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Abstract 

 

Cancer is a disease in which the controls that usually ensure the coordinated behaviour of 

individual cells break down. This rarely happens all at once. Instead, the clone of cells that grows 

into a developing tumour is under high selection pressure, leading to the evolution of a complex 

and diverse population of related cells that have accumulated a wide range of genetic defects. One 

of the most evident but poorly characterized of these genetic abnormalities is a disorder in the 

number of chromosomes, or aneuploidy. Aneuploidy can arise though several different 

mechanisms. The project explores one such mechanism - chromosome missegregation during cell 

division- and its role in oncogenesis.  

 

To address the role that chromosome missegregation may have in the development of cancer a 

computational model was devised. We then defined the behaviour of individual cells, their 

genomes and a tissue niche, which could be used in simulations to explore the different types of 

cell behaviour likely to arise as the result of chromosome missegregation. This model was then 

used to better understand how defects in chromosome segregation affect cancer development and 

tumour evolution during cancer therapy. In stochastic simulations, chromosome missegregation 

events at cell division lead to the generation of a diverse population of aneuploid clones that over 

time exhibit hyperplastic growth. Significantly, the course of cancer evolution depends on genetic 

linkage, as the structure of chromosomes lost or gained through missegregation events and the 

level of genetic instability function in tandem to determine whether tumour growth is driven 

primarily by the loss of tumour suppressors or by the overexpression of oncogenes. As a result, 

simulated cancers differ in their level of genetic stability and in their growth rates. We then used 

this system to investigate the consequences of these differences in tumour heterogeneity for anti-

cancer therapies based on surgery and anti-mitotic drugs that selectively target proliferating cells.  
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Results show that simulated treatments induce a transient delay in tumour growth, and reveal a 

significant difference in the efficacy of different therapy regimes in treating genetically stable and 

unstable tumours. These data support clinical observations in which a poor prognosis is correlated 

with a high level of chromosome missegregation. However, simulations run in parallel also 

exhibit a wide range of behaviours, and the response of individual simulations (equivalent to 

single tumours) to anti-cancer therapy prove extremely variable. The model therefore highlights 

the difficulties of predicting the outcome of a given anti-cancer treatment, even in cases in which 

it is possible to determine the genotype of the entire set of cells within the developing tumour. 
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1. Introduction 

 

Cancer is not a single disease. It is a group of diseases, all involving unregulated cell growth (R. 

A. Weinberg, 2007). Typically in cancer, a single clone of cells divides and grows uncontrollably 

before spreading to colonize distant parts of the body (Hanahan & Weinberg, 2011).  Although 

some cancers are caused by specific external agents (e.g. mesothelioma – asbestos (D. W. 

Berman, 2011)/ skin cancer - UV light (Wang et al., 2005)/ lung cancer- tobacco smoke (Ha et 

al., 2004) / Burkitts lymphoma – EBV (S. Lee et al., 2007)) the precise cause of most cancers 

remains unknown. Instead, a large number of factors increase the risk of cancer (Anand et al., 

2008; Marcucci, Haferlach, & Döhner, 2011; R. A. Weinberg, 2007); the greatest of these being 

age (Meza, Jeon, Moolgavkar, & Luebeck, 2008). As a result, the probability of surviving this 

disease varies greatly depending on the type of cancer and the genetics of each patient. Moreover, 

each individual case of cancer is unique and changes during its life history. Once cancer starts, 

several factors act in tandem to shape the subsequent evolution of cancer. Amongst them, 

mutation and selection constantly change key properties of cancer, such as proliferation rates and 

resistance to death (R. A. Weinberg, 2007). Cancer can affect people of all ages, and the risk of 

developing cancer increases with age. This means that everyday each one of us is at higher risk of 

acquiring this disease.  

 

Much effort has been dedicated to understand tumours through studying their individual 

components: altered genes that break down the cellular cooperation to maintain an organism. 

Although some important cancer hallmarks have been proposed (Hanahan & Weinberg, 2011), 

fundamental questions about the development of the disease have not yet been answered. Are 

there rules that dictate the pathways that led to different kinds of cancer? How do cell behaviours, 

usually regulated by a robust network of interconnected genes, change in such a way that the 
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organismic integrity becomes compromised? What are the interactions and dynamics that take 

place as cancer evolves? As more research is carried out, it is clear that evolution within the 

tumour is a key aspect of the disease (Merlo, Pepper, Reid, & Maley, 2006). If we could study the 

development of cancer cells in a living organism, could we recognize a key evolutionary 

transition while it is happening?  

 

Cancer research seeks to understand this complex disease at a fundamental level and to develop 

better methods for the effective prevention, diagnosis and treatment of cancer. While much of our 

understanding of cancer has come from studying the individual constituents involved, the genes, 

gene products and other factors, like carcinogens, phenomena such as the emergent behaviours 

that appear when a number of simple agents, like cancer cells, interact challenge the limits of this 

reductionist approach. Fortunately, recent advances in mathematics and computer science have 

provided methods for exploring these phenomena.  The aim of this work is to use these methods 

to explore an important, but poorly understood biological phenomenon in cancer: Aneuploidy. 

 

This original research takes place at the interphase between computer science and biology. 

Cutting edge materials and methods from both fields, from in silico agent-based modelling to wet 

lab immunohistochemistry techniques, will be combined to create a useful framework to study the 

role of aneuploidy in cancer. Although these techniques are well established on their own, this is 

to our knowledge the first time they have been applied in such an integrated way. We prepose that 

this kind of integration will offer a unique opportunity to better understand the phenomenon of 

aneuploidy and thus result in the formulation of first principles; a first at the time of writing for 

this complex phenomenon. Furthermore, new wet-lab protocols will be designed to form a bridge 

between the in silico models and the biological models.  
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1.1. Research Problem: Aneuploidy in Cancer 

For many types of cancer, a complex and diverse array of different kinds of genetic abnormalities 

accumulates within individual tumours as they evolve (Jefford & Irminger-Finger, 2006). One of 

the most evident but poorly characterized of these chromosomal abnormalities is the presence of 

an abnormal number of chromosomes, also known as aneuploidy, in the cancer genomes (Jacobs, 

Luce, & Cailleau, 2006). Such alterations in the number of chromosomes have been shown to 

correlate with the dysregulation of gene expression (Hertzberg et al., 2007) (Pavelka, Rancati, & 

Li, 2010a). This can have similar effects to the loss of tumour suppressors or the amplification of 

oncogenes that encourage proliferation. Recent research has started to throw light on the possible 

mechanisms that generate missing or additional chromosomes in cells (Ganem, Godinho, & 

Pellman, 2009). Experimental evidence shows how defects arising during cell division can give 

rise to the missegregation of entire chromosomes between the two daughter cells (Crasta et al., 

2012), (Thompson, Bakhoum, & Compton, 2010), (Cimini, 2008), (Feldser, Hackett, & Greider, 

2003). Whether an abnormal number of chromosomes is a consequence or a cause of malignant 

transformation is a hotly debated topic in cancer research (B. Weaver & Cleveland, 2007), (Nigg, 

2002), (Torres et al., 2007).  

 

An argument for chromosome missegregation having a causal role in tumourigenesis is that it 

creates novel genotypes, some of which may promote unregulated cell proliferation (B. A. A. 

Weaver, Silk, Montagna, Verdier-Pinard, & Cleveland, 2007). For evolution to occur, there must 

be heredity, variation and selection. Evolution involves tinkering at each generation; an 

opportunity provided by chromosome missegregation. Conversely, excessive chromosome 

missegregation can work against the process of tumourigenesis by making cell division so 

unstable that genotypes are not faithfully replicated at each round of cell division, reducing cell 

fitness (Holland & Cleveland, 2009). Excessive chromosome missegregation can also prevent 
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cells from carrying out basic essential functions, resulting in cell death (Thompson & Compton, 

2010). Currently, there is no clear consensus on the role of chromosome missegregation and 

cancer (Gibbs, 2003). Because of this, a holistic computational approach that integrates the 

accumulated knowledge of this phenomenon may help in shedding light on the role of 

chromosome missegregation in tumourigenesis. 

 

The objective of this work is to assess whether a computational model of chromosome 

missegregation is an effective approach to study the role of aneuploidy in cancer evolution. The 

first step towards such a model is the abstraction of key biological objects such as genes and 

chromosomes; and processes such as cellular division and chromosome segregation. Within the 

framework of an abstract homeostatic tissue where cellular processes are regulated by genes, 

several in silico experiments can be carried out. The model presented in this work will be used to 

explore whether differences in the path by which cancers evolve can account for the different, 

seemingly conflicting, observations regarding chromosome missegregation in cancer (B. 

Weaver & Cleveland, 2007).  

 

1.2. Hypothesis 

Whether chromosome missegregation is sufficient to initiate carcinogenesis, or if it has a key role 

in shaping the evolutionary dynamics of cancer progression is still unknown (B. Weaver & 

Cleveland, 2007). By integrating current biological data and theories that describe the evolution 

and behaviour of chromosome missegregation in cancer, a computational model could capture the 

dynamics of such a complex system. The hypothesis presented in this work is that: 
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An integrated computational model of chromosome missegregation during cell division 

provides an effective approach to assess the role of aneuploidy in the evolution of cancer.   

 

where we will use the following definitions: 

• Aneuploidy is the cellular state of having an abnormal number of chromosomes. 

• Chromosome missegregation is the phenomenon in which cells make errors at the time 

of the distribution of their duplicated genetic content during cell division. Problems 

during chromosome separation may result in daughter cells with different numbers of 

chromosomes. The resulting cells, known as aneuploid cells, are a condition associated 

with cancer.  

• An integrated computational model is the set of software that constitutes a virtual lab. 

Such a set would comprise not only of the model of chromosome missegregation, but 

also the tools needed to extract useful information from it.  

 

To test the hypothesis the following methodology will be used:  

 

1. Carry out a literature review of cancer biology and cancer modelling. 

2. From the literature review of cancer biology, extract the first principles of 

chromosome missegregation. 

3. Informed by the cancer modelling literature review, build an integrated model of 

chromosome missegregation. 

4. Assess the usefulness of that model. 

 

The model will be used to investigate whether chromosome missegregation has a significant role 

in the evolution of cancer. By making use of biological abstractions and behaviour, we seek to 

shed light on the kind of evolutionary pathways that cancers may take. This is a key step in 

elucidating some of the governing principles that may in turn help guide biological experiments 
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and theory. Such a model would be useful if it is able to provide us with insights regarding the 

evolution of cancer, and how that evolution may be affected by different forms of intervention 

(Endy & Brent, 2001). 

 

1.3. Scope of the Project 

The scope of the project will not include the modelling of other kinds of genetic change (such as 

mutations in key nucleotides or the breakage of chromosomes, which will be discussed in the next 

chapter) or an explicit physical model of a tissue context  (such as hypoxia due to the lack of 

oxygen at the centre of a solid tumour or the different densities that act as barriers between 

distinct kinds of tissues). We will not address other phenomena such as the phenomenon of 

metastasis (the colonization of other organs by cancer cells).  

 

1.4. Objectives 

The main objectives in this work are: 

1. Investigate in the literature possible pathways for cancer to originate through, or for its 

subsequent evolution to be affected by the phenomenon of chromosome missegregation. 

2. Research which modelling paradigms would be better suited to model the biological 

phenomenon of aneuploidy. 

3. Study how computational models could be validated or corroborated. 

4. Summarise and abstract relevant biological concepts for computational implementation 

and incorporate current theories and known facts into a working computational model.  

5. Identify key emergent states and behaviours in both the model and those reported in the 

literature for the evolution of cancer. 

6. Compare with results from the model two key properties of chromosome missegregation 

reported in the literature, and demonstrate that the model can be used to support or refute 

the following theories of chromosome missegregation: 
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o Chromosome missegregation can lead to further genetic instability, which may 

be advantageous to cancer progression (B. A. A. Weaver et al., 2007). 

o The levels of aneuploidy may change at different stages of cancer progression, 

shaping the subsequent tumour evolution (Jefford & Irminger-Finger, 2006). 

7. Investigate through the implementation of in silico experiments the role of chromosome 

missegregation in cancer treatments.  

8. Design experimental tools and techniques that can enable biologists to design 

experiments informed by the model.  

 

1.5.  Thesis Contributions 

This work presents a number of original contributions to the fields of computer science, 

molecular biology and cancer research: 

1. Results from in silico experiments highlight the existence of two distinct types of 

aneuploidy. In the first type, dominant proliferating clones within the tumour exhibit 

a relatively stable state of aneuploidy. In the second, selection for the loss of the 

aneuploidy gene results in tumours that continually generate increasing levels of 

heterogeneity and ever-more malignant subclones. Both have been found in real 

tumours.  

2. Using the tool developed, organizing principles of chromosome missegregation were 

elucidated. It was found that cancer evolution depends on genetic linkage, as the 

structure of chromosomes lost or gained through missegregation events and the level 

of genetic instability function in tandem to determine whether tumour growth is 

driven primarily by the loss of tumour suppressors or by the overexpression of 

oncogenes. As a result, simulated cancers differ in their level of genetic stability and 

in their growth rates. 

3. The role of chromosome missegregation in cancer therapies was investigated, and 

results highlight that treatments induce a transient delay in tumour growth. Results 

also reveal a significant difference in the efficacy of different therapy regimes in 

treating genetically stable and unstable tumours. These data support clinical 

observations in which a poor prognosis is correlated with a high level of chromosome 

missegregation. 



 

 

38 

4. The model places a key role for tumour heterogeneity in the response to treatments. 

Simulations run in parallel exhibit a wide range of behaviours, and the response of 

individual simulations, equivalent to single tumours, to anti-cancer therapy prove 

extremely variable. The model therefore highlights the difficulties of predicting the 

outcome of a given anti-cancer treatment, even in cases in which it is possible to 

determine the genotype of the entire set of cells within the developing tumour. 

5. An experimental protocol that provides the proof of principle for an immunostaining 

technique as a measurement of Ploidy in real cancer samples was developed and 

tested successfully in the wet lab. 

6. Aa algorithm for the implementation of an immunostaining-based ploidy measuring 

technique , which could be useful in designing in vitro experiments that make use of 

the model presented in this work, was developed and tested successfully. 

7. A protocol for inducing aneuploidy in cell lines through Aurora Inhibition was 

developed and tested successfully in vitro. 

 

1.6.  Publications 

The research described in this thesis led to a number of publications:  

 

Araujo, A., Bentley, P. J. and Baum, B. (2010) Modelling the Role of Aneuploidy in Tumour 

Evolution. 12th International Conference on the Synthesis and Simulation of Living Systems. 

2010. MIT Press.  

 

Araujo, A., Bentley, P. J. and Baum, B. (2010) Modelling the Role of Chromosome 

Missegregation in Cancer Therapies. 3rd Complex Systems Modelling and Simulation Workshop. 

2010. Luniver Press.  
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Araujo, A., Bentley, P. J. and Baum, B. (2013) The Role of Chromosome Missegregation in 

Cancer Development: A Theoretical Approach Using Agent-Based Modelling. PLoS ONE 8(8): 

e72206 

 

1.7.  Thesis Overview 

The next chapter provides a Background section in which the relevant biological concepts are 

explained. The chapter starts with a concise review of the current biological ideas, data and 

concepts in cancer research. This is then followed by a review on the most representative 

methodologies that have been used to model this disease. This section provides information on 

how experiments have informed the models and how in turn these models have helped drive 

knowledge and experiments forward. 

 

Chapter 3 focuses on the methodology employed for the development of the model. The decisions 

behind the selection of the modelling paradigm are explained and justified. The methodology that 

will be used for the assessment of the model is also presented.   

 

Chapter 4 describes the modelling process. In this chapter, the conceptualizations of key 

biological aspects modelled are carried out. The different iterations of the model are presented 

and assessed. The final version of model is proposed and justified.  

 

Chapter 5 describes the experiments carried out with the model. The goal of the chapter is to test 

whether the model can provide insights regarding the role of chromosome missegregation in the 

evolution of cancer. Analysis tools created for the analysis of the model are presented and used. 
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Results will show that the model suggests that chromosome missegregation may give rise to two 

clinically observed kinds of aneuploidy: a stable aneuploidy and an unstable one.  

 

Chapter 6 takes the results obtained in the previous chapter to investigate the role of chromosome 

missegregation on cancer therapies. Scenarios that model two types of cancer treatments: Surgery 

and Chemotherapy are presented. For the analysis of the results of these experiments, new 

analysis tools are introduced. Several key insights generated by the model are highlighted, 

including the suggestion of some predictive markers for a successful therapy. 

 

Chapter 7 describes the experimental work carried out during the development of the 

computational model in the wet lab. This section complements the body of work by offering a 

solid grounding in reality for the model through immunostaining experiments. A tool for the 

measurement of aneuploidy by means of image cytometry is proposed, as well as contributing 

with a novel protocol for the generation of aneuploid cells in the wet lab. 

 

Chapter 8 concludes this work by discussing the body of work, and putting the results in context. 

The approach taken and the inaccuracies and insufficiencies in the model are evaluated and 

discussed. The chapter concludes with future work, which contains plans to address many of 

these deficiencies.  
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2. Background 

In this chapter, the current biological and computational literature, key biological discoveries and 

existing methods of biological modelling will be reviewed and discussed.  The chapter begins 

with an introduction to the relevant biology of cancer, focusing on biological definitions and 

current theories of key biological processes such as cancer genes and genetic instability. This 

section is then followed by a literature review on computational cancer modelling, with focus on 

the most relevant models. In this chapter, evidence will be provided for the existence of a gap in 

the current knowledge that the work presented in this thesis seeks to fill.  

 

2.1. The Biology of Cancer 

Cancer is a disease that will affect one out of every three people on the planet (Jemal et al., 2008). 

