holomorphic in Q?, and all of whose derivatives are finite
and continuous at Q? = A%

7.2 THE n=1 AND n = 2 CASES

We shall first show how this works for the n = 1 and n = 2 cases, relevant
for the DIS sum rules K,p; and U,p;. For Q* > A? we can use Eq. (7.5) to

rearrange the expression for FJ(rl)(QQ) as follows

2 2 2 2 2
FO@* = {A—ln(l A)—A—lnA—}+nyA—

Q> - Q?) Q@ Q?
A2 A2 A2 A2
+ @ﬁ (1 — @) + [@ In @} . (7.11)

Similarly, for Q% < A?| it can be rearranged using Eq. (7.7) as

A2 2 A2 A2 A2
@ = g (-5 g et (1 2)

+ —Inh—. (7.12)

The terms in curly brackets are non-perturbative OPE-like terms in the Q? >
A? region, and of the form of a modified non-perturbative term in the Q? <
A? region. Explicitly the OPE has the form of an expansion in powers of
(A?/Q?), with a leading term O(A?/Q?), whereas the modified expansion
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proposed in Chapter 5 is an expansion in powers of Q?/A? with the leading
term potentially a constant. No such constant is allowed in the OPE because
non-perturbative terms have to vanish as Q> — oo, in order to satisfy
asymptotic freedom.

Note that such a constant is present in the curly bracket of the Q% < A?
expression in Eq. (7.12). As Q* — 0 this tends to the limit —1. The
terms involving A?/Q? in the remaining part of the expression are singular
as Q* — 0, but this will be cancelled by a singularity in the f; term. The
remaining part of the expression freezes to the limit 1, ensuring that overall
FU(Q?) ~ 0(a(Q?)) freezes to FV(0) = 0.

The idea is that compensating OPE or modified expansion terms should
be added in the two Q? regions to ensure that the same function of Q? is
obtained in the two regions. In the present case the compensating term is
that in the square bracket in Eq. (7.11). It is a non-perturbative OPE term
in the Q? > A? region, and so can be simply added and subtracted again
inside the curly bracket. The non-perturbative contribution to be added to
F"(Q?), which we denote by F\"(Q?), is then chosen to be minus the term
in the curly bracket

_ A2 A2 AZ

FO@Q* = O In (1 — @) + @m@ (Q* > A%, (7.13)
(1) 2 A2 Q2 D) 2

FUA(QT) = —@ln (1_F) (Q* < A?). (7.14)

Note that up to an +im term (reflecting the Landau cut), the same function
is obtained in both (? regions. Combining this non-perturbative compo-
nent with the perturbative component, leads to a single function at all @2,
F;(")(QQ) = Fi")(Qz) + Fj(:")(QQ), which is a holomorphic function, with all
derivatives finite and continuous in the whole Q? plane. Discarding the curly
brackets in Eqs. (7.11,7.12) we find

" A2 A A\ A A
F+(1)(Q2) _ ,}/E@ 4 @fl (1 — @) + —In—. (7.15)

In effect, the non-analyticity of the perturbative component is cancelled ex-
actly by the non-analyticity of the non-perturbative component. This results
in a perturbative + non-perturbative expression which exhibits the necessary
analytic properties which the observables must have, and which were the ba-
sis for the criticism of the work in [31] found in [63].
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Using similar rearrangements we can now obtain the remaining expres-
sions for n = 1,2. For Q% > A? we have

A%\? A2 A2 A? A? A2

SACe {(a) n(2(1-5))+ & (&) mi-m(5) }
2 2 2
wonle) (@) ()
2
—g—z + (g—i) lng—z + (g—i) 1n2] , (7.16)
and for the region Q? < A2
2 2

A2 A2 A2

’ ”(cz—) (@) & ( o)

A2 A2 A2 A2 2
— @+<@) In @+<Q2) In 2, (7.17)

The non-perturbative terms that need to be added to Ff)(QZ) are

- (-5

+

2
+ (g—Z) 1ng—Z+(gZ) In2, (Q*>A?), (7.18)
B A2\ 2 2 A2 A2\ 2
@) = () (2 0-%) g (G) v @
(7.19)

One then finds the holomorphic function

. A2\ /A2 A2 A2 A2 A2
rr@)=oerna(G) + () (- 3) -5+ (@)

(7.20)
Finally we consider the expressions for £"® . For Q2 > A? we find
Q2 A2 Q2 QQ Q2 Q2 QQ

(7.21)
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and for the region Q% < A?

FO@* = {Q—21n(1—Q—2)+1—Q—21 QQ} VE%

A2 A? Az A2
+ %fl <1 - %) + {% lnf\?—z - 1] : (7.22)
The non-perturbative terms that need to be added to FEI)(QQ) are
FY@Q* = —% In (1 - g—Z) —1(Q* > A?), (7.23)
FYQY = —% In (1 - %) 1+ % In A—z (Q* < A?). (7.24)

One then finds the holomorphic function

2 2 2 2 2
FOQ?) = oz Ffl <1 — %) + % ln% — 1. (7.25)

For F?(Q?) in the region Q? > A2 one has
FP(@Q* = {(%)Zm <2 (1 - g—Z)) + % + % - (%)21112}
- % + (%)211&2 - % +7E(f\2—z)2
+ (%)sz (1 - Cj—z) + (%)an%, (7.26)
and for the region Q? < A2
FP(Q?) = {(%)2111 (2 (1 - %)) + % - (%)Qm% + fi—j - (%)21112}

2 2\ 2 2\ 2 2 2\ 2 2\ 2 2
—Q——F(%) ln2—%+<%) ln% +7E(%) +<%) fo (1—%).
(7.27)
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The non-perturbative terms that need to be added to F®(Q?) are

@) - (G ne (- 5) G (@ d @

(7.28)
(8 (-2) %2
+ (%) % - % (Q* < A?). (7.29)
The resulting holomorphic function is
Q%) = —% + (%:+1n2)(f€z) (QQ) fo ( - f\)_j) - f\z—z + (iz) In fgz
(7.30)

This completes the evaluation of the n = 1,2 functions required for the sum
rules KpBJ and UUBJ.

