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Abstra
t

We make use of the re
ent 
al
ulation of d3 by Baikov, Chetrykin and

Kuhn of N3LO QCD va
uum polarization to analyze the in
lusive tau-de
ay

ratio Rτ . We perform an all-orders resummation of the QCD Adler D fun
-

tion for the ve
tor 
orrelator, in whi
h the part of perturbative 
oe�
ients


ontaining the leading power of b, the �rst QCD beta-fun
tion equation 
oef-

�
ient, is resummed to all-orders. We mat
h the resummation to the exa
tly

known next-to-leading order (NLO), next-NLO (N2LO) and next-N2LO
(N3LO) results, we employ the Complete Renormalization Group Improve-

ment (CORGI) approa
h in whi
h all RG-predi
table ultra-violet logarithms

are resummed to all-orders, removing all dependen
e on the renormalization

s
ale. Hen
e the NLO, N2LO and N3LO CORGI result 
an be obtained

and 
ompared with the �leading b� all-orders CORGI result. Using an ap-

propriate weight fun
tion, we 
an numeri
ally integrate these results for the

Adler D fun
tion in the 
omplex energy plane to obtain so-
alled "
ontour-

improved" results for the ratio Re+e− and its tau-de
ay analogue Rτ . A table

showing the di�eren
es of αS(M
2
τ ) and αS(M

2
Z) extra
ted from NLO, N2LO

and N3LO CORGI as well as all-orders CORGI results were made, together

with αS(M
2
τ ) and αS(M

2
Z) extra
ted dire
tly from Fixed-Order Perturbation

Theory at NLO, N2LO and N3LO. We also 
ompared the ALEPH data for

Rτ (s) with the all-orders CORGI result �tted at s = m2
τ .

We then go on to study the analyti
ity in energy of the leading one-


hain term in a skeleton expansion for QCD observables. We show that by

adding suitable non-perturbative terms in the energy regions Q2 > Λ2
and

Q2 < Λ2
(where Q2 = Λ2

is the Landau pole of the one loop 
oupling), one


an obtain an expression for the observables whi
h is a holomorphi
 fun
-

tion of Q2
, for whi
h all derivatives are �nite and 
ontinuous at Q2 = Λ2

.

This fun
tion is uniquely 
onstrained by the requirement of asymptoti
 free-

dom, and the �niteness as Q2 −→ 0, up to addition of a non-perturabtive

holomorphi
 fun
tion. This full analyti
ity repla
es the pie
ewise analyt-

i
ity and 
ontinuity exhibited by the leading one-
hain term itself. Using

The Analyti
 Perturbation Theory (APT) Eu
lidean fun
tions introdu
ed

by Shirkov and 
ollaborators, we �nally mat
hed the equations K
(L)
PT +K

(L)
NP

and U
(L)
PT+ U

(L)
NP with a resummation of 
oe�
ients extra
ted from their Borel

Transform multiplied by the APT Eu
lidean fun
tions in the one loop 
ase.

For D
(L)
PT + D

(L)
NP , it is shown that it freezes to 2/b. Considering the GDH

Sum Rule, we 
onstru
t an analyti
 fun
tion whi
h �ts well with data from

Je�erson Laboratory (JLab) for 0 < Q < 2GeV.
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Chapter 1

Quantum Field Theory

1.1 Quarks and Gluons in Quantum Field

Theory

Parti
le physi
s has been a great su

ess in modelling the intera
tions of

elementary parti
les using the formalism of quantum �eld theory.

Quantum Chromodynami
s (QCD) provides a su

essful explanation re-

garding the importan
e of the existen
e of the fundamental quarks and glu-

ons, whi
h in 
ombination give rise to the formation of protons and neutrons,

the basi
 building blo
ks of nu
lei. These parti
les are also the building blo
ks

of mesons and baryons. These hadrons intera
t via the strong nu
lear for
e,

one of the four fundamental for
es of nature in addition to gravitational,

weak and ele
tromagneti
 for
es. The strong for
e is a residual e�e
t of

intera
tions between quarks and gluons of di�erent hadrons. This residual

for
e holds all atomi
 nu
lei together.

A solitary quark or gluon has never been observed, this is due to 
on-

�nement whi
h arises from the nature of the QCD 
olour for
e whi
h grows

linearly with the separation of 
oloured obje
ts, and it is for this reason that

quarks and gluons are always 
on�ned inside hadrons.

Quarks have a fra
tional ele
tri
 
harge in units of the ele
tron 
harge,

whi
h is+2
3
or−1

3
. Their presen
e 
an be re
ognized through ele
tromagneti


intera
tions with other 
harged parti
les. An ele
tron �red at a hadron 
an

intera
t with a 
onstituent quark or parton 
ontained in the hadron. This

deep inelasti
 s
attering 
an be used to infer the quark 
harges from the

measured 
ross se
tion of the s
attered ele
tron.

7
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Gluons a
t as the mediator of strong intera
tions between quarks, and are


ru
ial in produ
ing quark 
on�nement, and the resulting hadrons. Parti
les

with an ele
tri
 
harge intera
t ele
tromagneti
ally in the theory of ele
tro-

magnetism(QED); analogously in QCD, parti
les have a 
olour 
harge whi
h


omes in red, green and blue varieties. In ele
tromagnetism, the photon

whi
h plays the role of a mediator whi
h has no ele
tri
 
harge. In QCD, the


olour 
harge of gluons is 
onstru
ted from 
olour-anti-
olour 
ombinations of

the 
olour 
harges of the quarks. These 
olour 
harges result in three-point

and four-point self intera
tions for the gluon, making non-abelian QCD a

mu
h more 
omplex theory than abelian QED.

In this thesis, results obtained from the theory of QCD will be 
ompared

with experimental results from international fa
ilities su
h as Jlab and LEP

in order to test the validity of QCD.

1.2 The Dira
 Equation

Prior to introdu
ing Quantum Field Theory, we review advan
ed quantum

me
hani
s where we are in a position to write a wave equation for a parti
le

with no spin (a s
alar parti
le). Having no spin implies that the �eld has

only one 
omponent, whi
h we denote by φ. The di�erential operators for

energy, E, and momentum, p are

E −→ i/h
∂

∂t
, p −→ i/h∇, (1.1)

where in the relativisti
 
ase they are related by E2 = p2c2 +m2c4 and for

the non-relativisti
 
ase, E = p2/2m. The wave equation is then given by

(
1

c2
∂2

∂t2
−∇2

)
φ+

m2c2

/h
2 φ = 0, (1.2)

whi
h turns into the Klein-Gordon equation by setting

/h = c = 1 (in natural

units)

(✷+m2)φ = 0, (1.3)

where ✷ = ∂µ∂
µ
is the four-ve
tor partial derivative with respe
t to time and

the 3 spatial dimensions. Note that we have used the 
ovariant derivative

∂µ = (1
c
∂0,−∇). Nevertheless, the Klein-Gordon equation su�ers from sev-

eral �aws in parti
ular the probability density is not positive de�nite sin
e
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it is proportional to the energy and the possibility for the o

urren
e of neg-

ative energy states

1

. E = ±
√
p2c2 +m2c4 implies that the Klein-Gordon

equation 
ontains both positive-energy and negative-energy solutions. The

Klein-Gordon equation involves the non-linear

∂2

∂t2
term whi
h needs to be

repla
ed with a linear

∂
∂t
. Thus, the Klein-Gordon equation was dis
arded

and the Dira
 equation was the �ttest repla
ement.

(γµpµ −m)ψ = 0. (1.4)

It is then dis
overed that the equations turn out to be a 4× 4 matrix, whi
h

then dedu
ed that the γµ matri
es must also be 4× 4 matri
es.

γ0 =

(
0 1
1 0

)
, γi =

(
0 −σi
σi 0

)
, (1.5)

where σi are the Pauli matri
es. Substituting pµ with i∂µ into Eq. (1.4)

(iγµ∂µ −m)ψ = 0. (1.6)

This equation is a 1st order di�erential equation. With (−iγµ∂µ−m) a
ting
on the LHS of the equation shows that the Dira
 equation implies the Klein

Gordon equation

(−iγµ∂µ −m)(iγν∂ν −m)ψ = (γµγν∂µ∂ν +m2)ψ = 0. (1.7)

In order for ψ to satisfy the Klein-Gordon equation, Eq.(1.3), whi
h 
an be

written in the form

(gµν∂µ∂ν +m2)ψ = 0, (1.8)

where gµν is a four-by-four diagonal matrix gµν = diag(1,−1,−1,−1), the
γµ matri
es must satisfy,

{γµ, γν} = 2gµν, (1.9)

1

The interpretation of negative energy states 
an be explained by Feynman-

Stue
kelberg pi
ture where its interpretation does not appeal to the ex
lusion prin
iple

but rather to a 
ausality prin
iple. Causality ensures that positive energy states with time

dependen
e e−iEt
whi
h propagate forwards in time is equivalent by imposing a negative

energy states propagating ba
kwards in time e−i(−E)(−t) = e−iEt
. This is an a

eptable

theory whi
h is 
onsistent with 
ausality. We 
an simply view that the emission of a neg-

ative energy state parti
le with momentum pµ 
an be interpreted as the absorption of a

positive energy antiparti
le with opposite momentum −pµ. Note that Dira
's sea pi
ture

whi
h is also an attempt to explain negative energy states does not work for bosons as

they do not obey Pauli ex
lusion prin
iple.
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as γµγν + γνγµ = 0 for µ 6= ν.
We will now 
onstru
t the probability 
urrent jµ to 
he
k whether it is

positive. Taking the Hermitian 
onjugate of Eq.(1.6), this gives

ψ†(−iγ0←−∂0 + iγi
←−
∂i −m) = 0. (1.10)

ψ† is row ve
tor and the← shows that the operation is performed to the left.

Multiplying by γ0 and using γiγ0 = −γ0γi, gives

ψ̄(−iγµ←−∂µ +m) = 0. (1.11)

ψ̄ = ψ+γ0 is the adjoint spinor. Using Eqs. (1.6, 1.11), the 
urrent jµ = ψ̄γµψ
is 
onserved

∂µj
µ = 0. (1.12)

The 
urrent density j0 is therefore

j0 = ψ̄γ0ψ = ψ+ψ = |ψ1|2 + |ψ2|2 + |ψ3|2 + |ψ4|2, (1.13)

and always positive as it is made up of the 
ombination of absolute values.

j0 is �t to be the probability density for the parti
le whi
h shows the Dira


equation is preferred to the Klein-Gordon equation in this respe
t.

1.3 Dira
 Spinors

The Dira
 �eld ψ [1, 2℄ 
an be written as a 
ombination of plane-wave solu-

tions sin
e it obeys the Klein-Gordon equation.

ψ(x) = u(p)e−ip.x, (1.14)

where p2 = m2
. Here we denote ψ as a fun
tion of x. Plugging in ψ(x) into

the Eq. (1.4),

(γµpµ −m)u(p) = 0. (1.15)

This equation is best analyzed in the rest frame, taking the index i = 0. pµ
in the rest frame p0 = (m, 0)

(mγ0 −m)u(p0) = m

(
−1 1
1 −1

)
u(p0) = 0. (1.16)

The solutions to this equation are
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u(p0) =
√
m

(
ξ
ξ

)
. (1.17)

ξ is a 2-
omponent spinor whi
h is normalized su
h that ξ†ξ = 1. The fa
tor√
m was 
hosen for future 
onvenien
e. For further reading on the spinor ξ,

rapidity η and boost in detail, refer to [2℄.

Applying a boost to u(p) and after some algebrai
 manipulation and

simpli�
ation

u(p) = exp

[
−1
2
η

(
σ3 0
0 −σ3

)]√
m

(
ξ
ξ

)

=





(√
E + p3(1−σ

3

2
) +

√
E − p3(1+σ3

2
)
)
ξ(√

E + p3(1+σ
3

2
) +

√
E − p3(1−σ3

2
)
)
ξ





=

( √
p.σξ√
p.σ̄ξ

)
. (1.18)

where we have used the boost generator

S0i =
i

4
[γi, γj] = − i

2

(
σi 0
0 −σi

)
. (1.19)

In summary, the general solution for a positive-frequen
y wave 
an be written

as a linear 
ombination of plane waves,

ψ(x) = u(p)e−ip.x, p2 = m2, p0 > 0. (1.20)

Thus, there are two independent solution as the spinor ξ 
an be spin up or

spin down.

us(p) =

( √
p.σξs√
p.σ̄ξs

)
, s = 1, 2, ξ1 =

(
1
0

)
, ξ1 =

(
0
1

)
.

(1.21)

Applying it analogously to the negative-frequen
y solutions:

ψ(x) = v(p)e+ip.x, p2 = m2, p0 > 0 (1.22)

(It is impossible to set p0 < 0, the logi
al approa
h is to add a + sign into

the exponential). The 2 independent solutions are
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vs(p) =

( √
p.σξs

−√p.σ̄ξs
)
, s = 1, 2. (1.23)

These u and v spinors are spin eigenstates for parti
les and antiparti
les,

respe
tively.

1.4 Spin Sums

A 
ru
ial part of QED and QCD is the evaluation of Feynman Diagrams,

whi
h will involve a sum over the polarization states of a fermion.

∑

s=1,2

us(p)ūs(p) =
∑

s

( √
p.σξs√
p.σ̄ξs

)
(ξs†
√
p.σ̄, ξs†

√
p.σ). (1.24)

Using the relation below

∑

s=1,2

ξsξs† = 1 =

(
1 0
0 1

)
. (1.25)

Thus, we obtain the 
ompleteness relations

∑

s=1,2

us(p)ūs(p) = γ.p+m, (1.26)

∑

s=1,2

vs(p)v̄s(p) = γ.p−m. (1.27)

γ.p o

urs very often and is useful to introdu
e a new notation /p = γµpµ.

1.5 Gauge Invarian
e and Noether's The-

orem

Quantum Field Theory (QFT) 
an provide a 
lear des
ription of all the

fundamental intera
tions with the ex
eption of gravity.

We de�ne a �eld theory as a three dimensional spa
e time 4-ve
tor �eld;

for example is the gravitational �eld whi
h takes the value of a ve
tor every-

where. The a
tion S de�ned by the Hamiltonian prin
iple (a parti
le travels

with the least a
tion between two points) is the integral of the Lagrangian

density L



CHAPTER 1. QUANTUM FIELD THEORY 13

S =

∫
Ld4x. (1.28)

Let us de�ne the Lagrangian density in �eld theory as, L , a fun
tion of the

auxiliary �elds (φj), and their derivatives with respe
t to spa
e and time

(∂φj/∂x
µ
)

L = L(φj,
∂φj
∂xµ

), (1.29)

with the subs
ript j labeling di�erent �elds, and the standard xµ whi
h

denotes the spa
e time 
oordinates with indi
es µ = 0, 1, 2, 3. 0 denotes time

while 1, 2, 3 denotes the 3-dimensional spatial 
oordinates. Using Hamilton's

Prin
iple of least a
tion, the Lagrangian density should remain un
hanged

with respe
t to the �eld(s) as well as to a 
hange in the �eld(s); this leads to

the E-L equations,

∂µ(
∂L

∂(∂µφj)
)− ∂L

∂φj
= 0, (1.30)

where ∂µ denotes the partial derivative with respe
t to xµ.

Noether's theorem states that global gauge invarian
e is equivalent to the


onservation of a 
urrent. Consider a 
omplex s
alar �eld theory given by

L = ∂µφ
∗∂µφ−m2φ∗φ. (1.31)

The L remains invariant under the global transformation φ −→ φ′ = φeiα,
for a 
onstant α. Assuming that α is in�nitesimally small, φ′ = φ + iαφ,
thus, the Lagrangian density is 
hanged by

∂L
∂φ

iαφ+
∂L

∂(∂µφ)
iα∂µφ+ c.c, (1.32)

c.c denotes its 
omplex 
onjugate. For global gauge invarian
e of L , this

must be equal to zero up to an α2
term. Applying the E-L equation for the

�eld, the terms with α to the �rst power are

α∂µ(
∂L

∂(∂µφ)
) + c.c = 0. (1.33)

This shows that the 
urrent density is 
onserved

jµ = i(φ∂µφ
∗ − φ∗∂µφ)

∂µj
µ = 0 . (1.34)
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1.6 Lorentz Invarian
e of Wave Equation

In this se
tion, we will dis
uss the de�nition of "relativisti
ally invariant"

when addressing an equation. A �eld or a 
olle
tion of �elds denoted by φ
with an operator D a
ting on φ is said to be "relativisti
ally invariant" if φ
satis�es Dφ = 0, and when we apply a boost or rotation to the �eld to a

di�erent frame of referen
e, the transformed �eld will still satisfy the same

equation.

Thus, by the de�nition above, the equation of motion is Lorentz invariant

if the Lagrangian is a Lorentz s
alar. Let us 
onsider the Klein-Gordon

equation, the 
orresponding Lorentz transformation is given by

xµ −→ x
′µ = Λµνx

ν , (1.35)

for some 4 × 4 matrix Λ. Assuming, we transform x by a boost, the trans-

formed �eld is then

φ(x) −→ φ′(x) = φ(Λ−1x′). (1.36)

The equation shows that the transformed �eld (evaluated at a boosted point)

is equivalent to the original �eld (evaluated before boosting).

Note that the Klein-Gordon Lagrangian remains un
hanged after Lorentz

transformation. The derivative of the �eld transforms su
h that

∂µφ(x) −→ ∂′µ(φ(Λ
−1x′)) = (Λ−1)νµ(∂νφ)(Λ

−1x′). (1.37)

Note that one of the properties of metri
 tensor gµν is that it is Lorentz

invariant, the inverse matri
es Λ−1 must obey the identity

(Λ−1)ρµ(Λ
−1)σνg

µν = gρσ, (1.38)

while the transformation for the kineti
 term of the Klein-Gordon Lagrangian

is

(∂µφ(x))
2 −→ gµν(∂µφ

′(x))(∂νφ
′(x))

= gµν [(Λ−1)ρµ∂ρφ][(Λ
−1)σν∂σφ](Λ

−1x′)

= gρσ(∂ρφ)(∂σφ)(Λ
−1x′)

= (∂ρφ)
2(Λ−1x′). (1.39)

Thus the Lagrangian remains un
hanged
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L(x) −→ L(Λ−1x′). (1.40)

Consequently, the a
tion S found by integratingL over spa
e time, is Lorentz

invariant. We now show that the equation of motion is also Lorentz invariant

(∂2 +m2)φ′(x) = [gµρ(Λ−1)νµ∂ν(Λ
−1)σρ∂σ +m2]φ(Λ−1x′)

= (gνσ∂ν∂σ +m2)φ(Λ−1x′)

= 0. (1.41)

Eq. (1.36) is the simplest transformation law for a �eld with just one 
om-

ponent φ(x). Of 
ourse, we know examples of other multi-
omponent �elds

whi
h transform in a mu
h 
ompli
ated manner, in parti
ular ve
tor �elds

like the ve
tor potential Aµ(x). Quantities distributed in spa
e time are ori-

ented by performing boost or rotation, by expressing them in the form of

tensors whi
h also obey the transformation law. Using su
h tensor �elds, a

variety of Lorentz invariant equations 
an be written, a simple example is

the Maxwell's equation

∂µFµν = 0, or ∂2Aν − ∂ν∂µAµ = 0. (1.42)

1.7 Lo
al Gauge Transformation

The Lagrangian density for a Dira
 �eld is

LDirac = ψ(iγµ∂
µ −m)ψ. (1.43)

The Dira
 equation whi
h des
ribes free fermions in relativisti
 quantum

me
hani
s follows from the E-L equation for the �eld ψ. Under lo
al gauge
transformation ψ −→ ψ′ = ψeiα(x), there will be an extra term ψγµ(∂

µα)ψ
in the free Dira
 Lagrangian. Nevertheless, the Lagrangian should remain

invariant and by repla
ing ∂µ with the term ∂µ + ieAµ in Eq. (1.43), the La-

grangian density will then remain invariant under the transformation ψ −→
ψ′ = ψeiα(x) with the 
ondition that the new �eld transforms from Aµ −→
A′µ = Aµ − 1

e
∂µα. Aµ is an ele
tromagneti
 �eld. For a free �eld

LMaxwell = −
1

4
F µνFµν ,

Fµν = ∂µAν − ∂νAµ, (1.44)
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whi
h remains invariant under the transformation Aµ−→A′µ = Aµ − 1
e
∂µα.

Using Eqs. (1.43, 1.44), the E-L equation for Aµ is

∂µF
µν = ejν ,

jµ = ψγµψ. (1.45)

This is Maxwell's inhomogeneous equations in the presen
e of a 
urrent, the


urrent is also 
onserved by Noether's theorem. e is a 
onstant whi
h is the

magnitude of the 
harge. In the 
ase for several Dira
 �elds, the �elds 
harge

Q should appear in the transformation for the Dira
 �eld ψ −→ ψeiQα(x) as
well as the Lagrangian density ∂µ + ieQAµ. The ele
tron has a 
harge of

Q = −1 and a proton has a 
harge Q = +1.

Quantum Ele
trodynami
s (QED), the quantum �eld theory of ele
tro-

magnetism, results from 
ombining separate �eld theories of free �elds. De-

manding invarian
e under the lo
al gauge transformation has introdu
ed in-

tera
tions given by jµAµ whi
h will appear in the Lagrangian density in

addition to the free (non-intera
ting) �eld theory terms. In order to also

have a better des
ription of the real world, we must in
lude non-linear terms

into the Hamiltonian. Thus the Intera
ting Hamiltonian will be given by

Hint =

∫
d3xHint[φ(x)] = −

∫
d3xLint[φ(x)], (1.46)

with the 
orresponding intera
tion Lagrangian (for further reading [2℄) given

by

Lint = −eQψ̄γµψAµ. (1.47)

The E-L equation for the Dira
 �eld with the intera
ting �eld is now given

by

(i /D −m)ψ = 0, (1.48)

where we use the notation

/D = γµDµ, with

Dµ = ∂µ − ieQAµ. (1.49)

Dµ = ∂µ + ieAµ is the gauge 
ovariant derivative whi
h transforms under

Lorentz Gauge Transformation su
h that (Dµψ) = D′µψ
′ = eiα(x)(Dµψ), so

(Dµψ) transforms in the same way as the �eld ψ itself.

The QED Lagrangian is given by
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LQED = LMaxwell +LDirac +Lint,

LQED = −1
4
F µνFµν + ψ(i /D −m)ψ, (1.50)

where

[Dµ, Dν ]ψ = −ieFµνψ, (1.51)

Fµν = ∂µAν − ∂νAµ. (1.52)

1.8 QED Lagrangian and Feynman Rules

Quantum Ele
trodynami
s (QED) is an abelian gauge theory. The ele
tro-

magneti
 �eld a
t as a mediator for the intera
tion between the 
harged ψ
spin-1/2 �elds. The QED Lagrangian is given by

LQED = −1
4
FµνF

µν + ψ(i /D −m)ψ − 1

2ξ
(∂µAµ)

2, (1.53)

with their 
orresponding Feynman rules

µ −→ −ieQγµ

Figure 1.1: QED vertex

p −→

µ ν
p

−→ (i 6p+m)
p2−m2+iǫ

−→ −igµν
p2+iǫ

Figure 1.2: QED Propagators
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p −→

p −→

p −→

p −→

−→ ūs(p), outgoing fermion

−→ us(p), in
oming fermion

−→ vs(p), outgoing anti-fermion

−→ v̄s(p), in
oming anti-fermion

Figure 1.3: External Fermions

p −→

←− p

−→ ǫ ∗µ (p), outgoing photon

−→ ǫµ(p), in
oming photon

Figure 1.4: External Photons

ψ obeys the 
ovariant derivative expression of Eq. (1.51) and Aµ photon

�eld is related to the ele
tromagneti
 tensor Eq. (1.52). The spinors and

their 
onjugates obey the Dira
 equation. The dire
tion of the arrow shows

whether they are fermions or anti-fermions with the vertex having an arrow


oming in and the other 
oming out to keep the same number of fermions

and antifermions.

One also has to impose momentum 
onservation at ea
h vertex and to

integrate for ea
h undetermined loop momentum

∫
d4p
(2π)4

. Finally one needs

to divide by the symmetry fa
tor. Note also that the QED vertex, photon

propagator as well as the external fermions (polarization ve
tors and its


onjugate initial- or �nal-state photon) arises from the intera
tion Lagrangian

Lint.

It is impossible to obtain the photon propagator from the �rst two terms

of the Lagrangian as the inverted matrix has zero determinant [3℄. This is
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due to gauge invarian
e but in order to have a de�ned photon propagator,

we need to �x the gauge by adding a gauge-�xing term

− 1

2ξ
(∂µA

µ)2. (1.54)

ξ is the gauge-�xing parameter de�ning a 
lass of 
ovariant gauges satisfying

the Lorentz 
ondition ∂µA
µ = 0, ξ = 1 
orresponds to Feynman gauge and

ξ = 0 to Landau gauge. The third term does not 
hange physi
s: physi
al

results are gauge-invariant and gauge-independant. The 
ompli
ation that

arises is not easily de�ned but the photon propagator should be the solution

for the fun
tion Dµρ(x, y) su
h that

(�gµν − ∂µ∂ν)
∫
d4yDµρ(x, y)A(y) = igνρA(x). (1.55)

A(x) is an arbitrary fun
tion. Eq. (1.55) has no solution. Adding the term

Eq. (1.54) into the Lagrangian alters Eq. (1.55) to

(�gµν − (1− 1/(ξ))∂µ∂ν)

∫
d4yDµρ(x, y)A(y) = igνµA(x). (1.56)

Eq. (1.56) has the solution

Dµν(x, y) =

∫
d4k

(2π)4
−idµν(k)
k2 + iǫ

e−ik.(x−y), (1.57)

where dµν = gµν − (1 − ξ)kµkν
k2

. A more straightforward derivation proposed

in [1℄ is to 
onsider

L = Lclassical +Lgauge−fixing,

=
1

2
Aµ
[
gµν�+

(
1

ξ
− 1

)
∂µ∂ν

]
Aν . (1.58)

Taking ξ to be �nite, the quadrati
 operator in momentum spa
e is

−k2gµν +
(
1− 1

ξ

)
kµkν , (1.59)

and its 
orresponding inverse gives the propagator

D(k)µν = −
1

k2

[
gµν + (ξ − 1)

kµkν
k2

]
. (1.60)

ξ is an arbitrary parameter, thus results from QED 
al
ulations for physi
al

quantities are totally independent of ξ. Note that we have used Feynman

gauge in de�ning the photon propagator in Fig. (1.2).
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1.9 QCD Lagrangian and Feynman Rules

Just as in QED, the 
al
ulation of physi
al pro
ess in QCD requires Feynman

rules whi
h des
ribe the intera
tions of quarks and gluons. The Lagrangian

[4℄ whi
h des
ribes strong intera
tions is given by

LQCD = Lclassical +Lgauge−fixing +Lghost. (1.61)

This Lagrangian is based on the SU(N) group non-abelian gauge theory. The


lassi
al part of the QCD Lagrangian density is given by

Lclassical =
∑

f

ψf,i(iγµD
µ
i,j −mfδi,j)ψf,j −

1

4
F µν
a F a

µν . (1.62)

f is the number of quark �avours. ψf,i is the quark �eld (fundamental rep-

resentation) with 
olour index i = 1, . . . ,N and Aaµ is the gluon �eld

(adjoint representation) runs over N2 − 1 degrees of freedom a = 1, . . .

,N2
- 1 des
ribed by SU(N) group. As in QED, the γµ satisfy the Dira
 anti


ommutation relation

{γµ, γν} = γµγν + γνγµ = 2gµν . (1.63)

The 
ovariant derivative in the non-abelian gauge theory is de�ned as

Dµ
ij = ∂µδij − igAµaT aij . (1.64)

g is the strong 
oupling 
onstant whi
h determines the strength of intera
tion

between quanta. T a are matri
es whi
h 
an be expressed in the form of

Hermitian tra
eless Gell-Mann matri
es. They are generators of the SU(N)

group whi
h satisfy the 
ommutation relation

[T a, T b] = ifabcT
c, (1.65)

where fabc are the stru
ture 
onstant. As in QED, the 
ommutator of two


ovariant derivatives is related to the �eld strength tensor F a
µν of the gluon

�elds, from whi
h we 
an build the kineti
 energy part in the 
lassi
al La-

grangian of QCD,

[Dµ, Dν ] = iT aF a
µν , (1.66)

tr(T aT b) =
1

2
δab, (1.67)

∑
T aijT

a
jk = CF δik, CF =

N2 − 1

2N
, (1.68)
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where

F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcA

b
µA

c
ν . (1.69)

Unlike photons in QED, the non-abelian property of the last term in Eq. (1.69)

gives rise to triplet and quarti
 gluon self intera
tions and also asymptoti


freedom. Note that the Lagrangian has mass dimension of 4, thus it should

follow that ψ and Aaµ have mass dimensions of 3/2 and 1 separately. As

required, L should be lo
ally gauge invariant and all of their 
omponents

transform under these lo
al gauge transformations,

ψf −→ Λ(x)ψf , (1.70)

T aAaµ −→ Λ(x)

(
T aAaµ − i

g
Λ−1(x)∂µΛ(x)

)
Λ−1(x), (1.71)

Λ(x) = exp(−iT aθa(x)), (1.72)

where θa(x) is a spa
e time dependent fun
tion. Like QED, a gauge �xing

term whi
h satis�es the Lorentz gauge 
ondition ∂µA
aµ

= 0 has to be added.

The physi
al reason for su
h a 
hoi
e is to put a 
onstraint on Aaµ (whi
h has

2 polarization states) to avoid any unphysi
al states

Lgauge−fixing = −
1

2ξ
(∂µAaµ)

2. (1.73)

In QCD, the longitudinal part of the gluon �eld 
an intera
t with the trans-

verse (physi
al) 
omponent of Aaµ, this results in gluon loops and a subtra
-

tion is of these 
ontributions is ne
essary. Therefore, we will now introdu
e

a ghost �eld 
alled the Faddeev-Popov ghost whi
h a
ts like a s
alar �eld.

Lghost = (∂µη
a∗)(∂µδab + gfabcA

µ
c )η

b. (1.74)

The origin of the Faddeev-Popov ghosts is to ensure 
onsisten
y with the

path integral formulation whi
h demands an unambiguous and non-singular

solutions. The presen
e of gauge symmetry makes this impossible to 
on-

stru
t. This is be
ause there is no parti
ular pro
edure for sele
ting a so-

lution from a 
hoi
e of equivalently physi
al solutions (all derived by gauge

transformation). Su
h problem o

urs from the path integrals over
ounting

�eld 
on�gurations due to gauge symmetries. This will 
orrespond to the

same physi
al state as the measurement of the path integrals 
ontain fa
-

tors prohibiting to extra
t various results from the a
tion obtained from the

Feynman diagrams. One possible 
hoi
e is to modify the a
tion by applying
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additional �elds, breaking the gauge symmetry as a 
onsequen
e. Su
h te
h-

nique is 
alled the Faddeev-Popov pro
edure with the additional �elds being


alled the ghost �elds. Ghosts �eld do not interpret into any physi
al real

parti
le in the external states. Their appearan
e only in the form of virtual

parti
les in Feynman diagrams. Nevertheless, their presen
e are a ne
essity

to preserve unitarity of the S-matriix. The approa
h in the formulation of

ghosts varies and is dependent on the 
hoi
e of gauge, however, the same

results must be obtained for all 
hoi
es. The simplest 
hoi
e for this purpose

is the Feynman-'t Hooft gauge.

Thus, we have the �nal form of the Lagrangian

LQCD =
∑

f

ψf,i(iγµD
µ−mfδi,j)ψf,j−

1

4
F µν
a F a

µν−
1

2ξ
(∂µAaµ)

2+(∂µη
a∗)Dµ

abηb.

(1.75)

where ηa is a 
omplex s
alar �eld obeying Fermi statisti
s. The Feynman

rules 
orresponding to this QCD Lagrangian are

−→ (i 6p+m)
p2+m2+iǫ

Figure 1.5: Quark propagator

a

b

µ ν
−→ −iδab

p2+iǫ

(
gµν − (1− ξ)pµpν

p2

)

Figure 1.6: Gluon propagator

a

b

−→ −iδab
p2+iǫ

Figure 1.7: Ghost propagator
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a, µ

−→ igγµT a

Figure 1.8: Quark-Gluon Vertex

a, µ

b, ν 
, ρ

−→ gfabc[gµν(k − p)ρ

−gνρ(p− q)µ + gρµ(q − k)ν ]

Figure 1.9: 3-Gluon Vertex

b, µ

a 


−→ −gfabcpµ

Figure 1.10: Gluon-Ghost Vertex

d, σ 
, ρ

a, µ
b, ν

−→ g2[fabcfcdeg
µρgνσ − gµσgνρ

+facefbde(g
µνgρσ − gµσgνρ)

+fadefbce(g
µνgρσ − gµρgνσ)]

Figure 1.11: 4-Gluon Vertex
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1.10 Summary

Quantum �eld theory (QFT) is an essential guide in 
onstru
ting quantum

me
hani
al models of systems parametrized by an in�nite number of dynam-

i
al degrees of freedom and variables, that is, �elds and spinors in QED and

QCD. It is found that the for
es between parti
les are mediated by the pres-

en
e of other parti
les. In QED, the ele
tromagneti
 for
e is mediated by

the ex
hange of photons, in QCD gluons mediate the strong for
e. In this

Chapter, we brie�y summarized the important points sele
ted from various

textbooks of QFT whi
h are relevant to the topi
 of this resear
h.

We reviewed the fundamentals of relativisti
 quantum me
hani
s where

we 
an write a wave equation for s
alar parti
les. The energy and momentum

operator is analogous to the ones in Classi
al Me
hani
s and the wave equa-

tion is the Klein-Gordon equation. Nevertheless, the equation has a probabil-

ity whi
h is not positive de�nite and there is the possibility of the o

urren
e

of negative energy states. The interpretation on negative energy states was

dis
ussed using the Feynman-Stue
kelberg pi
ture base on the prin
iple of


ausality. The Dira
 equation was introdu
ed as an extra equation to be sat-

is�ed in addition to the Klein-Gordon equation. The Dira
 
urrent density

is a 
ombination of absolute values implying that it will always be positive,

although there are still negative energy states whi
h 
orrespond to antiparti-


les. It was through Dira
's equation that the predi
tion of antiparti
les was

made and they were subsequently found. This seems a good indi
ator that

parti
le physi
s is on the right tra
k experimentally.

