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   Abstract-The goal of this paper is to introduce a new strategy 
to accurately classify event-related potentials (ERPs), recorded 
using dense electrode arrays, into predefined brain activity 
categories.  The challenge is to exploit the enhanced spatial 
information offered by dense arrays while overcoming the 
significant increase in the dimensionality problem introduced by 
the large increase in the number of channels.  These conflicting 
objectives are achieved by introducing a spatio-temporal array 
model to observe the dense array ERP amplitude variations 
across channels and time, simultaneously.  To account for latency 
variations and EEG noise in the array elements, each spatio-
temporal element in the array is initially modeled as a Gaussian 
random variable. A two-step process which uses the Kolmogrov-
Smirnov test and the Lilliefors test is formulated to select the 
array elements which have different Gaussian densities across all 
ERP categories.  Selecting spatio-temporal elements that fit the 
assumed model and also statistically differ across the ERP 
categories not only ensures high classification accuracies but also 
decreases the dimensionality significantly.  The selection is 
dynamic in the sense that selecting spatio-temporal array 
elements corresponds to selecting ERP samples of different 
channels at different time-instants.  Each selected array element 
is classified using a univariate Gaussian classifier and the 
resulting decisions are fused into a decision fusion vector which is 
classified using a discrete Bayes classifier.  By converting an 
inherently multivariate classification problem into a simpler 
problem involving only univariate classifications, the 
dimensionality problem which plagues the design of practical 
multivariate ERPs classifiers is circumvented. Consequently, 
classifiers can be designed to classify the ERPs that are unique to 
an individual without having to collect a prohibitively large ERP 
data set from him/her. The application of the resulting dynamic 
channel selection-based classification strategy is demonstrated by 
designing and testing classifiers for eight subjects using ERPs 
from a Stroop color-test and it is shown that strategy yields high 
classification accuracies.  Finally, it is noted that because of the 
generalized formulation of the strategy, it can be applied to 
various other problems involving the classification of 
multivariate signals acquired from multiple identical or multiple 
heterogeneous sensors. 
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I. INTRODUCTION 

The primary objective of the work described in this paper is to 
introduce a new strategy to accurately classify event-related 
potentials (ERPs), recorded using dense electrode arrays, into 
predefined brain activity categories.   ERPs are brain 
responses that are time-locked to the onset of an external 
event such as the presentation of an audio or a video stimulus.  
The accurate classification of ERPs is of the utmost 
importance because ERPs are used extensively in numerous 
human cognition studies and in clinical evaluations.  Due to 
practical issues related with the data acquisition methods, lack 
of concentration, discomfort, and fatigue, it may be 
impossible to collect enough  ERPs from  a single subject to 
exceed the dimension of the ERP vector which then presents 
problems in accurately estimating the parameters for the 
design of multivariate ERP classifiers.  The recent 
introduction of dense array networks such as the Geodesics 
Sensor net [1] to record electroencephalograms (EEGs) and 
ERPs offers a significant increase in the spatial resolution 
over the International 10-20 recording system [2].  However, 
the large increase in the channels also increases the 
dimensionality-related problems in the design and evaluation 
of practical ERP parametric classifiers.  This paper introduces 
a new ERP classification strategy that is capable of exploiting 
information offered by the increased spatial resolution while 
simultaneously circumventing the dimensionality problem.  
The main advantage of the new strategy is that ERP classifiers 
can be designed without having to collect a prohibitively large 
ERP data set.  Consequently, practical classifiers can be 
designed, even for single subjects, using a practical number of 
their own ERPs so that accurate ERP based assessments can 
be made regarding the clinical disorder that is unique to the 
subject. 

The use of dense electrode arrays for recording EEGs 
and ERPs has increased significantly.  References [3] through 
[14] are only a miniscule sample of dense array ERP based 
studies that focus on memory [3], emotion [4],[5], learning 
[6],[7],[8],[9], language [10],[11], reading[12], attention [13], 
and anxiety [14].   A dense electrode array is typically a 
system consisting of 64, 128, or 256 scalp electrodes, whereas, 
the International 10-20 specifies a maximum of 19 electrode 
sites.  Because of the increase in the spatial resolution, it is 
possible to make more accurate inferences of the underlying 
brain activity in EEGs and ERPs.  However, the biggest 
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challenge facing dense-array brain-waveform research is the 
task of analyzing the vast amount of data collected by the 
large number of channels.  Analyzing all dense array data in 
real-time is impossible and even off-line analyses is quite 
formidable.  Therefore, it is not unusual for researchers, using 
prior knowledge, to preselect a small subset of dense-array 
channels in which they most strongly expect the brain activity 
of interest to occur or to simply partition the channels into 
groups and represent the brain activity in each group by the 
group average.  In many analysis studies the grouping may be 
intentional, for example, to study the effects over different 
hemisphere regions [5],[11],[13].  However, the true benefits 
offered by the large number of spatially distributed dense-
array channels are not exploited if the grouping of the 
channels is strictly to simplify the analysis or for 
dimensionality reduction. The traditional statistical analyses 
methods such as analysis of variance, principal components, 
and factor analysis pool the ERPs collected from a large group 
of subjects with an assumption that the ERPs of the subjects in 
the group share similar features [11],[13],[15]-[19].  The goal 
of these analyses studies are clearly aimed at establishing 
within-group similarities and across-group differences in brain 
activity in large populations. 

In general, the procedure for designing any 
parametric pattern classifier is to collect an ensemble of 
patterns from each pattern category, partition the ensembles 
into a training set and a test set, use the training set to estimate 
the classifier parameters, and use the test set to evaluate the 
classifier performance.  For multivariate patterns, the mean 
and covariance are the most useful parameters estimated from 
the training set.  For example, the covariance matrix is needed 
to determine the Gaussian discriminant function and to 
determine the principal components [20].  The accuracy of the 
estimates clearly depends on the number of vectors in the 
training set.  If the number is less than or equal to the 
dimension of the pattern vector, the estimated covariance 
matrix is singular and is, therefore, not invertible.  Moreover, 
only a subset of the total number of principal components 
(eigenvectors of the covariance matrix) can be determined.  
Therefore, the number of vectors in the training set needed to 
estimate the covariance matrix must exceed the dimension of 
the pattern vector.  Even better covariance estimates are 
obtained by using a much larger number of vectors in the 
training set. 