In terms of the )" (Q?) we have

K@Y = 16F0(@Q) - 10F2(Q) - sFO (@) + 2P0 (@2,
(7.31)
@) = SEFD Q) - 6P Q) - 200 Q7). (7.32)

The non-perturbative (NP) components to be added to obtain full analyticity
are

KUM@ = SI6FV(Q) ~ 10FD(Q7) - 8FU(@?) + 2F2(Q7)]
(7.33)
UNp(@) = gBF(Q) —6F7(Q%) — 2R Q). (7.34)

Adding the perturbative and non-perturbative components together gives
the fully analytic functions K*(2)(Q?) and U*®)(Q?). These functions are
simply the original leading-b perturbative form of the observables, plus a non-
perturbative term, the exact form of which is determined by the analyticity
constraint. In effect, we use this constraint to determine the form of the
non-perturbative terms.



CHAPTER 7. FULLY ANALYTIC IR FREEZING 121

7.3 FREEZING AND LANDAU POLE BEHAVIOUR
OF THE FULLY ANALYTIC FORM OF I AND U/

From Eqs. (7.14,7.19,7.24,7.29), one can read off the infrared freezing limits
of the non-perturbative component. One finds

_ _ 1
FP0) = 1, FP0) =3, (7.35)
i _ 1

FY0) = -1, FEQ)(O):—Q. (7.36)

Since the perturbative component freezes to zero as Q* — 0, the freezing
limits of the analytic functions are found to be

1 2
K+ = —[16— —1== ,
(0) %[ 6—5+8—1] 7 (7.37)
1 2
%(L) - g =z
U+ (0) 20 8 —3+1] - (7.38)

Remarkably, one finds the same freezing limit for K(Q?) and U(Q?), even
though different UV and IR renormalon residues are involved. This suggests
the existence of yet another relation between UV and IR residues. The sum
is required to vanish to screen the Landau pole, and the weighted sum is 2
in each case. It is interesting that % is also the freezing limit found in the
Analytic Perturbation Theory (APT) approach of Shirkov and collaborators
[64]. This connection will be discussed further later in the Chapter.

We can also find the values of the analytic functions at Q? = A%. From
Eqs. (7.15,7.20,7.25,7.30) one finds

YA = o, (7.39)
FfP(A%) = yp+m2-1, (7.40)
F'OA%) = ~—1, (7.41)
FrOp) = %an—; (7.42)
Assembling these results gives
—8n2+1
K*B(A?%) = W’ (7.43)
—8In2
U*(L)(Az) — M (7.44)

3b
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Figure 7.1: Combination of Perturbative a121d Non-Perturbative Part of Po-
larised Bjorken Sum Rule K*(Q?) versus %
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Figure 7.2: Combination of Perturbative andQNon—Perturbative Part of Un-
Polarised Bjorken Sum Rule U*(Q?) versus %
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The In 2 pieces correspond to the results found in Chapter 5, and are shifted
by the extra terms added to achieve full analyticity.

We plot in Fig(7.1) and Fig(7.2) the analytic functions K*¥)(Q?) and
U*1)(Q?) (solid line), and for comparison the piecewise analytic functions
K;LT) (Q?) and UI(JLT)(QZ) (dashed line), as in Chapter 5, we assume Ny = 0
active quark flavours. As it has been discussed that this is the minimal
model, this is the reason why Fig(7.1) and Fig(7.2) disagree at high Q?
despite we change numerous parameters significantly, the disagreement will
still be significant. A solution to this problem is to introduce another non-
perturbative terms but some questions that remain will be what and why?

7.4 THE ADLER D FUNCTION

For the Adler D function, one has an infinite sum (of renormalon singularities)
over n and so to consider its freezing behaviour one needs a general result
for F™(Q?). We find the holomorphic functions

i nfll A2 n—~k A2 n A2 n
no@) = -3 () ele) (@)
A2 n A2 A2 A2
(@) (-g) (@) me oo
n 2\ n—Fk 2 2\ M
FQ) = —Z%(%) —i—lnn(f\?2> +%(%)

Q*\" Q” Q*\", @
+ ( In Az + 2 In 2 (7.46)
The non-perturbative terms that need to be added to F (QQ) are for
Q2 > AZ

_ AZ\" A2 LA\ A2 A2
@ = () (-3) 2ile) (@) re
k=1

+1nn(é\;)n, (7.47)

and for Q% < A2,

(5 (o (- £)-EHE) oo
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For F™(Q?) in the region Q* > A? the NP terms to be added are
2 2 n 2\ n—k 2\ "
(n) ()2 Q A 1/Q Q
(7.49)

and for Q% < A?

2 2
+ (%) In % (7.50)

DY(Q?) in terms of the F\™(Q?) is given by

DE(QY) = fj{ﬂ 1@ [ (o) = 2t ) = 2010

+(Ao(n) = 2 A1 (n)) }

(Bo(n) + z,B1(n)) — z,B1(n)

+ Zzn{Fi (@)

a(Q?)
— (Bo(n) + z,B1(n)) } (7.51)

The non-perturbative component which needs to be added for analyticity is

D) = Y o {FV(@) [ (autn) = zui(o) — 2]}

(7.52)

Nevertheless, adding such a non-perturbative term will definitely lead to an
infinite freezing limit, this is due to the 1/a(Q?) term which diverges to oo
as Q% goes to 0. Hovvever, we shall show in Section 7.7 that one can define
the non-perturbative F’i functions for a renormalon with a single pole Borel
singularity as a differential operator involving D = actlng on the coupling
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a(t) = L. For the Adler D-function one has double poles in the Borel plane
and hence needs to act with the square of this operator. In this way one
finds a different F'?(Q?) non-perturbative term for Q* > A?

