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Abstract

The Unsteady Vortex-Lattice Method provides a medium-fidelity tool for the prediction of non-stationary aerody-

namic loads in low-speed, but high-Reynolds-number, attached flow conditions. Despite a proven track record in

applications where free-wake modelling is critical, other less-computationally-expensive potential-flow models, such

as the Doublet-Lattice Method and strip theory, have long been favoured in fixed-wing aircraft aeroelasticity and

flight dynamics. This paper presents how the Unsteady Vortex-Lattice Method can be implemented as an enhanced

alternative to those techniques for diverse situations that arise in flexible-aircraft dynamics. A historical review of

the methodology is included, with latest developments and practical applications. Different formulations of the aero-

dynamic equations are outlined, and they are integrated with a nonlinear beam model for the full description of the

dynamics of a free-flying flexible vehicle. Nonlinear time-marching solutions capture large wing excursions and wake

roll-up, and the linearisation of the equations lends itself to a seamless, monolithic state-space assembly, particularly

convenient for stability analysis and flight control system design. The numerical studies emphasise scenarios where

the Unsteady Vortex-Lattice Method can provide an advantage over other state-of-the-art approaches. Examples of

this include unsteady aerodynamics in vehicles with coupled aeroelasticity and flight dynamics, and in lifting surfaces

undergoing complex kinematics, large deformations, or in-plane motions. Geometric nonlinearities are shown to play

an instrumental, and often counter-intuitive, role in the aircraft dynamics. The Unsteady Vortex-Lattice Method is un-

veiled as a remarkable tool that can successfully incorporate all those effects in the unsteady aerodynamics modelling.
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Symbols

A aerodynamic influence coefficient matrix

AoA angle of attack

C wake-convection matrix

CBa coordinate transformation matrix, from a to B

k = ωc
2V∞

reduced frequency

Q global column vector of generalised forces

~R local position vector along the beam reference line

t physical time

T thrust per propeller

~v inertial translational velocity of the body-fixed frame, a

w
column vector of velocities induced by the motions of the lifting surfaces and the incident flow

(non-circulatory velocity), at all collocation points

u input vector

x state vector

y output vector

Greek

Γ circulation strength of a vortex ring

δ elevator deflection

ζ coordinates of the aerodynamic lattice

η vector of displacements and rotations at all finite element nodes

Θ Euler angles

ν column vector of translational and angular velocities of the body-fixed frame, a

~ξ relative position vector within a beam section/aerofoil

Ψ local Cartesian Rotation Vector (CRV) along the beam reference line

~ω inertial angular velocity of the body-fixed frame, a

~Ω inertial angular velocity at a beam location
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Subscripts

A aerodynamic

a body-fixed reference frame

B deformed (material) reference frame

b bound, corresponding to lifting surface

c control

d exogenous disturbance

f flutter

g gust

FB flexible-body, including rigid-body and structural states

k vortex-ring counter

nc non-circulatory

o tensor evaluated at reference (equilibrium) conditions

R rigid-body

S structural

w wake

∞ free-stream conditions

Superscripts

•n time step n

•o matrix or vector evaluated at reference (equilibrium) conditions

•̇ time derivatives, d
dt

•̃ cross-product operator
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1. Introduction

Unsteady aerodynamics based on potential-flow theory has long furnished the basic foundation in low-speed

aircraft aeroelasticity and dynamic-load analysis. The Doublet-Lattice Method [1], in particular, has long been the

fundamental tool of the aeroelastic community, and has provided a robust approach for non-stationary aerodynamic

prediction, although simpler approaches based on strip theory and indicial functions are still used at the conceptual

level [2]. However, the applicability of the existing design tools is being stretched as novel concepts are developed

and conventional vehicles see their wing stiffness substantially reduced. Aircraft with coupled aeroelasticity and flight

dynamics, and lifting surfaces undergoing complex kinematic motions or large deformations are becoming customary,

requiring a new paradigm for modelling, analysis, and control synthesis. The Unsteady Vortex-Lattice Method, an

aerodynamic model with a long and successful track record, can be re-engineered to provide again an advantageous

alternative in many of these scenarios.
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The surge in the number of High-Altitude Long-Endurance (HALE) aircraft, including extreme cases such as

solar-powered platforms, attests some of the changes aviation is experiencing. These Unmanned Aerial Vehicles

(UAV) are not subject to many traditional restrictions on their overall configuration, and they usually consist of very

light, slender and thus flexible structures. This may cause geometrically-nonlinear deformations during normal op-

eration and overlap of the aircraft’s aeroelastic and flight dynamics natural frequencies, which, in turn, makes them

particularly vulnerable to atmospheric disturbances. As a result, any successful modelling effort depends upon a

multidisciplinary outlook that integrates aeroelasticity, flight dynamics and controls into a common framework [3, 4].

A substantial research effort has been carried out in recent years towards this goal, and even though other alter-

natives have been explored [5–8], in most cases the presence of a characteristic dominant dimension in the primary

flexible structures has motivated descriptions of the nonlinear structural dynamics through composite beam models

and of the non-stationary aerodynamics by means of 2-D strip theory [4, 9–16]. This computationally inexpensive

approach has led to the identification of critical phenomena in the behaviour of these vehicles, but neglects relevant

3-D flow physics, such as the accurate prediction of wing-tip effects [17], and the aerodynamic interference between

wakes and lifting surfaces [18]. Solution of the Navier-Stokes equations for three-dimensional, unsteady flow-fields

with large motions of the solid boundaries is still very demanding, not least because of the small meshes needed for

boundary-layer resolution. Euler codes are more efficient, but they are also hindered by the requirement of creating

and distorting the mesh as the geometrically-nonlinear structure deforms. These methods have therefore found very

limited applications so far in aircraft aeroelasticity and flight dynamics with large wing deformations [19–21].

At low subsonic speeds, three-dimensional unsteady potential-flow methods provide excellent tools for aerody-

namic analysis: without incurring excessive computational costs, they incorporate 3-D effects, interference and wake

modelling. These methods, however, are not appropriate when the wing enters stalled conditions, to predict viscous

drag, or at low Reynolds number. Neither are they adequate at very high altitudes, potentially within the range of

operations of HALE UAVs, due to dominance of rarefied flow effects. Note however that the critical load conditions

will occur during climb and descent operations in the lower atmosphere, which is the scope of aeroelastic analysis.

The equation governing low-speed potential flows is Laplace’s equation for the velocity potential. One of the key

features of this linear differential equation is that a 3-D flow-field problem can be converted to a reduced-dimension

equivalent one by distributing singularity (elementary) solutions over the surface where the flow potential must be

found (Boundary-Value Problem). As a result, the numerical solution in terms of singularities is faster compared to

field methods where the unknown quantities are distributed in the entire volume surrounding the body – although it

must be also acknowledged that whereas the former requires the inversion of a fully populated matrix, the latter results

in a sparsely banded one. The reduction of the 3-D computational domain to a surface problem has led to the rapid

development of computer codes for the implementation of potential-flow methods, and thanks to their flexibility and

relative economy they continue to be widely used despite the availability of more exact approaches.

The foundations of potential-flow Vortex-Lattice Methods (VLM) can be traced back to Helmholtz’s seminal work

on vortex flows and Joukowski’s contributions on circulation [22], but the earliest formulations appeared in the 1930s.
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Rosenhead [23] studied a two-dimensional vortex-layer by replacing it with a system of vortex filaments. He showed

that the vortex sheet rolled up with time, and the rationale behind it was given by Lavrent’ev [24]. The term “vortex

lattice” was coined by Falkner in 1943 [25]. The concept was simple but it relied on a numerical solution, so it was

not until digital computers became available that practical implementations became widespread. In the meantime,

other lifting-surface methods were also pursued, such as the Kernel-Function Method [26], but its development was

hindered by the fact that it required a priori knowledge of appropriate pressure modes, and was therefore configuration

dependent [27–31].

Hedman [32] established the now classical (steady) VLM in 1965: he idealised the mean aerodynamic surface

into small trapezoidal lifting elements each containing a horseshoe vortex with its bound spanwise element along

the swept quarter-chord of the element, and locating the collocation points for the non-penetration boundary con-

dition at the three-quarter chord. The downwash at each collocation point was computed through the Biot-Savart

law, and compressibility was accounted for by means of the Prandtl-Glauert transformation. The method continued

to be widely used in the following decades, as exemplified by the workshop held at NASA Langley in 1976 [33],

and alongside different implementations of the code [34–36] various relevant numerical issues were also addressed:

increasing convergence and accuracy [37–41], accounting for wake roll-up instead of assuming a flat wake [42], and

modelling leading-edge separation [43–47]. The steady VLM has since been employed in a number of applications,

such as modelling yacht sails [48], in the computation of stability derivatives and flight dynamics analysis [49–51], in

aerodynamic interference of aircraft [52–54], or in multidisciplinary optimisation [55], among many others.

As the VLM was initially limited to steady load calculations it was natural to develop an unsteady equivalent.

Albano and Rodden [1] extended the VLM to harmonically oscillating surfaces for an assumed flat wake. Replacing

the vortex sheet by one of (equivalent) oscillating doublets, the Doublet-Lattice Method (DLM) was obtained. Indeed,

it reduces to the original VLM at zero reduced frequency [56]. The DLM underwent further refinements conducted

mainly by Rodden and different collaborators [56–59], to become broadly used for unsteady load computations and

the prevalent tool in subsonic aircraft aeroelasticity [60].

When referring to the Vortex-Lattice Method, it is a common misconception (particularly within the aeroelastic

community) to assume that it is limited to the steady equivalent of the Doublet-Lattice Method. While this is true for

the steady version, it is also known (Hess [61]) that a panel with a piecewise constant doublet distribution is equivalent

to a vortex ring around its periphery. Hence, the VLM can be directly extended to non-stationary situations, giving

rise to the time-domain Unsteady Vortex-Lattice Method (UVLM). The UVLM is mentioned in many textbooks on

aerodynamics, but the most comprehensive description is possibly given by Katz and Plotkin [62, §13.12].

Interestingly, the extension of the VLM into the unsteady aerodynamic regime was mainly driven by a viscous

phenomenon, namely the need to model the leading-edge separation on delta wings. The pioneering works in the

development of the UVLM were carried out by Belotserkovskii [63], Rehbach [64], and researchers at Virginia Tech

[65, 66] and Technion [67, 68].

As opposed to the DLM, which is written in the frequency domain on a fixed geometry, the UVLM is formulated
6



in the time domain and allows the shape of the force-free wake to be obtained as part of the solution procedure. The

DLM offers a faster way of computing unsteady aerodynamic loads, but it is a linear method restricted to small out-of-

plane harmonic motions with a flat wake. Hence, while the DLM has dominated in fixed-wing aircraft aeroelasticity,

the UVLM has been gaining ground in situations where free-wake methods become a necessity because of geometric

complexity, such as flapping-wing kinematics [69–71], rotorcraft [72, 73], or wind turbines [74–80]. With the advent

of novel vehicle configurations and increased structural flexibility for which the underlying assumptions of the DLM

no longer hold, the UVLM constitutes an attractive solution for aircraft dynamics problems and has been recently

exercised in problems such as unsteady interference [53, 81], computation of stability derivatives [82], flutter sup-

pression [83], gust response [8, 84], optimisation [85], morphing vehicles [86], and coupled aeroelasticity and flight

dynamics [18].

The UVLM is suitable for quick-turnaround single-processor simulations, and as the computation of each induced

velocity is independent of the rest, parallelisation of the code is straightforward. However, the method can still be

constrained by computational power for large enough problems: if N is the number of bound and wake elements, the

total number of operations per time step goes as O(N2). Several procedures have been devised to speed up the solution

process. A first possibility is linearisation of the problem. This was carried out by Hall [87], who transformed the

UVLM equations into discrete state-space form. Its dominant eigenvalues would define a reduced-order model to,

for instance, obtain dynamic aeroelastic stability characteristics. These ideas were explored further in Refs. [88–91].

Another approach is to target the number of evaluations of the Biot-Savart law, trying to reduce it while retaining

the accuracy and fidelity of the flow field. In general, the underlying principle consists of separating vortex elements

into “near field” and “far field”, and making use of the diminishing influence as the distance between the point of

evaluation and the vortex elements increases. The simplest alternative is to define a threshold beyond which the

calculations are not performed, while retaining the influence over neighbouring elements (this could also include a

wake truncation, but in this case the source of error introduced by ignoring the effect of far-field elements over their

own near-field propagates and this should be done with care). A more systematic approach is to treat the effects

of grouped far-field elements together, for which different alternatives exist, such as sub-grid schemes [92] or fast

multipole expansions [70, 93]. The latter is derived from the general solution to the n-body problem and reduces the

number of operations per time step to O(N log N). Other ideas have also been investigated to decrease computational

costs, e.g., in helicopter applications. For example, Bagai and Leishman [94] tackled the problem through adaptive

refinement of the wake grid, with interpolation of known information onto intermediate points. For a brief introduction

about other computation acceleration methods proposed in the rotorcraft community, see Ref. [95, p. 617].

Its repeated evaluation is not the only issue concerning the Biot-Savart law. The use of discrete vortex-segments

to account for the vorticity in the shed wake originates numerical difficulties due to the singularity at the vortex

filament. The induced velocities at the segment itself and in its neighbourhood can be unphysically large, thereby

leading to unrealistic circulation values. This may occur, for example, when a wake encounters a lifting surface or

when the wake undergoes an intense roll-up causing crossings of vortex segments, making it difficult to distinguish
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between the known physical wake instabilities and those of numerical origin [96]. These cases require regularisation

(desingularisation), which is extensively described, for instance, in Refs. [92, 97–99]. Techniques such as introducing

vortex-core models [100–103], using the sub-vortex technique [104], implementing distributed vorticity elements

[105], or discarding wake connectivity (the “vortex-blob” method) [106–109], are some of the solutions.

Finally, it is worth pointing out the need to enforce the Kutta-Joukowski condition (often shortened as the Kutta

condition), necessary to guarantee the uniqueness of the solution in unsteady potential flow-fields, in addition to flow-

tangency on impermeable surfaces. The Kutta-Joukowski condition is based on physical considerations, and states that

the flow leaves the trailing edge of the aerofoil or wing smoothly, defining the shedding location for an infinitesimally

thin wake in which all vorticity of the otherwise irrotational fluid is concentrated. The pressure difference across this

sheet is zero. While in potential flows viscosity is neglected in the momentum conservation equations, the Kutta-

Joukowski condition permits some aspects of viscous effects to be incorporated. It is well established for steady,

attached flow situations, but its validity for time-dependent cases is controversial. Despite being applied in most

numerical studies of unsteady wing-theory, in reality it may not hold for highly unsteady flows. Experimental results

differ, and there is no definitive conclusion on the reduced-frequency threshold for its validity. It is however safe to

assume that for reduced frequencies of k < 0.6 the Kutta-Joukowski condition is satisfied. For further discussion, see

Refs. [97, 98, 110–116].

