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Abstract - Proportional electro-hydraulic valves are ubiquitous as flow actuators in hydraulic systems. Flow regulation is 
the result of the accurate positioning of a spool driven by a solenoid and a position sensor. The overall control consists of two 
hierarchical loops: the inner loop is the solenoid current regulator with a closed-loop bandwidth close to 1 kHz. A model-
based digital regulator of this kind has been presented elsewhere. The outer loop is a position tracking control, in charge of an 
accurate positioning of the spool with respect to the valve openings. The paper addresses the outer loop and concentrates on 
the conversion of an existing industrial analogue controller into a digital one. The analogue controller is a nonlinear 
proportional, integrative and derivative controller including a second-order derivative, and is capable of recovering a dead-
band hysteresis. The digital conversion provides the necessary position derivatives through a state predictor, in order to 
withstand the 5-kHz Nyquist limit of the power supplier. As such it departs from traditional conversions dating back to more 
than ten years ago. The digital control law is fed by the state predictions and repeats the analogue control law with some 
improvements, as shown by the reported experiments. 
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2 

Published on International Journal of Mechatronics and Automation, 2014, vol. 4, no. 2, pp. 93-103. 

doi: 10.1504/IJMA.2014.062336, Inderscience Publishers 

 

1. Introduction 
Proportional electro-hydraulic valves are ubiquitous as 
flow actuators in hydraulic systems, and since more than 
ten years digital electronics and control have been 
integrated with them according to [1], [2], [3], [4] and 
[5]. Main advantages are configurability, parameter 
tuning, diagnostic and monitoring capabilities [2]. This 
paper concerns the conversion from analogue to digital 
control. An advantage of digital controllers is that they 
can be developed and implemented as model-based 
controllers. Embedded Model Control (EMC, see [6], [7] 
and [8] ) is a methodology to do this, since it embeds the 
design model in the control unit.  

Recent literature on hydraulic servo systems is mainly 
concerned with hydraulic actuators as in [9], [10], [11], 
[12] and with manipulators [13]. Control design 
methodologies ranges from adaptive control [11], [12], 
[13], to nonlinear back-stepping [9] and to mixed 
sensitivity H-infinity design [14]. Control design is 
usually approached in continuous time. Here digital 
control is fully designed in discrete time, and we adopt 
the way of separating control law and state predictor. In 
the literature no state predictor is implemented for 
estimating the state variables of the control law, but a 
single output feedback is directly designed. Here the 
output feedback is separated into a state predictor as a 
first step toward a model-based control that includes 
active disturbance rejection as in the current regulator 
[15]. Disturbance rejection is still in charge of the 
integrative part of the PIDD2 (proportional, integrative, 
derivative and double derivative) control law. Since the 
state predictor provides position, velocity and 
acceleration in a unified manner, the control law 
simplifies to a state feedback plus integrative dynamics.  

A first step of the academic authors in the field of 
electro-hydraulic valves was made some years ago [16], 
[17]. Recently the research was resumed and 
experimental results of the solenoid current regulator 
have been reported in [15]. The paper extends modelling, 
control design and experiments to position control [18].  

Flow regulation is the result of the accurate 
positioning of a shaped cylinder, the spool, which is 
driven by a solenoid and a position sensor, usually a 
LVDT (Linear Variable Differential Transformer). The 
solenoid force being unidirectional, unlike voice coil 
motors, requires a contrasting spring assembly for 
disposing of a differential force. Positioning accuracy is 
contrasted by solenoid plunger friction, by fluid forces 
depending on the pressure drop across the valve 
openings, by complexity and hysteresis of the 
electromagnetic force generated by the solenoid. Friction 
is alleviated by interposing a self-lubricating surface 

between plunger and magnetic core. The magnetic circuit 
is shaped to obtain an electromagnetic force which is 
close to be proportional to the driving current and 
constant in the operating region of the spool 
displacement. The magnetic circuit is made of soft 
ferromagnetic material, but a hysteresis cycle remains. 
The hysteresis width of the study case reaches 0.3 A, 
which is about 10% of the peak current. The cycle is 
travelled as in a dead band, and the bandwidth must be 
recovered in short times (< 2 ms) to avoid distortion of 
the reference position profile. The LVDT position sensor 
is mounted on the solenoid plunger. The spool is not 
rigidly connected to the plunger, but is kept in contact by 
a spring assembly. The solenoid circuit is driven by a 
current regulator and a 10-kHz PWM (Pulse Width 
Modulation) power amplifier.  