ERPs are multivariate signals with dimensions that 
are a function of the sampling rate and the duration.  For 
example, an ERP of a given channel sampled at 250Hz over a 
one-second duration will have a dimension of 250 (number of 
time samples).  The covariance matrix of the ERPs of the 
channel will, therefore, be of dimension 250250× .  
Consequently, the training set for each ERP channel classifier 
must have at least 251 ERPs for the 250250× covariance 
matrix to be non-singular and to be able to determine the 250 
eigenvectors.   Furthermore, ERP vectors are also needed to 
test and evaluate the performance of the classifiers. Collecting 
such a large number of ERPs to design and evaluate the 
performance, especially from a single individual, is quite 
difficult in practice.  This dimensionality problem is 

exacerbated significantly when attempts are made to fuse the 
ERPs of multiple channels in order to design data fusion 
classifiers that aim to exploit complementary information from 
several ERP channels [21].  For example, fusing 250-sample 
ERPs from 256 dense array channels will result in a data 
fusion vector which will have an enormously large dimension 
of 64,000.  The obvious solution is to this problem is to select 
a subset of the dense array channels.  The problems with this 
approach include determining: a suitable criterion for channel 
selection, how many channels should be selected, and how to 
fuse the information from the selected channels while 
satisfying the dimensionality requirement for multivariate 
classifier development.  Furthermore, selecting a small set of 
channels defeats the main purpose for using dense arrays.   

A possible approach to overcome the dimensionality 
problem is to design the classifier with a large ERP data set 
collected from a group of subjects.  This approach is valid if 
the focus is on classifying the ERPs of individuals belonging 
to different population groups.   However, in many clinical 
diagnostic and assessment applications, it is more meaningful 
to analyze the ERPs of a single patient.  For example, ERPs 
are often used in the cognitive rehabilitation of patients with 
brain injuries [22]-[25].  In many cases, it may not be possible 
to collect ERP data from large groups of patients with the 
similar injuries.  Moreover, it cannot be expected that the 
ERPs of patients with different severities and types of brain 
injuries will have similar features.  Similarly, comments can 
be made for the cognitive rehabilitation of patients with post-
stroke aphasia.  Many attention and learning-related problems 
are also unique to individuals and cannot be generalized across 
a large group of individuals.  The application, therefore, of 
commonly used ERP techniques will be more effective if only 
the ERPs of each individual, rather than of group of 
individuals, are used in the assessment.  From a classification 
point of view, pooling ERPs of a large group of subjects will 
increase the risk of over-generalization which has the well-
known effect of increasing the probability of classification 
error [20]. 

Our approach to overcoming the dimensionality 
problem is to develop a generalized dimensionality reduction 
strategy to extract only useful discriminatory information from 
the dense-array channels.  The strategy formulated in this 
paper exploits the fact that different channels reflect different 
aspects of the brain activity and although the amount of data 
generated in dense array channels is large, only a small 
fraction of the data contains useful discriminatory information.  
That is, all channels do not necessarily carry useful 
information at all sampling instants.  It may also be possible 
that some channels do not carry any useful information at any 
time.  Similarly, at some sampling instants, none of the 
channels may carry useful information.  The key, therefore, is 
to simultaneously exploit the spatially enhanced information 
offered by the dense array channels and to decrease the 
dimension by excluding channel-time combinations that do 
not contribute any useful classification information.  In order 
to accomplish this, a spatio-temporal array model is 
introduced to represent the dense array brain activity 
simultaneously across channels and across time.  With the 
help of this model, a two-step process which uses the 
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Kolmogrov-Smirnov test and the Lilliefors test is formulated 
to determine those spatio-temporal elements in the arrays 
which have different Gaussian densities across all of the brain 
activity categories.  What is unique about this approach is that 
a model is assumed for the spatio-temporal elements and only 
those elements that fit the model and are statistically different 
across the categories are selected for classification.  This is 
unlike the usual approach in which a model is assumed for the 
data and then applied to the data whether it fits or does not fit 
the data completely or partially.  For example, due to its 
analytical tractability, the feature vector is often assumed to 
have a multivariate Gaussian density in numerous pattern 
classification problems. 

 It is noted that selecting the elements of the spatio-
temporal array can be viewed as dynamic channel selection 
because selecting spatio-temporal array elements correspond 
to selecting the samples of different channels at different time-
instants.  The selected elements are classified using univariate 
Gaussian classifiers and the resulting decisions of the 
univariate classifiers are fused into a decision fusion vector 
which is classified by a discrete Bayes classifier.  The 
multivariate classification problem is, therefore, converted 
into a simpler problem involving only univariate 
classifications and the dimensionality problem is 
circumvented by having to estimate univariate parameters 
instead of multivariate parameters.  A normalization step is 
also included to decrease the trial-to-trial inter-class variability 
due to amplitude and slope variations in single-trial ERPs.  In 
order to demonstrate the application of the dynamic channel 
selection strategy, classifiers are designed and tested for 8 
subjects using 256-channel ERPs from a Stroop-color test.  
Results are presented for classifiers designed for each 
individual subject and for classifiers designed using the ERPs 
of the 8 subjects pooled into a single group. 