The Dira
 �eld obeys the Klein-Gordon equation and 
an be expressed

as a 
ombination of plane-wave solutions. Plugging this solutions into the

Dira
 equation provides us a four 
omponent spinor whi
h obeys the rotation

and boost generators. Considering the positive and negative frequen
y and

the spinor ξ whi
h might be spin up or down. There will be four spinors

altogether. A 
ru
ial part of QED and QCD is the evaluation of the Feynman

Diagrams whi
h we sum over the polarization states of the fermions.

We de�ne a �eld as a 3-dimensional 4-ve
tor �eld, for example is the

gravitational �eld whi
h takes the value of a ve
tor everywhere. Hamilton's

Prin
iple of least a
tions states that parti
le travels with the least a
tion

between two points. The a
tion S is the integral of the Lagrangian density

L , a fun
tion of auxiliary �elds. Using the Lagrangian of the Klein-Gordon

equation as an example, the 
onserved 
urrent 
an be derived from its E-L

equation sin
e there is a global symmetry for the �eld, undergoing global
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gauge transformations. Su
h transformations do not alter the a
tion. This is

due to Noether's theorem whi
h states that the global symmetry is equivalent

to the 
onservation of 
urrent.

A �eld is "relativisti
ally invariant" if an operator a
ting on the �eld

satis�es Dφ = 0, and when we apply rotations or boosts to the �eld in

di�erent frames of referen
e, the transformed �eld will still satisfy Dφ′ = 0.
We show that the Klein-Gordon equation is relativisti
ally Lorentz invariant

under rotations and boosts along the axis. In short, quantity distributed in

spa
e time is oriented by performing rotation or boost by expressing them in

the form of tensors whi
h also obeys the transformation law. Many examples


an be made, a famous one is the Maxwell's equation.

We further showed that the Dira
 Lagrangian is invariant under gauge

transformations. Demanding invarian
e under lo
al gauge transformation

has introdu
ed an intera
tion term. Thus, this non linear intera
tion term

is added to the Lagrangian. This intera
tion term is then absorbed into

the Dira
 equation sin
e its partial derivative is modi�ed into a 
ovariant

derivative. Finally, in order to have a gauge independent and gauge invariant

Lagrangian, − 1
2ξ
(∂µAµ)

2
is added to the Lagrangian where the 
hoi
e of the

gauge �xing parameter ξ will not alter the physi
s. The sets of Feynman

Rules 
an be read dire
tly from the QED Lagrangian.

QED is based on an abelian theory but QCD in 
ontrast is derived from

non-abelian theory. In QCD, the existen
e of the gluon �eld give rise to triplet

and quarti
 intera
tions gluon self intera
tions and ultimately asymptoti


freedom. Similarly like in QED, a gauge �xing Lagrangian is also needed

but a further 
ompli
ation o

urs sin
e unphysi
al gluon polariztion states


an propagate . To remedy this a ghost �eld is then introdu
ed 
alled the

Fadeev-Popov ghost whi
h a
ts like a s
alar �eld. This also ensures that the

unitarity of the S-matrix is not violated. The sets of Feynman Rules 
an be

read dire
tly from the QCD Lagrangian.



Chapter 2

Perturbative QCD

2.1 Dimensional Regularization

In 
omputing Feynman diagrams beyond the tree-level one inevitably en-


ounters divergen
es when one integrates over undetermined loop momenta.

One en
ounters both ultraviolet (UV) and infra-red (IR) divergen
es from

the large and small momentum regions, respe
tively. To 
ontrol these one

needs to �renormalize� the theory, introdu
ing in�nite so-
alled 
ounterterms

to 
onvert the in�nite parameters (masses, 
ouplings, 
harges) in the origi-

nal �bare� Lagrangian to �nite �renormalized� parameters. This pro
edure

involves a �renormalization pro
edure� or renormalization s
heme (RS). An

essential ingredient is that of �regularization�. To handle su
h divergen
es

the simplest approa
h is to introdu
e an upper 
uto� on the loop-momenta

integrated over. This is referred to as �Pauli-Villars� regularization. We shall

work with a more sophisti
ated approa
h 
alled �dimensional regularization�

whi
h has the major merit of manifestly preserving gauge invarian
e, whi
h

is violated with the naive Pauli-Villars method.

To understand "dimensional regularization", it is best to see how this

te
hnique works at the 
al
ulational level. A d-dimensional spa
e time has 1

time dimension and (d-1) spa
e dimensions. We Wi
k

1

-rotate the Feynman

integral over a d-dimensional Eu
lidean spa
e, 
onsider

∫
ddlE
(2π)d

1

(l2E +△)2
=

∫
dΩd
(2π)d

∫ ∞

0

dlE
ld−1E

(l2E +△)2
, (2.1)

1

Wi
k's rotation is a method of solving problem in a Minkowski spa
e from a solution

to a problem in an Eu
lidean spa
e by substituting a real variable with an imaginary

variable, example is ds2 = −(dt)2+dx2+dy2+dz2 = dt2+dx2+dy2+dz2 by 
onsidering

t to be imaginary

26
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where △ = m2 − x(1 − x)q2. x is the variable that o

urs when 
ombining

denominators through introdu
tion of Feynman parameter and is related to

the shifted momentum l = k + qx. The �rst fa
tor in Eq. (2.1) 
an be

expressed as the area of a unit sphere in d dimensions. We show the proof

below

(
√
π)d =

(∫
dxe−x

2

)d
=

∫
ddxe−

∑d
i=1 x

2
i

=

∫
dΩd

∫ ∞

0

dxxd−1e−x
2

=

(∫
dΩd

)
1

2

∫ ∞

0

d(x2)(x2)
d
2
−1e−x

2

=

(∫
dΩd

)
1

2
Γ(d/2). (2.2)

Thus the area of the unit sphere is

∫
dΩd =

2πd/2

Γ(d/2)
. (2.3)

The se
ond fa
tor is algebrai
ally derived as follows

∫ ∞

0

dl
ld−1

(l2 +△)2
=

1

2

∫ ∞

0

d(l2)
(l2)

d
2
−1

(l2 +△)2

=
1

2

(
1

△

)2− d
2
∫ 1

0

dxx1−
d
2 (1− x) d

2
−1, (2.4)

by making the substitution x = △/(l2 + △). By using the Beta fun
tion

studied by Euler and Legendre

∫ 1

0

dxxα−1(1− x)β−1 = Γ(α)Γ(β)

Γ(α + β)
, (2.5)

the integral is simply

∫
ddlE
(2π)d

1

(l2E +△)2
=

1

(4π)d/2
Γ(2− d

2
)

Γ(2)

(
1

△

)2− d
2

, (2.6)

having evaluated Eq. (2.5) over the variable x. Sin
e Γ(z) has poles at

z = 0,−1,−2,−3, ...., this integral also has a pole at d = 4, 6, 8...... Using

the approximation

1

Γ(z)
= zeγEz

∞∏

n=1

(
1 +

z

n

)
e−z/n, (2.7)



CHAPTER 2. PERTURBATIVE QCD 28

and d = 4 − 2ǫ = with γE ≈ 0.5722 (Euler 
onstant), the integral will be of

the form

∫
ddlE
(2π)d

1

(l2E +△)2
=

1

(4π)2

(
2

ǫ
− log(△)− γE + log(4π) +O(ǫ)

)
. (2.8)

1/ǫ will still make the integral divergent when ǫ −→ 0. This 
orresponds to
a logarithmi
 divergen
e in the momentum integral whi
h 
an be absorbed

by using the Modi�ed Minimal Subtra
tion S
heme (MS) [5℄.

2.2 Renormalization Theory

QCD and QED are renormalizable theories. After divergen
es are regular-

ized, the troublesome divergent 
ontributions 
orrespond to rede�ning the

fundamental 
onstants of the theory like the 
oupling g and quark masses

m in QCD. In other words, physi
al quantities are expressed in terms of

renormalised parameters and do not involve any UV divergen
es anymore,

examples are gren and mren. The renormalised 
onstants whi
h depends on ǫ
(dimensional regularization parameter), g (the bare 
oupling ), m (the bare

mass) and µ (an arbitrary s
ale) absorb all su
h divergen
es.

Rigorously demonstrating the renormalizability of QED is a hard prob-

lem, and the non-abelian 
ompli
ations inherent in QCD make this an even

harder problem. A good book to refer for a detailed demonstration of QED's

renormalizability 
an be found in [1℄. We will not demonstrate anything in

detail here but we will provide rather a heuristi
 physi
al explanation. Large

loop momenta produ
e UV divergen
es. In the event that the loop momenta

are mu
h larger than the 
hara
teristi
 external momenta, the loop loses its

stru
ture and 
an be 
onsidered as a point.

−→

Figure 2.1: Example of a 
ounterterms

Figure (2.1) shows the idea of renormalization. By 
onsidering the loop as

a point, a new quadrati
 
ontribution to the Lagrangian emerges. Due to
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Lorentz and gauge invarian
e, the 
ontribution is of the form ≃ (∂µAν −
∂νAµ)

2
.

Renormalizability is related to the notion of an e�e
tive Lagrangian, refer

to [6℄ for more detail. To understand more 
learly how this te
hnique works

it is useful to 
onsider the QCD e�e
tive Lagrangian extra
ted from the

Green's fun
tions whi
h 
an be obtained from the QCD Feynman diagrams,

L eff = − 1

4ZA
(∂µA

a
ν − ∂νAaµ)2 −

g

Z3A
fabc(∂µA

a
ν)A

bµAcν

− g2

Z4A
fabcf cdeAaνA

b
νA

µcAνd − 1

2ξ
(∂µAaµ)

2 +
1

Zη
∂µη̄

a∂µηa

+
g

Zη̄ηA
fabc∂µη̄aAbµη

c +
i

Zψ
ψ̄ 6 ∂ψ − m

Zm
ψ̄ψ +

g

Zψ̄ψA
ψ̄ψA. (2.9)

Z3A, Z4A, Zη̄ηA and Zψ̄ψA 
orrespond to the 3-gluon, 4-gluon, ghost-ghost-

gluon and quark-quark-gluon verti
es renormalization parameters. ZA, Zψ
and Zη 
orresponds to the gluon, quark and ghost propagators renormaliza-

tion parameters while Zm is the renormalization parameter for quark mass.

Ensuring the Kineti
 terms are redu
ed to the standard form, we should

rede�ne the �elds

ABµ −→ Z
1/2
A Aµ, ηB −→ Z1/2

η η, ψB −→ Z
1/2
ψ ψ. (2.10)

Su
h renormalization pro
edure are ne
essary to ensure the Lagrangian (de-

rived from a
tion) to remain physi
al and �nite. Any in�nities that o

ur


orresponding to the verti
es and propagators must be renormalized as a 
on-

sequen
e. This subsequently result in a sensible and physi
al quark masses

and 
oupling 
onstants. We will now dis
uss how renormalization is imple-

mented in pra
ti
e in QED [2℄:

1) Res
aling the �elds in the Lagrangian.

2) The Lagrangian is split into 2 pie
es to absorb in�nities and unobservable

shifts into 
ounter-terms.

3) Sele
ting a spe
i�
 renormalization 
onditions whi
h de�nes the physi
al

mass and 
oupling 
onstant while ensuring the �eld-strength renormaliza-

tions equal to 1.

4) Introdu
e new Feynman Rules, then 
ompute its new amplitude.

5) Finally, adjust the 
ounter-terms appropriately.
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One of the method of renormalization is regularization. We will present

the detail 
al
ulation of σ(e+e− −→ qq̄, qq̄g) in Se
tion 2.7, now it will be

just su�
e to quote the result to show how regularization works in general.

One of the initially proposed regularization method is the introdu
tion of

gluon mass

m2
g = ǫs (2.11)

whi
h we will then have,

σqq̄g = σ0CF
αs
2π

(
log2

1

ǫ
− 3 log

1

ǫ
+ 7− π2

3
+O(ǫ)

)
(2.12)

σqq̄ = σ0CF
αs
2π

(
− log2

1

ǫ
+ 3 log

1

ǫ
− 11

2
+
π2

3
+O(ǫ)

)
(2.13)

σtot = σ0CF
αs
2π

(
3

2
+O(ǫ)

)
(2.14)

Unfortunately, despite su
h regularization gives a �nite answer as ǫ −→ 0 in

this 
ase, it violates gauge invarian
e and therefore does not generalize. A

mu
h preferred regularization will be tou
hed in Se
tion 2.3 and Se
tion 2.7.

2.3 Renormalization Example - One Loop

Va
uum Polarization in QED

k k

p + k

p

Figure 2.2: The one loop va
uum polarization diagram

For revision, we 
onsider a typi
al QED one loop 
orre
tion to the photon

propagator shown in Fig. (2.2). Using the Feynman Rules for QED in Se
tion

1.8, this parti
ular diagram is represented by the expression

−iΠµν(k2) =

(−1)
∫

d4p
(2π)4

(−ieγµ)α′β
i(6p+m)ββ′

p2−m2 (−ieγν)β′α
i(/p+/k+m)αα′

(p+k)2−m2 (2.15)
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where α and β are the spinor indi
es. Note that we will simplify the expres-

sion further by assuming a negligible mass by setting m = 0. Note also that
α =

e2

4π
and sin
e that it is a fermion loop, there is a fa
tor of (-1). The

integral is divergent and has to be renormalized. The �rst step in renormal-

izing ths expression is to regularize the divergent integrals by the 
ommon

method of "dimensional regularization"

2

in whi
h the integral is performed

in d = 4 − 2ǫ spa
e time dimensions and then the limit ǫ −→ 0 is taken.

Thus, an evaluation of the expression

−iΠµν(k2) = −e2
∫

d4p

(2π)4
Tr[γµ/pγν(/p+ /k)]

p2(p+ k)2
. (2.16)

One then needs to use the tra
e identity given by

Tr[γµγλγνγρ] = 4(gµλgνρ − gµνgλρ + gµρgλν). (2.17)

This further redu
es the expression to

−iΠµν(k2) = −4e2
∫

d4p

(2π)4
[pµ(p+ k)ν − gµν [p(p+ k)] + (p + k)µpν ]

p2(p+ k)2
.

(2.18)

The denominator 
an be solved using a Feynman parameter

1

p2(p+ k)2
=

∫ 1

0

dx
1

[(1− x)p2 + x(p + k)2]2
. (2.19)

Changing the variable l = p+ kx, the numerator is then

2lµlν − gµνl2 − 2x(1− x)kµkν + gµν(x(1− x)k2), (2.20)

where the terms that are odd under l → −l whi
h vanish on integration have

been dropped from the expression. After performing a Wi
k's rotation where

l0 = il0E and applying the identity

∫
ddlE
(2π)d

1

(l2E +△)n
=

1

(4π)d/2
Γ(n− d/2)

Γ(n)
(
1

△)n−d/2 , (2.21)

and also

∫
ddlE
(2π)d

l2E
(l2E +△)n

=
1

(4π)d/2
Γ(n− d/2− 1)

Γ(n)
(
1

△)n−d/2−1, (2.22)

2

[2℄ The idea of "dimensional regularization" is su
h that the Feynman diagrams are


omputed as an analyti
 fun
tion with spa
e time dimension d. Assuming that d is rel-

atively small, the loop-momentum integral will 
onverge, thus the Ward identity proven.

Hen
e, the observable will have a well de�ned limit as d −→ 4. The reason when to swit
h

from 4 dimensions to d = 4 − 2ǫ will be shown 
learer when introdu
ing Eq. (2.21) and

Eq. (2.22).
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redu
es Eq. (2.18) to

−iΠµν(k2) = [kµkν − gµνk2]iΠ2(k
2), (2.23)

whi
h we note that Γ(z) has isolated poles at z = 0,−1,−2,−3, ... from [2℄.

Thus for n = 2 whi
h has been used for this parti
ular 
al
ulation, both

integrals Eq. (2.21) and Eq. (2.22) will have poles at d = 4, 6, 8, .... In order

to �nd the behavior near d = 4, we therefore de�ne d = 4 − 2ǫ by using

the approximation Γ(ǫ) = 1
ǫ
− γE + O(ǫ) with γE being Euler-Mas
heroni


onstant. Continuation to d-dimension endows the dimensionless 
oupling e
with a mass dimension, [e] = 2 − d/2 = ǫ, whi
h needs to be repla
ed with

e −→ eµǫ. Straightforward 
al
ulation of Π2(k
2) yields

Π2(k
2) = − α

3π

[
− 1

ǫ
+ ln

(−k2
µ2

)
+ �nite

]
. (2.24)

Counterterms are introdu
ed to remove the

1
ǫ
divergen
es, the �nite 
ontribu-

tion they also 
an
el is arbitrary and determines the subtra
tion pro
edure.

Modi�ed minimal subtra
tion (MS) absorbs the ln(4π)− γE term, minimal

subtra
tion (MS) does not. The logarithm in Eq. (2.24) is absolutely 
ru
ial

in dis
ussing the 
on
ept of Renormalons(Chains and Bubbles) with QFT

in subsequent 
hapters, and re-summing powers of logarithms will generate

fa
torial growth of large-order perturbative 
oe�
ients.

2.4 The Running Coupling Constant

In QCD, asymptoti
 freedom and 
on�nement arise. Con�nement explains

why no solitary quarks are observed and why quarks are always bound within

the hadrons by the strong for
e 
arried by gluons. It is important to stress

that perturbation theory is a great mathemati
al tool to analyze QCD . A

renormalized 
oupling 
onstant is said to �run� with energy. As we shall see

in QCD the renormalized 
oupling has a logarithmi
 running in energy Q
and is large at low energy and gradually de
eases as energy in
reases. This

physi
al behavior is 
alled Asymptoti
 Freedom. This weak 
oupling at large

energy s
ale property is 
ru
ial for the validity of �xed-order perturbative

QCD 
al
ulations.

Prior to introdu
ing the running 
oupling, we need to introdu
e R. R
has to be a physi
al observable, dimensionless, a fun
tion dependent on the

energy s
ale (whi
h we will denote Q). We will assume that the energy Q is

mu
h larger than the quark masses and that massless quarks 
an be assumed.
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In QCD, the observable R is expanded as a perturbative series of the �ne

stru
ture 
onstant αS = g2/4π where g is the bare 
oupling. This shows

that R has to be renormalized to remove its UV divergen
es by introdu
ing

a se
ond mass s
ale - a renormalization s
ale µ through the renormalization

pro
edure and subtra
tion s
heme dis
ussed previously. Therefore, R in QCD

is dependent on the ratio Q2/µ2
and the renormalized 
oupling αs.

The value sele
ted for µ is part of the spe
i�
ation of the renormalization

s
heme. In fa
t, the QCD Lagrangian is independent of µ, but µ is required

to de�ne the theory of QCD. The µ-independen
e of R is expressed by

µ2 d

dµ2
R(Q2/µ2, αs) ≡ 0,

[
µ2 ∂

∂µ2
+ µ2∂αs

∂µ2

∂

∂αs

]
R = 0. (2.25)

Note that the 2nd line just simply shows a transformation of the derivative

d/dµ2
into separate partial derivatives. We rewrite Eq. (2.25) as

[ ∂
∂τ
− β(αs)

∂

∂αs

]
R = 0, (2.26)

by introdu
ing the beta fun
tion β as a derivative of the running 
oupling

with respe
t to the renormalization s
ale

β(αs) = µ2∂αs
∂µ2

. (2.27)

Note that we 
an also write

τ = ln
(Q2

µ2

)
, (2.28)

as a fun
tion of Q2
as τ must also be dimensionless. This operation is allowed

as

∂

∂τ
= −µ2 ∂

∂µ2
, (2.29)

remains un
hanged by adding an additional term ln(Q2)to τ . We will use

the same notation τ and the beta fun
tion β throughout this thesis. Note

that Eq. (2.26) is a 1st order partial di�erential equation whi
h 
an be now

solved by integrating the bra
keted terms
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τ =

∫ αs(Q2)

αs(µ2)

dx

β(x)
. (2.30)

We have to be slightly 
learer about what we are doing, we now rede�ne

αs(µ
2) = αs as the lower limit and the running 
oupling as αs(Q

2) as the
upper limit for the integral. Di�erentiating Eq. (2.28), we have

∂αs(Q
2)

∂τ
= β(αs(Q

2)). (2.31)

Note that in perturbative QCD, β is expanded as a series of αs and trun
ated
at order n.

Figure 2.3: 1-loop β fun
tion 
ontribution

2.5 The Callan−Symanzik Equation

The Callan−Symanzik equation is a di�erential equation des
ribing the evo-

lution of the n-point 
orrelation Green G(n)
fun
tions under di�erent energy

s
ales. The theory involves the de�nition of the beta-fun
tion. This equation

has the stru
ture

[
µ
∂

∂µ
+ β

∂

∂g
+ nγ

]
G(n)(x1, ..., xn;µ, g) = 0. (2.32)

The parameter β and γ remains un
hanged for any n 
hosen. This simply

implies that both β and γ are independent of the �eld's momenta denoted

by xi. Sin
e the Green's fun
tion must be renormalized, β and γ are both

independent of the 
ut o� s
ale and with dimensional analysis must also be

independent of the renormalization mass s
ale µ. This leads to a universal

fun
tion namely β(g) and an anomalous dimension γ(g) whi
h depends on

the Green fun
tion 
on
erned with g as the renormalized 
oupling.

This leads on to our dis
ussion on the β fun
tion in the next se
tion.
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2.6 The β fun
tion

We have shown that in renormalization theory, there is a 
lear distin
tion

between a bare Lagrangian LBare and the renormalized e�e
tive Lagrangian

Leff . Eq. (2.10) shows that su
h in�nite re parameterization is 
arried out

via the introdu
tion of 
ounterterms in Fig. (2.1). As dis
ussed, there is

no spe
i�
 way of 
hoosing a s
heme with 
ounterterm 
oe�
ients to 
an
el

the 1/ǫ divergen
es. The β fun
tion expanded perturbatively on the RHS of

Eq. (2.31) is

da

d ln(µ)
= β(a) = −ba2(1 + ca+ c2a

2 + c3a
3 + ...). (2.33)

Noti
e that the LHS of Eq. (2.32) is the 
oupling a running logarithmi
ally

with µ. a will be referred as the 
oupling throughout this thesis. Here we

expli
itly relate the 
oupling with µ, a(µ2) = αs(µ
2)/π = g2(µ2)/4π2

. The


oe�
ients in the 
orresponding β fun
tion have been algebrai
ally derived

in the MS renormalization s
heme [7℄ and [8℄, and [9, 10, 11℄

b =
1

6
(11CA − 2Nf), (2.34)

c =
1

12b
(−3

2
CA[7CA + 11CF ] + 3b[5CA + 3CF ]), (2.35)

cMS
2 =

2857− 5033
9
Nf +

325
27
N2
f

64b
, (2.36)

cMS
3 =

[
3564ζ3 +

149753

6
−
(6508

27
ζ3 +

1078361

162

)
Nf

+
(6472

81
ζ3 +

50065

162

)
N2
f +

1098

729
N3
f

]
/256b. (2.37)

b and c are Renormalization S
heme (RS) invariant whilst c2 and c3 are RS
dependent their values above are 
al
ulated in the MS s
heme. CA = N (N
is the number of 
olours) and CF = (N2−1)/2N are adjoint and fundamental

Casimirs, respe
tively, of the QCD SU(N) theory. Eq. (2.34) to Eq (2.37)


an be rewritten as expansions in powers of b, a form of expansion that will

play a pivotal role in our later dis
ussions of renormalons.
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c = −107
8b

+
19

4
, (2.38)

cMS
2 = −37117

768b
+

243

32
+

325

192
b, (2.39)

cMS
3 =

1218587 + 1389486ξ3
13824b

− 5857771 + 932400ξ3
27648

+
7761 + 1618ξ3

576
b− 1093

6912
b2. (2.40)

The N 
olor-dependent 
ontribution arises from gluon and ghost va
uum po-

larization 
ontributions, while the Nf is the number of a
tive quark �avours.

If b is required to be positive, 
orresponding to Nf < 33/2 ≃ 17. a(µ) −→ 0
as µ2 −→ ∞ whi
h is a 
lear indi
ation of Asymptoti
 Freedom. ζn in the

above is the Riemann zeta fun
tion. Integrating the beta fun
tion, then one

obtains

∫ a

0

dx

β(x)
= F + ln(µ/Λ) (2.41)

where the 
onstant of integration F 
ontain its in�nite part. It is reason-

able to make the 
hoi
e F =
∫∞
0
dx/(−bx2(1 + cx)) and the dimensional

transmutation parameter Λ be repla
ed by Λ̃ de�ned by [12℄.

Λ̃MS =

(
2c

b

)c/b
ΛMS. (2.42)

Using F and Λ, we have

ln
(µ
Λ̃

)
=

∫ ∞

a

dx

bx2(1 + cx)
+

∫ a

0

[ 1

bx2(1 + cx)
+

1

β(x)

]
dx. (2.43)

Eq. (2.43) has two properties, �rst note that se
ond integral vanishes when

a −→ 0, the se
ond property is that the se
ond integral also vanishes again

when we 
hoose the a so-
alled 't Hooft s
heme setting c2 = c3... = cn = 0.

The solution for Eq. (2.33) at one loop level (retaining just the �rst term

on the RHS of Eq. (2.33)) is

a(µ2) =
2

b ln(µ2/Λ2)
, (2.44)

and for the two loop level (retaining two terms), the solution may be written

in terms of the Lambert W-fun
tion
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a(µ2) = − 1

c[1 +W (z(µ))]
, (2.45)

z(µ) = −1
e

(µ
Λ

)− b
c

, (2.46)

de�ned impli
itly by W (z)eW (z) = z. For higher loops, a(µ2) will be de-

pendent on the 
hoi
es of c2, c3...cn. A useful feature is that in 't Hooft

s
heme, a(µ2) may be written expli
itly in terms of W (z) as above. To en-

sure asymptoti
 freedom, it is the W1 bran
h of the Lambert W-Fun
tion

whi
h is required [13, 14℄.

2.7 e+e− into hadrons and Re+e−

γ

e−(q1) e+(q2)

µ−(p1) µ+(p2)

Figure 2.4: e+e− −→ µ+µ− in QED

γ

e−(q1) e+(q2)

q(p1) q̄(p2)

Figure 2.5: The leading order 
ontribution to the e+e− −→ hadrons in
QCD

Using the Feynman Rules derived in Se
tion 1.8 and Se
tion 1.9, we 
an at

on
e draw the diagram and write down the amplitude for the e+e− −→ µ+µ−
pro
ess in QED:

M = {v̄(q2)eγµu(q1)}
−gµν

(p1 + p2)2
{ū(p1)eγνv(p2)}. (2.47)

Rearranging and leaving the spin supers
ripts impli
itly, we have
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iM(e+e− −→ µ+µ−) =
ie2

s
(v̄(q2)γ

µ
u(q1)) (ū(p1)γνv(p2)) , (2.48)

where s = (p1 + p2)
2
. In order to 
ompute the di�erential 
ross se
tion,

we need |M |2 whi
h require us to �nd the 
omplex 
onjugate of M . The

bi-spinor produ
t of (v̄γµu)∗ 
an be 
omplex 
onjugated as follows

(v̄γµu)∗ = u
†(γµ)†(γ0 )†v = u

†(γµ)†γ0 v = u
†γ0γµv = ūγµv . (2.49)

Thus the squared matrix element is

|M |2 = e4

q4
(v̄(q2)γµu(q1)ū(q1)γνv(q2)) (ū(p1)γ

µ
v(p2)v̄(p2)γ

ν
u(p1)) . (2.50)

Note that we are still free to spe
ify any spinors to any desired spin states

of the fermions. In real experiments, it is di�
ult to retain 
ontrol over the

spin states. In most experiments, the beams are unpolarized, thus the 
ross

se
tion measured is an average over the spins. We will assume to throw away

the spin information sin
e muon dete
tors are normally blind to polarization.

The expression for |M |2 simpli�es by 
omputing

1

2

∑

s

1

2

∑

s′

∑

r

∑

r′

|M(s, s′ −→ r, r′)|2. (2.51)

Using the 
ompleteness relations Eq (1.26) and Eq (1.27) from Se
tion 1.4,

and working with the �rst half of Eq (2.50) by writing in spinor indi
es so

we 
an move from one v to the next v , we have

∑

s,s′

v̄
s′

a (q2)γ
µ
abu

s
b (q1)ū

s
c (q1)γ

ν
cdv

s′

d (q2) = (/q2 −m)daγ
µ
ab(/q1 +m)bcγ

ν
cd,

= tra
e[(/q2 −m)γµ(/q1 +m)γν ].

(2.52)

Evaluating the se
ond half the same manner, we arrived at desired simpli�-


ation

1

4

∑

spins

|M |2 = 1

4

e4

s2
tr[(/q2 −me)γµ(/q1 +me)γν]tr[(/p1 +mµ)γ

µ(/p2 −mµ)γ
ν ].

(2.53)
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Thus, we have

1

4

∑

spins

|M |2 = 8e4

s2
{p1.q2p2.q1 + p1.q1p2.q2 +m2

µ(q1.q2) +m2
e(p1.p2)}, (2.54)

using the 
y
li
 property on Eq (2.53) (and tra
e identity) by bringing it to

the left hand side

tr[(/q2 −me)γµ(/q1 +me)γν ] = 4[q2,µq1,ν + q2,νq1,µ − gµν(q1.q2 +m2
e)],

(2.55)

tr[(/p1 +mµ)γ
µ(/p2 −mµ)γ

ν ] = 4[pµ1p
ν
2 + pν1p

µ
2 − gµν(p2.p1 +m2

µ)].

(2.56)

Negle
ting fermion masses, we obtained

1

4

∑

spins

|M |2 = 8e4

s2
{p1.q2p2.q1 + p1.q1p2.q2}. (2.57)

In order to 
al
ulate

1
4

∑ |M |2 expli
itly, suppose

qµ1 = (E, 0, 0, p) (negle
ting fermion mass p = E) , (2.58)

qµ2 = (E, 0, 0,−E) (
enter of mass frame), (2.59)

then the total 
enter of mass energy is

s = (q1 + q2)
2 = 2q1.q2 = 4E2 → E =

1

2

√
s. (2.60)

The muon has momentum

pµ1 = (E ′, E ′sin(φ)sin(θ), E ′
os(φ)sin(θ), E ′
os(θ)), (2.61)

pµ1 = (E ′, E ′sin(θ), E ′sin(θ), E ′
os(θ)), (due to 
ylindri
al symmetry)

(2.62)

pµ2 = qµ1 + qµ2 − pµ1 ,
= (
√
s−E ′, 0,−E ′sin(θ), E ′
os(θ))). (by energy 
onservation) (2.63)

Sin
e the anti-muon is massless
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pµ2 .p2,µ = (s−E ′)2 − E ′2sin2(θ)− E ′2
os2(θ) = 0→ E ′ = E =
1

2

√
s. (2.64)

Inserting all the relevant expressions into Eq (2.57), the squared matrix ele-

ment is simply

1

4

∑

spins

|M |2 =
8e4

q4
{p1.q2p2.q1 + p1.q1p2.q2},

=
e4

2
{(1 + 
os(θ))2 + (1− 
os(θ))2},

= e4(1 + 
os

2(θ)) (2.65)

The total 
ross se
tion will not be possible to be 
al
ulated without deriving

the two-body phase spa
e, let

dPS =
d3p1

(2π)32E1

d3p2

(2π)32E2
(2π)4δ(4)(q1 + q2 − p1 − p2), (2.66)

integrating d3p2 on three spatial δ-fun
tions, yields

dPS =
d3p1

(2π)34E1E2
δ(
√
s− E1 − E2). (2.67)

Expressing E1 and E2 in terms of integration variables, and using spheri
al


oordinates:

E1 = |p1| = p, E2 = |p2| = | − p1| = p, (2.68)

d3p1 = p2 dp d
os(θ) dφ, (2.69)

the two-body phase spa
e 
an be written as

dPS =
1

16π
d
os(θ)

dφ

2π
, (2.70)

PS =
d
os(θ)

16π
, (2.71)

using the integration of

∫
dφ
2π

= 1 (due to 
ylindri
al symmetry) and inte-

grating out the �nal δ-fun
tion
∫
dp δ(

√
s− 2p) = 1

2
. The phase spa
e PS is

related to squared matrix element and di�erential equation by the relation



CHAPTER 2. PERTURBATIVE QCD 41

dσ =
1

2s

(
1

4

∑
|M |2

)
PS, (2.72)

plugging in |M |2 and PS, the di�erential 
ross se
tion and then the 
ross

se
tion are simply

dσ

d
os(θ)
=

1

2s

1

16π

1

4

∑
|M |2 = πα2

2s

(
1 + 
os

2(θ)
)
, (2.73)

σ(e+e− −→ µ+µ−, s) =

∫ +1

−1
d
os(θ)

dσ

d
os(θ)
=

4πα2

3s
. (2.74)

For the leading order 
ontribution to Figure (2.5), σ(e+e− −→ hadrons, s)lo,
intuitively we 
an repla
e the muon 
harge e with the quark 
harge Qf |e| (f
denotes the �avour) and 
ount ea
h quark three times, one for ea
h 
olor,

while �nally summing up the relevant �avours:

σ(e+e− −→ hadrons, s)lo =
4πα2

3s
3
∑

Q2
f . (2.75)

Here we have not in
luded the emission of real and virtual gluon into the


al
ulations. Figure 2.6 depi
ts the Feynman diagrams of real gluon emission

whi
h leads to 3-jets events in international laboratory.

γ

g(k) g(k)

γ

e−(q1) e+(q2)

q(p1) q̄(p2)

e−(q1) e+(q2)

q(p1) q̄(p2)

Figure 2.6: Real gluon emission

We 
an now write the amplitude for the real gluon emission (whi
h 
on-

tributes partially to next leading order 
orre
tion) by referring to the QCD

Feynman Rules

M = e2QfgT
a
ij{v̄(q2)γµu(q1 )}

−gµν
s

×
(
ūi(p1)

[
γσ

/p1 + /k

(p1 + k)2
γν − γν

/p2 + /k

(p2 + k)2
γσ

]
vj (p2 )

)
ǫσa(k).

