MATHEMATICAL MODELING OF EARTHQUAKE INDUCED VIBRATIONS
AND ITS EFFECTS ON MULTISTORY BUILDINGS

ASMA BINTI MAHMUD

A dissertation submitted in partial fulfillment of the
requirements for the award of the degree of
Master of Science (Mathematics)

Faculty of Science
UNIVERSITI TEKNOLOGI MALAYSIA

2014
To my beloved father and mother,

Mahmud and Rosnah

And

My truly supporter,

Azhar
ACKNOWLEDGEMENT

IN THE NAME OF ALLAH, THE MOST GRACIOUS, THE MOST MERCIFUL

First and foremost, I am grateful to Allah S.W.T for giving me the strength to complete this project successfully.

I would like to express my gratitude and special thanks to my supervisor, Assoc. Prof. Dr. Shamsuddin Ahmad who has supervised and advised me in this thesis for a long two semesters. Without his guidance and assistance, this project would never been completed.

I also would like to convey my deepest gratitude and indebted to Dr. Yeak Su Hoe for his co-operation and help throughout the duration of this research.

Not to be forgotten, to my beloved parents, my fiancé and dearest family who always give me support and motivation and also for their on going prayers.

Last but not least, I really appreciate all the support, comments and ideas from all my friends in preparing this thesis. Indeed, I could never adequately express my indebtedness to all of the people I mentioned above.

Thank you.
ABSTRACT

A strong earthquake will cause sudden fatality, great economic loss and panic to community. A mathematical model of forced vibrations on multistory buildings is used as a tool to study the mechanism of vibration that caused by an earthquake. The model is used to calculate the natural frequencies, ω and period, P of the building vibrations. Furthermore, the vibration on each floor and the maximal amplitude of the building vibrations also being analyzed. This research only concentrates on three floors building and five floors building. Matrix method is used to get analytical solution of the earthquake model and the graphs of calculated frequencies against period and vibrations of the floors against time are plotted via Maple 12 package. Based on that graphs, the related discussions are being made.