The paper is organized as follows. A review of the 
plunger and spool dynamics is given in Section 2 
together with the experimental profile of the hysteresis 
cycle. Hysteresis has been modelled from experimental 
data as a static dead band plus a first-order dynamics. 
The result is a nonlinear dynamics from current to the 
measured plunger position having relative degree equal 
to three. The dynamic model assumes a unique moving 
body made by plunger and spool, which relies on the 
assumption of ideal and steady contact between them 
[14], [19]. Section 3 firstly recalls requirements and 
performance of the current regulator [15]. The regulator 
plays the role of the inner loop of a hierarchical control, 
since the current reference is provided by the position 
control (the outer layer). The analogue position controller 
is briefly outlined, since the digital position control has 
been designed to repeat and improve analogue 
performance. The core of the analogue control is an 
industrial nonlinear PIDD2 (proportional, integrative, 
derivative and double derivative), which aims to recover 
the hysteresis dead band. Digital conversion relies on a 
fourth-order state predictor that has been designed with 
the aid of the EMC methodology. The state predictor 
provides the variables entering the control law. Analysis 
and design of the state predictor is provided with the aid 
of some theorems and of the literature about Bode’s 
theorem [20], [21]. The control law repeats the analogue 
PIDD2, but employs a reshaped nonlinear function. 
Section 4 presents and discusses experimental results.  

2. Dynamic model 

2.1. Solenoid dynamics 

Solenoid current dynamics and digital control have been 
presented in [15]. The current regulator is an inner loop 
of the overall valve control system enlarging the solenoid 
open-loop bandwidth. The closed-loop dynamics from 
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current reference  I t  to the measurement  I t  has 
been designed and experimentally tested to approximate 
a 0.2 ms delay plus jitter. The following equations apply: 

 
     
  max1.5 mA, 0.2 ms, 0 3 A

I

I

I t I t e t

e t I I





  

    
. (1) 

2.2. Plunger and spool dynamics  

Assuming rigid connection between plunger and spool, 
the following state equations can be written  
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

. (2) 

They are valid within the spool stroke region, i.e. 
between the rest position minX  imposed by the spring 
assembly and the end stroke maxX , the latter fixing a 
limit to operations: 

 min max

min max2.5 mm, 1.25 mm

X x X

X X

 

  
. (3) 

The notations of (2) are as follows. 
1) x  and v  denote spool displacement and velocity 

from the sensor zero. The sensor zero is close to the 
spool hydraulic zero. 0.1 kgm   is the total moving 
mass of the plunger and spool. The mass-spring 
frequency   1

2 / 50 Hzof K m    can be taken 
as the open-loop bandwidth. 

2)  , ,fF x v p  denotes fluid visco-elastic forces 
satisfying  0,0, 0fF p   and  ,0,0 0fF x  . 

3)  , , ,aF x z z v  is the friction force, depending on the 
LuGre deformation z  and rate z  [22]. At zero 
position and deformation rate it satisfies  

     00, ,0, sgna aF z v v F .  (4) 

4)   max, , ,  0sF x I I I I   is the electromagnetic force 
including magnetic hysteresis. At zero position, it is 
balanced by the return spring pre-load 0KX  and by 
the static friction 0aF  in (4) as follows: 

     0 0 00, ,sgn sgns aF I I KX v F  . (5) 

5) Because of  sgn I  (magnetic hysteresis) and of 
 sgn v  (friction), the bias current 0I  in (5) is not 

uniquely defined, but it may vary in the order of 
fractions of Amperes. The experimental magnetic 
hysteresis cycle is in Figure 1. Increasing current and 
force occurs on the right edge of the cycle.  

