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cellular response to them can change when particles are small. For example small particles 
can be uptaken by cells where larger ones cannot. Cellular response to such particles is 
important because the particles could be used as injectable synthetic bone grafts and also 
because other implantable bioactive glasses may release small particles during degradation 
or when under load. When particles are uptaken by cells it is important to determine where 
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Abstract 

Sub-micron particles of bioactive glass (SMBGs) with composition 85 mol% SiO2 

and 15 mol% CaO were synthesised and characterised. Bioactivity was demonstrated 

by the formation of calcium apatite following 5 days immersion in simulated body 

fluid (SBF). The effect of a 24 h exposure of SMBGs (100 µgml
-1

, 150 µgml
-1

, 200 

µgml
-1

) to human mesenchymal stem cells (hMSCs) on cell viability, metabolic 

activity and proliferation was determined using the LIVE/DEAD, MTT, total DNA 

and LDH assays after 1, 4 and 7 days of culture. None of the SMBG concentrations 

caused significant cytotoxicity, except the highest doses of 150 and 200 µgml
-1

 which 

significantly decreased hMSC metabolic activity after 7 days of culture. Cell 

proliferation decreased as SMBG concentration increased; however none of the 

SMBGs tested had a significant effect on DNA quantity compared to the control. 

Confocal microscopy confirmed cellular uptake and localisation of the SMBGs in the 

hMSC cytoskeleton. Transmission electron microscopy revealed that the SMBGs 

localised inside the cell cytoplasm and cell endosomes. These findings are important 

for assessing the toxicity of sub-micron particles that may either be used as injectables 

for bone regeneration or generated by wear or degradation of bioactive glass 

scaffolds.  

*Abstract
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1 Introduction 

 

Bioactive glasses are promising materials for hard tissue regeneration because of their 

distinctive properties of rapid bone bonding, controlled biodegradability and ability to 

stimulate new bone growth [1]. Bone bonding arises due to the formation of an apatite 

layer on the glass surface following contact with body fluid [2] and osteogenesis is 

thought to be stimulated by the release of ions from the glass which triggers cell 

activity [1]. Current commercially available BG particles include NovaBone 

(NovaBone Products LLC, Alachua, Florida) which is used in a wide range of dental 

and orthopaedic applications. Novabone
®
 has the composition known as 45S5 

Bioglass
®

 (46.1 mol% SiO2, 26.9 mol% CaO, 24.4 mol% Na2O and 2.5 mol% P2O5). 

The particles are in the micrometer size-range (90-710μm) and are irregular in size 

and shape. Sub-micron bioactive glass particles (SMBG), are an attractive alternative 

to bioactive glass microparticles for hard tissue regeneration as their small size and 

higher specific surface area makes them ideal for injection into the bone defects or 

incorporation within a polymeric matrix to synthesise porous composite scaffolds. 

Sol-gel derived bioactive glasses tend to contain fewer components than the melt-

derived glasses and can exhibit enhanced bioactivity and resorbability due to their 

increased surface area, provided by the nanoporosity inherent to the sol-gel process. 

Higher surface area significantly enhances their solubility [3]. Recently, Hong et al 

[4] used the sol-gel process to produce SiO2-CaO-P2O5 ternary glass-ceramic 

nanoparticles (20 nm). The small size of the particles is likely to be responsible for the 

crystallisation during thermal stabilisation because driving force for nucleation of 

crystals increases with specific surface area. The phosphate in the ternary system is 

not an essential component for bioactivity as the low quantities of phosphate in sol-

gel bioactive glass forms orthophosphate [5], which is loosely bound to the glass 

network and lost rapidly in dissolution, and, the surface will adsorb phosphate ions 

from the body fluid [6]. Phosphate-free glasses in the binary system SiO2-CaO have 

been shown to exhibit both in vitro and in vivo bioactivity [7, 8]. Martines et al [9] 

studied the compositional range of 50-90 mol% SiO2 in sol-gel glasses to investigate 

the compositional limits of bioactivity in SBF. Their results demonstrated that all 

glasses were bioactive in that they formed an apatite layer in SBF such that with 

increased SiO2 in the composition the rate of formation of apatite decreased [9]. Sol-

*Manuscript
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gel glasses can be bioactive at high silica contents not only because they have high 

specific surface area but also because they contain a broad distribution of network 

connectivity (average number of bridging oxygen bonds per silicon atom). This is due 

to hydrogen acting as an additional network modifier, disrupting the silica network, 

creating a high concentration of Si-OH groups [10]. This increases the rate of 

dissolution and provides sites for apatite nucleation. An aim of this work was to 

synthesise binary SMBGs in the sub-micron range and to maintain their amorphous 

structure for controlled bioactivity. 

Previously particles of the 100S (100 mol% SiO2) composition have been produced 

by the Stöber process [11]. This process was modified by Zhao et al [12] to produce 

particles of mesoporous silica spheres from silica/hyperbranched polyester 

nanocomposite via the sol-gel method by using Boltorn
TM

 (H20) polymer as a 

templating agent. This hyperbranched polyester has a 3D architecture and 16 hydroxy 

end-groups per molecule [13]. The use of Boltorn
TM

 polymer into the synthesis route 

enhances the dispersability and the formation of spherical particles.  