While Ref. [62] constitutes the fundamental reference for both the theory and numerical implementation of the

UVLM, this review will focus on the use of the UVLM in aeroelasticity and flight dynamics modelling of flexible

aircraft. As a result, the paper will try to give some insight into current industrial practice, identifying alternative

solution methods, and accentuating situations where the UVLM is particularly advantageous. The paper is therefore

organised as follows:

Potential-flow methods for unsteady aerodynamic modelling are reviewed first in Section 2, including classi-

fication and limitations, as well as brief descriptions of the most relevant models for unsteady aerodynamic load

calculations. The strengths and weaknesses of each option are highlighted. Section 3 compares 3-D unsteady aerody-

namic models in the context of full aircraft analysis. The conventional methods in aeroelasticity and flight dynamics

are surveyed, and a state-space formulation of the UVLM is presented. The benefits and shortcomings of these two

methodologies are underlined. Section 4 presents a quick overview of the modelling techniques for flexible-body

dynamics. Conventional linear and decoupled analyses are compared to a nonlinear geometrically-exact beam model,

in which structural and rigid-body degrees of freedom are included. Once the necessary tools for flexible-aircraft

dynamic analysis have been outlined, Section 5 details the different possibilities for integration of the separate disci-

plines into a unified framework for coupled aeroelasticity, flight dynamics, and control. Weakly (loosely) or strongly

(tightly) coupling the UVLM with the flexible-body equations permits fully nonlinear time-marching simulations,

whereas the linearisation of the equations leads to a very potent monolithic discrete-time state-space formulation. The

latter can be used for stability analysis by solving an eigenvalue problem, in control synthesis for gust alleviation, or

can be marched in time. In Section 6, both linear and nonlinear implementations will be exercised in diverse situations
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in order to illustrate some of the problems this methodology can deal with, and the paper will be concluded in Sec-

tion 7 by summarising the main merits of the UVLM, and outlining recommendations for the unsteady-aerodynamic

modelling of flexible-aircraft dynamics.

2. Unsteady incompressible potential-flow methods

Potential theory is an elegant, well developed, and widely used concept in many branches of physics. In the context

of fluid dynamics, it constitutes the foundation of low-speed aerodynamics, and, as such, it is described in detail in

most textbooks [62, 117–119]. It is thus not the aim of this section to give a thorough mathematical derivation of

potential-flow theory, but just a quick overview of the basic ideas as they apply to low-speed aerodynamics, including

classification and limitations, and to review the most common numerical solution methods employed for aircraft

dynamic analysis.

2.1. Basic concepts

Inviscid, incompressible, and irrotational flows are governed by Laplace’s equation for the velocity potential, Φ:

∇2Φ = 0. (1)

This is a linear and elliptic partial differential equation, which results directly from the continuity equation of

incompressible potential flows, and its solutions must be subject to a pair of boundary conditions. For many prob-

lems of aeronautical interest these consist of a boundary condition on the body surface enforcing flow tangency for

impermeable surfaces, and a boundary condition at infinity. The latter requires that disturbances vanish in the far

field. Whereas exact two-dimensional analytical solutions of this boundary-value problem can be obtained for simple

geometries by means of conformal transformations, the common procedure in modern aerodynamics is to compute

approximate solutions numerically using the boundary-element method, i.e., applying Green’s function theory. This

approach, which unlike transformation theory, is applicable to three-dimensional as well as two-dimensional flows,

is based on identifying elementary solutions (or singularities), which are algebraic functions of unknown strength

that satisfy the linear differential equation. They can be then combined to represent the actual flow field through

the superposition principle by distributing them over a surface. As a result, the problem of finding a solution to this

partial differential equation over a three-dimensional domain is replaced by the problem of solving a set of algebraic

equations for the unknown singularity distribution over the body surface, leading to much faster numerical algorithms.

Singularity solutions automatically satisfy the far-field boundary-condition since the velocity fields they induce decay

with distance. Their strength is determined by applying the non-penetration boundary condition (flow tangency) at a

number of control points on the surface. The resulting system is undetermined with respect to the circulation around

the body, and the Kutta-Joukowski condition needs to be imposed to obtain a unique solution.
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2.2. Classification

Incompressible potential-flow methods can be categorised according to various criteria. Whether the flow is

steady or unsteady is an obvious distinction, and this paper will concentrate on unsteady methods. Laplace’s equation

is time-independent, but temporal dependence is introduced through the boundary conditions. Although the equation

is linear, nonlinearity can enter the problem through the geometry. This may occur through displacement of the body

surface when this cannot be reduced to a uniform translation or rotation, such as flexible wing and bodies, or through

evaluation of boundary conditions on a free wake.

A logical classification of these methods is based on the type of singularity used for the discretisation of the

domain: the most familiar elementary solutions (2-D and 3-D) are sources, doublets and vortices, but computer codes

with different combinations of them are also widespread. The so-called higher-order panel methods use singularity

distributions that are not constant on the panel, and may also use elements which are non-planar. In theory, for subsonic

cases, good results can be obtained using far fewer panels with higher-order methods. In practice, the need to resolve

geometric details often leads to the requirement of small elements, and the advantages of higher-order elements are

not necessarily obtained. There seems to be some consensus that low-order methods are faster and cheaper [62, 120],

and that few high-order codes have proved cost-effective [92].

Wake modelling is an essential part in unsteady aerodynamics, since the wake is responsible for the delay in the

development of aerodynamic forces, namely the aerodynamic lags. Quasi-steady approximations to the real unsteady

flow rely on the assumption that these lags are negligible and that aerodynamic forces would reach instantaneously

their steady-state value. In reality, the wake shed by a lifting surface in relative motion to the surrounding fluid is

force free, and hence it moves following the local flow velocity. Therefore, incompressible potential-flow methods

can also be divided according to the representation of the wake: free-wake models capture this behaviour by obtaining

the shape of the wake as part of the solution procedure. This is a computationally expensive process, since it needs

the evaluation of the local velocities at the wake grid-points and it is a common simplification to neglect this effect

and to consider a prescribed wake shape. This can be determined through empirical observations, such as flow

visualisations, or by assuming that the wake is convected with the free stream. For small deformations, this leads to

a flat-wake simplification, which works well in a broad range of scenarios, but is not suitable for complex kinematics

or highly-loaded wings.

As aforementioned, solutions to Laplace’s equation around general body shapes are obtained by means of sin-

gularities distributed over panel elements on the body surface. When the body is thin, there is a considerable gain

in solution speed to be had by invoking thin-aerofoil or lifting-surface theory, and placing the singularities and the

control points at which the body boundary-condition is satisfied either on the camber-line or the chord-line surface.

The former is more appropriate if the wing is thin but its camber, twist and/or deflection are large. When thin-aerofoil

or lifting-surface theory is used, thickness is represented by sources and all effects of local incidence and camber by

elements which include circulation. Panel methods that use combinations of sources and doublets/vortices were rou-

tinely used for the steady case, and transformed the aeroplane design process [121]. However, the effect of thickness
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on overall forces such as lift and moment is second order and unless it is very large, around 30% of the chord [122], its

influence is minimal in non-stationary flows. Hence it is usual to omit them in unsteady thin-aerofoil or lifting-surface

theory.

In thin-aerofoil or lifting-surface theory where boundary conditions including the wake are on a fixed streamwise

plane, unsteady flows may be analysed in either the time of frequency domains, and being completely linear, they are

the Fourier transforms of one another. When the singularities are on a non-constant camber surface, and consistent

with this a time-varying non-planar wake is modelled, the problem is not fully linear, and only time-domain solutions

are valid. This paper will focus on such methods.

These classification criteria are not mutually exclusive. As already stated, some methods combine different singu-

larities for modelling thin surfaces and wings with thickness, or will allow the user to choose between a prescribed or

a free wake. As a consequence, there is no universal classification and different authors might resort to different rules.

2.2.1. Methods for non-stationary wings of high aspect ratio

Time-dependent thin-wing theory generates three main length-scales: chord c, span b, and typical wavelength λ

of the wake (related to the reduced frequency, k, as λ = πc/k). Assuming c � b, one can identify different situations

depending of the values of λ [123] 1:

Very low frequency, λ � b: this is the region of validity of Prandtl’s classical lifting-line theory. The wing is

divided into horseshoe vortices, the streamwise portions of these vortices are aligned with the free stream, and a

quasi-steady representation of the vorticity shed into the wake is assumed.

Low frequency, λ = O(b): this condition corresponds to low-frequency unsteady lifting-line theories. Such models

can be obtained through matched asymptotic expansions of the acceleration potential between an outer limit (defined

by fixed span with chord going to zero) and an inner limit (with fixed chord and span going to infinity) [124]. The

solution for flexible wings with longitudinal motions was developed by Ahmadi and Widnall [123], with an extension

to arbitrary (but slow) wing trajectories due to Wilmott [125]. While this is a very elegant solution that defines

Theodorsen’s unsteady-aerofoil and Prandtl’s lifting-line models as limiting cases, it’s applicability is limited by the

assumption that λ � c and it has seldom been used. An alternative unsteady lifting theory has been however proposed

by Drela [6] which assumes an arbitrary time-domain variation of the circulation along the span and a (flat) convective

wake. This is time marched and, once the instantaneous circulation is obtained, section forces are obtained by the

unsteady version of Joukowski’s theorem. This approach has been used in ASWING, an integrated framework for

flexible aircraft dynamic analysis [6, 126].

Intermediate frequency, c < λ < b: this condition implies resolving all three scales, which in practice requires

lifting surface methods (see below).

1Note that very high-frequencies, λ � c, are not considered, since potential-flow theory is not a good approximation in these situations – recall

the unsuitability of the Kutta-Joukowski condition in these cases.
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High frequency, λ = O(c): this is the range of validity of 2-D unsteady-aerofoil theory. In the limit, the time

averaging in the (periodic) wake cancels spanwise effects and wing aerofoils can be analysed independently. The

closed-form solutions to several specific cases are well known: impulsive flows (Wagner [127]), step gusts (Küssner

[128]), harmonic oscillations (Theodorsen [129]), and sinusoidal gusts (Sears [130]) (the last pair is just the Fourier

transform of the first two, even though for historical reasons they are normally presented independently). Based on

them, different state-space formulations of the unsteady aerodynamics have been proposed [131, 132], mainly, by the

rotary-wing community. Ref. [133] provides a recent review of 2-D unsteady-aerofoil theory.

This approach is typically referred to as strip theory (or blade-element theory), and it has been extensively used for

HALE UAV modelling. Refs. [4, 10, 15] are based on Peters’ finite-state model [132], while some authors (e.g. Ref.

[12, 134]), have used the indicial method of Leishman [131]. In addition to its simplicity, strip theory presents the

advantage that it easily allows for corrections, including semi-empirical stall models [135, 136], and steady viscous

drag, using software such as XFOIL [137] and JavaFoil [138]. The main disadvantage is in the evaluation of spanwise

variations, which may be critical, even for high-aspect-ratio wings, when large deflections occur [18]. It is customary

to include wing-tip effects as a modulation on the amplitude of the unsteady solution based on the spanwise steady lift

distribution [4, 10, 15]. This correction, however, is only valid at low frequencies, since the flow becomes strongly

two-dimensional (even near the tip) at high frequencies [17]. This limits in practice the applicability of this approach

across different time scales for a given aspect ratio. In addition, the unsteady interference between lifting surfaces and

wakes (typically between the wake shed by the main wing and the tail) differs significantly from classical quasi-steady

approximations even for simple longitudinal manoeuvres [18].

2.2.2. Lifting-surface methods

Models to account for the spanwise flow field of finite-aspect-ratio wings are considered next. In order to model

lifting effects antisymmetric singularities such as doublets or vortices are needed, distributed over a mean surface

instead of the real geometry and thus ignoring thickness. The three-dimensional Doublet-Lattice Method is probably

the most widely used method in industrial dynamic aeroelasticity. The bibliography pertaining the DLM is vast, and

two notable references are Blair’s work in 1994 [139], who gathered all relevant contributions to the DLM up to that

date to give a thorough description of the method, and Rodden’s view of the historical development in an anecdotal

way [140].

In the DLM, the elementary solution to Laplace’s equation is the so-called acceleration-potential doublet. Lifting

surfaces are divided in trapezoidal panels parallel to the free stream. The DLM is formulated in the frequency domain

and the equations are obtained assuming small out-of-plane harmonic motions of the thing wing, and a flat wake.

This restricts the applicability of the method. First of all, the boundary conditions are linearised and a prescribed flat

wake is assumed, so the method is not applicable when large deformations occur. Secondly, the DLM is not ideal

for situations in which in-plane kinematics play a pivotal role, such as T-tail flutter, and some type of correction is

required [141, 142]. A further limitation is that it is not able to capture all the steady aerodynamic loads required for
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flight dynamics analysis, and it is typically complemented by additional specific models [7] (e.g., the steady Vortex-

Lattice Method). Within its applicability boundaries, the DLM is a very reliable and efficient tool, in part thanks to

the experience accumulated during the past few decades and the substantial literature. Forty years after being devised,

it remains as the standard tool for flutter clearance and gust response in industry, and it is at the core of most relevant

commercial software for subsonic aeroelasticity [143, 144].

In the Unsteady Vortex-Lattice Method, lifting surfaces and wakes are discretised using so-called vortex rings,

quadrilateral elements composed by discrete vortex segments in a closed loop. The wake vortex-rings are freely

convected according to the local flow velocity, developing into a force-free wake. The basics of the explicit UVLM

algorithm are thoroughly described in Ref. [62]. As opposed to the DLM, the shape of the wake is not prescribed and

the boundary conditions are not necessarily linearised, and can be enforced on the deformed geometry. In addition,

general kinematics are allowed, not being restricted to out-of-plane harmonic motions. As a consequence, the UVLM

constitutes an advantageous modelling tool when complex and/or large wing motions occur, and when the prescribed-

wake assumption does not hold. Nevertheless, the standard method is a time-marching scheme, not so well suited as

the DLM in many aeroelastic simulations. An alternative state-space formulation can overcome this limitation – see

Section 3.2.

Unsteady lifting-surface methods, such as the DLM and the UVLM, can be directly employed to model thick-

ness by wrapping the elementary solutions around the real boundary [122]. In this case, a closed distribution of the

singularities generates a singular influence coefficient matrix when using either Dirichlet or Neumann boundary con-

ditions in 2-D, and with Neumann conditions in 3-D – which is the only possibility for the latter. This problem can

be overcome by various techniques, such as adding the Kutta-Joukowski condition to all rows to desingularise the

matrix.

2.3. Limitations and extensions

Laplace’s equation is an exact representation of incompressible, inviscid, irrotational flow. This implies that

rotational regions are confined to thin sheets which can be represented by the singularities. Delimiting exact parameter

thresholds for validity of the formulation proves more intricate, though. Usually, the incompressibility condition in

the steady case is expressed as M2 � 1, and this is extended to the unsteady case as k2M2 � 1, where M is the Mach

number, and k the reduced frequency. Several compressibility corrections exist for inviscid, subsonic, compressible

flow, the Prandtl-Glauert rule being the most well known. This correction is normally implemented, for example, in

the DLM. As it is based on the linearised velocity potential equation, the Prandtl-Glauert correction is restricted to

thin wings and small angles.