 

Figure 1 Experimental hysteresis cycle. 
The hysteresis cycle is clearly of magnetic origin 

since the force depending on the magnetic flux lags 
behind the solenoid current. Instead of using standard 
models of magnetic hysteresis like Jiles-Atherton and 
Preisach [23], we preferred fitting a dynamical model to 
experimental data, taking into account that the magnetic 
circuit properties are steady and only depend on 
temperature. Further studies and experiments pointed out 
that the hysteresis cycle in Figure 1 is of dead-band type. 
In other terms, when the current derivative changes sign, 
the output force remains pretty constant waiting for the 
current to reach the decreasing edge (the left edge in 
Figure 1). Nonlinearities of this kind have been widely 
studied (see for instance [24] and [25]). The dead-band 
type is confirmed by the frequency responses (only the 
argument is shown) in Figure 2. The sinusoidal response 
of a regular and normalized dead-band cycle (both edges 
are parallel lines having unit slope) shows uniform 
attenuation and angular phase, whichever be the input 
frequency. Attenuation and phase depends on the input 
magnitude. Figure 2 shows uniform phase (about 20 to 
30 degrees) with respect to a first-order (plus delay) 
harmonic response fitting experimental data. The fitting 
delay corresponds to a PWM cycle (0.1 ms) and can be 
neglected by control design. The first-order time constant 

1 2 msa    cannot be neglected in view of a target 
closed-loop delay of the order of 3 msc  . Thus  sF   
has been modelled as 

 
        
   

0, / ,  0

,

s a

s s

c t c t b I I c c

F t F x c

   




 (6) 

where  sb   is the dead-band function, c  is a current 
[A], and  sF   is the average electromagnetic force. 

Figure 2 Current-to-force frequency response (argument). 
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2.3. Position sensor  

The LVDT sensor is sinusoidally excited with a 
frequency sf  close to the PWM Nyquist frequency 

max 5 kHzf   and has a bandwidth (BW) 500 Hzs  . 
Figure 3 shows the unilateral root spectral density 
(briefly PSD) of the measurement zero-mean error. Data 
were retrieved upstairs (wide-band noise) and downstairs 
(digitally filtered noise) a digital anti-aliasing filter. The 
low-frequency content is respected until 1 kHz, just 
above the sensor BW, and well beyond the target position 
BW of about 100 Hz.  

Figure 3 Spectral density of the position sensor noise.  

 
The sensor dynamic model is the following 

 

          
       
   

,max

1

1 /

,  sat ,

sin 2

s s s s s s

s s s m s m

s sk s sk sk

x t x t K K x t e t

y t x t b V t y V

e t E kf t



  



     

  

  



. (7) 

In (7) sx  is the state of output low-pass filter, sK  is the 
sensor gain with scale factor uncertainty sK , the zero-
mean input noise se  is the sum of a random error s  and 
of a periodic component tuned on the excitation 
frequency sf  (the resonance peaks in Figure 3). The 
input noise is partially filtered by the output low-pass 
filter in (7) as shown in Figure 3 (wide-band noise). The 

basement of the higher frequency content does not decay 
due to a mix of numerical errors and residual aliasing, 
notwithstanding a 200 kHz sampling. The bias sb  only 
accounts for electronics and sensor mounting errors, and 
can be identified and corrected, unless for thermal 
variations. The ultimate bias is the offset between the 
spool hydraulic zero and the sensor zero. The function 

 maxsat ,y y  stands for maxy y . 

3. Analogue and digital control  

3.1. Requirements 

Position requirements are similar to current requirements. 
Some metrics for experimental evaluation of the position 
control for hydraulic systems are reported in [26]. They 
include mean and absolute positioning accuracy, 
corresponding to the root mean square (RMS) error and 
to the maximum absolute error, respectively. Both errors 
are adopted. No transient metrics seems suggested in 
[26], unlike here where delay and slew rate are evaluated. 
Given a reference position signal  r t , the plunger 
position x  (the same as the spool position under rigidity 
assumption) is delayed and corrupted as follows 

 
      
   

max

max 5 ms, 10 m

x

x x

x t r t r t

r t

 

  

  

 
, (8) 

where x  is the residual tracking error which is defined 
as the difference between the total tracking error 

xe r x   and the nominal tracking error xe . The latter 
is imposed by the target delay x  and by the reference 
rate xr  as follows 

          ,  x x x x x xt e t e t e t r t     . (9) 

The maximum delay refers to the maximum stroke 

max2X  in (3) (100%), but becomes smaller for 
intermediate and small strokes, in which cases it reaches 
3 ms. The slew rate must be of the order of 0.25 m/s to 
repeat a full-stroke 50 Hz ramp.  