Despite the great potential of bioactive glasses as porous scaffolds for bone 

regeneration [14], concerns have arisen about their long term fate in the body as wear 

particles of nano- or micrometer size may be generated after implantation, which 

could potentially cause adverse reactions with surrounding cells. These cellular 

reactions may be due to particular characteristics of particles including their size, high 

surface area to volume ratio or their surface chemistry. To date, very little is known 

about the interaction of SMBG with the body with regards to their toxicity. It is 

hypothesised that SMBGs enter cells by endocytosis, localise inside endosomes and 

dissolve resulting in raised localised soluble silica and calcium concentrations. A 

localised increase in intracellular silica or calcium could cause a marked effect on cell 

metabolism [15] or inflammatory response [16]. As particles dissolve intracellularly, 

they may also break up into finer particles which are able to escape the endosomal 

pathway and enter the cell cytoplasm or even the nucleus causing raised levels of 

cytotoxicity. This process has been demonstrated previously with HA particles 

exposed to human macrophage cells [17] and will therefore be investigated here for 

SMBGs. 

Imaging the intracellular fate of SMBGs can help to elucidate how they enter the 

cells, their biodistribution, retention, degradation inside the cell and whether, as a 

result, they affect any cellular function [18]. Previously silica particles have been 
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imaged inside cells with confocal microscopy, by fluorescently labelling the particles 

[19, 20]. However, labelling particles may modify their interaction with the cell. 

Transmission electron microscopy (TEM) has also been used to image, at high 

resolution the intracellular distribution and stability of HA and silica nanoparticles 

[17, 20, 21]. However, visualising the subcellular distribution of SMBG in the TEM is 

challenging as it is difficult to prepare sections across the SMBG-cell interface due to 

differences in the hardness of the two materials. In this study we demonstrate that it is 

possible to image unlabelled SMBGs in 3D using confocal microscopy in reflectance 

mode and also to prepare sections of cells, which have internalised SMBGs via 

ultramicrotomy for analysis by TEM imaging. 

Bone-marrow derived human mesenchymal stem cells (hMSC) are an attractive cell 

source for tissue-engineering applications because of their relative ease of isolation 

and expansion from adult bone marrow aspirates and their potential for pluripotent 

differentiation into mesenchymal tissues [22]. Previous studies have reported that 

cells derived from bone marrow can be stimulated towards osteogenesis when in 

contact with bioactive glasses [23]. hMSCs are also believed to egress from bone 

marrow and migrate towards the site of bone injury, home there and differentiate to 

promote repair [24]. Also, hMSCs are precursors to osteoblasts, hence the effect of 

particles on their behaviour is critical. For these reasons, hMSCs are a relevant cell 

type to use to test the biocompatibility of SMBGs. 

The overall aim of this study was to synthesise and characterise binary SMBGs and to 

investigate their effect on cellular behaviour. The effect of these particles on cell 

viability, metabolic activity and proliferation of hMSC was then studied using 

LIVE/DEAD, MTT, total DNA and LDH assays. Finally, TEM and 3-D confocal 

microscopy were applied to assess the distribution of SMBGs inside hMSC and 

whether they dissolve intracellularly.  

 

2 Material and methods 

 

Processing of BG sub-micron particles 

The methodology used by Zhao et al [12] for synthesis of 100S (100 mol% SiO2) was 

modified to obtain 85S15C (85 mol% SiO2 and 15 mol% CaO) SMBG, produced 

using sol-gel process, that involves the hydrolysis of tetraethyl orthosilicate (TEOS, 

Si(OCH2CH3)4), and condensation of resulting species. The effect of Boltorn
TM
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 4 

polymer (H20 hyperbranched polyester average molecular weight of 1735 g mol
-1

, 

Pertorp AB, UK, which will be referred to as B-polymer) content on particle size and 

dispersability was then investigated by using molar ratio of templating polymer to 

TEOS of 1 : 1, 1 : 5.7, 1 : 2.8 and 1 : 2.2 of B-polymer was mixed with 50 ml of 1,4-

dioxaneunder stirring at a temperature of 90 °C. Then 2.6 ml of H2O and 9.7 ml of 

NH3.H2O were added to the mixture followed by the addition of 2.8 ml of TEOS 

dropwise at 50 °C. The mixture was gently stirred for 1 h for complete hydrolysis; 

after which 1.26 g of Ca(NO3)2.4H2O was added and left to mix for 24 h. A reference 

sample with no polymer (PO) was also synthesised. The resulting colloidal suspension 

was then centrifuged to obtain a white solid suspension. The deposited solid was 

vacuum dried to remove excess water from the solid particles, producing a white 

powder. To remove the organic phase and the nitrate from the network, the resulting 

powders were calcined in air. A molar ratio of templating polymer to TEOS of 1 : 2.8 

was the only concentration that formed dispersed spherical SMBGs. The effect of 

calcination temperature on the structure of SMBGs was investigated at 680, 700 and 

800 °C. 