Although the likelihood of cancer striking correlates with age, it is a disease that may affect 

young people, and even children in utero (Kontopoulos, Gualtieri, & Quintero, 2012). The 

earliest recorded case of human cancer dates back to Ancient Egypt in 1500 B.C., where 8 cases 

of breast tumours were documented on papyrus (interestingly, even back then they were treated 

by cauterization) (Sakorafas & Safioleas, 2009), (Hajdu, 2010). Even Greek philosophers like 

Hippocrates, who believed that black bile was responsible for the condition, were concerned 

about this disease (Hajdu, 2004).  It was not until autopsies began to be carried out more regularly 

in the 1700’s that it became clear that lymph nodes (replacing the black bile theory) played a key 

part in the spreading of the disease (Sakorafas & Safioleas, 2009). It was then theorized that 

abnormalities in lymph nodes were the cause of cancer. It was in the late 1800’s that a German 

doctor, Rudolph Carl Virchow (also known as the father of modern pathology), proposed the 

cellular origins of cancer (Sakorafas & Safioleas, 2010). After the discovery of the cell, Virchow 

reasoned that all cells come from other cells; even cancer cells. This means that a single cell with 
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oncogenic properties has the potential to form a tumour. It was then, and still is today a very 

frightening concept. Cancer comes from within. It is our own body turned against us.  

 

The 20th century saw the greatest progress in cancer research. The discovery of DNA, the 

development of the computer, the faster dissemination of knowledge throughout the globe and, 

key amongst those, the birth of molecular biology, contributed greatly to our current 

understanding of cancer as a genetic disease. Today, some cancers have become curable, and 

rational treatments and preventions for many others have been developed (Sakorafas, Safioleas, & 

Safioleas, 2010). Better treatments are currently being designed, taking into account everything 

that it is currently known about this disease. In reality, however, few rationally designed drugs 

have proved useful such as Imatinib and Herceptin (S. E. Bates, Amiri-Kordestani, & Giaccone, 

2012). Throughout this chapter, a general framework in which to view the disease will be 

described. This work will explore the biology of cancer, review the main theories regarding the 

origin of cancer, and discuss the biological issues that surround the hypothesis of this work. 

 

2.1.1.  Introduction to Cancer Biology 

Although there are hundreds of different kinds of cancers, each with its own individual properties, 

there is a consensus amongst cancer researchers regarding six hallmarks of cancer (Hanahan & 

Weinberg, 2000), (Hanahan & Weinberg, 2011). Unlike normal cells, cancer cells share the 

following properties: 

1. Have a limitless potential to replicate 

2. Avoid suicide by apoptosis 

3. Are insensitive to anti-growth signals 

4. Become self-sufficient with respect to growth signals 
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Once cancer cells have acquired these key properties that enable tumour growth, the cancer cells 

within the crowded tumour can acquire additional properties: 

5. Recruitment of blood vessels to meet the oxygen demands of the growing tumour 

6. Acquire the ability to break away from original tissue, survive and proliferate in foreign 

tissue (invasion and metastasis). 

Although relatively simple, this conceptual framework has provided cancer researchers a cell 

biological foundation for the understanding of the disease. These properties are acquired via 

different mechanisms and at different times. However, these cellular phenotypes result from 

changes at the epigenetic and gene level, from point mutations to deletions, large-scale 

rearrangements of the genome and changes in chromosome copy number. The mechanisms of 

cancer initiation (oncogenesis) and tumour evolution, however, are a matter of heated debate 

(Shackleton, Quintana, & Fearon, 2009). To unravel this mystery, it is necessary to understand 

the first principles of cancer biology. 

 

Research carried out in the 1970´s revealed that functional changes in the activity of genes that 

control proliferation play a key role in cancer. Typically these cancer-enabling genes, also known 

as proto-oncogenes, become true oncogenes as the result of mutation or rare gene-fusion events, 

and can contribute to oncogenesis when overexpressed as the result of changes in gene copy 

number and epigenetic changes. Oncogene activation, if left unchecked, can lead to cellular over 

proliferation (Weinstein & Joe, 2008). Cells however appear to have safety mechanisms in place 

that prevent against excessive proliferation. These genes are known as tumour-suppressor genes. 

Some function to dampen or inhibit cell proliferation (Rb), while others help detect and respond 

to damage and/or promote cell death (p53) (Dean, Mcclendon, Stengel, & Knudsen, 2010).  

When these tumour-suppressor genes are lost or mutated, cells become more vulnerable to 

oncogenic reprograming. A cell also has failsafe mechanisms, such as the Hayflick limit, which 
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restrict the number of times a cell can divide. It is thought that telomeres associated with each 

cell's DNA will get slightly shorter with each new cell division until they shorten to a critical 

length. Empirical evidence shows that typically cancer cells have managed to circumvent this by 

re-expressing telomerase and this makes cells practically immortal (R. A. Weinberg, 2007).  

 

With the advent of whole genome sequencing it is now possible to study the entire set of evolving 

changes in genome sequence and architecture that accompany cancer development. This type of 

analysis reveals an enormous number of genetic changes (Meyerson, Gabriel, & Getz, 2010). 

These likely include a small number of driver mutations that directly contribute to cancer 

development, together with a very large number of mutations that are considered passenger 

mutations that may perform no function or that may functionally compromise tumour cell 

function. In addition there is enormous level of genetic heterogeneity in DNA sequence and 

genome architecture (Gerlinger et al., 2012). This genetic heterogeneity makes it difficult to 

identify changes in oncogenes and tumour suppressor genes that drive cancer development 

(recent work uses a quantitative analyses of genetic data from tumours to generate tumour cell 

lineage trees, identifying early and late mutational events (Frumkin et al., 2008)). Despite the 

genetic heterogeneity, one key feature that many cancer cells share is an aneuploid genotype 

(Swanton & Caldas, 2009)–genomes composed of an abnormal number of chromosomes.  

 

2.1.2.  On the Origins of a Tumour  

Although many carcinogens have been identified, no one really knows the initial trigger that leads 

to most common cancers. There are, however, several theories regarding the likely origins of 

most cancers (Gibbs, 2003). Although cancer origins are likely to begin with the birth of 

multicellularity (Saul & Schwartz, 2007), the dominant theory suggests that DNA damage over 

decades leads to many thousands of random mutations in the genome of each cell which first 
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trigger the onset of overproliferation (Muzny et al., 2012) (Gavrilov & Gavrilova, 2002). These 

mutations are likely to arise from carcinogens like ionizing radiation (X-rays, etc.) as well as 

chemicals in foodstuffs and the highly reactive by-products of our own metabolism (Ding et al., 

2008). This theory of stochastic damage however raises the question: How can such a 

complicated genome reprogramming be carried out so consistently for the development of a 

cancer phenotype by means of stochastic mutations and in such a limited time span? (Huang & 

Ingber, 2007).  The answer is that this theory lacks the lens of evolution, which, by generating 

variation, selection and heredity, can create consistent pathways (Merlo et al., 2006).  

 

A second theory suggests that specific mutations in a few key genes are sufficient to reprogram 

cell behaviour leading to tumourigenesis (Hanahan & Weinberg, 2011). This is based upon 

experimental evidence that structural changes in a small number of genes that have a direct 

impact on the regulation of growth, death and division can disrupt internal and external cell 

regulation and reprogram cell fate (Gatenby et al., 2007). Such evidence first emerged from the 

isolation of specific genetic sequences from viruses that induce cancer-like behaviour (Rous 

sarcoma virus in chickens (Laan et al., 2004) and oncoviruses such as the human papilloma virus 

in humans (Tzenov et al., 2013)), and from research on familial cancers (inherited genetic 

susceptibility to diseases like retinoblastoma).  It has since been shown that specific mutations in 

a small number of genes when combined are sufficient to cause cancer in model various systems 

from fruit flies to mice (R. A. Weinberg, 2007). However, these include mutations, such as the 

RasV12 mutation, that are likely to be exceedingly rare. Moreover, the tumours that arise in these 

models typically contain a heterogeneous mix of cells, with large numbers of genetic 

abnormalities and high levels of genetic instability (Wagner, 2004). Thus, this simplistic view 

does not capture the underlying evolutionary and selective forces acting within developing 
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tumours, the impact that a mutated phenotype has on the cell population, nor the interaction with 

a particular microenvironment in which phenotype selection takes place (Gatenby, 2006).  

 

A third theory, the aneuploid theory of cancer, suggests that errors in cell division cycle (Figure 

2.1) can give rise to changes in chromosome numbers and in turn may result in tumourigenesis 

(Gibbs, 2003). An aberrant chromosome number that deviates from a multiple of the haploid, also 

known as aneuploidy, is a remarkably common feature of human cancers. The theory proposes 

that defects in cell division may give rise to the missegregation of entire chromosomes; resulting 

in the creation of two daughter cells with different sets of chromosomes (Figure 2.2). The loss or 

gain of entire chromosomes could generate new viable genomes, with a probability exceeding 

that of conventional mutations by several orders of magnitude (Rajagopalan & Lengauer, 2004).  

Such events may generate variation in an initially homogeneous population upon which selection 

can act. Through chromosome missegregation, hundreds of genes are affected simultaneously. 

The aggregation effect of many genes being mutated, e.g. the loss of function of genes that 

suppress growth and the over expression of genes that promote growth, may act in tandem to 

provide cancer cells with powerful oncogenic traits. Genetic variability combined with heredity 

and natural selection may enable cells to rapidly evolve into progressively more aggressive 

genotypes and could explain the diversity of tumours observed in the clinic.  
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Figure 2.1- During the process of cellular mitosis a eukaryotic cell segregates the chromosomes in its 
cell nucleus into two identical sets. This process normally results in two daughter cells with the same 
DNA content 
 

 

 

 

Figure 2.2- The missegregation of chromosomes during mitosis may lead to the creation of novel 
genotypes. The two daughter cells may not have the same DNA content, thus generating a state of 
aneuploidy. The genomic instability arising from this process may be crucial for the origin of 
cancerous cells.    
 

Aneuploidy has long been known to be a hallmark of cancer; but because it arises as the result of 

chromosomal instability it is difficult to study and therefore it has been largely ignored (Holland 

& Cleveland, 2009). Aneuploidy can present itself in many forms and may exhibit different kinds 

of emergent behaviours, making its evolution at the cellular level very difficult to trace (Jefford & 

Irminger-Finger, 2006). 
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Although it is clear that aneuploidy is a hallmark of most cancers (Chin et al., 2004), (Austin et 

al., 2008), (Elzagheid et al., 2008), and that whole chromosome rearrangements (each 

chromosome containing thousands of genes) could generate differences in phenotype that could 

then be the subject of selection for cancer cell proliferation, the ideas and concepts behind the 

aneuploidy theory of cancer have caused much controversy amongst cancer researchers. There 

are several reasons for this. I. Few tumours have been identified that have a stable and 

characteristic cancer-specific aneuploid chromosomal organisation (due largely to the 

heterogeneity observed in many cancers) (Duesberg & Rasnick, 2000). II. With the identification 

of oncogenes in the 1970’s (Sakorafas et al., 2010), specific genetic lesions became the 

predominant focus of most cancer research rather than the variation in the genetic architecture of 

cells between and within cancers. III. Because it is difficult to study the consequences of 

aneuploidy in vivo or its development during cancer progression (Holland & Cleveland, 2009; 

Pavelka et al., 2010b). However, progress has recently been made that makes it worth 

reconsidering this theory. It has been recently show that aneuploidy causes quantitative changes 

in the entire set of proteins expressed by the genome of budding yeast; accompanied also by 

phenotypic variation (Pavelka et al., 2010b)).   

 

2.1.3.  Oncogenes and Tumour Suppressors 

From a recent census of the genes that are causally implicated in cancer development (Stratton, 

Campbell, & Futreal, 2009), more than 2000 have been reported, making up more than 1% of all 

the genes in humans (Futreal et al., 2004); more being discovered each year. Many initiatives 

exist to further identify new cancer genes by means of massive collaborations like the United 

Kingdom’s “Cancer Genome Project” (Stephens et al., 2004) and the American “Cancer Genome 

Atlas” (Hudson et al., 2010) amongst others (Strachan, Abitbol, Davidson, & Beckmann, 1997). 
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Of those cancer genes that have been identified, some key genes have been classified as either 

proto-oncogenes or tumour suppressor genes, according to the types of mutation generated and 

their predicted role in cancer progression.  

 

From all the known cancer genes, those classified as proto-oncogenes are those which, once 

mutated to their oncogenic form, play an important role in the regulation of cell growth and 

proliferation (R. A. Weinberg, 2007). Oncogenes typically code for important molecules used in 

signalling such as growth factors, increase transcription of other growth promoters or deregulate 

the cell cycle in such a way to make division more likely.  Tumour suppressor genes, on the other 

hand, are those genes that suppress increases in cell number, either by inhibiting proliferation 

(Collins, Napoli, Ribeiro, Roberts, & Lloyd, 2012) or by causing cell death (R. A. Weinberg, 

2007). Their inhibitory function typically becomes important once cells begin to overproliferate 

(Evan, 2006). They then restrain tumour growth, until two copies of each tumour suppressor gene 

within the diploid genome of a human cell are lost through epigenetic silencing, e.g. through 

methylation of the gene promoter region, and/or mutation, e.g. disabling the function of p53 in 

inducing cellular suicide, also known as apoptosis (Matlashewski et al., 1984), (Kimura et al., 

2008) in response to the stressful conditions associated with overproliferation. 

 

Although alteration in some of these cancer genes may account for specific cellular 

misbehaviours, the evolutionary pathway through which cells become cancerous (i.e. acquire the 

hallmarks of cancer discussed in Chapter 2.1.1) remains unknown, although it is starting to be 

revealed by the sequencing of populations of cells within tumours (Navin et al., 2011). Different 

types of cancer may have different evolutionary trajectories. In the absence of sexual 

recombination, the possible paths to cellular evolution are through genetic abnormalities 

including epigenetic changes, mutations and events with higher probability such as chromosome 
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rearrangements, and whole chromosome aneuploidy (Cimini & Degrassi, 2005), (Stratton et al., 

2009). Moreover, because there is no recombination genomes are inherited as indivisible blocks. 

In this case, once the cells with the least mutated genomes begin to carry at least one mutation, no 

genomes with fewer such mutations can be inherited to future generations. This results in an 

eventual accumulation of passenger mutations, known as genetic load, which cannot be cleared of 

the population..  

 

2.1.4.  Aneuploidy in Cancer 

There have been recent attempts to use clinical data and novel experimental models to determine 

whether chromosome missegregation is a cause or a consequence of malignant transformation, 

and the role it plays in tumour evolution (Duesberg & Rasnick, 2000). One such attempt dealt 

with the study of families with known history of mosaic variegated aneuploidy, an autosomal 

recessive condition where cells missegregate chromosomes with high risk of malignancy due to 

genetic alterations (Hanks & Rahman, 2005). The study focused on the gene BUB1B, whose 

function in animal studies is to delay chromosome segregation until all the chromosomes have 

been attached to the mitotic spindle, which then pulls and separates the paired chromosomes in 

opposite directions (Hede, 2005). Although this study directly links chromosome missegregation 

with cancer development, the size of the study was small and the effects of this particular kind of 

germ line predisposition for aneuploidy include many other diseases besides cancer, such as 

growth retardation, microcephaly and eye anomalies amongst others (Hanks et al., 2004).  

 

Some scientists have argued that chromosome missegregation is unlikely to function in tumour 

initiation (Hahn et al., 1999), (X. Li, Schimenti, & Tye, 2009). Instead it may be an indirect effect 

of the altered activity of proto-oncogenes and tumour suppressor genes (Cahill, Kinzler, 

Vogelstein, & Lengauer, 1999), (Nigg, 2002),, including genes like p53 which has been  
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considered a “guardian of the genome”. These arguments gained support from studies carried out 

in the mid 1990’s which showed that there was a link between cellular transformation and 

genomic instability (Denko, Giaccia, Stringer, & Stambrook, 1994), (Felsher & Bishop, 1999). 

This however may not be true of all tumours. Genomic instability has been observed to be 

prevalent in epithelial tumours but not in blood cell cancers (Johansson, Mertens, & Mitelman, 

1996)..  

 

Mutations in special oncogenes and tumour suppressor genes as well as microenvironment 

selection could also cooperate with aneuploidy to promote tumour progression (A. R. A. 

Anderson, Weaver, Cummings, & Quaranta, 2006). Conversely other experiments with similar 

mouse models of chromosome missegregation have suggested that it may limit tumour growth (B. 

A. A. Weaver, Silk, Montagna, Verdier-Pinard, & Cleveland, 2007). Such findings help fuel the 

controversy but are hardly surprising in a field in which DNA damaging agents like those that are 

thought to cause cancer are routinely used in the clinic as cancer therapies.  

 

Recent research suggests that mutations in checkpoint genes (genes responsible for the 

surveillance mechanisms that ensure faithful DNA replication and segregation during cell 

division) can contribute to oncogenesis.  Experiments using the functional disruption of 

checkpoint genes such as those from the Mad (mitotic arrest deficient) or Bub (budding 

uninhibited by benzimadazoles) families in mouse models suggest a strong relationship between 

chromosome missegregation and the increased rate of carcinogenesis (Baker, Chen, & van 

Deursen, 2005). Mutations in these checkpoint genes appear to continually generate moderate 

levels of aneuploidy that are compatible with cell viability. If this is the case, subsequent clonal 

division could lead to the effective propagation of increasingly aneuploid genotypes through the 

population that are more susceptible to malignant transformation.  
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Furthermore, if genes that regulate chromosome segregation became deregulated, aneuploidy 

could become a main drive for cancer evolution (Cimini & Degrassi, 2005). Many recent 

experiments have shown that aneuploidy can occur through many different mechanisms (B. 

Weaver & Cleveland, 2006). Currently, RNAi screens are being carried out experimentally in 

well-established cell lines such as HeLa and RPE1 cells to discover the mechanisms through 

which aneuploidy may arise (Kittler et al., 2007), (Kwon et al., 2008)..  

 

Aneuploidy has also been recently suggested to confer selective advantages for cells under high-

stress conditions, such as the drugs used in cancer treatments (Selmecki, Dulmage, Cowen, 

Anderson, & Berman, 2009). Cancer therapies may act as a form of selection on cells and exert 

even more selective pressure on the cancer cells. Because drugs would destroy most cancer cells, 

those cancer cells that remain may be of a more aggressive and resistant kind and thus make the 

administered drugs ineffective (Rajagopalan & Lengauer, 2004). A deeper understanding of the 

effects of aneuploidy on cancer initiation and progression may also help us devise new cancer 

treatments that account for drug resistance due to aneuploidy.  