Theoretically, a flow can be regarded as inviscid if the Reynolds number is large enough and the flow remains

attached. In such cases, viscous phenomena are contained within the boundary layer, outside which the flow can

be effectively considered inviscid. For many practical applications the inviscid flow assumption is not suitable. For

one, separation will be a prominent feature whenever the local effective incidence is large, such as when fast, large
13



amplitude kinematics take place. Solutions to overcome this have been proposed in the literature, such as semi-

empirical models for dynamic stall in 2-D aerofoil theory [135, 136], or ad hoc models for the UVLM [8, 145].

Another way to deal with separation is to define additional wake-shedding points apart from those at the trailing edge

[146], analogous to the leading-edge separation of delta wings, but this requires a priori (typically, experimental)

knowledge of the separation conditions.

Even for high Reynolds numbers the assumption of inviscid flow presents an important shortcoming, as viscous

drag cannot be predicted – the D’Alembert paradox. Aeroelasticity and flight dynamics are mostly concerned with lift

and induced drag, respectively, but if the viscous drag component is relevant for the analysis, some type of approxi-

mation is necessary, such as using static 2-D aerofoil data [80, 100, 147]. A more sophisticated approach to viscous

modelling would be to couple a potential-flow method with a boundary-layer solver (see Ref. [62, §13.12] for an

introduction into the topic), but this is far from trivial for unsteady problems.

The estimation of inviscid induced drag also constitutes a challenge in many potential-flow models. Lifting-surface

methods present a singularity at the leading edge, due to zero thickness, and the streamwise component of the pressure

loading overestimates the induced drag. This can be overcome by taking into account the leading-edge suction. In

contrast, methods which place the singularities around the surface of a body of non-zero thickness and compute the

surface pressures do not suffer from the leading-edge problem, and the induced drag is readily available.

Awareness of these limitations allows the use of incompressible potential-flow methods (or their extensions) in

many fluid dynamics problems. They offer a great insight and provide remarkably accurate results in numerous

situations at a fraction of the computational burden of higher fidelity tools.

3. Unsteady aerodynamics for flexible aircraft dynamics

It is deduced from the discussion above, on the one hand, that lifting-line or strip theory have a limited range of

applications (both in the geometry and in the wing dynamics), while, on the other hand, surface panel methods that

include wing thickness provide little actual modelling advantage for unsteady aerodynamics at subsonic speeds. Con-

sequently, aeroelastic modelling based on potential-flow theory has overwhelmingly relied on lifting-surface methods.

Moreover, the advantages of state-space formulations have long been recognised for aircraft dynamic analysis

[148–151]: powerful algebraic tools, root-locus stability, modern control techniques, which simplify the evaluation of

transient solutions (dynamic loads, continuous gust response), aeroservoelastic analytical sensitivity derivatives, and

load alleviation models. This section describes how both DLM-based (frequency domain) and UVLM-based (time

domain) lifting-surface methods are transformed into convenient state-space form.

3.1. Frequency-domain approach

The usual procedure for studies on aircraft dynamics relies on the separation of the time scales between elastic

and rigid-body modes, effectively decoupling flight mechanics and aeroelastic analyses. Aerodynamic tools have
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therefore been developed independently to meet the specific requirements in each discipline. From an aeroelasticity

point of view, the frequency-domain DLM is very well suited to flutter analysis. The aerodynamic influence coeffi-

cients evaluated with this method are then curved-fitted into state-space time-domain models through rational function

approximations [60]. For coupled analysis, this is then linked to rigid-body aerodynamics models, which are typi-

cally based on an array of techniques to generate aerodynamic lookup tables with stability and control derivatives

[152–154]. A brief summary of this process is included next.

3.1.1. Rational-Function Approximation for aeroelasticity

Typical linear aeroelastic analysis using DLM assumes harmonic displacements on the natural vibration modes of

the structure (which are obtained from a finite-element model) and evaluates complex-valued Aerodynamic Influence

Coefficients (AICs) for a set of tabulated reduced frequencies, k, and flight conditions. It is also extended practice to

correct those tables using CFD or wind tunnel data [155, 156]. These AICs relate the generalised aerodynamic forces,

Qa, to the linear vibration modes of the flexible structure, η, the control inputs, uc, and any exogenous disturbances

(i.e., gust velocities), ud, as [60]

Qa (ik) = qφT
[
AICη (ik) η + AICc (ik) uc + AICd (ik) ud

]
, (2)

where φ is the structural modal matrix, and q is the dynamic pressure. Frequency domain methods, such as ‘V-g’

or ‘p-k’, can be used for stability analysis with AIC matrices interpolated from the tabulated ones. However, it is

also desirable to transform frequency-domain aerodynamic forces furnished by the DLM into a set of time-domain

equations, in particular for transient gust response. In order to achieve a state-space system, the generalised force

coefficient matrices are approximated by means of rational functions as [150]

Qa (p) ≈ A0 + A1 p + A2 p2 +

nL∑
l=1

p
p + γl

Al+2, (3)

≈ A0 + A1 p + A2 p2 + D (I p − R)−1 Ep, (4)

where p is the nondimensional complex Laplace variable, and γl are the so-called aerodynamic lag terms. All the

matrix coefficients are real valued. There are two well-known techniques to determine the lag terms or poles in this

equation: Roger’s approach [157, 158] using Padé approximants, Eq. (3), and Karpel’s [149] minimum-state method,

Eq. (4). These equations can now be easily transformed into state-space expressions in the time domain and can then

be appended to the structural dynamics equations, as elucidated in Section 4.2. This methodology typically requires

the input of an experienced engineer: wrong selection of lag values may have a big impact on the results. Also, AICs

should cover a wide range of reduced frequencies (even those seemingly of no interest) to obtain good results.

3.1.2. Stability and control derivatives for flight mechanics

The AIC matrices defined above need to be augmented with the aerodynamic coefficients required for flight dy-

namics. These are typically pre-computed for a variety of flight and control states and are tabulated in databases [159].
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These lookup tables are generated from data sheets, design formulae, empirical relations, wind-tunnel and flight-test

results, computational methods, or different combinations of them. Experimental results may offer higher accuracy,

but they tend to be expensive. Unsteady effects are often not included, and steady or quasi-steady potential-flow mod-

els are the most common to fill the aerodynamic tables, but higher fidelity CFD simulations are also gaining ground

[160, 161]. Databases may be vast and must comprise information covering diverse scenarios, such as small pertur-

bations around trim and large dynamic manoeuvres. In order to incorporate flexibility effects in an otherwise rigid

aircraft, derivatives and load distribution can be adjusted using flex-to-rigid ratios or flexibility increments determined

by linear aeroelastic analysis [162].

The combination of the aeroelastic equations with time-domain unsteady aerodynamics, derived by either Eq. (3)

or Eq. (4), and the flight dynamics equations with tabulated aerodynamic derivatives, provides a unified framework

for aeroelasticity and flight dynamics. This process is demonstrated, for example, in Refs. [7, 163, 164].

3.2. A discrete-time state-space Unsteady Vortex-Lattice Method

The Unsteady Vortex-Lattice Method (UVLM) is an efficient computational technique to solve 3-D potential flow

problems about lifting surfaces. Vortex rings are distributed over the mean surface and the non-penetration boundary

condition is imposed at a number of collocation points, leading to a system of algebraic equations. Aerodynamic

control surfaces are directly modelled by prescribed deflections of trailing edge panels and the corresponding rotation

of normal vectors. As the surface moves along its flight path, a force-free wake is obtained as part of the solution

procedure, also represented by vortex rings (see Fig. 1).

The UVLM is normally solved using an explicit time-marching algorithm, which is described in excellent detail in

Ref. [62]. Here, the general nonlinear governing equations are presented in discrete-time state-space fashion, which

is found to be more suitable for multidisciplinary integration and aircraft dynamics modelling. The nonlinearities

arise due to the enforcement of the boundary conditions on the deformed geometry and the free-wake model. While

this formulation is necessary for fully nonlinear time-domain simulations, the computational cost is relatively high.

Hence, the linearised form of the equations is also subsequently derived by performing small perturbation expansions

and assuming a frozen aerodynamic geometry, i.e., flow tangency is enforced on the reference configuration and the

wake convects with the free stream velocity. This formulation follows upon the concepts outlined in Ref. [87].

3.2.1. General nonlinear formulation

Each lifting surface is discretised in rectilinear vortex rings. The leading segment of the vortex ring is placed on

the panel’s quarter-chord line and the collocation point is at the three-quarter chord line, which falls at the centre of

the vortex ring (see Fig. 1).

At discrete time step n + 1, the vorticity distribution of the bound vortex elements is determined by applying the

non-penetration boundary condition, formulated as

AcbΓ
n+1
b + AcwΓ

n+1
w + wn+1 = 0, (5)
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Figure 1: Unsteady aerodynamics model: lifting-surface and wake discretisation using vortex-ring elements.

where Γb and Γw are the column vectors with the circulation strengths in the bound and wake vortex-rings, respec-

tively; Acb = Acb(ζn+ε
b ) and Acw = Acw(ζn+ε

b , ζn+ε
w ) are the wing-wing and wing-wake aerodynamic influence coefficient

matrices, computed at the collocation points, and ζb and ζw are the column vectors with the bound and wake grid

coordinates. w in Eq. (5) is the column vector of normal components of all velocities except those induced by bound

and wake vorticity, which may encompass deployment of control surfaces, gust induced velocities, wing deformations

and rigid-body motions, and will be denoted here as “non-circulatory velocity”. The time at which the different vari-

ables are evaluated within the current time step is determined by tn+ε = tn + ε∆t, with 0 ≤ ε ≤ 1, and depends on the

integration scheme.

The velocity induced by vortex ring l over collocation point k is obtained from the Biot-Savart law, given by (for

unit circulation strength)

~qkl =

∮
Cl

d~sl × ~rkl

4πr3
kl

, (6)

where d~sl represents the vortex segments that make up the complete ring, Cl, and ~rkl is the vector from the collocation

point k to the relevant vortex segment of vortex ring l, with rkl the corresponding modulus. Numerically, this entails

four evaluations of the Biot-Savart law, one for each vortex segment of the closed circuit, Cl. The elements of the

aerodynamic influence coefficient matrices Acb and Acw are obtained by computing all cross-induced velocities at the
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collocation points and projecting them along the normal vector of the corresponding panel. This can be written as

(Acb)kl = ~qkl~nk, k, l = 1...Nb, (7)

(Acw)kv = ~qkv~nk, k = 1...Nb, v = 1...Nw, (8)

where k, l are bound (surface) panel counters, v is a wake vortex-ring counter, Nb is the number of total bound panels,

Nw the number of wake panels, and ~nk stands for the normal vector of the kth vortex ring (at which the induced

velocity is being computed). For numerical efficiency, the adjacent vortex segments shared by different rings need be

computed only once. Note that for Eqs. (7-8) to be correct, it is necessary to express all magnitudes in the same frame

of reference (FoR), and that this needs to be consistent with the other velocity contributions on the non-penetration

boundary condition, Eq. (5).

In turn, the velocities induced by the motions of the lifting surfaces and the incident flow, that is, including all

contributions save those by bound and wake vorticity (non-circulatory velocity), can be written as

wn+1 = Wb ·

(
ζ̇

n+1
b + vn+1

d

)
, (9)

where vd encompasses the effect of exogenous disturbances such as gusts, and Wb

(
ζn+ε

b

)
is a matrix that projects

the non-circulatory velocities along the normal direction to the panels – note that defining the normal vector for

quadrilateral panels on a surface of double curvature is not straightforward. For a purely aerodynamic problem,

the motion of the lifting surfaces will be prescribed and ζb and ζ̇b will be part of the inputs to the system. If a

multidisciplinary problem is subject to study, such as coupled aeroelasticity and flight dynamics, ζb and ζ̇b will be a

function of other states of the unified model, and they may also encompass other inputs such as deflections of wing

control-surfaces.

At each time step, as the circulation of the wing changes, a new row of vortex rings will be shed into the wake

from the trailing edge of each lifting surface. In addition to this, the existing wake may be displaced following the

local flow velocity (the free-wake model). This is written as

ζn+1
w = Cζbζ

n+1
b + Cζwζ

n
w +

∫ tn+1

tn
V(t) dt, (10)

where Cζb and Cζw are very sparse constant convection matrices that update the position of the prescribed wake: Cζb

closes the newly shed wake panel with the trailing edge of the lifting surface, satisfying the Kutta-Joukowski condition,

while Cζw preserves the wake of the previous time step unchanged. The column vector V in Eq. (10) includes the local

induced flow velocities at the grid points of the wake mesh. If a prescribed wake were to be considered, the integral

term would be dropped, but for a fully force-free wake it is necessary to retain it and time-integration is required to

determine the location of the rolled-up wake. Conventionally, this is done using an explicit one-step Euler method,

but in order to improve the accuracy and/or stability of the wake roll-up other higher-order schemes have been also

proposed in the literature, such as a two-step Euler [165] and the fourth-order Adams-Bashforth-Moulton [73].
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These velocities at the vertices of the wake mesh, V in Eq. (10), can be written as

V = AvbΓb + AvwΓw + v∞ + vd, (11)

which is analogous to the non-penetration boundary condition, Eq. (5), but in this case the velocities are computed

at the wake vertices, and as they are not projected along any vector, the three velocity components are retained – the

velocities can also be computed at centres of wake panels or centres of vortex elements, and then interpolated. v∞

represents the velocity due to the free-stream conditions, vd the contribution from exogenous disturbances, and the rest

of the contributions to the velocity are due to vortex influence, where the entries of matrices Avb and Avw are obtained

through the Biot-Savart law, Eq. (6). Note that again, for numerical efficiency, only the velocities at the independent

wake nodes need to be computed.

The propagation equation for the wake circulation can be written in discrete time as

Γn+1
w = CΓbΓ

n
b + CΓwΓ

n
w, (12)

where CΓb and CΓw map the circulation of the previous time step to the current one, and they are very sparse constant

matrices which account for Kelvin’s circulation theorem (that enforces the condition for wake shedding at the trailing

edge) and Helmholtz’s vortex theorem (in the convection of the wake). Note that the wake is a thin shear layer

subject to Kelvin-Helmholtz instability, which may be captured for fine enough discretisations of the vortex sheet

[166] – while the real instability is determined by the thickness of the sheet, the instability in the numerical sheet

is determined by the discretisation, with growth rates increasing as the inverse of the discretisation spacing. As the

influence of the wake decreases very rapidly as it is convected away from the lifting surface, Eq. (6), the computational

burden can be significantly alleviated by neglecting the influence of remote panels (wake truncation). Implementing

dissipation models has also been tried [69, 95], but consideration must be given to conservation of circulation issues.

k
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k
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,nc k
v
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Figure 2: Two-dimensional projection of local frame A of vortex ring k, defined by the instantaneous non-circulatory velocity at the collocation

point and the normal vector.
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Finally, once the distribution of vorticity has been obtained at each time step, the inviscid aerodynamic loads

can be computed. The aerodynamic forces act on the plane defined by the normal vector of the vortex ring and the

instantaneous non-circulatory velocity at the collocation point,~vnc,k =

(
~̇ζb + ~vd

)
k
, which encompasses the contributions

of rigid-body motions, elastic deformations and incident flow – note that if the influence of bound and wake circulation

were added, the velocity vector would be tangential to the vortex ring due to the non-penetration boundary condition.