3.2. The analogue position loop 

The analogue position loop is a proportional (P) plus 
derivative (D), plus double derivative (D2) action. It is 
completed with a feedforward and integrative (I) action 
and a dead-band compensation. The double derivative is 
mandatory to raise the loop phase delay to about -135 
degrees in the frequency band above the open-loop 
bandwidth of 50 Hzof  . In this way the closed-loop 
BW cf  can be widened up to 100 Hz. The latter 
frequency stays in the range 80 150 Hz  of the cut-off 
frequency of the current-to-force dynamics in (6) and is 
sufficiently lower than the current regulator BW in (1).  
The state equations of the nonlinear PIDD2 controller in 
Figure 4 are the following ones. 
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Figure 4 Block-diagram of the analogue position controller. 
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The variable ix  is the integrative state, the triple 

1,  d dx x  and 2dx is the derivative state vector, mx  is the 
state of the measurement low-pass filter. The reference 
and sensor voltages are rV  and mV .  The nonlinear 
function  pK  , replacing the proportional gain, is 
shown in Figure 5. In the analogue control circuit, it is 
implemented as a piecewise curve, whereas in the digital 
version a smooth function has been implemented. Units 
in Figure 5 are the voltage units of the analogue 
operational amplifiers that saturate to about 13 V.  

Figure 5 Nonlinear position error function in voltage units. 

 
The reference current to the analogue current 

regulator is computed as 
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Typical parameters are in Table 1. 
 

Table 1 Main analogue controller parameters 

Parameter Symbol Unit Value  
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Differential gain  pk   V/V 4~40  
Integrative gain iK   V/V 0.4~0.6 
Derivative gain dK   V/V 4 
Solenoid resistance  R      4 

 
The nonlinear monotonic function  pK   in (10) can be 
approximated around each error point 0eV  of 

e r mV V V   as follows 
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K V V
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 
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, (12) 

where eV  is the differential error, pk  the differential 
gain in Table 1, 0cV  the error offset, and cV  is the 
approximation error. In the analogue case, due to 
piecewise implementation, the approximation error cV  
is first order in eV  which causes jumps in the reference 
current. The smooth implementation of the digital control 
shown in Figure 5 aims to avoid them. 

Figure 6 Magnitude of the feedback bode plot of the analogue 
and digital controllers. 

 
The feedback transfer function  K s  of the analogue 

controller, that can be computed from (10), and that of 
digital controller are compared in Figure 6. The digital 
control plot halts at the PWM Nyquist frequency 

max 5 kHzf  . The higher-frequency roll-off of the 
analogue feedback at maxf f  is a consequence of the 
double derivative action. Since a similar decay cannot be 

implemented in the discrete-case, because of the PWM 
Nyquist frequency, it has been surrogated as follows.  
1) Suitable (analogue/digital) filters have been designed 

to avoid aliasing as shown in Figure 3 for the 
position sensor errors.  

2) Derivative and double derivative are surrogated by a 
fourth-order state predictor which is driven by the 
position measurement, as explained in Section 3.3. 

3) Close to maxf , the magnitude of the digital  K s  
has been attenuated as it can rely on the wider band 
of the current regulator in (1).  

3.3. Digital control: state predictor  

The block-diagram of the hierarchical digital control is in 
Figure 7. The core of the control unit is the state 
predictor that computes the position derivatives.  

Only the digital measured position xy  enters the state 
predictor, which corresponds to assume that the overall 
plunger and spool acceleration  a i  (in length units [m]) 
is completely unknown. The assumption imposes to 
model the unknown  a i  as a stochastic process which is 
sum of a drift d  and of a white noise aw , in agreement 
with the EMC methodology ([6], [7] and [8]). Since no 
statistical model is attached to d  and aw , and no 
Kalman filter is employed, aw  can be better interpreted  
as an arbitrary and bounded signal, but having zero mean. 
It could be referred as an uncertainty input, but the term 
‘noise’ is ‘used’ for short. The drift is driven by the noise 

dw . The driving noise vector  

  T
a dw ww , (13) 

is estimated from the model error me , which is defined 
by the difference between the anti-aliased measurement 

xy  and the predicted position x  as follows  

          m x x me i y i x i y i y i    . (14) 

 

Figure 7 Block-diagram of the digital control. 