 
II.  MULTI-CHANNEL ERP CLASSIFICATION 

ERPs are difficult to classify because they are embedded in 
the ongoing background EEG with signal-to-noise ratios 
(SNRs) typically less than –5 dB.  Moreover, components of 
ERPs experience trial-to-trial variations due to latency shifts.  
These inter-trial variations increase the intra-class variability 
and also the overlap between the ERP classes.  As a result of 
the increased overlapping, the probability of misclassification 
increases.  Additional difficulties are introduced by artifact 
contaminations in ERP ensembles which are typically due to 
eye blinks, eye movements, muscle activities, and power line 
noise [26].  Analysis and classification are generally 
conducted on ERPs averaged over a large number of single-
trials because signal averaging improves the signal-to-noise 
ratios (SNRs) of ERPs.  The improvement in classification 
accuracy through signal averaging has been shown 
systematically in [27].   
 Several techniques based on fusing a small set of 
discriminatory features into a feature vector have been 
developed to classify ERPs.  Examples of features derived 
from the ERPs of individual channels, among many others, 
include autoregressive (AR) model parameters [28],[29] peak 
and latency measurements [30],[31], PCA [15],[19],[32] and 
wavelets [15],[18],[33]. The features are classified using 

discriminant analysis [19],[30],[34] neural networks [15], 
[28],[34],[35], decision trees [9],[35], and support vector 
machines [34].  Fusing a small set of discriminatory features 
will certainly decrease the dimensionality problem, however, 
there is a loss of information during feature generation [36] 
and the classification accuracy for a given problem is dictated 
by the choice and discriminatory quality of the features.  
Furthermore, fusing the features from all dense array channels 
into a single feature vector will result in a feature vector with a 
large dimension even if the feature set extracted from each 
ERP channel is small.  For example, fusing 10 AR model 
parameters of each channel of a 256-channel dense array will 
result in a feature vector having a dimension equal to 2,560.  
Our previous studies focused on formulating strategies that 
were aimed at exploiting the complementary information from 
multiple channels through information (data and decision) 
fusion techniques [21],[27].  The goal of these multi-channel 
information fusion strategies was to obtain results that were 
significantly better than the results that are possible using any 
one channel.  The data and decision fusion classifiers were, 
however, multivariate classifiers which required the total 
number of single-trial ERPs in the training set to be larger than 
the dimension of the ERPs.  The strategy developed in the 
following sections of this paper is aimed at overcoming this 
dimensionality limitation.  
 

III.  SPATIO-TEMPORAL MODELING 
Dense array or multi-channel brain activity can be analyzed by 
observing the amplitude variations of each channel over time 
or by observing the amplitude variations across the channels at 
different time- instants.   Figure 1 is introduced to help 
visualize the amplitude variations across channels and time 
simultaneously.  The horizontal axis Kkk ,...,2,1, = , 
represents discrete time and the vertical axis m, Mm ,...,2,1=  
represents the channels, where K and M are the number of 
sampling instants and the number of channels, respectively.  
Each row, therefore, is an ERP of dimension K .  Each one of 
the M columns can be used to generate a brain activity map 
across the channels at a given sampling time-instant.  The 
resulting array of single-trial brain activity, across all channels 
and all time, can be represented by an array ),( kmZ  in which 
the single-trial ERP of channel m can be represented as 

)(kZm and the brain activity at time k across all M channels 
by )(mZk .  The array ),( kmZ  will be referred to as a single-
trial spatio-temporal ERP array.  The dimension of ),( kmZ  is 

KM ×  which will be typically quite large for dense arrays, 
for example, the array will have dimension 250256×  if the 
number of channels and time-instants are 256 and 250, 
respectively. 

 We first introduce a strategy to convert the 
multivariate classification problem into a set of univariate 
classification problem by modeling each element ),( kmz  of 
the single-trial spatio-temporal array in the following manner: 
 ),(),(),(),( kmekmlkmskmz ++=  (1)   
where ),( kms  is the signal component and ),( kml  and 

),( kme  are the amplitude components at ),( km  due to 
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latency shifts and background EEG noise, respectively.  It is 
assumed that ),( kms , ),( kml  and ),( kme  are uncorrelated.  
This univariate ERP model is similar to the widely used ERP 
vector model which assumes that a brain-response to an 
external stimulus is the sum of the ERP and EEG components 
with the 2 components being uncorrelated.  It is also well-
known that the ERP components experience latency shifts 
which are random variations in the positions of the peaks and 
valleys.  The changes in the amplitudes of each spatio-
temporal element are, therefore, due to the EEG as well as the 
latency.   The univariate model in Equation (1), which 
describes the brain activity of a channel m at a given time-
instant k, will be used to formulate the dynamic channel 
selection classification strategy described in the next section. 
 

IV. DYNAMIC CHANNEL SELECTION 
CLASSIFICATION STRATEGY 

The goal of the dynamic channel selection based classification 
strategy is to determine and select only those elements in the 
spatio-temporal arrays which carry the most useful 
discriminatory information for classification across the 
different brain activity classes.  The complete strategy which 
consists of dynamic channel selection, univariate classifier 
design, and decision fusion, is described next. 
 
Dynamic Channel Selection 
Each spatio-temporal element ),( kmz  is a random variable 
which can be characterized by its probability density function 
(PDF); therefore, in order to facilitate correct classification, 
we propose to select those elements that have different 
probability density functions across all C classes.  The 
Kolmogrov-Smirnov (K-S) test can be used to determine 
whether two data sets are from the same probability 
distribution [37].  In order to test across all C classes, the 
multi-class test K-S test is formulated as: 



 =≠≠

=

otherwise

Cjiijallkmpkmpif
kmF

ij

0

,...,2,1,;),,(),(1
),(ˆ

 (2) 

where  ),( kmpi  and ),( kmp j  are the PDFs of ),( kmz  
under classes i and j, respectively.  That is, the K-S test is 
applied in a pairwise fashion with the total number of pairwise 
tests equal to C(C-1)/2.  The array  ),(ˆ kmF  is a “K-S mask” 
which selects the statistically different elements of ),( kmZ .  
That is, if 
  KkMmkmFkmZkmZ cc ,...,2,1;,...,2,1);,(ˆ),(),(ˆ === , (3)  
where ),( kmZc  spatio-temporal ERP array of brain activity 

class Cc ,...,2,1= , then, ),(ˆ kmZc  will have non-zero 
elements that are statistically different across all C classes.  
Note that the product of the two arrays in Equation (3) is the 
array product and not the matrix product.  Having identified 
the elements with different PDFs, the next task is to assume a 
model for the PDF of those elements. 