(2.76)
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Thus, the squared matrix element is

1

4

∑
|M |2 =

4e4Q2
fg

2N

s
CF

× (p1.q1)
2 + (p1.q2)

2 + (p2.q1)
2 + (p2.q2)

2

(p1.k)(p2.k)
, (2.77)

where we have used the 
olour algebra

∑
T aij(T

a
ij)∗ = T aijT

a
ji = 1

2
δaa =

1
2
(N2 − 1) = N.CF . Performing all the ne
essary steps as dis
ussed in the


al
ulation of σ(e+e− −→ hadrons, s)lo using phase spa
e integral as well as

spinor algebra, we �nally arrive at

σ(e+e− −→ qq̄g, s)nlo =
1

2s

s

16(2π)3

∫
dx1dx2

d
os(θ)d(φ)d(α)

2(2π)2
1

4

∑
|M |2,

=
4πα2Q2

fN

3s
CF

αs
2π

∫
dx1dx2

x21 + x22
(1− x1)(1− x2)

,

= σ0CF
αs
2π

∫
dx1dx2

x21 + x22
(1− x1)(1− x2)

, (2.78)

where xi = 2pi/
√
s is the energy fra
tion and αs = g2/4π is the strong-

intera
tion analogue of �ne stru
ture 
onstant with g2 as the strong intera
-
tion 
oupling. In a 3-jets event, the 
ross se
tion diverges where the gluon

is 
ollinear (results in divergen
es when the momentum ve
tor of the gluon

k is parallel to p1 or p2) with the quark or anti-quark. These events 
annot

be distinguished experimentally from 2-jets events. To ensure 
onsisten
y,

we have to 
ompute all 
ontributions to quark-anti-quark produ
tion of the

same order of g. This involves also loop diagrams in Figure 2.7

g(k)

e−(q1) e+(q2)

q(p1) q̄(p2)

γ

g(k)

e−(q1) e+(q2)

q(p1) q̄(p2)

γ

g(k)

e−(q1) e+(q2)

q(p1) q̄(p2)

γ

Figure 2.7: Virtual gluon emission

in addition to the real gluon emission in Figure 2.6. Naively, one will think

sin
e the loop diagrams are of order e2g2 or e2αs, therefore the 
ontribution
must be of order e4g4 or e4α2

s, implying higher order than the real gluon



CHAPTER 2. PERTURBATIVE QCD 43

emission whi
h of order e2g2 or e2αs. Nevertheless, there are interferen
e

terms with the leading order diagrams, su
h interferen
e 
ontributes to the


ross se
tion of order e2g2 or e2αs equivalent to real gluon emission. This

is be
ause in the loop diagrams, there are 
ontributions whi
h the gluon is

almost 
ollinear with the quark and anti-quark. This gives rise to a similar

divergen
e in the infrared region but negative. This gives us some hope in


an
eling the real divergen
e to obtain a �nite answer. With the fa
t that

both have the same physi
al origin: soft (soft divergen
es are divergen
es

whi
h arises from a zero energy gluon Eg = 0, implying x3 = 0) and 
ollinear

virtual gluons, this furthers in
reases our hope of 
an
ellation.

The last divergen
es we will dis
uss are ultraviolet divergen
es 
ontribution

from the �rst two diagrams in Figure 2.7.

p1 → p1 + k →

k

Figure 2.8: Ultraviolet divergen
es

These two diagrams do not 
ontribute as they vanish during renormalization

pro
ess by introdu
ing a 
ounterterm normally being labeled as δ2 plus �nite
terms. The δ2 is gauge dependent. For example, it has no one loop divergen
e

in Landau gauge ξ = 0.

Figure 2.9: The δ2 
ounterterm

Noti
ing that the two diagrams do not 
ontribute and regularizing both real

and virtual 
ross se
tions, adding them together, a �nite answer will be

obtained and the regularization 
an be removed later on. This underpin the

foundation of Blo
h-Nordsie
k theorem. This is only true when one sums

over the �nal states that 
annot be distinguishable but not in the initial

state. Using d spa
e time dimensions d = 4− 2ǫ, ǫ < 0,
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σ(e+e− −→ qq̄g, s)nlo = σ0CF
αs
2π

(
22

ǫ
+

3

ǫ
+

19

2
− π2 +O(ǫ)

)
,

(2.79)

σ(e+e− −→ qq̄, s)nlo = σ0CF
αs
2π

(
−2

2

ǫ
− 3

ǫ
− 8 + π2 +O(ǫ)

)
.

(2.80)

Note that adding them up together Eq (2.79) and (2.80) yield a �nite answer

σ(e+e− −→ qq̄g + qq̄, s)nlo = σ0CF
αs
2π

(
3

2

)
,

= σ0
αs
π
, (2.81)

where in the last line, we have made the substitution of CF for QCD with

N = 3

CF =
N2 − 1

2N
=

32 − 1

2(3)
=

4

3
. (2.82)

Adding the leading order Eq (2.75) and next leading order 
ontribution Eq

(2.81), divided by Eq (2.74), we have the next leading order of the Re+e−

ratio

Re+e−,nlo = 3
∑

f

Q2
f

[
1 +

αs
π

]
. (2.83)

We have not 
onsider 4-jets and 5-jets events in our 
al
ulation, the ratio

itself is still a 
ompli
ated matter at present time of writing and our main

study will be the higher order perturbative 
orre
tions R(s) denoted by

R(s) = a(s) + r1a
2(s) + r2a

3(s) + r3a
4(s) + ... (2.84)

with r1, r2 and r3 
omputed in the MS s
heme. R(s) is related to the Re+e−

ratio by

Re+e− = 3
∑

f

Q2
f [1 +R(s)] . (2.85)

Dis
ussions in highlighting the di�ering approa
hes to the Re+e− ratio will

dominate the 
ontent of our study. It is worth to note that the Re+e− ratio

dominates at energies far below the Z pole and for energy on the Z pole,
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the analogous quantity is the ratio of the partial de
ay widths of the Z to

hadrons and to µ+µ− pairs. These results are valid for massless quarks.

For q = u, ..., b, Re+e− = 11/3 and RZ = 20.09 while the measured value

at LEP is mu
h higher by 3% to 4% due to higher-order QCD 
orre
tions.

These provide guidan
es in modifying our σ(e+e− −→ qq̄) when making


omparisons to experimental LEP results to test αs.

2.8 Summary

We made in this Chapter a brief introdu
tion into some sele
tive interesting

topi
s of perturbative QCD. We began with dimensional regularization and

then moved into renormalization theory and dis
ussed di�erent renormaliza-

tion s
hemes. The β fun
tion was then introdu
ed, whi
h was then used to

de�ne the perturbative 
orre
tion to the Re+e− ratio, R(s).

QCD and QED are renormalizable theories. After divergen
es are regular-

ized, the troublesome divergent 
ontributions 
an be removed by an in�nite

rede�nition of the fundamental 
onstants of the theory like the 
oupling and

the quark mass in QCD. In other words, physi
al quantities are expressed

in terms of renormalized parameters and do not involve any UV divergen
es

anymore. Demonstrating the renormalizability of QCD 
an be an extremely

rigorous theorem. We provided rather a heuristi
 physi
al explanation. Large

loop momenta produ
es UV divergen
es. In the event that the loop momenta

are mu
h larger than its 
hara
teristi
 external momenta, the loop loses its

stru
ture and 
an be 
onsidered as a point. We then showed a brief example

of how renormalization is implemented in pra
ti
e in the next se
tion.

We then 
onsidered a QED one loop 
orre
tion to the photon propagator.

Using the QED Feynman Rules, we 
an write its full expression. We then

performed some 
ompli
ated algebrai
 manipulation and noti
e that a 
oun-

terterm needs to be introdu
ed to remove the 1/ǫ divergen
es. This serves as
an early exer
ise to pi
ture the 
on
ept of Renormalons(Chains and Bubbles)

with QFT in subsequent 
hapters.

In QCD, asymptoti
 freedom and 
on�nement are introdu
ed. Con�ne-

ment explains why no solitary quarks are observed and why quarks are always

bound within the hadrons by the strong for
e 
arried by gluons. It is im-

portant to stress that perturbation theory is a great mathemati
al tool to

analyze QCD. A 
oupling 
onstant is said to run by being large at low energy

and gradually de
eases as energy in
reases. This physi
al behavior is 
alled
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Asymptoti
 Freedom. We introdu
e R a physi
al observable, dimensionless,

a fun
tion dependent of energy (whi
h we will denote as Q)and we took a

zero quark-mass limit. We made the assumption that the energy Q is mu
h

larger than the quark masses and that the quark mass 
an be negle
ted. R
in QCD is dependent on the ratio Q2/µ2

and the renormalized 
oupling αS.
The 
hoi
e of sele
ting µ is part of spe
ifying the renormalization s
heme.

We �nally provide a detail 
al
ulation of the Re+e− ratio by �rst 
al
u-

lating the 
ross se
tion of e+e− −→ µ+µ− whi
h then generalizes to Re+e−,lo

ratio at the lowest order by 
onsidering Qf and number of 
olours. Real and

virtual gluon emissions are then 
onsidered to wrap up the 
al
ulation of

Re+e−,nlo ratio at the next lowest order before highlighting the importan
e of

perturbative 
orre
tion R(s).



Chapter 3

MS and CORGI

3.1 Minimal Subtra
tion S
heme

The most 
ommon s
heme preferred is the (MS) modi�ed minimal subtra
-

tion s
heme [5℄. In MS, the fa
tors ln(4π)− γE whi
h appear together with

the pole 1/ǫ are not subtra
ted, inMS these fa
tors are 
ompletely removed

together with the pole 1/ǫ. These two s
hemes have been popular among

parti
le physi
ists as they fa
ilitate the 
al
ulation and 
omputational pro-


edure. Nevertheless, there are no theoreti
al arguments to uniquely prefer

these s
hemes over any other. There is a 
omplete demo
ra
y in the 
hoi
e

of s
heme.

As we shall see in Se
 3.2 the MS and MS renormalization s
hemes 
an

be related exa
tly to ea
h other given a NLO 
al
ulation (e.g. the 
oe�
ient

r1 in Eq. (2.84)) [15, 16℄.

ΛMS = ΛMS exp

[
rMS
1 (µ)− rMS

1 (µ)

b

]
, (3.1)

rMS
1 (µ)− rMS

1 (µ) =
b

2
(ln(4π)− γE), (3.2)

where the relation

ΛMS =
√
4πe−γE/2ΛMS, (3.3)

obtained is 
ompletely independent of N and Nf . The only di�eren
e is the

renormalization s
ale µ whi
h arises due to the sele
tion of s
heme. This

implies that by sele
ting µMS in MS, we have

47
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µMS = 2.66µMS, (3.4)

this emphasises that the meaning of the renormalization s
ale µ is 
orrelated

with the 
hosen subtra
tion pro
edure. The use of a physi
al s
ale 
hoi
e re-

lated to the energy of the pro
ess, e.g. µ =
√
s for the perturbative 
orre
tion

R(s), does not ,therefore, uniquely spe
ify the s
heme.

3.2 Complete Renormalization Group Im-

provement

The original idea of 
omplete renormalization group improvement(CORGI)

[17℄ was motivated by the problem of s
heme dependen
e in perturbative

QCD. Trun
ated perturbative series depend on the 
hosen renormalization

s
heme (RS), whi
h as we shall dis
uss below, 
an be spe
i�ed by the vari-

able τ ≡ b ln(µ/Λ̃), related to the renormalization s
ale µ, and by the non-

universal beta-fun
tion 
oe�
ients (c2, c3, . . .). The standard approa
h used

by experimentalists is to use MS subtra
tion with a �physi
al� s
ale 
hoi
e

µ = Q , where Q is a �natural� energy s
ale of the pro
ess, e.g.

√
s for the

R(s) ratio as noted above. Our attitude will be that the s
heme-dependen
e


an be avoided if instead of trun
ating the series one resum to all-orders

parts of the higher perturbative 
oe�
ients whi
h are renormalization group

(RG)-predi
table. As we shall dis
uss this predi
tability re�e
ts the self-


onsisten
y of perturbation theory. This resummation removes the τ and ci
dependen
e and leads to unique predi
tions whose un
ertainty is determined

by unknown but RS-invariant higher 
orre
tions. In 
ontrast theoreti
al un-


ertainties in the standard approa
h are dealt with by arbitrary variation of

the s
ale µ, typi
ally taking µ = Q as the 
entral value, and µ = 2Q and

µ = 1
2
Q to provide upper and lower error estimates. This approa
h 
an give

extremely misleading estimates of the underlying ΛQCD parameter, and the

�theoreti
al error� has no real meaning.

Without loss of generality, 
onsider R(s), Eq. (2.84) as perturbative series
where a ≡ αs(µ)/π is the RG improved 
oupling satisfying Eq. (2.33). We

shall use the notation of Stevenson [18℄, we label the τ ≡ b ln(µ/Λ̃) whi
h

an be obtained as the solution of the trans
endental equation

1

a
+ c ln(

ca

1 + ca
) = τ −

∫ a

0

dx(− 1

B(x)
+

1

x2(1 + cx)
), (3.5)

with the non-universal beta-fun
tion 
oe�
ients c2, c3, .....a(τ, c2, c3, ...) and
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B(x) = x2(1 + cx+ c2x
2 + c3x

3 + ...). (3.6)

Eq. (3.5) is obtained by integrating Eq. (2.33) with a suitable 
hoi
e of bound-

ary 
ondition. Sin
e τ is dependent on Λ̃, so must be the boundary 
ondition.

As we shall dis
uss, asso
iated with a given observable R one has a di-

mensionful parameter ΛR (dependent on the parti
ular observable) whi
h

is independent of the renormalization s
heme and 
an be related to the di-

mensional transmutation parameter in a parti
ular subtra
tion s
heme , e.g.

ΛMS by

ΛR ≡ er/bΛ̃MS, (3.7)

where we set r ≡ rMS
1 (µ = Q) with a preferen
e of r1 (NLO perturbative


oe�
ient) rather than τ . This is possible be
ause [18℄

τ − r1 = ρ0(Q) ≡ b ln(Q/ΛR). (3.8)

ρ0 is RS invariant whi
h implies that τ 
an be traded for r1. By evaluating

the RHS of Eq. (3.7) in two di�erent s
hemes one arrives at the Celmaster

Gonsalves relation of Eq. (3.1) [16℄.

Note that the RHS of Eq. (3.7) is independent of the subtra
tion s
heme

applied. Thus we 
an now de�ne a(r1, c2, c3, ...) using Eqs. (3.5, 3.8). For the
perturbative 
oe�
ients ri, there must be a 
an
ellation of the RS-dependent
a when the series is resummed to all-orders. Perturbation theory requires self


onsisten
y during 
al
ulation. This results in a demand that the result of

a NnLO(trun
ating at rn+1a
n+2

) 
al
ulation in two di�erent s
hemes should

have a di�eren
e of O(an+2). This leads to the following dependen
e of the

ri on the s
heme parameters

r2(r1, c2),

r3(r1, c2, c3),

. .,

. .,

rn(r1, c2, c3, ..., cn). ., (3.9)

To �nd the general stru
ture of rn on the s
heme parameters, we di�erentiate

Eq. (3.5) w.r.t ci,
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∂a

∂ci
= −bβ(a)

∫ a

0

xi+2

β2(x)
dx. (3.10)

Consisten
y of perturbation theory for an O(an) 
al
ulation then translates

into the statement that

∂R(n)

∂τ
= O(an+1),

∂R(n)

∂ci
= O(an+1). (3.11)

Using Eq. (3.10) and Eq. (3.11) we have for the n = 1 
ase

R(1) = a+ r1a
2, β(a) = −ba2(1 + ca), (3.12)

∂R(1)

∂τ
= O(a2),

∂R(1)

∂ci
= O(a2), (3.13)

∂r1
∂τ

= 1,
∂r1
∂c2

= 0. (3.14)

The last equation is obtained by performing a partial di�erentiation on

Eq. (3.13). Integrating the 
onditions Eq. (3.14), we have

r1 = τ −X0. (3.15)

Inserting into Eq. (3.8), we will now have

X0(Q) ≡ b ln

(
Q

ΛR

)
, (3.16)

this shows that X0 is an RS-invariant and has a genuine physi
al signi�-


an
e. Repeating a similar pro
edure for n = 2 we will have a further set of


onditions

∂r2
∂r1

= 2r1 + c,
∂r2
∂c2

= −1, ∂r2
∂c3

= 0. (3.17)

Integrating all these 
onditions and repeating the pro
edure up to arbitrary

rn, one obtains

r2(r1, c2) = r21 + cr1 +X2 − c2
r3(r1, c2, c3) = r31 +

5

2
cr21 + (3X2 − 2c2)r1 +X3 −

1

2
c3

. .

. .

. . (3.18)
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where the stru
ture 
an be generalized as

rn(r1, c2, .., cn) = r̃n(r1, c2, ..., c(n−1)) +Xn − cn/(n− 1). (3.19)

r̃n is an nth order polynomial in r1. r̃n 
an be determined given a 
om-

plete Nn−1LO 
al
ulation. These are the �RG-predi
table� pie
es of higher


oe�
ients that we alluded to earlier.

Xn is a 
onstant of integration and is determined when given a 
omplete

NnLO 
al
ulation. Xn is Q-independent and RS-invariant. Given a N2LO

al
ulation in the usual MS s
heme, the RS invariant X2 will be determined

as the 
ombination

X2 = rMS
2 (µ = Q)− (rMS

1 (µ = Q))2 − crMS
1 (µ = Q) + cMS

2 , (3.20)

with the renormalization s
ale µ = Q(energy). A 
ompleteNnLO 
al
ulation

means we have a set of 
al
ulated c2 to cn and a 
omputed set of r1 up to rn.

Eq. (2.84) 
an then be written in the form

R(Q2) = a + r1a
2 + (r21 + cr1 +X2 − c2)a3

+ (r31 +
5

2
cr21 + (3X2 − 2c2)r1 +X3 −

1

2
c3)a

4, (3.21)

where ea
h term exhibits the RS-dependen
e expli
itly. a depends on the

s
heme parameters su
h that

a ≡ a(r1, c2, c3, ...). (3.22)

Given a Feynman diagram of a given order one should resum all known RG-

predi
table terms. AtNLO, r1 is determined butX2, X3, ... remain unknown.

Setting R(Q2) ≡ a0 and X2, X3, ..., Xn = 0, the 
omplete subset of known

terms in Eq. (3.21) at NLO is

a0 ≡ a+ r1a
2 + (r21 + cr1 − c2)a3 + (r31 +

5

2
cr21 − 2c2r1 −

1

2
c3)a

4 + ... (3.23)

The justi�
ation to sum these terms, a0, 
an be understood by the following

arguments. a0 
onsist of in�nite subsets of terms where summation of all the

terms leads to an RS independent result, as the X2, X3, ..., Xn = 0 dependent
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terms 
annot 
an
el their RS-dependen
e and the fa
t that Eq. (3.21) is RS-

invariant to all-orders. RS-independen
e allows us to set r1 = 0, c2 = 0, c3 =
0, ...,, so that all the terms ex
ept the �rst in Eq. (3.23) vanish and we obtain

a0 = a(r1 = 0, c2 = 0, c3 = 0, ..., cn = 0). (3.24)

This is equivalent to 't Hooft s
heme with c2, ...., cn = 0 and r1 = 0. Setting
r1 = 0 yields the MS s
ale µ = e−r/bQ by simple manipulation of Eq. (3.8).

a0 also immediately satis�es

1

a0
+ c ln(

ca0
1 + ca0

) = b ln(
Q

ΛR
). (3.25)

Thus a0 is given by Eq. (2.45) and Eq. (2.46) involving the Lambert W-

fun
tion, with Λ repla
ed by ΛR. Λ̃ from Eq (3.7) is based on Stevenson's

[17℄ de�nition whi
h is di�erent than the standard Λ̃MS, so now we rede�ne

ΛR = er/b(
2c

b
)−c/bΛMS. (3.26)

Given a N2LO 
al
ulation, X2 
an be 
omputed. Resumming the augmented

set of X2-dependent RG-predi
table terms using Eq. (3.20), we have

X2a
3
0 = X2a

3 + 3X2r1a
4 + ...., (3.27)

and 
onsequently at N2LO one has

R(Q2) = a0 +X2a
3
0, (3.28)

whi
h the observable R(Q2) in N2LO form.

Repeating this pro
edure 
ontinuously, we will have the CORGI version

of R(Q2) given by

R(Q2)CORGI = a0 +X2a
3
0 +X3a

4
0 + ...+Xna

n+1
0 + ..., (3.29)

whi
h is simply the perturbation series in the RS with r1 = c2 = c3 = ... =
cn = ... = 0. This immediately results in

a0(µ
2) = a(µ2). (3.30)
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3.3 Dis
ussions on CORGI and Effe
tive

Charges

A detailed introdu
tion on CORGI and its motivation has been given. It

is worthwhile to review the 
losely related method of E�e
tive Charges dis-


ussed by Grunberg [19℄ and to highlight its relationship with the CORGI

approa
h.

The main idea of the method of E�e
tive Charges is to re
ognize that

there is a 
hoi
e of RS in whi
h the QCD observable R(Q2) is equal to the


oupling . That is in the E�e
tive Charge (EC) s
heme the higher perturba-

tive 
oe�
ients vanish, r1 = 0, r2 = 0, r3 = 0, .... The CORGI approa
h , as

we have seen, 
orresponds to a 
hoi
e of RS with r1 = 0, c2 = 0, c3 = 0, ....
This means that at NLO level CORGI and EC give exa
tly the same result.

The appli
ation of E�e
tive Charges is highlighted in [20℄ whi
h in the

paper 
onsiders the dimensionless QCD observable D(Q) = a +
∑∞

1 dna
n+1

(related to the Adler D-fun
tion and to be dis
ussed in Chapter 4) is equiv-

alent to the renormalized 
oupling itself. The 
ouplings a, a in the MS and

EC s
heme are related by

β(a) =
da

da
β(a(a)), (3.31)

where the beta-fun
tion in the EC s
heme is given by

β(a) = −ba2(1 + ca+ ρ2a
2 + ...+ ρka

k + ...), (3.32)

with D = a ( the QCD observable being the 
oupling itself ). Note that

c = ρ1 ensuring s
heme invarian
e. Then Eq (3.31) gives

ρ(D) =
dD

da
β(a(D)), (3.33)

where a(D) is the inverted perturbation series. Expanding the above equa-

tion on both sides and then making re-arrangements gives

d2(d1, c2) = d21 + cd1 + (ρ2 − c2)

d3(d1, c2, c3) = d31 +
5

2
cd21 + (3ρ2 − 2c2)d1 +

1

2
(ρ3 − c3)

. .

. .

. . (3.34)
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One �nds that the Q-independent and RS-invariant EC beta-fun
tion 
oef-

�
ients ρ2, ρ3, ..., are 
losely related to the CORGI invariants X2, X3, ... of
Eq.(3.18). One has ρ2 = X2 and ρ3 = 2X3. The 
onne
tion between the

two approa
hes may be further 
lari�ed by 
onsidering that the 
oupling in

a general RS labelled by a(r1, c2, c3, ...) 
an be expanded in powers of the

CORGI 
oupling a0 of Eq.(3.24). One has that

a(0, c2, c3, ...) = a0 + c2a
3
0 +

c3
2
a40 + ... (3.35)

Sin
e a0 
an be written analyti
ally in terms of the Lambert W -fun
tion as

in eqs.(2.14),(2,15), this enables one to obtain the 
oupling in a general RS

without solving trans
endental equations. We shall exploit this approa
h in

our work on tau de
ays in Chapter 6. In the EC s
heme a = a(0, ρ2, ρ3, ..),
and so the above equation reprodu
es the CORGI expansion of Eq.(3.20).

Comparing 
oe�
ients one sees that ρ2 = X2 and ρ3 = 2X3, as 
laimed

above. This shows in parti
ular that at NNLO the CORGI and EC results

di�er by O(a50), and that in general they will be 
lose to ea
h other.

3.4 Summary

The most 
ommon renormalization s
heme among phenomenologists is the

modi�ed minimal subtra
tion s
heme. In MS, the fa
tor ln(4π)− γE whi
h

appears together with the pole 1/ǫ is preserved. In MS, this fa
tor is 
om-

pletely removed together with the pole 1/ǫ. Nevertheless, there is no 
om-

pelling theoreti
al argument to prefer this s
heme over any other s
heme.

The original idea of a 
omplete renormalization group improvement (CORGI)

was motivated by problems arising from renormalization s
heme dependen
e

of �xed order perturbative QCD whi
h leads to a dependen
e of �xed-order

predi
tions on the RS, with 
onsequent large theoreti
al errors if the stan-

dard physi
al s
ale approa
h of 
hoosing µ = Q is used. An in�nite subset

of RG-predi
table terms should be identi�ed and resummed, resulting in

RS-invariant estimates, with the un
ertainty due to remaining un
al
ulated

terms in perturbation theory now involving RS-invariant quantities su
h as

X2. In Chapter 6 we shall apply CORGI to the in
lusive τ -de
ay ratio Rτ

where the perturbative 
orre
tions are rather large.

At the end of this 
hapter, we wrap up the similarities and di�eren
es

between CORGI and E�e
tive Charges.



Chapter 4

Review of Renormalons

4.1 Divergent Series in Perturbation The-

ory

Divergent series are 
ommon in mathemati
s and theoreti
al physi
s. Feyn-

man argued that QED 
an be 
onsidered equivalently to the theory of the

motion of 
harges a
ting on ea
h other by dire
t a
tion from a distant, for

example is the intera
tion between two like 
harges whi
h is proportional

to e2 where e is the ele
tron 
harge. This led Dyson [21℄ to propose that

suppose the 
onditions are su
h to verify Feynman formulation of the theory,

let (the series in e2)

f(e2) =
∞∑

n=0

fne
2n, (4.1)

be a physi
al quantity 
al
ulated by performing an integration over the equa-

tions of motion of the theory over time whi
h 
an be �nite or in�nite. e2 is
always positive. Suppose that the series pres
ribed above 
onverges for some

e2, f(e2) is then an analyti
 fun
tion of e at e = 0.

Then, we 
an say that for small values of e, f(−e2) is then a well-behaved an-
alyti
 fun
tion whi
h expands as a 
onvergent power-series. This statement

is not true as the argument presented by Dyson was as follows. Consider a

system of N intera
ting ele
trons, from thermodynami
s, it is obvious that

the energy of the ele
trons will be given by

E ≃ NT +
1

2
N2V e2. (4.2)

55
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where T is the mean kineti
 energy and V is the mean 
oulomb potential of

the parti
le. The number of intera
ting parti
le pairs is equivalent to ≃ 1
2
N2

.

e2 > 0 
orresponds to the usual world where like 
harges repel and unlike


harges attra
t. The 
ondition −e2 < 0, however, 
orresponds to a situation
where like 
harges attra
t and unlike 
harges repel resulting in an unstable

va
uum state whi
h is prone to the 
reation of more and more parti
le pairs.

This immediately results in f(−e2) as being an impossible 
andidate to be


onvergent. To �nd the N whi
h maximizes E, we di�erentiate Eq. (4.2)

equation and set it to 0, we will then obtain

dE

dN
≃ T +NV e2 = 0, (4.3)

Nmax ≃
T

V |e|2 ≃
1

e2
. (4.4)

This implies that there is no stable minimum and the divergent nature of per-

turbative series emerges when more terms are taken into a

ount. Therefore

we have

fn+1

fn
≃ 1

e2
≃ Nmax ≃ n, (4.5)

⇒ fn ≃ n!, (4.6)

as the fne
2n

terms de
rease for n < Nmax. This 
an lead us to 
on
lude that

perturbation series in QED are divergent with 
oe�
ients growing like n! in
nth order. This n! growth is 
onne
ted with a �va
uum instability� 
ut at

e2 = 0. It is su�
e to end the dis
ussions here on the relationship between

energy and divergent series in perturbation theory without dis
ussions on the

alternatives pres
ribed in [21℄.

4.2 Asymptoti
 Series and Borel Summa-

tion

Consider the dimensionless observable R, a divergent series expanded as

R =

∞∑

n=0

rna
n. (4.7)
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This series is said to be asymptoti
 inside the domain C of the 
omplex a-
plane if the series diverges for all a/=0, and there exist 
oe�
ients rN su
h

that

|R−
N∑

n=0

rna
n| ≦ rN+1|a|N+1. (4.8)

There will be error whi
h arises from the trun
ation of the series but the

error is mu
h less than the negle
ted terms. This allows us to trun
ate the

series at n = Nopt rather than taking n to ∞, where Nopt 
orresponds to

trun
ation at one term before the smallest in magnitude. This then provides

the optimal approximation.

Dis
overed by Emile Borel, an asymptoti
 fun
tion 
an be transformed

into a series by using the method of Borel Summation. If rn ≃ n!, the Borel
transform of the series is then de�ned as

B[R](z) =
∞∑

n=0

rn
n!
zn. (4.9)

We will normally arrange our QCD perturbation series so that r0 = 1. The
RHS of this equation will now have a �nite radius of 
onvergen
e, allowing

us to write

R =

∫ ∞

0

dz

a
e−z/a

∞∑

n=0

rn
n!
zn. (4.10)

This is permitted sin
e integrating the expression term by term and using

the result

∫ ∞

0

dze−z/azn = n!an+1, (4.11)

reprodu
es the original series for R. If this has a �nite radius of 
onvergen
e
then B[R](z) will have an in�nite radius of 
onvergen
e. The usual sum of

the series for R is then equal to the Borel sum. Borel summation is said to

be a �regular� summation method.

R =

∫ ∞

0

dz

a
e−z/aB[R](z). (4.12)
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For the 
ase of interest where R has a zero radius of 
onvergen
e, B[R](z)
will have a �nite radius of 
onvergen
e, and may be analyti
ally 
ontinued

outside of the radius of 
onvergen
e onto the whole integration range [0,∞].

R ≈

∫ ∞

0

dz

a
e−z/aB[R](z). (4.13)

≈ means "asymptoti
 to". So the idea is that the divergent asymptoti


series is asymptoti
 to the fun
tion 
orresponding to the Borel integral. The

appli
ation of Borel transformation to the Adler D fun
tion will be dis
ussed

in the next 
hapter.

4.3 Bubbles and Chains

Renormalons are a 
ertain pattern of divergen
e of perturbative expansions

in quantum �eld theories present at all orders and arising from a 
ertain 
lass

of diagrams, and related to their small and large momentum behavior. To

demonstrate the me
hanism of how su
h divergen
es emerge, we return to the

example of a QED one loop 
orre
tion in Chapter 2 and shown in Fig. (2.2).

Fig. (2.2) 
an be represented by the diagram illustrated in Fig. (4.1), by mak-

ing 
lear that we do not in
lude the external gauge QED photon propagator

(denoted as 
hain) 
oupled to both sides of the fermion loop whi
h we will

denote as the (bubble). Fig. (4.1) shows a diagram of a fermion loop and a

photon propagator.

= −iΠµν(k
2)

= −i(k2gµν − kµkν)Π0

= −iP µν(k2)
= −i

(
gµν

k2
− (1− ξ)kµkν

k4

)

Figure 4.1: A fermion loop diagram and the photon propagator with their

expressions

Any 
lass of diagrams whi
h 
ontains 
hains of bubbles were dis
overed to

produ
e renormalon divergen
es. Fig. (4.2) gives a 
learer pi
ture of an n-
bubble 
hain. The 
omplete va
uum polarization fun
tion Π(k2) 
ontains
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ontribution from the diagram 
ontaining just a single n-bubble 
hain whi
h

is shown in Fig. (4.3).

µ ............................. ν

1 2 n

= µ ν =B(n)
µ ν(k2)n

Figure 4.2: A single n bubble 
hain

n

Figure 4.3: An n-bubble 
hain inserted into a fermion loop

Su
h 
ontributions 
an be 
lassi�ed as diagrams 
ontaining an internal,


omplete gauge boson propagator. The n-bubble 
hain in Fig. (4.2) 
an be

expressed as

Bµν
(n)(k

2) =

(−iP µβ1)(−iΠβ1α2)(−iP α2β2)(−iΠβ2α3)...(−iP αnβn)(−iΠβnαn+1)(−iP αn+1ν),

and then further simpli�ed into

Bµν
(n)(k

2) =
n∏

k=1

[(−iP αkβk)(−iΠβkαk+1
)](−iP αn+1ν). (4.14)

Substituting µ = α1 and after some simple algebra, it is obvious that

P αkβkΠβkαk+1
=

1

k2
Παk
αk+1

. (4.15)



CHAPTER 4. REVIEW OF RENORMALONS 60

B (k2) = +

++

+

+.................................................................

Figure 4.4: Summing bubble 
hains from n = 0 to ∞

Note that the produ
t P αkβkΠβkαk+1
is gauge-independent despite the fa
t

that it 
onsists of strings of propagators whi
h are gauge ξ-dependent. Eval-
uating the produ
t of Eq. (4.15) yields

n∏

k=1

[Παk
αk+1

] = Πα1
αn+1

Πn−1
0 (k2)n−1. (4.16)

Thus, Eq. (4.14) 
an be expressed as

Bµν
(n)(k

2) =
−1n
k2

Πα1
αn+1

Πn−1
α0

(−iP αn+1ν)

= (−1)n(Π0)
n(
i

k2
)[gµν − kµkν

k2
], (4.17)

whi
h in fa
t 
orresponds to evaluation in the Landau gauge, ξ = 0. One has

Bµν
(n)(k

2) = (−1)n(Π0)
n(
i

k2
)[−iP µν(k2, ξ = 0)] (4.18)

This is the 
omplete gauge boson propagator. It is the sum of all possible

diagrams with two external photon lines only and su
h exa
t 
al
ulations

would 
orresponds to trun
ating the perturbative series at the ∞th order.

This is something whi
h we will not do. Therefore, we restri
t the 
al
ula-

tion to just in
lude one loop diagrams without 
onsidering any higher-loop

diagrams for simpli
ity. This means performing the 
onstru
tion of diagrams

with only the above �bubble' 
orre
tions to the �bare� gauge boson propaga-

tor. As demonstrated in Fig. (4.4), summing over Bµν
(n)(k

2) from n = 0 to ∞
and in
luding one loop 
ontributions only, the 
omplete photon propagator.
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Bµν(k2) 
an be expressed as

Bµν(k2) = −iP µν(k2) +
∞∑

n=1

Bµν
(n)(k

2)

= (
−i
k2

)[gµν − kµkν

k2
]
∞∑

n=0

(−1)n(Π0)
n + (

−i
k2

)
kµkν

k2
ξ

= (
−i
k2

)[gµν − kµkν

k2
]

1

1 + Π0
+ (
−i
k2

)
kµkν

k2
ξ. (4.19)

It is interesting to see how a single fermion bubble diagram 
ontaining a

single internal, 
omplete gauge boson propagator 
ontributes to the va
uum

polarization fun
tion Π(q2) as represented in Fig. (4.5). This represents the

entire set of diagrams with the nth order 
ontribution of Fig. (4.3). The

diagram in Fig. (4.5) has an nth order term asso
iated with an n! fa
tor, this

ontributes to what we have dis
ussed in length as "renormalon divergen
es".