 

2.1.5.  Summary of Biological Background 

There are several theories regarding the origin of cancer. A compelling theory suggests that the 

loss or gain of entire chromosomes (gaining or losing hundreds of genes through whole 

chromosome missegregation) might give rise to different kinds of viable aneuploid cells 

(Manchester, 1995). There are currently many different views on the role of aneuploidy, some of 

which give aneuploidy a central role in cancer development and others that suggest that 

aneuploidy is actually the outcome of oncogenesis (Hede, 2005). The change in number in many 

of these genes could deregulate the cell functions by changing the dosage of the gene products 
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and de-regulating pathways that may confer selective advantages to individual cells. However, 

the key properties that chromosome missegregation events have on cells, the viable evolutionary 

pathways for oncogenesis through aneuploidy and the properties of the resulting aneuploidy 

genotypes are currently unknown ( Dobles, Liberal, Scott, Benezra, & Sorger, 2000).  

 

2.2. The Modelling of Cancer 

It is the hypothesis of this work that a computational model could aid in the understanding of this 

phenomenon. In this section it will be discussed how other researchers have modelled key aspects 

of cancer. Some of the most relevant mathematical and computational models will be reviewed in 

order to understand how it is decided which kind of approach is best for modelling a particular 

biological process. 

 

2.2.1.  Introduction to Cancer Modelling 

Due to a recent explosion in molecular biology techniques, the exponential increase in 

computational power availability and the development of vast biological databases (Furney, 

Higgins, Ouzounis, & López-Bigas, 2006), cancer modelling has become a practical tool to 

understand fundamental principles and specific features in cancer (Macklin & Lowengrub, 2006). 

These kinds of models have been proven useful in the development of new theories, the tackling 

of complex interactions, as well as testing many new therapies. Many of the current techniques 

and concerns faced by cancer modelling have been addressed in insightful reviews such as the 

ones written by Nagl ( Nagl, 2006), Wodarz ( Wodarz & Komarova, 2005), and Deisboeck 

(Deisboeck, 2011) highlighting the need for new kinds of models that are able to cope with the 

overwhelming biological complexity. Models have emerged from different areas of science, such 
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as physics, mathematics, computer science, biology and medicine; beginning to converge in the 

more recent fields of complex systems, systems biology, systems medicine and artificial life. In 

this section, some of these kinds of models will be described. This section will also explore some 

of the most important paradigms of the field and offer an insight into why it was decided to use 

an agent based model to tackle the phenomenon of chromosome missegregation. 

 

2.2.2.  Spectrum of Cancer Models 

It is not practical (and currently not feasible) to simulate every single aspect of cancer biology. 

Cancer modelling has therefore addressed particular features of cancer, employing mathematical 

and computational concepts and language. There is a whole spectrum of cancer models that range 

from computationally low level, specified models to computationally high-level, abstracted 

models (Ideker & Lauffenburger, 2003). At the lowest level (coincidentally, the first cancer 

models historically), highly specified models–models where the system is broken down in order 

to gain insight into its compositional sub-systems–are found. These models usually deal with the 

structure and the influences from one component to another. Through many of these low-level 

cancer models, important relationships between the different elements of tumours were elucidated. 

The most widely used techniques in low-level cancer models have represented the system’s 

relationships and dynamics as a mathematical system in terms of differential equations, statistical 

models and Markov chains. A difficulty that most of these traditional mathematical models have 

to deal with is the fact that incorporating features in order to exhibit more realistic behaviour 

increases the difficulty of solving mathematical equations (Busenberg & Mahaffy, 1985). 

Because of this, it is difficult to address the biological mechanisms that underlie the causes and 

the key factors that determine the time course of tumour development with low-level models. 

Because of these important limitations, computational models, that would in some cases be 

complementary to the mathematical models, were also developed. From the fields of complex 
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systems, dynamical systems, and systems biology, models that address the flow of information 

and the connections between the different components were developed. Amongst these mid-level 

models, Boolean Networks and Bayesian Networks are amongst the most successful 

(Shmulevich, Dougherty, Kim, & Zhang, 2002), ( Kampis, Karsai, & Szathmáry, 2011). Many of 

these models have been proven useful for describing, and sometimes even predicting the 

behaviour of many of the elements of cancer (Nagl, Williams, & Williamson, 2007).  

 

Although it is possible to use the computer to model a system with mathematical equations, 

another interesting paradigm became possible with recent advances in computer science: piecing 

together elemental units to describe an emergent system. Computers have become fast enough 

that it is now feasible and practical to directly address the interactions between the individual 

components (Macal & North, 2005). This high-Level paradigm allows for expression of a rich 

variety of behaviour (C. Chen et al., 2007). In these kinds of models, the logical and physical 

structure of the components of a system can be abstractly represented. Some of the most 

successful models coming from the recently formed fields of Artificial Life, Systems Biology and 

Systems Medicine have used Cellular Automata and Agent-based models to model key aspects of 

cancer dynamics.  

 

To decide between the different kinds of models that are found in this spectrum, it is important to 

determine first the kind of question that will be the focus of study. Depending on our knowledge 

of the system, one modelling paradigm will have an advantage over another. Some of the key 

models that have helped define this field will be reviewed. 
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2.2.3.  Differential Equations Models 

A traditional approach to mathematical modelling of biological systems by means of ordinary 

differential equations has been widely applied in the past decades for the analysis of the dynamics 

of these complex systems. Many of these offer a description of the complex system as a whole. 

This global system level behaviour can be directly analysed, but a downside is that these 

phenomenological models rarely address the particular role that individual components play in 

generating the global behaviour ( Heidtke & Schulze-Kremer, 1998).  

 

One of the first and most successful models of cancer was created by Burton in 1966 to 

investigate the rate of growth of solid tumours (Burton, 1966). It was experimentally observed 

that tumours showed an exponential retardation in their growth rate. At the time, there was much 

debate regarding the cause. One of the most interesting theories was that the formation of necrosis 

in the centre of the tumour reduced the active growing part of the tumour to the exterior shell 

(Mayneord 1932). Burton, based on this explanation, decided to model tumour growth in terms of 

its diffusion, setting a trend that would prevail until the mid 1980s. In his model, he examined the 

distribution of oxygen in an idealized spherical tumour. The blood supply (source of nutrients and 

growth factors) would be confined physically only to the surface of the tumour. Burton's model 

exhibited exponential retardation following the Gompertz growth equation, hinting at the 

formation of a necrotic region in the centre of a tumour. His model offered a mathematical 

explanation, of the experimentally observed deceleration of tumour growth. The equation as first 

developed by Benjamin Gompertz in 1825 (Araujo & McElwain, 2004), describes tumour size Z 

as a function of time t through the relationship: 

𝑍 𝑡 = 𝑎𝑒!"!", 

where a is the upper asymptote or limit of the curve, b and c are negative constants for adjustment 

of the displacement and the scaling on the x axis respectively, and e is Euler’s number. Burton’s 



 

 

57 

model was successful as being one of the first models that offered both a mechanistic model of 

biological behaviour, as well as generating predictions that could be tested experimentally. 

Burton’s work was extended by Greenspan in 1972 (Greenspan, 1972) by introducing differential 

equations that model surface tension and the disintegration of necrotic cellular debris along with 

the original reaction-diffusion equations, and then by Deakin in 1975 (Deakin, 1975), by 

incorporating a differential equation that expressed a non-uniform oxygen consumption 

throughout the tumour. This model enabled cancer researchers to contemplate different 

possibilities of tumour growth and showed a glimpse of the complexity of tumours. 

 

Models of this kind that describe tumour-signal regulation have described the system in terms of 

coupled equations that express the rate of production of one element of the system as a function 

of the concentrations of other elements such as tumour growth with respect to nutrient availability 

(Macklin & Lowengrub, 2007) or the level of tissue invasion with respect to cell adhesion 

(Gerisch & Chaplain, 2008). While useful, this approach requires a high understanding of the 

relationship between the different variables of the system (Gierer, 1981). The incomplete 

understanding of many genetic regulatory mechanisms and the general absence of quantitative 

knowledge usually means that the best that can be achieved are highly idealized, qualitative 

results.  

 

For the many models that use Partial Differential equations to describe tumour growth, like those 

of Burton, Greenspan and Deakin, a direct analytical solution is not possible in general. 

Numerical approximations have to be used to estimate the parameters of the system. One of the 

major drawbacks of modelling with differential equations is also the need to drastically change 

the system of equations when an extension of the model is required.  Also, deterministic 

descriptions of cancer may fail to accurately reflect the non-linear, complex behaviour typically 
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found in cancer.  Because of this, in parallel with the development of Differential Equations 

models, stochastic cancer models were also created. 

 

2.2.4.  Stochastic Models 

During the 1970s some models of tumour growth also employed a stochastic approach. Scientists 

like Wette in some of the first stochastic models for solid tumour kinetics, argued that the random 

fluctuations were fundamental to all biological phenomena ( Wette, Katz, & Rodin, 1974a). In his 

model, Wette focused on the probabilistic aspect of the growth kinetics of a population of cancer, 

highlighting the importance of understanding the behaviour of the cell population at a given time 

over simply measuring the average growth of the tumour (Wette, Katz, & Rodin, 1974b). Wette 

estimated that the probability of birth of cells in a solid tumour would be best estimated as being 

be proportional to the 2/3 power of the tumour cell population size and the death rate proportional 

to the population size; both rates being age-independent. Using the relatively simple assumption 

that tumours survive on nutrients that have to enter through the tumour's surface, he was able to 

calculate the probability of extinction (P0) and the expected survival time of a solid tumour given 

different scenarios.  

 

Liotta followed this work with the first stochastic model of metastasis, in which he proposed a 

mechanism for the dynamics of the process ( Liotta, 1976). Based on quantitative experimental 

evidence from tumour transplantation experiments, he focused on estimating the entry rate of 

tumour cells into the blood circulation. For this, Liotta used a non-homogeneous, two-

dimensional Markov process to describe experimental evidence in which that less than 0.1% of 

the cells released into the circulation from the tumour survived to be able to metastasize at a 

distant site (Liotta, 1976). The model focused on calculating the relationships between tumour 

clump sizes and the random variation of the populations of clumps, yielding the probability of the 
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generation of metastatic foci. This model was the first to provide a framework describing the 

metastatic process and allowed the individual assessment of key steps in metastasis and their 

interdependences. Liotta’s model highlighted the importance of the size on the clumps by 

correlating directly them through a Markov process to the probability of generating metastatic 

foci, being one of the first models to reflect a good match with clinical observations. 

 

As more biological data became available, more realistic stochastic models addressing complex 

phenomenon such as that of vessel growth and its role in angiogenesis began to emerge. One of 

the most successful probabilistic models of vessel growth was developed by Stokes and 

Lauffenburger to address the role of endothelial cells in angiogenesis (Stokes & Lauffenburger, 

1991). Stokes and Lauffenburger’s model focused on the random motility of endothelial cells and 

chemotaxis, to test the hypothesis that the behaviour of endothelial cells determined the rate of 

capillary growth and its structure. Their model focuses on the roles of endothelial cells’ random 

motility and chemotaxis, to test the hypothesis that these cell behaviours are critical in 

determining the rate of capillary growth and the fractal structure. The model starts with vessels 

branching off from pre-existing "parent" vessels. The authors assume that a source of angiogenic 

stimulus is located a distance away from the existing vasculature to which the buds are attracted. 

Cell proliferation, migration (both random and due to chemotaxis) and budding of new sprouts 

off newly formed vessels are all behaviours governed by a series of stochastic ordinary 

differential equations that cannot be solved analytically, but can be simulated in a computer. The 

key insights gained from this kind of stochastic model are those gained by the adjustment of the 

different probabilities, simulating key scenarios. A major prediction of this model was that a 

moderate chemotactic response would be necessary to provide directed growth of the vasculature, 

but that excessive levels of chemotaxis would not be useful or would be even detrimental to this 

process because a vascular network would not form adequately. Many of these insightful 



 

 

60 

predictions were later corroborated to be experimentally valid under certain conditions (Stokes & 

Lauffenburger, 1991). 

 

2.2.5.  Markov Chain Models 

As the models of cancer started describing the cellular and the molecular behaviours of the 

system, the randomness within the probability of biological processes was recognized to play an 

important role in the behavioural dynamics. Because of this, the use of Markov chains for the 

description of cancer dynamics has helped significantly to bring models closer to reality, enabling 

the discovery of key theoretical relationships. A Markov chain is a system that undergoes 

transitions from one state to another (Rabiner, 1999). A system modelled through Markov chain 

has a finite or countable number of possible states where the next state depends only on the 

current state and not on previous states. Markov chains allow for the probabilistic description of a 

process of production, loss and interchange among the elements of the systems. One such process 

in cancer was recently described by Alarcón and Page. The authors developed a stochastic model 

of VEGF (Vascular Endothelial Growth Factor) signalling in endothelial cells (Alarcón & Page, 

2006) to investigate the role that the overexpression of VEGFRs (Vascular Endothelial Growth 

Factor Receptors) in endothelial cells of tumour vessels on angiogenesis. With this model the 

authors were able to show that, counter intuitively, the overexpression of VEGFRs actually 

increases their sensitivity to low levels of VEGF. Their model was formulated in terms of a 

Markov process given by a master equation: 

 

them (VEGF-A121, 121 amino acids long) differs from
the other three in its lack of ability to bind to the
extracellular matrix and, therefore, it diffuses freely
(Hicklin & Ellis 2005).

Regarding the VEGFRs, there are three different
types VEGFR-1, -2 and -31. ECs in tumour blood
vessels express mostly VEGFR-2, although VEGFR-1
and -3 might also be expressed. In physiological
conditions, the vascular endothelium expresses
VEGFR-1 and -2, whereas the lymphatic endothelium
expresses VEGFR-2 and -3 (Cross et al. 2003). Of the
two receptors expressed on ECs, only VEGFR-2 seems
to contribute to intracellular signalling, with the
function of VEGFR-1 most probably being sequester-
ing (excess) VEGF (Cross et al. 2003).

In order to keep our model as simple as possible and
stay focused on the study of how ligand/receptor-
binding dynamics affect the early events of the VEGF-
binding-induced signalling cascade, we concentrate on
the effects of diffusible forms VEGF-A and their
binding to VEGFR-2. This particular system appears
to make a major contribution to tumour-induced
angiogenesis. Thus, hereafter, for simplicity in the
notation, the system VEGF-A/VEGFR-2 will be
referred simply as VEGF/VEGFR.

In the case of the VEGF/VEGFR system, the ligand
(VEGF molecule) is bivalent and the receptor
(VEGFR) is monovalent, meaning that one VEGF
molecule binds two VEGFRs, while each VEGFR can
bind a single VEGF molecule.

This property provides a mechanism for RTK
activation, which is elusive from a purely structural
perspective: receptors are oligomerized (in the particu-
lar case of the VEGFR, dimerized) upon ligand binding.
The receptors within the oligomer are brought into
close proximity which leads to receptor cross-phos-
phorylation (Alberts et al. 2002). Cross-phosphoryl-
ation yields attachment of phosphate to the tyrosine
kinase domains within the cytoplasmic tail of the
RTKs, providing high-affinity docking sites for selected
substrates to bind. These substrates, usually members
of the Src family of tyrosine kinases, carry the SH2
domain, which has high specificity for the phosphory-
lated domains within the RTKs, and are themselves
tyrosine kinases activated by binding to phosphory-
lated RTKs. These are the earlier events in the
signalling cascade triggered by GF/RTK binding.
Activated SH2-carrying kinases relay the signal on to
other tyrosine kinases, which lead to activation of
the corresponding pathways and the alteration of
cell behaviour.

Each VEGFR has two kinase domains. We consider
that each of these has only one tyrosine residue that is
cross-phosphorylated under ligand-induced dimeri-
zation, thus providing four high-affinity docking sites
for SH2 domains (Cross et al. 2003). Actually,
dimerized receptors exhibit more than four possible
docking sites (six or more according to Cross et al.
2003). We have made this approximation in order to

keep the model as simple as possible. Below, we
comment on the effects of this approximation.

According to Sawyer (1998), there are basically two
types of SH2-bearing tyrosine kinase: those carrying
only one SH2 domain, hereafter to be referred to as SH2
monomers, and those carrying two SH2 domains (e.g.
ZAP70 or PI3K). In this paper, only the former ones are
considered.

2.2. Model formulation

The stochastic models we analyse in this paper are
specified in terms of three quantities, namely the state
vector X whose components are the number of
molecules of each of the species involved, the
probability per unit time corresponding to each of
the reactions involved in the process being modelled,
Wi, and the corresponding vector ri. The components
of ri are the increments in the number of molecules
when the ith reaction occurs. To summarize, the
occurrence of the ith reaction induces the change in
the state vector X/XCri and occurs with prob-
ability proportional to Wi. The system is then
described by the probability density of the system
being in state X at time t, J(X,t), whose dynamics is
given by the master equation

vJðX; tÞ
vt

Z
X

r

ðW ðXKr; r; tÞJðXKr; tÞÞ

KW ðX; r; tÞJðX; tÞ: ð2:1Þ

Next, we present a description of the three models
to be analysed.

2.3. Receptor-binding model

We use a version of the stochastic model for
multivalent ligand-induced receptor oligomerization
developed by Alarcón & Page (2006). Here, the model
corresponds to a bivalent ligand and a univalent
receptor, which corresponds to the case of the VEGF/
VEGFR system. The stochastic dynamics of this
model is summarized in table 1, where the precise
form of the transition rates for the different events
involved in the ligand–receptor-binding model are

Table 1. Reaction probability per unit time, WihW(X,ri,t),
iZ1,. , 4, for the four elementary reaction steps involved in
our model. The initials ‘p.u.t.’ stand for per unit time. See
table 2 for a summary of parameter values.

reaction probability
p.u.t. ri reaction

W1ZkonLNu r1uZK1, r1bZ1,
r1xZ0

receptor
binding

W2ZkoffNb r2uZ1, r2bZK1,
r2xZ0

receptor
dissociation

W3ZkxonNpD2rub r3uZK1, r3bZK1,
r3xZK1

cross-link
formation

W4ZkxoffNx r4uZ1, r4bZ1,
r4xZK1

cross-link
dissociation

1These three types of VEGFR are surface receptors. There is also a
soluble form of VEGFR-1.
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This stochastic model was specified in terms of three quantities: X, W and r. The state vector X 

represents the number of molecules of each of the species involved. W is the probability per unit 

time corresponding to each of the reactions involved in the process being modelled, and r 

represents increments in the number of molecules (of a given kind, depending on the scenario) 

when each reaction occurs. This stochastic model describes the probability density of the system 

being in state X at time t. 