 

Acid digestion compositional analysis 

This method was applied to measure the composition of SMBGs. 0.1 g of finely 

ground glass was mixed carefully with 0.5 g of anhydrous lithium metaborate in a 

clean dry platinum crucible using a glass rod. The mixture was fused for 1 h at 1400 

°C and then left to cool. The crucible was then immersed in 80 ml of 10 vol% Nitric 

acid to completely dissolve the flux and then transfered to a 100 ml polypropylene 

volumetric flask and made up to the mark. A series of dissolution studies were carried 

out to measure the ion concentration using inductively coupled plasma optical 

emission spectroscopy (ICP-OES, Thermo Scientific Icap 6000series).  

 

Particle Characterisation 

X-ray Diffraction (XRD) spectra were collected on a Philips PW1700 series 

automated powder diffractometer using Cu K radiation at 40KV / 40mA. Data was 

collected between 5-80° 2θ with a step of 0.04° 2θ and a dwell time of 1.5 seconds to 

identify any crystallisation of the particles.  
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In order to confirm the removal of the organic component from the SMBGs, Fourier 

transform infrared (FTIR) spectra were collected on the PerkinElmer Spectrum
TM

 100 

FT-IR spectrometer, in the range of 600-2200 cm
-1

. 

Nitrogen sorption (Autosorb AS6, QuantaChrome) was performed to measure the 

SMBG porosity by applying the BJH method [25] to the N2 desorption branches of 

the isotherms. B.E.T. analysis was used to determine the specific surface area of the 

BNP [26]. The samples were prepared by degassing at room temperature overnight. 

 

Bioactivity 

To test the bioactivity of SMBGs, simulated body fluid (SBF) solution was prepared 

following the procedure proposed by Kukubo et al [27]. 0.01 g SMBGs with 85S15C 

composition, sintered at 680 °C, were immersed in 40ml of SBF at 37 °C at 175 rpm 

for 48, 120 and 168 h. At the end of each time-point, the SMBG were dispersed in 

SBF by ultrasonication, before being collected on 300 mesh lacey carbon film TEM 

grids [28, 29].  

 

hMSC cell culture 

hMSCs were purchased from Lonza (Lonza, UK) and maintained in low glucose, 

phenol red free, Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 

10% (v/v) batch tested Fetal Bovine Serum (FBS), 50 U/ml penicillin and 50 μg/ml 

streptomycin, 1% (v/v) L-glutamine (all from Invitrogen, UK) (which will be referred 

to as complete medium).  

 

hMSCs were seeded at a density of 10,000 cells/cm
2 

and cultured with complete 

medium containing SMBGs at concentrations of 0, 100, 150 and 200 µgml
-1

. The 

SMBG concentration was determined by drying to constant weight, then heat-

sterilised at 120 °C for 2 h, followed by UV sterilisation. The solution containing the 

SMBGs was ultrasonicated to ensure an even suspension prior to adding to cells. 

hMSCs were exposed to a pulse of SMBG for 24 h followed by chase periods of 1, 4 

and 7 days. In accordance with previous studies [19, 30] a pulse of 24 h was chosen as 

it has been demonstrated that hMSCs already internalise NPs by this time point. The 

pulse-chase experiment was performed by removing the culture medium containing 

the SMBGs after 24 h, washing the cells with PBS and adding fresh complete medium 

to the cells. The viability of hMSCs was assessed using the LIVE-DEAD assay 
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(Molecular Probes, UK), MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (Sigma), total DNA measurements and Lactate dehydrogenase (LDH) 

Cytotox-one
TM

 assay (Promega, UK).  

 

The LIVE/DEAD assay was performed according to the manufacturer's instructions to 

examine SMBG cytotoxicity after 24 h. The assay utilises two fluorescent dyes to 

label live and dead cells. The cytoplasm of live cells was stained with 2 μM calcein 

(green) and the nucleus of dead cells stained with 4 μM EthD-1 (red). Stained cells 

were viewed using the Olympus BX-URA2 fluorescence microscope. Images were 

captured within 15 min of labelling using a Zeiss Axiocam digital camera and 

analysed using KS-300 software (Imaging Associates).  

 

Cell metabolic activity and consequently cell viability and proliferation over time was 

assessed using the MTT assay. At the end of each time point, 20 μl of 5 mg/ml of 

MTT solution were added to each well and incubated for 2 h at 37 °C. Sample 

solutions were then removed and 200 μl of dimethyl sulfoxide was added to each 

well. Plates were then incubated for 5 min to dissolve the crystals. Absorbance was 

measured at 490 nm using the microplate spectrophotometer Anthos 2020 (Anthos 

Biotech, Salzburg, Austria). The results represent the mean values ± standard 

deviation (SD) of two individual experiments each performed in quadruplicate. 