4.4 Large-Nf approximation for va
uum po-

larization

Instead of 
onsidering the va
uum polarization fun
tion itself, it is useful to

study a 
losely related obje
t known as the Adler D fun
tion. The Adler D

fun
tion plays a 
ru
ial role in providing a theoreti
al des
ription of strong

intera
tion pro
esses like the e+e− annihilation into hadrons whi
h is heav-

ily based on this fun
tion. At high energies, perturbation theory remains

the most reliable tool for 
al
ulating the Adler D fun
tion. The Adler D-

fun
tion is proportional to the logarithmi
 derivative of Π(s) with respe
t to

s. This allows us to avoid an unspe
i�ed 
onstant asso
iated with Π(s). We

shall de�ne it more 
arefully in Chapter 5. Expanded in the 
oupling a in

perturbative QCD we have

D = a +
∞∑

n=1

dna
n+1. (4.20)

We will explain its relation to the parton model result and R(s) in Chapter

6.

Note that the nth term in D(q2) and Π(q2) are derived from the same

diagram. So dna
n+1

will 
ontain 
ontributions from diagram in Fig. (4.6)

the 
al
ulation of whi
h simply involves 
ombining the expression for an n-
bubble 
hain, Bµν

(n)(k
2) with the relevant fermion propagators of the loop and
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then integrating over the loop momentum of the fermion loop p and that of

the photon momentum k. This leads to

= + +......+1 2 n

Figure 4.5 Diagram of a 
omplete photon propagator inserted into a bubble

dna
n+1 ∼ a

∫
d4k

(2π)4
d4p

(2π)4

×
[
Bσρ

(n)(k
2)Tr(γν

1

6 p+ 6 q+ 6 kγρ
1

6 p+ 6 qγµ
1

6 pγσ
1

6 p+ 6 k )

+ 2Bσρ
(n)(k

2)Tr(γν
1

6 p+ 6 qγµ
1

6 pγσ
1

6 p+ 6 kγρ
1

6 p)
]

(4.21)

∼ a

∫
d4k

(2π)4
d4p

(2π)4

[
Bσρ

(n)(k
2)Xνρµσ + 2Bσρ

(n)(k
2)Xνµσρ

]
. (4.22)

X and X are the tensor stru
tures found by evaluating

Xνρµσ = Tr(γν
1

6 p+ 6 q+ 6 kγρ
1

6 p+ 6 qγµ
1

6 pγσ
1

6 p+ 6 k ), (4.23)

Xνµσρ = Tr(γν
1

6 p+ 6 qγµ
1

6 pγσ
1

6 p+ 6 kγρ
1

6 p). (4.24)

Ea
h 
oe�
ient dn may be expanded in powers of Nf

dn = d[n]n N
n
f + d[n−1]n Nn−1

f + . . .+ d[0]n . (4.25)

The leading d
[n]
n Nn

f term 
orresponds to evaluating the one-
hain diagrams

of Fig(4.6). The sub-leading Nn−1
f term arises from two-
hain diagrams as in

Fig. (4.7) , whi
h generates a 
ontribution of order al+m+2N l+m
f ∼ an+1Nn−1

f

.
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+ 2

q
p

p+q k+p+q

n

q
k+p

k
q q

p+k

p+q

k

n

Figure 4.6 : Contribution to dna
n+1

The large-Nf all-orders result 
an des
ribe QED va
uum polarization, but

for QCD the 
orre
tions to the gluon propagator involve gluon and ghost

loops (see Fig(2.3)), and are gauge (ξ)-dependent. The result for Π0(k
2) 
f.

Eq. (2.24) is proportional to −Nf/3 whi
h is the �rst QED beta-fun
tion


oe�
ient, b. In QCD one expe
ts large-order behaviour of the form dn ∼
Knγ(b/2)nn! (γ is the fra
tional exponent related to the anomalous dimen-

sion) involving the QCD beta-fun
tion 
oe�
ient b = (33− 2Nf)/6 [22℄, it is
natural to repla
e Nf by (33/2− 3b) to obtain an expansion in powers of b

dn = d(n)n bn + d(n−1)n bn−1 + . . .+ d(0)n . (4.26)

The leading-b term d
(L)
n ≡ d

(n)
n bn = (−3)nd[n]n bn 
an then be used to approxi-

mate dn to all-orders. One imagines that the fermion bubble 
hains in QED

are repla
ed by 
hains of e�e
tive QCD bubbles involving gauge invariant


ombinations of gluon and ghost 
ontributions, so that for both QED and

QCD

Π0(k
2) =

ba

2
(ln
−k2
µ2

+ C), (4.27)

with either b = −2Nf

3
, or b = (33−2Nf)/6. It is 
onvenient to use a parti
ular


hoi
e of RS, the V -s
heme whi
h 
orresponds to using the MS s
heme with

a s
ale µ2 = Q2e−5/3. This ensures that C = 0, so that

Π0(k
2) =

ba

2
ln
−k2
Q2

. (4.28)

We have

d[n]n N
n
f a

n+1 ∼ a

×
∫

d4k

(2π)4
d4p

(2π)4
[Bσρ

(n)(k
2)Xνρµσ + 2Bσρ

(n)(k
2)Xνµσρ](4.29)

= a

∫
d2k̃

k̃2
F (k̃2)(−Π0)

n. (4.30)
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where we integrate over fermion loop momenta p and the angle of the gluon

momentum k. F (k̃2) itself is 
ompli
ated and its exa
t expression 
an be

found in [23℄. Here we have introdu
e the notation k̃2 = −k2/Q2
. The


oe�
ient d
[n]
n (V ) is expli
itly given by [24, 25℄

d[n]n (V ) =
−2
3
(n + 1)

(−1
6

)n

×


−2n− n+ 6

2n+2
+


 16

n + 1

∑

n
2
+1>m>0

m(1− 2−2m)(1− 22m−n−2)ζ2m+1




n!.

(4.31)

This has n! growth and 
an be resummed using Borel summation as we shall

see in Chapter 5. Hen
e, using the presentation in [26℄,

d[n]n N
n
f a

n+1 = a

∫
d2k̃

k̃2
F (k̃2)

(
ba

2
ln
k̃2Q2e−5/3

µ2

)n

, (4.32)

⇒ D ≃
∞∑

(n=0)

d[n]n N
n
f a

n+1 =

∞∑

(n=0)

a

∫
d2k̃

k̃2
F (k̃2)

(
ba

2
ln
k̃2Q2e−5/3

µ2

)n

.

(4.33)

l

m

Figure 4.7 : A double 
hain 
ontribution to D(k̃2)

Provided that the renormalization s
ale µ is kept �xed to the order of per-

turbation theory, the dominant 
ontributions to the integral 
ome from both

regions of small k ≪ Q and large k ≫ Q behavior of F (k̃2).

F (k̃2) = 3CF k̃
4 +O(k̃6 ln(k̃2)) (4.34)

F (k̃2) =
2CF
3

1

k̃2

(
ln(k̃2) +

5

6

)
+O

(
ln(k̃2)

k̃4

)
(4.35)

This 
on
ludes that the ultraviolet and infrared �niteness of the Adler D

fun
tion implies that F (k̃2) must have a power like approa
h to zero in both
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regions. Splitting the integral of Eq. (4.33) at k̃2 in both regions, we will

obtain

D = CF

∞∑

(n=0)

an+1

[
3

4

(
Q2

µ2
e−5/3

)−2(
− b
2

)n
n! +

1

3

(
Q2

µ2
e−5/3

)(
n+

11

6

)
bnn!

]
.

(4.36)

The �rst term from small k̃ and the se
ond from large k̃. The singularities

in the Borel plane lie at t = −2/b for IR renormalon and t = 1/b for UV
renormalon with the Borel transform given by

B[D](u) =
3CF
2

(
Q2

µ2
e−5/3

)−2
1

2− u (1st IR Renormalon)

+
CF
3

(
Q2

µ2
e−5/3

)[
1

(1 + u)2
+

5

6

1

1 + u

]
(1st UV Renormalon)

(4.37)

Here we de�ne u = −bt. Note that this is not the exa
t Borel transform

for Fig. (4.6). The exa
t Borel transform for the Adler D fun
tion will be

de�ned in Chapter 5.

Multi-
hain diagrams in QED have been analyzed that higher order 
orre
-

tions in 1/Nf do not modify renormalon singularities ex
ept their strength

indi
ated by b. As the lo
ation of the singularities are a fun
tion of b, we will
have di�erent lo
ation of UV and IR renormalons in QED and QCD. We will

highlight a few important 
hara
teristi
s of UV renormalons, IR renormalons

as well as their di�eren
es with instantons in QCD brie�y.

Ultraviolet renormalons are lo
ated at t = m/b, m are positive integers

implying u = −1,−2, ... UV renormalons produ
e alternating sign fa
torial

divergen
es. All UV renormalons are double poles, restri
ting oneself to the

bubble diagram of Fig. (4.6). The �rst singularity u = −1 has been analyzed

in detail using renormalization group method, whi
h turned out to be a 
om-

pli
ated bran
h point stru
ture atta
hing to it. They are theory-spe
i�
 but

pro
ess-independent (pro
ess-dependen
e fa
torizes and is 
al
ulable). In 4-

dimensions, UV renormalons are always lo
ated at positive integer multiples

of 1/b although there are ex
eptional 
ases if the theory 
ontains power di-

vergen
es (begins at some negative integer multiples of 1/b) or in the 
ase of

heavy quark e�e
tive theory (
an o

ur at half-integer u).
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Infrared renormalons are lo
ated at t = −m/b, with m = 2, 3, ... implying

u = 2, 3, ... This result in the minimal term asso
iated with this subseries is

of order (Λ/Q)4 (this will be 
learer as we go along Chapter 5 and 7) due

to the �rst IR renormalon. Contrary to UV renormalons, IR renormalons

are µ-independent suggesting that its ambiguities might have physi
al signif-

i
an
e. For the Adler fun
tion, we 
an asso
iate them with the absen
e of

dimension-2 
ondensate in the OPE as the u = 1 singularity is absent. All

IR renormalons are double poles ex
ept for u = 2, whi
h is a single pole.

The �rst singularity has been analyzed in detail using renormalization prop-

erties of gluon 
ondensate whi
h it was 
on
luded that the pole turned into

a bran
h 
ut with stru
ture simpler than the �rst UV renormalon.

Instantons are also known to produ
e divergent series but as they 
arry

topologi
al 
harge, they are unrelated to perturbative expansion in QCD. In

QCD, instanton singularities are far away from the origin of Borel plane im-

plying that it plays insigni�
ant role in large-order behaviour of perturbative

expansion in QCD.

UV renormalons

t = m/b, m = 1, 2, ...

IR renormalons

t = −m/b, m = 2, 3, ...

Instantons-anti-instantons

singularities at 4π, 8π

Figure 4.8: Singularities in the Borel plane of Π(k2), the 
orrelator fun
tion
in QCD. Shown are UV renormalons, IR renormalons and instantons

4.5 Summary

We began this 
hapter by introdu
ing divergent series in perturbation theory

and the appli
ation of the Borel method to de�ne an asymptoti
 series as a

fun
tion. We later explained bubbles and 
hains in a very informal manner

showing all the details step by step and its relation to the Adler D fun
tion.

A brief introdu
tion to the Adler D fun
tion as a divergent series was made

and we �nally pointed out what a "renormalon" is, distinguishing between
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UV and IR renormalons 
orresponding to large and small momenta- k �ow-

ing through the fermion or e�e
tive QCD bubble 
hains.

We end the 
hapter by highlighting the theoreti
al analysis on UV and IR

renormalons while making a brief introdu
tion to instantons.



Chapter 5

IR Freezing of Eu
lidean

QCD Observables

5.1 Introdu
tion

Fixed-Order Perturbation Theory in QCD has proved su

essful in making

a

urate approximations to physi
al observables at large energies, Q2
. Nev-

ertheless, su
h a perturbative approa
h breaks down below the Landau pole

Q2 = Λ2
, this is due to non-perturbative e�e
ts in the Infrared region. Non-

perturbative information is essential to make perturbation theory sensible

as higher perturbative 
oe�
ients exhibit fa
torial growth making the series

not 
onvergent. Resummed perturbation series 
an be represented by a Borel

integral whi
h is ambiguous due to singularities on the positive real axis (also

known as Infrared Renormalons) of the Borel plane. These ambiguities are

in the form of powers of Λ2/Q2
and we will dis
uss them in more detail in

Chapter 7. In this 
hapter, we will demonstrate how to use Borel summation

to resum the �leading-b� terms in perturbative 
orre
tions to the Polarized

Bjorken Sum Rule KpBj, Unpolarized Bjorken Sum Rule UuBJ and the Adler

D fun
tion to all orders. We begin by de�ning the three Eu
lidean quantities

of interest but �rstly with a heuristi
 detailed des
ription on deep inelasti


s
attering, stru
ture fun
tions, parton distribution fun
tion and an overview

of sum rules.

5.2 DIS and Sum Rules

Deep inelasti
 s
attering (DIS) or high energy lepton-nu
leon s
attering plays

a role in understanding the partoni
 stru
ture of the proton. We will not

tou
h on the detailed kinemati
s of DIS. Deep inelasti
 stru
ture fun
tions

68
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provide not only some of the most pre
ise test to the theory but also mo-

mentum distributions of partons in hadrons. The stru
ture fun
tion Fi(x,Q
2)

(where Q2 = −q2 with q as the four-momentum transfer from an ex
hanged

parti
le like photon or Z to the nu
leon and x is the fra
tion of nu
leon's

momentum 
arried by stru
k quark) whi
h parameterize the stru
ture of the

target as 'seen' by the virtual photon - are de�ned in terms of lepton s
atter-

ing 
ross se
tions. In the hadroni
 region Q2 << Λ2
, the wavelength of the

photon is too small to resolve the stru
ture of the nu
leon and the nu
leon

simply undergoes elasti
 s
attering. At higher values of Q2
, Q2 > Λ2

, the

s
attering be
omes inelasti
 as the photon starts to resolve the substru
ture

of the nu
leon and, in parti
ular, the momentum fra
tion 
arried by the par-

tons.

The Bjorken limit (or Bjorken s
aling) is de�ned as the independen
e of the

stru
ture fun
tion on Q2
where F1(x,Q

2) −→ F1(x) and F2(x,Q
2) −→ F2(x)

implying s
attering from point-like 
onstituents within the proton. In this

limit, the stru
ture fun
tion obey an approximate s
aling law. The parti
-

ipating stru
ture fun
tion for an unpolarized (neutral- and 
harged-
urrent

DIS on unpolarized nu
leons) proton target are F ν
2 , xF

ν
3 , F

ν̄
2 , xF

ν̄
3 , F

em
2

and 2xF1 = F2. em denotes neutral 
urrent arises from neutral 
urrent

eN −→ eX (N denotes nu
leon and X denotes hadrons) pro
esses whi
h

involves photons and Z ex
hange. ν denotes 
harge 
urrent stru
ture fun
-

tions whi
h ex
lusively derived from W ex
hange pro
esses like eN −→ νX
or νN −→ eX . Polarized DIS involve the heli
ities (±1) of the in
oming

lepton and nu
leon with �ve stru
ture fun
tions g1,....5(x,Q
2). For e− or ν

initiated pro
esses, the di�eren
e to the polarized 
ross se
tion arises from

the di�eren
e of anti-parallel minus parallel spin, for e+ or ν̄ initiated pro-


esses, this is the opposite. Note that there is the same tensor stru
ture

between the spin-dependent and spin-independent parts of hadroni
 tensor,

thus the substitution of F1 −→ −g5, F2 −→ −g4 and F3 −→ −2g1 in 
al
u-

lation of the 
ross se
tion is allowed. g2 and g3 are suppressed by powers of

M2/Q2
(M denotes nu
leon mass) for longitudinal nu
leon while for trans-

verse nu
leons, the 
ross se
tion di�eren
e vanishes as M/Q −→ 0. Using

the Callan-Gross relations F i
L = 0 and the Di
us relations giL = 0, there are

two independent polarized stru
ture fun
tions g1 (
onserves parity) and g5
(violates parity), in analogy to F1 and F3.

In quark-parton model, Fi and gi are expressed in parton distribution fun
-

tions q(x,Q2) of the proton where q = u, ū, d, d̄, s, c, b and g. q(x,Q2)dx is

the number of that parti
ular parton 
arrying a momentum fra
tion between

x and x + dx of the proton's momentum in a frame in whi
h the proton
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momentum is large.

Integrals over 
ertain 
ombinations of parton distribution fun
tions had par-

ti
ular values in the parton model, su
h integrals are 
alled sum rules. In

QCD, these sum rules remain valid up to perturbative 
orre
tions. This sum

rules provide 
onstraints on parton distributions and tests of 
onservation law

up to the measurement of αs. Most of the famous sum rules are 
ombination

of these sum rules

∫ 1

0

uv(x)dx = 2,

∫ 1

0

dv(x)dx = 1,

∑

q

∫ 1

0

x[q(x) + q̄(x)]dx =

∫ 1

0

x[uv(x) + dv(x) + 6S(x)]dx ≈ 0.5.

Here, we have assumed the sea of quarks of the parti
le (in this 
ase a pro-

ton) to be symmetri
 in quark �avors (whi
h the parti
le has an in�nite sea

of light qq̄ pairs) where we have u(x) = uv(x) + S(x), d(x) = dv(x) + S(x)
and S(x) = ū(x) = d̄(x) = s(x) = s̄(x). The subs
ript v denotes the word

valen
e. Note the last sum rule

∑
q

∫ 1

0
x[q(x) + q̄(x)]dx is obtained through

experiment. The interpretation of the sum rule indi
ates the per
entages of

the parti
le's momentum (in this 
ase a proton) 
arried by the partons (in

this 
ase quarks) whi
h is equivalent to 50%. And the rest are 
arried away

by gluons.

In the partoni
 region Q2 >> Λ2
, the shape of the quark and gluon dis-

tributions 
hanges qui
kly at very low x. The sea be
omes more �avour

symmetri
. This is be
ause at low x, the evolution is �avour-independent,

and there are more and more sea quarks and gluons. This 
on�rms the foun-

dational predi
tion of QCD whi
h was veri�ed by the HERA experiments at

DESY.

However, there is not a unique set of Parton Distribution Fun
tions being


ommonly a

epted. There are several groups 
ompeting to provide the best

parametrization of the parton distributions. They do not use the same input

data, parameterisation, treatment of heavy quarks, value of the 
oupling 
on-

stant as well as the way the estimation of the experimental and theoreti
al

errors are treated. A re
ommended on line program written by professional

groups is at the link:

http://hepdata.
edar.a
.uk/pdf/pdf3.html
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By 
hanging the parameters set in the program, we did not just verify all the

fa
ts on the parton distribution fun
tion but also from the shape and area

under the 
urve, we 
an predi
t the expe
tation values of the sum rules.

5.3 The Gross-Llewellyn-Smith Sum Rule

The GLS Sum Rule applies to the F3 stru
ture fun
tion measured in neutrino-

and antineutrino-proton s
attering, in the parton model, it has a value of 3.
The sum rule is de�ned as

GGLS =
1

2

∫ 1

0

F ν̄p+νp
3 (x,Q2)dx. (5.1)

In the parton model this is given by,

GGLS =

∫ 1

0

(
u(x)− ū(x) + d(x)− d̄(x)

)
dx,

but in
orporating QCD 
orre
tions we have,

GGLS = 3(1− 3

4
CFG(Q

2)),

where G(Q2) is de�ned as,

G(Q2) = a +G1a
2 +G2a

3 + ........ (5.2)

G1, G2 and G3 are the 
oe�
ients 
al
ulated in the MS s
heme.

5.4 The Gerasimov-Drell-Hearn Sum Rule

The GDH Sum Rule is expli
itly dis
ussed in [27℄. The GDH Sum Rule

relates the heli
ity stru
ture of the 
ross se
tions in the inelasti
 region with

ground state properties. Base on the physi
s law like Lorentz and gauge

invarian
e, 
ausality and unitarity, GDH Sum Rule is important for us to


he
k our understanding on the hadroni
 stru
ture. There are many forms

of GDH Sum Rule written in di�erent forms and notations. In general, the

GDH Sum Rule is expressed as

I1(Q
2) =

2M2

Q2

∫ 1

0

[
g1(x,Q

2)− 4x2M2

Q2
g2(x,Q

2)

]
dx, (5.3)
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where x = Q2/2Mν with M being the nu
leon mass and ν being the energy

transfer. Note that the quark distribution fun
tion are related to densities

for longitudinal and transverse quark polarization denoted by f ↑,↓i and f→,←i .

e denotes the value of the 
harges of the quarks while i denotes the quark

�avour

g1(x,Q
2) −→ g1(x) =

1

2

∑

i

e2i

(
f ↑i − f ↓i

)
, (5.4)

g2(x,Q
2) −→ g2(x) =

1

2

∑

i

e2i (f
→
i − f←i )− g1(x). (5.5)

We will revisit GDH Sum Rule in Chapter 7 under usual experiment 
ondition

by negle
ting g2(x,Q
2) 
ontribution and relating it to the polarized Bjorken

Sum Rule.

5.5 Polarized Bjorken Sum Rule

The polarized Bjorken Sum Rule is de�ned via the spin-dependent proton

and neutron stru
ture fun
tions gep1 , g
en
1 with x = Q2/2Mν, ν denotes the

energy transfer and M is the nu
leus mass. At extremely large Q2
, KpBj

arrived at its renowned value of = |gA/6gV |. At �nite Q >> Λ, KpBj is

dominated by perturbative 
orre
tions K(Q2) to the parton model sum rule

in an

KpBj ≡
∫ 1

0

gep−en1 (x,Q2)dx

=
1

6

∣∣∣∣
gA
gV

∣∣∣∣
(
1− 3

4
CFK(Q2)

)
, (5.6)

where gV and gA are the nu
leon ve
tor and axial ve
tor 
ouplings. K(Q2)
is de�ned as,

K(Q2) = a+K1a
2 +K2a

3 + ........ (5.7)

K1,K2 andK3 are the 
oe�
ients 
al
ulated in theMS s
heme. Higher-twist

terms are not taken into a

ount. [28, 29℄
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5.6 Unpolarized Bjorken Sum Rule

The unpolarized Bjorken Sum Rule for F1 stru
ture fun
tion of νN deep

inelasti
 s
attering still remains experimentally un
he
ked. However at Neu-

trino Fa
tories, there is a possibility to determine the xF νN
and xF ν̄N

stru
-

ture fun
tions whi
h provides the �rst experimental determination of the

unpolarized Bjorken Sum Rule. The unpolarized Bjorken Sum Rule is given

by

UuBj ≡
∫ 1

0

F νn−νp
1 (x,Q2)dx.

In the parton model, this is given by

UuBj =

∫ 1

0

(
u(x)− ū(x)− d(x) + d̄(x)

)
dx.

UuBJ is related to the Adler isospin Sum Rule UuBj2 and the Callan-Gross

relation for νN deep inelasti
 s
attering UuBjL by

UuBj(Q
2) = UuBj2(Q

2) + UuBjL(Q
2),

where,

UuBj2(Q
2) =

∫ 1

0

F νn−νp
2 (x,Q2)

dx

2x
= 1,

UuBjL(Q
2) =

∫ 1

0

F νp−νn
L (x,Q2)

dx

2x
.

In
orporating QCD 
orre
tions we have [30℄,

UuBj(Q
2) =

(
1− 1

2
CFU(Q

2)

)
, (5.8)

where higher-twist terms are negle
ted and

U(Q2) = a+ U1a
2 + U2a

3 + ........ (5.9)

U1, U2 and U3 are 
oe�
ients also 
al
ulated in the MS s
heme [28, 29℄.
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5.7 Q2−Dependen
e Of The Eu
lidean Ob-
servables

We follow the presentation and notation of [31℄ [32℄ very 
losely, and refer

the reader there for more details. The Adler D fun
tion D(Q2) is de�ned as

the logarithmi
 derivative of Π(Q2) with respe
t to the energy Q2

D̃(Q2) = −3
4
Q2 d

dQ2
Π(Q2), (5.10)

where Π(Q2) is the QCD va
uum polarization fun
tion. Π(Q2) is related to

the 
orrelator of the two ve
tor 
urrents

(qµqν − gµνq2)Π(Q2) = 16π2

∫
d4xeiq.x < 0|T [Jµ(x), Jν(0)]|0 >, (5.11)

where qµ is a ve
tor satisfying q2 = Q2
. The fun
tion Π(Q2) 
an be 
al
u-

lated from the diagrams in Fig. (5.1).

Eq. (5.10) 
onsists of the parton model result and the QCD 
orre
tions,

D(Q2),

D̃(Q2) = N
∑

f

Q2
f (1 +

3

4
CFD(Q2)). (5.12)

N is the number of 
olours and Qf is the 
harge of quark �avour f . We

negle
t here �light-by-light� terms whi
h will be mentioned in Chapter 6.

Here D(Q2) is given by two terms

D(Q2) = DPT (Q
2) +DNP (Q

2), (5.13)

where the �rst term is the perturbative term and the se
ond term is the

non-perturbative term. The perturbative term is given by

DPT (Q
2) = a(Q2) +

∑

n>0

dna
n+1(Q2), (5.14)

where a(Q2) = αs(Q
2)/π is the renormalized 
oupling and for one loop ap-

proximation (whi
h we have dis
ussed in Se
tion 2.6)

a(Q2) =
2

b ln(Q
2

Λ2 )
(5.15)

as the plots in this 
hapter will just be a simple model using just one loop

approximation. Use of the one loop 
oupling together with the �leading-b�
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ontributions to the perturbative 
oe�
ients automati
ally ensures that the

all-orders resummations are independent of the RS s
ale µ, whi
h is the only

sour
e of RS-dependen
e at the one loop level. Q2 = −q2 > 0 is the single

spa
e like energy s
ale. D(Q2) −→ 0 as Q2 −→ ∞ thanks to asymptoti


freedom. We will not take into a

ount non-perturbative 
ontributions aris-

ing from the OPE (Operator Produ
t Expansion). These will be 
overed in

Chapter 7. In this 
hapter we shall be 
on
erned with trying to resum to all-

orders the perturbative �leading-b� terms dis
ussed in Chapter 4 Eq. (4.26).

The polarized Bjorken (KpBj) Sum Rule is de�ned in Eq. (5.6) and the


orresponding GLS Sum Rule in Eq. (5.1). G(Q2) and U(Q2) are split into
perturbative (PT) and non-perturbative (NP) parts just like the 
ase for

D(Q2). Note that 
ontributions due to "light-by-light" diagrams are omitted

for the perturbative 
orre
tions to the GGLS and KpBj.

q q

q q

q q

k

k

k

n

n

n

1

1 2

2
21

Figure 5.1: Leading large Nf 
ontributions of Π(Q2) at nth order

1 12 2 2 1

n
n

n

Figure 5.2: Leading large Nf 
ontributions to KpBJ , UuBJ and GGLS at nth

order

Fig. (5.2) provides the leading Nf 
ontributions to all these sum rules.

These large Nf results will be used to 
ompute the leading-b all-orders re-

summation of these perturbative 
orre
tions denoted by D
(L)
PT (Q

2), K
(L)
PT (Q

2)

and U
(L)
PT (Q

2).

We re
all from Chapter 4 that in the large Nf limit, we 
an expand dn as
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dn = d[n]n N
n
f + d[n−1]n Nn−1

f + ... + d[0]n , (5.16)

where d
[n]
n is the leading large Nf 
oe�
ient whi
h 
an be 
omputed to all-

orders from a set of Feynman diagrams Fig(5.1). Repla
ing Nf = (33/2−3b),
we will then obtain an expansion of the form

dn = d(n)n bn + d(n−1)n bn−1 + ... + d(0)n , (5.17)

where 
omputation of the �leading-b�, d
(L)
n ≡ d

(n)
n bn to all-orders based on

large-Nf results is possible. One 
an then arrive at an all-orders leading-b

result by resumming the d
(L)
n an+1

terms using a Borel transform te
hnique.

We will now write the Borel transform of D
(L)
PT found in [33℄,

B[D
(L)
PT ](z) =

∞∑

n=1

A0(n)− A1(n)zn
(1 + z

zn
)2

+
A1(n)zn
(1 + z

zn
)

+
∞∑

n=1

B0(n) +B1(n)zn
(1− z

zn
)2

− B1(n)zn
(1− z

zn
)
, (5.18)

where

A0(n) =
8

3

(−1)n+1(3n2 + 6n+ 2)

n2(n+ 1)2(n+ 2)2

A1(n) =
8

3

b(−1)n+1(n + 3
2
)

n2(n+ 1)2(n+ 2)2

B0(1) = 0,

B0(2) = 1,

B0(n) = −A0(−n), n ≥ 3 (5.19)

B1(1) = 0,

B1(2) = − b
4
,

B1(n) = −A1(−n), n ≥ 3

zn =
2n

b

Here zn ≡ 2n
b
give the positions of IR renormalons at z = zn and UV renor-

malons at z = −zn in the Borel plane. We will derive the Borel transform

of D
(L)
PT expli
itly in the next se
tion by using a skeleton expansion and 
on-

verting it to the Borel representation by a 
hange of variable. This turns out

to be mu
h easier than evaluating the result using the two loop one-
hain
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result for d
[n]
n (V ) in Eq. (4.31). The Borel transform of K

(L)
PT and U

(L)
PT whi
h

have a simpler stru
ture stru
ture than that for the Adler D fun
tion 
an be

written as [34℄

B[K
(L)
PT ](z) =

4

9

1

1 + z
z1

− 1

18

1

1 + z
z2

+
8

9

1

1− z
z1

− 5

18

1

1− z
z2

, (5.20)

and

B[U
(L)
PT ](z) =

1

6

1

1 + z
z2

+
4

3

1

1− z
z1

− 1

2

1

1− z
z2

. (5.21)

They are mu
h simpler as they 
ome from inserting 
hain of n-bubbles into
a tree level diagram shown in Fig. (5.2), rather than inserting into a quark

loop. Eq. (5.20) has 4 poles while Eq. (5.21) has three poles in 
ontrast to

Eq. (5.18) whi
h has an in�nite amount of poles.

The following resummed expressions for D
(L)
PT (Q

2),K
(L)
PT (Q

2) and U
(L)
PT (Q

2)

D
(L)
PT (Q

2) =

∞∑

n=1

zn

{
e(zn/a(Q

2))Ei

( −zn
a(Q2)

)[
zn

a(Q2)
(A0(n)− z1A1(n)− znA1(n))

]

+ (A0(n)− znA1(n))

}
+

∞∑

n=1

zn

{
e(−zn/a(Q

2))Ei

(
zn

a(Q2)

)[
zn

a(Q2)
(B0(n) + z1B1(n)

− znB1(n))

]
− (B0(n) + znB1(n))

}
, (5.22)

K
(L)
PT (Q

2) =
1

9b

[
− 8e(−z1/a(Q

2))Ei

( −z1
a(Q2)

)
+ 2e(−z2/a(Q

2))Ei

( −z2
a(Q2)

)

+ 16e(−z1/a(Q
2))Ei

(
z1

a(Q2)

)
− 10e(−z2/a(Q

2))Ei

(
z2

a(Q2)

)]
, (5.23)

U
(L)
PT (Q

2) =
1

3b

[
8e(−z1/a(Q

2))Ei

(
z1

a(Q2)

)

− 6e(−z2/a(Q
2))Ei

(
z2

a(Q2)

)
− 2e(z2/a(Q

2))Ei

( −z2
a(Q2)

)]
, (5.24)


an easily be obtained using the standard integrals involving the Ei(x) fun
-
tion
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∫ ∞

0

dz(
e−

z
a

1 + z
zn

) = −zne
zn
a Ei(−zn/a), (5.25)

∫ ∞

0

dz
e−

z
a

(1 + z
zn
)2

= zn[1 +
zn
a
e

zn
a Ei(−zn/a)]. (5.26)

The Ei(x) fun
tion known as the exponential integral fun
tion [35℄ is de�ned

as

Ei(x) = −
∫ ∞

−x
dt
e−t

t
, (5.27)

for x < 0. For x > 0, only the prin
ipal value of the integral is 
onsidered

and 
an be expanded su
h that

Ei(x) = ln |x|+ γE +O(x), (5.28)

for small values of x. For the regionQ2 < Λ2
, the one loop 
oupling Eq. (5.15)


hanges sign on passing throughQ2 = Λ2
and we need to introdu
e a modi�ed

Borel representation introdu
ed and motivated in [31℄, expanded in powers

of |a| given by

D
(L)
PT (Q

2) = −
∫ ∞

0

dze−z/|a(Q
2)|B[D

(L)
PT ](−z), (5.29)

by making a 
hange of sign on

a(Q2) −→ −a(Q2),

zn −→ −zn,

and then adding an overall (-) in Eqs. (5.22), (5.23) and (5.24). It is straight-

forward to see that these equations are invariant under these 
hanges. We

expli
itly 
he
ked this by making these alteration to the 
odes in Maple re-

quired to plot Eqs. (5.22), (5.23) and (5.24). This worked su

essfully.

Changing A1 −→ −A1 and B1 −→ −B1 in Eq. (5.22) are ne
essary as

they 
ontain zn in their de�nitions. 1/b also needs to 
hange sign sin
e it has

been fa
torized from z1, z2 in Eqs. (5.23) and (5.24).

[31℄ provides a deeper analyti
al dis
ussion on Eqs. (5.20), (5.21) and

(5.18). Our plots of Eqs. (5.22), (5.23) and (5.24) obtained with Maple are

shown in Fig. (5.3). [31℄ and [32℄ 
learly explains and dis
usses the analyti
al
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behavior of Eqs. (5.22), (5.23) and (5.24) su
h that they obey the following

relations when Q2 −→ Λ2
.

D
(L)
PT (Q

2 = Λ2) =
∞∑

n=1

zn[A0(n)−B0(n)]−
∞∑

n=1

z2n[A1(n)− B1(n)] ln(n)

≈ 0.679938

b
(5.30)

K
(L)
PT (Q

2 = Λ2) ≈ − 8

9b
ln 2 (5.31)

U
(L)
PT (Q

2 = Λ2) ≈ − 8

3b
ln 2 (5.32)

These leading-b results 
hange sign in the vi
inity of Q2 = Λ2
, where they

remain �nite , and as Q2 → 0 they approa
h the freezing limit of 0. The

Q-dependen
e is only pie
ewise analyti
, with only the �rst three derivatives

d
d lnQ

for D(L)(Q2) being �nite, and only the �rst derivative for the sum rules.

The full result in
luding non-perturbative e�e
ts must be an analyti
 fun
tion

of Q2
. This will be further dis
ussed in Chapter 7.