 

With their stochastic model, the authors have explored the angiogenic roles of a ligand/receptor 

binding, ligand- induced receptor activation, and the binding of enzymes members of the Src 

tyrosine kinase family to activated receptors (all early stage processes of angiogenesis) (Alarcón 

& Page, 2006). The key discovery of this model, however, was made through the modelling of 

the effect of overexpression of surface VEGFR on anti-angiogenic therapy. Paige discovered that 

the effect of receptor overexpression by inhibition of endocytosis or by up-regulation of receptor 

synthesis led to a substantially increased resistance to treatment with an anti-VEGF drug. They 

suggested that even the transient activation of VEGF receptor can eventually be replaced by a 

slower and more sustained response, wich leads to an increased sensitivity to low values of the 

concentration of VEGF (Alarcón & Page, 2006). 

 

A key contribution of the model is that, through it, the authors provided plausible mechanisms for 

resistance to anti-angiogenic therapy. However, there is an important concern: their equations 

quickly became too difficult to solve for this complex phenomenon. Because of this, an 

approximate solution had to be found. They employed the Wentzel–Kramers–Brillouin 

approximation (March & Plaskett, 1956) (traditionally used for quantum mechanic probabilities), 

as a means to analyse their scenarios. This forced the authors to introduce additional requirements 
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and oversimplifications (such as the rate of receptor degradation being precisely balanced by 

receptor synthesis) that could have an impact on the final results. 

 

As has been shown, when the capture of more detail of the behaviour of complex biological 

systems with mathematical equations is attempted, these equations become exponentially 

complicated and ultimately unsolvable to the point where extreme idealizations and limits have to 

be imposed. A different, but useful approach to these kinds of limitations has been to model the 

complex system, not as a series of mathematical relations, but as a network. 

 

2.2.6.  Boolean Network Models 

Network models started with Euler in 1736; however, it wasn’t until stochastic methods were 

introduced by Erdős and Rényi that the real versatility of networks became apparent (Barabási, 

2003). By representing a complex system as a network, it is possible to examine the 

interconnections among diverse elements of the system, at different levels of abstraction. 

Although networks had been more extensively used in an economic and social context, as well as 

means to model the Internet, it has been through the framework established by Stewart Kauffman 

(Kauffman, 1969) that Network models have been applied in a biological context.   

 

Boolean networks consist of a set of Boolean variables, whose state is determined by other 

variables in the network. Kauffman used this to model genetic regulatory networks. In his model, 

genes are represented as binary-state nodes with K inputs to each node (representing regulatory 

mechanisms). Genes are able to carry out one of the possible Boolean functions of its K inputs. 

The two states 1,0 (on/off) represent respectively, the status of a gene being expressed or inactive. 

Time t is viewed as discrete steps. At each step, the new state of a gene is a Boolean function of 

the prior states of the K input nodes. If the activity of a gene at any time is 1, then the value of all 
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its output lines at time t+1 is simultaneously 1. Thus, the state of the outputs of a gene at t+1 

depends on its activity at time t alone. 

 

With this simple model, Kaufmann constructed large networks of randomly interconnected binary 

on-off genes. He studied the behaviour that these networks displayed, as well as key properties. 

Kaufmann arrived at the surprising conclusion that randomly constructed networks (studying the 

case in which each element is directly affected by two others) undergo short stable behaviour 

cycles in the states of their constituents. He then proposed that the time course of these behaviour 

cycles parallels (and in some cases, predicts) the time required for cell replication in many phyla 

(depending on the size of their DNA). Kauffman argued that this kind of stability is essential for 

life. Because these kinds of models had initially to be worked out by hand, as more and more 

modellers began to understand the different programing languages and the computer as a useful 

tool to work out all the numerical computations, more models were developed. One such model 

comes from the field of system biology (Sahin et al., 2009).  

 

With this Boolean network framework, Sahin el al. developed a Boolean model that linked 

protein ERBB2 to a key phosphorylated retinoblastoma protein (a surrogate for cell cycle 

progression) in breast cancers that are resistant to ErbB2-targeted inhibitors (like cancer drug 

trastuzumab). They modelled regulatory interactions as Boolean nodes and simulated single and 

multiple protein loss-of-functions as Boolean operators. This model was able to model protein 

interactions, which were later validated experimentally, and predict the results from knocking 

down proteins in the network (Sahin et al., 2009). The authors focused on two major cell 

signalling pathways and two key transcription factors. They were able to model a sufficiently 

abstract interaction network that allowed for the identification of novel targets in the treatment of 

trastuzumab-resistant breast cancer. A key result from this model was the elucidation that ERBB 
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receptors alone would not be able to halt cell cycle progression in cells that had acquired 

resistance. The authors, based on their simulations, instead suggested C-MYC as a potential 

alternative target (Sahin et al., 2009). 

 

Although this methodology is very promising, there are few cancer models that take advantage of 

this framework. A common criticism of these models is that they can only be used at the genetic 

level (unless coupled with another kind of model), because they usually do not take into account 

spatial differences and thus may not provide us with a key feature of biological systems like the 

differences in local and global characteristics crucial to evolution and selection (M. Bissell, Rizki, 

& Mian, 2003). The effects that a microenvironment has with respect to cells and their gene 

networks may generate unexpected behaviour that is not addressed by these models. They may be 

useful however to understand how some of the key dynamics of the system work. Nevertheless, it 

has recently been shown that Boolean logic can be used to model cell types in protein signalling 

networks ( Saez-Rodriguez et al., 2009). From a combination of interactome databases and with 

empirical data, a transduction of signalling networks into logical models can be derived. If 

combined with cancer disruption databases, Boolean Networks could be a promising cancer-

modelling paradigm for future research.  

 

2.2.7.  Bayesian Network Models 

In cancer modelling, several aspects of network theory have been used to tackle important 

questions by modelling the physical space (such as tumours and arteries) and the flow of cancer 

cells as a physical network with different degrees of connectivity (Barabasi, 2005). From these 

different aspects of network science, Bayesian networks are beginning to play a more prominent 

role in cancer modelling. Bayesian networks describe pathway interactions (direct or indirect) in 

terms of the probability that a certain component will affect other components. The Bayesian 
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network approach towards biological modelling can be especially compelling because of its solid 

basis in statistics. Because of this, Bayesian networks can be very useful when only incomplete 

information about the system is available (Endy & Brent, 2001). This is particularly useful when 

modelling seemingly stochastic aspects like gene expression and experimental noise. Another 

very interesting feature of these models is the way in which genes and their interdependencies can 

be represented in intuitive graphs, although again, this approach does not deal explicitly with the 

dynamical aspects of gene regulation and evolution. 

 

Bayesian network modellers have focused on genes and their interactions. Informed by the recent 

advances in bioinformatics, these kinds of models have been used to represent the interplay 

between key genes, yielding interesting results, like the discovery of causal relationships, 

signalling cascades and feedback loops in those networks. One of the most effective models was 

developed by Nagl et al. (Nagl et al., 2007). The authors were able to reverse engineered a 

Bayesian network from a clinical dataset, calculating the probability of the linking of the different 

variables. The authors, focusing on breast cancer, used three sources of data: one clinical and two 

genomic. The clinical data came from a subset of the American Surveillance, Epidemiology and 

End Results (SEER) study (over 3 million patients). The large study offers data on both cancer 

diagnosis and survival in the USA between 1975 and 2003. The authors also used two karyotype 

datasets from the progenetix database (www.progenetix.de), consisting of a compilation of 

published data from comparative genome hybridisation (CGH), array CGH, and matrix CGH 

experiments. The authors determined the conditional independencies through an algorithm for 

maximising the entropy of the probability distributions. As a result, the authors were able to 

examine the influence of karyotype pattern on clinical parameters such as tumour size, grade, 

receptor status and the likelihood of lymph node involvement (Nagl, Williams, El-Mehidi, Patkar, 
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& Williamson, 2006). Interestingly, their model allowed examining the influence of those 

parameters on karyotype pattern in an iterative manner.   

 

2.2.8.  Cellular Automata Models 

From the early days of computing, another kind of model has been slowly but steadily becoming 

a part of the arsenal of modellers: cellular automata. Cellular automata are a class of spatially and 

temporally discrete dynamical systems. (Wolfram, 2002). They can incorporate many features of 

self-organizing, complex systems, and are able to exhibit emergent behaviour (as can be 

appreciated from Conway’s Game of Life). Cancer models that rely on cellular automata consider 

the simulation of a biological process that abstracts known biological facts as some conditions set 

down in rules of interaction (Ribba et al., 2004). Actions in the model are carried out by these 

predefined rules whose conditions may or may not be satisfied by a given situation.  The future 

state of a cell could, for instance, be defined by the state of its neighbours, depending on a certain 

configuration or rule; an abstraction mimicking the way cells in real organisms can regulate each 

other. Depending on the kind of rules, this kind of modelling can yield a deterministic outcome, 

as demonstrated in silico experiments where the development of new vasculature by means of 

angiogenesis is successfully addressed (Merks & Glazier, 2006), or a stochastic one (McDougall, 

Anderson, Chaplain, & Sherratt, 2002). 

 

One of the earliest Cellular Automata models of cancer was developed by Düchting et al. to 

address various aspects of pre-angiogenic tumour development (Düchting & Dehl, 1980). The 

goal of the model was to study the regulation of disturbed cell renewal, through the analysis of 

two competing populations of cells (truly one of the first proper in silico experiments). The 

cellular automata used a two-dimensional regular 10 × 10 square lattice and considered a von 

Neumann neighbourhood. In the CA model, each lattice site corresponds to a biological cell in a 
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discrete state (if a cell dies the lattice site becomes empty). The transition rules are simple, 

deterministic and local: On each time step, a cell can survive, divide or die with an asynchronous 

update. 

 

Düchting's model simulates an unrealistically low number of cells within the lattice. Two clones 

of cells (with normal and fast growth) can coexist in competition with different scenarios 

included the simulation of normal growth as well as malignant growth. The results were not 

validated at the time because of general lack of experimental data, but have since proven to be 

simple to describe avascular growth (Roose et al., 2007). The model suffered primarily from the 

limited computational power existing at that time. The key ideas proposed in this model, however, 

have had a strong impact on all the Cellular Automata models that followed. 

 

Depending on the kind of behaviour one wishes to study, it is possible to abstract enough 

information in terms of cellular automata to carry out in silico experiments. An important 

example of this can be appreciated in the more contemporary model proposed by Anderson for 

the investigation of the geometry of tumour growths (A. R. A. Anderson, 2005).  

 

Cellular Automaton have also been successfully used to model complex cancer phenomena such 

as angiogenesis. An important CA model that explored the mechanism of cell migration was 

proposed by Chaplain and Anderson (A. R. A. Anderson & Chaplain, 2012). In their model, the 

authors explored the hypothesis that cell migration was influenced by gradients of tumour 

angiogenic factors (such as chemoattractants secreted by tumour cells) and fibronectin (a 

component of the Extra Cellular Matrix that enhances cell adhesion). Their model consisted of a 

two-dimensional regular lattice with 200 × 200 sites, modelling a tissue. Only two discrete states 

were considered: whether cells were present or absent. For this model, the authors considered a 
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von Neumann neighbourhood with a synchronous update. Experiments were carried out with a 

continuous field of cell density, tumour angiogenic factors and fibronectin; following 

probabilistic migration rules and deterministic branching rules. In their model, branching depends 

on the state of the neighbours (whether they are responding to angiogenic factors or fibronectin), 

and whether there is space available. The continuous fields of cells, angiogenic factors and 

fibronectin are described by coupled partial differential equations. Once these equations are 

estimated for a given configuration of the lattice, five coefficients (proportional to the cell density 

at each site and its neighbours) are calculated. The probability of migration is calculated 

proportionally to these coefficients. After some parameter recalibration, the authors were able to 

successfully reproduce results from reported experiments of solid tumours in animals. 

 

 A delicate issue with these kinds of model systems however is that of a devising an appropriate 

control strategy, which should be established to determine the order and hierarchy in which the 

rules are to be evaluated. Although this is mainly implemented to resolve the conflicts that arise 

when several rules match the given conditions at the same time, as can be seen in some of the in 

silico experiments carried out to investigate the evolution of homeostasis in artificial organisms 

(Basanta, Miodownik, & Baum, 2008), there is a potential risk of implicitly defining the system’s 

behaviour. Many difficulties may also arise when trying to maintain consistency in the overall 

model when adding new biological knowledge and quantitative information (Gerlee & Anderson, 

2007).  

 

Some cellular automata models have successfully addressed situations in which the environments 

of interest are not spatially homogeneous. This kind of simulation can yield interesting, feature-

rich models appropriate for the study of the tumour growth in physically restricted environments 

(Gevertz, Gillies, & Torquato, 2008), or even to address important cell-cell interactions (Ghaemi 
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& Shahrokhi, 2006). The main advantage of these kinds of models is that the spatial distribution 

and other important physical features can be explicitly represented in simulations of the 

interaction of individuals that change in time and space (Hogeweg, 2002).  

 

Other cellular automata approaches consist of tissue modelling, as proposed by Merks and 

Glazier through their cell modelling software CompuCell3D (Merks & Glazier, 2005). By making 

a generalization of the cellular automata, Merks and Glazier have defined interesting active 

parameters that simulate the behaviour of individual cells in time. One difficulty with this 

approach however is the process of distilling useful information from the considerable amount of 

data offered by a simulation of this magnitude (Mahoney et al., 2008).  

 

A criticism of Cellular Automata models such as those of Anderson et al. is the assumption of 

diffusive cell motion on all timescales, and that other cellular phenomena such as cell-cell 

adhesion and cell-ECM interactions are described stochastically (Jeon 2010). This may impact 

the inclusion of any abstraction of mechanistic cell behaviour that the researcher may want to 

include. To tackle this, Jeon el al. propose an off-lattice approach to model tumour growth and 

invasion (Jeon 2010). In their work, they combine a continuum part that describes micro-

environmental components (nutrients, oxygen, enzymes and other molecular components), and a 

discrete part, which represents individual cell behaviour (cell cycle, cellular interactions, and the 

interactions of cells with the Extracellular matrix). Their model is able to incorporate an 

experimentally measured supper diffusive behaviour of mammalian cells during 

motion/migration on short timescales. Their model shows yet another facet of tumour 

development; namely that cell-cell adhesion and cell motility strongly affect both tumour growth 

and its morphology, generating finger-like shapes characteristic of invasive tumour.  
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As many of the off-lattice strengths are disadvantages in square lattice Cellular Automata models 

and vice versa, Gallaher et al. have recently tried to bridge some of these modelling paradigms to 

bring balance and robustness to their research (Gallaher 2013). In their study of the evolution of 

intra-tumoral phenotypic heterogeneity, the researchers focused on investigating the role of trait 

inheritance in cells. Taking advantage of the less restrictive motion that off-lattice models provide, 

she considers individual cells with assigned trait values for proliferation and migration rates. 

Heterogeneity in these cells is modelled with frequency distributions and combinations of traits 

with density maps. With this off lattice model, the researchers have developed a platform in 

which heterogeneity changes over time, depending on how traits are passed on to progeny cells. 

The researchers discuss how the spatial and temporal evolution of phenotypic heterogeneity may 

have significant implications for the treatment of tumours and highlight how samples taken in the 

clinic may not account for the entire heterogeneity of the tumour. 

 

2.2.9.  Agent-Based Models  

Agent-based models have been proven efficient tools to simulate evolution in complex systems. 

An agent in a computer simulation is considered to be an identifiable, self-contained individual 

with a set of characteristics and rules governing its behaviours and decision-making capability 

(Macal & North, 2005). An agent has the ability to learn and adapt its behaviours based on 

experience, which can be stored in an agent’s internal memory. An agent may contain both base-

level rules for overall initial behaviour as well as a higher-level set of rules that allow the agent to 

modify the base rules and thus generate novel behaviour (C. Chen et al., 2008).   

 

Making use of this paradigm, many agent-based models have considered agents to represent 

biological cells. Some of these models may also consider cells to be in discrete cellular states (as 

in Cellular Automata), for example, normal, necrotic, quiescent, or proliferating state, depending 
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on the questions the model is trying to answer (Roose et al., 2007). An interesting result of these 

kinds of models is the successful integration of the interaction between cells with the effect that 

nutrient concentrations and physical constraints have on a tumour (C. Chen et al., 2007). Agent-

based models have been quite versatile in describing different kinds of very specific biological 

features (Ribba et al., 2004).  

 

Spencer and Forrest used an agent-based model to address key aspects of somatic evolution in 

tumourigenesis (Spencer et al., 2006). The authors focused on the evolutionary dynamics that 

govern the "Hallmarks of Cancer", discussed in Chapter 2.2. For this purpose, they developed a 

three-dimensional 100x100x100 grid, containing a maximum of 106 cells initialized with a single 

normal cell and a single blood source. A small set of underlying rules governs the transformation 

of normal cells to tumour cells, implemented in a stochastic multistep model. In their model, 

normal cells that proliferate far from the blood supply signal for neovasculatization (a key step in 

angiogenesis) to acquire the resources they need to divide. The blood supply then creates a 

branching pattern of neovascularization, extending in the direction of the requesting cells. Normal 

cells are able to signal for neovascularization until they reach a limit (an angiogenic boundary) 

beyond which they are not able to signal, and are able to divide only within the region containing 

supplied growth factors. The modellers focused on the biological phenomenon of telomere 

shortening, a cellular mechanism that limits the number of times that a cell can be copied 

(eliminating cells once their telomere length reaches zero), thus preventing the accumulation of 

mutations. 

 

The simulation of the model is as follows: a normal cell will initiate cell division if there is 

unoccupied adjacent space. If dividing, the "genome" of the parent cell is copied with a small 

probability of mutations that enable the hallmarks of cancer, the telomere length of both cells is 
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decreased by a single unit, and the new daughter cell fills the empty neighbouring space. There is 

a small probability of random death and a probability of death associated with acquired mutations. 

This process continues until either 50,000 time steps have passed or the tissue has developed 

cancer-like behaviour (by filling more than 90% of the grid), as defined by the Hallmarks of 

Cancer.  