In Equation (1), we will assume that  ),( kml  and 

),( kme  are zero-mean Gaussian random variables with 

variances ),(2 kmlσ  and ),(2 kmeσ , respectively, so that 
 )],(),([),( kmekmlkmn +=  (4) 
is a zero-mean Gaussian random variable with variance 

)],(),([),( 222 kmkmkm eln σσσ += .  From the assumptions, 
it follows that 
                           ),(),(),( kmnkmskmz +=                          (5) 
is a Gaussian random variable with mean ),( kms  and 

variance ),(2 kmnσ .   The validity of the Gaussian assumption 

for each non-zero element of ),(ˆ kmZc , across all C classes, 
can be evaluated by using the Lilliefors test for normality [37], 
as follows: 

CiiallNkmp
ANDkmFifonlykmF

i ,...,2,1;);,(~),(
1),(ˆ1),(~

=••
==  ( 6) 

where ),(~),( ••Nkmpi  is the notation used to denote that 
),( kmpi  is Gaussian.  Then, each non-zero element in the 

array  
  KkMmkmFkmcZkmcZ ,...,2,1;,...,2,1);,(~),(),(~

===   (7)   
will be Gaussian and will be statistically different across the C 
classes.  That is, the array ),(~ kmF is, therefore, a “mask” 
which identifies the spatio-temporal elements that have 
different Gaussian PDFs across the classes.   Figure 2 is an 
alternate form of viewing the selection of the elements from 
the original array ),( kmZ .  This simplified figure shows that 
channels 7E  is selected at time 1, channels 2E , and 3E , are 
selected at time 2, channels 14E , 11E , and 5E  are selected at 

time jt , 8E  is selected at time 1+jt , 4E  is selected at time K 
etc.  The selection, therefore, is dynamic in the sense that the 
samples of different channels are selected at different time-
instants according to the non-zero elements in mask ),(~ kmF . 
 
Univariate Classifier Design 
Single-trial ERPs may be classified directly, see [38] for 
notable work in single-trial classification, or may be classified 
by first averaging r single-trial ERPs in order to improve the 
SNR [21],[27].  Increasing r improves the SNR of the 
averaged ERPs and the performance can, therefore, be 
expressed as a function of the averaging parameter r.   ERPs 
averaged over r trials are referred to r-ERPs and single-trial 
ERPs are referred to as 1-ERPs.   Using the notations 
introduced earlier in this section, dense array ERPs averaged 
over r trials can, therefore, be represented by an array 

),( kmZ r  in which the mth row ERP averaged over r trials 

is )(kZ r
m .  The array ),( kmZ r  will be referred to as a r-

averaged ERP spatio-temporal array.  Similarly, ),(~ kmZ r is 
the r-averaged spatio-temporal ERP array consisting of the 
dynamically selected averaged elements.  A univariate 
Gaussian classifier can be developed to independently classify 
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the dynamically selected (non-zero) elements  ),(~ kmz r  of a 

test array ),(~ kmZ r .  In general, the univariate Gaussian 
discriminant function for class c is given by 

c
r
c

r
c

r

r
c

r
c

Pkmkmkmz

kmkmzg

ln)],(~[2/)],(~),(~[

),(~ln)],(~[
22 +−−

−=

σµ

σ
, (8) 

where ),(~ kmr
cµ  and 2)],(~[ kmr

cσ  are the mean and variance 

of  ),(~ kmz r under class c, respectively, and cP  is the a 

priori probability of class c.  A test element ),(~ kmz r  is 
assigned to the discriminant function that yields the highest 

value.  That is, the test sample ),(~ kmz r  is assigned to a 
category d given by 

)]},(~[{maxarg kmzgd r
c

c
=   (9) 

 
Decision Fusion 
The decisions of the univariate Gaussian classifiers can be 
combined into a decision fusion vector and the final decision 
of the brain activity class can then be made by classifying the 
decision fusion vector.  Let L be the number of non-zero 
elements in ),(~ kmZ r .  Consequently, the number of univariate 
classifiers and the number of decisions will be L.   Let 

j
L

j
L dD

1=
∇= ,       (10) 

where ∇  represents the concatenation operation and 

Ljd j ,...,2,1, =  is the decision of the thj  univariate 

classifier.  That is, T
LL dddD ),...,,( 21=  is the decision 

fusion vector formed by concatenating the independent 
decisions, in any fixed order, of the L Gaussian univariate 
classifiers.  The decision fusion vector LD  is a discrete 
random vector in which each element can take one of C 
values.  Let the PDF of LD  under class c be )/( cDP L .  Then, 
it can be shown that the Bayes discriminant function for class 
c can be written as [21] 

ccCjj

L

j
cjjcjjLc

PpCd

pdpdDg

ln)]ln()(...

)ln()2()ln()1([)(

/,

1
/2,/1,

+−++

∑ −+−=
=

δ

δδ
 (11) 

where 





≠
=

=−
axif
axif

ax
0
1

)(δ                           (12) 

and 
LjcadPp jcaj ,...,2,1),/(/, ===               (13) 

is the probability that ad j =  when the true class is c.  The 

final decision *
Lc  resulting from decision fusion is given by 

)]([maxarg*
Lc

c
L Dgc =  (14) 

The training phase of the entire dynamic classification strategy 

is summarized in Figure 3 in which )},({ kmZc  represents the 
single-trial training sets of all C classes.  The training set 

)},({ kmZc is randomly partitioned into two mutually 

exclusive sets )},({ kmZ A
c  and )},({ kmZ B

c .  The top-half of 
Figure 3 shows the channel selection using the 2 masks and 
the estimation of the parameters ),(~ kmcµ  and 2)],(~[ kmcσ  

of the selected elements using the set )},({ kmZ A
c .  These 

parameters are used to determine the discriminant function of 
the Gaussian classifier in the bottom-half of the figure.  The 
set )},({ kmZ B

c  is used to estimate the Bayes classifier 
parameters cajp /,  from the classification accuracies of the 
Gaussian classifier.  The steps involved in classifying an 
unknown r-averaged ERP array ),( kmZ r  are summarized in 
Figure 4. 
 