This defines a local frame, A, as illustrated in the 2-D projection in Fig. 2. The pressure differential, obtained from

the unsteady Bernoulli equation, acts along the normal vector. However, as the UVLM is based on thin-wing theory, it

does not account for the leading-edge suction [167], and only the component normal to the non-circulatory velocity is

retained, i.e., the contribution of pressure to the local lift. The contribution of the panel to the induced drag is aligned

with the instantaneous non-circulatory velocity, ~vnc,k, and it can be computed through the approximation proposed in

Ref. [62]. The vectors storing these inviscid loads are computed using the generalisation of the equations to cater for

arbitrary motions not limited to small angles of attack, given in Ref. [71] as

Ln = ρ∞Gc

[
(UcΛc + UsΛs)Γn

b + Γ̇
n
b

]
,

Dn = ρ∞
[
−ÛΛcΓ

n
b + GsΓ̇

n
b

]
,

(13)

where Λc(s) are matrices filled with 1 and −1 in the correct positions in order to account for adjacent panels; matrices

Gc(s) = Gc(s)(ζn
b, ζ̇

n
b) are diagonal matrices dependent on the panel geometry and local angle of incidence; Uc(s) =

Uc(s)(Γn
w, ζ

n
b, ζ

n
w, ζ̇

n
b) and Û = Û

(
Γn

b,Γ
n
w, ζ

n
b, ζ

n
w

)
are diagonal matrices that store weighted velocities. Their exact

definitions can be found in Ref. [168].

The above UVLM equations can be cast for convenience into general nonlinear discrete state-space form. The

propagation expressions, Eqs. (5), (10), and (12), and the output ones, Eqs. (13), can be written, respectively, as

fA

(
xn+1

A ,un+1
A

)
= gA

(
xn

A,u
n
A
)
,

yn
A = hA

(
xn

A,u
n
A
)
,

(14)

where the aerodynamic states and inputs that fully define the aerodynamic system are

xA =



Γb

Γw

Γ̇b

ζw


, and uA =

ζb

ζ̇b

 . (15)

Note that Γ̇b has been included in the state vector since it appears on the aerodynamic loads. It may seem unusual

to retain the inputs at the current time step, un+1
A , but it will be seen that this allows no loss of generality when

integrating the aerodynamic model into a multidisciplinary analysis framework (see Section 5.2).

3.2.2. Linearisation assuming a frozen geometry

Eqs. (14) correspond to the general state-space formulation of the UVLM, which can account for large deflections

of the lifting surfaces in unsteady flow. In many cases, though, it will be useful to look at the linearised form of
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these equations, when relative deformations are small around an equilibrium condition, for problems such as stability

analysis and design of linear control laws. In this context, the equilibrium condition will generally correspond to a

trimmed aircraft configuration, which can exhibit large static deformations. This reference configuration represents

the initial conditions for impulsive motions, and the mean conditions for periodic oscillations.

The linearisation of the unsteady aerodynamics, Eqs. (5-13) is carried out under the following assumptions:

• Body-fixed axes are used. This is the natural description to obtain the aerodynamic forces, but differs from the

usual definition of stability axes used in flight dynamics analysis [152].

• The dynamic excursions around the statically deformed aircraft are small, and as a consequence, the non-

penetration boundary condition, Eq. (5), can be enforced at the mean statically-deformed reference geometry.

As a result, the dependencies on ζb are neglected, except for matrix Wb, Eq. (9), since this is necessary in order

to account for local angle of incidence changes as the lifting surface deforms.

• The application point of the aerodynamic forces does not change as the surface undergoes small deformations,

and remains constant at the original configuration. Hence, the dependencies on ζb are ignored in Eqs. (13).

However, the change in orientation of the aerodynamic loads, which depends on the velocities, ζ̇b, is included.

This influence appears on matrices Gc and Gs through the local angle of attack. This approach coincides with

the traditional linearisation of aerodynamic forces, where the geometry is assumed frozen but the dependency

on velocities is catered for.

• Free-wake effects around the reference condition are neglected. This assumption reduces the UVLM to a

prescribed-wake method, and under this approximation it is not necessary to keep track of the wake shape after

trim as it conforms to free-stream convection alone. Note that the wake is prescribed in this case, but it does

not need to be flat, and it will be shed from the deformed lifting surface. Besides, a rolled-up wake can be

considered in order to determine equilibrium more accurately (in a steady sense). As the wake is frozen, there

is no need to retain Eq. (10), and ζw will remain constant at the reference configuration and is no longer a state

of the system. The aerodynamic states that fully define the UVLM are only circulation strength distributions

and the derivative of the bound circulation.

Using a mid-point integration scheme for the derivatives of the bound circulations, and performing a small per-

turbation analysis on the general UVLM equations, the linearised (incremental) propagation equations are obtained

as

Ao
cb∆Γn+1

b + Ao
cw∆Γn+1

w =

(
∂Wb

∂ζb

)
o
ζ̇

o
b∆ζn+1

b + Wo
b ∆ζ̇

n+1
b , (16)

∆Γn+1
w = Co

Γb∆Γn
b + Co

Γw∆Γn
w, (17)

∆Γn+1
b −

1
2

∆t∆Γ̇
n+1
b = ∆Γn

b +
1
2

∆t∆Γ̇
n
b, (18)
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where ∆t is the time step in the temporal discretisation and “o” defines the reference conditions about which the

linearisation takes place and at which matrices and tensors are evaluated – superscripts are employed for matrices

and column vectors, and subscripts for tensors. Defining Υ = UcΛc + UsΛs for conciseness, the linearised output

equations for the aerodynamic loads are given by

∆Ln = ρ∞

{
Go

cΥo∆Γn
b + Go

c

(
∂Υ

∂Γw

)
o
Γo

b∆Γn
w + Go

c∆Γ̇
n
b

+

Go
c

(
∂Υ

∂ζ̇b

)
o

Γo
b +

(
∂Gc

∂ζ̇b

)
o

(
ΥoΓo

b + Γ̇
o
b

) ∆ζ̇
n
b

 , (19)

∆Dn = ρ∞

{
−

[(
∂Û
∂Γb

)
o

ΛcΓ
o
b + ÛoΛc

]
∆Γn

b −

(
∂Û
∂Γw

)
o

ΛcΓ
o
b∆Γn

w

+Go
s∆Γ̇

n
b +

(
∂Gs

∂ζ̇b

)
o

Γ̇
o
b∆ζ̇

n
b

 . (20)

The linear discrete-time equations, Eqs. (16-20), define the descriptor state-space form of the UVLM. In compact

form they are

EA∆xn+1
A + FA∆un+1

A = AA∆xn
A + BA∆un

A,

∆yn
A = CA∆xn

A + DA∆un
A,

(21)

where the outputs yA are the aerodynamic loads, Eqs. (19-20). This descriptor form of the equations, with matrix EA

premultiplying the updated value on the state variable is preferred to the canonical discrete-time form (xn+1 = Axn)

because this is the natural expression obtained from the UVLM.

The linearised state-space UVLM provides a compact and efficient tool, of comparable fidelity to the DLM, but

without some of its restrictions: the wake can be nonplanar, flow tangency is imposed on the statically deformed geom-

etry, and in-plane deformations are captured. Besides, it will be shown in Section 5.3 that it enables the incorporation

of rigid-body motions and elastic deformations in a unified monolithic framework.

The UVLM can also replace the DLM in virtually any aeroelastic/flight mechanic analysis. Being a time-domain

method, procedures for CFD-based aeroelasticity are directly applicable here (e.g., the Eigensystem Realization Al-

gorithm of Ref. [169]). For flight mechanics applications, the steady Vortex-Lattice Method is already used for the

determination of quasi-steady stability and control derivatives [49–51], and implementing the unsteady version of the

code would directly incorporate non-stationary effects. Specifically, Eqs. (19-20) would provide the variations of the

aerodynamic loads with the motions defined by ζb and ζ̇b in order to generate the aerodynamic database.

4. Flexible-body dynamics

A small digression is needed at this stage to introduce the elastic and rigid-body equations of motion that are

required to describe the dynamics of the flexible vehicle. This section summarises the state-of-the-art in these disci-

plines.
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4.1. Axes systems

The choice of axes, both orientation and location, to describe vehicle dynamics has traditionally varied across

disciplines. In flight mechanics, it is common to adopt body axes for a Lagrangian description of the motion instead

of Earth or ground inertial axes (Eulerian). The motivation to select certain directions and origin lies on the potential

to eliminate inertia couplings or to derive stability derivatives more easily. For instance, if the axes are aligned

instantaneously with the principal axes, the inertia tensor does not present off-diagonal terms. In turn, stability axes,

also known as aerodynamic or wind axes, offer advantages when handling aerodynamic terms.

Regarding the location of the origin of the reference frame, the centre of mass is the norm for a rigid aircraft.

However, for a vehicle that undergoes deformations, this approach manifests complications: under dead loads, the

centre of gravity of the unsupported structure remains constant (as long as forces are in equilibrium), but its position

changes if aerodynamic (i.e., follower) forces are present. Axes systems attached to the (moving) centre of mass

of a deformable aircraft define a floating frame [170]. This has led to the mean axes assumption [171, 172], which

assumes inertia decoupling between the structural-dynamics and rigid-body equations when the latter are referred to

the instantaneous centre of mass and principal axes of inertia. While this approach is still used by several authors, the

validity of the assumption remains controversial at best [173].

The second, most general, option is therefore to use body-fixed axes at an arbitrary point of the undeformed

structure. The origin of the reference frame maintains a constant location on the vehicle and the elastic deformations

are referred to it. This does not offer inertial decoupling of elastic and rigid-body degrees of freedom, but sets an

appropriate basis for geometrically-exact descriptions [4, 11, 17].

4.2. Linear decoupled aeroelasticity and flight dynamics

As aforementioned, aeroelasticity and flight dynamics can be decoupled for stiff enough vehicles in slow turns

(small gyroscopic forces). This is justified in many aeroplanes, and it provides an efficient and adequately accurate

way of tackling the dynamics of relatively stiff aircraft. Furthermore, the vehicle structural dynamics can be reduced

to a small number of degrees of freedom through modal analysis (based on the free-free modes of the unsupported

structure). The existence of mean axes can then be hypothesised, so that the Newton-Euler equations at the centre of

gravity of the rigid aircraft can be used to replace the rigid-body modes of the rigid structure. This results in a set of

decoupled equations of motion [172]

d
dt

(
m~v

)
= ~F,

d
dt

I
(
~ω
)

= ~M,

Mr q̈ + Cr q̇ + Kr q = Qa,

(22)

where Mr, Cr, and Kr are the reduced modal inertia, damping, and stiffness matrices, respectively; m is the mass of the

aircraft, I is the inertia tensor, ~v and ~ω are the linear and angular velocities respectively, and ~F and ~M are the applied
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forces and moments at the centre of gravity, which may include aerodynamic, propulsive, and gravitational loads. The

unsteady aerodynamic loads, Qa are obtained as the corresponding generalised forces for these mode shapes and can

be computed from any of the methods defined above. They introduce additional states, either from the lags in the

rational function approximation, Eqs. (3-4), or from the circulations in the state-space UVLM.

These equations are finally complemented with the propagation equations of the rigid body, which computes the

orientation of the vehicle (through, e.g., Euler angles, Θ) [153]. For stability analysis, the rigid-body equations are

linearised about an equilibrium configuration (trimmed aircraft), and are complemented by the stability derivatives

introduced in Section 3.1.2.

4.3. Geometrically-nonlinear composite beam modelling

For vehicles with larger, more flexible and more slender wings (e.g., HALE UAVs), geometrically-exact beams

are considered as a means of incorporating nonlinear effects, and integrating into a unified framework flexible-body

dynamics. The primary structures (wing, fuselage, empennage) are modelled as composite curvilinear beams capable

of large deflections and global rotations, but under the assumption of small local strains [9, 174]. They undergo three-

dimensional displacements and rotations, with cross-sectional properties calculated along the span. Typically those

displacements and rotations are the primary variables in the numerical solution of the structural problem [175, 176],

but alternative solutions exists using the strain of the beam elements as primary variables [4, 15, 177], or taking both

the local velocities and strains (the intrinsic description) as independent degrees of freedom [178–180] – the latter

can provide some numerical advantages on aircraft-type geometries. A comparative study on these different structural

models for flexible-aircraft dynamics was presented in Ref. [17].

Here, nodal displacements, ~R, and the Cartesian Rotation Vector (CRV), Ψ, are taken as primary degrees of

freedom. There are no constraints on the undeformed configuration allowing the beam to be initially curved and

twisted. As shown in Fig. 3, the vehicle dynamics are described by a body-fixed frame of reference (FoR), a,

which moves with respect to an inertial frame, G, by the translational, va(t), and angular, ωa(t), velocities of its

origin – subscripts are used to indicate the coordinate system in which each vector magnitude is projected. The

orientation of the body-fixed frame with respect to the inertial one is given by the coordinate transformation matrix

CGa(t), determined via Euler angles, Θ, and a flat Earth is assumed. The local orientation of the beam cross sections

(aerofoils) is defined by their local coordinate systems, B, in the deformed (or current) configuration.

The equations of motion are obtained from Hamilton’s principle [17], for which the potential,U, and kinetic, T ,

energy densities per unit length are first computed as

U =
1
2

{
γT κT

}
S

γκ
 , and T =

1
2

{
VT

B ΩT
B

}
M

VB

ΩB

 . (23)

Here, VB and ΩB are the inertial velocities of the local deformed frame, γ and κ are the beam strains, andM and

S are the mass and stiffness matrices, respectively, which are obtained through an appropriate cross-sectional analysis
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Figure 3: Flexible-body model: geometrically-exact beam elements.

methodology [181, 182]. The orientation of cross-sections at each point in the current configuration is described

in terms of finite rotations from the body-fixed reference frame, a, to the local deformed frame, B, using the CRV,

Ψ(s, t). The corresponding coordinate transformation matrix will be CBa(Ψ). Strains and velocities can then be

expressed in terms of the independent set of variables, Ra (s, t) and Ψ (s, t) [174, 176]. This general description of

the beam dynamics is independent of any discretisation used. Here, the position and rotation vectors within the

nth element are approximated by given shape functions. If η is the column vector of all nodal displacements and

rotations, η =
[
RT

a Ψ
T
]T

, and defining ν =
[
vT

a ω
T
a

]T
, the equations of motion of the aircraft can be cast into the

following discrete form [17]

M
(
η
) η̈ν̇

 + Qgyr
(
η, η̇, ν

)
+ Qsti f

(
η
)

= Qext
(
η, η̇, ν,Θ,uFB

)
, (24)

where matrix M is the tangent mass matrix and Qgyr, Qsti f f and Qext are the discrete gyroscopic, stiffness, and external

generalised forces, respectively. The input vector uFB =
[
uT

S | u
T
R

]T
includes the dependency of the external loads on

any other variable in the most general form. In particular, for the aeroelastic and flight dynamics analysis, uFB will

depend on the aerodynamic loads, which in turn depend on the aerodynamic states.