 

 

10
0

10
5

10
-2

10
0

10
2

M
ag

ni
tu

de
 [

A
/m

m
]

 

 

Analogue feedback
Digital feedback

 u i  xy i

 r i

Solenoid +plunger 
+spool+sensor+filters

PWM+ current 
sensor 

State 
predictor

Digital anti-
aliasing filter

Higher-level

Control 
law

Current 
regulator

 Iy i

 xy i x i

 v i I i
 a i

 xr i

Digital control 
unit

Supply voltage

Digital filter
Position control unit



7 

Published on International Journal of Mechatronics and Automation, 2014, vol. 4, no. 2, pp. 93-103. 

doi: 10.1504/IJMA.2014.062336, Inderscience Publishers 

 
Since no noise component exists between the 

acceleration a  and the position x , only a dynamic 
feedback can connect the model error me  and the noise 
vector w  in a stabilizable way (see [7]). The resulting 
state equation is found to be:  

 
       
     

01 ,  0x

m m x

i A i Ly i

i C i D y i

   

 

x x x x

y x
. (15) 

The three matrices, the state vector x  and the output 
vector y  in (15) hold  

1 1 0 0 0

1 1
,  ,  

0 1

1 0 0 1 1

1 0 0 0 0

,  0 1 0 0 , 0

0 1

a a a

d d d

m

m m

a a a

x

v l m l
A L

d l m l

q

y x

v C D

a l m l



     
            
     
     

      
     

          
          

x

y

. (16) 

The five unknown gains in (16) are , , , ,a d a dl l m m  . The 
state q  is the feedback state, v  is the position increment 
[m] and a  is the DT acceleration [m]. The state predictor 
contains a dynamic feedback and a two-column gain 
vector, what becomes clear by expressing the noise 
vector estimate  

    a a a x m

d d d

w l m y y
i i

w l m q

     
      

    
w . (17) 

3.4. Digital control: state predictor design  

The gains in (16) are designed by fixing the four closed-
loop eigenvalues  1 1 4 41 ,..., 1m          of the 
state predictor. Employing the complementary 
eigenvalues 1,..., 4k   and setting 1    allows the 
characteristic polynomial  AP   of A  in the form  

 

     

 

4 4

1 1

4 3 2
3 2 1 0

4 3 2

A k kk k

a a d a d d

P

c c c c

l m l l m l

    

   

     

 
    

     

       

 
, (18) 

where the assumption 0 1k   implies 0kc  . 
Equality of known and unknown coefficient in (18) 
yields four nonlinear gain equations  

 3 2 1

0

,  ,  a a d a

d d

c l c m l l c

m l c

 


    

 
, (19) 

which admit infinite solutions because of five unknowns. 
Further since 

4

k ii
   , it holds 

 
1 1 3 2

4 4 4
0

a

i j k i i ji j k i i j

c l c c c

     
  

   

    
. (20) 

The set of solutions is built by rewriting the last two 
equations of (19) as functions of the parameter dl C : 

  
1 0

min 1 0 max

min max

,  / /

; /

0, 0

a a d d d

d a d

m c l l m c l

l l c l l c l

l l

  

 

    

      

 

C . (21) 

The next theorem states the invariance of transfer 
function within the convex set C , which implies that dl  
may be arbitrarily selected.  
Theorem 1. The following transfer functions of the state 
predictor (16), namely  

   
     

     
 

,  ,  px pv pa
x x x

x z v z a z
V z V z V z

y z y z y z
   , (22) 

are invariant for dl C .  
Proof. Using the notation 1s z  , the transfer functions 
in (22) are easily obtained as  

 

 

   
   

2
2 1 0

4 3 2
3 2 1 0

2

1

1 1

1 1

px

pv px

pa px

c s c s c
V s z

s c s c s c s c

V s z sV s z

V s z s V s z

 
  

   

    

    

. (23) 

Since they only depend on the coefficients ,  0,...,3kc k   
in (18), they are independent of the particular solution of 
(19). Thus the simplest solution is to assume 0dl  . □ 