Parameter Estimation 
From the model assumptions, each element of  ),(~ kmz r

c  of 

),(~ kmZ r
c  can be written as 

 ),(~),(),(~ kmnkmskmz r
cc

r
c +=                 (15) 

where ),(~ kmn r
c  is the noise component averaged over r 

trials. Because ),( kmnc  is assumed Gaussian, ),(~ kmn r
c  is 

also Gaussian.  If 2)],(~[ kmr
cσ  is the variance of ),(~ kmn r

c , 

then, ),(~ kmz r
c  is Gaussian with mean ),( kmsc  and 

variance 2)],(~[ kmr
cσ .  Note that ),(~),(~ kmkm c

r
c µµ =  and 

the estimates of the variances for any r can be determined 
from the single-trial variances using the following 
relationship: 

22 )],(~)[/1()],(~[ kmrkm c
r
c σσ = . (16) 

The set )},({ kmZ A
c in Figure 3 is used to determine the 

dynamic selection masks using a significance level α  for the 
K-S and Lilliefors tests.  Increasing α  decreases the 
acceptance region of the null hypotheses, therefore, the 
number of elements selected can be increased by increasing 
the significance levels of the tests.  The second set 

)},({ kmZ B
c  is used to estimate Bayes discriminant function 

parameters Ljp baj ,...,2,1,/, = , which can be estimated as 
the ratio of the number of r-EPs of class b classified as class a 
to the total number r-EPs belonging to class b in )},({ kmZ B

c  
Note that although the entire formulation of the 

classification strategy is presented for ERPs averaged over r 
trials, the strategy is also applicable to classifying single-trial 
ERPs simply by setting r=1. 
 

V. NORMALIZATION 
As noted in Section II, the trial-to-trial variations in single-
trial ERPs result in large intra-class variations which lead to a 



TBME-00353-2008.R2 

                            6 
 
 

decrease in the accuracy of classifying ERPs.  A close 
examination of single-trial ERPs shows that single-trial ERPs 
typically experience both amplitude and slope variations from 
trial-to-trial.  Therefore, we can expect an improvement in the 
classification accuracy if the ERPs are amplitude and slope 
normalized, at the single-trial level.  The amplitudes of a 
single-trial ERP can be normalized by dividing each ERP 
sample by the standard deviation of all samples of the ERP.  
By subtracting the least-squares fit line, the single-trial ERPs 
are normalized to have zero slope.  These two normalization 
operations not only decrease the intra-class scatter but also 
increase the inter-class separation which in general, tends to 
improve the classification accuracy.  The spatio-temporal 
array formed by the normalized single-trial ERPs is 
represented by ),( kmZ


 and the normalized and averaged 

ERPs are represented by ),( kmZ r . 
   

VI. ERP EXPERIMENT DATA 
We emphasize that the focus of this paper is on ERP classifier 
development and not on a particular ERP study.  The ERP 
data that were used to demonstrate the design and evaluation 
of the dynamic channel selection-based classification strategy 
were from an experiment in which children were engaged in a 
Stroop color-naming test [39].   ERP-based Stroop testing has 
become a standard measure in neuropsychological assessment 
[40]-[44].  The test measures cognitive processing and 
provides valuable diagnostic information on brain dysfunction, 
cognition, and psychopathology.  In this particular set of 
attention related experiments, the subjects were presented 
names of color.  The color of the actual ink was varied so that 
it was either congruent or incongruent with the word.  For 
example, if the word RED was presented and it was in red ink, 
it was the congruent condition.  If the word RED were in blue 
ink, it was the incongruent condition.  Additionally, neutral 
stimuli consisting of a string of X’s were presented in varying 
colors.  The children were instructed to press one button for 
the congruent and neutral conditions and another for the 
incongruent condition.  The responses were recorded at the 
onset of each stimulus presentation.  The standard Stroop 
interference test measures the reaction times (RTs) for the 
different conditions.  In general, when compared with the RT 
for the neutral condition, the RT decreases for the congruent 
condition and increases for the incongruent condition.  ERPs 
provide a means to study the neural basis of the Stroop 
interference tasks.  Our goal is to show that the ERPs elicited 
by the 3 conditions can be classified accurately for each 
subject.       
 ERP data were collected from a high-density array of 
256 Ag/AgCl electrodes arranged into a net (Geodesic Sensor 
Net, EGI Inc.) from eight 8-year old children, 5 males and 3 
females.  The subjects are represented by 1S , 2S ,…, 8S .  Brain 
wave data recording was controlled by the Net Station 2.0 
software package (EGI, Inc.).  During recording, all electrodes 
were referenced to Cz and then later re-referenced to an 
average reference for data analysis. All impedances remained 
at or under 40 kΩ as indicated by impedance measures made 
immediately before and after the test session. E-prime v.1.0 

(SP2; PST, Inc) software packages controlled stimulus 
presentation. Single-trial ERPs were digitized over a 1.8 sec 
interval using a 250Hz sampling rate. Each 450 sample ERP 
epoch included a 100 ms pre-stimulus baseline and 700 ms 
post-stimulus interval. After removing artifacts using the Net 
Station artifact rejection routines, for each subject, a total of 
forty eight 256-channel single-trial ERPs were obtained for 
each of the 3 conditions (congruent, incongruent, and neutral). 
The 25 pre-stimulus and 175 post-stimulus samples were 
removed so that the single-trial ERPs initially consisted of 250 
samples.  As a first step towards dimensionality reduction, the 
250-sample ERPs were down-sampled to 125 by dropping 
every other sample.  Our initial exploratory experiments 
showed that there was no loss in classification accuracy when 
the ERPs were down-sampled to 125, however, any further 
reduction in the dimension resulted in a drop in the 
classification accuracy. 