 

The effects of three different concentrations of SMBG on hMSC proliferation was 

also assessed by measuring total cellular DNA in culture after 1, 4 and 7 days. 

Medium was removed and extra pure water was added to each well followed by at 

least three freeze-thaw cycles. 50 μl of the cell lysate and bis-Benzamid 33258 

(Hoechst stain) (Sigma) in TNE buffer (10 Mm Tris, 1 mM EDTA, 2 M NaCl, pH 

7.4) were transferred to a new 96 well plate. A standard curve was constructed using 

calf thymus DNA (Sigma) to determine the DNA concentration. Fluorescence was 

measured on a fluorescence plate reader (SpectraMAX GemimXS plate reader) at an 

excitation/emission wavelength of 360/460 nm. The results represent the mean values 

± SD of two individual experiments each in quadruplicate. 

 

The CytoTox-ONE
TM

 (Promega, UK) assay which assess’ the cell membrane integrity 

by measuring the leakage of lactate dehydrogenase (LDH) from cells, was used to 

http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Thiazole
http://en.wikipedia.org/wiki/Phenyl
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calculate the percent live and dead cells following exposure. To perform the assay, 

LDH in the supernatant and in the adhered cells was measured separately. 50 μl of 

centrifuged supernatant was added to 50 μl of reconstituted substrate mix and was 

incubated at room temperature, protected from light, for 30 min. Adherent cells were 

then lysed by adding 100 μl 0.9% Triton-X100 and incubated for 15 min at 37 °C. 

Following incubation, 50 μl of the cell lysate was then added to 50 μl of LDH assay 

mixture in a 96 well plate. Absorbance was measured at 490 nm with a reference 

wavelength of 620 (Anthos 2020 Biotech, Salzburg, Austria). The total number of 

viable cells is directly proportional to the LDH in the adherent cell lysates, whereas 

the total number of dead cells is directly proportional to the LDH in the cell 

supernatant according to the manufacturer’s instructions .  

Live cell percent is normalised to the total number of live cells of the control at day 1.  

 

For 3D confocal microscopy imaging, the hMSCs were grown on chamber slides 

(LabTek, UK) and exposed to SMBGs at a concentration of 100 μg/ml for 24 h. They 

were then fixed in 4% (w/v) paraformaldehyde in PBS, with 1% sucrose at 37 °C for 

20 min, washed with PBS and permeabilized with buffered 0.5% Triton X-100 (10.3g 

sucrose, 0.292 g NaCl, 0.06 g MgCl2, 0.476 g 4-(2-hydroxyethyl)-1-piperazine-

ethanesulphonic acid (HEPES), in 100 ml water (pH 7.2) at 4 °C for 5 min. The cells 

were subsequently incubated for 1 h with Alexa 568-conjugated phalloidin (1:100, 

Molecular Probes, UK). Background labelling was minimised by washing with 0.5% 

Tween 20/PBS. Samples were mounted in Vectashield with DAPI (Vector 

Laboratories, UK), and viewed with a Leica SP5 MP inverted (SAFB 408) confocal 

microscope. The SMBGs were imaged in reflectance mode from the internalised 

particles. Z-plane stacks were taken to generate 3-D reconstructions. 

 

Transmission electron microscopy (TEM) 

SMBGs were dispersed in ethanol and then collected on 300 mesh copper TEM grids, 

coated with lacey carbon film. In order to quantify particle size, the diameter of 

individual particles (n=149) was measured from TEM micrographs in Image J 

software. The formation of the apatite layer on the surface of the particles was 

characterised by TEM, selected electron diffraction (SAED) and energy-dispersive X-

ray spectroscopy (EDX). Images were taken after short exposure times to the electron 

beam to ensure that no beam damage was induced to the particles during analysis. 
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For TEM analysis of cells, the cells were treated with 100 μg/ml of SMBGs for 24 h. 

Following exposure, the cell monolayers were washed with 0.9% saline and fixed 

with 4% gluteraldehyde in PIPES buffer (0.1 M, pH 7.2) for 1 h at 4 °C. The fixative 

was then removed and samples were washed with saline to remove all unbound 

glutaraldehyde. Scraped cells were then centrifuged into pellets and washed in saline. 

This was followed by incubation in a solution of 1% osmium tetroxide containing 

1.5% potassium ferricyanide and 2 mmol/L calcium chloride in 0.1 m PIPES buffer at 

pH 7.4 for 1 h at room temperature. The cells were then washed 6 times in DIW and 

dehydrated with graded solutions of ethanol (70, 95, and 100%) for 5 min in each 

solution. Samples were then embedded in Quetol resin (Agar Scientific, UK) under 

vacuum for 3 days and cured in fresh resin for 24 h at 60 °C. Thin sections (60–90 

nm) were cut using a 35º diamond knife on a Leica Ultracut UCT ultramicrotome and 

collected immediately onto bare 300 mesh copper grids and dried to eliminate any 

possibility that the SMBGs dissolved in the water bath of the diamond knife. To 

improve contrast from cell organelles, selected TEM sections were post-stained with 

saturated methanolic uranyl acetate and lead citrate using a drop-to-drop method.  