_ A2\ "
FO@) = ()

A2 2 n—1 1 A2 n—k 1 A2 n A2 2
§ [“(1‘@)‘%‘;(@(@) )—5(@) ()

Here Ly denotes a dilogarithm (see Eq. (5.40) for the definition), and for
Q2 < A2

s (3 (- 9)-E ()]

(7.54)
The other two analogous (—) equations, for Q? > A? are
n n n—k
m(n) 2y Q? A? 1 /Q?
(7.55)

and for Q% < A?
_ 2\ "

Q2 2 n 1 Q2 n—k 1 Q2 n Q2 2
: [“(“F)‘%* (@(ﬁ) )*5(@) " (%)
k=1

(7.56)

Using these new double pole non-perturbative terms, we modify the DI(VLP)(QQ)
such that



CHAPTER 7. FULLY ANALYTIC IR FREEZING 126

E

DR@) = 3 [FH(Q)2 (Ao = zudi(n)) = FH(Q)2 (ki ()

> 3
+ 1l
R

b 3 [Fr@) (Bon -+ 2Buln) - FI@)en (aBr(n)]

IS (jf) (-1): (7.57)

To match our calculation in Chapter 6, we truncate Eq. (7.57) at k = 15.

3
w

Adding the above perturbative and non-perturbative components gives
the analytic function D**)(Q?). The infrared freezing limit of the non-
perturbative component is given by

1

=(n =(n 1 I 1
FP©) = F(0) =~

_ 0)= —. F 0) = —— 7.58
n' + ( ) ) — ( ) 2 ( )

which is consistent with Eqs. (7.35,7.36). One then finds the freezing limit
for the analytic function D*()(Q?)



CHAPTER 7. FULLY ANALYTIC IR FREEZING 127

D*P(0) = i {_ (%) 2n (Agn — 2, A1(n)) + (%) Zn, (znAl(n)):|

o K%) zn (Bon + 2, B1(n)) — (l) “n <z"31(n)>]

n

OO

This freezing limit is absolutely amazing and it agrees with the APT version
of analytic perturbation theory provided by Shirkov and collaborators [64]
which we will touch on in Section 7.8. This matches the predictions with
K(Q?*) and U(Q?) which both also freeze to a 2/b limit. In fact we shall
show that our D-operator construction of the F' and F, is equivalent to an
all-orders resummation of Shirkov’s APT series.

+

We now plot the analytic function D*)(Q?) in Fig. (7.3) and the non-
perturbative part defined by Kyp(Q?), Uvp(Q?) and Dyp(Q?) in Fig. (7.4).
We will assume Ny = 0 in our plots.

One can generalize the Q* = A? values of the components into Eqs. (7.39-
7.42),

n—1

*(n 1
Fr(AY) = ~p+Inn-— 7 (7.60)
k=1
“n ~1
F*™(A?) = ~g+Inn-— Z iz (7.61)
k=1
Substituting these results in Eq. (7.51) and Eq. (7.57) one finds
0.679938 + 0.121342
D*B(A?) ~ ( i ), (7.62)

b

The first term in the numerator is the result found in [31], this is shifted by
the extra terms required for analyticity.

We have shown that it is possible to add non-perturbative terms to the
piecewise analytic one-chain skeleton expansion result in the regions Q% > A?
and Q> < A?, such that when combined, an analytic function of Q? re-
sults. Although both perturbative and non-perturbative components are
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only piecewise analytic functions, their sum is fully analytic. The non-
perturbative terms to be added are constrained by requiring asymptotic free-
dom as Q? — oo, and finite freezing behaviour as Q? — 0. Of course, one
can always add additional analytic and asymptotically free non-perturbative
contributions to the fully analytic function. Hence, the non-perturbative
contribution we have derived here may be subject to further corrections.
Crucially however, we have demonstrated that the remarkable freezing and
Landau pole behaviour of the leading-b expressions discovered in [31], is
compatible with the necessary analyticity requirements of QFT, which were
expounded by the authors of [63].

7.5 THE GDH SuM RULE AND FREEZING BE-
HAVIOUR OF K,p5;(Q?)

In this section, we consider the exact low-energy Gerasimov-Drell-Hearn
(GDH) Sum Rule which can be related to the K,p;(Q?*) polarized Bjorken
DIS sum rule. We shall show that it is possible to add an extra holomorphic
non-perturbative function to K**)(Q?) in such a way that the GDH Sum
Rule is satisfied. [65] Consider the Q*-dependent integral

2M?
=
This is define for all Q* with g;(z, Q%) being the generalization for all Q?
of g1(x). Note that g;(x) is the standard scale-invariant structure function
independent of Q%. We ignore elastic contribution at x = 1 to the sum
rule. We define x = Q?/2Mv and making the relevant change of variable,
one recovers the integral over all energies of spin-dependent photon-nucleon

cross section % = 0, whose value is given in [66, 67]. Here M is the nucleon
mass and v is the energy transfer. The low energy GDH sum rule is

L(Q%) /0 g1(z, Q%) du. (7.63)

h() = 4, (7.64)

where p4 is the nucleon anomalous magnetic moment in units of nuclear
magnetons [68]. [69] For the polarized Bjorken Sum Rule [70], we have

1
Ky (@) = / g 2, Q)

1

6

ga

gv

<1 - ZCFK(Q2)> : (7.65)
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with the spin-dependent proton and neutron structure functions g¢i", ¢{".
ga = 1.267 £ 0.004 is the nucleon axial charge obtained from the neutron
B-decay. We would then expect that as Q? — 0

2M* T )
@KpBa‘(QZ) — %-

Here 114, and j14 , are, respectively, the anomalous magnetic moments of the
neutron and proton in units of nuclear magnetons. It is immediately obvious
that the freezing behaviour of K*(X)(Q?) plotted in Fig 7.1 violates the GDH
low energy sum rule expectation in Eq. (7.66). Approximating K(Q?) by
K*B)(Q?) we have as Q% — 0

(7.66)

2M? 2M2 1

@pr(@?) oEG 94

(1 2 0@ + o<%>) . (67)