The linearised (incremental) form of Eq. (24) around an equilibrium point is given by

M
(
ηo

) ∆η̈

∆ν̇

 + C

∆η̇

∆ν

 + K

∆η

0

 = ∆Qext, (25)
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where C and K are the tangent damping and stiffness matrices, evaluated at the equilibrium point.

The states that fully determine the flexible-body dynamics are therefore

xFB =
[
xT

S | x
T
R

]T
=

[
ηT η̇T | νT ΘT

]T
. (26)

5. Multidisciplinary integration

When referring in previous sections to traditional methods for aircraft dynamics, it has been insisted upon that

habitually, following the frequency separation approach, aeroelasticity and flight mechanics are studied as independent

blocks. The modules are then assembled using interpolation matrices, and adjustments might be made to account for

elasticity in the rigid-body equations or vice versa. Assuming that the mean axes assumption holds, this decoupled

linear approach reduces the size of computational models and enables straightforward implementation of standard

control synthesis techniques.

However, this procedure is not suitable for vehicles that exhibit moderate-to-large wing excursions, and a sub-

stantial effort has been recently made to build unified frameworks that incorporate flexible-multibody dynamics and

potential-flow aerodynamics [4, 7, 10, 11, 16]. These have nevertheless been restricted so far to two-dimensional

aerodynamics or linearised boundary conditions.

Coupling the Unsteady Vortex-Lattice Method (Section 3.2) with a geometrically-nonlinear beam (Section 4.3)

overcomes some of the limitations of the above models, and allows fully nonlinear time-marching simulations and

linearised monolithic state-space solutions. The mapping between discretisations and different types of integration are

presented next, and the reader is referred to Refs. [183, 184] for a more general overview of fluid/structure coupling

schemes.

5.1. Mapping

As the flexible-body model is based on beams (curves in space) and the aerodynamic lattice is distributed over a

lifting surface, a mapping procedure is required between both meshes. This is accomplished here by assuming that

the lifting-surface cross-sections remain undeformed, that the finite-element discretisation of the beam coincides with

the spanwise aerodynamic grid, and that the aerodynamic loads can be approximated as isolated forces acting on the

centre of the leading segment of each vortex-ring [18].

Firstly, displacements and rotations of the beam nodes, Ra and Ψ, and the corresponding rates, Ṙa and Ψ̇, have to

be transformed to deformations and velocities of the grid points of the aerodynamic lattice, ζb and ζ̇b. For the vortex-

ring vertices, the transformations of the relative position with respect to the body-fixed frame, (ζb)a, and inertial

velocity expressed in the a frame, (ζ̇b)a, are given by

(ζb)a = Ra + CaBξB,

(ζ̇b)a = va + ω̃aRa + Ṙa + CaBΩ̃BξB,
(27)
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where ξB is the (constant) distance between a vortex-ring corner point and the relevant node, and ΩB = T (Ψ) Ψ̇ +

CBa (Ψ)ωa is the local inertial angular velocity, with T (Ψ) the so-called tangential operator [178]. Note that variables

are not bold since the transformation corresponds to a single vortex-ring vertex. Positions and velocities of the

collocation points are obtained through linear interpolation. The corresponding linear relations are given by

(∆ζb)a = ∆Ra −CaBξ̃BT∆Ψ,(
∆ζ̇b

)
a

= ω̃o
a∆Ra + CaB

[(̃̃
ξBΩB

)
− ξ̃BA1 − ξ̃BC̃Baωo

aT
]

T∆Ψ

+ ∆Ṙa −CaBξ̃BT∆Ψ̇ + ∆va −
(
R̃o

a + CaBξ̃BCBa
)
∆ωa,

(28)

where CaB, T , ΩB, and A1 are evaluated at reference conditions, and the expression for the latter can be found in Ref.

[176].

Secondly, the inviscid aerodynamic forces computed in Eqs. (13) are converted into forces and moments acting

upon the beam nodes. They are expressed in the local aerodynamic frame, A, defined by the instantaneous non-

circulatory velocity, and thus need to be transformed to the body-fixed a frame, in order to be consistent with the

flexible-beam equations, Eqs. (24). Finally, they are lumped into the nodes of the deformed beam, splitting them

between adjacent ones. Integration of these nodal values yields the resultant forces and moments on the body-fixed

FoR. These operations can be summarised as

QS
a =

 F̂a

M̂a

 = χvr→noC̄aAFA, and QR
a = χno→b f QS

a , (29)

where C̄aA
(
ζb, ζ̇b

)
is a block diagonal matrix, being each block given by the corresponding coordinate transformation

matrix from the local aerodynamic to the body-fixed frame, CaA. In turn, χvr→no = χvr→no
(
Ra,Ψ, ζb

)
is a very sparse

matrix that lumps the forces acting on the aerodynamic lattice, expressed in a, into forces and moments applied on

the beam nodes, and χno→b f = χno→b f (Ra,Ψ) integrates the nodal forces and moments to give the resultant loads at

the body-fixed frame.

In the linear case, it is assumed that matrices χvr→no and χno→b f remain constant, which is consistent with the

frozen aerodynamic geometry assumption. However, as C̄aA depends on grid velocities, this needs to be accounted

for, leading to a linear mapping of the form

∆QS
a = χo

vr→no

(C̄aA
)o

∆FA +

(
∂C̄aA

∂ζ̇b

)
o

Fo
A∆ζ̇b

 ,
∆QR

a = χo
no→b f ∆QS

a ,

(30)

where ∆FA is given by Eqs. (19-20), ∆ζ̇b is obtained from Eq. (28), and the expressions to compute the tensor

∂C̄aA/∂ζ̇b can be found in Ref. [168].

5.2. Nonlinear time marching

The aerodynamic and flexible-body equations have been outlined as independent modules, and their interdepen-

dency has been formulated as given by certain inputs, u, and outputs, y. For fully nonlinear time-domain simulations,
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the second-order continuous-time flexible-body equations are discretised in time and coupled with the discrete-time

UVLM formulation.

The typical approach to march in time the flexible-body equations is using the Newmark-β method [4, 176],

which allows introducing artificial damping into the system, and is unconditionally stable for the right selection of

parameters. Temporal discretisation of the beam equations enables the integrated model to be cast into the following

compact notation

fA

(
xn+1

A ,un+1
A

)
= gA

(
xn

A,u
n
A
)
,

fFB

(
xn+1

FB ,u
n+1
FB

)
= gFB

(
xn

FB,u
n
FB

)
,

(31)

where the state vectors are given in Eqs. (15) and (26), and the input vectors uA and uFB contain the fluid/structure

mappings plus any other inputs to the system, such as gusts and controls. In particular, for the open-loop problem

with no external disturbances (homogeneous problem), the inputs to the aerodynamic module only depend on the

flexible-body outputs and vice versa, and the mapping relationships are expressed as

un+ε
A = hA−FB

(
yn+ε

FB
)
,

un+ε
FB = hFB−A

(
yn+ε

A
)
,

(32)

where the aerodynamic outputs, yA = yA (xA,uA) are the aerodynamic loads given by Eqs. (13), and the flexible-body

outputs and states coincide, such that yFB ≡ xFB.

The time-domain solution of the equations of motion is a partitioned time-marching scheme. Strongly- and

weakly-coupled solutions can be implemented, depending on whether a subiteration routine to converge aerodynamics

and beam dynamics is included. The strong coupling includes subiterations, and might offer higher accuracy and better

numerical stability properties. However, if a first-order-in-time explicit Euler method is used to convect the force-free

wake, Eq. (10), the implementation of subiterations does not provide an advantage. The weakly-coupled approach

is found to work well with the appropriate selection of simulation parameters, and leads to a smaller computational

burden.

The fully nonlinear time-marching solution described here accounts for large geometry changes, both in the struc-

ture and in the 3-D aerodynamics, by updating the relevant inertia, gyroscopic and stiffness terms, and by enforcing

the boundary conditions at the instantaneous deformed shape. In addition, the model includes an inviscid represen-

tation of the free aircraft-wake. This methodology, though necessary for very flexible structures, is computationally

intensive compared to other potential-flow solvers, and does not lend itself to an accessible formulation for flight

control system design or stability analysis. To that goal, the linearised version of the coupled equations is presented

next.
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5.3. Monolithic integration of linearised equations

Using the standard Newmark-β method for the temporal discretisation, the linearised flexible-body equations, Eq.

(25), are written as

EFB

∆xS

∆xR


n+1

+ FFB

∆uS

∆uR


n+1

= AFB

∆xS

∆xR


n

+ BFB

∆uS

∆uR


n

,

∆yS

∆yR


n

=

∆xS

∆xR


n

.

(33)

Note that the output equation in the coupling with the UVLM is the full deformed state. In turn, the linear mapping

relations given in Section 5.1 can be expressed as

∆un
A = pn

AS PAS ∆yn
S + pn

ARPAR∆yn
R,

∆un
S = pn

S APS A∆yn
A, and ∆un

R = pn
RAPRA∆yn

A,
(34)

where capital P matrices represent the actual mapping and lower-case pn scalar values depend on the tuning parameters

of the Newmark-β and the time step.

As a result, assembling together the linearised UVLM, Eqs. (21), with the linearised flexible-body equations, Eqs.

(33), and using the linear interface between both models, Eqs. (34), the resulting system can be cast into a monolithic

discrete-time state-space formulation, which for the homogeneous problem has the form

Esys∆xn+1 = Asys∆xn, (35)

where the state vector that completely determines the linear system is

x =
[
xT

A | x
T
S | x

T
R

]T
=

[
ΓT

b Γ
T
w Γ̇

T
b | η

T η̇T | νT ΘT
]T
. (36)

The coupling is monolithic in this case since the interface between aerodynamics and flexible body-dynamics is

determined analytically. The linearisation might take place about a highly deformed configuration, and that although

the wake is frozen, interference-induced unsteady downwash effects are modelled.

Eq. (35) defines a discrete-time generalised eigenvalue problem that can be solved directly, without pre-computing

aerodynamic forces in the frequency domain or projecting on the structural modes, yielding a very powerful formula-

tion for stability boundary prediction, as all derivatives have been obtained analytically.

The entries to matrices Esys and Asys depend on the equilibrium conditions. For the system to be stable, |zi| ≤ 1,∀i,

where |zi| represents the magnitude of the ith discrete-time eigenvalue, and equality corresponds to the neutral stability

boundary. Alternatively, the discrete-time eigenvalues can be transformed to the more familiar continuous-time coun-

terparts λi, given by zi = eλi∆t. In this case, a positive real part of any of the λi-s will imply instability. Throughout

this paper, unless otherwise stated, continuous-time eigenvalues will be presented for an easier interpretation.

29



In addition, as Eq. (35) represents a discrete-time state-space problem, it allows any type of analysis that is

possible on a state-space system, such as time marching, reduced order modelling, and appending gusts and controls.

For instance, in order to look at the closed-loop problem in which a controller is introduced for gust alleviation, the

homogeneous problem shown in Eq. (35) is simply expanded as

Esys∆xn+1 = Asys∆xn + Bd∆un
d + Bc∆un

c , (37)

where ud represents exogenous atmospheric disturbances and uc control inputs. To conclude, note that a geometrically-

nonlinear beam model was used to introduce nonlinear static equilibrium conditions, but the analysis could be also

based on the linear normal modes of the structure.

6. Numerical examples

By integrating the unsteady aerodynamics with the flexible-body dynamics equations, the full aeroelastic and flight

dynamics characterisation of the vehicle is completed. Other external forces, in particular, gravity forces, can also be

included into the equations of motion. Different solution approaches can then be defined, including: tightly-coupled

static aeroelasticity, trim, asymptotic and Lyapunov stability, and open-loop dynamic simulations. Those should be

carried out using linear or nonlinear solutions, when appropriate.

The results in this section mainly correspond to an implementation of such methodology carried out by the au-

thors. A framework for Simulation of High Aspect Ratio Planes (SHARP) has been developed, built on a modular

architecture in MATLAB, but with low-level libraries in Fortran. SHARP allows running independently the flexible-

body dynamics and aerodynamics solvers, as well as the coupled system. Extensive verification of the tools has been

carried out and these results, among others, have been reported in previous publications [17, 18, 185–187].

The main focus in this section is to illustrate the capabilities of the UVLM on the seamless integration of aero-,

structural-, and rigid-body dynamics offered by the monolithic discrete-time state-space formulation. First of all, T-

tail flutter results are presented in order to illustrate how the methodology naturally captures in-plane motions (Section

6.1). Next, linear stability analyses are performed for a representative HALE UAV model, first for the clamped flexible

wing (Section 6.2), and then for the free-flying aircraft (Section 6.3). Parametric studies are carried out to determine

the impact of velocity, payload location, and stiffness, while exemplifying the robustness of the method. Finally,

the response of this aircraft to discrete gusts is assessed (Section 6.4), comparing linear and nonlinear solutions, and

evaluating the influence of the force-free wake.

6.1. T-tail flutter

The aeroelastic stability of T-empennages has been subject to attention since the 1950s. As often happens, the

problem was drawn to public attention after an unfortunate accident, in this case, that of the Handley Page Victor

bomber in 1954 [188, 189]. The key advantage offered by T-tails is that the Horizontal Tail Plane (HTP) is clear of
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the wake shed by the main wing of the aircraft (particularly in high-wing configurations), consequently increasing its

efficiency, reducing its size and averting buffeting [190]. In addition, it allows rear-mounted engines and it facilitates

loading and unloading in military transport aircraft. The main pitfalls are the requirement of a stiffer Vertical Tail Plane

(VTP) in order to withstand the HTP weight, and the increased likelihood of deep stall. T-tails are also hampered by

detrimental aeroelastic couplings that may arise due to the interplay of the bending/torsion modes of the VTP, and the

aerodynamic interference with the horizontal stabiliser. The motions of the vertical fin introduce in-plane motions of

the HTP, which are responsible for the creation of additional unsteady aerodynamic loads. The reader is referred to

Ref. [191] for an introduction into the T-tail literature, and for a description on how to tackle T-tail flutter, including

transonic effects.