 
VII. CLASSIFICATION EXPERIMENTS 

The first set (SET 1) involved classifying the 32,000 elements 
of the original spatio-temporal array ),( kmZ r  directly.  That 
is, the 32,000 spatio-temporal elements were assumed to be 
Gaussian and the 32,000 univariate Gaussian classifier 
decisions were fused into a decision fusion vector which was 
classified using a discrete Bayes classifier for the final 
decision.  The Gaussian assumption was also tested by 
applying the Lilliefors test for normality to each spatio-
temporal element across the C=3 classes.  For each subject, 
the test showed that on the average, more than 93% of the 
elements fit a Gaussian model.  The results from this set of 
experiments will serve to show the improvement of our 
dynamic channel selection strategy over simply selecting all 
the elements even though the Gaussian assumption is valid for 
a large majority of the elements.  The second set (SET 2) was 
exactly the same as SET1 except that the spatio-temporal 
arrays were the normalized arrays ),( kmZ r .  In the third set 
(SET 3) of experiments, only the dynamically selected 
elements of the normalized spatio-temporal arrays ),(~ kmZ r  
were classified and the resulting univariate Gaussian decisions 
were fused and classified using a Bayes classifier.  
Experiments were designed to classify the ERPs of the 3 
stimuli conditions (C/N/I) as well as combinations of the 2 
stimuli conditions (C/N, C/I, N/I), where, C, N, and I 
represent congruent, neutral, and incongruent, respectively.  
Furthermore, for each set of experiments, classifiers were 
designed for each subject independently and for the subjects 
pooled into a single group.  It is important to note that for the 
group case, the classifiers were trained using the pooled 
training sets, however, the testing was conducted using the test 
set of each subject.   
 
Performance Evaluation 
Unlike estimating multivariate classifier parameters such as 
the covariance matrices, the univariate parameters (means and 
variances) required to design the univariate Gaussian 
classifiers can be estimated from a relatively small data set 
without being faced with the dimensionality problem.  For 
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example, 48 single-trial spatio-temporal arrays were collected 
from each subject for each of the 3 stimulus conditions.  
Therefore, the number of samples of each spatio-temporal 
element was 48 for each subject.  A fairly good estimate of the 
mean and variance of each spatio-temporal element could be 
obtained even from one-half of the 48 samples for designing 
the univariate classifiers.  The remaining half could be used to 
estimate the performance.  We would, however, like to get a 
more robust estimate of the performance over a much larger 
set.  Instead of collecting a large ERP set which we know is 
quite difficult, a re-sampling approach is used to generate a 
large number of averaged ERP arrays for training and testing 
[21]. 

 The resampling technique is similar to bootstrapping 
which is often used to evaluate the performance of classifiers 
from a finite set of patterns [20].    For example, given a total 
of 48 signals, a training set consisting of 24 signals can be 
formed by randomly selecting 24 signals out of the 48 signals.  
The performance can be estimated by averaging the results of 
the 24 signals in the remaining set which is used for testing.  
The random sampling process to generate a training set and 
the estimation of the performance from the remaining test set, 
can be repeated a large number of times.  A final estimate of 
the performance is then obtained by averaging the test results 
across all the repetitions.  The only difference in our approach 
is that we use resampling to form a large number of averaged 
ERPs.  In a previous study [27], we investigated the use of  
resampling for generating averaged ERPs and showed that the 
total number of distinct ERPs averaged across r single-trials 
that can be formed from a total of N single-trial ERPs is given 
by {N!/[r!(N-r)!]}.  For example, for ERPs averaged over r=8 
trials, the total number of distinct 8-averaged ERP arrays that 
could be formed from N=24 ERP arrays is 735,471 in the 
training and the test sets of each stimulus condition. 

In the experiments to follow, 200 training and 200 
test set arrays were generated for each classification 
experiment.   In order to be sure that the 200 arrays were 
distinct in each set, the sum-of-the-squared distances between 
the elements of each newly generated averaged ERP array and 
elements of every previously generated averaged ERP array 
were determined.  If the sum-of-the-squared distance between 
the newly generated array and any other array was zero, the 
new array was dropped and the process was repeated until we 
had 200 averaged ERP arrays that were distinct from each 
other.  For each stimulus condition, the 256-channel single-
trial ERP arrays were randomly partitioned into 2 equi-sized 
sets to form the training set and the test set.  Consequently, 
each subject had 24 single-trial spatio-temporal arrays in the 
training set and 24 single-trial spatio-temporal arrays in the 
test set for each stimulus condition.  The dimension of each 
array was 125256× .  In each set, the single-trial arrays were 
randomly selected and averaged to form the r-ERP training 
and test set arrays. 
 
3-Category Classification Results 
The classification accuracies, expressed as a percentage, of the 
test congruent, neutral and incongruent conditions using the 
original spatio-temporal arrays (SET 1), the normalized 
spatio-temporal arrays (SET 2), and the dynamically selected 

spatio-temporal elements (SET 3) for each individual subject 
are presented in Table I.  The ERPs were averaged over r=8 
single-trials.   The dynamic channel selection results are 
presented for significance levels α = 0.05, 0.1, 0.15, and 0.2.  
The number enclosed in parentheses is the parameter L which 
is the number of elements, out of the total of 32,000 elements, 
that were dynamically selected for classification.  For the 
combined case, 81−S , the congruent, incongruent, and neutral 
training sets of the 8 subjects were pooled (mixed) into single 
congruent, incongruent, and neutral training sets.  The results 
of testing the ERPs of each individual subject are shown in 
Table II.  The best result for each subject (each row) is shown 
in boldface.  The classification accuracies presented in the two 
tables are quite extensive because each single result is 
averaged over 200 trials.    

Also included in the tables are the corresponding 
results for Gaussian multivariate classifiers using features 
derived from principal components analysis (PCA).  This is a 
classic example of making the Gaussian assumption in 
multivariate classifier design.  The principal components were 
computed by pooling the zero-mean congruent, incongruent, 
and neutral normalized training sets.  For the single subject 
cases, the training set used to compute the principal 
components, therefore, consisted of 24x3=72 single-trial 
arrays.  The rows of each array were concatenated to form a 
vector with dimension 32000.  The resulting covariance matrix 
would have a dimension of 3200032000× and the number of 
eigenvectors would be 32000.  Given that the training set had 
72 vectors, only 72 of the 32000 eigenvectors can be 
determined.  Instead of trying to determine the eigenvectors of 
the very large covariance matrix, the eigenface method [45] 
was used to determine the 72 non-trivial eigenvectors. The 
resulting multivariate classifier had a dimension equal to 72.  
Similarly, by combining the grouped training ERP arrays of 
all 8 subjects, 72x8=576-dimensional Gaussian multivariate 
PCA classifiers were developed for the grouped subject cases. 
 