 

The researchers focused on how the sequence of acquired mutations affects the timing and 

cellular makeup of the resulting tumour and how the cellular-level population dynamics drive 

neoplastic evolution. Their model makes interesting predictions. Key amongst those are that 

early-onset cancers may go through a different sequence in the acquisition of mutations than late- 

onset cancers; that tumour heterogeneity varies with acquisition of genetic instability and the 

mutation acquisition pathway; and that there may exist an optimal initial telomere length which 

lowers cancer incidence and raises time of cancer onset. 

 

It is interesting to see the dynamical trade-offs that may occur between early incidence and late 

incidence of cancer such as the interplay between clonal expansions (in the presence of blood 

supply) and competition between cells with selective advantages. The model raises key questions 

still unanswered by cell biology, such as, what is the precise role of telomere length in cancer? 

Genetic instability was modelled as an enabling characteristic of cancer and thus, often one of the 

first mutations acquired on the early onset tumours. However, the precise role that this genetic 

instability may have is not completely explored. Because this is a controversial issue in cancer 

biology, the authors propose that this question be answered empirically (Abbott et al., 2006). 

 

Others have successfully addressed other key dynamics and properties of cancer systems with 

agents with the right kind of abstractions. Bentley demonstrated the usefulness and versatility of 



 

 

73 

agents for the purpose of modelling of angiogenesis, providing a new mechanistic view of 

vascular patterning as well (K. Bentley et al., 2008). Agent-based models for the evolution of 

entire cancer ecosystems have also been proposed (Gerlee & Anderson, 2007). Although highly 

ambitious, an agent-based model that can address both the global evolution and the individual 

dynamics of tumours could be used to develop a more general model of cancer. 

 

2.2.10. Modelling Chromosome Instability 

 

In the past decade, chromosome instability and the role that it plays in cancer has become a 

subject of interest for cancer modellers. Each of the models has explored an interesting feature of 

aneuploidy.  Amongst the most prominent of the models that addresses this phenomenon, the one 

developed by Komarova et al., which focused on colon cancer, explored the role that 

chromosome instability could have if it were an early event in cancer progression (Komarova et 

al., 2003). The authors use an evolutionary lens to tackle important questions regarding the 

conditions for chromosomal instability to precede the loss or inactivation of the first tumour 

suppressor gene. The researchers modelled the evolution of a homogeneous population of cells 

with respect of the acquisition of mutations in time as a stochastic process that considers a linear 

Kolmogorov forward equation. By solving this equation analytically, the researchers were able to 

elucidate the way in which homogeneous states are connected by ‘stochastic tunnels’. These 

tunnels occurred for certain parameter values that allowed for a jump from one cell type to a 

highly mutated cell type by skipping the normal intermediate mutation. The researchers were able 

to quantified the rate of tunnelling and their results suggest that the likelihood of chromosome 

instability being an early mutation depends on the kind of cell (mutations in stem cells having 

more impact as heir progeny inherits the mutation), the rate of point mutations that would lead to 

loss of tumour suppression in cells (assuming tumour suppression after both copies of the gene 
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are lost) and the number of genes that regulate chromosome instability. 

 

Solé et al explore in their model the possibility that there may be a threshold in the levels of 

genetic instability, assumed to be costly to cancer cells, in order to overcome selection barriers 

(Solé et al., 2004). In their work they present a quasi-species model of competition between 

cancer cell populations, and how these dynamics affect tumour growth. Their model suggests that 

once this threshold is reached, the tumour cell populations become too unstable to maintain their 

genetic information, and thus becomes detrimental to its growth. They considered a tumour cell 

population that exhibits three degrees of an increasing genetic instability phenotype. They also 

considered that transitions from one stage to the other are given by different mutation rates for 

each degree of chromosomal instability. Furthermore, they assume that high genetic instability 

has antagonistic effects on the fitness of the genetically unstable cell populations. In their model, 

when genetic instability exceeds a certain threshold, the replication rate of the more malignant 

subpopulation offers no competitive advantage anymore and in some cases, become a detriment 

to the cell population. 

 

Michor et al. propose in their model that chromosomal instability is a major drive for the loss of 

heterozygosity; the initial loss of a copy of a tumour suppressor gene (Michor et al., 2005). 

Following the two hit hypothesis, the loss of the second copy would inactivate tumour 

suppression for that gene. They consider a mutational network of inactivating two tumour 

suppressor genes, where one node is separated from other nodes through paths describing 

mutations in tumour suppressor genes as a stochastic process. The authors investigate a path to 

tumourigenesis via chromosomal instability before the loss of heterozygosity. They explored a 
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number of plausible parameters and propose that in any pathway of cancer progression where at 

least two tumour suppressor genes need to be eliminated in rate limiting steps, chromosomal 

instability is likely to be an initial event. As is the case in Komarova’s model, Michor’s model 

suggests that the existence of early chromosomal instability depends on the number of genes that 

regulate this behaviour. This however would depend on the cost associated with the activation of 

chromosomal instability. 

 

These models of chromosomal instability discuss situations where inactivation of one or two 

tumour suppressor genes is required for tumourigenesis. However, due to necessity, they do not 

incorporate the effects that oncogene activation may have on the evolution and development of 

the tumour.  The inclusion of genes that regulate proliferation, in tandem with chromosome 

instability, may playa key role in the evolution of cancer and give rise to unintuitive behaviours. 

These models consider an abstraction of chromosome instability that does not include a 

mechanistic process through which chromosomal instability occurs. The genes that regulate 

chromosomal instability are abstracted in rates that change by means of a governing equation. 

However, it is important to acknowledge that there are many kinds of viable cells that may result 

from chromosomal instability. Some cells may have more chromosomes, affecting the number of 

genes and in some cases even countering a loss of heterozygosity. Also, because some of these 

models describe the process mathematically through compartments, information about the precise 

genetic structure, the different sized of the population and the evolution of novel genotypes that 

are not accounted for in the initial mathematical description is lacking. A mechanistic process that 

underlies the simulations may shed some light on elusive, but important events that happen at the 

cellular level that may have an impact on the development of new kinds of phenotypes and the 

emergence of different behaviours.  
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2.2.11. Summary on Cancer Modelling 

In the past few decades there has been an explosion in cancer modelling techniques due to the 

advances in biological techniques, the development of complex mathematical and computational 

frameworks and the increasing availability of computational power. There is a whole spectrum of 

cancer models that goes from highly specified, low-level models such as differential equations 

and stochastic models; to the abstract, high-level models like the cellular automata and agent-

based models. In this section, the spectrum of cancer models–from low to high level–has been 

explored and some of the key models that have shaped the field have been reviewed.  

 

It has been shown how low-level models have dealt with the structure and the influences of 

variables over the components of the system. In the middle of the modelling spectrum, Networks 

and how they address the flow of information and the way the elements of the system are 

connected. Finally, the high-level end of the spectrum, where the biological mechanisms and the 

components themselves were the subject of interest, was addressed. This chapter highlights the 

need of models that are able to adequately put into context what it is known, and what we wish to 

know about cancer. The decision of each group of researchers to use a given kind of model, or a 

hybrid of two or more of the reviewed categories, to describe a particular feature of cancer was 

determined by the kind of question they were addressing. The key result of this review is the 

absence of a suitable model for the phenomenon of aneuploidy and its effects on cancer. This gap 

in our knowledge is result of a combination of technological limitations and lack of data until 

recently. 
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2.3.  Conclusions 

In this chapter, it was explained why the role of aneuploidy in cancer is a very controversial topic 

and that models are needed to shed some much needed light on the subject. To model the most 

recent biological knowledge of the mechanics of cell division, our review suggests that an 

abstract model of behaviour such as an agent-based model would be appropriate.  

 

In this chapter, the complex relationship between the theory, experiment and clinical reality in 

cancer research was explored. Key research on cancer biology and summarized some of the most 

important frameworks on cancer modelling was highlighted. By taking both into account, a solid 

background for the understanding of the research problem addressed in this thesis was provided, 

and evidence in support for the hypothesis proposed was offered. 

 

Throughout the years, cancer modelling has played a key role in the elucidation of a general 

framework and terminology for cancer researchers to use. Cancer modelling has become one of 

our primary sources of understanding regarding the origins, the evolution and the fundamental 

principles of life. As important pieces of knowledge are being discovered in the laboratory and in 

the clinic, modelling has helped to place them in context. This in turn has enabled other cancer 

researchers to develop new theories, gain insights and devise new therapies. Cancer research, 

both biological and theoretical has helped us to gain a deeper understanding, not only about this 

terrible disease, but also about life itself.  
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3. Research Methodology 

This chapter describes the research methodology used in this work, and the tools used to address 

and evaluate the research hypothesis. In order to provide evidence to support the hypothesis that 

an integrated computational model of chromosome missegregation during cell division provides 

an effective approach to assess the role of aneuploidy in the initiation and evolution of cancer, a 

computational model needs to be developed. The process of cancer modelling incorporates 

concepts from mathematics, computer science and cancer biology to simulate and analyse 

biological behaviour in silico. This chapter begins with an exploration of the computational 

modelling methodology that will be used through this process. The next section examines the 

process that was used in the assessment of the model. This is followed by a description of the 

biological modelling methodology that will be followed. In the final section, a discussion on the 

selection of modelling paradigm will be presented, ending with an evaluation and a summary of 

this chapter. 

 

3.1. Introduction 

The previous chapter explored the controversy surrounding the role of aneuploidy in cancer, and 

highlighted a knowledge gap in the field.  This work seeks to fill that gap with the creation of a 

computational tool to assess the role of aneuploidy in cancer with a rigorous methodology. To 

create this tool, an investigation of the most recent cancer theories and modelling paradigms was 

carried out. This chapter describes four aspects of methodology for this work: how models should 

be constructed in a rigorous way, how the models can be assessed, how the appropriate biological 

components and mechanisms can be determined, and how to determine which modelling 

paradigm is most appropriate. 
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3.2. Computational Modelling Methodology 

Computational cancer models represent information of biological areas of interest. The right 

assumptions and simplifications have to be made in order to make a useful model of the known 

and theorized biological properties, components and relationships. The main problems that this 

kind of biological modelling has faced are computational constraints and the lack of data (P. J. 

Bentley, 2009). In tandem, these limitations sometimes make it infeasible to accurately model key 

aspects of biology. Fortunately, the best models are not always the most accurate ones. 

Simplifications and abstractions can help cope with both computational constraints and lack of 

data.  

 

Although many new fields in the interface between computer science and the biological sciences 

are dedicated to the simulation and modelling of biological processes, there is no universally 

agreed methodology for abstracting properties and building a computational model. Although 

there are many ways to design and implement models, two modelling methodologies stand out: 

top-down and bottom-up modelling (Silverston et al., 1997). 

 

A top-down approach attempts to break down of a system to gain insight into its compositional 

elements (Minsky, 1974), (Silverston et al., 1997). In this paradigm, which dates from the births 

of computers and AI, there is a substantial analysis and decomposition of the major level into sub 

levels (Minsky, 1961). Each sublevel can be decomposed further until the base elements are 

reached. A bottom-up approach is the piecing together of constitutional elements to give rise to 

the system (Brooks, 1990). In this approach the base elements of the system are first specified and 

then linked together to synthesise a larger system, where the resultant behaviour of that system is 
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emergent and unpredictable, and thus is not predefined by the developer of the model. This can 

also be done on several levels, making the original set of elements a subsystem of a greater 

emergent system.  

 

Both paradigms require the use of abstractions and simplifications and they have the risk of 

simplifying elements and interaction in an inappropriate way.  For the model to work as a virtual 

lab in which to test hypotheses, the abstractions have to capture the essence of the biological 

process while ensuring that what is modelled is supported by good data and what is not modelled 

will not impact the results in a significant way. Considerable analysis, scientific debate and 

creativity are usually present in the early stages of the model design and implementation. It is in 

this critical step that poor abstractions can be made, which will impact the ability of the model to 

provide meaningful or significant results at later stages. Key questions need answering (Le 

Martelot & Bentley, 2009): 

• What are the key biological elements that will be modelled? 

• How do the elements interact? 

• What is the context in which this interaction takes place, and how does this affect the 

interaction? 

• How should the abstractions of these elements and interactions be designed and 

implemented?  

 

Like any software engineering task, the creation of models may follow several methods, such as: 

 

• Waterfall: a linear design process, in which progress is seen as flowing steadily 

downwards from conception to construction and then implementation (Royce, 1970). 

This highly structured kind of modelling, however, leaves little room for changes after a 

process has been completed. 
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• Prototyping: an iterative framework where only a few aspects (sometimes as an 

incomplete version) of the system are simulated (Grimm, 1998). Although this kind of 

modelling needs more time to become fully functional than the waterfall, one of the main 

benefits is that it is possible to incorporate feedback early on. 

• Incremental: a combined linear-iterative framework where the model is designed, 

implemented, and then, based on feedback, it is augmented to provide more functionality 

(Pressman, 2009). This is done iteratively until a final goal is reached. One of the main 

difficulties in this approach is that bringing new functionality to the model may conflict 

with the original model architecture. Because of this, a more rigorous testing, and thus 

development time, is required (Pressman, 2009). 

• Spiral: a linear-iterative framework that combines the features of the prototyping and the 

waterfall model (Boehm, 1988). The method resembles a spiral in it's continuous 

structuring: at the beginning of the "spiral", the objectives, alternatives, and constraints 

on the new iteration of the model are determined. Alternatives and risks are evaluated and, 

from this outcome, the model is further developed and the next iteration is planed. This is 

a good approach for large-scale projects. (Boehm, 1988) 

• Rapid Application Development: an iterative framework that merges various structured 

techniques with prototyping techniques (software re-use that leads to a fast succession of 

prototypes) to accelerate software systems development (Whitten et al., 2004). The large 

number of prototypes, however, can be overwhelming and suffer the risk of not being 

fully understood before moving to the next prototype (Whitten et al., 2004). 

• Agile Software Development: an iterative framework which break tasks into small 

increments with minimal planning (Highsmith & Cockburn, 2001). The developing takes 

place in short intervals, resulting in “miniature software projects” and resulting in a 

release version (Beck et al., 2001). Agile modelling requires continuous feedback and is 

best applied to small projects. One of the main difficulties with this kind of modelling is 

defining when the final model has been reached (Highsmith & Cockburn, 2001). 

 

 All of these imply the use of iterated evaluation to help improve the model. However, it is vital 

that models are not designed to produce the results that the researcher is hoping to see. This is one 

advantage of the bottom up methodology, where the overall behaviour is not predetermined. 
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Nevertheless, it is still possible for a researcher to iteratively modify a model until it produces the 

desired result. Ideally then the model should be verified and validated on one set of data, which is 

separate and distinct from the data used to evaluate the results from final experiments by the 

model (Wodarz & Komarova, 2005).  

 

For this kind of biological modelling, maintaining the balance between biological accuracy and 

computational feasibility from the early designs is key (Wodarz & Komarova, 2005). Because of 

the availability of the expertise of wet-lab biologists and experienced computer scientists (a 

crucial part of the design and implementation process); the time and computational limitations; 

and the necessity to understand each version of the model before adding more functionality, it 

was decided that incremental modelling is the appropriate methodology for this project.   

 

3.3. Model Assessment Methodology 

As we have seen in the previous chapter, there are many ways to model key aspects of cancer. 

Different questions require different approaches but a consistent methodology on how can we 

model cancer has not been established. There is, however, another important problem in 

mathematical modelling: model checking. Given a model of a system, how to check whether this 

model meets a given specification?  There are 2 main approaches for model checking: 1) The 

model is translated into a formal mathematical framework and its correctness is demonstrated 

formally; 2) The model is refined and iterated until the correct answer is verified and validated. 

Both approaches (and combinations of them) have been used with varying degrees of success.  

 

In order to check a computational model formally, both the model of the system and the 

specification could be formulated in a formal system:  a well-defined mathematical system of 
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abstract and logic thought. Amongst the most rigorous of these formal systems there are two 

kinds of calculus: λ-calculus and π- calculus. λ-calculus is the core language of functional 

computation; representing all of the elements of the system as functions and all the interactions as 

the application of functions. π- calculus, on the other hand, is the core calculus of concurrent 

systems; representing the elements as processes and all the computation carried out as causal 

connections or communication exchanges on flow channels. In the context of biological models, a 

process could be a biological state for which changes in time, or events, are observed. These 

changes in time are described in terms of information flow between processes. Although both 

calculi would be impractical to use as a source-level programming language (their minimalism 

and the lack of primitives such as numbers, data structures, variables, functions, booleans, etc., 

prevents us from writing programs in the normal sense), they could be used as formal frameworks 

for a modelling language.  The λ-calculus formalism can be applied as a modelling language for 

sequential processes, and π-calculus formalism for concurrent processes.  

 

Although λ-calculus has yet to be embraced by the biological modelling community (Szathmary, 

1995), π-calculus has been used with success to validate models for bio-molecular processes such 

as the signalling RTK-MAPK transduction pathway (Regev et al., 2001), theoretical protein 

interactions (Danos & Laneve, 2004), and models of theoretical molecular processes that account 

for spatial distribution  (John et al., 2008).  A special instance of π-calculus, Spaceπ, has also 

been used to fully model and validate theoretical biological processes within cellular 

compartments (Regev et al., 2004). Criticism of this kind of formal methods model checking 

comes from the fact that they can only be applied within the context of finite-state systems; 

otherwise, there is a risk of reaching indeterminacy in computation due to the mathematical 

limitations of logic programming and possible lack of biological information (Wing, 2002). 

Bentley has recently proposed systemic computation as a tool that provides a formal language for 
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describing hypothetical biological phenomenon (P. J. Bentley, 2009). Although this approach 

could make formal biological modelling more intuitive than Pi calculus, it may be slow when 

carrying out conventional serial computations (P. J. Bentley, 2009). 

 

An alternative to this is model checking by verification and validation. This kind of model 

checking includes having the model checked by experts and examining the model output for 

reasonableness under a variety of settings of the input parameters. Under this second paradigm, 

Machado, from the field of systems biology, argues for a unifying formalism able to assess the 

representations of the structure and functionality of cellular processes. He proposes that a 

biological model could be assessed in five areas: 

1. Integrative: The number of different biological processes being incorporated. 

2. Intuitive: A metric for the clarity of the model based on the number of people from 

different disciplines that can interpret the model. 