This diverges like Q72 as Q* — 0 and a finite GDH infrared limit is not
found. To satisfy the GDH Sum Rule we need to add an additional non-

perturbative analytic term which cancels the constant and O(a(Q?)) terms
in Eq. (7.63). This fixes the form of K(Q?) to be

K(Q%) = K*™(Q%) + (1 — K*™(Q*)F(Q?). (7.68)

Here F(Q?) is an analytic function of @* which for Q* < A? has a modified
NP expansion of the form

]—"(QQ):1+)\A—2+O<(§\2§) ) (7.69)

Whilst for Q* > A? it admits an OPE expansion in powers of A2/Q?. One
then finds the Q> — 0 behaviour

(-Zeo((2)). am

Fixing the value of the coefficient A to be

2\ (WA — 1A
1—-Z2 an AP 71
wi(1-7) et (.71)

1
6

ga

Kij (Q2) av

A?
2M2

N = — gv

the GDH Sum Rule of Eq. (7.66) will be satisfied.
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7.6 CONFORMAL NON-PERTURBATIVE EXPANSIONS

We will need to construct analytic functions F(Q?) which admit expansions
in powers of (g—z) valid for Q2 > A? of the same form as the OPE,

F(Q*) = i:lcn(g—Z)n (7.72)

2

For Q% < A? they must admit the modified expansion in powers of (%),

n—1

F(Q* = i Cn (%) : (7.73)

where in satisfying the GDH Sum Rule we require C; = 1. Crucially these
expansions must correspond to a single analytic function of Q? at all values of
Q2. This can be ensured by formulating the following modified “conformal”
expansions,

F(Q*) = iCnL%_l (7.74)
+

(7.75)

Term-by-term these series are identical functions of Q? at all values of @2,
and for Q* < A? Eq. (7.74) admits an expansion in powers of (g—z) which
must be equivalent to Eq. (7.72), whilst for Q? < A? Eqn(7.75) admits an
expansion in powers of (%j) which must be equivalent to Eqn(7.73). Using

the Binomial theorem and equating coefficients one finds

él = Cl = C~1
Co = Co+C=0Cy+0C.
: (7.76)

From which we conclude that the coefficients in the OPE of Eqn(7.72) and
the modified expansion of Eqn(7.73) are identical, C, = C,. The confor-
mal expansions are essentially an Euler transformation of the original non-
perturbative expansions.
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We can now fix the C, coefficients in such a way that the GDH Sum Rule
holds. We write
(1- K@) =1- KM@ - (1 - K@) F(@?), (7.77)

where the analytic function F(Q?) has the conformal expansion
| o Q [y K- 1 (@)’
1 n T (I—K*D(Q?) | AT n T A=KE(Q2) | \ A

3 5
8 () ()

We then find for (1 — K(Q?)) the “conformal expansion”

F(Q%) = + ...

(7.78)

(I_K(Q2)) = 1_K*(L)(Q) (1_'__)

368 465 201 - K9] (%)’

5
()

This expansion should be valid at all values of Q2. In the infrared region
Q? < A? as Q> — 0 this has the modified non-perturbative expansion

(1 - K(Q*)=_C} (f\gz)JrcK(fij) +.., (7.80)

where, by construction, the coefficients are independent of K*(")(Q?). To
ensure the GDH Sum Rule one needs to fix

. (Wan — Hap) [ A2
Cx|epn = —= 1 A 5172 ) 6

+

+.. (7.79)

gv
ga

(7.81)

Using PDG booklet values for these quantities one finds CX|gpy ~ 0. 308G v2
For (Q? > A2, Q> — oo, the result has the form of the analytized perturba-
tive result (1 — K*)(Q?)) plus a non-perturbative OPE expansion

K@) = 0= K@) -1 - k@) (5) + cK(gZ)
el

(7.82)
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One might be tempted to conclude that the higher OPE terms have the
same coefficients as the terms in the modified non-perturbative expansion
which applies in the infrared, but this would be claiming too much. The
function K*)(Q?) is the minimal way of combining piecewise analytic per-
turbative and non-perturbative components to achieve an analytic behaviour
overall. As we noted earlier we can always add any additional analytic non-
perturbative term H(Q?), replacing K*@)(Q?) everywhere by K*()(Q?) +
H(Q?). If we assume that H(Q?) admits the OPE expansion

H(Q) = i:l%n (g—i)n (7.83)

then Eq. (7.80) still applies as Q* — 0, but the OPE expansion in Eq. (7.82)
will be modified to

- K@) = (1= KO@QY) - (1= K@) + 1) (5
K A? ? 5K A2 3
+ (G —Ha —Hl)(@) + (G4 —H3+H2)<@) +...
(7.84)
7.7 THE INVERSE D OPERATOR
Consider a QCD observable R having the Borel representation
R= / dze */*B[R](z). (7.85)
0
Here we assume as usual that R has the perturbative expansion
R=a+ra®+ra®+.. . +rpa™™t+.. .. (7.86)

The main result we will need is that if B[R](z) = 1/(z — z;)" i.e. a pole
in the z-plane, then introducing the differential operator D = % where we
assume a one loop coupling a(7) = %, we have the operator relation

(=n"
(DF )"
So elegantly one has an inverse D-operator acting on the coupling. To prove

this one simply writes a(7) = [~ dze~*/*"). Noting that e~*/* = ¢™*7 we see
that acting with D™ pulls down a factor (—1)"z" inside the integrand which

R = a(T) . (7.87)
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on integration over z will reproduce the series expansion for R. We shall
show that the functions Fj(tn) involving the contributions of renormalon sin-
gle poles are reproduced by the D-operator expression. Note that this result
does not work only for poles. We have the general result R = B[R|(—D)a(r)

for any Borel summable series with a one loop coupling.