TEM imaging and EDX were performed on JEOL-2000FX and a 2010 FX II electron 

microscopes, with an operating voltage of 120kV and a 10 m objective aperture to 

increase mass-thickness contrast and reduce knock-on damage to the SMBGs. 

Multiple areas from 2 samples were observed in the TEM. 

 

Statistical analysis 

Statistical analysis was performed using the Sigma Stat software using the Student’s t-

test. P-values of <0.05 were considered as statistically significant. 

 

3 Results 

3.1 Characterisation of Nanoparticles 

Compositional analysis (ICP-OES) found the SMBG composition to be 85 mol% 

SiO2 and 15 mol% CaO (86.022 mol% SiO2 and 13.98 mol% CaO, ±0.34). The XRD 

spectra in Fig. 1 show that the SMBGs were amorphous when sintered at 680 and 700 

°C (Fig. 1), but when sintered at 800 °C a peak at a 2θ value of 30
º
 was observed that 

corresponded to the wollastonite (β-CaSiO3) phase [31] . Hence, an ideal sintering 

temperature for the SMBGs is in the range 680<T<800 °C in order to retain the 
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particles in the amorphous state. For this study a sintering temperature of 680 °C was 

chosen for further investigation. 

The H20 B-polymer was mixed with the TEOS during the sol-gel process so that it 

could act as a template to prevent agglomeration and further condensation of the 

SMBGs. This created a composite (SMBG-H20) which was calcined to remove the 

polymer and reduce the silanol groups from the glass surface and nitrate by-products 

from the glass network. Supplementary Fig. 1 shows FTIR spectra before and after 

calcinations at 680 ºC. A vibration band at around 1650 cm
-1 

in the uncalcined
 

material corresponds to an ester group [12] and represents the organic phase. The 

absorption band at 1020 cm
-1

 corresponds to the mode of the Si-O-Si asymmetric 

bond stretching vibration representing the silica network of the SMBGs. The band at 

970 cm
-1

 for the non-bridging oxygen vibration was present before calcination 

(SMBG-H20) but not after, suggesting the formation of more bridging Si-O-Si bonds 

(increase in network connectivity) at the expense of Si-OH bonds during calcination. 

An optimised SMBG synthesised using a molar ratio of templating polymer to TEOS 

of 1:2.8 polymer is presented in Fig. 2a, where particles were spherical, with an 

average diameter, measured using TEM, of 250 nm (±75nm, n=149) and modal 

diameter of 175 nm, measured using dynamic light scattering (data not shown). EDX 

analysis (Fig. 2b) confirms Si and Ca content in the SMBGs.  

 

Nitrogen adsorption/desorption isotherms for SMBGs (supplementary Fig. 2) were 

type II isotherms which indicated that the material has high affinity for nitrogen and 

could either be non-porous or have a microporous (pores <2nm) structure [32]. The 

mean BET surface area was 28 m
2
g

-1
. It is possible that the surface area results were 

also influenced by agglomeration between some of the particles (Fig. 2a) which 

makes a large part of the surface of the particles inaccessible to N2 molecules.  

 

3.2 Bioactivity testing 

TEM, EDX and SAED studies were performed to determine whether apatite had 

formed on the surface of SMBGs. After 48 h immersion in SBF, the outer shell of the 

SMBGs had reduced contrast with several fine, dense particulates surrounding them, 

indicating dissolution (Fig. 3a). Fig. 3b illustrates that deposits had nucleated on the 

surface of clusters of the particles within 48 h of immersion. Also, changes in 

morphology around and on the surface of these particles can be seen (Fig. 3b). The 
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loss of mass-thickness contrast in the regions around the outer shell of the particles 

was not caused by electron beam damage as adjacent regions of apatite did not display 

a similar loss of contrast after irradiation with the electron beam. After 120 h 

immersion (Fig. 3c) the nucleated deposits on the surface of the SMBG were 

widespread and the particles had noticeably decreased in size. Fig. 3c shows 

crystalline spots in SAED pattern from these deposits that are consistent with the 

known hexagonal form of crystalline hydroxyapatite (HA) that has lattice parameters 

a = b = 9.4104 Å, c = 6.874760 Å. EDX spectra (Fig. 3d) showed that the deposits 

were calcium and phosphorus rich, which further confirmed the formation of HA.  

 

3.3 Cell viability  

The LIVE/DEAD cytotoxicity assay (supplementary Fig. 3) showed a high number of 

live cells following exposure to 100 and 200 µgml
-1

 of SMBG after 24 h with few 

dead cells. The LDH assay (Fig 4a) also demonstrated that none of the SMBG 

concentrations tested were cytotoxic after 1, 4 and 7 days. The %LDH release in 

viable cells decreased at day 4, but increased at day 7. This was consistent with the 

increase in %LDH of dead cells that were seen to be highest in day 4 and decreased in 

day 7. Also, at day 7 the %LDH is highest compared to day 1 and 4. Exposure to 

SMBGs caused a dose and time dependent decrease in metabolic activity with the 

MTT assay (Fig. 4b). A significant decrease in metabolic activity was only found 

after 7 days in culture with 150 and 200 µgml
-1

 of SMBGs (p < 0.05). Total DNA 

measurements (Fig 4c) demonstrated that cell proliferation increased in a dose-

dependent manner, with increasing SMBG concentration the cell proliferation 

decreased, however none of the SMBG concentrations tested had a significant effect 

on DNA quantity compared to the control cells. 