5.8 Skeleton Expansion And Borel Repre-

sentations For The Adler Fun
tion

We begin by re-writing the leading Adler D fun
tion expressed in leading

term of the skeleton expansion whi
h arises from the integral 
orresponding

to a 
hain of bubbles

D
(L)
PT =

∫ ∞

0

dtω(t)a(eCtQ2). (5.33)

Here t = k2/Q2
. ω(t) is the 
hara
teristi
 fun
tion and C is the standard

MS subtra
tion s
heme 
onstant = −5/3. In this thesis, we will set C = 0.
This 
orresponds to the V-s
heme with the renormalization s
ale

µ2 = e−5/3Q2. (5.34)

The 
hara
teristi
 fun
tion ω(t) is normalised su
h that

∫ ∞

0

dtω(t) = 1. (5.35)
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Figure 5.3: Q2
-dependen
e of the perturbative 
orre
tions to the observables

in Eqs. (5.22), (5.23)and (5.24), resummed to all orders in the leading-b

approximation. All plots by Maple 11

We will now demonstrate how to 
onvert the skeleton expansion into a

Borel representation by introdu
ing the va
uum polarization fun
tion Π(Q2)
of Eq. (5.11) being re-de�ned as,

Π(Q2) =

∫ ∞

0

dtωΠ(t)a(tQ
2). (5.36)

where the 
hara
teristi
 fun
tion ωΠ(t) in the t ≤ 1 ←→ IR region is given

by

ωΠ(t) = −t
4

3
tΞ(t), (5.37)

and for the t ≥ 1←→ UV region

ωΠ(t) = −
1

t

4

3
tΞ(

1

t
). (5.38)
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Nevertheless, these 2 regions are related by the 
onformal symmetry t −→
1/t.

Classi
 QED work in [36℄ shows that Eq. (5.36) 
an be obtained simply by

adding appropriate 
olor fa
tors. This is related to the Bethe-Salpeter kernel

for the s
attering light-by-light. It is also the �rst term in a well-de�ned QED

skeleton expansion. Fig. (5.4) is the diagram of the relevant kernel

Figure 5.4: Light-by-light s
attering diagrams for ωΠ(t) 
al
ulation

The diagrams in Fig. (5.4) 
an reprodu
e the topology of Fig. (5.1). The

QCD skeleton expansion is problemati
 and we will avoid its detailed dis
us-

sion 
ompletely. Let us de�ne Ξ(t)

Ξ(t) =
4

3t
[1−ln(t)+(

5

2
− 3

2
ln(t))t+

(1 + t)2

t
[L2(−t)+ln(t) ln(1+t)]], (5.39)

with L2(x) as the dilogarithmi
 fun
tion given by

L2(x) = −
∫ x

0

dy
ln(1− y)

y
. (5.40)

The relation between the Adler D fun
tion and the va
uum polarization

fun
tion Π(Q2) given by Eq. (5.5) will have a one-
hain skeleton expansion

term asso
iated with ωD(t
2) where

D
(L)
PT (Q

2) =

∫ ∞

0

dtωD(t)a(tQ
2). (5.41)

ωD(t) is obtained by applying Eq. (5.5) on ωΠ(t)

D
(L)
PT (Q

2) = −3
4
Q2 d

dQ2

∫ ∞

0

dtωΠ(t)t

(
a(tQ2)

t

)
,

= +
3

2b
Q2 d

dQ2

∫ ∞

0

dt
d

dt
[ωΠ(t)t] ln[a(tQ

2)],

(5.42)
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and then integrating by parts

= −3
4

∫ ∞

0

dt[ωΠ(t) + t
d

dt
ωΠ(t)]a(tQ

2).

This indu
es a transformation in ωΠ(t) su
h that

Π(Q2) −→ Q2 d

dQ2
Π(Q2) = −4

3
D(Q2)⇒ ωΠ(t)

−→ ωΠ(t) + t
d

dt
ωΠ(t) = −

4

3
ωD(t), (5.43)

spoiling the 
onformal symmetry present in ωΠ(t). ωD(t) are more 
ompli-


ated in the UV and IR regions

ωIRD (t) =
8

3
[(
7

4
− ln(t))t+ (1 + t)[L2(−t) + ln(t) ln(1 + t)]], (5.44)

ωUVD (t) =
8

3
[1 + ln(t) + (

3

4
− 1

2
ln(t))

1

t
+ (1+ t)[L2(−t−1)− ln(t) ln(1 + t−1)]].

(5.45)

We will now expand ωΠ(t)in powers of t. The expressions in both the IR

and UV regions 
onsists of expansion in t and an expansion multiplied by a

logarithm whi
h is

ωIRΠ (t) = −4
3
(

∞∑

n=1

ξnt
n + ln(t)

∞∑

n=2

ξ̂nt
n). (5.46)

By the 
onformal symmetry expressed in Eq. (5.37) and Eq. (5.38) implies

that the UV part 
an be written in terms of ξn and ξ̂n

ωUVΠ (t) = −4
3
(

∞∑

n=1

ξnt
−n − ln(t)

∞∑

n=2

ξ̂nt
−n). (5.47)

This steps are ne
essary to ensure us to write the Borel representations of

D
(L)
PT (Q

2) =

∫ ∞

0

dze−z/a(Q
2)B[D

(L)
PT ](z), (5.48)

in the region Q2 > Λ2
and

D
(L)
PT (Q

2) = −
∫ ∞

0

dze−z/|a(Q
2)|B[D

(L)
PT ](−z), (5.49)

in the region Q2 < Λ2
, 
onverted from skeleton expansion. This is done by

making a 
hange of variables.
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ξn and ξ̂n are extra
ted by 
omparing Eq. (5.39) to Eq. (5.47) and Eq. (5.48)

and are found to be

ξn>1 =
4

3

(2− 6n2)(−1)n
(n− 1)2n2(n + 1)2

,

ξ̂n>1 =
4

3

2(−1)n
(n− 1)n(n + 1)

, (5.50)

ξ1 = 1,

ξ̂1 = 0.

As we have dis
ussed previously an indu
ed transformation through Eq. (5.44)

is ne
essary, this permits us to express ωD(t) in a similar expansion

ωIRD (t) =
∞∑

n=1

[ξn(1 + n) + ξ̂n]t
n + ln(t)

∞∑

n=2

ξ̂n(n+ 1)tn, (5.51)

ωUVD (t) =

∞∑

n=1

[ξn(1− n)− ξ̂n]t−n + ln(t)

∞∑

n=2

ξ̂n(n− 1)t−n. (5.52)

With the above expansions, we 
an now represent D
(L)
PT (Q

2) in terms of

a Borel integral. Expressing D
(L)
PT (Q

2) in terms of ωD(t) whi
h is then split

into the IR and UV regions

D
(L)
PT (Q

2) =

∫ ∞

0

dtωD(t)a(tQ
2)

=
∞∑

k=0

a(Q2)

∫ 1

0

dtωIRD (t)(−ba(Q
2)

2
ln(t))k

+
∞∑

k=0

a(Q2)

∫ ∞

1

dtωUVD (t)(−ba(Q
2)

2
ln(t))k

= a(Q2)

∞∑

k=0

(−ba(Q
2)

2
)k[

∫ 1

0

dt(

∞∑

n=1

[ξn(1 + n) + ξ̂n]t
n

+ ln(t)

∞∑

n=2

ξ̂n(n+ 1)) ln(t)k +

∫ ∞

1

dt(

∞∑

n=1

[ξn(1− n)− ξ̂n](t)−n

+ ln(t)

∞∑

n=2

ξ̂n(n− 1)t−n)(ln(t))k]. (5.53)
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We have used the mathemati
al relation below in deriving the above expres-

sion

a(xy) = a(y)

∞∑

k=0

(−ba(y)
2

ln(x))k. (5.54)

Using the fa
t that at n = 1

[ξn(1− n)− ξ̂n] = 0,

this allows us to omit the term from the D
(L)
PT (Q

2).

D
(L)
PT (Q

2) 
an be transformed into a Borel integral of the form Eq. (5.49)

with a 
hanges of variables

z = −a(Q2)× (n+ 1) ln(t) −→ IR,

z = a(Q2)(n− 1) ln(t), −→ UV,

in their respe
tive regions. Using integration by parts, we manage to remove

the extra ln(t) term in the integral. The standard Borel representation should

be of the form

D
(L)
PT (Q

2) =

∫ ∞

0

dze−z/a(Q
2)[

∞∑

n=1

[ξn(1 + n) + ξ̂n]

n + 1

1

1− bz
2(n+1)

−
∞∑

n=2

ξ̂n(n + 1)

(n+ 1)2
1

(1− bz
2(n+1)

)2
]

+

∫ ∞

0

dze−z/a(Q
2)[
∞∑

n=2

[ξn(1− n)− ξ̂n]
n− 1

1

1 + bz
2(n−1)

+

∞∑

n=2

ξ̂n(n− 1)

(n− 1)2
1

(1 + bz
2(n−1))

2
], (5.55)

for Q2 > Λ2
, a(Q2) > 0 of Eq. (5.49), and for Q2 < Λ2

, a(Q2) < 0, we will

have the modi�ed Borel representation of Eq. (5.50) with its upper limit at

−∞. Making 
onta
t with Eq. (5.18), the following relations 
an be identi�ed

ξn(1 + n) + ξ̂n
n + 1

= −B1(n + 1)zn+1, (5.56)

for n ≥ 1
ξn(1− n)− ξ̂n

n− 1
= A1(n− 1)zn−1, (5.57)
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for n ≥ 2, for the single pole residues and

−ξn(1 + n)

(n+ 1)2
= B0(n+ 1) +B1(n+ 1)zn+1, (5.58)

for n ≥ 2
ξn(1− n)
(n− 1)2

= A0(n− 1)− A1(n− 1)zn−1, (5.59)

for n ≥ 2, for the double pole residues. The equations above are veri�ed by

substituting ξn and ξ̂n given by Eq. (5.19) into Eq. (5.51).

Note that expli
it derivation of all relations have been performed with pen
il

and paper as well as solved in Maple for exer
ise.

For further details, please refer to [31℄ whose 
al
ulational steps we have

largely followed.

5.9 Summary

We begin with a brief introdu
tion on deep inelasti
 s
attering, stru
ture

fun
tions, sum rules and then dis
ussing the signi�
an
e of �xed-order Per-

turbation Theory in QCD whi
h has been very su

essful in making a

urate

approximations to physi
al observables at large energies, Q2
. Nevertheless,

su
h a �xed-order perturbative approa
h breaks down below the Landau

pole. Non-perturbative information is essential to make perturbation theory

sensible as higher perturbative 
oe�
ients exhibit fa
torial growth making

the series not 
onvergent. Resummed perturbation series 
an be represented

by a Borel integral whi
h is ambiguous due to singularities on the positive

real axis (also known as Infrared Renormalons) of the Borel plane.

We then moved on to introdu
e the Polarized Bjorken Sum Rule KpBJ

and the Unpolarized Bjorken Sum Rule UuBJ , relating them to the Parton

model and their 
orresponding perturbative 
orre
tions.

The Adler D fun
tion is �rst introdu
ed as a logarithmi
 derivative of the

QCD va
uum polarization fun
tion with respe
t to the energy. The fun
tion

itself is 
al
ulated from a set of diagrams in Fig. (5.1). It is then fairly

straightforward that from the parton model result, the QCD 
orre
tions 
an

be split into perturbative PT and non perturbative NP parts. Let us just

fo
us on the PT part for now whilst dis
ussion of the physi
al interpretation

of the NP part will be made in Chapter 7. Fig. (5.2) shows the leading Nf
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ontributions for the KpBJ , UuBJ and GGLS sum rules at leading order. A

very brief introdu
tion on leading-b approximation is then made whi
h is

essential be
ause all these large Nf results will be used to 
ompute leading-b

all orders resummations of the perturbative 
orre
tions dis
ussed. We then

write the Borel transform of B[D
(L)
PT ](z), B[K

(L)
PT ](z) and B[U

(L)
PT ](z) where the

stru
ture for the last two are simpler with a �nite number of poles in 
ontrast

to B[D
(L)
PT ](z) whi
h has an in�nite number. The reason that they are mu
h

simpler 
omes from the fa
t that one is inserting a 
hain of n-bubbles into a
tree level diagram shown in Fig. (5.2) whi
h is mu
h simpler than insertion

into a quark loop. A brief analysis of its mathemati
al behavior makes a


ompletion to the se
tion. Fig(5.3) shows the leading-b approximations for

D
(L)
PT , and the K

(L)
PT and U

(L)
PT Sum Rules.

The rigorous mathemati
al derivation of the Borel transform for D
(L)
PT

was performed by using a one-
hain skeleton expansion. We begin this task

by re-writing the leading Adler D fun
tion expressed in leading term of the

skeleton expansion whi
h arises from the integral 
orresponding to the 
hain

of bubbles. The 
omputation has been 
arried out in the V-s
heme where

C = 0 whi
h we were using throughout this thesis. The 
hara
teristi
 fun
-

tion is then introdu
ed for IR and UV regions whi
h they also ful�ll the

renormalization 
ondition setting them equal to 1 when integrated from 0
to ∞. The va
uum polarization fun
tion is dependent on the 
hara
teristi


fun
tion and upon 
ompleting 
ertain equations, dire
t 
omparisons 
ould

be made to verify the Borel transform of the Adler D fun
tion dis
ussed in

the previous se
tion. We �nally show the existen
e of single and double pole

behavior in its 
orresponding Borel transform.

The Borel transform of the Adler D fun
tion is the main ingredient of

this thesis for our N3LO Renormalon resummations and our derivation for

fully analyti
 perturbative QCD.



Chapter 6

Numeri
al Cal
ulation of

R(s) and Rτ

6.1 Re+e− in 4 s
hemes

We begin with the de�nition of the dimensionless observable the Re+e− ratio

for some value of the 
enter of mass energy

√
s

Re+e−(s) =
σTOT (e

+e− −→ hadrons)

σ(e+e− −→ µ+ µ−) = 3
∑

f

Q2
f [1+R(s)]+

(
∑

f

Qf

)2

R (s),

(6.1)

where Qf is the ele
tri
 
harge of ea
h quark �avour and the sum is over

the di�erent �avours. R(s) denotes the QCD perturbative 
orre
tions to the

parton model result and 
an be expressed as

R(s) = a +
∑

n>0

rna
n+1, (6.2)

where quarks produ
ed in ele
tromagneti
 intera
tions be
ome part of the

�nal-state hadrons. a = αs(µ
2)/π is the renormalized 
oupling. The 
oe�-


ients r1, r2 and r3 are 
omputed in the (MS) s
heme using the renormaliza-

tion s
ale µ2 = s. Full expressions of the 
oe�
ients will be provided in the

next se
tion. R (s) 
omes from the "light-by-light" part in the �gure below,

and has a (
∑
Qf )

2
dependen
e.

87
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e−

e+

q

q

Figure 6.1 : Light-by-light 
orre
tions diagram

The ratio Re+e− is related dire
tly to the transverse part of the 
orrelator

of two ve
tor 
urrents in the Eu
lidean region with the 
ondition that s =
−q2 > 0. In order to avoid an unspe
i�ed 
onstant, the logarithmi
 derivative

with respe
t to s was 
onsidered and the Adler D fun
tion was de�ned and

given by Eq. (5.12). We now 
an repla
e the perturbative 
orre
tion R(s)
with D(s) written as a perturbative series

D(s) = a +
∑

n>0

dna
n+1. (6.3)

By analyti
al 
ontinuation from Eu
lidean to Minkowskian, one may noti
e

that the Minkowskian observable R(s) 
an be related to D(−s) by the dis-

persion relation,

R(s) =
1

2πi

∫ s+iǫ

s−iǫ
dt
D(−t)
t

. (6.4)

It is very 
lear from the expression above that the 'landau pole' in the 
ou-

pling a(s) laying along the positive real s-axis 
an now be well-de�ned. Thus

R(s) will be de�ned for all s. The dispersion relation 
an now be expli
itly

expressed as

R(s) =
1

2π

∫ π

−π
dθD(seiθ), (6.5)

where we perform an integration around a 
ir
ular 
ontour in the 
omplex

energy-squared s-plane. It is worth noting that the dispersion relation of

Eq. (6.5) is valid for values of s > Λ2
above the 'Landau pole'. The idea

whi
h leads to the '
ontour-improved' perturbation series 
omes from the

expansion of D(seiθ) as a power series in a ≡ a(seiθ), and performing the

integration of θ term-by-term, where at ea
h order, an in�nite subset of ana-

lyti
al 
ontinuation terms present in Eq. (6.2) are resummed. This 
omplete

analyti
al 
ontinuation, as we shall see, serves to freeze R(s) with an infrared
limit as s→ 0 of R(0) = 2/b.

As an example, we begin by 
onsidering the '
ontour-improved' series for

a one loop 
oupling. The one loop 
oupling whi
h we have introdu
ed in the



CHAPTER 6. NUMERICAL CALCULATION OF R(S) AND Rτ 89

β fun
tion se
tion is given by

a(s) =
2

b ln(s/Λ2
MS

)
. (6.6)

Now, we will 
onsider the "
ontour-improved" perturbation series for R(s)
by rewriting

R(s) = A1(s) +
∞∑

n=1

dnAn+1(s), (6.7)

where the fun
tion An(s)

An(s) =
1

2π

∫ π

−π
dθan =

1

2π

∫ π

−π
dθ

an(s)

[1 + ibθa(s)/2]n
, (6.8)

are obtained by applying the 
ontour integration on the 
oupling. Su
h

integral are evaluated in 
losed-form as

A1(s) =
2

πb
arctan(

πba(s)

2
),

An(s) =
2an−1(s)

πb(1− n)Im[(1 +
ibπa(s)

2
)1−n]. (6.9)

We 
an then obtain the one loop "
ontour improved" series for R(s),

R(s) =
2

πb
arctan(

πba(s)

2
)+d1[

a2(s)

(1 + b2π2a2(s)/4)2
]+d2[

a3(s)

(1 + b2π2a2(s)/4)2
]+...

(6.10)

As s → 0 one has A1(0) = 2/b as the freezing limit, whereas Ai(0) = 0 for

the higher i > 1 fun
tions. We see that this pro
edure resum in ea
h order

an in�nite set of terms involving powers of π2b2, whi
h arise from the ana-

lyti
al 
ontinuation. Sin
e these terms are large they should be resummed

to all-orders to a
hieve a

urate approximations, and this is pre
isely what

the Contour Improved (CIPT) approa
h a
hieves.

We will move now to a 
onsideration of the two loop "
ontour improved"

perturbation series to 
al
ulate results in the MS, CIPT, CORGI and CIPT

+ CORGI s
heme. Further dis
ussions on the physi
al behavior of the one

loop "
ontour improved" perturbation series are presented in Ref. [37, 38℄.

Beyond the simple one loop approximation, the freezing 
ould be analyzed by

sele
ting a renormalization s
heme with the beta fun
tion equation written

in its two loop form

∂a(µ2)

∂ lnµ2
= − b

2
a2(µ2)(1 + ca(µ2)). (6.11)
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This is the 't Hooft s
heme in whi
h we set all the non-universal beta-

fun
tion 
oe�
ients to zero. Here c = (153 − 19Nf)/12b is the se
ond

universal beta fun
tion 
oe�
ient. In these s
hemes, the 
oupling 
an be

expressed analyti
ally in 
losed form in terms of the Lambert W fun
tion

where W (z)exp(W (z)) = z [13℄. Note that ln(z), as all logarithms has

di�erent bran
hes, thus the bran
hes 
an be sele
ted so that Re(W ) has

the interval [−∞,∞] and Im(W ) with the interval [−iπ, iπ]. The other

bran
hes has the same interval for Re(W ) with the imaginary part taking

a set of intervals [iπ, 3iπ], [−iπ,−3iπ] and et
. These 
orresponds to the

bran
hes having a bran
h 
ut along the negative real axis in the z-plane.
The Lambert-W fun
tion has a similar stru
ture assuming the fun
tion is

large and real. For the limit Re(W ) −→ ∞ and Im(W ) with the interval

[−iπ, iπ] 
orresponds to the prin
ipal bran
h denoted by W0. In the simi-

lar limit Re(W ) −→ ∞, W±1 have the interval [±iπ,±3iπ]. Analogously,

W±n have the interval [±niπ,±(n + 2)iπ] where n is a positive integer for

Re(W ) −→ ∞. Nevertheless, for the limit Re(W ) −→ −∞, W±1 have an-

other imaginary intervals running from [0,±2iπ] with [±2iπ,±4iπ] for W±2
and so on. The prin
ipal bran
h W0 
loses up at the point on the real axis

where Re(W ) = −1 and is the only bran
h with a bran
h 
ut along the neg-

ative real axis starting at z = −1
e
while the other bran
hes have their bran
h


uts along the negative real z axis in the z plane. One of the important


hara
teristi
 is Wn(z) = W ∗
−n(z

∗). Other important properties essential to

the algebrai
 manipulation will be pointed out as the thesis pro
eeds.

Solving, the two loop beta fun
tion, one will then have

a(µ2) = − 1

c[1 +W−1(z(µ))]
, (6.12)

z(µ) = −1
e
(
µ

Λ̃MS

)(−b/c), (6.13)

by solving the beta fun
tion. Λ̃MS is de�ned 
onventionally in Ref. [39℄ and

is related to the standard de�nition

Λ̃MS = (2c/b)−c/bΛMS, (6.14)

provided in [12℄. The "-1" subs
ript 
orresponds to the bran
h 
ut of the

Lambert W fun
tion and is the bran
h 
ut whi
h will preserve asymptoti


freedom. Intuitively, the sele
tion was made based on the ne
essity to have a

real 
oupling with large µ. The only 3 bran
hes of the Lambert-W fun
tion

whi
h 
an take real values are W0 and W±1. W0 will not provide asymptoti


freedom as −→ 0, µ −→ 0 giving a non-zero 
oupling. W−1 is 
hosen as we
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demand W (z(µ)) to be 
ontinuous against µ in the 
omplex plane. The W1

bran
h will return non-zero imaginary part for µ = |µ| when expe
ting a real


oupling. For a detail te
hni
al dis
ussion on the sele
tion of the bran
hes,

we advise reader to refer [14℄. Reader 
an also 
onvin
e themselves by mak-

ing a plot of Eq. (6.12) with real positive 
oupling in di�erent bran
hes to

understand the sele
tion of the bran
hes better.

We sele
t the renormalization s
ale µ2 = xs, where x is an arbitrary dimen-

sionless 
onstant, for the perturbation series of D(s) in Eq. (6.2). Expanding
the integrand in Eq. (6.4) for R(s) in powers of a ≡ a(xse1θ) expressed in

terms of Lambert W fun
tion using Eq. (6.12), we will obtain

a =
−1

c[1 +W (A(s)eiKθ)]
, (6.15)

where

A(s) = −1
e
(

√
xs

Λ̃MS

)−b/c, K =
−b
2c
. (6.16)

Using Eqs. (6.12), (6.13) and (6.15), the fun
tion An(s) in the "
ontour

improved" series are 
omputed

An(s) =
1

2π

∫ π

π

dθan =
1

2π

∫ 0

−π
dθ

(−1)n
cn

[1 +W1(A(s)e
iKθ)]−n

+
1

2π

∫ π

0

dθ
(−1)n
cn

[1 +W−1(A(s)e
iKθ)]−n . (6.17)

It is ne
essary to apply the appropriate bran
hes of the Lambert-W fun
tion

in the two di�erent regions of integration and by making a 
hange of variable

w = W (A(s)eiKθ), one will obtain

An(s) =
(−1)n
2iKcnπ

∫ W−1(A(s)eiKπ)

W1(A(s)eiKπ)

dw

w(1 + w)n−1
. (6.18)

Noting the relationship between the +1 and the -1 bran
h 
uts in the Lambert-

W fun
tion W1(A(s)e
−iKθ) = [W−1(A(s)e

iKθ)]∗, we 
an then evaluate the

elementary integral

A1(s) =
2

b
− 1

πKc
Im[ln(W−1(A(s)e

iKπ))], (6.19)

for n = 1, where 2/b is the residue of the pole at w = 0. For n > 1, we have

An(s) =
(−1)n
cnKπ

Im[ln(
W−1(A(s)e

iKπ)

1 +W−1(A(s)eiKπ)
) +

n−2∑

k=1

1

k(1 +W−1(A(s)eiKπ))k
],

(6.20)
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where the �rst four fun
tions A1(s), A2(s), A3(s) and A4(s) are plotted versus

sx/Λ̃2
MS

in Fig. (6.2) with Nf = 5 �avours of quark. Note that the �gures

show that the Ai(Q) all show the behavior of asymptoti
 freedom, approa
h-

ing zero as Q→∞. A1(0) = 2/b, whereas for i > 1 one has Ai(0) = 0.

Note that we only 
ompute An(s) in the 't Hooft s
heme where we only


onsider a two loop beta fun
tion. To avoid 
onfusions with n > 2 loops, we

set the two loop An(s) fun
tion as

A(0)1(s) = A1(s), (6.21)

A(0)n(s) = An(s). (6.22)

For higher loops beta fun
tion, our 
urrent interest is the 4 loop beta fun
tion

to mat
h the latest 
al
ulation for d3 given in Ref. [40℄, we have

∂a(µ2)

∂ lnµ2
= − b

2
a2(µ2)(1 + ca(µ2) + c2a

2(µ2) + c3a
3(µ2)). (6.23)

Theoreti
ally, the solution for a(µ2) in a 4 loop beta fun
tion 
an be solved

by 
onsidering a(µ2) as a perturbative series of a(µ2) = −1/c[1+W−1(z(µ))]
(the solution for a(µ2) in a 2 loop beta fun
tion) whi
h for 
onvenien
e and

to avoid 
onfusion is set su
h that a(µ2) = −1/c[1 +W−1(z(µ))] = a0. Thus
a4(µ

2) (the solution of a in 4 loop beta fun
tion) is

a4(µ
2) = a0(µ

2) + k1a
2
0(µ

2) + k2a
3
0(µ

2) + k3a
4
0(µ

2) + k4a
5
0(µ

2). (6.24)

By equating the 
oe�
ients of the beta fun
tion on both sides of this expres-

sion we 
an �x the ki as

k1 = 0,

k2 = c2,

k3 =
1

2
c3,

k4 =
1

3
c22 +

1

2
c3 +

4

3
cc2 −

2

3
cc3. (6.25)

Expressions for c2, c3 and all the 
orresponding variables required to �t for

αs using the MS, CIPT, CORGI and the CIPT + CORGI versions of PT

will be given in the next se
tion. Sin
e we 
an expand a4(µ
2) = a0(µ

2) +
k1a

2
0(µ

2)+k2a
3
0(µ

2)+k3a
4
0(µ

2)+k4a
5
0(µ

2), we 
an write our 4-loop 
oupling as

a sum of a0 terms. Sin
e a0 is known analyti
ally in terms of the Lambert-W
fun
tion we avoid having to solve the trans
endental 4-loop beta-fun
tion
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equation, whi
h makes 
al
ulations more straightforward. Similarly a 4-loop

A(4)n(s) fun
tion 
an be expanded perturbatively with a two loop A(0)n(s)
fun
tion su
h that

A(4)1(s) = A(0)1(s) + k2A
3
(0)1(s) + k3A

4
(0)1(s) + k4A

5
(0)1(s), (6.26)

A(4)n(s) = A(0)n(s) + k2A
3
(0)n(s) + k3A

4
(0)n(s) + k4A

5
(0)n(s). (6.27)

Note that Eqs. (6.21) and (6.22) are essential for the 
al
ulation in the

CORGI and CIPT + CORGI version while Eqs. (6.26) and (6.27) are needed

for the CIPT version. Thus, the 
orre
tion R(s) to the 4-loop Re+e− in the

MS (version 2) and CIPT (version 3) are

R(s)MS = a4(µ
2) + r1a

2
4(µ

2) + r2a
3
4(µ

2) + r3a
4
4(µ

2) (6.28)

R(s)CIPT = A(4)1(s) + d1A(4)2(s) + d2A(4)3(s) + d3A(4)3(s) (6.29)

while the 
orre
tion R(s) to the 4-loop Re+e− in the CORGI(version 1) de-

rived with great detail in Chapter 3 and CIPT + CORGI (version 4) is given

by

R(s)CORGI = a(µ2) +X2Ra(µ
2)3 +X3Ra(µ

2)4 (6.30)

R(s)CIPT+CORGI = A(0)1(s) +X2DA(0)3(s) +X3DA(0)4(s) (6.31)

The last equation is the appli
ation of the "
ontour improved te
hnique" in

the CORGI s
heme (version 1).
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Figure 6.2 : The fun
tion A1(s), A2(s), A3(s) and A4(s) against sx/Λ̃MS -

showing asymptoti
 freedom behaviour. All plots by Maple 11
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6.2 Analyti
al predi
tions of τ in 4 ver-

sions

It is useful to �t data for R(s) to the parameter τs ≡ b ln(
√
s/Λ̃MS). This

is a 
onvenient 
hoi
e whi
h 
an easily be 
onverted into αs(MZ) or Λ̃MS

as required. As dis
ussed, we shall 
onsider four versions of perturbation

theory for R(s), and make �ts for the 
orresponding values of τ whi
h we

denote τMS, τCIPT , τCORGI and τCIPT+CORGI whi
h 
an be extra
ted from

Eqs. (6.28), (6.29), (6.30) and (6.31). Regrouping all the essential equations

R(s)MS = a4(µ
2) + r1a

2
4(µ

2) + r2a
3
4(µ

2) + r3a44(µ
2)

R(s)CIPT = A(4)1(s) + d1A(4)2(s) + d2A(4)3(s) + d3A(4)3(s)

R(s)CORGI = a(µ2) +X2Ra(µ
2)3 +X3Ra(µ

2)4

R(s)CIPT+CORGI = A(0)1(s) +X2DA(0)3(s) +X3DA(0)4(s)

R(s =M2
Z)=0.03904±0.00087 is the value 
onsidered by Baikov and 
ollabo-

rators [40℄ using the value of αs(M
2
Z)

NNLO
extra
ted from the working group

of [41℄ in
luding terms up to O(α3
s). The main reason we are 
onsidering to

use this value is to ensure the 
onsisten
y with the latest d3 
al
ulation as

well as to 
he
k in the later Se
tion 6.5 if the value of αs(M
2
Z) we obtained will

be agreeable with value obtained by Baikov and 
ollaborators by performing

a shift of δαs(M
2
Z) = 0.0005 implying αs(M

2
Z)

NNNLO
Baikov = 0.1190 ± 0.0026exp.

We believe that using the latest d4 
al
ulation will not 
hange the result sig-

ni�
antly or 
hanging the 
on
lusion of our predi
tions. Ignoring the error,

we will set R(s) = R(s =M2
Z) = 0.03904 and the rest of the versions having

the equivalent value to test the value of αs extra
ted from its version,

R(M2
Z)MS = R(M2

Z)CIPT = R(M2
Z)CIPT+CORGI = R(M2

Z)CIPT+CORGI = 0.03904
(6.32)

This will be the value we use throughout our 
al
ulation to extra
t τ from

ea
h of the 4 versions. All 4 taus are solved with Maple 11 by using approriate


ommands and te
hniques. The 
oe�
ients b, c, c2, c3, r1, r2, r3, d1, d2, d3,
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X2R, X3R, X2D, X3D are

b =
1

6
(11CA − 2Nf ) (6.33)

c =
1

12b
(−3

2
CA[7CA + 11CF ] + 3b[5CA + 3CF ]) (6.34)

c2 =
2857− 5033

9
Nf +

325
27
N2
f

64b
(6.35)

c3 =
1218587 + 1389486ξ3

13824b
− 5857771 + 932400ξ3

27648

+
7761 + 1618ξ3

576
b− 1093

6912
b2 (6.36)

r1 = d1 −
1

12
π2b2 (6.37)

r2 = d2 −
1

24
(6d1 + 5c)π2b2 (6.38)

r3 = d3 −
1

24
(12d2 + 14cd1 + 3c2 + 6c2)π

2b2 +
1

80
π4b4 (6.39)

d1 = (
11

4
− 2ξ3)b+

CA
12
− CF

8
(6.40)

d2 = (
151

18
− 19

3
ξ3)b

2 + CA(
31

6
− 5

3
ξ3 −

5

3
ξ5)b

+ CF (
29

32
− 19

2
ξ3 + 10ξ5)b+ C2

A(
799

288
− ξ3)

+ CACF (−
827

192
+

11

2
ξ3) + C2

F (−
23

32
) (6.41)

d3 = N3
f [−

6131

5832
+

203

324
ξ3 +

5

18
ξ5]

+ N2
f [−

1045381

15552
− 40655

864
ξ3 +

5

6
ξ23 −

260

27
ξ5]

+ Nf [−
13044007

10368
+

12205

12
ξ3 − 55ξ23 +

29675

432
ξ5 +

665

72
ξ7]

+
144939499

20736
− 5693495

864
ξ3 +

5445

8
ξ23 +

65945

288
ξ5 −

7315

48
ξ7(6.42)

X2R = r2 − r21 − cr1 + c2 (6.43)

X3R = r3 − r31 −
5c

2
r21 − (3X2R − 2c2)r1 +

c3
2

(6.44)

X2D = d2 − d21 − cd1 + c2 (6.45)

X3D = d3 − d31 −
5c

2
d21 − (3X2D − 2c2)d1 +

d3
2

(6.46)

Having all these equations, �ts to τ of ea
h version (performed with Maple

11 to 100 digit pre
ision) 
ould be obtained where in this parti
ular 
ase, we
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set Nf = 5. We �nd �tting to R(MZ) = 0.03904

τMS = 22.561 (6.47)

τCIPT = 22.569 (6.48)

τCORGI = 22.544 (6.49)

τCIPT+CORGI = 22.574 (6.50)

The value of τ 's show that all four versions are quite 
onsistent to one another

as might be expe
ted for a N3LO 
al
ulation at a large

√
s. All the values are


onsistent with αs(MZ) = 0.119. Clearly the impa
t of resumming analyti
al


ontinuation terms π2b2 is not great at this order and energy. We will see

mu
h larger di�eren
es when we go on to apply similar �ts to the mu
h lower

energy in
lusive Rτ observable.

6.3 Contour integral representation of Minkowski

observables

Among all the leptons, only the tau parti
le 
an de
ay into hadrons as it

is the heaviest lepton and therefore has the ne
essary mass. Some of the


ommon leptoni
 de
ays are into a tau neutrino, ele
tron and ele
tron anti

neutrino (τ− −→ ντe
−τ̄e) or tau neutrino, muon and muon anti neutrino

(τ− −→ ντµ
−τ̄µ). The possibility for the de
ay of tau into a tau neutrino,

ele
tron and ele
tron anti neutrino is only slightly higher than the de
ay of

tau into tau neutrino, muon and muon anti neutrino [42℄. The 
reation of a

tau neutrino is due to the 
onservation of lepton number in weak intera
tion

whereas the 
reation of ele
tron or muon is due to the 
onservation of 
harge

by the emission W−
gauge boson. The Feynman diagram below represents

the possibility of some of the de
ay modes.