The further interest is in reproducing the non-perturbative contributions
_i") which need to be added to obtain an analytic result. It turns out
that these can be constructed from the function A;(Q?) in Shirkov’s APT
formalism which will be discussed in the next section. One has the APT

expansion
R = Al(QQ) + 7“1./42(@2) + ...+ Tn-An-i—l(QQ) + ... (788)

Defining L = 1n(§f—§) one has at the one loop level

211 1
2
= |-+ —] . 7.89
The second OPE-like term regulates the Landau pole at Q? = A? in the
first term which is simply the coupling a(7). The A; terms satisfy the beta-
function like equation

1 dAL(Q?)
2y _ 1 @A)
This is enough to ensure that for a simple pole contribution B[R](z) = @
one has |
_ 2
R = - iDAl(Q ). (7.91)

Again we note that this does not just work for poles but more generally we
have the result R = B[R](—D)A;(Q?%), where A;(Q?) is the one loop APT

function. The D! operator acting on the NP @ piece of A;(Q?) can be

used to generate the non-perturbative F’j(:") terms which need to be added to
the PT F\" terms arising from the D~! operator acting on the first term
a(1). The implication is that one can formally construct an all-orders resum-
mation of the APT series for R using this technique. Before we discuss all
of this further we need to provide an introduction to the D-operator method
for solving constant coefficient linear ODE’s.

We consider linear differential equations where a general linear differential
equation of order n can be written in the form of
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dn
ao(x) 7 + an(2)

dn—ly
dxnfl

+ ..+ an_l(x);l—z + a,(x)y = R(x). (7.92)

If R(z) = 0, the resulting equation is a homogeneous equation and if
R(z) # 0, the resulting equation is a non-homogeneous equation. Generally,
we adopt the notation Dy, D?y,....,D™y to denote g—g, %,...,%. These no-

tations Dy, D%y,....,D"y are called differential operators and have properties
of algebraic quantities. With this notations, it is permitted for us to write

[ag(2)D™ + a1 () D™ + ... + ap_1(2)D + a,(2)]y = R(z), (7.93)

or simply

¢(D)y = R(x), (7.94)
where ¢ = [ag(z)D™ + a1(x) D™ ' + ... 4+ an—1(x)D + a,(z)] is the operator
polynomial in D. In order to obtain the general solution of Eq. (7.86) for
R(z) # 0, let y.(x) be the Complementary homogeneous equation

¢(D)y =0, (7.95)

ye(x) is referred as the complementary homogeneous solution. The superpo-
sition theorem

Theorem — 1 - The general solution of Eq. (7.87) is obtained by adding
the complementary solution y.(x) to a particular solution y,(z) such that

c(x) + yp(x). (7.96)
A simple example is the complementary solution y.(z) = cje® + cpe*® for
(D* — 3D + 2)y = 0 and the particular solution y,(z) = 22® + 6z + 7 for
(D? — 3D + 2)y = 422, the general solution for (D? — 3D + 2)y = 4x? will
then be y = c;e” + coe** + 22 + 62 + 7. We will not touch the other theorems
from [71] but proceed directly to method of inverse operators.

Let us define a particular solution y, for ﬁR(az) such that ¢(D)y, =
R(z). We will refer ﬁ as the inverse operator. Without going into the
mathematical depth of why ﬁ is simply a linear operator as well as the
rigorous proof of finding the particular solutions for the inverse operators, we

simply present the following two important relations which will be essential
in our thesis
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1
D—m
and in case of multiple inverse operators acting on R(z) where we will have

R(z) =™ /x e " R(x)dx, (7.97)

1
R(.T) — emlm / emlxemgx

(D — m1)(D — m2)..(D — my)
/em”‘lxemnx / e " R(x)dx.

(7.98)

We note an important property of the D~! operator, we have only specified
the upper limit of integration in Eq. (7.97). Specifying a constant lower limit
of integration corresponds to adding a complementary function proportional
to e™*

The first simplest example to consider is

1 1 T 7}\15
SR

/T a
[e o]

= MEi(— (7.99)
Here we have introduced the substitution © = A7 from line 1 to line 2. This

result is what we need to derive the Fi")(QQ) functions needed for the KI(;LT)

and U I(DLT) Sum Rules.

1 Z1 N —21 1
1+ Z—Zl z+ 2z D—z 7
= —2VEi(—2z17)

= —»FYQ?, (7.100)
and similarly
1 = —Z1 N Z1 1
1—- £ z— 2z D+2z71

= ze TEi(zT)

= 4 F Q). (7.101)
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The nth order operators can be generalized as follows

1

2, F (02 7.102
1

—= W F™M(QP). (7.103)

Zn

The last job will be showing how the transformation of the non-perturbative
part in the Shirkov’s APT Euclidean functions [72] in the 1-loop case is equiv-

alent to the non-perturbative part required to be added to FJ(F") and F™ for
both the regions of Q% > A% and Q? < A? which we denote as F’J(r") and

F™ in Eqs. (7.47, 7.48, 7.49, 7.50). The non-perturbative contribution of
Shirkov’s APT Euclidean functions [72] in the one loop case is simply given

by
A? 1
(A?—Q?) - u-g)
B 1
- (=),

we first consider applying the operator corresponding to the simple pole

1/(1—Z)to AQZYQQ We shall redefine D = - (rather than using 7)

n 1 Y R |
= " R —A
D+n(1—eL) e / ¢ (1—et)
A2\" M@ e gy
- Q)? / (1—z7Y =z

A2 n pA2/Q3 "
=n (@) / = 1>da:. (7.104)

Here we have used the substitution z = e~ when going from line 1 to line 2.
The integral in Eq. (7.104) has the form

/ He (xx:nl)dx - [ In(z — 1) :% (—)k +ln(x)] T o

After some manipulation, we finally arrive at
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[ e (o(-) - EilE) e

This reproduces all of the terms in Eq. (7.47) for ") in the region Q2 > A2,
Changing the upper limit to Q?/A? for the region Q* < A?, it is possible
to obtain Eq. (7.48) for ES. Repeating a similar procedure but with the

z

operator corresponding to 1/(1 + Z) acting on AQAfQQQ, Eqs. (7.49, 7.50) for

EFS7) in the two energy regions are reproduced.