Comparisons of Results   
It is clear from the results in the tables that there is a 
significant improvement in performance by simply amplitude 
and slope normalizing the ERPs of the spatio-temporal arrays 
in order to decrease the intra-class scatter.  Furthermore, it is 
also clear that the best results are obtained using a 
combination of normalization and dynamic channel selection.  
It is also interesting to note that the number of elements 
selected dynamically (L) is a small fraction of the total number 
of array elements.  The improvement in performance can be 
attributed to the selection of the spatio-temporal data that fit 
the classification model rather than simply assuming the entire 
spatio-temporal data fit the model.  The results also show the 
classification accuracies obtained using the dynamic channel 
selection strategy are significantly superior to those obtained 
using Gaussian multivariate PCA classifiers. 
 As demonstrated in the experiments, the dynamic 
channel selection classification strategy is applicable to 
classifying the ERPs of individual subjects as well as the 
ERPs of groups of subjects.   The next comparison, therefore, 
is between the results for individual subjects and grouped 
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subjects because it was commented in the Introduction that 
combining ERPs of a large group of subjects will increase the 
risk of over-generalization which can have an adverse effect 
on the performance for each individual.  Observe that the 
classification accuracies in Table II are lower than those in 
Table I.    Furthermore, for eachα , the average classification 
accuracies of the combined subjects in Table II is less than the 
worst of the 8 individual classification accuracies in Table I.  
The drop in classification accuracy is in spite of the fact that 
the size of the training set was essentially eight-times larger 
when the subjects were grouped. These results confirm the 
risk of pooling the training sets of different individuals into 
single groups.  The drop could be even more significant if the 
ERPs of a larger number of subjects are pooled due to the 
larger increase in the intra-class scatter in the grouped ERPs.  
Another point worth noting is that although the group results 
are not as high as the results for individual subjects, the 
average classification accuracies across the eight subjects for 
each α  in Table II are greater than twice that can be expected 
through random classification.  This is because the expected 
classification accuracy for a three-class problem through 
random classification is only 33.3%.   
    
2-Category Classification Results 
In order to demonstrate another application, experiments were 
also designed to classify the 2-category cases: congruent and 
incongruent, incongruent and neutral, and congruent and 
neutral.  The results are presented in Table III.  Because 
dynamic channel selection gave the best results, only the 
results for the dynamically selected channels of the 
normalized ERP arrays are presented (similar to SET 3).  As 
expected, much higher classifications are obtained for the 2-
category cases when compared with the 3-category cases.   
 
Illustration of Dynamic Channel Selection 
As noted in Section IV, the selection of elements from the 
spatio-temporal arrays is dynamic in the sense that the samples 
of different channels are selected at different time-instants 
according to the non-zero elements in mask ),(~ kmF .  Figure 
5 shows an example of the ensemble averaged spatio-temporal 
arrays belonging to the 3 different conditions obtained from 
the normalized grouped ERPs of subject 1S  using α = 0.2.  A 
close examination of the arrays of the 3 classes shows that 
they are similar across a large majority of the elements.  
Conversely, only a small number of elements are different 
across the classes.  Figure 6 shows the selection mask 

),(~ kmF  which resulted from an application of the pairwise K-
S tests and the Lilliefors tests to the the ERP data used in 
Figure 5.  Observe the sparseness of the selection mask.  Only 

463 elements were selected out of the 32000 elements.  Figure 
7 shows the electrode layout for the 256-channel EGI geodesic 
sensor net used in the experiments.  The channels that were 
selected according to the mask in Figure 6 are shaded in 
yellow.   The number of channels selected was 188 out of the 
total of 256.   Furthermore, the number of time-instants that 
was selected was 81 out of the total of 125. 

 These results validate our claims that the most useful 
discriminatory information is spread across the dense array 
channels and these channels do not carry useful discriminatory 
information at all times. The channels selected give us an 
insight as to which electrode sites are the best for separating 
the brain categories. The weights ( bajp /, ) of the selected 
spatio-temporal elements derived from the univariate 
classifiers give further insights into which channel-time-
instant combinations carry the most useful discriminatory 
information.  The weights are also an indication of relative 
importance of each selected spatio-temporal element in the 
determination of the final decision using the Bayes classifier. 

 
VIII. CONCLUSIONS 

In conclusion, the dynamic channel selection-based strategy 
developed in this paper provides a new method for accurately 
classifying dense array ERPs by exploiting the fact that 
different channels carry useful discriminatory information of 
the brain activity at different times.  The most notable feature 
is that dimensionality problem is solved by selecting the 
spatio-temporal elements whose data fit the assumed 
classification model.  The main advantage of the strategy is 
that it is not constrained by the dimensionality of the ERP 
vector and can, therefore, be used to classify ERPs without 
having to collect a prohibitively large number of ERPs.  We 
demonstrated that classifiers can be designed and evaluated 
for individual subjects even though the number of ERPs in the 
training set was substantially smaller than the dimension of the 
dense array signal space. The significance of this contribution 
is that clinical assessments can be made more accurately for 
conditions that are unique to an individual using a practical 
number of his/her own ERPs.  Furthermore, the strategy is 
quite simple in its formulation and implementation.  The 
strategy also provides a generalized means for analyzing 
which dense array channels yield the most discriminatory 
information at different time-instants.    Also noteworthy is 
that the strategy is quite general in its formulation.  Therefore, 
it can be applied to select and classify the most useful 
discriminatory information, in a time-window, from different 
sensors in various multi-sensor signal classification problems.  
Although the sensors of all channels are identical for EEGs 
and ERPs, the sensors can be heterogeneous which an 
additional advantage of the strategy. 
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Fig. 5. Ensemble averaged spatio-temporal arrays 
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Table I  
Results of classifying the original spatio-temporal arrays, normalized spatio-temporal arrays, 
dynamically selected spatio-temporal elements of each individual subject.  The PCA results are 
shown in the last column. 
 
