Biotechnological approach in *Lamiaceae* species for the production of antioxidant and antibacterial compounds

INDEX

Abstract

Chapter 1. *In vitro* plant cultures for the production of secondary metabolites

1.1 Introduction
1.2 Plants undifferentiated cell cultures
1.3 Organ cultures
1.4 Biotransformation and Plant metabolic engineering for the production of secondary metabolites
1.5 Antioxidant and antibacterial molecules of interest: the case study of Rosmarinic and Carnosic acids

1.5.1 Natural antioxidant compounds
1.5.2 Natural antibacterial compounds

References

Chapter 2. Molecular cloning of *SoHPPR*, encoding a key enzyme in Rosmarinic acid pathway, and its expression in cell cultures of *Salvia officinalis* L.

Abstract

2.1 Introduction
2.2. Aim of research
2.3 Materials and methods
 Cloning and sequencing of *SoHPPR* cDNA
 Cell suspension cultures
 Radical scavenger activity
 Rosmarinic acid determination in cell suspensions
 Expression pattern analysis of *SoHPPR*: qRT-PCR
 Cloning vector and bacterial strains
 Agrobacterium-mediated transformation and plant regeneration

2.4 Results and discussion
 Cloning and sequencing of *SoHPPR*
Characterization of *S. officinalis* cell suspension cultures 39

Expression of *SoHPPR* in cell suspension cultures 42

Agrobacterium-mediated transformation protocol for *S. officinalis* callus 42

2.5 Conclusions

Production of Rosmarinic Acid in cell cultures: an easy way to get naturally derived antioxidants 47

Is HPPR a desirable candidate gene to increase RA content via plant genetic engineering? 48

References 50

Chapter 3. Carnosic acid as natural antibacterial compound in *Rosmarinus officinalis* cell cultures

Abstract 55

3.1 Introduction 55

3.2 Aim of research 60

3.3 Materials and methods

In vitro antibacterial activity of CA extract 61

Bacteria isolation and characterization 61

In vitro antimicrobial activity of the extract on bacterial isolates 62

Evaluation of short term effect of carnosic acid extract on the growth some in vitro cultivated plantlets 62

In vitro culture of *Rosmarinus officinalis* L. 64

Gamma irradiation and plant regeneration 65

CA extraction from plants, calli and cell suspensions 65

3.4 Results and discussion

Contamination during micropropagation: CA antibacterial activity on isolated extracts 67

Effect of CA extract on plant growth and regeneration 69

In vitro culture of *Rosmarinus officinalis*: callus differentiation and cell suspensions characterization 70

Gamma irradiation and plant regeneration 73

Detection of CA in tissues and undifferentiated cells cultivated *in vitro* 75

3.4 Conclusions 79

References 81