We now need to consider the double pole contributions which appear in
the Borel transform for DE;LT We need the square of the appropriate operator.
We apply the operator corresponding to ( ) again to Eq. (7.105), this gives

/gi [_ In(z — 1) - S% (é)k * ln(x)] x_ni_r_ (7100

k=1
Solving this particular integral, it has the form

) () ) ()

for any positive real integer n. This reproduces part of the structure of

Eq. (7.53) for F:fl) in the region Q? > A?. Crucially we see that there
is an additional —7?/3 contribution in Eq. (7.53). This additional term is
required to achieve continuity at Q> > A? when changing over to the Q% < A?
region and Eq. (7.54). We are allowed to add this additional contribution of
n(A?/Q?*)"n? /3 since this power correction term is part of the complementary
function, and corresponds to specifying a lower limit of integration when
applying the D~! operator. We have previously not needed to add such
contributions in discussing the single pole contributions. The 7?/3 arises via
the dilogarithm relation

. (7.107)

2

Lo(x) + Lo(1 — 2) = —In(z) In(1 — ) + % (7.108)
We can similarly obtain Eqs. (7.55, 7.56) using the squared operator corre-
sponding to the 1/(1 + i)Q double pole. Similar 72/3 terms are also needed
to ensure continuity between the two regions Q* > A? and Q* < A? of
Eq. (7.55) and Eq. (7.56). We now move on to a brief discussion of Analytic
Perturbation Theory.
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7.8 ANALYTIC PERTURBATION THEORY

The whole idea of Analytic Perturbation Theory arose from considering the
problem of unphysical or ghost singularities of invariant charges in QCD.
Such a difficulty first appeared in QED in the mid 1950s. It played a crucial
role in the advancement and development of Quantum Field Theory.

In the 1950s, Shirkov and collaborators suggested the resolution to this
problem by merging the renormalization group method with a Kallen-Lehman
representation. This simply implies analyticity in the complex (Q?-variable.
The considerations underlying APT are reviewed at length in Ref. [64].

The APT expansion has the form of Eq. (7.88) where at the one loop
level we will denote the appropriate A;(Q?) functions as |72]

211 1
‘ﬂs(ilzgr—l(Q2) = g [z + 1 — 6L:| ) (7109)
21 el
1) 2y _
Air—2(Q7) = » {ﬁ - m] ) (7.110)
144"
ﬂs(flzzrkarl(QZ) = _E dlkz ) (7]_]_]_)

where the superscript implies we are considering the 1-loop case and the
subscript simply means Shirkov. These functions all vanish as Q? — oo.
The A;(Q?) function has the freezing limit of 2/b as Q* — 0 while the
higher A; functions vanish as Q? — 0. We can now obtain LO, NLO and
N2LO truncations of the APT series for KI(DLT), U](DLT) and DEDLT) which we denote
by Kpir—r0s Kanir-n200 Kopir—n220> Ushir—10> Ushir—N10v Ushir—v2r0, and
DYiv_r0> Dipir_nio and DY o0 o, respectively. These are calculated us-

ing the KZ-(L), Ui(L) and dEL) leading-b V-scheme coefficients. In Figs(7.5, 7.6,
7.7) these truncated APT results are plotted versus Q?/A? and compared
with the analytized U*(")(Q?), K*)(Q?) and D*P)(Q?) results. We have
claimed that the analytized results combining the PT+NP, F' 4 F, contribu-
tions should be a formal all-orders resummation of the APT series. This is
confirmed nicely by the plots of Fig(7.5) and (7.6) for the Sum Rules where
we see that the N2LO results lie on the solid line representing the analy-
tized (supposedly all-orders) APT result. For the D*2)(Q?) case in Fig(7.7),
however, we see that the N?LO result and analytized result (solid line) are
discrepant. This discrepancy is plotted in Fig(7.8). Tt behaves like A?/Q? as

QQ* — oo and vanishes as Q% — 0, so the behavior is like that of an A;(Q?)
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function. We suspect that this discrepancy is connected with the need to
restore continuity at Q% = A? by adding a complementary function contri-
bution when applying the D~! method to the double pole contributions (see
discussion below Eq. (7.108)), but it needs further investigation.

In the next section we shall need higher-loop APT functions. One possi-
bility is to approximate the 2 and 3 loop Euclidean and Minkowskian APT
cases using the so-called effective log approach. In this context, it is possible
to use the simple model one loop expressions of Eqgs. (7.110, 7.111, 7.112)
with some effective two loop log L* accumulating the two loop "log-of-log",

3 Mo a *
ﬂihzr—1,2,3((L)) — fqhz;jq,zs = /(le(hgr—l,Z,S(L ), (7.112)

S

L* = L+ 5_02 In(vI2 + 272). (7.113)
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Figure 7.5: Polarised Bjorken Sum Rule K*(Q?) (in red line) and the corre-
sponding K. | o nronzro (in dots) versus ff—; - observe that K*(Q?) and
K. neo( in black dots) lay on top one another at each particular point

Figure 7.6: Unpolarised Bjorken Sum Rule U*(Q?) (in red line) and the

corresponding Ul vio nero (I dots) versus %Z - observe that U*(Q?)

and U!

anir_n2rol in black dots) lay on top of one another at each particular
point
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Figure 7.7: D*(Q?) (in red line) and the corresponding DL, . 5 x;0 v2ro
(in dots) versus f\?—j - observe that D*(Q?) and D!,. ., ,( in black dots)
show slight discrepancy
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Figure 7.8: Discrepancy betweenD*(Q?) and D!

shir—

~2rol in black dots)
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7.9 FI1TS TO LOW ENERGY JLAB DATA

In this section we shall perform fits to the recent Jefferson Lab (JLab) and
some existing data for K,p;(Q%) (Eq. (7.65)) at low Q* values 0.1 < Q* <
3 GeV?. We shall use the "conformal expansion" of Eq. (7.79) which provides
a toy model to describe the Q? behavior at all values of Q? down to Q% = 0.
We shall replace K*%) in Eq. (7.79) by various truncated APT series ana-
lytic results. We assume a minimal model in which we fix C to the value
in Eq. (7.81) required to reproduce the low-energy GDH Sum Rule, and set
higher coefficients in Eq. (7.80) to zero. We also set H(Q?) in Eq. (7.83) to
zero so we do not add any additional analytic contribution.