3. Scalable: The number of different levels that are abstracted. 

4. Qualitative: An abstract measure of the structural and topological properties that may 

emerge from the complex system.  

5. Quantitative: A measurement of key properties of cellular behaviour and the response of 

the system to perturbations. 

Machado’s formalism focuses on systems biology models, which describe biological processes as 

an integrative whole (Machado, et al., 2009). This methodology however comes with some 

caveats. More metrics are needed in order to obtain results that can be applied to cancer research: 

How does the model deal with incomplete information? How general is the model? How can we 

measure the usefulness of the extracted information from the model? How well does it represent 

or can predict behaviour? An attempt to answer some of these questions comes from Webb in the 

field of complex systems. Webb suggests seven dimensions on which models can be assessed (B. 

Webb, 2002): 

 



 

 

85 

1. Relevance: Whether the model is applicable to biology by addressing new hypotheses or 

describing observed behaviour.  

2. Level: The elemental units of the model in the hierarchy. Deciding the appropriate levels 

to represent is problem specific and could range from subatomic particles to cells to 

societies. It is assessed in terms of whether the detail in the elemental units provides a 

better understanding of the system. 

3. Generality: The range of biological systems the model can represent. 

4. Abstraction: A gauging of the amount of detail that is included and needed in the model, 

from very specific instantiations to very abstract concepts. 

5. Accuracy: An estimation of the accuracy of the actual biological mechanism represented 

that give rise to the observed behaviour.  

6. Match: An appraisal of the extent in which the behaviour obtained in the model matches 

the real biological behaviour. 

7. Medium: An assessment of the constraints that the actual build-up of the model has on its 

implementation.  

This kind of model checking approach can be useful for keeping models in development on the 

right direction, with the caveats that the verification between each refinement and iteration comes 

from experts in the field and the validation with predictions made with the model (Wodarz & 

Komarova, 2005).  

 

The hypothesis of this work deals with a non-finite state system, which evolves in time. Because 

of this, and because there is incomplete information on the system, it may be impractical to assess 

the model formally. Also, because of the availability of a close collaboration with molecular 

biologists and cancer researchers, who can contribute with their expertise and experimental 

validation, the second kind of model checking is more adequate for this project. From the 

verification and validation of model checking paradigms reviewed, the structure proposed by 

Webb is more specific about the abstraction and accuracy of the biological properties. Also, 
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because of the availability of experts in the relevant biological phenomenon studied, Webb’s 

methodology is the most appropriate to assess this work.  

 

3.4. Biological Modelling Methodology 

In this work the modelling will be performed using the incremental approach, and it will be 

assessed by verification and validation using Webb’s methodology. However perhaps the most 

significant element of the methodology of this work is to determine which aspects of biology 

should be modelled (B. Webb, 2009). This key step usually begins with a study of the biological 

system under consideration. A literature review is the most straightforward way to learn about the 

biological system (P. J. Bentley, 2009). However, it is important to keep in mind that everything 

in biology is in flux: as new information comes into light, old theories have to be reassessed or 

revised. Sometimes not much work has been done on a given topic because of experimental 

limitations (or lack of interest) (Cimini & Degrassi, 2005). For this project, both experimental 

limitations and the controversy surrounding the biological phenomenon make the determination 

of the key elements especially challenging.  

 

For the construction of this model, it is necessary to isolate the data that are most relevant to the 

biological process. Then, the quality of the data needs to be assessed. Once this is done, the next 

step in the construction of the model should be to decide which elements and interactions are 

modelled (which parameters should be altered) and which become context or environment (fixed 

parameters or constants that have their values set through reference to literature) and not the focus 

of the investigation. Finally, an investigation needs to be carried out to determine at what level of 

abstraction the modelling should be focused upon.  
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In order to determine which elements should be modelled, and at what level of abstraction the 

model should take place, we can analyse the availability of data for each level. At the time of 

writing, new molecular techniques are bringing new data that challenges current biological 

thinking on the role of chromosome missegregation in cancer. Such biological results come 

mainly from new methods for probing tumour samples and the silencing of genes in in vitro 

experiments. The problems with these new data however is that they sometimes yield seemingly 

contradictory conclusions (Sen, 2000). From this we can conclude that, for the model to be 

flexible enough to be able to account for the disparity of results in the literature, it is necessary to 

extract from the literature the first principles surrounding the phenomenon at different levels.  

 

Table 3.1- The different kinds of data needed to model at a given level of abstraction, and the 
availability of such data. With the help and input of cellular biologists at the Baum Lab (UCL 
LMCB), first principles can be extracted from the literature, assessed and incorporated into a 
working model. 
Biological 
level 

Data Needed Data Available 

 
Molecular 
level 

Gene mutations 
(related to 
aneuploidy) 

Available 
MAD2 Over expression (Sotillo et al., 2010), Mitotic 
Checkpoint Aberrations (Swanton et al., 2006), Bub1 
dysregulation (Ricke et al., 2011), 
Defective P53 Mechanisms (Thompson & Compton, 
2010), Moesin dysregulation (Kunda et al., 2008) 

Aberrations in 
chromosomes 

Partial 
Chromosomal translocations (Greaves et al., 2003)  and 
(Marcucci et al., 2011), 
Chromosomal breaks (Crasta et al., 2012), Karyotype 
analysis (Baker et al., 2009) 

Molecular 
mechanisms of 
Chromosome 
Missegretation 

Partial 
Merotellic defects(Cimini, 2008), excess centrosomes 
(Ganem et al., 2009) 

 

Cellular 
level 

Genotype/ 
Phenotype 

Available 
In vitro cell line studies (Swanton et al., 2009) and  
(McClelland et al., 2009), In vivo animal studies (B. 
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Weaver & Cleveland, 2007) and (Dobles et al., 2000) 
Aneuploidy Levels Available on cell lines 

Cell Line Ploidy (Phillips et al., 2001) , (A. J. X. Lee et 
al., 2011), (Swanton et al., 2006) 

Temporal 
Evolutionary 
Changes 

Poor 
Changes in intratumoral Ploidy in gastric cancer (Furuya 
et al., 2000) 

 
Tissue 
level 

Tissue Structure Available on animal models, 
MAD2 induced aneuploidy in lung tumour  (Sotillo et al., 
2010), epithelial carcinogenesis (Chang et al., 2001), 

Local Aneuploidy Not available at the time of writing 
Global Aneuploidy Partial 

Leukaemia in Twins Studies (Jacobs et al., 2006), Ploidy 
levels in cell lines (A. J. X. Lee et al., 2011), Ploidy levels 
in Barrett’s oesophagus (C. Maley & Reid, 2005), 
Histological markers in Breast Cancer Patients (Juul et al., 
2010), Somatic rearrangements in Breast Cancer 
(Stephens et al., 2009) 

Temporal 

Histological 

Progression 

Not available at the time of writing 

 

The general consensus amongst biologists at the time of writing is that cancer is the disruption of 

homeostasis in tissues caused by genetic changes. Homeostasis, in the context of tissues, is the 

natural balance between cellular death and proliferation that keeps the number of cells a constant 

number (Basanta et al., 2008), and helps tissues to remain structurally similar for a prolonged 

period of time (a liver needs to remain structurally stable for a prolonged period of time to be able 

to contribute functionally to the organism). While normal cells strive to keep this balance, mutant 

cancer cells may compromise organ function and integrity. As it was explained in Chapter 2, 

cancer cells have suffered alterations in their genetic code, amongst which are the activation of 

Oncogenes and the loss of Tumour-Suppressor Genes (Hanahan & Weinberg, 2011). 

Oncogenes, when activated through several mechanisms (most of which are subject of on-going 

research), drive cell proliferation forward. Cells with mutated oncogenes may ignore the 
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homeostatic limits and, without taking into account the welfare of the rest of the organism, 

continue overproliferating. Usually proliferative behaviour is kept in check by tumour-suppressor 

genes, which impose limits to overproliferation by mechanisms that promote apoptosis (cellular 

death). Key among those are the mechanism of contact inhibition (Zeng & Hong, 2008), where 

cells enter in mitotic arrest when in contact with other cells, and the regulation of chromosomal 

integrity by mitotic checkpoints (Pérez de Castro et al., 2007). When the physical structure of the 

organ is compromised, these cellular mechanisms kick into action by promoting cellular death 

and maintaining a constant number of cells. Recent work in the literature also offered some 

insights into the actual mechanisms that give rise to the biological phenomenon of chromosome 

missegregation: the malfunction of genes that ensure the fidelity during replication (Kunda et al., 

2008).  

 

The precise mechanisms of chromosome missegregation, and how it affects cancer are still 

subject of current research. A key part of this on-going research is being carried out at the UCL 

LMCB by the Baum Lab, integral collaborators in this project. Some of their most recent work 

suggests that there are “segregation genes” that ensure the proper duplication, division and 

segregation of genetic material during cellular division (Kunda et al., 2008). When these genes 

are in turn disregulated, chromosome missegregation, leading to chromosomal aberrations and the 

development of novel genotypes, may occur. These novel genotypes may have phenotypes that 

disrupt homeostasis and may have cancer-like behaviour (Dobles et al., 2000). From the Baum 

Lab’s group work, it was suggested that chromosome missegregation, the mechanism that our 

hypothesis is addressing, is regulated genetically from within the cell. This mechanism could be 

responsible for the creation of aneuploid cells that contribute to carcinogenesis and help shape its 

subsequent evolution.  

 



 

 

90 

From this analysis, we determine that the key components and mechanisms such as cancer genes, 

chromosome missegregation and the disruption of homeostasis are distributed across the genetic, 

cellular and tissue level (Table 3.1).  When determining the level at which the system should be 

modelled, it is clear that if we focused on modelling the genes that regulate chromosome 

missegregation, we would require data regarding the structure (where they are) and the 

mechanisms (how they act), which is not readily available. However, if we were to focus on 

modelling on a tissue level, we would neglect the evolutionary dynamics that happen at a genetic 

and cellular level. These kinds of dynamics are important because there is data available that 

could be used to calibrate and validate the model and where new theories can be tested.  

 

From the literature, most of the data available regarding aneuploidy is at the cellular and genetic 

level. This data however is disjointed; it mostly consists of snapshots in time of different aspects 

of the biological phenomenon that cannot be used to establish a clear evolutionary pathway 

(Table 3.1). The most useful impact this model can have is on joining the different observed 

aspects of aneuploidy in a clear pathway. Consequently the focus of the model should be at the 

cellular level, because of the data available, with some genetic and tissue level components. 

 

3.5. Selecting the Modelling Paradigm 

As we saw in the previous section, the behaviour that the hypothesis addresses is multi-scale: 

There are genetic, cellular and tissue-level components (Table 3.1). A model that successfully 

tackles the biological hypothesis must include the disruption of homeostasis, the interplay 

between genes and how time affects the evolution of the system. After the review of the literature 

on cancer models, several approaches can be considered. 

 



 

 

91 

Differential Equations and Stochastic Models are best used to tackle specific questions of one 

unknown function given knowledge of the variables and their rate of change (Materi & Wishart, 

2007). Differential equations could have been extracted from the relationships between the 

components to make a systems biology model. The main problem with this approach is that the 

precise biological relationships of aneuploidy and cancer are still unknown (Cimini, 2008). 

Because there are few measurements regarding the relationship between the variables (such as the 

level with which genes affect homeostasis), a differential equation that could accurately represent 

this behaviour would be very difficult to devise and validate (Wodarz & Komarova, 2005). 

Stochastic models could offer a more realistic description of the relationships, given that there is 

more flexibility when defining the mathematical equations. A stochastic model or a Markov chain 

could have been devised that describes a relationship between genes and cell behaviour, joining 

another set that relates cell behaviour with homeostasis (Wodarz & Komarova, 2005). These 

coupled differential equations would soon become too complicated to solve (Gerisch & Chaplain, 

2008) and furthermore, they would be very difficult to adapt when an extension of the model was 

required (Gerisch & Chaplain, 2008).  

 

Table 3.2- The advantages and disadvantages of the different modelling paradigms 
Modelling 
Paradigm Advantages Disadvantages 

Differential 
Equations 

Rigorous established framework 
(Macklin & Lowengrub, 2007) 

Relies on detailed knowledge of the 
system (Materi & Wishart, 2007) 

Stochastic 
Models  

Flexible established framework 
(Wette, Katz, & Rodin, 1974a) 

Difficult to modify and expand (Gerisch 
& Chaplain, 2008) 

Markov 
Chain 

Helps dealing with random 
variables (Alarcón & Page, 2006) 

Equations become too complicated to 
solve (Gerisch & Chaplain, 2008) 

Boolean 
Network 

Does not require knowledge of 
interconnectivity (Machado et al., 
2009) 

Focuses on one level of abstractions and 
has many possible states (Kampis et al., 
2011) 

Bayesian 
Network 

Can cope with hierarchical 
structures (Barabasi, 2005)  

Requires knowledge of interconnectivity 
(Shmulevich et al., 2002) 
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Cellular 
Automata 

Can generate emergent behaviour 
(Wolfram, 2002) 

Requires the translation of biological 
behaviour into update rules (Ribba et al., 
2004) 

Agent-Based 
Model 

Reduces the reliance on flawed or 
contradictory data (Spencer et al., 
2006) 

Computationally Intensive (Gerlee & 
Anderson, 2007) 

 

A focus on genetic or cellular networks modelled with a Boolean or Bayesian Network paradigm 

was considered. Nodes that accounted for the level of expression of genes or cellular connectivity 

between different kinds of cells could have been implemented in a computational model 

(Machado et al., 2009). However, these kinds of models would require many assumptions 

regarding the interconnectivity of the genes (Shmulevich et al., 2002). Because of lack of 

experimental data, the gene network could have been set up in many different ways, considering 

all the possible network motifs and signalling cascades (Kampis et al., 2011). Although an 

interesting option, it would be difficult to mine the kind of information that we could obtain 

without a microarray data to corroborate (Ideker & Lauffenburger, 2003). 

 

A high-level modelling paradigm offers the possibility of generalizing behaviour, reducing the 

reliance on potentially flawed or contradictory data. This kind of modelling, although 

computationally intensive, can also help in measuring properties in different levels (both above 

and below the cellular level) and offer insights into the evolution of this kind of phenomena. 

Using this paradigm, an Artificial Life-style model with the purpose of evolving genes or genetic 

mechanisms from scratch could have been devised. Cellular automata, for example, could have 

been employed as an abstraction of cells (Wolfram, 2002). The main problem with this paradigm 

is that the implementation of update rules would have required the translation of relevant 

biological questions into rules for artificially evolved automata and vice versa (Basanta & 

Deutsch, 2008).   
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Within the high-level paradigm of cancer modelling, an agent-based method that focussed 

primarily on genes instead of cells was also considered. This gene-centred approach could have 

resulted in a very detailed account of the interactions between different kinds of genes and, in 

principle, could have been expandable from the genetic to the cellular and to the tissue level 

(Abbott et al., 2006). This approach allows for the study of the actual mechanisms that are 

involved in the biological phenomenon of chromosome missegregation. This bottom-up approach 

however required more detailed knowledge of the genetic composition of cells than the one 

available in the literature. The results of such a model would also incorporate a level of detail that 

surpasses the one required for the hypothesis presented in this thesis. This detail would be 

associated with a computational cost: simulations would require the use of a computer cluster and 

would consume a lot of computer time (Schnell, Grima, & Maini, 2007); otherwise, the scale of 

the simulation would be biologically implausible . A variation of this idea, using the cell as the 

mid-point between genetic and tissue level is both computationally practical and biologically 

relevant. Although highly abstract, such a model could allow for the number simulations of a 

stochastic biological phenomenon under diverse genetic conditions. Because of the abstract 

quality of the results, key insights might be gained from using the first principles of the 

mechanism under study to evolve without any other phenomenon. This is an important aspect that 

in silico simulations bring to the biological sciences, and which can yield predictions that can be 

tested in the wet lab (Wodarz & Komarova, 2005). Also, this approach allows for abstraction and 

implementation of cellular-centred medical procedures, such as surgery (the removal of cell mass 

from a tumour) and chemotherapy (the selective killing of rapidly dividing cells), which can be 

compared to results published in the literature.  



 

 

94 

 

3.6. Summary 

Although biological modelling is still lacking a rigorous methodology, usually the first step is to 

learn as much about the system as possible through a literature review. After analysing the current 

literature and having used feedback from biologists in the field, it was determined that the key 

things that the model needs to account for are not only at the cellular level, but also the levels 

above (the tissue level and the disruption of homeostasis) and below (the genetic level and the 

disruption of the balance between oncogenes and tumour-suppressor genes). For this reason we 

decided to focus at the cellular level, with genetic structures that will become our independent 

variables, and tissue level components. It was also decided that incremental modelling and the 

assessment methodology proposed by Webb would be adequate to implement and evaluate a 

model of  the role of chromosome missegregation in cancer (B. Webb, 2002). 

 

From the cancer literature, it becomes apparent that we do not have enough information to specify 

every component and interaction by means of differential equations, stochastic models or Markov 

chains. Although we suspect that many of the interactions are intertwined, the use of Boolean or 

Bayesian networks is not appropriate because those methods would not allow for the explicit 

incorporation of the mechanisms of chromosome missegregation, nor would give us a traceable 

pathway on the effects that chromosome missegregation has on the origins and subsequent 

evolution of malignant genotypes with enough detail to identify key evolutionary transitions. 

During the review of the different cancer modelling methods, it became apparent that the more 

abstract, high-level end of the spectrum is more versatile in these respects. Cellular automata 

models, however, are still highly constrained to spatial modelling, where the distances between 

neighbours and the cell-to-cell interactions are more important than the individual genetic details 
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within the cells themselves. Agent based modelling, although not inherently spatially explicit, is 

able to give each cell a more versatile identity, which can evolve and be tractable through time.  