 

3.4 SMBG uptake by hMSCs 

To monitor the cellular uptake of the SMBGs, hMSCs were exposed to 100 µgml
-1

 of 

SMBGs in medium for 24 h. Traditional 2D bright field TEM images and 3D 

confocal microscopy reconstructions were compared to determine whether the 

SMBGs were taken up by hMSCs. The light reflectance property of these SMBGs 

enabled their visualisation inside the hMSCs using confocal microscopy without the 

need of fluorochrome tag (Fig. 5). Optical sections were taken at intervals of 2 μm 

along the z axis and reconstructed in 3D images to reveal randomly distributed 

http://en.wikipedia.org/wiki/%C3%85
http://en.wikipedia.org/wiki/%C3%85
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SMBGs spread between the actin microfilaments (Fig 5 b, c, d) of the hMSCs. The 

supplementary movie shows a rotating 3D reconstruction of particles inside the cells. 

These dense particles were not seen in the control cells (Fig. 5a). In TEM 

micrographs, particles were internalised by cells (Fig. 6b). Again, none were observed 

in controls (Fig. 6a). In post-stained sections, clusters of SMBGs were encapsulated 

inside membrane-bound endosomes (Fig 6c, region i) and also inside the cell 

cytoplasm (Fig. 6c, region ii). In some regions inside the cell there was a reduction in 

mass-thickness contrast from the centre of the SMBGs suggesting that the particles 

had partially dissolved and begun to hollow out (Fig. 7a, region iii). EDX of the 

particle in Fig. 7a (region iii), confirmed the presence of Ca and Si in the particles 

(Fig. 7b). No Si was detected away from the particle. The size of the particles also 

appeared decreased inside the cells as a function of time in culture, providing further 

possible evidence for SMBG dissolution (Fig. 6c, region ii). Some regions adjacent to 

the endosomal membrane (Fig. 7a, region iv) were rich in calcium only and lacked an 

observable silicon peak (Fig. 7c).  

 

4 Discussion 

85S15C SMBGs with a mean particle size of 250 nm (±75 nm, n=149) were 

successfully synthesised using the sol-gel process. The sol-gel process is a versatile 

process whereby the growth mechanism, size and number of the nanoparticles in a 

solution is mainly influenced by the rate of hydrolysis and condensation [33]. By 

controlling the two reactions during the processing, the structure of final material can 

be manipulated. For the synthesis of SMBGs, an ammonia catalyst was used to favour 

the formation of spherical particles and to gain control of morphology and size by 

controlling the rate of the condensation reaction. During the initial mixing stage of 

sol-gel process, many of the functional OH groups at the surface of the polymer bond 

to the surface of the hydrolysed silica particles. The remaining Si-OH groups undergo 

further condensation and result in formation of more –Si-O-Si- bonds. The 

mechanism for incorporation of calcium into the glass network as network modifier, 

when using calcium nitrate precursor, has only recently been understood. The calcium 

nitrate remains in the pore liquor (by product of the condensation reaction and excess 

water from the hydrolysis) until drying is carried out. The calcium nitrate deposits 

onto silica particle surfaces during drying and calcium only enters the glass network, 

by diffusion, when the temperature 450 °C is reached during calcination [10]. Using 
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this method, it was not possible to synthesise spherical SMBGs with higher calcium 

content. This is likely to be due to the calcium needing to diffuse into the particles 

from their surface. The coating of the particles with B-polymer prior to addition of 

calcium nitrate may limit the deposition of calcium nitrate onto the particles during 

drying and therefore limit the diffusion of calcium into the particles. Hence, it is 

challenging to incorporate Ca into the network and the current processing route limits 

CaO content to 15 mol%.  

 

Based on the XRD results, a sintering temperature of 680 °C was chosen for further 

investigation for several different reasons: 1. A temperature greater than 450 °C is 

needed for calcium to be incorporated into the silica network [34], 2. Above 500 °C 

the organic phase is removed, 3. A temperature above 600 °C is needed to remove 

residual nitrate and silanol groups and 4. Above 800 °C the glass begins to crystallise 

(Fig. 1). Therefore, a temperature of 680 °C was chosen as it is believed that the 

maximum bioactivity would be achieved at a minimum stabilisation temperature [14, 

35], where the dissolution rate would be the most rapid (lowest network connectivity 

and highest Si-OH group content). 