To construct two loop APT analytization we shall use the results of Ma-
gradze in |[73] who shows that one can write the two loop APT functions
as

AD(s) = afPn(s) = 1 / gty 1/ T L i, ()
s)=a"(s) = — o= = —_— :
" s T), o+s T _Ooet+s/A2p" ’
where
1

A0 = (2)

We construct a two loop LO analytization and a NLO analytization using
these functions.

T — ] - (7.115)
1(zexp(—b*t/c+i(b?/c —1)m))

2
K127Magradze = Ag )(S>7 (7116)
KZQ—Magradze = “452) (S> + klAgQ) (S>7 (7117)

where the superscript denotes that the equations are in two loop approxi-
mation. K is simply the first exact calculated NLO perturbative coefficient
of the polarized Bjorken Sum Rule given by —0.333N; + 1.48N + 0.438/N.
Substituting these results for K*(X) in Eq. (7.79) one obtains the red and
blue lines plotted in Fig 7.9. We can also consider LO and NLO APT results
using the one loop Shirkov functions in Section 7.8. These are the green and
black curves in Fig(7.9). Finally we can consider a NLO truncation using
the Shirkov two loop effective log result of Eqs. (7.113, 7.114). These are the
diamond points in Fig(7.9). We have used A% = 380 MeV, this is the value
of Ay used by Shirkov and collaborators for their theoretical model, thus
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it is a good check if the theoretical toy plots we obtained will be similar to
the experimental results.

Fig. (7.9) shows the comparison of these theoretical predictions with existing
and recent experimental data. All points with error bars correspond to ex-
perimental data [74, 75, 76] with the color blue denoting JLab Hall B CLAS
EG1b (calculation of the virtual photon asymmetry A; and the longitudinal
spin structure function g as well as the moments of g and then extracting
the neutron spin structure function g{* from the combined proton g;” and
deuteron g¢? data using ammonia NH? and ND?), green denoting JLab Hall
B CLAS EGla (a previous calculation with lesser kinematic range and less
advanced statistics), red denoting JLab Halls A,B E94010/EG1a [2002] (mea-~
surement of the neutron spin structure function g at low Q2 using (He?)
Helium for E94010) and black denoting SLAC E143. For further details of
the experimental analyses, see [77| for example. CLAS is the acronym of
CEBAF (Continuous Electron Beam Accelerator Facility) Large Acceptance
Spectrometer and SLAC is the acronym of Stanford Linear Accelerator. We
see that given that we have used a minimal model with no adjustable param-
eters, as described above, all the APT analytizations are in good qualitative
agreement with the data. This could of course be improved by adjusting the
higher CX coefficients and introducing an extra analytic function H(Q?).

7.10 SUMMARY

We have considered in this Chapter how to make the sum of PT+NP ef-
fects for the Sum Rules and Adler D function in leading-b approximation
an analytic function of @2, as the true physical result must be. The PT
component contributed by an UV or IR renormalon can be represented by
functions F\™(Q?) and F™(Q?). These functions involve the Ei function
and they contain a logarithmic branch point at Q* = A%. This means that
the freezing results investigated in Chapter 5 were only piecewise analytic.
We showed that we could remove the branch cut in a minimal way by adding
non-perturbative contributions £ (Q?) and F™(Q?). The separate PT and
NP functions are piecewise analytic with separate definitions for the regions
Q? > A? and Q? < A2, but the sum of the two components yields a sin-
gle analytic function F;™(Q?) for each renormalon. We found that these
analytized renormalon contributions resulted in a freezing limit of 2/b for
the Sum Rules, the same as that found in the APT formalism of Shirkov
and collaborators. We showed that we could reproduce our non-perturbative
F™ functions by acting with a D=1 operator on the non-perturbatve part
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Figure 7.9: K,p;(Q?) plotted versus Q/GeV. All points with error bars
correspond to existing and recent experimental data. The four lines of red,
blue, green and black arise, respectively, from inserting the two loop LO
and NLO, and one loop analytizations at LO and NLO in Eq (7.79). The
diamond shape points correspond to the NLO two loop "effective log" Shirkov
analytization. We chose A = 380MeV.
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of the leading APT function A;(Q?). In this way our analytized renormalon
contributions could be considered as an all-orders resummation of the APT
series. There are complications for the Adler-D function which has double
poles in its Borel transform. We showed that for the polarized Bjorken Sum
Rule the exact low-energy Gerasimov-Drell-Hearn (GDH) Sum Rule gave im-
portant constraints on the form of infrared freezing, and we could derive the
"conformal expansion" of Eq. (7.79) which should be valid at both small and
large values of Q%. We considered a minimal toy model based on this result
and were able to find good qualitative agreement with the recent JLab data
for K,p;(Q%) on the range 0.1 < @? < 3 GeV? using various truncated one
and two loop APT predictions.



Chapter 8

CONCLUSIONS

The fundamental ingredient underpinning the research in this thesis is vac-
uum polarization. The calculation of QED one loop vacuum polarization was
undertaken in Chapter 2. The renormalized result for vacuum polarization

I1(k?) in the so-called V-scheme is proportional to bln(’u—'f), where k is the

momentum flowing through the bubble. In QED b = — 2/ is the first beta-

3
function coefficient.

As discussed in Chapter 4 this simple result has amazing consequences
when one considers calculating a complete photon propagator with the inser-
tion of chains of bubbles inside the vacuum polarization loop. One finds that
the class of so-called "renormalon" diagrams containing a single chain of n
bubbles has a b"n! growth in nth order perturbation theory. The b"n! growth
arises because of the powers of bln(’u—’f) arising from each bubble, integrated
over k. Using a Borel representation one finds evenly spaced singularities in
the Borel z-plane on both positive and negative semi-axes at intervals of 2/b,
arising from small and large k regions, respectively, in the loop integration
over k.