Subject Original 

data (Set 1) 
Normalized 
data (Set 2) 

Dynamic channel Selection (Set 3) PCA 
(Set2) α = 0.05 α = 0.10 α = 0.15 α = 0.20 

S1 61.32  87.29 93.09 
(82) 

94.52 
(215) 

94.04 
(357) 

92.96 
(463) 

75.91  

S2 69.55 81.11 85.96 
(51) 

89.33 
(147) 

89.78 
(261) 

90.67 
(273) 

81.66  

S3 64.70 75.37  83.44 
(41) 

86.28 
(127) 

89.36 
(207) 

88.18 
(307) 

65.92  

S4 59.61 
 

73.33 86.52 
(64) 

93.14 
(150) 

93.36 
(252) 

91.92 
(268) 

54.66 

S5 63.41 
 

72.43 91.91 
(87) 

94.58 
(183) 

94.23 
(325) 

92.81 
(446) 

67.84 

S6 65.89 
 

68.86 87.61 
(58) 

85.62 
(105) 

84.56 
(237) 

88.77 
(375) 

55.35 

S7 63.92 
 

69.53  81.18 
(73) 

86.34 
(198) 

85.14 
(370) 

85.54 
(561) 

75.57 

S8 63.44 73.19 83.70 
(55) 

85.25 
(152) 

86.87 
(244) 

87.25 
(383) 

77.35 

Average 
 

63.98 75.14 86.68 89.38 89.67 89.76 69.28 

 

 
Fig. 7. The electrode layout for the 256-channel EGI 
geodesic sensor.  The channels that were selected 
according to the mask in Figure 6 are shaded in yellow.   
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Table II 
Results of classifying the original spatio-temporal arrays, 
normalized spatio-temporal arrays, dynamically selected 
spatio-temporal elements of each individual subject using 
pooled training sets.  The PCA results are shown in the last 
column. 
 Subject Dynamic channel Selection (Set 3) PCA 

(Set2) α = 0.05 α = 0.10 α = 0.15 α = 0.20 
S1 75.58 

(208) 
82.47 
(368) 

84.97 
(516) 

82.53 
(595) 

61.33 

S2 63.58 
(208) 

67.96 
(368) 

69.58 
(516) 

72.74 
(595) 

64.49 

S3 63.86 
(208) 

67.42 
(368) 

60.85 
(516) 

59.37 
(595) 

60.39 

S4 72.49 
(208) 

76.43 
(368) 

75.60 
(516) 

77.32 
(595) 

70.42 

S5 79.02 
(208) 

79.68 
(368) 

79.08 
(516) 

80.58 
(595) 

63.81 

S6 72.19 
(208) 

73.10 
(368) 

73.09 
(516) 

75.91 
(595) 

66.91 

S7 52.34 
(208) 

55.20 
(368) 

52.80 
(516) 

54.01 
(595) 

41.69 

S8 74.26 
(208) 

73.63 
(368) 

64.52 
(516) 

61.96 
(595) 

43.22 

Average 69.17 71.99 70.06 70.55 59.03 
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Table III   
Summary of 2-category classification accuracies 

 

Subject  
 

Dynamic channel Selection  
α = 0.05 α = 0.10 α = 0.15 α = 0.20 

 
S1 

(C,I) 98.63 (2530) 98.51 (3403) 98.99 (3870) 99.27 (4446) 
(I,N) 99.98 (5525) 99.72 (6177) 99.96 (6317) 99.86 (6332) 
(N,C) 99.59 (6033) 99.61 (5989) 98.42 (6674) 99.16 (5807) 

 
S2 

(C,I) 96.70 (2359) 95.13 (2884) 95.12 (3686) 95.28 (3084) 
(I,N) 99.85 (5990) 100.0 (4566) 100.0 (6536) 99.90 (5320) 
(N,C) 99.96 (4768) 100.0 (5189) 100.0 (2718) 99.37 (5707) 

 
S3 

(C,I) 92.07 (1461) 96.17 (2461) 95.63 (2963) 96.95 (3809) 
(I,N) 99.07 (5507) 99.65 (6180) 99.30 (7503) 99.26 (6074) 
(N,C) 97.93 (3642) 98.67 (4765) 99.20 (5291) 98.17 (6109) 

 
S4 

(C,I) 98.20 (1190) 99.17 (2114) 91.67 (3604) 96.17 (3276) 
(I,N) 99.83 (4049) 97.16 (5803) 99.62 (7208) 100.0 (8116) 
(N,C) 99.95 (3539) 100.0 (5195) 100.0 (6401) 93.33 (72.73) 

 
S5 

(C,I) 99.89 (1261) 92.00 (2080) 100.0  (2810) 98.33 (3266) 
(I,N) 100.0 (4616) 100.0 (5609) 100.0 (6251) 100.0 (6741) 
(N,C) 100.0 (5405) 100.0 (6295) 100.0 (6889) 99.19 (6908) 

 
S6 

(C,I) 96.24 (1520) 95.83 (2633) 98.67 (3473) 97.67 (3558) 
(I,N) 100.0 (4098) 100.0 (4736) 100.0 (5720) 100 (6627) 
(N,C) 100.0 (4660) 100.0 (5599) 100.0 (6101) 100.0 (5741) 

 
S7 

(C,I) 95.50 (1472) 97.17 (2661) 99.33 (3074) 97.83 (3616) 
(I,N) 99.63 (4645) 98.10 (5976) 100.0 (6864) 100.0 (7181) 
(N,C) 97.68 (4705) 99.67 (5758) 98.06 (6446) 97.79 (6559) 

 
S8 

(C,I) 99.03 (2198) 99.17 (3548) 97.67 (4051) 99.35 (4872) 
(I,N) 93.28 (5469) 94.82 (7242) 92.23 (8308) 94.14 (8828) 
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(N,C) 99.39 99.74 99.46 98.24 
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