W−
τ−

ντ

e, µ, d, s

νe, νµ, u

Figure 6.3: Feynman diagram of the tau de
ay
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While the hadroni
 de
ay modes(τ− −→ ντdθū) will produ
e quark-antiquark
pairs dominated by u, d and s where dθ = cos(θC)d + sin(θC)s. Note that

sin
e mesons must be 
olorless, the pair must have the 
olor anti-
olor 
om-

bination. Thus, the possible mesons that 
an be 
reated are π−(ud), K−(us),
ρ−(ud) and K∗−(us). Despite that ρ−(ud) and K∗−(us) have the same quark


ontent as π−(ud) and K−(us), they di�er by parity. Other mesons involved

are η(uu+dd−2ss√
6

) and ω(uu+dd√
2

). There are other de
ay modes whi
h required

detail explanation whi
h will not be dis
ussed here like 3 
harged tra
ks and

5 
harged tra
ks de
ay modes. Hen
e, the bran
hing ratios for the di�erent


hannels are expe
ted to be approximately [43℄:

Bl = Br(τ− −→ ντ lν̄l) =
1

5
= 20% (l = e, µ), (6.51)

R̃τ =
Γ(τ− −→ ντ + hadrons)

Γ(τ− −→ ντe−νe)
≈ N = 3, (6.52)

whi
h are 
onsistent with experimental averages [44℄. The agreements are

relatively good and taking noti
e that the measured τ hadroni
 width pro-

vides eviden
e for the 
olor degree of freedom. Note the measured value of

R̃τ at its lowest order predi
tion R̃τ ≈ N and the bran
hing ratio of the

leptoni
 
hannel Bl is dominated by the dynami
s of QCD perturbative 
or-

re
tion Rτ = 0.2038 (the leading order + other orders, whi
h the leading

order 
ontributes most) show that the tau de
ay is a good 
hoi
e to extra
t

QCD strong 
oupling. For reviews of tau de
ays into hadrons see [45, 46℄.

The ratio R̃τ is de�ned analogously to R(s) as the ratio of the total τ hadroni

de
ay width to its leptoni
 de
ay width,

R̃τ≡
Γ(τ → ντ + hadrons)

Γ(τ → ντe−ν̄e)
. (6.53)

R̃τ involves 2 two-point 
orrelation fun
tions

Πµν
ij,V (q) = i

∫
d4xeiqx〈0|T (V µ

ij (x)V
ν
ij (0)

†)|0〉, (6.54)

Πµν
ij,A(q) = i

∫
d4xeiqx〈0|T (Aµij(x)Aνij(0)†)|0〉, (6.55)

where V µ
ij = ψ̄jγ

µψi is the ve
tor and Aµij = ψ̄jγ
µγ5ψi is the axial ve
tor

with the indi
es i, j 
orrespond to the �avour u, d, s. We will then have the

Lorentz de
ompositions
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Πµν
ij,V/A(q) = (−gµνq2 + qµqν)Π1

ij,V/A(q
2) + qµqνΠ0

ij,V/A(q
2), (6.56)

where 0 and 1 are the angular momentum J in the hadroni
 rest frame. Note

that the imaginary part of the two-point fun
tions are proportional to the

spe
tral fun
tions for hadrons with the quantum numbers 0 and 1. Thus the
tau de
ay rate 
an be written as the integral of these spe
tral fun
tions over

the invariant mass of the �nal-state hadrons

R̃τ = 12π

∫ m2
τ

0

ds

m2
τ

(
1− s

m2
τ

)2 [(
1 + 2

s

m2
τ

)
ImΠ(1)(s) + ImΠ(0)(s)

]
.

(6.57)

The 
ombinations of 
orrelators are

ΠJ(s) = |Vud|2[Π(J)
ud,V (s) + Π

(J)
ud,A(s)] + |Vus|2[Π

(J)
us,V (s) + Π

(J)
us,A(s)]. (6.58)

The in
lusive 
ontributions asso
iated to di�erent quarks 
an be separated:

R̃τ = R̃τ,V + R̃τ,A + R̃τ,S. (6.59)

R̃τ,V and R̃τ,A are the �rst two terms of Eq. (6.58). R̃τ,S is the suppressed

Cabbibo 
ontribution. R̃τ,V and R̃τ,A are measured experimentally from the

even or odd pions in the hadroni
 �nal state while R̃τ,S is measured from

the number of odd kaons. The hadroni
 spe
tral fun
tion is sensitive to-

wards non-perturbative e�e
ts of QCD, this makes the 
al
ulation of integral

Eq. (6.57) to be impossible at present. The best approa
h is to analyze the

analyti
 properties of the 
orrelators Π(J)(s). For more detail, [43℄ will be

a re
ommended referen
e, at the moment it will be su�
e to express R̃τ,V/A

and R̃τ,S as

R̃τ,V/A =
3

2
|Vud|2SEW

(
1 +

5

12

α(m2
τ )

π
+ Rτ + δPC

)
, (6.60)

R̃τ,S = 3|Vus|2SEW
(
1 +

5

12

α(m2
τ )

π
+Rτ + δPC

)
. (6.61)

Adding all the three terms, the total ratio R̃τ 
an be expressed perturba-

tively as

R̃τ = N(|Vud|2 + |Vus|2)SEW
[
1 +

5

12

α(mτ
2)

π
+Rτ (s) + δPC

]
, (6.62)
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with Vud and Vus are elements extra
ted from the CKM mixing matrix. s =
m2
τ lies below the threshold for 
harmed hadron produ
tion. Therefore, only

three �avours u,d and s whi
h are a
tive. The ele
troweak 
orre
tion is

given by

5
12
α(m2

τ )
π
≃ 0.001 with the fa
tor SEW = 1.0194 [43℄. δPC are power


orre
tions whi
h arises from the leading quark-mass 
orre
tions whi
h are

extremely small for up and down quarks but extremely large for strange

de
ays (δ
(2)
us ≈ 20%). Nevertheless, the value was suppressed by the fa
tor

sinθ2C whi
h a�e
ts the total R̃τ ratio only by ≈ −1%. The value of su
h non-

perturbative 
orre
tions 
an be obtained from the invariant-mass distribution

of the �nal hadrons in tau de
ay, although it is still unpredi
table 
urrently,

it 
an be 
al
ulated the same way like R̃τ . Rτ (s) is the purely perturbative


orre
tion ignoring quark masses, whi
h 
an be expanded as

Rτ (s) = a(1 +
∑

n>0

rτna
n) . (6.63)

Sin
e summation over the u,d and s quarks leads to (
∑
Qf)

2
=0, there will

be no "light-by-light�. This permits us to dire
tly express both R and Rτ in

terms of the transverse part of the 
orrelator of two ve
tor 
urrents in the

Eu
lidean region.

We 
an now relate both Minkowskian observables denoted by R̂(s0) toD(−s)
by analyti
al 
ontinuation from the Eu
lidean to Minkowskian region whi
h

is formulated as an integration around a 
ir
ular 
ontour in the 
omplex

energy squared s-plane [47℄,

R̂(s0) =
1

2π

∫ π

−π
W (θ)D(s0e

iθ)dθ , (6.64)

W (θ) is the weight fun
tion whi
h is dependent on the observable R̂ with

s0 as the initial energy extra
ted from τ then inserting into the initial 
ou-

pling a(s0) (whi
h is required for re
ursion relation). Evaluating the above

equation with W (θ) = 1 one will produ
e R̂(s0) = R(s0) while using the

expression W (θ) = (1 + 2eiθ − 2e3iθ − e4iθ), one will then have R̂(m2
τ ) = Rτ .

Expanding D̃(s0e
iθ) perturbatively in ā≡a(s0eiθ) and performing numeri
ally

the θ integration term-by-term, one will then obtain �
ontour-improved� per-

turbative results. Note that at ea
h order, an in�nite subset of analyti
al


ontinuation terms present in R(s) and Rτ are resummed. We have dis-


ussed in the previous se
tions that su
h terms must not be ignored as they

are potentially quite large, involving powers of π2
and other beta-fun
tion


oe�
ients. This is easily seen by expanding ā in powers of a(s0) and then

performing integration. We shall fo
us on this "
ontour-improved" version
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of perturbation theory throughout this thesis. Comparisons of the two ver-

sions were made in great detail and length together with an emphasis of the

importan
e of resummation of the analyti
al 
ontinuation terms, in [47℄.

The basi
 numeri
al algorithm we shall use for the evaluation of the inte-

gral in Eq. (6.65) is to split the range from θ = 0 to π into K steps of size

∆θ = π/K and then perform a sum over the integrand evaluated at θn = n∆θ
where n = 0, 1, ..., K. Thus the integral 
an represented as

R̂(s0)≃
∆θ

2π
[W (0)D(s0) + 2Re

K∑

n=1

W (θn)D(sn)], (6.65)

where sn≡s0ein∆θ. In pra
ti
e, we perform su
h trivial algorithm with all

sorts of numeri
al pa
kages as well as 
oding manually in Mathemati
a 6.0

and Maple 11. Rewriting D̃(sn) as a perturbative expansion, one will then

have

D̃(sn) = ān + d1ā
2
n + d2ā

3
n + . . . . (6.66)

Here ān is de�ned as a(sn). Using Taylor's theorem in evolving ān to ān+1,

we will begin with ā0 = a(s0), the following re
ursion relation is then given

by

ān+1 = ān − i
∆θ

2
bB(ān)−

∆θ2

8
b2B(ān)B

′(ān) + i
∆θ3

48
b3[B(ān)B

′(ān)
2

+B(ān)
2B′′(ān)] +O(∆θ4) + .., (6.67)

with B(x) being de�ned as

B(x) = x2 + cx3 + c2x
4 + . . . , (6.68)

so that ā will satisfy

∂ā

∂lns
= − b

2
(ā2 + cā3 + c2ā

4 + ...) = − b
2
B(ā) . (6.69)

b = (33−2Nf)/6, and c = (153−19Nf)/12b are the �rst two universal beta-
fun
tion 
oe�
ients with the subsequent 
oe�
ients ci, i > 1 being s
heme-

dependent. We will now move on to the appli
ation of CORGI to the 
ontour

integral representation of the Minkowski observables.
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6.4 All Orders and Fixed-Order D(s) in

the CORGI approa
h

Our previous dis
ussion has shown that in the CORGI approa
h, the renor-

malization s
ale µ-dependen
e 
ould be avoided 
ompletely by performing

a 
omplete resummation of the UV logarithms. It is su
h a resummation

whi
h builds the dependen
e of the observable on the physi
al energy s
ale

[48℄. [49℄ demonstrates the dire
t relation between the observable and the

dire
t transmutation parameter of the theory ΛMS. This allows us to de�ne

the CORGI version of D(s),

D(s) = a0(s) +X2a
3
0(s) +X3a

4
0 + . . .+Xna

n+1
0 + . . . . (6.70)

Here a0(s) is the CORGI 
oupling in terms of the Lambert W -fun
tion,

a0(s) = − 1

c[1 +W (z(s))]
,

z(s) ≡ −1
e

(√
s

ΛD

)−b/c
, (6.71)

where ΛD≡ed/b(2c/b)−c/bΛMS. d is de�ned as the NLO perturbative 
oe�-


ient d1 for D(s) in the MS s
heme with µ2 = s. a0(s) is the 
oupling in

the s
heme with µ2 = e−2d/bs with all the other 
oe�
ient ci, (i > 1) set
to zero in the 't Hooft s
heme. In the CORGI s
heme d1 = 0, and is ex-

a
tly equivalent at NLO to the E�e
tive Charge approa
h dis
ussed in [50℄

whereas 
onventional RG-improvement in this s
heme 
ompletely resum all

ultraviolet logarithms. This is equivalent to the CORGI approa
h and 
an

be formulated in any s
heme [48℄. X2 and X3 are the N2LO and N3LO
s
heme-invariant 
oe�
ients

X2 = c2 + d2 − cd1 − d21, (6.72)

X3 =
c3
2
+ d3 − d31 −

5c

2
d21 − (3X2 − 2c2)d1 , (6.73)

built from the 
oe�
ients d1 and d2 and beta-fun
tion 
oe�
ients. Note

that X2 and X3 are equivalent to X2D and X3D in Se
tion 6.1. d1, d2 and d3
are known exa
tly and have been 
al
ulated in [40℄. Therefore, the N3LO

ontour-improved CORGI model 
an be obviously 
onstru
ted for Minkowski

observables R̂(s0), using the numeri
al approa
h des
ribed in Se
tion 6.3.
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The fa
t that knowing a0(s) in 
losed form expressed in terms of the Lambert

W -fun
tion, whi
h has a well-de�ned bran
h stru
ture in the 
omplex plane,

one 
an evaluate it dire
tly avoiding the numeri
al approa
h of evolving ān
in Eq. (6.71). It is worth mentioning again that the sele
tion of the W−1
bran
h of the fun
tion on the range of integration [0, π℄, and the W1 bran
h

on the range [−π, 0℄ are ne
essary to ensure asymptoti
 freedom as well as a

sensible value of integration. We will not dis
uss the possibility of avoiding

the use of Simpson's Rule integration in the Re+e− ratio for W (θ) = 1 in this

thesis, for interest, one 
an refer to [51℄.

We will now test the a

ura
y of the �xed-order perturbative approximation

by attempting to approximate the still un
al
ulated 
oe�
ients di, (i > 2)
in D(s) using the suggested �leading-b� approximation. As we have previ-

ously dis
ussed, dn 
an be written as an expansion in powers of Nf , given

by Eq. (5.16). These large-Nf 
oe�
ients d
[n]
n are 
al
ulated exa
tly to all-

orders. We are motivated by the stru
ture of renormalon singularities in the

Borel plane whi
h lead to �nd it possible to 
onvert this expansion into the

leading-b expansion des
ribed in Eq. (5.17) by using Nf = (33/2− 3b).

We will 
onstru
t an all-orders "leading-b" resummation as dis
ussed in

Chapter 5. One 
an use the exa
t V-s
heme leading-b result of [24℄.

d(L)n (V ) =
−2
3
n!
(n+ 1)

2n
[−2n− n + 6

2n+2

+
16

n+ 1

∑

n
2
+1>s>0

s(1− 2−2s)(1− 22s−n−2ζ2s+1)]b
n . (6.74)

The resulting leading-b resummation of D(s) 
an be expressed as

D(L) = a(1 +
∞∑

k=0

d
(L)
k ak), (6.75)

where the prin
ipal value (PV) is regulated by the Borel Sum,

D̃(L)(1/a) = PV

∫ ∞

0

dze−z/aB[D(L)](z) , (6.76)

where B[D̃(L)](z) is the Borel transform whi
h behaviour has been dis
ussed

extensively in Chapter 5, where its stru
ture is Eq. (5.18)

B[D̃(L)](z) =

∞∑

j=1

A0(j) + A1(j)z

(1 + z
zj
)2

+
B0(2)

(1− z
z2
)
+

∞∑

j=3

B0(j) +B1(j)z

(1− z
zj
)2

. (6.77)
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Note that the residues of these poles 
an be 
omputed from the exa
t all-

orders large-Nf result whi
h makes it easy to 
ompute the UV and IR renor-

malon 
ontributions, expressed in terms of the exponential integral fun
tion,

Ei(x) = −
∫ ∞

−x
dt
e−t

t
. (6.78)

We re
all that for IR renormalons where x > 0, the Ei(x) fun
tion is de�ned
by taking the Cau
hy prin
ipal value of the integral. Su
h arbitrariness in

regulating the IR renormalon 
ontributions implies that the perturbative

series is la
king the power 
orre
tions of the operator produ
t expansion

(OPE) whi
h are essential in order to have a sensible result. There is no

relevant operator in dimension of two in the Operator Produ
t Exapansion

for the ve
tor 
orrelator. This is therefore in a

ordan
e with the fa
t that

the singularity IR1 is absent , and the nearest singularity to the origin in the

Borel plane is UV 1. This generates the leading d
(L)
n asymptoti
 behaviour

[49℄,

d(L)n (V )≈(12n+ 22)

27
n!

(
−1
2

)n
bn . (6.79)

The UV renormalon and IR renormalon 
an be expressed as the 
ontribu-

tions of in�nite sums of the Ei fun
tions,

D(L)(F )|UV =

∞∑

j=1

zj{eF (a)zjEi(−Fzj)[Fzj(A0(j)− zjA1(j))− zjA1(j)]

+(A0(j)− zjA1(j)))} , (6.80)

and

D(L)(F )|IR = e−Fz2z2B0(2)Ei(Fz2)
∞∑

j=3

zj{e−FzjEi(Fzj)[Fzj(B0(j) + zjB1(j))− zjB1(j)]

−(B0(j) + zjB1(j))} , (6.81)

where we have used F≡1/aV with aV denoted as the 
oupling in the V-

s
heme. Referring to [49℄, A0(j), A1(j) are related to the residues of the UV j

poles by

A0(j) =
8

3

(−1)j+1(3j2 + 6j + 2)

j2(j + 1)2(j + 2)2
, A1(j) =

4

3

b(−1)j+1(2j + 3)

j2(j + 1)2(j + 2)2
. (6.82)
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The UV residues are related to the IR residues with B0(j) = −A0(−j) and
B1(j) = −A1(−j) for j>2, and B0(1) = B1(1) = B1(2) = 0, and B0(2) = 1
[49℄ by 
onformal symmetry [52℄ of the ve
tor 
orrelator . The 
ontour inte-

gral is then evaluated using the D(L)(F ) result by modifying the de�nition

of the Ei fun
tions in a

ord to their argument involving 1/aV (s0e
iθ) whi
h

is 
omplex for θ not equal to zero. Therefore, it is best to generalize the Ei
fun
tion Ei(n, z) su
h that

Ei(n, z) =

∫ ∞

1

dt
e−tz

tn
, (6.83)

whi
h is analyti
 in the 
omplex z-plane with a bran
h 
ut along the nega-

tive real axis as what we required. The repla
ement of the Ei(−Fzj) in the

UV 
ontribution with −Ei(1, F zj), and Ei(Fzj) in the IR 
ontribution with

−Ei(1,−Fzj) + iπsign(Im(Fzj)) are ne
essary as this is where the dis
on-

tinuities a
ross the bran
h 
ut are removed with the �nal iπ 
ontribution

[49℄. The �nal result for D̃(L)(F ) is simply the sum of the UV and IR 
on-

tributions. Eqs. (6.80) and (6.81) have rapidly 
onvergent behavior sin
e the

A(j) and B(j) 
oe�
ients have a j−4 dependen
e for large j. For the nu-

meri
al 
omputation whi
h will be dis
ussed in Se
tion 6.5, we will trun
ate

Eq. (6.80) and Eq. (6.81) at NUV = 15 and NIR = 17 respe
tively. Su
h an

arrangement NIR = NUV + 2 is sensible as the symmetry properties imply

that A0(j) = −B0(j + 2) ensuring that the �rst O(a) term in the perturba-

tion series has the 
orre
t unit 
oe�
ient B0(2) = 1.

Our last step is to use the results above to perform an all-orders CORGI

resummation whi
h 
an formally be expressed as

DCORGI = a0 +X2a
3
0 +X3a

4
0 +

∑

n>3

X(L)
n an+1

0 , (6.84)

where the exa
tly known N2LO X2 and N
3LO X3 
oe�
ients are in
luded

and the remaining unknown 
oe�
ients are approximated at leading-b, X
(L)
4

,X
(L)
5 , . . . . Note that a0 is the full CORGI 
oupling of Eq. (6.71) in whi
h all

the Renormalization Group-predi
table UV logarithms 
ontaining the exa
t

d1 are resummed. Note that su
h a resummation is a
hieved by taking note

of the 
ombination suggested in [39℄

ρ0 = bln

(
µ

Λ̃

)
− d1(µ) , (6.85)

whi
h is s
heme-independent. The 
oupling a(L)(s) is de�ned as
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a(L)(s) =
1

bln(
√
s/Λ̃)

, (6.86)

at the leading-b level for a simple 
ase of one loop. Note that in the CORGI

s
heme, d
(L)
1 = 0, and by evaluating the invariant ρ0 in the V s
heme and

the CORGI s
heme, the relations between the 
ouplings in the two s
hemes

are 
lear and 
an be expressed as

1

a
(L)
V

=
1

a0
+ d

(L)
1 (V ) . (6.87)

Now it is straightforwardly follows that the formal resummation in Eq. (6.84)

is simply

DCORGI = D(L)

(
1

a0
+ d

(L)
1 (V )

)
+ (X2 −X(L)

2 )a30 + (X3 −X(L)
3 )a40 , (6.88)

where the D(L)
term with the exa
t X2 and X3 are repla
ed by X

(L)
2 and

X
(L)
3 . This expression is 
orre
ted by the 
orresponding se
ond and third

term. Now it is possible to approximate N4
LO and higher CORGI results by

the trun
ation of Eq. (6.84). The X
(L)
n 
an then be evaluated immediately

by using the leading-b of Eq. (6.87) where one will then �nd

X(L)
n = Cn+1



∞∑

k=0

d(L)n (V )

(
a

1 + ad
(L)
1 (V )

)k+1

 . (6.89)

The symbol Cn[f(a)] is the 
oe�
ient of an expanded in power series of f(a)

whi
h the expression of d
(L)
n (V ) 
an be dire
tly obtained from Eq. (6.74).

With the above results of Eq. (6.89), we 
an generate all-orders resummed

and �xed-order 
ontour-improved CORGI results for the Minkowski observ-

able Rτ to perform phenomenologi
al studies in the next two se
tions.

6.5 All-Orders CORGI versus NLO, N2LO

and N3LO CORGI Results

The observable Rτ has been the subje
t of experimental study by the ALEPH


ollaboration via e+e− → τ+τ− on the Z resonan
e [53℄. If data 
onsisting of
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Figure 6.4 : All Orders CORGI resummation versus NnLO �xed order

strange quarks are omitted (this is ne
essary as the strange quarks are mu
h

heavier than the up and down quarks, thus its in
lusion will a�e
t our predi
-

tion) from the data. The latest value is given by R̃τ = 3.479±0.011 [54℄. We

use the values of the variables Vus = 0, and Vud = 0.97418±0.00027 [55℄ from
the CKM matrix. The estimated power 
orre
tion 
ontribution is given by

δPC = −0.003±0.004 [54℄. Plugging in all the values 
olle
ted, one �nds from
Eq. (6.62) that the experimental value is then given by Rτ = 0.2038±0.004.
Note that we have negle
ted the QED 
ontribution to the experimental value.

By doing so, we will be able to obtain an all-orders �leading-b� resummation

of the 
ontour-improved CORGI as well as the �xed-order version where we

will trun
ate the series at 
orresponding terms of NLO, N2LO and N3LO
des
ribed in Se
tions 6.3 and 6.4. As a generalization, we will set Nf = 3 per-
manently throughout the 
al
ulations ex
ept when making �avour threshold


al
ulations. We will �x Λ
(3)

MS
where our goal is to make a theoreti
al 
om-

parison of the all-orders CORGI versus �xed-order trun
ated CORGI result

in reprodu
ing the measured 
entral value Rτ = 0.2038. We present the re-

sults in Fig. (6.4) with the solid red line representing the all-orders CORGI

result �xed to the data, and the red points are the NnLO �xed-order CORGI

results. In this 
ase, we sele
t the N3LO (n = 3) �xed-order result as a 
om-

parison, whi
h is the highest order exa
tly known to date. It turns out to be

in ex
eptionally good agreement with the all-orders CORGI resummation.

Nevertheless, su
h a leading-b approximation NnLO eventually shows an os-


illatory behavior whi
h be
omes more and more explosive for n > 7. This is
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�xed-order CORGI result.

when �xed-order CORGI eventually breaks down. Su
h os
illatory behavior

is exa
tly what we 
ould predi
t from the alternating positive and negative

sign fa
torial growth of the 
ontribution from the leading UV 1 renormalon

of Eq. (6.82).

We will now make an attempt to estimate the un
ertainty in αs(m
2
τ ) ex-

tra
ted fromRτ measurements. The di�eren
e between the all-orders CORGI

and the exa
t N3LO �xed-order CORGI results will be used in the estima-

tion of un
al
ulated higher order terms. Fig. (6.5) represents Rτ versus

αs(m
2
τ ) where the upper solid 
urve is the all-orders CORGI result while

dense dotted lines are the NLO, N2LO and N3LO trun
ated �xed-order

CORGI result. From the plot, we 
an dedu
e that by having more of the ex-

a
t higher n order terms will lead us to 
on
lude that the �xed-order CORGI

gets 
loser to the all-orders CORGI result. Note also that the separation be-

tween the 
urves in
reases rapidly as Rτ in
reases. As the experimentally

measured Rτ≃0.2038, we are therefore quite fortunate that the separation

of the 
urves is reasonably small in this region. Using data 
olle
ted from

ALEPH, we extra
t αs(m
2
τ ) for all-orders CORGI and the �x order CORGI

in Table 6.1. Note that the right hand 
olumn of Table 6.1 represents the

value of αs(m
2
τ ) extra
ted from the standard MS �xed-order perturbation

theory 
al
ulation whi
h we denote as FOPT, whi
h 
learly shows that it is

badly de�ned at the N3LO trun
ation as well as the all-orders FOPT whi
h
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settles at a higher value than the all-orders CORGI. This 
learly shows the

motivation of CORGI as a substitute to the standardized FOPT. Now, evolv-

ing these αs(m
2
τ ) results through �avour thresholds up to µ =MZ using the

three-loop mat
hing 
onditions [56℄, we present values of αs(M
2
Z) in Table

6.2.

αs(m
2
τ )
CORGI
allorders = 0.315+0.0033

−0.0033 αs(m
2
τ )
FOPT
allorders = 0.321+0.0032

−0.0033

αs(m
2
τ )
CORGI
N3LO = 0.343+0.0051

−0.0051 αs(m
2
τ )
FOPT
N3LO = 0.263

αs(m
2
τ )
CORGI
N2LO = 0.351+0.0053

−0.0052 αs(m
2
τ )
FOPT
N2LO = 0.316

αs(m
2
τ )
CORGI
NLO = 0.376+0.0063

−0.0063 αs(m
2
τ )
FOPT
NLO = N/A

Table 6.1 αs(m
2
τ ) extra
ted from All-orders CORGI(red) versus

Fixed-Order NLO, N2LO and N3LO CORGI with 
omparison to Fixed

Order Perturbation Theory(blue)
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αs(M
2
Z)

CORGI
allorders = 0.118+0.0004

−0.0004 αs(M
2
Z)

FOPT
allorders = 0.119+0.0004

−0.0004

αs(M
2
Z)

CORGI
N3LO = 0.121+0.0005

−0.0007 αs(M
2
Z)

FOPT
N3LO = 0.110

αs(M
2
Z)

CORGI
N2LO = 0.122+0.0005

−0.0006 αs(M
2
Z)

FOPT
N2LO = 0.118

αs(M
2
Z)

CORGI
NLO = 0.125+0.0006

−0.0006 αs(M
2
Z)

FOPT
NLO = N/A

Table 6.2 αs(MZ) extra
ted from All-orders CORGI(red) versus

Fixed-Order NLO, N2LO and N3LO CORGI with 
omparison to Fixed

Order Perturbation Theory(blue)

Our main interest is in the estimation of the un
ertainty in αs(M
2
Z) due to

missing higher-order 
orre
tions. We 
an take this to be α(M2
Z)

CORGI
N3LO −

α(M2
Z)

CORGI
allorders = δαs(M

2
Z)≈0.003. A plot showing the resummed all-orders

CORGI versus the �xed-orders CORGI results for Rτ versus αs(M
2
Z) is shown

in Fig. (6.6). We should 
ompare our �t for αs(m
2
τ )
CORGI
N3LO = 0.343± 0.0051

in Table 6.1 with other 
omparable αs(m
2
τ ) determinations based on the use

of CIPT and FOPT. Baikov et al [40℄ �nd 0.332 ± 0.0043, Davier et al [54℄
�nd 0.344 ± 0.009, Menke [57℄ gives 0.342 ± 0.010 while Pi
h [58℄ reports

0.342± 0.012. Our determination is seen to be 
onsistent with these. There

are other determinations not using CIPT, but using FOPT augmented by

renormalon or power 
orre
tion models [59, 60, 61℄. These tend to �nd lower

values of αs(m
2
τ ), but these values are highly dependent on the models used.

The values found are a
tually similar to our all-orders leading-b CORGI re-
sult αs(m

2
τ )
CORGI
allorders = 0.315 ± 0.0033 found in Table 6.1. We would stress

that our CORGI result uses CIPT and so all RG-predi
table terms and all

analyti
al 
ontinuation terms known at N3LO are resummed to all-orders.

We de�ne the quantity R̃τ (s0) as

R̃τ (s0)≡
Γ(τ→ντ + hadrons; shad < s0)

Γ(τ→ντeν̄e)
=

∫ s0

0

ds
dR̃τ (s)

ds
, (6.90)

where

dR̃τ

ds
is the in
lusive hadroni
 spe
trum. R̃τ (s0) 
an be extra
ted from

the experimental data for

dR̃τ

ds
using the pro
edure outlined in [62℄, i.e., mul-

tiplying the normalised distribution by the world average for R̃τ and inte-

grating (summing) bins.

In terms of the various theoreti
al 
ontributions, we have

R̃τ (s0) = N(|Vud|2)SEW [(2x− 2x3 + x4) +
3

4
CFRτ (s0) + δPC ] , (6.91)
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Figure 6.7 : R̃τ (s) as a fun
tion of energy s (GeV2
) versus ALEPH data

extra
ted from [53℄ using the pro
edure of [62℄.

with x≡s0/m2
τ . It is then possible to 
ompute Rτ (s0) from Eq. (6.64) with

the appropriate weight fun
tion,

W (θ) = 2x(1 + eiθ)− 2x3(1 + e3iθ) + x4(1− e4iθ) . (6.92)

Fig. (6.7) shows the 
lose �t of the all-orders leading-b CORGI resummation

(solid line) in 
omparison to the ALEPH data for R̃τ (s) (red dots) extra
ted

from [53℄ using the pro
edure of [62℄ with data �tted at s = m2
τ and where

we have Rτ (m
2
τ ) = R̃τ . Referring to Eq. (6.71), the CORGI 
oupling has

a Landau pole at

√
s = ΛD and by �tting to the experimental value of Rτ ,

we determine the value of ΛD = 0.725GeV. This implies that the predi
tion

is valid only for s > 0.525 GeV2
. This shows an ex
ellent agreement with

the data. On the s
ale 
hosen for the plot the �xed-order CORGI or FOPT

result would be indistinguishable from the all-orders CORGI result and so

we have not displayed them separately.

6.6 Summary

We began this 
hapter with the de�nition of the dimensionless Re+e− ratio

for some value of the 
enter of mass energy

√
s where R(s) denotes the QCD

perturbative 
orre
tions to the parton model result. This 
ould be related to

the Adler D-fun
tion D(−s) by performing an analyti
al 
ontinuation from
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Eu
lidean to Minkowskian regions represented by a 
ontour integral in the


omplex s-plane. This enabled us to introdu
e 
ontour improved perturba-

tion theory (CIPT) whi
h resum to all-orders known and large analyti
al


ontinuation terms involving powers of π2b2. We 
ould also write a simi-

lar 
ontour integral for the in
lusive tau-de
ay ratio Rτ . Using the re
ently


omputed N3LO 
orre
tions d3 of [40℄, a good des
ription of R(MZ) and Rτ

were also obtained. Various di�erent versions of perturbation theory involv-

ing CIPT , and also using the CORGI approa
h des
ribed in Chapter 3, were

employed to extra
t αs(m
2
τ ). We also used leading-b renormalon te
hniques

dis
ussed in Chapter 5 to 
onstru
t all-orders CORGI and CIPT resum-

mations whi
h 
ould be 
ompared with �xed-order N3LO results. We also

evolved through �avour thresholds to obtain 
orresponding αs(M
2
Z) values

and estimated an un
ertainty δαs(M
2
Z) ≈ 0.003. These αs values below and

above threshold are tabulated in Tables 6.1 and 6.2. We saw that the N3LO
CORGI result for αs(m

2
τ ) was 
onsistent with other determinations using

CIPT and FOPT. Fits to the τ spe
tral fun
tion Rτ (s) were also performed.



Chapter 7

Fully Analyti
 IR Freezing

7.1 Introdu
tion

In Chapter 5, it has been shown that in the leading-b approximation, pertur-

bative 
orre
tions to the GLS and unpolarized

1

Bjorken Sum Rules (denoted

by K
(L)
PT and U

(L)
PT respe
tively) are simply linear 
ombinations of the following

fun
tions,

F
(n)
+ (Q2) ≡

(
Λ2

Q2

)n
Ei

(
n ln

Q2

Λ2

)
, (7.1)

and

F
(n)
− (Q2) ≡

(
Q2

Λ2

)n
Ei

(
−n ln Q

2

Λ2

)
. (7.2)

Where Ei(x) is the Exponential Integral fun
tion, de�ned for x < 0 by

Ei(x) = −
∫ ∞

−x
dt
e−t

t
. (7.3)

Here we assume that the prin
ipal value (PV) of Ei(x) is taken for x > 0.

The F
(n)
+ (Q2) terms 
orrespond to 
ontributions from the IR renormalon

singularities , lo
ated at zn = 2n/b on the positive real semi-axis of the

Borel plane. Equivalently, the F
(n)
− (Q2) terms are the 
ontributions from UV

renormalon singularities, lo
ated at zn = −2n/b on the negative real semi-

axis of the Borel plane. The leading-b form of Adler D fun
tion, D
(L)
PT , 
an also

1

Perturbative 
orre
tions to the polarized Bjorken Sum Rules are identi
al to those of

the GLS Sum Rule, up to a series of 'light-by-light' 
orre
tions whi
h we do not 
onsider

here.

113
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be written as a 
ombination of F
(n)
± terms, but with additional (1/a(Q2))F

(n)
±

2


ontributions.

These leading-b results are �nite overall when all 
ontributions are 
om-

bined, furthermore, they are also 
ontinuous at Q2 = Λ2
, due to 
an
ella-

tions between potentially divergent IR and UV renormalon 
ontributions as

demonstrated in Chapter 5. Additionally, one �nds smooth infrared freez-

ing behaviour, with the 
orre
tions to the parton model result vanishing as

Q2 −→ 0.

The �rst logarithmi
 derivative in Q2
is also 
ontinuous at Q2 = Λ2

,

however higher derivatives are neither �nite or 
ontinuous, and hen
e there is

only pie
ewise 
ontinuity and �niteness. The true result, of 
ourse, should be

an analyti
 fun
tion in theQ2
-plane, with all derivatives �nite and 
ontinuous

at Q2 = Λ2
.