The flutter of these tails is highly dependent on the steady lift of the HTP [192, 193]. It also depends on its dihedral,

and thus on the analogous effect induced by static deformations [194]. This highlights the importance of performing

a linearisation of the equations for flutter computation based on the actual deformed geometry at the corresponding

flight conditions.

In its standard formulation, the DLM includes neither steady loading nor in-plane motions, and is therefore not

suitable for the prediction of flutter onset in these cases. It is however possible to incorporate these effects and ac-

commodate the method for T-tail stability analysis [141, 142]. In contrast, no modification is needed on the procedure

based on the UVLM, which is able to capture all relevant kinematics and accounts for static aeroelastic effects. The

methodology for stability evaluation is exercised next to illustrate this.

An empennage that consists of a vertical fin and an horizontal tail-plane is considered – the fuselage is not mod-

elled. The lifting surfaces are thin, flat plates, with neither sweep nor dihedral. The assembly is clamped at the root

of the vertical fin, and the joint between HTP and VTP is rigid. The main geometrical and structural properties of the

test case are given in Table 1.

Table 1: T-tail properties.

Chord of vertical fin 2 m

Span of vertical fin 6 m

Chord of HTP 2 m

Semi-span of HTP 4 m

Elastic axis (from l.e.) 25% chord

Centre of gravity (from l.e.) 35% chord

Mass per unit length 35 kg/m

Sectional moment of inertia (around e.a.) 8 kg· m

Torsional stiffness 106 N· m2

Bending stiffness 107 N· m2

In-plane bending stiffness 109 N· m2

31



The two dominant modes that govern the stability of the tail are the torsion of the fin, which also introduces lead-

lag motion of the HTP (Mode 1) and the bending of the fin (Mode 2). For this configuration, the in-vacuo frequencies

of these modes are ω1
0 = 10.5 rad/s and ω2

0 = 18.0 rad/s, respectively.

The flutter speed of the tail is computed for varying angles of attack (AoA), with and without static deformations.

Results are shown in Fig. 4. The values of the flutter speed are presented as Equivalent Air Speed (EAS), i.e, for a

density of ρ∞ = 1.225 kg/m3. It can be observed that even though the static deformations are small, their influence on

stability is significant, and throughout the range of angles, non-conservative.
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Figure 4: Flutter speed of the T-tail as a function of angle of attack. Note the divergence speed at VEAS
∞ = 570 m/s.

When static deformations are included, the stability curve exhibits a maximum at an angle around 3 degrees, and

this is caused by a change in the fluttering mode. For smaller angles, the stability envelope grows with AoA, and it is

Mode 1 which becomes unstable. For higher angles, it is Mode 2 which flutters, and the critical speed decreases with

incidence. The stability of the tail without static deformations, though not correct, presents an even richer behaviour.

Obviously, in the absence of aerodynamic loads, the flutter speed for zero angle of attack exactly matches the value

with static deformations. The curves are very close for angles below 3 degrees, but they then depart. The plateau

found for the case when deformations are ignored corresponds to the divergence speed, which is reached before the

flutter onset for 3 ≤ AoA < 6. Beyond this angle, Mode 2 is responsible for dynamic instability.

This can be more clearly visualised in the root loci. Fig. 5 displays the stability plot when static deformations are

accounted for. Several angles of incidence are included to expose the transition between modes. In these diagrams, a

positive real part indicates instability, and only the upper halves of the root loci are included, since they are symmetric

due to the complex conjugate nature of the eigenvalues. As it can be seen, the change occurs when the angle increases
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Figure 5: Root loci for the T-tail with static deformations. VEAS
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Figure 6: Root loci for the T-tail without static deformations. VEAS
∞ ∈ [1, 720] m/s, ∆VEAS

∞ = 3.6 m/s.

from 2 degrees to 3 degrees, and the mode that flutters switches from Mode 1 to Mode 2.

The root loci for the case without static deformations are displayed in Fig. 6. More data points are needed here

until instability is reached. A zero angle of incidence shows a very interesting feature. Mode 1 becomes unstable early

on, but continuation on the stability plot evidences that it returns back to stability as the speed grows, only to become

unstable again as a zero-frequency pole. For AoA = 3 deg, Mode 1 is stable for a wide range of velocities, until it hits

the abscissa axis, becomes non-oscillatory, and crosses the stability boundary, which represents divergence. In turn,

for AoA = 6 deg, Mode 1 remains oscillatory throughout, and eventually flutters. For higher angles of attack, it is
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Mode 2 the one that becomes unstable as for the situation when static deformations are included.

While at small angle of attacks there is clear distinction between the torsion and bending modes of the vertical fin,

the division is blurred as the angle increases and aerodynamic loading, both steady and unsteady, gains prominence.

Figs. 7 and 8 depict the two dominant eigenmodes at flutter onset for AoA = 0 deg and AoA = 10 deg, respectively,

including static deformations. These shapes are obtained by plotting the relevant normalised eigenvectors, directly

computed from the eigenvalue analysis to evaluate stability. Whereas the eigenshapes at zero incidence are very

similar to those in vacuo, fin bending and torsion appear coupled for larger angles, and help explain the transition

between fluttering modes.
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Figure 7: T-tail modes with static deformations for AoA = 0 deg and VEAS
f = 182 m/s: (a) Mode 1, and (b) Mode 2.
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Figure 8: T-tail modes with static deformations for AoA = 10 deg and VEAS
f = 298 m/s: (a) Mode 1, and (b) Mode 2.

The above example highlights the potential of the UVLM to capture in-plane motions, and to incorporate static

deformations, both of which prove to be pivotal in T-tail flutter, and to integrate static and dynamic stability in the

same analysis.

6.2. Stability of a flexible wing

Flutter results for a flexible wing are presented in this section. For that purpose, a numerical model of a HALE

UAV has been defined, with main features given in Fig. 9 and Table 2, based on the one proposed by Patil and co-
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workers [10]. The vehicle consists of a large aspect-ratio flexible wing, a rigid fuselage and a rigid tail comprising a

25% chord elevator. Both the wings and the tail surfaces are modelled as uncambered thin flat plates with aerodynamic

effects, and the fuselage is a non-lifting body. The aircraft carries a payload of 50 kg in the fuselage (the only non-

structural mass of the problem, modelled as a point load), located at a distance dpl from the elastic axis of the main

wing, and is powered by two propellers, which are modelled as point forces rigidly linked to the wing. The mass per

unit length of the fuselage is the same as that of the tail members, and thus the total mass of this aircraft, including

payload and structural mass, is 75.4 kg. As observed in Table 2, the stiffness properties of the main wing will be used

as a parameter for subsequent results, varying the parameter σ – the flexibility of the wing increases as σ decreases.

It is assumed that the aircraft flies at an altitude of 20 km, where the density is ρ∞ = 0.0899 kg/m3.

pl

Figure 9: HALE model aircraft geometry. Large-aspect-ratio straight wing, rigid fuselage and tail, and propellers (not to scale). Front and top

views, showing typical wing deformation.

In this section the aircraft is assumed to be clamped (rigid-body degrees-of-freedom are not included) and the

payload is on the elastic axis, dpl = 0 m. The full aircraft description is required for trimming the aircraft, i.e., for

steady level flight. However, as the tail and the fuselage are rigid, the aeroelastic stability is solely dependent on the

main wing – note that the tail would affect stability if rigid-body degrees of freedom were included, as it will be seen

in Section 6.3. The trimming is achieved through three inputs, namely angle of attack, AoA, elevator deflection, δ,

and thrust per propeller, T .

The solution process is as follows: for a given free-stream velocity, the trim conditions are computed and a

linear stability analysis is carried out about the deformed configuration that corresponds to these trim inputs. This is
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Table 2: HALE model aircraft properties.

Main wing Tail

Chord 1 m 0.5 m

Semi-span 16 m 2.5 m

Elastic axis (from l.e.) 50% chord 50% chord

Centre of gravity (from l.e.) 50% chord 50% chord

Mass per unit length 0.75 kg/m 0.08 kg/m

Moment of inertia (around e.a.) 0.1 kg·m 0.01 kg·m

Torsional stiffness σ×104 N·m2 ∞

Bending stiffness 2σ×104 N·m2 ∞

In-plane bending stiffness 4σ×106 N·m2 ∞

accomplished by solving directly the generalised eigenvalue problem defined in Eq. (35). If the wing is stable, the

flight speed is increased, the aircraft trimmed and the stability analysis performed again. This is repeated until the

flutter onset is found, and is therefore a matched solution – this is the notation typically used with respect to the Mach

number.

Fig. 10 depicts the results of the matched flutter calculations for varying stiffness properties of the main wing.

Results are plotted against the inverse of the stiffness parameter so that the wing flexibility increases as the abscissa

grows. In order to evaluate the effect of the static deformations, the linearisation is also performed about the unde-

formed wing for the same trim conditions. Alongside the flutter speed and frequency, the angle of attack that trims

the aircraft at the flutter speed, and the wing-tip deflection for this incidence are also presented. As one would expect,

linearising around the undeformed configuration leads to a significant overestimation of the flutter onset on a very

flexible wing, which may lead to catastrophic consequences. In fact, even for a relatively stiff wing, 1/σ = 0.1, which

corresponds to a tip deflection of the order of 4% of the wing semi-span, the discrepancy is already noticeable. As the

flexibility increases, this difference grows dramatically (61% error at 1/σ = 0.4), until a minimum is found for the

flutter speed of the deformed configuration.

For the stiffest wings, 1/σ ≤ 0.4, the mode that becomes unstable is the coupling of the bending and torsion

degrees of freedom of the wing. This is the case for the linearisation about both the undeformed and the deformed

shapes. As flexibility increases, the mode that flutters for the undeformed case remains the same – obviously, the

frequency is modified. In contrast, the flutter mechanism for the deformed wing as 1/σ increases includes a strong

chordwise bending (in-plane) component that couples with the torsion and spanwise bending degrees of freedom. This

explains the growing differences in flutter frequency while the flutter speeds remain relatively close. The relevance of

in-plane bending modes in aeroelastic analysis was highlighted, for instance, in Ref. [89].

Fig. 11 depicts these two modes when linearising about the deformed configuration. For that purpose, two different

stiffnesses have been considered and the information obtained from the normalised eigenvectors at the respective
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Figure 10: Aeroelastic stability of a flexible wing. Matched flutter conditions as a function of wing flexibility, versus linearisation about the

undeformed configuration: (a) flutter speed, (b) flutter frequency, (c) angle of attack, and (d) static wing-tip deflection.

flutter speeds are plotted. For 1/σ = 0.3 the flutter onset occurs at V∞ = 37 m/s, and what has been dubbed as Mode 1

is responsible for instability. In contrast, for 1/σ = 0.5 the neutral speed corresponds to V∞ = 35 m/s, and it is Mode

2 that flutters. While the spanwise bending profile is similar in both cases, chordwise deformations and torsion of the

reference line present absolutely different characteristics. The significant in-plane deformations featured by Mode 2

can be clearly observed.

The change in flutter mode becomes obvious through the angle of attack at the matched flutter conditions. The

curve presents a maximum at the values of stiffness at which the change in behaviour occurs for the deformed shape.

This result is entirely due to the emergence of a different flutter mechanism. At the same time, trim inputs evolve

smoothly across the ranges of velocities and flexibilities considered, and there is no discontinuity in the derivative of

the function. This is illustrated by the curves for the undeformed wing: as the unstable mode is the same for all values

of σ, the required angle of attack increases as the flutter speed decreases so that the aircraft remains trimmed. The

matched flutter procedure followed here permits the identification of this bifurcation in the stability characteristics of

the wing.

The static wing-tip deflection increases linearly with the wing flexibility, since the total wing lift remains roughly

constant to balance the total weight. It is complicated to anticipate the required trim inputs for an aircraft with a very

flexible wing. On the one hand, as the deflections grow, the angle of attack needs to increase in order to counteract the

loss of vertical force caused by the tilting of the lift vector. On the other, the twist of the wing grows rapidly with wing

flexibility and provides additional lift force. Furthermore, as the wing deforms the direction along which the thrust

force acts changes significantly. Thus, the exact load distribution for equilibrium follows from the intricate interaction

37



and balance of all these factors.

Finally, note that results beyond the values of flexibility considered are not presented because trimming the aircraft

becomes infeasible for near-flutter speeds. This in fact sets an upper boundary to the achievable flight velocities.
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Figure 11: Fluttering modes of the flexible wing: (a) in-plane displacements, (b) out-of-plane displacements, and (c) twist of the reference line.

6.3. Linear stability analysis of an aircraft with coupled flight dynamics and aeroelastic response

As the flexibility of their primary structures increases, aircraft are prone to exhibit unconventional features, such as

an overlap of structural and rigid-body degrees of freedom, that is, of its aeroelastic and flight dynamic characteristics.

In order to exemplify this, the configuration introduced above (see Fig. 9 and Table 2) is considered again. Results

are also obtained at the same flight altitude. Fig. 12 shows the deformed shape of the trimmed aircraft for the nominal

conditions of V∞ = 25 m/s, σ = 1, and dpl = 0 m, which highlights the very large deformations that can appear on the

main wing of this configuration. In the results in the figure, the vertical tip deflection reaches 44% of the semi-span,

with an inward tip displacement of nearly 2 m.

First of all, the impact of the flight speed on the longitudinal motions of the rigid aircraft is illustrated. For this

case, based on a quasi-steady aerodynamics approximation, it is possible to obtain a system of equations for the

four longitudinal rigid-body states [152, p. 175], which allows closed-form solution of the stability derivatives. The

results of this simplified model are compared to those obtained with the UVLM, solving Eq. (35) for the free-flying

rigid vehicle at the corresponding trim conditions. In this problem, the elastic states are neglected, and hence the

corresponding rows and columns are removed from the discrete-time state-space formulation.

The rigid vehicle is trimmed at free-stream speeds of V∞ = 20, 25, and 30 m/s, and the stability is evaluated for

the corresponding conditions, both for the 2-D approximation and the UVLM. Table 3 summarises these results.
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Figure 12: Deformed configuration of the model aircraft at trim conditions for ρ∞ = 0.0889 kg/m3, V∞ = 25 m/s, σ = 1, and dpl = 0 m.

Table 3: Longitudinal continuous-time eigenvalues of the rigid aircraft.

V∞ = 20 m/s V∞ = 25 m/s V∞ = 30 m/s

Phugoid (quasi-steady) −0.051 ± 0.361i −0.022 ± 0.288i −0.011 ± 0.240i

Phugoid (UVLM) −0.054 ± 0.365i −0.028 ± 0.269i −0.016 ± 0.218i

Real root (quasi-steady) -3.21 -4.08 -4.93

Real root (UVLM) -1.96 -2.71 -3.44

Real root (quasi-steady) -9.27 -11.60 -13.91

Real root (UVLM) -10.61 -13.14 -17.18

The solution of Eq. (35) gives as many eigenvalues as states has the system, and it includes lateral as well as

longitudinal modes. For comparison purposes, only the four dominant longitudinal eigenvalues are included in Table

3. The agreement between quasi-steady aerodynamics and the UVLM is remarkable for the phugoid mode. This mode

depends heavily on the variation of horizontal forces with flight speed, and so is governed by the induced drag. Even

though the estimation of induced drag is different in both cases, it seems obvious that for this very high-aspect-ratio

wing the effect is minor.