 

To tackle the phenomenon of chromosomes missegregation, gain insights into the evolutionary 

pathways and key transitions, it was necessary to focus on the cellular level, while at the same 

time being able to interrogate the system at the genetic and population levels. Although 

computationally intensive, the paradigm that gave us the flexibility and specificity necessary for 

these constraints (such as internal memory in cells) was agent-based modelling. For this reasons 

the model has been designed using an agent-based approach, in a bottom-up paradigm. 
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4. The Model 

 

The creation and development of the model followed a series of steps informed by the structure 

and availability of data of the biological system being modelled and the relevant questions that 

needed answering. The creation of the model is an iterative process in which refinements and 

improvements are made, evaluated and re-assessed. For this purpose, two goals were determined, 

abstracted and implemented for each iteration. Each iteration of the model was assessed using 

Webb’s methodology, as discussed in the previous chapter. These incremental refinements allow 

for the streamlining of the model until the version of the model more adequate for our purposes is 

reached. This final version of the model will be explained in detail at the end of the chapter.  

 

4.1. Introduction 

From the analysis of the current cancer modelling methodologies in Chapter 3, it was determined 

that an agent-based model would be appropriate to study the phenomenon of chromosome 

missegregation. One of the main advantages offered by agent-based modelling over the other 

modelling techniques reviewed in the previous chapter is the ability to study explicitly the 

emergent behaviour that arises from defined interactions between elements of a complex system 

(Abbott et al., 2006). If the biological concepts are correctly abstracted, an agent-based 

implementation may help in understanding emergent behaviours and the key transitions that give 

rise to them (K. Bentley et al., 2008). With this in mind, the process begins by identifying the key 

biological concepts that will be modelled. 
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4.2. Abstracting biological concepts 

One of the key goals of a cancer model is to make it as biologically accurate as possible with the 

right abstractions; while at the same time computationally feasible with the correct 

implementation (Fisher, Henzinger, Mateescu, & Piterman, 2008). From section 3.3, we know 

that there are key components and behaviours that are known to give rise to cancer, and some 

mechanisms that are suspected to contribute significantly to this. In order to create an agent-based 

model of the phenomenon of aneuploidy, an abstraction of reality to incorporate in an algorithm 

with which we can make predictions needs to be created.  

 

4.2.1. Concepts Modelled 

From the literature review in Chapter 2, from wet lab experiments carried out and with the help of 

molecular biologists from the Baum group at the UCL LMCB (Kunda et al., 2008), (Marinari et 

al., 2012), it was determined that key amongst these components and behaviours are:  

• Genes: A gene is a molecular unit of heredity, which codes for key proteins that have a 

function in the organisms. The activation of genes (when genes express their product 

proteins) can be part of a signalling pathway (one protein acts as a regulator for another 

protein), or affect many other key genes simultaneously and cause a specific change in 

the behaviour of the cell. There is evidence to support the idea that the number of copies 

of a given gene correlates with the activity of that gene: the more copies of a gene there 

are, the higher the gene expression and vice versa (Pavelka et al., 2010b).  

• Apoptosis: Apoptosis is the mechanism of programmed cellular death triggered by 

biochemical changes. Apoptosis may be induced to prevent excess growth and preserve 

homeostatic conditions. Conditions such as tissue crowding lead to a corresponding 

increase in the rate of delamination and cell death within an epithelium to maintain 

homeostasis. Defects in apoptotic mechanisms have been implicated in carcinogenesis 

and tumour progression. Tumour suppressor genes that regulate apoptosis, such as the 

Retinoblastoma protein (pRb) (R. A. Weinberg, 2007) and PTEN (Guo et al., 2008), are 

usually found mutated, inactivated or missing in cancer cells.  
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• Contact Inhibition: When the cell behaviour drives the tissue outside of homeostasis, 

such as the case of cell overcrowding due to over proliferation, genes that regulate 

contact inhibition act to promote cellular death (Seluanov et al., 2009).  

• Cellular Division: Cellular division is the biological process, including cell growth and 

cell cycle progression, by which a parent cell divides into two daughter cells. During 

mitosis, a cell enters a series of phases through which one cell creates another copy of 

itself. In this process, each cell duplicates its entire DNA. The original DNA and its copy 

are segregated: ideally divided into two sets of diploid genomes and then separated to 

polar opposites of the dividing cell. The cell then bisects in the middle, physically 

separating the two genomes. Once this process finishes, two genetically identical 

“daughter” cells replace the old “parent” cell. Proto-oncogenes such as Ras (M. Wu, 

Pastor-Pareja, & Xu, 2010), Myc (Soucek et al., 2008) and PI3K (Brunet, 2009) act to 

promote cell growth and cell cycle progression. In many cancers, these genes are found 

hyper-activated because of key mutations or due to a higher copy number of these genes 

in the cancer genome, as discussed in chapter 2.  

• Genome Stability: Mechanisms that stabilize and repair DNA damage are key in the 

maintenance of basic cellular functions. When the DNA of cells is compromised, stability 

genes act to assess the viability of the damaged cell. If the cell has too much damage, 

such that key cellular functions are severely compromised, genes that safeguard the 

cellular integrity promote cellular death. Such genes are found throughout the genome, 

the most studied being TP53 (Matlashewski et al., 1984). 

• Chromosome Segregation: During mitosis, the two sets of identical DNA are re-

distributed amongst the newly divided cells. This re-distribution of DNA is known as 

chromosome segregation. Because of mistakes in the process of chromosome segregation, 

the redistribution may not always be symmetrical: one daughter cell may get more 

chromosomes than it should, while another receives less. Although work is ongoing to 

discover the precise mechanisms and the gene defects responsible for this behaviour, 

genes such as BUB1 (Ricke et al., 2011) and MAD1/MAD2 (Sotillo et al., 2007) are 

known to regulate the likelihood of chromosome missegregation during cell division. 

These kinds of genes may reduce fidelity if missing or inactive. Also, there are genes 

such as actin regulators (ERM proteins) that, by controlling cell shape, may help the cell 

divide under conditions in which they would normally have problems (Kunda et al., 

2008). Both of the above are important because all normal cells have a low level of 
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defects in DNA (mutation e.g. from UV light) and segregation errors (e.g. from physical 

events in a tissue, like wounding nearby). These are normally repaired or are identified 

and used to trigger cell death, e.g. via p53. In addition, there are intrinsic factors that can 

lead to DNA damage and to chromosome segregation errors (e.g. genes that make the 

process one of high fidelity).This work explores the idea that that the missegregation of 

chromosomes because of disregulation in these kind of genes is a significant mechanism 

behind the generation of aneuploid genomes and may have a key role in cancer initiation 

and evolution. 

• Homeostasis: Homeostasis is the property of biological systems to regulate their 

constituents to maintain stable, constant conditions such as tissue structure and cell 

number (Basanta et al., 2008). This process includes an ability to restore an equilibrium 

following perturbation, i.e. it is a state of dynamic equilibrium. Homeostasis restores 

equilibrium from overproliferation or from a cell number below the equilibrium. Loss of 

the ability to maintain cell number is associated with ageing and cancer (Meza et al., 

2008). Complex signalling between genes in response to environmental cues during 

development give rise to the determining of this equilibrium and, according to the 

specific function of individual tissues, determine cell differentiation and their place 

within the tissue´s architecture. This complex phenomenon is an emergent property of an 

organized cellular system. By evolving a balance between apoptosis and cell division, it 

becomes possible to maintain a stable, constant population of cells and thus give rise to 

complex organisms. When homeostasis is no longer conserved, the cellular system 

becomes unbalanced and may veer towards two extremes: death of the system or cellular 

over proliferation – one of the key hallmarks of oncogenesis. 

• Euploidy: Ploidy is the number of sets of chromosomes in the nucleus of cells. A diploid 

genome is a genome composed of two sets of identical chromosomes; the structures that 

contain the genes that regulate cell behaviour (Furuya et al., 2000). This is a result of 

sexual reproduction: normally sex cells (such as sperms or eggs) carry a full set of 

chromosomes, including a single copy of each gene. The haploid number (n) of 

chromosomes is the number of chromosomes in a sex cell. Two sex cells form a diploid 

zygote with twice this number (2n) and two copies of each gene. Cells can be described 

according to the number of sets present: haploid (n), diploid (2n, the normal state of cells 

in our bodies), triploid (3n), tetraploid (4n, the state of normal cells before undergoing 

cell division), etc.  
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• Aneuploidy: Aneuploidy is the state of not having euploidy. This abnormal chromosome 

number can be due to gains or losses of entire chromosomes during cell division 

(Rajagopalan & Lengauer, 2004). In humans, viable stable aneuploid genotypes include 

having a single extra chromosome (such as Down syndrome), or missing a chromosome 

(such as Turner syndrome). Most cancers are aneuploid (Stratton et al., 2009). 

Chromosome structural changes, such as translocations in chromosome regions, will not 

be discussed here. 

 

4.2.2.  Concepts not Modelled 

The abstractions discussed, implemented in an agent-based model, could allow us to test the role 

of chromosome missegregation in cancer evolution. However it was decided that certain aspects 

of cancer would not be modelled. Amongst these, point mutations, which are considered an 

important feature of cancer systems, were not explicitly modelled. To isolate the effects of 

chromosome missegregation in cancer progression, it was important that the effects of mutations 

were not convoluted with those of chromosome missegregation. Furthermore, the rate of point 

mutation compared to that of chromosome missegregation has been determined to be orders of 

magnitude lower than that of chromosome missegregation (Wodarz & Komarova, 2005). A 

special mutation that allows cells to reproduce indefinitely by means of telomerase re-expression 

(bypassing the Hayflick limit) (Hanahan & Weinberg, 2011), was also considered to be outside of 

the scope of the project because of the limited timescale that is being considered.  

 

Reproductive penalties due to a high number of chromosomes were initially considered. On-

going research suggests that a larger number of chromosomes may be associated with 

reproductive penalties such as a slower rate of division (Torres, Williams, & Amon, 2008). It is 

also currently thought that losing key checkpoints, a possible result of losing chromosomes, may 

result in a rapid progression throughout the cell cycle (M. A. Nowak et al., 2002). If modelled, 
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these considerations could affect the rate at which the genetic subpopulations in the system 

evolve. If modelled, these concepts, although interesting, would synergise with the 

missegregation of chromosomes, resulting in rich behaviour that would be difficult to analyse; 

thus making the investigation of this complex phenomenon a more difficult task. However, as 

more research is carried out on these behaviours, and the behaviour obtained from chromosome 

missegregation alone is understood, these concepts not modelled could be incorporated in a future 

version of the model as a feature, or even as a variable for research. 

 

4.3. Model Version 1: Homeostasis and Aneuploidy 

Using the research methodology previously discussed, the modelling process is broken down into 

incremental goals. Goals are then implemented and assessed through Webb’s methodology (B. 

Webb, 2009). After each assessment, a new iteration of the model is created. As previously 

discussed, the first step in building the model is to establish the framework in which the rest of 

the abstractions will be laid down on. Beginning with an agent-based model framework in C++, it 

is key to establish the agents and their ideal behaviour: homeostasis. Once this is accomplished, 

the basic mechanism of change, aneuploidy, should be modelled. This will function as a 

foundation for the rest of the abstractions. 

 

4.3.1. Goal 1.1: Model for Homeostasis 

To address whether chromosome missegregation plays a causal role in the course of a cancer, a 

model of tissue homeostasis in which to study cancer evolution needs to be developed. From the 

research carried out, and as explained in the previous chapter, it was decided to model individual 

cells and their interactions as agents in a computational model. Each cell is to be an agent 

equipped with a genome that regulates cell behaviour, while the interaction with other cells 
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should give rise to a homeostatic behaviour; the result of balanced rates of cell proliferation and 

cell death. The homeostatic constraints in the model are abstracted from real biological systems, 

where the overall goal of homeostasis is to maintain the tissue’s relative constant size and shape. 

The homeostatic size of the tissue is established for each experiment through an allocated space 

parameter. Although measurements for homeostasis are based on global cell counts, this model is 

not spatially explicit. The implementation of the agent-based model considers that the rate of 

death and the rate of division are the same for every cell. 

The components are cells modelled as agents, following for each time step the algorithm: 

 

1. An initial population of 100 cells is created. The normal carrying capacity of the tissue is 

fixed at 200 cells. 

2. For each time step, the total number of cells is measured and is not updated until the next 

time step. Each cell is examined every time step (like a cellular automaton model). 

3. If a measurement of the total number of cells is greater than the tissue’s carrying capacity, 

then the cell dies with probability of apoptosis, pap; a pre-determined parameter.  

4. If the cell has not died, it has a chance to divide. The probability of division, Ndiv, is a pre-

determined parameter of the rate of division. This process is independent of whether the 

total number of cells exceeds the carrying capacity. 

 So, in the first abstraction of homeostasis, a tissue composed of hundreds of cells is simulated 

with the following initial parameters:  

For biological behaviour: 

• Intrinsic rate of apoptosis: Nap =0.5 

• Intrinsic rate of division:  Ndiv =0.5 

For computational feasibility: 

• Initial population: 100 cells 

• Homeostatic size of the tissue: 200 cells 

• Simulation end time: when reaching 100 time steps 
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A program was devised to capture key information of the evolution of the model. In each time 

step, the algorithm stores the complete simulation: each cell, its age and its genetic contents. This 

information is the queried through an algorithm written in the program Mathematica to extract 

useful information such as the total cell number (as seen in Figure 4.1 and Figure 4.5) and the 

number of cells that share a genotype (as seen in Figure 4.9). This information can then be 

reformatted and plotted in any graphics software such as Excel. 

 

 

Figure 4.1 Simulation of homeostasis in Model Version 1. Starting at 100 cells, the population grows 
until the homeostatic 200 cells. The populations then oscillates around this homeostatic state. 
 

In this first implementation, the rate of cellular death is equal to the rate of cellular division. This 

results in approximately half of the cells dying, but being replaced by the other dividing half such 

that a homeostatic balance is achieved, as seen in Figure 4.1. The next step in establishing the 

framework is defining the concept of aneuploidy in terms of an agent-based model. 
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4.3.2.  Goal 1.2: Model of Aneuploidy 

Through this goal, we want to extend the previous model, by incorporating a model of aneuploidy. 

The first step in modelling aneuploidy is to model the basic units of the aneuploid mechanisms: 

chromosomes. For this, it was decided that each cell of the initial population should have two sets 

of identical chromosomes. Once this structure was determined, 2 copies of each gene (a diploid 

genome) were distributed amongst the two sets of chromosomes. Since genes can arranged in 

different configurations (one example seen in Figure 4.2), the distribution may have important 

repercussions through the evolution of the system. The key mechanism that is incorporated occurs 

during cell division. As in real biological systems, when dividing, the genome of each cell needs 

to be duplicated and the two sets of chromosomes then segregated into two daughter cells.  

 

This could have been modelled as one variable per chromosome, such as initially having 

chromosome1 = 2 and chromosome2 = 2; and in the case of an asymmetric cell division, the 

result could have been stored as, for example, chromosome1 = 3 (three copies) and chromosome2 

= 1 (one copy). However, it was decided that the best way to create a more general framework 

that would allow in the future for expansion was to have two variables for each chromosome type 

in a cell. Each cell is then equipped with variables that store individual information for each 

chromosome: Chromosome1a, Chromosome1b, Chromosome2a and Chromosome2b. This 

provides individuality for chromosomes and could, in a future version of the model, be extended 

to incorporate point mutations and other individual aberrations within the chromosome.  
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Figure 4.2 The core of the model is the abstraction of individual cells and their genomes. Each 
simulated genome is composed of genes in diploid chromosomes (pairs of chromosomes, the 
chromosomes of each pair having identical genes) as the normal state within cells. The collection of 
individual cells comprises a simulated tissue, whose population size is determined for each 
experiment through an allocated space parameter. The dynamics are determined by the gene 
expression of the individual cells across time. 
 

In the previous iteration of the model, each cell had the chance to be deleted, modified or have its 

contents copied into a new cell every time step. Biologically, it is during the stage of cell division 

that chromosome missegregation events can occur, resulting in asymmetric cell division: one 

daughter cell with an extra chromosome, and one lacking the same chromosome. For this, the 

model needs to contain a finite rate of chromosome missegregation during cell division, which 

would generate variation amongst the cell population. The algorithm can be modified, as shown 

in bold, as follows: 

1. An initial population of 100 cells is created. The normal carrying capacity of the tissue is 

fixed at 200 cells. 

2. For each time step, the total number of cells is measured and is not updated until the next 

time step. Each cell is examined every time step. 

3. If a measurement of the total number of cells is greater than the tissue’s carrying capacity, 

then the cell dies with probability of apoptosis, pap; a pre-determined parameter.  

4. If the cell has not died, it has a chance to divide. The probability of division, Ndiv, is a pre-

determined parameter of the rate of division. This process is independent of whether the 

total number of cells exceeds the carrying capacity. 
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5. If dividing, the probability of chromosome missegregation is calculated. If there is a 

chromosome missegregation event, one of the 4 types of chromosomes is chosen at 

random. If the cell still has copies of this chromosome, it is asymmetrically 

distributed during cell division leading to the creation of two aneuploid cells. 

Otherwise, the genome is duplicated and copied with fidelity, thus generating two 

identical daughter cells. The probability of chromosome missegregation, pmsg, is a 

fixed parameter for the rate of chromosome missegregation.  

 

Cells within the body have different rates of division, differentiation and death. Cells that are 

believed to be at risk of cancer are those that are being continuously renewed, such as the lining 

of the gut, colon and the prostrate (R. A. Weinberg, 2007). However, to create a model that takes 

all of these into account, the parameter calibration is based on the average growth rates of 

established cell lines, which normally proliferate with a rate of less than 10% daily (A. J. X. Lee 

et al., 2011). Highly malignant cancer cells such as HeLa (Hutchings & Sato, 1978) and RPE1 

(Uetake & Sluder, 2004), however, are able to double their population within 2 days (up to 50% 

daily). For this project a rate of 9% of cell division rate per time step was estimated from 

experimental lab work with RPE1 cells. In the model, time is not explicitly modelled, but 

following these rates obtained from in vitro experiments, one time step is considered to be one 

day. This is scalable in the same way that in vitro rates can be scaled to in vivo rates by 

considering other key factors (outside of the scope of this project). If homeostasis is to be 

preserved, the rate of apoptosis needs to be equal to that of division, as observed biologically in 

epithelial tissues (L. Zhang et al., 2010). The rate of chromosome missegregation however has 

not been accurately measured as of the time of writing. In an initial attempt to capture 

qualitatively such a gene-regulated phenomenon (Kunda et al., 2008), it was decided that the 

process should be high, so that we can speed up the process. For this purpose, it will be 

considered that the rate of chromosome missegregation of the same as other gene-regulated 
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mechanisms. The philosophy behind this modelling decision, which will be carried out 

throughout the rest of this work, is that we are interested in the study of relative times between 

control and experimental populations. 