In QCD one has b = (33 —2N;)/6 and so one can recast QCD perturba-
tive coefficients at nth order as an expansion in powers of the QCD b. The
“leading-b”, b" term can then be used as an approximation for the pertur-
bative coefficient and all-orders resummations of this piece of the coefficient
performed. One thinks of this QCD leading-b term as built from chains of
effective bubbles which involve gauge invariant combinations of gluon and
ghost loops resulting in the same bln(’—'f), and it is a more sophisticated
construct than the simple QED chain of fermion bubbles.

In the case of QCD the singularities on the positive real Borel z semi-axis

147
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are infrared (IR) renormalons ; and they imply that the resummed pertur-
bation theory (PT) result must be supplemented by extra non-perturbative
(NP) terms in the form of the operator product expansion (OPE) in pow-
ers of A?2/Q?. The IR renormalon ambiguity can then be cancelled and a
well-defined result obtained for the sum of the PT and NP components. The
singularities on the negative real z semi-axis are ultraviolet (UV) renormalons
and do not impede the Borel summation (at least for large enough energies
where the renormalized one loop coupling is positive). Leading-b resumma-
tions with a one loop coupling therefore provide a toy model test laboratory
to investigate the interplay of PT and NP physics.

In Chapter 5 the results of [31] for all-orders leading-b resummations for
the Adler D-function associated with vacuum polarization and some Deep
Inelastic scattering (DIS) sum rules were reproduced. One obtains a freezing
behavior for the resummed PT result as Q> — 0 which remains finite at
the Landau pole Q* = A? where the one loop coupling a(A?) diverges. The
observables then change sign and freeze smoothly to vanish in the infrared
at Q* = 0. For Q> < A? one needs to introduce a different Borel repre-
sentation with the integral along the negative real z semi-axis and with UV
renormalon ambiguities. This freezing behavior is unphysical, however, as
higher (Q? derivatives are not finite and the freezing in Q? is only piecewise
analytic. In reality the sum of the PT and NP components must be analytic

in Q2.

In Chapter 6 a new perturbative QCD calculation of the N3LO (O(al))
coefficient d3 in Ref. [40] was used to perform fits to data on the inclusive
R.+.- ratio at s = My, and on the related R, inclusive decay ratio. Both
of these quantities can be related to the Adler D-function of vacuum po-
larization via a contour integration in the complex energy-squared s-plane,
which serves to analytically continue the Fuclidean D to the Minkowskian
R.+.- and R,. Contour improved PT (CIPT) was applied in which the D-
function is expanded perturbatively inside the integral which is then evalu-
ated term-by term, serving to resum to all-orders potentially large analytical
continuation terms involving 72b? and other beta-function coefficients. In
Chapter 3 the problem of the renormalization scheme (RS) dependence of
fixed-order perturbative predictions was reviewed. The so-called CORGI ap-
proach was introduced in order to avoid renormalization scale p-dependence
by a resumming to all-orders the RG-predictable scale logarithms. Fits to
ALEPH data on R, were made using various perturbative approaches involv-
ing CIPT and CORGI at N3LO, NNLO and N LO, and making contact with
the leading-b renormalon discussions of earlier chapters all-orders resumma-
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tions of the Adler D-function inside the contour integral were made to obtain
an all-orders CORGI result matched to the exactly known perturbative co-
efficients. The differences between the fits for a,(m?) obtained using these
different approaches were discussed. One sees reassuringly that the succes-

sive NLO, NNLO, and N3LO CORGI results get progressively closer to the
all-orders result. By evolving up to a,(M%) using the three-loop matching
conditions to cross quark flavour thresholds one obtains the values tabulated
in Table 6.2. An estimate of the uncertainty in as(M%) of da (M%) = 0.003
was made. Data on the spectral function R, (s) was also successfully fitted
using the N3LO CORGI results.

Finally in Chapter 7 we returned to the problem of how the sum of PT
+ NP components can be rendered analytic, given that the PT component
by itself is only piecewise analytic. We showed that the leading-b PT the-
ory component for an IR or UV renormalon, Fi")(QQ), involves exponential
integral functions Fi and has a logarithmic "Landau" branch cut extending
from Q? = 0 to Q? = A? in the complex Q? plane, this could be removed in
a minimal way by adding non-perturbative OPE terms (expansion in powers
of A%/Q?) for Q* > A? and modified non-perturbative terms (expansion in
powers of Q%/A?) in the region Q* < A?, denoting these non-perturbative
pieces as F\"(Q?) The PT+NP split is F\"(Q2)+ F(Q?). Each term sep-
arately is piecewise analytic having a different form in the two regions, but
the sum of the two denoted F*(")(Q?) is a single analytic function of Q? for
both regions. We showed that the freezing limit as Q* — 0 of the fully an-
alytic leading-b results was 2/b for the DIS sum rules, but formally infinite
for the Adler D-function. This was interesting since 2/b is also the freezing
limit of observables in the Analytic Perturbation Theory (APT) approach
of Shirkov and collaborators. We showed that our analytized renormalons
are equivalent to an all-orders resummation of the APT series, by developing
a formalism in which observables are represented as a differential operator
acting on the coupling. This approach also produced a finite freezing limit
of 2/b for the Adler D-function. We showed how for the polarized Bjorken
Sum Rule the exact IR Gerasimov-Drell-Hearn (GDH) Sum Rule as Q% — 0
imposes strong constraints on how observables behave at low Q? values, and
we constructed a "conformal expansion" Eq. (7.78) which is simultaneously
an expansion in Q%/A? and A?/Q?. This provides a model that can be tested
against data in the large Q2 perturbative region right down to Q? = 0. We
analyzed particularly low energy JLab data for the Bjorken sum rule down
to very low Q> ~ 1GeV? values, and obtained surprisingly successful fits
Fig(7.9). This analytic leading-b resummation looks very promising for fur-
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ther interesting studies of the interplay between large Q? perturbative QCD
physics and the more intractable strong-coupling low-Q? physics.
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