The second characteristic longitudinal mode, namely the short-period mode, does not appear in its conventional

form here. Instead of a pair of complex conjugate oscillatory roots, two negative real eigenvalues are obtained. Even

though the trends provided by the quasi-steady aerodynamics are consistent with those of the UVLM, the discrepancy

here is bigger. This attests the errors incurred with the approximate model. These non-oscillatory poles are strongly

linked to the static margin of the aircraft. In fact, for a statically unstable vehicle, i.e., when the aerodynamic centre is

ahead of the centre of gravity (∂CM/∂α > 0), one of the real roots would be positive. For instance, by displacing the

payload along the fuselage towards the tail, the aircraft becomes pitch unstable. Fig. 13 illustrates this, plotting CM,α

for different payload locations, dpl, both for the rigid and flexible vehicles. CM,α is determined at the trim conditions
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for each payload position, and is computed via finite differences. The most notable feature of this figure is that the

flexible case exhibits a larger range of dpl for static stability. Note that for higher values of dpl the trim conditions

become unrealistic, as the required elevator deflection becomes excessive, and thus are not included.
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Figure 13: Static stability of the rigid and flexible aircraft as a function of the location of the payload, dpl, for ρ∞ = 0.0889 kg/m3, and V∞ = 25

m/s.

Following with the assessment of flight-speed influence on stability, the flexible aircraft is considered next. In this

case, the nominal value of the stiffness is taken, σ = 1, and results are compared to the rigid aircraft. From now on,

dpl = 0 m to guarantee static stability. Table 4 lists the trim features for the rigid and flexible aircraft for the three

free-stream velocities simulated, where the thrust given is for each propeller.

Table 4: Trim characteristics: inputs and tip deflection.

V∞ = 20 m/s V∞ = 25 m/s V∞ = 30 m/s

Rigid

Angle of attack [deg] 13.2 8.2 5.6

Elevator [deg] -7.4 -4.4 -2.9

Thrust [N] 7.6 4.6 3.1

Flexible

Angle of attack [deg] 16.0 8.7 5.3

Elevator [deg] -23.8 -9.5 -4.4

Thrust [N] 8.8 5.6 4.3

Tip displacement [m] 6.6 7.1 7.7

Fig. 14 presents the root loci as a function of flight speed, showing the dominant modes, Fig. 14(a), and mag-

nifying the region closest to the origin, Fig. 14(b). Only the upper halves of root loci are included. The poles that

correspond to the same modes have been linked to aid interpretation. This continuation can be deduced by evaluating

the shape of the corresponding eigenvectors.

One of the negative real roots introduced in Table 3 can be easily identified in Fig. 14(a), and it proves pitch
40



−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5
0

1

2

3

Im
ag

in
ar

y 
ax

is

 

 

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2
0

0.4

0.8

1.2

Real axis

Im
ag

in
ar

y 
ax

is

 

 

V∞ = 20 m/s

V∞ = 25 m/s

V∞ = 30 m/s

Spiral (flexible) Spiral (rigid)

Pitch stable (rigid)

Short period (flexible)

Dutch roll (rigid)

Phugoid (flexible)

Phugoid
(rigid)

Dutch roll 
(flexible)

(a)

(b)

Figure 14: Root loci of the eigenvalue analysis for the flexible and rigid aircraft, with the flight velocity as parameter: (a) dominant roots, and (b)

magnified section showing the roots nearest the origin.

stability. The root locus also reveals the short-period mode for the flexible aircraft, whereas the equivalent for the

rigid case is beyond the range displayed. Note that many roots are left out of the plotted area, since they are either

very high-frequency modes, or because they have very large negative real parts, and are therefore very stable. The

latter includes roll subsidence and yaw stiffness, both zero-frequency stable roots, which correspond to self-correcting

mechanisms that resist roll rate and sideslip, respectively.

Fig. 14(b) zooms in the section highlighted in Fig. 14(a) to study the eigenvalues in more detail. Regarding

oscillatory modes, the typical longitudinal phugoid and lateral Dutch-roll can be identified for the rigid vehicle, and

their counterparts for the flexible aircraft are also shown2. The effect of wing flexibility is manifest. Although still

stable, the damping of the flexible phugoid mode is about an order of magnitude smaller than its rigid equivalent. The

stability margin of the rigid phugoid decreases as the flight speed increases, but the flexible mode displays a distinct

behaviour, for which damping remains nearly constant. In both cases the frequency of the mode decreases with flight

speed. The discordance in Dutch roll is even more radical. While the frequency grows with velocity in both cases, the

trend in damping is opposite for the rigid and flexible vehicle.

The characteristic spiral mode can also be seen in Fig. 14(b). This is a non-oscillatory motion characterised by

(zero-frequency) real roots. The mode is unstable for the rigid aircraft at the flight velocities considered, which is an

expected outcome, since the wings do not have dihedral. In contrast, as the wings exhibit large deformations at the

trim conditions (see Table 4), they provide resilience against the spiral mode, analogous to the dihedral effect, and the

flexible aircraft is thus stable. Interestingly, the increase in speed leads to opposite tendencies in damping for rigid

and flexible cases. Finally, note that as the yaw angle is included as a state of the system, a neutral mode appears at

2The first few modes of the flexible vehicle will be identified by the names on their rigid-aircraft counterparts, (e.g., phugoid, short period, etc.),

although they also include vehicle deformations.
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the origin in all cases, but is of no interest.

Next, the effect of the stiffness of the main wing is exemplified. In this case the flight speed is fixed at V∞ = 25

m/s and the stiffness of the main wing is used as parameter and varied from the nominal value, σ = 1, to rigid, σ = ∞.

From σ = 1 to σ = 2.5 the stiffness is varied in increments of ∆σ = 0.1, and from σ = 3 to σ = 10, in increments

of ∆σ = 1.0. First of all, the aircraft is trimmed in order to compute the deformed configuration about which the

linear stability analysis will take place. Trim results are shown in Fig. 15, and it can be clearly seen from the tip

displacements of the wings, that they may correspond to highly deformed wing shapes. Hence, the linear stability

analysis is performed about a nonlinear static equilibrium configuration.
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Figure 15: Trim characteristics of the flexible aircraft at V∞ = 25 m/s as a function of wing flexibility: (a) angle of attack, (b) elevator deflection,

(c) thrust, and (d) static wing-tip deflection.

Fig. 16 presents the root loci as a function ofσ, showing the dominant modes and zooming in the region of interest.

As mentioned earlier, one of the flight-dynamics modes is the roll subsidence mode, associated to a resistance of the

vehicle to roll. This mode is identified in Fig. 16(a), and it is characterised by large damping, making it very stable.

An analogous behaviour to roll occurs in yaw. While this is not one of the classical modes obtained from the lateral

stability quintic, it is mentioned in the literature as yaw stiffness [153], and it is also characterised by a real stable root.

This mode is beyond the boundaries of this root locus, given by negative real poles with a larger damping than the roll

subsidence mode. The pitch stability of the aircraft can also be attested from the figure. As the flexibility of the wing

increases, the static margin becomes more prominent, which is consistent with the results presented in Fig. 13.

One of the modes that most conspicuously epitomises wing flexibility is the short period. As the stiffness of the

wing is reduced, its damping rapidly decreases and approaches the neutral stability boundary. From the rigid case to
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Figure 16: Root loci of the eigenvalue analysis for the flexible and rigid aircraft at V∞ = 25 m/s, with the stiffness of the main wing as parameter:

(a) dominant roots, and (b) magnified section showing the roots nearest the origin.

the nominal stiffness of σ = 1, the damping plummets by an order of magnitude. For the set of conditions studied, it

remains stable, but the effect of static deformations and the coupling of the rigid-body mode with the wing elasticity

is obvious. The short period has a higher frequency than the phugoid, and is likely to overlap with the structural

frequencies of flexible wings, which are much smaller than those of very stiff aircraft. Several other modes are also

shown in this diagram, and the significance of couplings between rigid-body and elastic modes is evident.

Fig. 16(b) focuses on the region closest to the origin. The trend observed before for the spiral divergence (Fig. 14)

is even more clearly highlighted here. The mode is originally unstable for the rigid configuration, but the eigenvalue

moves to the left of the root locus as the stiffness decreases. This illustrates the instrumental dihedral effect provided

by the bending of the wing, playing a stabilising role, more significant as deformations grow. The classical Dutch roll

is captured in this figure as well. Analogous to the short period, the damping falls with wing flexibility inducing a

destabilising effect.

Finally, the phugoid appears as the most lightly damped oscillatory mode, and gets very close to the neutral

boundary as the wing excursions grow. This flexible phugoid is characterised by a longitudinal constant angle-of-

incidence motion coupled with the first bending mode of the wing. In contrast to the short period or the Dutch roll,

nonetheless, the initial damping reduction with wing flexibility is eventually reversed, and the poles displace towards

the left of the root locus (that is, an increase in wing flexibility beyond a certain speed has a stabilising effect on the

vehicle).

Some of the key modes are graphically illustrated next for the nominal conditions of V∞ = 25 m/s, σ = 1, and

dpl = 0 m. The modes are obtained from the corresponding normalised eigenvectors. In order to ease visualisation,

the structural states are multiplied by 10 (with respect to the rigid-body degrees of freedom). Different views of the

motion are presented, and snapshots have been taken at different intervals during one full cycle (of the relevant mode)

to highlight salient features in each of them. The modes are damped, but the damping is ignored when plotting them.
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The flexible phugoid mode is displayed in Fig. 17. Fig. 17(a) presents a lateral view of the trajectory followed

by the aircraft, which shows the pitching and plunging motions that counteract each other for a constant angle of

incidence. The wing excursions around the static equilibrium shape can also be perceived. Fig. 17(c-f) highlight the

deformations of the main wing. As the aircraft pitches up and climbs first, the wings undergo a downward flapping-like

motion. As the vehicles pitches down and descends, the wing bends upwards, reaching the maximum tip deflections

before the cycle is finished. The snapshots of the ascending and descending trajectories at the same altitude indicate

the measure of the wing deflections. Fig. 17(b) summarises the above features. Note that the position of the aircraft

is not part of the states of the system, but it is obtained by integrating body velocities.

Figure 17: Flexible phugoid mode with damping set to zero. One cycle, with T = 15.8 s: (a) lateral view of the trajectory with snapshots every

∆t = T/20, (b) perspective with snapshots every ∆t = T/10, and (c-f) front views with snapshots every ∆t = T/4, clockwise. All dimensions (x,y,z)

in metres.

As aforementioned, the coupling of elastic deformations with the short-period mode is more prominent than in

the phugoid. Fig. 18 proves this. Again, the eigenvector is normalised and structural states magnified by a factor of

10. Figs. 18(a), 18(b), and 18(c-f) show lateral, perspective, and front views of the trajectory, respectively. Clearly,

the deformations of the wing are much larger in this case. The higher frequency of the short period can be inferred

from the distance travelled in one period, and while the amplitude of the pitching motion is comparable to that of

the phugoid, the plunging amplitude is much smaller. This stability mode has also been referred to as body-freedom

flutter in the literature [195].

Note that the phugoid in Fig. 17 is dominated by slow vertical motions of the aircraft, and the inertial coupling

with the first bending mode of the wing yields in-phase elastic deformations (when the aircraft goes up, the wing goes

down). The short-period also involves a change on the incidence angle, and that makes the interaction with the elastic

degrees of freedom more complex: there is the inertial coupling as in the phugoid mode, but a second aerodynamic

coupling also appears between the changes in lift due to changes in induced angle of attack, and the deformations
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of the wing. As a result, the wing bending is out of phase with the vertical rigid-body motions. If the short period

happens at high-enough reduced frequencies, there would be also an effect of the aerodynamic lags on this coupling.

Figure 18: Flexible short-period mode with damping set to zero. One cycle, with T = 3.0 s: (a) lateral view of the trajectory with snapshots every

∆t = T/10, (b) perspective with snapshots every ∆t = T/10, and (c-f) front views with snapshots every ∆t = T/4, clockwise. All dimensions (x,y,z)

in metres.

Finally, the Dutch roll is displayed as an example of a lateral mode in Fig. 19. Top, perspective and front views of

the Dutch roll trajectory have been taken in Figs. 19(a), 19(b), and 19(c-f). It can be seen in this case that the amplitude

of structural deformations is negligible against the rolling, yawing and plunging encompassed by the aircraft motion.

Figure 19: Flexible Dutch-roll mode with damping set to zero. One cycle, with T = 6.2 s: (a) lateral view of the trajectory with snapshots every

∆t = T/10, (b) perspective with snapshots every ∆t = T/10, and (c-f) front views with snapshots every ∆t = T/4, clockwise. All dimensions (x,y,z)

in metres.
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6.4. Open-loop gust response of a UAV platform

During their life-cycle aircraft experience static, dynamic, and even impact loads. Loads due to ground and flight

manoeuvres, atmospheric disturbances, or foreign-object strikes are critical for the successful design of the vehicle.

The correct estimation of the loads the aircraft will be subject to is therefore essential, and depends on aerodynamics,

structures, and weights. In particular, time-dependent forces that affect the dynamic aeroelastic behaviour of the

aircraft might represent very demanding load cases, and must be studied as a transient-dynamics problem.

Some of the most critical dynamic-load conditions are those caused by encounters with gusts and atmospheric

turbulence [60, 196–198]. This is particularly critical in the case of very flexible UAVs, which still face a major

structural integrity risk in adverse weather conditions [199]. To address this, the response of such non-conventional

aircraft concepts to these disturbances has been studied recently by different authors, including flying-wing configu-

rations [8, 147, 200], blended-wing-body airliners [163], and flexible HALE platforms [134]. In fact, both the sizing

of the structure and the design of Flight Control Systems (FCS) are intimately linked to the response of the aircraft to

atmospheric disturbances.

For the certification of large commercial aeroplanes the airworthiness authorities require clearance of continuous

turbulence and tuned discrete-gusts [201, 202], which affect fatigue life of structural members and the maximum

stresses they are subject to. These are evaluated through an idealisation of the disturbance, namely a Power Spectral

Density (PSD) approach for continuous random turbulence and “1-cos” pulses of different lengths and intensities for

discrete gusts. Methods of different fidelity might be employed to represent the aircraft dynamics, but they customarily

include gust-penetration effects and model the tail plane. In both continuous and discrete analysis, vertical and lateral

disturbances are considered for the relevant mass configurations, flight levels, and Mach numbers. The gust impact on

manoeuvres might also be accounted for. In all cases, the load alleviation due to the rigid-body motions of the vehicle

needs to be considered [203].