The second design issue is to select the four 
complementary eigenvalues k  in (20). The 
requirements refer to the complementary sensitivity 

 pV z  in (23). They fix an upper bound ,maxpV  to the 
overshoot and a lower bound ,minvf  to the bandwidth 

maxvf f  as follows  

 
 

 
max

2
,max

2

max 1.25

max 0.1
v

j fT
p pf f

j fT
pf f

V e V

V e



 





 

 
. (24) 

According to [20], Corollary 2, the Poisson’s integral 
formula allows to write the integral equality 

  max 2
max0

ln ln /
f j fT

pK V e df f
    (25) 

under the assumption that  pV z  is Hurwitz and 
minimum-phase. The gain K  is obtained by expanding 

 pV z  in (23) around 1z    and by taking the 
lowest-order term, which yields 

      2

2lim 1 1 ,  p z pV z V z K z K c


        . (26) 

Further, if maxf f , (26) can be approximated by 
making explicit the bandwidth vf , what in turn provides 
the expression of K  as follows 
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 

 

2 2

2

2

max

2

2

/

j fT v v
p

v

f T f
V e

fT f

K f f

 








   
    
   



. (27) 

According to [21], the integral in (25), and therefore 
K , can be upper bounded using the bounds in (24) in 

the following manner: 

 
 

   
max

,max max max

ln 2ln 2ln /

ln / ln 1 /

v

p v v

K f f

V f f f f




   

  
. (28) 

Given ,maxpV  and  , (28) can be solved in terms of the 
frequency ratio max/vf f  , what provides a lower 
bound to vf . Figure 8 shows the ratio     obtained by 
rearranging (28) as follows 

  
 ,max2 ln ln ln

1
ln 2 ln

pV  
 

 

 
 


. (29) 

The candidate vf  is obtained for   1   . With the 

help of (26) and (27), Figure 8 yields  

 max 20.25 ,  0.6vf f c  . (30) 

Figure 8 The function providing a lower bound to the 
complementary sensitivity bandwidth. 

 
The complementary eigenvalues ,  1,..., 4k k   in 

(20) have been selected to satisfy (30). Their values are 
listed in Table 2.  

3.5. Digital control: control law 

The output variables of (16) and the filtered reference 
 xr i  are the input variables of the digital control law 

that emulates the analogue controller as follows 

 

       
       

0

0

max

1 ,  0

,  0

dp
dr x di i da dv

s

i i x i i

x x

K
I I b K r K x K a K v

K

x i x i e i x x

e i r i x i I i I

 
       

 
   

   

. (31) 

The control law (31) includes the bias current 0I , the 
feedforward term proportional to xr , the integrative 
action proportional to ix , acceleration and rate feedback 

and the nonlinear feedback  dpK  , which is function of 
the tracking error xe  in voltage units. The feedback gains 
and the function  dpK   have been properly tuned for 
emulating the analogue control response as in Figure 6. 
The main digital control parameters are in Table 2. The 
four feedback gains in (31) are proportional to the 
relevant analogue gains in Table 1. 

The nonlinear function in Figure 5 has been designed 
to invert the nonlinearity (6) inside the open-loop band 

50 Hzof f  . The dead-band phase delay of about 
20 30 degrees (see Figure 2) corresponds to a time 
delay which is not negligible with respect to the target x  
in (8). The abscissa corresponds to the tracking error xe  
in (31). A sketch of the proof of  dpK   is the following. 
Within the open-loop BW of  one may approximate (2) 
and (6) with the stationary and average equation 

     ,  35 Vs/mc t Kx t   , (31) 

where   is the average flux linear density of the force 
profiles. Then, the tracking error xe  within the closed-
loop bandwidth c of f , must equal the derivative of the 
reference signal xr , which is required to bring the static 
error to zero. In other words the tracking error tends to be 
proportional to the plunger rate x  and through (31) to 
the current derivative  c t . Therefore, inversion of the 
dead-band  ,sb I I  in (6) may be obtained by 
approximating the inverse map 

    1 ,sI t b c c  . (32) 

The higher proportional gain around the origin in Figure 
5 does the purpose.  