 

The surface area of sol-gel derived sub-micron SMBG (28 m
2
g

-1
) is much higher than 

that of commercially available melt-derived microparticles (2.7 m
2
g

-1
) [36]. The 

reason for the non-porous nature of these sol-gel derived SMBG obtained in this 

study, compared to conventional sol-gel particles, which have a surface area greater 

than 100 m
2
g

-1
 [36], is that conventional sol-gel particles are made using acid 

catalysed hydrolysis. During the acid-catalysed sol-gel process the nanoparticles in 

the sol assemble during the condensation reaction and form a structure composed of 

many sub-units (nanoparticles) that subsequently fuse together [10]. As a result, they 

tend to leave interstitial spaces between the nanoparticles which become nanopores. 

For the production of SMBG the condensation reaction is controlled by using base 

catalysts that prevents the nanoparticles from fusing together, leaving individual 

dense particles [33]. 

 

Simulated body fluid (SBF) tests aid the evaluation of the dissolution–precipitation 

mechanism of apatite formation on the surface of bioactive glasses. Our observations 

suggest that the SMBGs dissolved in SBF, where dissolution was defined as a 
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reduction of contrast of the SMBGs, which arises due to a loss of mass/unit volume of 

particles. After 120 h in SBF an extensive apatite phase had formed and the particles 

greatly reduced in diameter (<150 nm), less than the mean diameter of the particles 

before immersion (250 nm). Dissolution from the SMBG may therefore lead to a 

supersaturation of Ca ions in the SBF solution and subsequent reprecipitation of Ca 

and P rich crystals on their surface. 

 

Although hMSC response to SiO2 particles has been investigated previously, [19, 37, 

38], the response of SMBGs with hMSCs has not. Therefore this was an aim of this 

study. Unlike bulk materials, the biological response of small particles is highly 

dependent on their size and their specific surface area [39, 40]. It is difficult to 

compare with previous studies because of differences in the particle size and 

composition and in the cell types investigated. The majority of studies with hMSCs 

have used mesoporous silica sub-micron particles designed for drug delivery 

applications. In these previous studies, no toxicity was observed when hMSCs were 

exposed to hexagonal mesoporous silica (mean diameters of 110 -160 nm) of various 

concentrations (0-200 µgml
-1

) for different exposure times (10 min – 1 h), although 

the cells were only monitored for 24 h after exposure [19, 37, 38]. Several studies on 

dense silica (calcium-free) particles are based on targeting cancer cells. Viability of 

human lung (bronchial alveolar cell line) cells decreased when exposed to 50 µgml
-1

 

silica nanoparticles (mean size of 46 nm) for 24 h [41]. A reduction in viability was 

also seen in HeLa cells (a commonly used immortalised human cell line derived from 

cervical cancer) exposed to silica particles (mean diameter of 200 nm) for 4 h [42].  

 

Cell function is controlled through numerous intracellular signalling events which can 

be triggered or altered by the uptake of the particles [38]. Uptake by endocytosis is 

greatly influenced by the physical properties of the particles including their surface 

charge, size and shape of the particles [38, 40, 43]. A common feature of all the cells 

in the previous studies was that uptake of the particles was observed. The spherical 

particles used in the current study were slightly larger than those used previously, so it 

was important to observe whether the particles were taken up by the hMSCs and to 

assess whether the particles caused any toxicity. 
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In the current study, cells were exposed to three concentrations of SMBGs for 24 h (a 

pulse) and the particles were removed as the media was changed. The cell behaviour 

was then monitored in culture (chase) and compared to cells that had not been 

exposed to particles.  

 

Some spherical SMBGs (mean surface area 28 m
2
g

−1
 and diameter of 250 nm) 

appeared to have been internalised by hMSCs in endosomes via the non-specific 

cellular uptake of endocytosis (Fig. 6). Notably a few individual SMBGs appeared to 

localise inside the cell cytoplasm, suggesting that they may have escaped the 

endosomal pathway (Fig. 7). This is a similar uptake route to what was observed 

previously with mesoporous silica particles [38].  

 

Several of the SMBGs appeared to dissolve inside the hMSCs (Fig 7). The particles 

appeared to reduce in density in their centre, in some cases forming hollow spheres. 

Calcium containing SMBGs are expected to be more prone to dissolution than silica 

particles in aqueous environments because calcium disrupts the silica network, 

reducing its network connectivity (mean number of bridging -Si-O-Si- bonds per 

silicon atom) and therefore its stability in solution [10]. The hollowing out of 

spherical bioactive glass microparticles (300-355 µm) has previously been observed 

extracellularly [44]. Intracellular dissolution of the particles would mean increased 

soluble silica and calcium ion content within the cell. Changes in intracellular calcium 

are essential regulators of many physiological processes including oxidative stress and 

cell death. During overload of the intracellular calcium mitochondria maintain 

calcium homeostasis by orchestrating a diverse range of cellular activities and 

ultimately cell death [45, 46]. Therefore the decrease in cell metabolic activity 

observed (MTT, Fig. 4b) after 7 days of culture for the higher concentrations of 150 

µgml
-1

 and 200 µgml
-1

could be attributed to the mechanism of calcium homeostasis 

by the mitochondria. In addition, this decrease in metabolic activity could not be 

interpreted as decreased proliferation (increased cell death) since it does not correlate 

with the amount of total DNA at day 7 (Fig. 4c), which indicates that none of the 

SMBG concentrations significantly reduced cell number.  