Continuous turbulence is generally analysed in the frequency domain, assuming isotropy and a statistical Gaussian

probability distribution, where the PSD is represented by Dryden [204] or von Kármán [205, 206] spectra. The PSD

and root-mean-square values of the response are then obtained through the relevant aircraft-dynamics model, which as

based in the frequency domain, needs to be linear. Alternatively, rational approximations to the longitudinal and trans-

verse spectra are also possible, which allow time histories of the turbulence to be obtained [207], and thus evaluation

of the response in the time domain including nonlinearities, such as those of FCS or due to large deformations.

Discrete-gust response is studied in the time domain, and models based on strip theory, for instance, allow nonlin-

earities to be incorporated. In contrast, the most common approach in industry is based on the DLM, which provides

the aerodynamic influence coefficients as a function of the reduced frequency, and is therefore linear. In this case, a

state-space time-domain representation is obtained via a rational fraction approximation (see Section 3.1.1). Further

nonlinearities arise if the flight conditions are in the transonic regime, and in this case one would need to resort to CFD

analysis [208]. Irrespective of the model used, discrete-gust analysis requires a tuning process in which the critical

gust length of the “1-cos” pulse is determined for each set of flight conditions on a set of “Interesting Quantities” (e.g.,
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root bending moment, shear force at engine mounts, etc.). The UVLM is exercised here to show how this discrete-gust

tuning can be performed on a fully-flexible vehicle.

The inclusion of gust disturbances in the standard UVLM is straightforward, and the implementation of a discrete

“1-cos” pulse is described, for instance, by Wang et al. [8]. The gust-induced velocities affect the non-penetration

boundary condition at the collocation points, Eqs. (5) and (9). They also modify the expression for the aerodynamic

loads, Eq. (13), through the local aerodynamic velocities, ζ̇b. Finally, the gust will propagate into the wake if this is

considered fully force-free, hence affecting the local velocities at the wake grid, V in Eq. (10), and changing its rolled-

up shape. The linear state-space formulation described in Section 5.3 can also incorporate prescribed gust profiles. In

this case, the open-loop equivalent of Eq. (37) is considered, i.e.,

Esys∆xn+1 = Asys∆xn + Bd∆un
d. (38)

The gust-induced velocities affect the aerodynamic states through the non-penetration boundary condition, and

the elastic and rigid-body states through the aerodynamic loads, Eq. (34). Recall that this linearised formulation does

not include a force-free wake, which is frozen at the equilibrium conditions.

Only the case of a vertical stationary discrete “1-cos” pulse will be considered here. The spanwise distribution is

assumed constant. At a penetration length through the disturbance, xg (t), the vertical gust velocity is given by

Vg (t) =
1
2

Vg0

[
1 − cos

(
2πxg

Lg

)]
, 0 ≤ xg ≤ Lg, (39)

where Vg0 is the gust intensity, and Lg its length. At time step n, the column vector with the gust velocities at all

collocation points, Vn
g, coincides with ∆un

d in Eq. (38), where the relationship between the penetration length and time

is given by

xg = V∞tn − xk, (40)

and where xk is the coordinate of the kth collocation point on the body-fixed frame, assuming the origin of this frame

is located at the edge of the incident gust at the beginning of the motion.

In order to determine the critical gust length, the root bending moment is computed. The model aircraft, defined

in Fig. 9 and Table 2, is considered, with nominal conditions of V∞ = 25 m/s, σ = 1, and dpl = 0 m, and including

all aerodynamic, structural, and rigid-body states. Fig. 20 presents the root bending moment of the main wing as the

vehicle undergoes “1-cos” gusts of different lengths. Results have been obtained via the open-loop linear state-space

equations, Eq. (38). A small gust intensity of Vg0 = 0.01V∞ is simulated, so that the results remain linear. Gust

lengths from 30 m to 90 m have been evaluated, in increments of 10 m, and after refining to increments of 1 m, the

critical gust length is found to be Lg,crit = 57 m, or 57 wing-chord lengths. It can be observed that the initial root

bending moment, which corresponds to the deformed wing of the trimmed vehicle, is significant. This is caused by

the large deformations of the wing at equilibrium, 44% of the semi-span. The plots illustrate the typical trend for
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a flexible member due to a gust: the wing experiences up-bending motions as the gust velocity increases, and then

bends downwards as the gust is left behind.
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Figure 20: Root bending moment of the main wing of the test aircraft undergoing “1-cos” gust disturbances of different lengths. Critical gust

length is Lg,crit = 57 m. Vg0 = 0.01V∞ and nominal conditions.

As a next step, the critical gust length is tested in a fully nonlinear simulation, including a free wake. The gust

intensity is kept at the above level in order to guarantee small deformations around the equilibrium configuration. This

allows the assumption of a frozen wake in the state-space formulation to be assessed. Fig. 21 displays the comparison.

Vertical lines have been added on the plots, and they represent, from left to right: 1) main wing reaches the origin of

the stationary gust (t1); 2) tail reaches gust (t2); 3) main wing leaves gust (t3); and 4) tail leaves gust (t4).
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Figure 21: Comparison of solution methods for a flexible UAV under a “1-cos” gust, with Lg = 57 m, Vg0 = 0.01V∞, and nominal conditions: (a)

root bending moment of the wing, (b) tip deflection of the wing, (c) pitch angle of the aircraft, and (d) altitude variation.
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Fig. 21(a) presents the root bending moment of the wing, and Fig. 21(b) its tip deflection. The agreement is

reasonably good, particularly when the critical load and maximum tip deflection occur, which is the point of maximum

interest. However, the discrepancy is higher on the second peak, which is mainly caused by the different attitude of

the aircraft. Fig. 21(c) shows the pitch angle of the vehicle. Both solution methodologies provide different results,

but note that the variations around the trim value are minimal. Finally, Fig. 21(d) depicts the variation in altitude

experienced by the aircraft, which climbs on once the gust is left behind until a new equilibrium is reached. This

variation in altitude introduces an alleviation factor into the gust loads: the aircraft gains altitude when hit by the gust,

hence inducing aerodynamic forces that resist the deformation.

Linear gust load analysis using the UVLM under the prescribed-wake assumption yields results of the same fidelity

as those obtained by the DLM, with the advantage that the direct state-state solution does not require a rational-

function approximation (a potential source of errors). The results above confirm that the prescribed wake assumption

can give a good approximation to predict linear gust response, capturing the critical load conditions. Here a very

flexible vehicle has been simulated undergoing a gust of small intensity, but the methodology would be equally valid

for a stiffer aircraft and larger gust intensities. Overall, the deformations in the example remain in the linear regime

(around the nonlinear static equilibrium).

Since structural deformations are small, the free wake seems to be responsible for the mismatch observed with

the fully nonlinear solver. The force-free wake will have an impact on the load distribution of the main wing, but

its effect will be more prominent on the tail. As the wake rolls up and the gust propagates into it, the tail “sees” a

modified shape, and the aerodynamic interference will therefore vary. The tail is considered rigid in these simulations,

but the wake effect is likely to be visible in the pitch rate of the aircraft. This, in turn, will affect rigid-body motions,

elastic deformations, and aerodynamic loads, explaining the disagreements in Fig. 21. On the other hand, note that

the variation in aerodynamic loads due to the free wake will cause the linear model not to represent the exact trim at

the initial conditions, hence introducing a further source of error.

Finally, in order to illustrate the gust convection downstream, Fig. 22 presents several snapshots of the vehicle

(wing, fuselage, tail) and the corresponding wakes. For visualisation purposes, a gust with Vg0 = 0.2V∞ and Lg = 30

m has been implemented, and σ = 5 has been considered. The latter yields a static tip deflection of ztip = 1.11 m at

trim conditions. The propagation of the gust over the wakes of the main wing and tail can be identified, and the roll

up of the wake at the tips is also revealed.

The aircraft pitches up first as the gust hits the main wing, and this initial climb leads to a maximum change in

altitude of 3.54 m. The effect of the gust on the tail provokes a downward pitching moment, and hence the aircraft

descends next. This can be inferred from Fig. 22 by the portion of the vertical fin immersed below the wake of the

main wing – more fin is visible as the vehicle pitches down. During this motion, the wing also deforms under the

effect of the gust, first bending upwards, and then downwards. The maximum tip deflection experienced by the wing

is 2.12 m and occurs at V∞t/Lg = 0.70, whereas the minimum deflection is 0.14 m at V∞t/Lg = 1.28. Obviously, due

to the unsteadiness of the problem, the aerodynamic loading is not instantaneous and there is a lag between the actual
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gust encounter and the subsequent resultant motion and deformations. Note that the rigid-body climbing motion of

the aircraft alleviates quite substantially the excursions experienced by the wing, and that these deformations, in turn,

mitigate the maximum altitude variation undergone by the vehicle.
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Figure 22: Snapshots (a-d) of the aircraft and the wake as they pass through a discrete “1-cos” gust. All dimensions (x,y,z) in metres.. σ = 5,

Vg0 = 0.2V∞ and Lg = 30 m (wing span is 32 m).

7. Conclusions and outlook

The steady Vortex-Lattice Method is a well-known incompressible potential-flow technique that has been, and still

is, extensively used for low-speed-flight calculations. In contrast, the unsteady version has been largely overlooked in

fixed-wing aircraft dynamics modelling, and has been mostly exercised in other disciplines, such as rotorcraft, wind

turbines or flapping-wing vehicle analysis. The Double Lattice is the reigning tool in linear aeroelasticity, and 2-D

strip theory has been favoured recently in the conceptual design of large flexible HALE UAVs. However, the UVLM

represents a suitable candidate in many situations, and this paper has emphasised its applicability in aeroelasticity and

flight dynamics at low speeds. Scenarios where it is not only a powerful alternative, but even a necessary one, have

been highlighted, hence illustrating its full potential. Indeed, it could be argued that the savings in CPU time obtained

by the DLM are no longer relevant and that the linear state-space UVLM, which is more general, could replace it in

virtually all cases.

The UVLM is governed by Laplace’s equation, which is linear, and thus is constrained to the subsonic regime with

negligible viscous effects. However, the enforcement of the boundary conditions on the deformed geometry allows

geometrically-nonlinear deflections of the lifting surfaces to be captured. In its standard formulation the UVLM

models a force-free wake, incorporating a further nonlinearity into the problem. In turn, the linearised version of the
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equations offers the same level of fidelity as state-of-the-art tools in aeroelasticity, and caters for in-plane motions and

static nonlinear wing-excursions. The latter are likely to become a common feature of flexible HALE vehicles, but

they might also arise in the certification process of commercial aircraft, due to the high load factors under which they

must operate without damage.

Integrating the aerodynamics with structural and rigid-body models, a full description of the dynamics of a flexible

vehicle is accomplished. Here a geometrically-nonlinear beam has been implemented, but models of various degrees

of complexity, including descriptions based on modal analysis, could be appended instead. The resulting simulation

framework allows analyses such as aircraft trimming, linear stability evaluation, and linear or nonlinear gust response

to be performed. Numerical studies focusing on these capabilities have been presented, illustrating the flutter of a

T-tail and the open-loop characteristics of a representative HALE configuration.

A key characteristic evidenced by the results is that including nonlinear effects may lead to unexpected trends.

The flutter speed of a clamped flexible wing has been shown to significantly decrease with flexibility, and undesirable

couplings between elastic and rigid-body oscillatory modes have been identified. However, the stiffness reduction of

airframe structures does not necessarily have a detrimental impact. In fact, the opposite is true in some cases. For

example, the stability envelope of the free-flying aircraft may increase with wing deformations: the static margins for

payload location are widened, and the spiral mode becomes stable due to the increased effective dihedral.

Time marching the fully nonlinear system is a relatively lengthy process, but it is sometimes necessary. In these

cases, computing the local velocities on the free wake is the main contributor to the total simulation cost. Practical

solutions to this problem exist though, such as parallelisation of the code or implementation of acceleration algorithms

whereby the details of the wake far-field are approximated.

In contrast, the monolithic state-space assembly obtained through the linearisation of the equations proves ex-

tremely efficient, and each point of the parametric space takes just a few seconds to evaluate in a desktop computer.

In addition, this formulation casts in the same analysis static and dynamic stability, enables the straightforward im-

plementation of reduced-order modelling techniques, and is ideally suited for advanced control synthesis methods.

The prescribed-wake assumption provides an acceptable level of accuracy and insight, before the closed-loop solution

is then tested on the nonlinear solver. Finally, the state-space formulation is also expected to constitute a valuable

tool to address some of the pressing issues industry is facing, such as multidisciplinary optimisation and uncertainty

modelling.

CFD simulations still incur computational expenses that are often not permissible for routine analysis of flexible-

aircraft dynamics, or require a level of detail which is simply not available at the conceptual design stage. Until the day

arrives when these high-fidelity tools become practical for those tasks, the Unsteady Vortex-Lattice Method should

be contemplated as an outstanding aerodynamics model, and employed alongside other tools to drive aeronautical

research.
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[129] T. Theodorsen, General theory of aerodynamic instability and the mechanism of flutter, NACA Report No. 496 (1935).

[130] W. R. Sears, Some aspects of non-stationary airfoil theory and its practical application, Journal of the Aeronautical Sciences 8 (5) (1941)

104–108.

[131] J. G. Leishman, K. Q. Nguyen, State-space representation of unsteady airfoil behaviour, AIAA Journal 28 (5) (1989) 836–844. doi:

10.2514/3.25127.

57

http://dx.doi.org/10.1016/0021-9991(90)90092-F
http://dx.doi.org/10.1016/0021-9991(90)90092-F
http://dx.doi.org/10.1063/1.3498265
http://dx.doi.org/10.2514/3.49151
http://dx.doi.org/10.2514/3.44472
http://dx.doi.org/10.2514/3.60869
http://dx.doi.org/10.2514/3.60869
http://dx.doi.org/10.1017/S0022112078002980
http://dx.doi.org/10.2514/3.50783
http://dx.doi.org/10.2514/3.50783
http://dx.doi.org/10.2514/3.60097
http://dx.doi.org/10.2514/3.9244
http://dx.doi.org/10.2514/1.4589
http://dx.doi.org/10.1017/S0022112085001148
http://dx.doi.org/10.1017/S0022112088000151
http://dx.doi.org/10.2514/3.25127
http://dx.doi.org/10.2514/3.25127


[132] D. A. Peters, S. Karunamoorthy, W. Cao, Finite state induced flow models. Part I: Two-dimensional thin airfoil, Journal of Aircraft 32 (2)

(1995) 313–322. doi:10.2514/3.46718.

[133] D. A. Peters, Two-dimensional incompressible unsteady airfoil theory – An overview, Journal of Fluids and Structures 24 (2008) 295–312.

doi:10.1016/j.jfluidstructs.2007.09.001.

[134] R. Cook, R. Palacios, P. Goulart, Robust gust alleviation and stabilization of very flexible aircraft, AIAA Journal[Accepted for publication].

[135] J. G. Leishman, T. S. Beddoes, A semi-empirical model for dynamic stall, Journal of American Helicopter Society 34 (3) (1989) 3–17.

doi:10.4050/JAHS.34.3.
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