With the PV de�nition one has

Ei(x) = ln |x|+ γE +O(x). (7.4)

It is then straightforward to show that one 
an rewrite the Ei(x) fun
tions
in F±(Q

2) as,

Ei

(
n ln

Q2

Λ2

)
= Ei

(
−n ln Λ2

Q2

)

= ln

[
n

(
1− Λ2

Q2

)]
+ γE + fn

(
1− Λ2

Q2

)
(7.5)

= ln

[
n

(
1− Q2

Λ2

)]
+ γE + f̃n

(
1− Q2

Λ2

)
(7.6)

= ln

[
n

(
1− Q2

Λ2

)]
+ γE + fn

(
1− Λ2

Q2

)
+ ln

Λ2

Q2
,

(7.7)

2(1/a(Q2))F
(n)
± is required to be treated separately to avoid singularity at Q = 0, more

detailed dis
ussion on (1/a(Q2))F
(n)
± will be made in explaining the relevan
e of adding a

non-perturbative term to this equation.
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and

Ei

(
−n ln Q

2

Λ2

)
= Ei

(
n ln

Λ2

Q2

)

= ln

[
n

(
1− Λ2

Q2

)]
+ γE + f̃n

(
1− Λ2

Q2

)
(7.8)

= ln

[
n

(
1− Λ2

Q2

)]
+ γE + fn

(
1− Q2

Λ2

)
+ ln

Q2

Λ2

(7.9)

= ln

[
n

(
1− Q2

Λ2

)]
+ γE + fn

(
1− Q2

Λ2

)
. (7.10)

Here, fn(1−Λ2/Q2) and f̃n(1−Q2/Λ2) are power series in (1−Λ2/Q2) and (1−
Q2/Λ2), respe
tively. As su
h, they are fully di�erentiable at Q2 = Λ2

with

all derivatives �nite. In 
ontrast, the ln[n(1− Λ2/Q2)] and ln[n(1−Q2/Λ2)]
terms diverge at Q2 = Λ2

. As was dis
ussed in [40℄, relations between IR and

UV renormalon residues ensure that these ln terms 
an
el for the 
ombined

F
(n)
± terms, and also for their �rst logarithmi
Q2

derivative. However, similar


an
ellations do not take pla
e for higher derivatives, whi
h are therefore not

�nite at the Landau pole.

As is well known these renormalon resummations of perturbation theory

will also have to be 
ombined with the non-perturbative 
ontributions of the

OPE whi
h are required in order to remove IR renormalon ambiguities due to

poles on the positive axis in the Borel z-plane. These ambiguities are easily
seen to be ∼ (Λ

2

Q2 )
n
e�e
ts for an IR renormalon. For Q2 > Λ2

one therefore

expe
ts a standard OPE of the form

DNP =

∞∑

n=1

Cn
(
Λ2

Q2

)n
.

In reality the 
oe�
ients are a
tually 
oe�
ient fun
tions of the 
oupling.

For Q2 < Λ2
one needs to swit
h to a modi�ed Borel representation where

the 
ontour of integration is along the negative z-axis (see Eq. (5.29)) [37℄.

There will then be Borel ambiguities asso
iated with UV renormalons. It

is easily seen that these ambiguities will be of the form ∼ (Q
2

Λ2 )
n
. One then

anti
ipates a modi�ed OPE for Q2 < Λ2
of the form

DNP =
∞∑

n=0

C̃n
(
Q2

Λ2

)n
.



CHAPTER 7. FULLY ANALYTIC IR FREEZING 116

Noti
e that a 
onstant n = 0 �rst term is allowed in this expansion, but of


ourse is absent in the regular OPE whi
h must vanish as Q2 → ∞ due to

asymptoti
 freedom.

Our 
ru
ial observation is that for Q2 > Λ2
, the ln[n(1 − Λ2/Q2)] term in

Eqs. (7.5, 7.8, 7.9) has a valid expansion in powers of Λ2/Q2
, of the same form

as the standard operator produ
t expansion (OPE) above. Thus, by adding

a suitable non-perturbative 
ontribution to the perturbative 
omponent, the

ln term 
an be 
an
elled, and a fun
tion F ∗(Q2) is obtained all of whose

derivatives are �nite at Q2 = Λ2
. Similarly for Q2 < Λ2

, the ln[n(1−Q2/Λ2]
term in Eqs. (7.6, 7.7, 7.10) has a valid expansion in powers of Q2/Λ2

, whi
h

is of the same form as the modi�ed non-perturbative OPE expansion above.

Again, by adding a suitable non-perturbative term to the perturbative 
om-

ponent, one 
an arrange that the ln term is 
an
elled. Hen
e by adding

suitable 
ompensating non-perturbative terms in the two regions Q2 > Λ2

and Q2 < Λ2
, one 
an arrange that a single analyti
 fun
tion F

∗(n)
± (Q2) is

obtained whi
h is holomorphi
 in Q2
, and all of whose derivatives are �nite

and 
ontinuous at Q2 = Λ2
.

7.2 The n = 1 and n = 2 
ases

We shall �rst show how this works for the n = 1 and n = 2 
ases, relevant

for the DIS sum rules KpBJ and UuBJ . For Q
2 > Λ2

we 
an use Eq. (7.5) to

rearrange the expression for F
(1)
+ (Q2) as follows

F
(1)
+ (Q2) =

{
Λ2

Q2
ln

(
1− Λ2

Q2

)
− Λ2

Q2
ln

Λ2

Q2

}
+ γ

E

Λ2

Q2

+
Λ2

Q2
f1

(
1− Λ2

Q2

)
+

[
Λ2

Q2
ln

Λ2

Q2

]
. (7.11)

Similarly, for Q2 < Λ2
, it 
an be rearranged using Eq. (7.7) as

F
(1)
+ (Q2) =

{
Λ2

Q2
ln

(
1− Q2

Λ2

)}
+ γ

E

Λ2

Q2
+

Λ2

Q2
f1

(
1− Λ2

Q2

)

+
Λ2

Q2
ln

Λ2

Q2
. (7.12)

The terms in 
urly bra
kets are non-perturbative OPE-like terms in the Q2 >
Λ2

region, and of the form of a modi�ed non-perturbative term in the Q2 <
Λ2

region. Expli
itly the OPE has the form of an expansion in powers of

(Λ2/Q2), with a leading term O(Λ2/Q2), whereas the modi�ed expansion
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proposed in Chapter 5 is an expansion in powers of Q2/Λ2
with the leading

term potentially a 
onstant. No su
h 
onstant is allowed in the OPE be
ause

non-perturbative terms have to vanish as Q2 −→ ∞, in order to satisfy

asymptoti
 freedom.

Note that su
h a 
onstant is present in the 
urly bra
ket of the Q2 < Λ2

expression in Eq. (7.12). As Q2 −→ 0 this tends to the limit −1. The

terms involving Λ2/Q2
in the remaining part of the expression are singular

as Q2 −→ 0, but this will be 
an
elled by a singularity in the f1 term. The

remaining part of the expression freezes to the limit 1, ensuring that overall

F
(1)
+ (Q2) ∼ O(a(Q2)) freezes to F

(1)
+ (0) = 0.

The idea is that 
ompensating OPE or modi�ed expansion terms should

be added in the two Q2
regions to ensure that the same fun
tion of Q2

is

obtained in the two regions. In the present 
ase the 
ompensating term is

that in the square bra
ket in Eq. (7.11). It is a non-perturbative OPE term

in the Q2 > Λ2
region, and so 
an be simply added and subtra
ted again

inside the 
urly bra
ket. The non-perturbative 
ontribution to be added to

F
(n)
± (Q2), whi
h we denote by F̄

(n)
± (Q2), is then 
hosen to be minus the term

in the 
urly bra
ket

F̄
(1)
+ (Q2) = −Λ2

Q2
ln

(
1− Λ2

Q2

)
+

Λ2

Q2
ln

Λ2

Q2
(Q2 > Λ2), (7.13)

F̄
(1)
+ (Q2) = −Λ2

Q2
ln

(
1− Q2

Λ2

)
(Q2 < Λ2). (7.14)

Note that up to an ±iπ term (re�e
ting the Landau 
ut), the same fun
tion

is obtained in both Q2
regions. Combining this non-perturbative 
ompo-

nent with the perturbative 
omponent, leads to a single fun
tion at all Q2
,

F
∗(n)
± (Q2) ≡ F

(n)
± (Q2) + F̄

(n)
± (Q2), whi
h is a holomorphi
 fun
tion, with all

derivatives �nite and 
ontinuous in the whole Q2
plane. Dis
arding the 
urly

bra
kets in Eqs. (7.11,7.12) we �nd

F
∗(1)
+ (Q2) = γ

E

Λ2

Q2
+

Λ2

Q2
f1

(
1− Λ2

Q2

)
+

Λ2

Q2
ln

Λ2

Q2
. (7.15)

In e�e
t, the non-analyti
ity of the perturbative 
omponent is 
an
elled ex-

a
tly by the non-analyti
ity of the non-perturbative 
omponent. This results

in a perturbative + non-perturbative expression whi
h exhibits the ne
essary

analyti
 properties whi
h the observables must have, and whi
h were the ba-

sis for the 
riti
ism of the work in [31℄ found in [63℄.
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Using similar rearrangements we 
an now obtain the remaining expres-

sions for n = 1, 2. For Q2 > Λ2
we have

F
(2)
+ (Q2) =

{(
Λ2

Q2

)2

ln

(
2

(
1− Λ2

Q2

))
+

Λ2

Q2
−
(
Λ2

Q2

)2

ln
Λ2

Q2
− ln 2

(
Λ2

Q2

)2
}

+ γ
E

(
Λ2

Q2

)2

+

(
Λ2

Q2

)2

f2

(
1− Λ2

Q2

)

+

[
−Λ2

Q2
+

(
Λ2

Q2

)2

ln
Λ2

Q2
+

(
Λ2

Q2

)2

ln 2

]
, (7.16)

and for the region Q2 < Λ2

F
(2)
+ (Q2) =

{(
Λ2

Q2

)2

ln

(
2

(
1− Q2

Λ2

))
+

Λ2

Q2
− ln 2

(
Λ2

Q2

)2
}

+ γ
E

(
Λ2

Q2

)2

+

(
Λ2

Q2

)2

f2

(
1− Λ2

Q2

)

− Λ2

Q2
+

(
Λ2

Q2

)2

ln
Λ2

Q2
+

(
Λ2

Q2

)2

ln 2, (7.17)

The non-perturbative terms that need to be added to F
(2)
+ (Q2) are

F̄
(2)
+ (Q2) = −

(
Λ2

Q2

)2

ln

(
2

(
1− Λ2

Q2

))
− Λ2

Q2

+

(
Λ2

Q2

)2

ln
Λ2

Q2
+

(
Λ2

Q2

)2

ln 2, (Q2 > Λ2), (7.18)

F̄
(2)
+ (Q2) = −

(
Λ2

Q2

)2

ln

(
2

(
1− Q2

Λ2

))
− Λ2

Q2
+

(
Λ2

Q2

)2

ln 2, (Q2 < Λ2).

(7.19)

One then �nds the holomorphi
 fun
tion

F
∗(2)
+ (Q2) = (γ

E

+ ln 2)

(
Λ2

Q2

)2

+

(
Λ2

Q2

)2

f2

(
1− Λ2

Q2

)
− Λ2

Q2
+

(
Λ2

Q2

)2

ln
Λ2

Q2
.

(7.20)

Finally we 
onsider the expressions for F
(1),(2)
− . For Q2 > Λ2

we �nd

F
(1)
− (Q2) =

{
Q2

Λ2
ln

(
1− Λ2

Q2

)
+ 1

}
+ γ

E

Q2

Λ2
+
Q2

Λ2
f1

(
1− Q2

Λ2

)
+
Q2

Λ2
ln
Q2

Λ2
− 1.

(7.21)
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and for the region Q2 < Λ2

F
(1)
− (Q2) =

{
Q2

Λ2
ln

(
1− Q2

Λ2

)
+ 1− Q2

Λ2
ln
Q2

Λ2

}
+ γ

E

Q2

Λ2

+
Q2

Λ2
f1

(
1− Q2

Λ2

)
+

[
Q2

Λ2
ln
Q2

Λ2
− 1

]
. (7.22)

The non-perturbative terms that need to be added to F
(1)
− (Q2) are

F̄
(1)
− (Q2) = −Q

2

Λ2
ln

(
1− Λ2

Q2

)
− 1 (Q2 > Λ2), (7.23)

F̄
(1)
− (Q2) = −Q

2

Λ2
ln

(
1− Q2

Λ2

)
− 1 +

Q2

Λ2
ln
Q2

Λ2
(Q2 < Λ2). (7.24)

One then �nds the holomorphi
 fun
tion

F
∗(1)
− (Q2) = γ

E

Q2

Λ2
+
Q2

Λ2
f1

(
1− Q2

Λ2

)
+
Q2

Λ2
ln
Q2

Λ2
− 1. (7.25)

For F
(2)
− (Q2) in the region Q2 > Λ2

one has

F
(2)
− (Q2) =

{(
Q2

Λ2

)2

ln

(
2

(
1− Λ2

Q2

))
+
Q2

Λ2
+

1

2
−
(
Q2

Λ2

)2

ln 2

}

− Q2

Λ2
+

(
Q2

Λ2

)2

ln 2− 1

2
+ γ

E

(
Q2

Λ2

)2

+

(
Q2

Λ2

)2

f2

(
1− Q2

Λ2

)
+

(
Q2

Λ2

)2

ln
Q2

Λ2
, (7.26)

and for the region Q2 < Λ2

F
(2)
− (Q2) =

{(
Q2

Λ2

)2

ln

(
2

(
1− Q2

Λ2

))
+

1

2
−
(
Q2

Λ2

)2

ln
Q2

Λ2
+
Q2

Λ2
−
(
Q2

Λ2

)2

ln 2

}

+

[
−Q

2

Λ2
+

(
Q2

Λ2

)2

ln 2− 1

2
+

(
Q2

Λ2

)2

ln
Q2

Λ2

]
+γ

E

(
Q2

Λ2

)2

+

(
Q2

Λ2

)2

f2

(
1− Q2

Λ2

)
.

(7.27)
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The non-perturbative terms that need to be added to F
(2)
− (Q2) are

F̄
(2)
− (Q2) = −

(
Q2

Λ2

)2

ln

(
2

(
1− Λ2

Q2

))
− Q2

Λ2
+

(
Q2

Λ2

)2

ln 2− 1

2
, (Q2 > Λ2),

(7.28)

F̄
(2)
− (Q2) = −

(
Q2

Λ2

)2

ln

(
2

(
1− Q2

Λ2

))
− Q2

Λ2
+

(
Q2

Λ2

)2

ln 2

+

(
Q2

Λ2

)2

ln
Q2

Λ2
− 1

2
, (Q2 < Λ2). (7.29)

The resulting holomorphi
 fun
tion is

F
∗(2)
− (Q2) = −1

2
+ (γ

E

+ ln 2)

(
Q2

Λ2

)2

+

(
Q2

Λ2

)2

f2

(
1− Q2

Λ2

)
− Q2

Λ2
+

(
Q2

Λ2

)2

ln
Q2

Λ2
.

(7.30)

This 
ompletes the evaluation of the n = 1, 2 fun
tions required for the sum

rules KpBJ and UuBJ .

In terms of the F
(1),(2)
± (Q2) we have

K
(L)
PT (Q

2) =
1

9b
[16F

(1)
+ (Q2)− 10F

(2)
+ (Q2)− 8F

(1)
− (Q2) + 2F

(2)
− (Q2)],

(7.31)

U
(L)
PT (Q

2) =
1

3b
[8F

(1)
+ (Q2)− 6F

(2)
+ (Q2)− 2F

(2)
− (Q2)]. (7.32)

The non-perturbative (NP) 
omponents to be added to obtain full analyti
ity

are

K̄
(L)
NP (Q

2) =
1

9b
[16F̄

(1)
+ (Q2)− 10F̄

(2)
+ (Q2)− 8F̄

(1)
− (Q2) + 2F̄

(2)
− (Q2)],

(7.33)

Ū
(L)
NP (Q

2) =
1

3b
[8F̄

(1)
+ (Q2)− 6F̄

(2)
+ (Q2)− 2F̄

(2)
− (Q2)]. (7.34)

Adding the perturbative and non-perturbative 
omponents together gives

the fully analyti
 fun
tions K∗(L)(Q2) and U∗(L)(Q2). These fun
tions are

simply the original leading-b perturbative form of the observables, plus a non-

perturbative term, the exa
t form of whi
h is determined by the analyti
ity


onstraint. In e�e
t, we use this 
onstraint to determine the form of the

non-perturbative terms.
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7.3 Freezing and Landau pole behaviour

of the fully analyti
 form of K and U
From Eqs. (7.14,7.19,7.24,7.29), one 
an read o� the infrared freezing limits

of the non-perturbative 
omponent. One �nds

F̄
(1)
+ (0) = 1, F̄

(2)
+ (0) =

1

2
, (7.35)

F̄
(1)
− (0) = −1, F̄

(2)
− (0) = −1

2
. (7.36)

Sin
e the perturbative 
omponent freezes to zero as Q2 −→ 0, the freezing
limits of the analyti
 fun
tions are found to be

K∗(L)(0) =
1

9b
[16− 5 + 8− 1] =

2

b
, (7.37)

U∗(L)(0) =
1

3b
[8− 3 + 1] =

2

b
. (7.38)

Remarkably, one �nds the same freezing limit for K(Q2) and U(Q2), even
though di�erent UV and IR renormalon residues are involved. This suggests

the existen
e of yet another relation between UV and IR residues. The sum

is required to vanish to s
reen the Landau pole, and the weighted sum is 2
in ea
h 
ase. It is interesting that

2
b
is also the freezing limit found in the

Analyti
 Perturbation Theory (APT) approa
h of Shirkov and 
ollaborators

[64℄. This 
onne
tion will be dis
ussed further later in the Chapter.

We 
an also �nd the values of the analyti
 fun
tions at Q2 = Λ2
. From

Eqs. (7.15,7.20,7.25,7.30) one �nds

F
∗(1)
+ (Λ2) = γ

E

, (7.39)

F
∗(2)
+ (Λ2) = γ

E

+ ln 2− 1, (7.40)

F
∗(1)
− (Λ2) = γ

E

− 1, (7.41)

F
∗(2)
− (Λ2) = γ

E

+ ln 2− 3

2
. (7.42)

Assembling these results gives

K∗(L)(Λ2) =
(−8 ln 2 + 15)

9b
, (7.43)

U∗(L)(Λ2) =
(−8 ln 2 + 9)

3b
. (7.44)
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Figure 7.1: Combination of Perturbative and Non-Perturbative Part of Po-
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The ln 2 pie
es 
orrespond to the results found in Chapter 5, and are shifted

by the extra terms added to a
hieve full analyti
ity.

We plot in Fig(7.1) and Fig(7.2) the analyti
 fun
tions K∗(L)(Q2) and

U∗(L)(Q2) (solid line), and for 
omparison the pie
ewise analyti
 fun
tions

K
(L)
PT (Q

2) and U
(L)
PT (Q

2) (dashed line), as in Chapter 5, we assume Nf = 0
a
tive quark �avours. As it has been dis
ussed that this is the minimal

model, this is the reason why Fig(7.1) and Fig(7.2) disagree at high Q2

despite we 
hange numerous parameters signi�
antly, the disagreement will

still be signi�
ant. A solution to this problem is to introdu
e another non-

perturbative terms but some questions that remain will be what and why?

7.4 The Adler D fun
tion

For the Adler D fun
tion, one has an in�nite sum (of renormalon singularities)

over n, and so to 
onsider its freezing behaviour one needs a general result

for F
(n)
± (Q2). We �nd the holomorphi
 fun
tions

F
∗(n)
+ (Q2) = −

n−1∑

k=1

1

k

(
Λ2

Q2

)n−k
+ lnn

(
Λ2

Q2

)n
+ γ

E

(
Λ2

Q2

)n

+

(
Λ2

Q2

)n
fn

(
1− Λ2

Q2

)
+

(
Λ2

Q2

)n
ln

Λ2

Q2
, (7.45)

F
∗(n)
− (Q2) = −

n∑

k=1

1

k

(
Q2

Λ2

)n−k
+ lnn

(
Q2

Λ2

)n
+ γ

E

(
Q2

Λ2

)n

+

(
Q2

Λ2

)n
fn

(
1− Q2

Λ2

)
+

(
Q2

Λ2

)n
ln
Q2

Λ2
. (7.46)

The non-perturbative terms that need to be added to F
(n)
+ (Q2) are for

Q2 > Λ2

F̄
(n)
+ (Q2) = −

(
Λ2

Q2

)n
ln

(
n

(
1− Λ2

Q2

))
−

n−1∑

k=1

1

k

(
Λ2

Q2

)n−k
+

(
Λ2

Q2

)n
ln

Λ2

Q2

+ lnn

(
Λ2

Q2

)n
, (7.47)

and for Q2 < Λ2
,

F̄
(n)
+ (Q2) = −

(
Λ2

Q2

)n
ln

(
n

(
1− Q2

Λ2

))
−

n−1∑

k=1

1

k

(
Λ2

Q2

)n−k
+ lnn

(
Λ2

Q2

)n
.(7.48)
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For F
(n)
− (Q2) in the region Q2 > Λ2

the NP terms to be added are

F̄
(n)
− (Q2) = −

(
Q2

Λ2

)n
ln

(
n

(
1− Λ2

Q2

))
−

n∑

k=1

1

k

(
Q2

Λ2

)n−k
+ lnn

(
Q2

Λ2

)n
,

(7.49)

and for Q2 < Λ2

F̄
(n)
− (Q2 = −

(
Q2

Λ2

)n
ln

(
n

(
1− Q2

Λ2

))
−

n∑

k=1

1

k

(
Q2

Λ2

)n−k
+ lnn

(
Q2

Λ2

)n

+

(
Q2

Λ2

)n
ln
Q2

Λ2
. (7.50)

D
(L)
PT

(Q2) in terms of the F
(n)
± (Q2) is given by

D
(L)
PT

(Q2) =

∞∑

n=1

zn

{
F

(n)
− (Q2)

[
zn

a(Q2)
(A0(n)− znA1(n))− znA1(n)

]

+ (A0(n)− znA1(n))

}

+

∞∑

n=1

zn

{
F

(n)
+ (Q2)

[
zn

a(Q2)
(B0(n) + znB1(n))− znB1(n)

]

− (B0(n) + znB1(n))

}
. (7.51)

The non-perturbative 
omponent whi
h needs to be added for analyti
ity is

D̄
(L)
NP

(Q2) =

∞∑

n=1

zn

{
F̄

(n)
− (Q2)

[
zn

a(Q2)
(A0(n)− znA1(n))− znA1(n)

]}

+

∞∑

n=1

zn

{
F̄

(n)
+ (Q2)

[
zn

a(Q2)
(B0(n) + znB1(n))− znB1(n)

]}
.

(7.52)

Nevertheless, adding su
h a non-perturbative term will de�nitely lead to an

in�nite freezing limit, this is due to the 1/a(Q2) term whi
h diverges to ∞
as Q2

goes to 0. However, we shall show in Se
tion 7.7 that one 
an de�ne

the non-perturbative F̄
(n)
± fun
tions for a renormalon with a single pole Borel

singularity as a di�erential operator involving D ≡ d
dτ

a
ting on the 
oupling
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a(τ) = 1
τ
. For the Adler D-fun
tion one has double poles in the Borel plane

and hen
e needs to a
t with the square of this operator. In this way one

�nds a di�erent

¯̄F n
+(Q

2) non-perturbative term for Q2 > Λ2

¯̄F
(n)
+ (Q2) = −n

(
Λ2

Q2

)n

×
[
L2

(
1− Λ2

Q2

)
− π2

3
−

n−1∑

k=1

(
1

k2

(
Λ2

Q2

)n−k)
− 1

2

(
Λ2

Q2

)n
ln

(
Λ2

Q2

)2
]
,

(7.53)

Here L2 denotes a dilogarithm (see Eq. (5.40) for the de�nition), and for

Q2 < Λ2

¯̄F
(n)
+ (Q2) = n

(
Λ2

Q2

)n [
L2

(
1− Q2

Λ2

)
−

n−1∑

k=1

(
1

k2

(
Λ2

Q2

)n−k)]
.

(7.54)

The other two analogous (−) equations, for Q2 > Λ2
are

¯̄F
(n)
− (Q2) = −n

(
Q2

Λ2

)n [
L2

(
1− Λ2

Q2

)
+

n∑

k=1

(
1

k2

(
Q2

Λ2

)n−k)]
,

(7.55)

and for Q2 < Λ2

¯̄F
(n)
− (Q2) = −n

(
Q2

Λ2

)n

×
[
L2

(
1− Q2

Λ2

)
− π2

3
+

n∑

k=1

(
1

k2

(
Q2

Λ2

)n−k)
+

1

2

(
Q2

Λ2

)n
ln

(
Q2

Λ2

)2
]
.

(7.56)

Using these new double pole non-perturbative terms, we modify the D̄
(L)
NP

(Q2)
su
h that
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D̄
(L)
NP

(Q2) =
k∑

n=1

[
¯̄F n
−(Q

2)zn (A0n− znA1(n))− F̄ n
−(Q

2)zn (znA1(n))
]

+

k+2∑

n=3

[
¯̄F n
+(Q

2)zn (B0n + znB1(n))− F̄ n
+(Q

2)zn (znB1(n))
]

− F̄
(2)
+ (Q2)

(
4

b

)2(
−1
4

)
. (7.57)

To mat
h our 
al
ulation in Chapter 6, we trun
ate Eq. (7.57) at k = 15.

Adding the above perturbative and non-perturbative 
omponents gives

the analyti
 fun
tion D∗(L)(Q2). The infrared freezing limit of the non-

perturbative 
omponent is given by

F̄
(n)
+ (0) =

1

n
, F̄

(n)
− (0) = −1

n
, ¯̄F

(n)
+ (0) =

1

n2
, ¯̄F

(n)
− (0) = − 1

n2
, (7.58)

whi
h is 
onsistent with Eqs. (7.35,7.36). One then �nds the freezing limit

for the analyti
 fun
tion D∗(L)(Q2)
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D∗(L)(0) =
k∑

n=1

[
−
(

1

n2

)
zn (A0n− znA1(n)) +

(
1

n

)
zn (znA1(n))

]

+

k+2∑

n=3

[(
1

n2

)
zn (B0n + znB1(n))−

(
1

n

)
zn (znB1(n))

]

−
(
1

2

)(
4

b

)2(
−1
4

)
=

2

b
. (7.59)

This freezing limit is absolutely amazing and it agrees with the APT version

of analyti
 perturbation theory provided by Shirkov and 
ollaborators [64℄

whi
h we will tou
h on in Se
tion 7.8. This mat
hes the predi
tions with

K(Q2) and U(Q2) whi
h both also freeze to a 2/b limit. In fa
t we shall

show that our D-operator 
onstru
tion of the F̄ and

¯̄F , is equivalent to an

all-orders resummation of Shirkov's APT series.

We now plot the analyti
 fun
tion D∗(L)(Q2) in Fig. (7.3) and the non-

perturbative part de�ned by KNP (Q
2), UNP (Q

2) and DNP (Q
2) in Fig. (7.4).

We will assume Nf = 0 in our plots.

One 
an generalize the Q2 = Λ2
values of the 
omponents into Eqs. (7.39-

7.42),

F
∗(n)
+ (Λ2) = γ

E

+ lnn−
n−1∑

k=1

1

k
, (7.60)

F
∗(n)
− (Λ2) = γ

E

+ lnn−
n∑

k=1

1

k
. (7.61)

Substituting these results in Eq. (7.51) and Eq. (7.57) one �nds

D∗(L)(Λ2) ≈ (0.679938 + 0.121342)

b
. (7.62)

The �rst term in the numerator is the result found in [31℄, this is shifted by

the extra terms required for analyti
ity.

We have shown that it is possible to add non-perturbative terms to the

pie
ewise analyti
 one-
hain skeleton expansion result in the regions Q2 > Λ2

and Q2 < Λ2
, su
h that when 
ombined, an analyti
 fun
tion of Q2

re-

sults. Although both perturbative and non-perturbative 
omponents are
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Figure 7.3: D∗(L)(Q2) (solid line), DPT (Q
2) (green dots) and DNP (Q

2) (red

dots) against

Q2

Λ2
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Figure 7.4: Non-perturbative terms - KNP (Q
2) (green dots), UNP (Q

2) (red

dots) and DNP (Q
2) (solid line) against

Q2

Λ2
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only pie
ewise analyti
 fun
tions, their sum is fully analyti
. The non-

perturbative terms to be added are 
onstrained by requiring asymptoti
 free-

dom as Q2 −→ ∞, and �nite freezing behaviour as Q2 −→ 0. Of 
ourse, one

an always add additional analyti
 and asymptoti
ally free non-perturbative


ontributions to the fully analyti
 fun
tion. Hen
e, the non-perturbative


ontribution we have derived here may be subje
t to further 
orre
tions.

Cru
ially however, we have demonstrated that the remarkable freezing and

Landau pole behaviour of the leading-b expressions dis
overed in [31℄, is


ompatible with the ne
essary analyti
ity requirements of QFT, whi
h were

expounded by the authors of [63℄.

7.5 The GDH Sum Rule and freezing be-

haviour of KpBj(Q
2)

In this se
tion, we 
onsider the exa
t low-energy Gerasimov-Drell-Hearn

(GDH) Sum Rule whi
h 
an be related to the KpBj(Q
2) polarized Bjorken

DIS sum rule. We shall show that it is possible to add an extra holomorphi


non-perturbative fun
tion to K∗(L)(Q2) in su
h a way that the GDH Sum

Rule is satis�ed. [65℄ Consider the Q2
-dependent integral

I1(Q
2) =

2M2

Q2

∫ 1

0

g1(x,Q
2) dx. (7.63)

This is de�ne for all Q2
with g1(x,Q

2) being the generalization for all Q2

of g1(x). Note that g1(x) is the standard s
ale-invariant stru
ture fun
tion

independent of Q2
. We ignore elasti
 
ontribution at x = 1 to the sum

rule. We de�ne x = Q2/2Mν and making the relevant 
hange of variable,

one re
overs the integral over all energies of spin-dependent photon-nu
leon


ross se
tion Q2 = 0, whose value is given in [66, 67℄. Here M is the nu
leon

mass and ν is the energy transfer. The low energy GDH sum rule is

I1(0) =
−µ2

A

4
, (7.64)

where µA is the nu
leon anomalous magneti
 moment in units of nu
lear

magnetons [68℄. [69℄ For the polarized Bjorken Sum Rule [70℄, we have

KpBj(Q
2) ≡

∫ 1

0

gep−en1 (x,Q2)dx

=
1

6

∣∣∣∣∣
gA
gV

∣∣∣∣∣

(
1− 3

4
CFK(Q2)

)
, (7.65)
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with the spin-dependent proton and neutron stru
ture fun
tions gep1 , gen1 .

gA = 1.267 ± 0.004 is the nu
leon axial 
harge obtained from the neutron

β-de
ay. We would then expe
t that as Q2 −→ 0

2M2

Q2
KpBj(Q

2) −→
(µ2

A,n − µ2
A,p)

4
. (7.66)

Here µA,n and µA,p are, respe
tively, the anomalous magneti
 moments of the

neutron and proton in units of nu
lear magnetons. It is immediately obvious

that the freezing behaviour of K∗(L)(Q2) plotted in Fig 7.1 violates the GDH

low energy sum rule expe
tation in Eq. (7.66). Approximating K(Q2) by

K∗(L)(Q2) we have as Q2 −→ 0

2M2

Q2
KpBj(Q

2) ≈ 2M2

Q2

1

6

∣∣∣∣∣
gA
gV

∣∣∣∣∣

(
1− 2

b
+O(a(Q2)) +O(Q

2

Λ2
)

)
. (7.67)

This diverges like Q−2 as Q2 −→ 0 and a �nite GDH infrared limit is not

found. To satisfy the GDH Sum Rule we need to add an additional non-

perturbative analyti
 term whi
h 
an
els the 
onstant and O(a(Q2)) terms

in Eq. (7.63). This �xes the form of K(Q2) to be

K(Q2) = K∗(L)(Q2) + (1−K∗(L)(Q2))F(Q2). (7.68)

Here F(Q2) is an analyti
 fun
tion of Q2
whi
h for Q2 < Λ2

has a modi�ed

NP expansion of the form

F(Q2) = 1 + λ
Q2

Λ2
+O

((
Q2

Λ2

)2
)
. (7.69)

Whilst for Q2 > Λ2
it admits an OPE expansion in powers of Λ2/Q2

. One

then �nds the Q2 −→ 0 behaviour

KpBj(Q
2) ≈ −1

6

∣∣∣∣∣
gA
gV

∣∣∣∣∣

(
1− 2

b

)
λ
Q2

Λ2
+O

((
Q2

Λ2

)2
)
. (7.70)

Fixing the value of the 
oe�
ient λ to be

λ = − Λ2

2M2
6

∣∣∣∣∣
gV
gA

∣∣∣∣∣

(
1− 2

b

)−1 (µ2
A,n − µ2

A,p)

4
, (7.71)

the GDH Sum Rule of Eq. (7.66) will be satis�ed.
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7.6 Conformal non-perturbative expansions

We will need to 
onstru
t analyti
 fun
tions F(Q2) whi
h admit expansions

in powers of (Λ
2

Q2 ) valid for Q2 > Λ2
of the same form as the OPE,

F(Q2) =

∞∑

n=1

Cn
(
Λ2

Q2

)n
. (7.72)

For Q2 < Λ2
they must admit the modi�ed expansion in powers of (Q

2

Λ2 ),

F(Q2) =

∞∑

n=1

C̃n
(
Q2

Λ2

)n−1
, (7.73)

where in satisfying the GDH Sum Rule we require C̃1 = 1. Cru
ially these

expansions must 
orrespond to a single analyti
 fun
tion of Q2
at all values of

Q2
. This 
an be ensured by formulating the following modi�ed �
onformal�

expansions,

F(Q2) =
∞∑

n=1

Ĉn

(
Λ2

Q2

)n

(
1 + Λ2

Q2

)2n−1 (7.74)

=
∞∑

n=1

Ĉn

(
Q2

Λ2

)n−1

(
1 + Q2

Λ2

)2n−1 . (7.75)

Term-by-term these series are identi
al fun
tions of Q2
at all values of Q2

,

and for Q2 < Λ2
Eq. (7.74) admits an expansion in powers of (Λ

2

Q2 ) whi
h

must be equivalent to Eq. (7.72), whilst for Q2 < Λ2
Eqn(7.75) admits an

expansion in powers of (Q
2

Λ2 ) whi
h must be equivalent to Eqn(7.73). Using

the Binomial theorem and equating 
oe�
ients one �nds

Ĉ1 = C1 = C̃1
Ĉ2 = C2 + C1 = C̃2 + C̃1.
.