Table 2 Main digital control parameters 

Parameter Symbol Unit Value  
Length to current 
gain  

b   mm/A 0.035 

Voltage to length 
gain 

sK   V/mm 3.3 

State predictor 
eigenvalues 

 1 4,..., 
  

 2×0.4, 
0.04,0.04 

4. Experimental results 
Experimental tests were performed on a test rig which 
consists of a pump, the valve under test and a second 
valve acting as a load. The supply pressure sP  and the 
tank oil temperature are measured. 

4.1. Time response  

Figure 9 50% square-wave reference and response. 
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The results below refer to 20 barsP  . The time 
responses to square and triangular waves are shown in 
Figure 9 and Figure 10. Figure 9 refers to a square-wave 
reference. The response is delayed because of the current 
limit (accounted for by the position control (31)) and by 
the current regulator slew rate in (1). Figure 10  refers to 
a triangular wave. Figure 10 proves that the target delay 
between reference and response is close to 3 ms also for a 
70% stroke reference.  

Figure 10 70% triangular-wave response. 

 

4.2. Frequency response 

The frequency response to a small- and large-signal 
sinusoidal reference is shown in Figure 11 and Figure 12. 
Small signals correspond to the 5% of the maximum 
stroke. Large signals to the 90%. Figure 11 shows the 
Bode magnitude of the frequency response. A better 
regularity of the digital response than the analogue 
controller is evident. Rather significant is the constant 
unit response in the case of small signals from DC to 100 
Hz, which emulates the target delay response.  

 

Figure 11 Closed-loop Bode magnitude at different 
strokes. 

 

Figure 12 5% closed-loop Bode argument. 
Figure 12 plots the argument of the small signal response 
and confirms the designed delay response (dash-dot 
profile) at least from DC to 100 Hz. After that, the digital 
argument becomes lower than the delay argument in 
agreement with the magnitude drop in Figure 11. The 
small-signal responses in Figure 11 and Figure 12 look 
very similar to the small-signal responses in [14].  

4.3. Residual analysis  

Figure 13 show the residual measured tracking error x , 
which was defined in (9) as the total tracking error xe  
minus the nominal error xe . The residual tracking error is 
due to uncompensated disturbances and to the reference 
signal noise. Figure 13 shows that the residual error is 
pretty independent of the specific reference shape, thus 
being function of the non-rejected disturbance, mainly 
fluid forces. Of course it depends on the reference period 

rP , which in this case amounts to 0.1 s ( 10 Hzrf  ).  

Figure 13 Residual (total less nominal) tracking error.  
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More information can be obtained from the PSD  eS f  
of the residual error (not reported). The latter can be 
decomposed into three components. The flat basement is 
of the order of 0.04 μm/ Hz  and is due to the noise of 
the reference signal (the latter is provided by a higher 
level control). The basement value is of the same order of 
the flat mid frequency PSD of the measurement noise in 
Figure 3. A series of resonance peaks occur at the 
multiples of the reference frequency rf . The on-going 
design effort is to further abate such components, whose 
magnitude mainly depends on the pressure drop level.  
A summary of the requirements and of the preliminary 
performance is reported in Table 3. 

Table 3 Requirements and performance summary  

Parameter Symbol Unit Value Performance 
Target delay  x   ms <5 3 ms @ 70 % triangular 

wave and 5% sine 
reference, acceptable 

Residual 
tracking error  

x   mm 0.01 <0.04 @ 20 barsP  , 
to be improved 

Slew rate  m/s 0.25 0.12 @ 50% square 
wave reference, to be 
improved 

 

5. Conclusion 
The digital conversion of an industrial analogue 
controller driving a proportional valve has been outlined. 
The conversion method has been preceded by a short 
description of the valve dynamics, emphasizing a 
dynamic dead-band hysteresis between current and force. 
Dead-band compensation requires a nonlinear feedback 
and a PIDD2 analogue controller. Derivatives are directly 
provided indiscrete-time through a state predictor which 
was developed according to the Embedded Model 
methodology. The design of the state predictor allows to 
tune the frequency response from the position 
measurement to the estimated position, velocity and 
acceleration. In this way the requirements, that in this 
case are expressed in terms of the overall feedback 
transfer function of the analogue PIDD2, can be easily 
met and changed. Experimental results, partly reported in 
the paper, confirm the method validity and also the 
robustness of the control under different pressure and 
temperature conditions. Some possible improvements 

have been enlightened in view of a full model-based 
controller.  
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