 

In addition, some SMBGs were also observed to remain in the extracellular 

environment (not removed by the media changes and washes), which could contribute 
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to the decrease in metabolic activity. The particles would also dissolve as function of 

time, releasing soluble silica and calcium ions. Previous studies that administered 

bioactive glass dissolution products to human osteoblasts [46] and that cultured 

osteoblasts on 70S30C (70 mol% SiO2, 30 mol% CaO) scaffolds [7] showed that the 

dissolution products caused a decrease in metabolic activity, which correlated to 

enhanced extracellular matrix deposition. Also, The LIVE/DEAD (Supplementary 

Fig. 3) and LDH assays (Fig. 4a) indicated that the SMBGs did not cause significant 

levels of cytotoxicity.  

 

It would be important to establish whether the effect on cell proliferation is the result 

of position and trafficking of SMBG inside the cell, therefore, further and more 

thorough uptake studies are essential as they will provide insight into the SMBG 

interactions with the cells and consequently allowing their most appropriate use for 

bone tissue regeneration applications. 

 

5 Conclusion 

Spherical bioactive glass particles with a mean diameter of 250 nm were successfully 

produced with an optimised sol-gel processing route. The combination of cell viability 

assays and imaging techniques was critical in understanding SMBG interactions with 

mesenchymal stem cells. We successfully showed that SMBG were internalised into 

hMSCs resulting in partial dissolution of the SMBGs. The viability assays confirmed 

that none of the SMBG concentrations tested here induced any major cytotoxicity 

when exposed to hMSCs and were only seen to reduce cell metabolism at higher 

doses of 150 and 200 µgml
-1

. The study shows that SMBG are potential candidates for 

applications in regenerative medicine.  
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Figure caption: 

 

Figure.1: XRD spectra of BGPs as a function of calcination temperatures of 680, 700 

and 800°C. W indicates a peak corresponding to the presence of a crystalline 

wollastonite phase 

 

Figure 2: a) TEM micrograph of the optimised BGPs. b) EDX analysis of a BGP 

showing Si, O and Ca peaks.  

 

Figure 3: TEM micrographs of BGP exposed to SBF for a-b) 48h showing dissolution 

of the particles and nucleation of a finer particulate phase on their surface. c) 120 h 

exposure to SBF showing more widespread nucleated deposits on the surface of the 

BGPs. SAED pattern obtained from the cluster of particles. d) EDX analysis of BGPs 

after immersion in SBF for 120h. 

 

Figure 5: Confocal 3-D imaging of a live hMSCs incubated without BGPs b) with 

100μg/ml of BGP for 24 h at 37 °C.  c-d) 3D reconstructions from boxed region in 

(b). The particles were internalised inside the cell and associated with the actin fibres 

of the cell. (Red= actin fibres, blue = nucleus and green = BGP);  

 

Figure 4: Cytotoxicity assays.  Cell viability was monitored using: LDH release, b) 

metabolic activity (MTT), and c) total DNA of hMSCs after a 24 h pulse of BGPs 

followed by 4 and 7 days chase.  Values represent the mean ± SD of two individual 

experiments each performed in quadruplicate. (*p < 0.05 relative to control, without 

BGP). 

 

Figure 6: TEM micrographs of hMSC following incubation a) without BGPs (post-

stained) b-c) with 100 μg/ml of BGPs for 24 h. b) Particles internalised inside a cell. 

c) Clusters of BGPs were encapsulated inside endosomes (region i) and individual 

BGPs were present inside the cell cytoplasm (ii) (post-stained section), (N: the 

nucleus, NM: the nuclear membrane, ER: the endoplasmic recticulum, C: the 

cytoplasm). 

 

Figure 7: TEM micrographs of hMSCs exposed to 100 μg/ml of BGPs after 24 h 

exposure (post-stained). a) A hollow nanoparticle adjacent to the nuclear membrane 

(region iii). Particles around the endosomal membrane (region iv), b) EDX analysis of 

region iii, showing peaks of Si and Ca and c) region iv showing peaks of Ca. 

 

 

Supplementary Figure 1: FTIR spectra of BGP before (BG-H20) and after calcination 

at 680°C 

 

Supplementary Figure 2: Nitrogen adsorption/desorption isotherm for the P3 sample 

(sintered at 680°C).  

 

Supplementary Figure 3: Fluorescent Microscopy of LIVE/DEAD cytotoxicity assay. 

 hMSC a) without BGNPs b) 100μg/ml and c)200μg/ml of BGNPs after 24h 

incubation at 37 °C. The figure shows the cell population with the cytoplasm of the 

live cells stained with the Calcein AM (green) and the nucleus of the dead cells 

stained with EthD-1 (red).  
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