.

. (7.76)

From whi
h we 
on
lude that the 
oe�
ients in the OPE of Eqn(7.72) and

the modi�ed expansion of Eqn(7.73) are identi
al, Cn = C̃n. The 
onfor-

mal expansions are essentially an Euler transformation of the original non-

perturbative expansions.
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We 
an now �x the Ĉn 
oe�
ients in su
h a way that the GDH Sum Rule

holds. We write

(1−K(Q2)) = 1−K∗(L)(Q2)− (1−K∗(L)(Q2))F(Q2), (7.77)

where the analyti
 fun
tion F(Q2) has the 
onformal expansion

F(Q2) =
1(

1 + Q2

Λ2

) +

[
1− C̃K2

(1−K∗(L)(Q2))

]
Q2

Λ2

(
1 + Q2

Λ2

)3 +

[
2− (3C̃K2 −C̃K3 )

(1−K∗(L)(Q2))

] (
Q2

Λ2

)2

(
1 + Q2

Λ2

)5 + . . .

(7.78)

We then �nd for (1−K(Q2)) the �
onformal expansion�

(1−K(Q2)) = 1−K∗(L)(Q2)− (1−K∗(L)(Q2))(
1 + Q2

Λ2

) −

[
(1−K∗(L)(Q2))− C̃K2

]
Q2

Λ2

(
1 + Q2

Λ2

)3

+

[
3C̃K2 + C̃K3 − 2(1−K∗(L)(Q2))

] (
Q2

Λ2

)2

(
1 + Q2

Λ2

)5 + . . . (7.79)

This expansion should be valid at all values of Q2
. In the infrared region

Q2 < Λ2
as Q2 −→ 0 this has the modi�ed non-perturbative expansion

(1−K(Q2)) = C̃K2
(
Q2

Λ2

)
+ C̃K3

(
Q2

Λ2

)2

+ . . . , (7.80)

where, by 
onstru
tion, the 
oe�
ients are independent of K∗(L)(Q2). To

ensure the GDH Sum Rule one needs to �x

C̃K2 |GDH =
(µ2

A,n − µ2
A,p)

4

(
Λ2

2M2

)
6

∣∣∣∣∣
gV
gA

∣∣∣∣∣. (7.81)

Using PDG booklet values for these quantities one �nds C̃K2 |GDH ≈ 0.308 Λ2

GeV2 .

For Q2 > Λ2
, Q2 −→∞, the result has the form of the analytized perturba-

tive result (1−K∗(L)(Q2)) plus a non-perturbative OPE expansion

(1−K(Q2)) = (1−K∗(L)(Q2))− (1−K∗(L)(Q2))

(
Λ2

Q2

)
+ C̃K2

(
Λ2

Q2

)2

+ C̃K3
(
Λ2

Q2

)3

+ . . .

(7.82)
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One might be tempted to 
on
lude that the higher OPE terms have the

same 
oe�
ients as the terms in the modi�ed non-perturbative expansion

whi
h applies in the infrared, but this would be 
laiming too mu
h. The

fun
tion K∗(L)(Q2) is the minimal way of 
ombining pie
ewise analyti
 per-

turbative and non-perturbative 
omponents to a
hieve an analyti
 behaviour

overall. As we noted earlier we 
an always add any additional analyti
 non-

perturbative term H(Q2), repla
ing K∗(L)(Q2) everywhere by K∗(L)(Q2) +
H(Q2). If we assume that H(Q2) admits the OPE expansion

H(Q2) =
∞∑

n=1

Hn

(
Λ2

Q2

)n
, (7.83)

then Eq. (7.80) still applies as Q2 −→ 0, but the OPE expansion in Eq. (7.82)

will be modi�ed to

(1−K(Q2)) = (1−K∗(L)(Q2))− (1−K∗(L)(Q2) +H1)

(
Λ2

Q2

)

+ (C̃K2 −H2 −H1)

(
Λ2

Q2

)2

+ (C̃K3 −H3 +H2)

(
Λ2

Q2

)3

+ . . .

(7.84)

7.7 The Inverse D Operator

Consider a QCD observable R having the Borel representation

R =

∫ ∞

0

dze−z/aB[R](z). (7.85)

Here we assume as usual that R has the perturbative expansion

R = a + r1a
2 + r2a

3 + . . .+ rna
n+1 + . . . . (7.86)

The main result we will need is that if B[R](z) = 1/(z − zi)n i.e. a pole

in the z-plane, then introdu
ing the di�erential operator D ≡ d
dτ

where we

assume a one loop 
oupling a(τ) = 1
τ
, we have the operator relation

R =
(−1)n

(D ∓ zi)n
a(τ) . (7.87)

So elegantly one has an inverse D-operator a
ting on the 
oupling. To prove

this one simply writes a(τ) =
∫∞
0
dze−z/a(τ). Noting that e−z/a = e−zτ we see

that a
ting with Dn
pulls down a fa
tor (−1)nzn inside the integrand whi
h
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on integration over z will reprodu
e the series expansion for R. We shall

show that the fun
tions F
(n)
± involving the 
ontributions of renormalon sin-

gle poles are reprodu
ed by the D-operator expression. Note that this result

does not work only for poles. We have the general result R = B[R](−D)a(τ)
for any Borel summable series with a one loop 
oupling.

The further interest is in reprodu
ing the non-perturbative 
ontributions

F̄
(n)
± whi
h need to be added to obtain an analyti
 result. It turns out

that these 
an be 
onstru
ted from the fun
tion A1(Q
2) in Shirkov's APT

formalism whi
h will be dis
ussed in the next se
tion. One has the APT

expansion

R = A1(Q
2) + r1A2(Q

2) + . . .+ rnAn+1(Q
2) + . . . . (7.88)

De�ning L ≡ ln(Q
2

Λ2 ) one has at the one loop level

A1(Q
2) =

2

b

[
1

L
+

1

(1− eL)

]
. (7.89)

The se
ond OPE-like term regulates the Landau pole at Q2 = Λ2
in the

�rst term whi
h is simply the 
oupling a(τ). The Ai terms satisfy the beta-

fun
tion like equation

Ak+1(Q
2) = − 1

kb

dAk(Q2)

dL
. (7.90)

This is enough to ensure that for a simple pole 
ontribution B[R](z) = 1
(z±zi)

one has

R =
1

zi ±D
A1(Q

2) . (7.91)

Again we note that this does not just work for poles but more generally we

have the result R = B[R](−D)A1(Q
2), where A1(Q

2) is the one loop APT

fun
tion. The D−1 operator a
ting on the NP

1
(1−eL) pie
e of A1(Q

2) 
an be

used to generate the non-perturbative F̄
(n)
± terms whi
h need to be added to

the PT F
(n)
± terms arising from the D−1 operator a
ting on the �rst term

a(τ). The impli
ation is that one 
an formally 
onstru
t an all-orders resum-

mation of the APT series for R using this te
hnique. Before we dis
uss all

of this further we need to provide an introdu
tion to the D-operator method

for solving 
onstant 
oe�
ient linear ODE's.

We 
onsider linear di�erential equations where a general linear di�erential

equation of order n 
an be written in the form of



CHAPTER 7. FULLY ANALYTIC IR FREEZING 135

a0(x)
dny

dxn
+ a1(x)

dn−1y

dxn−1
+ ...+ an−1(x)

dy

dx
+ an(x)y = R(x). (7.92)

If R(x) = 0, the resulting equation is a homogeneous equation and if

R(x) 6= 0, the resulting equation is a non-homogeneous equation. Generally,

we adopt the notation Dy, D2y,....,Dny to denote

dy
dx
,

d2y
dx2

,...,

dny
dxn

. These no-

tations Dy, D2y,....,Dny are 
alled di�erential operators and have properties

of algebrai
 quantities. With this notations, it is permitted for us to write

[a0(x)D
n + a1(x)D

n−1 + ... + an−1(x)D + an(x)]y = R(x), (7.93)

or simply

φ(D)y = R(x), (7.94)

where φ = [a0(x)D
n + a1(x)D

n−1 + ... + an−1(x)D + an(x)] is the operator

polynomial in D. In order to obtain the general solution of Eq. (7.86) for

R(x) 6= 0, let yc(x) be the Complementary homogeneous equation

φ(D)y = 0, (7.95)

yc(x) is referred as the 
omplementary homogeneous solution. The superpo-

sition theorem

Theorem− 1 - The general solution of Eq. (7.87) is obtained by adding

the 
omplementary solution yc(x) to a parti
ular solution yp(x) su
h that

c(x) + yp(x). (7.96)

A simple example is the 
omplementary solution yc(x) = c1e
x + c2e

2x
for

(D2 − 3D + 2)y = 0 and the parti
ular solution yp(x) = 2x2 + 6x + 7 for

(D2 − 3D + 2)y = 4x2, the general solution for (D2 − 3D + 2)y = 4x2 will

then be y = c1e
x+c2e

2x+2x2+6x+7. We will not tou
h the other theorems

from [71℄ but pro
eed dire
tly to method of inverse operators.

Let us de�ne a parti
ular solution yp for

1
φ(D)

R(x) su
h that φ(D)yp =

R(x). We will refer

1
φ(D)

as the inverse operator. Without going into the

mathemati
al depth of why

1
φ(D)

is simply a linear operator as well as the

rigorous proof of �nding the parti
ular solutions for the inverse operators, we

simply present the following two important relations whi
h will be essential

in our thesis
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1

D −mR(x) = emx
∫ x

e−mxR(x)dx, (7.97)

and in 
ase of multiple inverse operators a
ting on R(x) where we will have

1

(D −m1)(D −m2)....(D −mn)
R(x) = em1x

∫
em1xem2x

....

∫
emn−1xemnx

∫
e−mnxR(x)dx.

(7.98)

We note an important property of the D−1 operator, we have only spe
i�ed

the upper limit of integration in Eq. (7.97). Spe
ifying a 
onstant lower limit

of integration 
orresponds to adding a 
omplementary fun
tion proportional

to emx.

The �rst simplest example to 
onsider is

1

D − λ
1

τ
= eλτ

∫ τ e−λt

t
dt

= eλτ
∫ λτ

∞

e−u

u

= eλτEi(−λτ). (7.99)

Here we have introdu
ed the substitution u = λτ from line 1 to line 2. This

result is what we need to derive the F
(n)
± (Q2) fun
tions needed for the K

(L)
PT

and U
(L)
PT Sum Rules.

1

1 + z
z1

→ z1
z + z1

→ −z1
D − z1

1

τ

= −z1ez1τEi(−z1τ)
= −z1F (1)

− (Q2), (7.100)

and similarly

1

1− z
z1

→ −z1
z − z1

→ z1
D + z1

1

τ

= z1e
−z1τEi(z1τ)

= z1F
(1)
+ (Q2). (7.101)
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The nth order operators 
an be generalized as follows

1

1 + z
zn

→ −znF (n)
− (Q2), (7.102)

1

1− z
zn

→ znF
(n)
+ (Q2). (7.103)

The last job will be showing how the transformation of the non-perturbative

part in the Shirkov's APT Eu
lidean fun
tions [72℄ in the 1-loop 
ase is equiv-

alent to the non-perturbative part required to be added to F
(n)
+ and F

(n)
− for

both the regions of Q2 > Λ2
and Q2 < Λ2

whi
h we denote as F̄
(n)
+ and

F̄
(n)
− in Eqs. (7.47, 7.48, 7.49, 7.50). The non-perturbative 
ontribution of

Shirkov's APT Eu
lidean fun
tions [72℄ in the one loop 
ase is simply given

by

(
Λ2

Λ2 −Q2

)
=

(
1

1− Q2

Λ2

)
,

=

(
1

1− eL
)
,

we �rst 
onsider applying the operator 
orresponding to the simple pole

1/(1− z
zn
) to Λ2

Λ2−Q2 . We shall rede�ne D ≡ d
dL

(rather than using τ)

n

D + n

(
1

1− eL
)

= ne−nL
∫ L

ent
1

(1− et)dt

= n

(
Λ2

Q2

)n ∫ Λ2/Q2

x−n

(1− x−1)
−dx
x

= n

(
Λ2

Q2

)n ∫ Λ2/Q2

x−n

(x− 1)
dx. (7.104)

Here we have used the substitution x = e−t when going from line 1 to line 2.

The integral in Eq. (7.104) has the form

∫ Λ2/Q2

x−n

(x− 1)
dx =

[
− ln(x− 1)−

n−1∑

k=1

1

k

(
1

x

)k
+ ln(x)

] Λ2

Q2

0

. (7.105)

After some manipulation, we �nally arrive at
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∫ Λ2/Q2

x−n

(x− 1)
dx = − ln

(
n

(
1− Λ2

Q2

))
−

n−1∑

k=1

1

k

(
Λ2

Q2

)−k
+ ln

Λ2

Q2
+ ln(n).

This reprodu
es all of the terms in Eq. (7.47) for F̄
(+)
n in the region Q2 > Λ2

.

Changing the upper limit to Q2/Λ2
for the region Q2 < Λ2

, it is possible

to obtain Eq. (7.48) for F̄
(+)
n . Repeating a similar pro
edure but with the

operator 
orresponding to 1/(1 + z
zn
) a
ting on

Λ2

Λ2−Q2 , Eqs. (7.49, 7.50) for

F̄
(−)
n in the two energy regions are reprodu
ed.

We now need to 
onsider the double pole 
ontributions whi
h appear in

the Borel transform forD
(L)
PT . We need the square of the appropriate operator.

We apply the operator 
orresponding to ( 1
1− z

zn

) again to Eq. (7.105), this gives

∫ Λ2

Q2

[
− ln(x− 1)−

n−1∑

k=1

1

k

(
1

x

)k
+ ln(x)

]
x−n

dx

x
. (7.106)

Solving this parti
ular integral, it has the form

[
L2

(
1− Λ2

Q2

)
−

n−1∑

k=1

(
1

k2

(
Λ2

Q2

)n−k)
− 1

2

(
Λ2

Q2

)n
ln

(
Λ2

Q2

)2
]
, (7.107)

for any positive real integer n. This reprodu
es part of the stru
ture of

Eq. (7.53) for

¯̄F
(n)

+ in the region Q2 > Λ2
. Cru
ially we see that there

is an additional −π2/3 
ontribution in Eq. (7.53). This additional term is

required to a
hieve 
ontinuity at Q2 > Λ2
when 
hanging over to the Q2 < Λ2

region and Eq. (7.54). We are allowed to add this additional 
ontribution of

n(Λ2/Q2)
n
π2/3 sin
e this power 
orre
tion term is part of the 
omplementary

fun
tion, and 
orresponds to spe
ifying a lower limit of integration when

applying the D−1 operator. We have previously not needed to add su
h


ontributions in dis
ussing the single pole 
ontributions. The π2/3 arises via
the dilogarithm relation

L2(x) + L2(1− x) = − ln(x) ln(1− x) + π2

6
. (7.108)

We 
an similarly obtain Eqs. (7.55, 7.56) using the squared operator 
orre-

sponding to the 1/(1 + z
zn
)2 double pole. Similar π2/3 terms are also needed

to ensure 
ontinuity between the two regions Q2 > Λ2
and Q2 < Λ2

of

Eq. (7.55) and Eq. (7.56). We now move on to a brief dis
ussion of Analyti


Perturbation Theory.
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7.8 Analyti
 Perturbation Theory

The whole idea of Analyti
 Perturbation Theory arose from 
onsidering the

problem of unphysi
al or ghost singularities of invariant 
harges in QCD.

Su
h a di�
ulty �rst appeared in QED in the mid 1950s. It played a 
ru
ial

role in the advan
ement and development of Quantum Field Theory.

In the 1950s, Shirkov and 
ollaborators suggested the resolution to this

problem by merging the renormalization group method with a Kallen-Lehman

representation. This simply implies analyti
ity in the 
omplex Q2
-variable.

The 
onsiderations underlying APT are reviewed at length in Ref. [64℄.

The APT expansion has the form of Eq. (7.88) where at the one loop

level we will denote the appropriate Ai(Q2) fun
tions as [72℄

A (1)
shir−1(Q

2) =
2

b

[
1

L
+

1

1− eL
]
, (7.109)

A (1)
shir−2(Q

2) =
2

b2

[
1

L2
− eL

(eL − 1)2

]
, (7.110)

A (1)
shir−k+1(Q

2) = − 1

kb

dA (1)
k

dL
, (7.111)

where the supers
ript implies we are 
onsidering the 1-loop 
ase and the

subs
ript simply means Shirkov. These fun
tions all vanish as Q2 → ∞.

The A1(Q
2) fun
tion has the freezing limit of 2/b as Q2 → 0 while the

higher Ai fun
tions vanish as Q2 → 0. We 
an now obtain LO, NLO and

N2LO trun
ations of the APT series forK
(L)
PT , U

(L)
PT and D

(L)
PT whi
h we denote

by K1
shir−LO, K

1
shir−NLO, K

1
shir−N2LO, U

1
shir−LO, U

1
shir−NLO, Ushir−N2LO, and

D1
shir−LO, D

1
shir−NLO and D1

shir−N2LO, respe
tively. These are 
al
ulated us-

ing the K
(L)
i , U

(L)
i and d

(L)
i leading-b V -s
heme 
oe�
ients. In Figs(7.5, 7.6,

7.7) these trun
ated APT results are plotted versus Q2/Λ2
and 
ompared

with the analytized U∗(L)(Q2), K∗(L)(Q2) and D∗(L)(Q2) results. We have


laimed that the analytized results 
ombining the PT+NP, F + F̄ , 
ontribu-
tions should be a formal all-orders resummation of the APT series. This is


on�rmed ni
ely by the plots of Fig(7.5) and (7.6) for the Sum Rules where

we see that the N2LO results lie on the solid line representing the analy-

tized (supposedly all-orders) APT result. For the D∗(L)(Q2) 
ase in Fig(7.7),

however, we see that the N2LO result and analytized result (solid line) are

dis
repant. This dis
repan
y is plotted in Fig(7.8). It behaves like Λ2/Q2
as

Q2 → ∞ and vanishes as Q2 → 0, so the behavior is like that of an Ai(Q2)
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fun
tion. We suspe
t that this dis
repan
y is 
onne
ted with the need to

restore 
ontinuity at Q2 = Λ2
by adding a 
omplementary fun
tion 
ontri-

bution when applying the D−1 method to the double pole 
ontributions (see

dis
ussion below Eq. (7.108)), but it needs further investigation.

In the next se
tion we shall need higher-loop APT fun
tions. One possi-

bility is to approximate the 2 and 3 loop Eu
lidean and Minkowskian APT


ases using the so-
alled e�e
tive log approa
h. In this 
ontext, it is possible

to use the simple model one loop expressions of Eqs. (7.110, 7.111, 7.112)

with some e�e
tive two loop log L∗ a

umulating the two loop "log-of-log",

A (3)
shir−1,2,3((L)) −→ Amod

shir−1,2,3 = A (a)
shir−1,2,3(L

∗), (7.112)

L∗ = L+
c

b2
ln(
√
L2 + 2π2). (7.113)
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Figure 7.5: Polarised Bjorken Sum Rule K∗(Q2) (in red line) and the 
orre-

sponding K1
shir−LO,NLO,N2LO (in dots) versus

Q2

Λ2 - observe that K∗(Q2) and

K1
shir−N2LO( in bla
k dots) lay on top one another at ea
h parti
ular point
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Figure 7.6: Unpolarised Bjorken Sum Rule U∗(Q2) (in red line) and the


orresponding U1
shir−LO,NLO,N2LO (in dots) versus

Q2

Λ2 - observe that U∗(Q2)

and U1
shir−N2LO( in bla
k dots) lay on top of one another at ea
h parti
ular

point
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Figure 7.7: D∗(Q2) (in red line) and the 
orresponding D1
shir−LO,NLO,N2LO

(in dots) versus

Q2

Λ2 - observe that D∗(Q2) and D1
shir−N2LO( in bla
k dots)

show slight dis
repan
y
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Figure 7.8: Dis
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y betweenD∗(Q2) and D1
shir−N2LO( in bla
k dots)
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7.9 Fits to Low Energy JLab data

In this se
tion we shall perform �ts to the re
ent Je�erson Lab (JLab) and

some existing data for KpBj(Q
2) (Eq. (7.65)) at low Q2

values 0.1 < Q2 <
3 GeV2

. We shall use the "
onformal expansion" of Eq. (7.79) whi
h provides

a toy model to des
ribe the Q2
behavior at all values of Q2

down to Q2 = 0.
We shall repla
e K∗(L) in Eq. (7.79) by various trun
ated APT series ana-

lyti
 results. We assume a minimal model in whi
h we �x C̃K
2 to the value

in Eq. (7.81) required to reprodu
e the low-energy GDH Sum Rule, and set

higher 
oe�
ients in Eq. (7.80) to zero. We also set H(Q2) in Eq. (7.83) to

zero so we do not add any additional analyti
 
ontribution.

To 
onstru
t two loop APT analytization we shall use the results of Ma-

gradze in [73℄ who shows that one 
an write the two loop APT fun
tions

as

A(2)
n (s) = α(2)n

s (s) =
1

π

∫ ∞

0

ρ
(2)
n (σ)

σ + s
dσ =

1

π

∫ ∞

−∞

et

et + s/Λ2
ρ̃(2)n (t)dt, (7.114)

where

ρ̃(2)n (t) =

(
b

c

)n
Im

[
− 1

1 +W1(
b2

ce
exp(−b2t/c+ i(b2/c− 1)π))

]
. (7.115)

We 
onstru
t a two loop LO analytization and a NLO analytization using

these fun
tions.

K2
1−Magradze = A(2)

1 (s), (7.116)

K2
2−Magradze = A(2)

1 (s) + k1A(2)
2 (s), (7.117)

where the supers
ript denotes that the equations are in two loop approxi-

mation. K1 is simply the �rst exa
t 
al
ulated NLO perturbative 
oe�
ient

of the polarized Bjorken Sum Rule given by −0.333Nf + 1.48N + 0.438/N .

Substituting these results for K∗(L) in Eq. (7.79) one obtains the red and

blue lines plotted in Fig 7.9. We 
an also 
onsider LO and NLO APT results

using the one loop Shirkov fun
tions in Se
tion 7.8. These are the green and

bla
k 
urves in Fig(7.9). Finally we 
an 
onsider a NLO trun
ation using

the Shirkov two loop e�e
tive log result of Eqs. (7.113, 7.114). These are the

diamond points in Fig(7.9). We have used Λ
(3)

MS
= 380 MeV, this is the value

of ΛMS used by Shirkov and 
ollaborators for their theoreti
al model, thus
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it is a good 
he
k if the theoreti
al toy plots we obtained will be similar to

the experimental results.

Fig. (7.9) shows the 
omparison of these theoreti
al predi
tions with existing

and re
ent experimental data. All points with error bars 
orrespond to ex-

perimental data [74, 75, 76℄ with the 
olor blue denoting JLab Hall B CLAS

EG1b (
al
ulation of the virtual photon asymmetry A1 and the longitudinal

spin stru
ture fun
tion g as well as the moments of g and then extra
ting

the neutron spin stru
ture fun
tion gen1 from the 
ombined proton gep1 and

deuteron ged1 data using ammonia NH

3
and ND

3
), green denoting JLab Hall

B CLAS EG1a (a previous 
al
ulation with lesser kinemati
 range and less

advan
ed statisti
s), red denoting JLab Halls A,B E94010/EG1a [2002℄ (mea-

surement of the neutron spin stru
ture fun
tion gen1 at low Q2
using (He

3
)

Helium for E94010) and bla
k denoting SLAC E143. For further details of

the experimental analyses, see [77℄ for example. CLAS is the a
ronym of

CEBAF (Continuous Ele
tron Beam A

elerator Fa
ility) Large A

eptan
e

Spe
trometer and SLAC is the a
ronym of Stanford Linear A

elerator. We

see that given that we have used a minimal model with no adjustable param-

eters, as des
ribed above, all the APT analytizations are in good qualitative

agreement with the data. This 
ould of 
ourse be improved by adjusting the

higher CKn 
oe�
ients and introdu
ing an extra analyti
 fun
tion H(Q2).

7.10 Summary

We have 
onsidered in this Chapter how to make the sum of PT+NP ef-

fe
ts for the Sum Rules and Adler D fun
tion in leading-b approximation

an analyti
 fun
tion of Q2
, as the true physi
al result must be. The PT


omponent 
ontributed by an UV or IR renormalon 
an be represented by

fun
tions F
(n)
+ (Q2) and F

(n)
− (Q2). These fun
tions involve the Ei fun
tion

and they 
ontain a logarithmi
 bran
h point at Q2 = Λ2
. This means that

the freezing results investigated in Chapter 5 were only pie
ewise analyti
.

We showed that we 
ould remove the bran
h 
ut in a minimal way by adding

non-perturbative 
ontributions F̄
(n)
+ (Q2) and F̄

(n)
− (Q2). The separate PT and

NP fun
tions are pie
ewise analyti
 with separate de�nitions for the regions

Q2 > Λ2
and Q2 < Λ2

, but the sum of the two 
omponents yields a sin-

gle analyti
 fun
tion F
∗(n)
± (Q2) for ea
h renormalon. We found that these

analytized renormalon 
ontributions resulted in a freezing limit of 2/b for

the Sum Rules, the same as that found in the APT formalism of Shirkov

and 
ollaborators. We showed that we 
ould reprodu
e our non-perturbative

F̄
(n)
± fun
tions by a
ting with a D−1 operator on the non-perturbatve part
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Figure 7.9: KpBj(Q
2) plotted versus Q/GeV. All points with error bars


orrespond to existing and re
ent experimental data. The four lines of red,

blue, green and bla
k arise, respe
tively, from inserting the two loop LO

and NLO, and one loop analytizations at LO and NLO in Eq (7.79). The

diamond shape points 
orrespond to the NLO two loop "e�e
tive log" Shirkov

analytization. We 
hose Λ = 380MeV.
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of the leading APT fun
tion A1(Q
2). In this way our analytized renormalon


ontributions 
ould be 
onsidered as an all-orders resummation of the APT

series. There are 
ompli
ations for the Adler-D fun
tion whi
h has double

poles in its Borel transform. We showed that for the polarized Bjorken Sum

Rule the exa
t low-energy Gerasimov-Drell-Hearn (GDH) Sum Rule gave im-

portant 
onstraints on the form of infrared freezing, and we 
ould derive the

"
onformal expansion" of Eq. (7.79) whi
h should be valid at both small and

large values of Q2
. We 
onsidered a minimal toy model based on this result

and were able to �nd good qualitative agreement with the re
ent JLab data

for KpBj(Q
2) on the range 0.1 < Q2 < 3 GeV2

using various trun
ated one

and two loop APT predi
tions.



Chapter 8

Con
lusions

The fundamental ingredient underpinning the resear
h in this thesis is va
-

uum polarization. The 
al
ulation of QED one loop va
uum polarization was

undertaken in Chapter 2. The renormalized result for va
uum polarization

Π(k2) in the so-
alled V-s
heme is proportional to b ln(−k
2

µ2
), where k is the

momentum �owing through the bubble. In QED b = −2Nf

3
is the �rst beta-

fun
tion 
oe�
ient.

As dis
ussed in Chapter 4 this simple result has amazing 
onsequen
es

when one 
onsiders 
al
ulating a 
omplete photon propagator with the inser-

tion of 
hains of bubbles inside the va
uum polarization loop. One �nds that

the 
lass of so-
alled "renormalon" diagrams 
ontaining a single 
hain of n
bubbles has a bnn! growth in nth order perturbation theory. The bnn! growth
arises be
ause of the powers of b ln(−k

2

µ2
) arising from ea
h bubble, integrated

over k. Using a Borel representation one �nds evenly spa
ed singularities in

the Borel z-plane on both positive and negative semi-axes at intervals of 2/b,
arising from small and large k regions, respe
tively, in the loop integration

over k.

In QCD one has b = (33− 2Nf)/6 and so one 
an re
ast QCD perturba-

tive 
oe�
ients at nth order as an expansion in powers of the QCD b. The
�leading-b�, bn term 
an then be used as an approximation for the pertur-

bative 
oe�
ient and all-orders resummations of this pie
e of the 
oe�
ient

performed. One thinks of this QCD leading-b term as built from 
hains of

e�e
tive bubbles whi
h involve gauge invariant 
ombinations of gluon and

ghost loops resulting in the same b ln(−k
2

µ2
), and it is a more sophisti
ated


onstru
t than the simple QED 
hain of fermion bubbles.

In the 
ase of QCD the singularities on the positive real Borel z semi-axis

147
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are infrared (IR) renormalons , and they imply that the resummed pertur-

bation theory (PT) result must be supplemented by extra non-perturbative

(NP) terms in the form of the operator produ
t expansion (OPE) in pow-

ers of Λ2/Q2
. The IR renormalon ambiguity 
an then be 
an
elled and a

well-de�ned result obtained for the sum of the PT and NP 
omponents. The

singularities on the negative real z semi-axis are ultraviolet (UV) renormalons

and do not impede the Borel summation (at least for large enough energies

where the renormalized one loop 
oupling is positive). Leading-b resumma-

tions with a one loop 
oupling therefore provide a toy model test laboratory

to investigate the interplay of PT and NP physi
s.

In Chapter 5 the results of [31℄ for all-orders leading-b resummations for

the Adler D-fun
tion asso
iated with va
uum polarization and some Deep

Inelasti
 s
attering (DIS) sum rules were reprodu
ed. One obtains a freezing

behavior for the resummed PT result as Q2 → 0 whi
h remains �nite at

the Landau pole Q2 = Λ2
where the one loop 
oupling a(Λ2) diverges. The

observables then 
hange sign and freeze smoothly to vanish in the infrared

at Q2 = 0. For Q2 < Λ2
one needs to introdu
e a di�erent Borel repre-

sentation with the integral along the negative real z semi-axis and with UV

renormalon ambiguities. This freezing behavior is unphysi
al, however, as

higher Q2
derivatives are not �nite and the freezing in Q2

is only pie
ewise

analyti
. In reality the sum of the PT and NP 
omponents must be analyti


in Q2.

In Chapter 6 a new perturbative QCD 
al
ulation of the N3LO (O(α4
s))


oe�
ient d3 in Ref. [40℄ was used to perform �ts to data on the in
lusive

Re+e− ratio at s = MZ , and on the related Rτ in
lusive de
ay ratio. Both

of these quantities 
an be related to the Adler D-fun
tion of va
uum po-

larization via a 
ontour integration in the 
omplex energy-squared s-plane,
whi
h serves to analyti
ally 
ontinue the Eu
lidean D to the Minkowskian

Re+e− and Rτ . Contour improved PT (CIPT) was applied in whi
h the D-

fun
tion is expanded perturbatively inside the integral whi
h is then evalu-

ated term-by term, serving to resum to all-orders potentially large analyti
al


ontinuation terms involving π2b2 and other beta-fun
tion 
oe�
ients. In

Chapter 3 the problem of the renormalization s
heme (RS) dependen
e of

�xed-order perturbative predi
tions was reviewed. The so-
alled CORGI ap-

proa
h was introdu
ed in order to avoid renormalization s
ale µ-dependen
e
by a resumming to all-orders the RG-predi
table s
ale logarithms. Fits to

ALEPH data on Rτ were made using various perturbative approa
hes involv-

ing CIPT and CORGI at N3LO, NNLO and NLO, and making 
onta
t with

the leading-b renormalon dis
ussions of earlier 
hapters all-orders resumma-
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tions of the Adler D-fun
tion inside the 
ontour integral were made to obtain

an all-orders CORGI result mat
hed to the exa
tly known perturbative 
o-

e�
ients. The di�eren
es between the �ts for αs(m
2
τ ) obtained using these

di�erent approa
hes were dis
ussed. One sees reassuringly that the su

es-

sive NLO, NNLO, and N3LO CORGI results get progressively 
loser to the

all-orders result. By evolving up to αs(M
2
Z) using the three-loop mat
hing


onditions to 
ross quark �avour thresholds one obtains the values tabulated

in Table 6.2. An estimate of the un
ertainty in αs(M
2
Z) of δα(M

2
Z) = 0.003

was made. Data on the spe
tral fun
tion Rτ (s) was also su

essfully �tted

using the N3LO CORGI results.

Finally in Chapter 7 we returned to the problem of how the sum of PT

+ NP 
omponents 
an be rendered analyti
, given that the PT 
omponent

by itself is only pie
ewise analyti
. We showed that the leading-b PT the-

ory 
omponent for an IR or UV renormalon, F
(n)
± (Q2), involves exponential

integral fun
tions Ei and has a logarithmi
 "Landau" bran
h 
ut extending

from Q2 = 0 to Q2 = Λ2
in the 
omplex Q2

plane, this 
ould be removed in

a minimal way by adding non-perturbative OPE terms (expansion in powers

of Λ2/Q2
) for Q2 > Λ2

and modi�ed non-perturbative terms (expansion in

powers of Q2/Λ2
) in the region Q2 < Λ2

, denoting these non-perturbative

pie
es as F̄
(n)
± (Q2) The PT+NP split is F

(n)
± (Q2)+ F̄

(n)
± (Q2). Ea
h term sep-

arately is pie
ewise analyti
 having a di�erent form in the two regions, but

the sum of the two denoted F ∗(n)(Q2) is a single analyti
 fun
tion of Q2
for

both regions. We showed that the freezing limit as Q2 → 0 of the fully an-

alyti
 leading-b results was 2/b for the DIS sum rules, but formally in�nite

for the Adler D-fun
tion. This was interesting sin
e 2/b is also the freezing

limit of observables in the Analyti
 Perturbation Theory (APT) approa
h

of Shirkov and 
ollaborators. We showed that our analytized renormalons

are equivalent to an all-orders resummation of the APT series, by developing

a formalism in whi
h observables are represented as a di�erential operator

a
ting on the 
oupling. This approa
h also produ
ed a �nite freezing limit

of 2/b for the Adler D-fun
tion. We showed how for the polarized Bjorken

Sum Rule the exa
t IR Gerasimov-Drell-Hearn (GDH) Sum Rule as Q2 → 0
imposes strong 
onstraints on how observables behave at low Q2

values, and

we 
onstru
ted a "
onformal expansion" Eq. (7.78) whi
h is simultaneously

an expansion in Q2/Λ2
and Λ2/Q2

. This provides a model that 
an be tested

against data in the large Q2
perturbative region right down to Q2 = 0. We

analyzed parti
ularly low energy JLab data for the Bjorken sum rule down

to very low Q2 ∼ 1GeV2
values, and obtained surprisingly su

essful �ts

Fig(7.9). This analyti
 leading-b resummation looks very promising for fur-
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ther interesting studies of the interplay between large Q2
perturbative QCD

physi
s and the more intra
table strong-
oupling low-Q2
physi
s.
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