 

As initial temporal parameterization assumes that the rate of chromosomal instability is high (for 

instance, the simulation could be taking place late in an organism’s lifespan, or in a dish of 

cultured pre-cancer cells), time becomes a scalable quantity that could represent days (in the case 

of cultured cells), or months (in the case of organisms). The computational resources available, 

however, restrict the cell numbers that can be comfortably modelled. Despite of this, the 

development of the model allows for scalability: cell numbers can be considered an accurate 

model of an in vitro experiment (in the days time scale), while the genotypic population could in 

principle be extrapolated to assess an in vitro experiment (in the month time scale). As biological 

techniques allow for the further proving of this mechanism, and more computational power 

becomes available, a more realistic parameterization of this phenomenon can be implemented.  

Following this reasoning, in the first abstraction of homeostasis, a tissue composed of hundreds 

of cells is simulated with the following initial parameters: 

For biological behaviour: 

• Intrinsic rate of division:  Ndiv =0.09  

• Intrinsic rate of apoptosis: Nap =0.09 

• Intrinsic rate of missegregation:  Ndiv =0.09 

For computational feasibility: 

• Initial population: 100 cells 

• Homeostatic size of the tissue: 200 cells 

• Simulation end time: when reaching 100 time steps 
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Figure 4.3 A character-based output of a simulation with the Model Version 1. Homeostatic 
behaviour, the conservation of relative number of cells through time was modelled, and then the 
mechanism of chromosome missegregation was implemented. Through chromosome missegregation, 
aneuploid cells (displayed by the console as “A”) can be distinguished from diploid cells (displayed as 
“X”). 
 

A simple character-based output to the console was sufficient at this stage to record the internal 

state of the cells. For this, a print of either X, A, O or @ is obtained, depending on the internal 

state of each cell’s Chromosomes 1a and 1b as follows: 

 

If the cell  

• Contains both copies of Chromosome1a and Chromosome1b, display X. 

• Contains no copies of Chromosome1a or Chromosome1b display O. 

• Contains one copy of Chromosome1a or Chromosome1b display A. 
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• Contains more than 2 copies of either Chromosome1a or Chromosome 1b display @. 

A character-based output of a tissue containing 100 cells through 100 time steps with a 50-50% 

chance of dividing/dying is shown in Figure 4.3. When including the mechanism of chromosome 

missegregation, aneuploid cells (Displayed as “A” or “@”) are obtained. 

 

The algorithm devised serves as a general model for homeostasis. The model incorporates 

chromosome missegregation as the mechanism that leads to aneuploidy.  However, since 

aneuploid cells are regulated though external parameters, which are the same for diploid cells, 

their behaviour is the same: homeostatic in the vicinity of the carrying capacity of 200 cells, with 

cells dying and being replaced at each time step on similar numbers.  

 

4.3.3.  Model Version 1 Evaluation 

In order to provide evidence to support the hypothesis, it is necessary to gauge the effectiveness 

of our modelling methodology. This work uses a seven-dimension analysis, as proposed by Webb 

(Webb, 2002), to specify the position that our methodology takes and justification for that 

position. It is important to remember that, although Webb’s framework provides guidelines for 

the construction of good models, there is currently no single agreed methodology to follow 

(Byrne, Alarcon, Owen, Webb, & Maini, 2006). Webb's methodology, however, presents a list of 

statements that determines what a good model is. This is helpful in guiding the model throughout 

the process of construction, assessment and refinement. We assessed our progress through 

Webb’s seven dimensions as: 

• Relevance: The model is an abstraction of a key biological process, homeostasis, which 

is found disturbed in cancer as seen in Figure 4.1. This is a solid framework, but lacks 

relevance as a cancer model. It cannot be used to examine complex interactions as is 

because no cancer-like features can be observed. 
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• Level: The abstractions in the model are made at the cellular level and chromosome level, 

generating behaviour at the tissue level, as seen in Figure 4.2. Genetic components, a key 

part of this investigation, should be modelled in the next version. However, this iteration 

is the first step towards exploring hierarchical events.  

• Generality: This is a very general model for homeostasis, simulating only the key 

features of balanced death and division, as set in Goal 1.1. This can be adapted to any 

system that deals with homeostasis. It is not, however, a general model of aneuploidy, 

because although the mechanism has been implemented in Goal 1.2, its biological role 

needs to be defined in the next version.  

• Abstraction: Although this is a direct abstraction of a biological phenomenon, the 

regulation is artificial, as established in Goal 1.1. Only homeostatic behaviour can be 

obtained, as seen in Figure 4.1. 

• Accuracy: After consulting biological experts and the literature, it is deemed an adequate 

but incomplete implementation of homeostasis. True homeostasis is regulated genetically 

(Nelson & Bissell, 2006). This is something that needs to be addressed in the next 

iteration of the Model. Also, although the rates of division, apoptosis and chromosome 

missegregation are biologically inspired, the abstract nature of the model requires a re-

scaling of these rates for computational feasibility. These rates should be re-evaluated in 

the next iteration. 

• Match: The behaviour obtained in simulations matches the biological phenomenon of 

homeostasis (Nelson & Bissell, 2006), as seen in Figure 4.1. However, the behaviour of 

aneuploidy as implemented on Goal 1.2 does not match that of aneuploidy in cancer.  

• Medium: The model was implemented as an agent-based model on C++. The limitations 

of this medium are dictated by the hardware employed for simulations such as memory 

and processing speed issues that limited the number of cells that could be simulated. Our 

simulations were run on a 2.4 GHz Intel Core 2 Duo processor with 4 Gb of memory. 

With this hardware, the simulations took less than a second to be computed.  

 
Table 4.1 Assessment of the Model Version 1 with respect to Webb’s seven dimensions. The metric 
ranges from 0 to 5 stars, where more stars reflect an improvement over the model. 5 stars is the 
target goal for this model. 
Dimension Relevance Level Generality Abstraction Accuracy Match Medium 

Assessment ** * *** ** ** ** *** 
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4.4. Model Version 2: Regulation of Behaviour Through Genes 

The creation of a new version of the model is motivated by the deficiencies found in the previous 

evaluation. In biological systems, many features of cell biology depend on the organized action of 

several genes. Some genes function as regulators for other genes and, through complex protein 

interactions and signalling, cells are able to respond to external and internal stimuli. Genetic 

regulation, and how the number of copies of genes affects it, is currently a subject of study. For 

the purpose of our model of aneuploidy, it was determined to abstract a collection of similarly 

acting genes as a single, representative gene regulating a specific cellular behaviour. Another key 

abstraction was also determined to be that the regulation of biological behaviour by each gene 

could be proportional to the number of copies of a given gene found in the genome of each cell. 

This kind of regulation has been suggested by recent studies on the effects of differences in gene 

number on gene expression in biological systems (Huettel, Kreil, Matzke, & Matzke, 2008), 

correlating an elevated copy number with higher gene expression and a decrease in copy number 

with lower gene expression. The genes that should be abstracted are oncogenes and tumour 

suppressor genes that regulate homeostasis (such as apoptosis, contact inhibition and cell division 

regulatory genes), and those that affect variation (genetic stability and chromosome segregation 

genes). As more genetic research is carried out, the identity of the genes and their actual locations 

across the genome could be implemented in a future version of the model, and may result in 

testable predictions. 
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4.4.1.  Goal 2.1: Apoptosis and Cell Division Regulatory Genes 

A homeostatic framework for an agent based model of homeostasis and aneuploidy was 

established in section 4.3. Each cell is equipped with chromosomes that may contain genes and 

could be missegregated during cell division. With this in mind, each cell in the system can be 

equipped with a genome composed of abstracted genes within their chromosomes. The first kind 

of genes that need to be modelled, are those responsible for maintaining a balance between death 

and division.  Modelling genes that regulate cell death, Apoptosis Regulatory Genes are an 

abstraction of tumour suppressor genes such as pRb (Amato, Lentini, Schillaci, Iovino, & Di 

Leonardo, 2009) that regulate the probability of cell death. To balance cellular death, cell 

Division Regulatory Genes provide an abstraction of proto-oncogenes such as Ras (M. Wu et 

al., 2010), Myc (Soucek et al., 2008) and p110 PI3K (Brunet, 2009) and act to promote cell 

growth and cell cycle progression.  

 

A balance between cellular death and division is the key to maintaining homeostasis. For this, it 

was decided to model the dynamical balance based on the mechanisms of contact inhibition. In 

real tissues, due to contact inhibition, cells enter in mitotic arrest when in contact with other cells, 

thus maintaining structural integrity of the organism (Zeng & Hong, 2008). Genes that regulate 

tissue overcrowding, or Contact Inhibition Genes, model the mechanism of contact inhibition; 

effectively limiting cell over proliferation in crowded tissues (Zeng & Hong, 2008). If the number 

of cells exceeds the homeostatic limit, contact inhibition genes inhibit proliferation and raise the 

probability of cell death, thus maintaining a constant population of cells close to the homeostatic 

capacity of the simulated tissue. This also enables us to model the fact that tissue overcrowding 

leads to a corresponding increase in the rate of delamination and cell death within an epithelium 

to maintain homeostasis (Marinari et al., 2012).  
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With changes in bold, the algorithm is now: 

 

1. An initial population of 100 cells is created, each with diploid chromosomes. Each initial 

genome was equipped with 2 copies of each type of gene, grouped into chromosomes. 

The normal carrying capacity of the tissue is fixed at 200 cells. 

2. For each time step, the total number of cells is measured and is not updated until the next 

time step. Each cell is examined every time step.  

3. If a measurement of the total number of cells is greater than the tissue’s carrying 

capacity, then the probability of cell death through contact inhibition (or crowding 

induced delamination), pci, is calculated as.  

pci = rci Nci 

where rci is a parameter for the sensitivity of contact inhibition and Nci are the 

number of available copies of the contact inhibition regulatory genes within the 

cell´s genome. The cell is then killed with a probability of pci. 

4. If the cell has not died because of contact inhibition, the probability on natural 

apoptosis is calculated. This probability of death depends on the number of 

available copies of the apoptosis regulatory genes, Nap, within each cell’s genome. 

The probability of apoptosis, pap, is determined by: 

pap = rap Nap 

where rap is a parameter for the rate of apoptosis. The cell is then killed with  

probability pap. 

5. If the cell has not died, it has a chance to divide. The probability of division depends 

on the number of available copies of the division regulatory genes, Ndiv, and a 

parameter that determines the rate of division, rdiv. The probability that a cell 

divides, pdiv, is: 

pdiv = rdiv Ndiv 

6. If dividing, the probability of chromosome missegregation is calculated. If there is a 

chromosome missegregation event, one of the 4 types of chromosomes is chosen at 

random. If the cell still has copies of this chromosome, it is asymmetrically distributed 

during cell division leading to the creation of two aneuploid cells. Otherwise, the genome 

is duplicated and copied with fidelity, thus generating two identical daughter cells. The 

probability of chromosome missegregation, pmsg, is a fixed parameter for the rate of 

chromosome missegregation.  
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4.4.2.  Goal 2.2: Chromosome Segregation Regulatory Genes 

Having established this homeostatic model system, it is necessary to introduce a fourth gene 

abstraction that regulates the rate of chromosomes segregation. This Chromosome Segregation 

Regulatory Gene models genes that control the fidelity of cell division such as BUB1 (Ricke et 

al., 2011) and MAD1/MAD2 (Sotillo et al., 2007). The expression of this gene proportionally 

reduces the likelihood of chromosome missegregation at cell division. The parameterization of 

this gene is considered of the same order as that of the previous genes modelled, although 

experimental rates are still under investigation. In the future, when these rates have been 

experimentally established, they can be re adjusted in a more realistic version of the model. The 

decision taken in section 4.3.2 regarding modelling individual chromosomes affects in a small 

way the probability of missegregation when dealing with a small number of chromosomes 

compared to using one variable per chromosome, so that, if there is one kind of chromosome 

missing, the probability of missegregation proportionally smaller. However, there is evidence that 

shows that cells with higher number of chromosomes are more unstable and tend to missegregate 

more frequently than those with a lower number of chromosomes (Thompson & Compton, 2008). 

This shall be taken into account when analysing the results of the final version of the model. 

 

Also, in real biological systems, cells with less than the diploid set of chromosomes may find it 

difficult to carry out essential life processes. To model this fact, an abstraction of Genome 

Stability Genes can represent the fact that missing entire chromosomes may translate in missing 

crucial machinery and thus a higher likelihood of death such as p53 (Thompson & Compton, 

2010).  Since the simulation is composed of cells with only four chromosomes, it was decided 

that cells with less than 2 chromosomes (an evolution from the initial four chromosome diploid 

state through chromosome missegregation) would be considered unfit for survival and removed 
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from the simulation with a probability proportional to the number of genome stability genes. A 

schematic of a representative gene distribution can be seen in Figure 4.4.  

 

                

Figure 4.4- Genetic Arrangements. Abstracted genes were placed inside the chromosomes of 
simulated diploid cells, as in this representative configuration.  
 

 

The algorithm is then modified with the statements in bold: 

1. An initial population of 100 cells is created, each with diploid chromosomes. Each initial 

genome was equipped with 2 copies of each type of gene, grouped into chromosomes. 

The normal carrying capacity of the tissue is fixed at 200 cells. 

2. For each time step, the total number of cells is measured and is not updated until the next 

time step. 

3. If a cell has 1 or less chromosomes in its genome, the cell’s genetic integrity 

mechanisms has a probability of death through unviable genome instability, pgi, is 

calculated as.  

Pgi = rgi Ngi 

where rgi is a parameter for the sensitivity of contact inhibition and Ngi are the 

number of available copies of the genome stability genes within the cell´s genome 
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4. If a measurement of the total number of cells is greater than the tissue’s carrying capacity, 

then the probability of cell death through contact inhibition (or crowding induced 

delamination), pci, is calculated as.  

pci = rci Nci 

where rci is a parameter for the sensitivity of contact inhibition and Nci are the number of 

available copies of the contact inhibition genes within the cell´s genome. The cell is then 

killed with a probability of pci. 

5. If the cell has not died because of contact inhibition, the probability on natural apoptosis 

is calculated. This probability of death depends on the number of available copies of the 

apoptosis regulatory genes, Nap, within each cell’s genome. The probability of apoptosis, 

pap, is determined by: 

pap = rap Nap 

where rap is a parameter for the rate of apoptosis. The cell is then killed with a probability 

of pap. 

6. If the cell has not died, it has a chance to divide. The probability of division depends on 

the number of available copies of the division regulatory genes, Ndiv, and a parameter that 

determines the rate of division, rdiv. The probability that a cell divides, pdiv, is: 

pdiv = rdiv Ndiv 

7. If dividing, the probability of chromosome missegregation is calculated. If there is a 

chromosome missegregation event, one of the 4 types of chromosomes is chosen at 

random. If the cell still has copies of this chromosome, it is asymmetrically distributed 

during cell division leading to the creation of two aneuploid cells. Otherwise, the genome 

is duplicated and copied with fidelity, thus generating two identical daughter cells. The 

probability of chromosome missegregation, pmsg, in the model is:  

pmsg = rmsg (4-Nmseg ) 

 

The parameters were recalibrated in order to obtain the same behaviour when incorporating a 

diploid set of genes as the regulators of the behaviour.  

For biological plausibility, as described in section 4.3.2, are: 

• Intrinsic rate of apoptosis  (gene adjusted): rap =0.045 

• Intrinsic rate of division  (gene adjusted):  rdiv =0.045 
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• Intrinsic sensitivity to contact inhibition  (gene adjusted):  rci =0.045 

• Intrinsic action of genome stability mechanisms  (gene adjusted):  rgs =0.045 

• Intrinsic rate of chromosome missegregation  (gene adjusted):  rmsg =0.045 

For computational feasibility: 

• Initial population: 100 cells 

• Homeostatic size of the tissue: 200 cells 

• Simulation end time: when reaching 100 time steps 

 

 

This implementation of these biological features into genes, emergent cancer-like behaviour can 

be obtained under certain circumstances, as seen in Figure 4.5. Because the simulations were not 

stopped until 100 time steps had been simulated, computational problems arose in this stage 

because of memory issues. When cancer-like behaviour was obtained, simulations would give 

rise to an exponential growth of cells. In some simulations, this rate became too high for the 

computer to finish the simulation on a practical amount of time. Some simulations took days to 

complete, while others took seconds. Some simulations became so intensive that they were 

aborted because of hardware failure.  For computational feasibility, a cell limit needs to be set in 

the next iteration of the model. 
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Figure 4.5- A plot of the total number of cells for each time step in the simulation. Cells maintain an 
homeostatic behaviour for almost half of the simulation. Then uncontrolled growth occurs. This 
overproliferative behaviour arises from the genetic arrangement and the phenomenon of aneuploidy. 
 

From this version of the model simulations can be analysed in more detail, and information for 

the evolution of the genotype population can be extracted. Each simulation was saved as a file 

containing the information of number of chromosomes and age for each cell, for each time step. 

From this information, an analysis of ploidy, through the Mathematica extraction algorithm 

described in section 4.3.1, suggests that aneuploid cells are responsible for the emergent cancer-

like behaviour, as seen in Figure 4.6. When plotting the average number of a given chromosome 

across a simulation, it is revealed that cells are consistently losing a certain chromosome: the one 

containing the regulator of cell death. Cells also consistently gain copies of the chromosome 

containing genes that promote proliferation, as seen in Figure 4.8. The effects of chromosome 

missegregation unbalance the rate between cell death and cell birth. While some death 

mechanisms still remain active, massive death can still be overrun by even greater cell birth as 

seen in Figure 4.7 
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For visualization, new tools have to be developed. A simple query for the different number of 

possible genotypes, however, leads quickly to a high number of possibilities as seen in Figure 4.9. 

This analysis suggests that the model needs to be simulated for longer for a more detailed analysis 

of the evolutionary pathways that the genotypic populations could take. 

 

 

Figure 4.6- Overproliferation. When chromosome missegregation chromosomes, the disruption of 
homeostasis ensues under certain circumstances. The text- based output indicates that Aneuploid 
cells (denoted as “A” or “@”) replace diploid cells (denoted as “X”), and have broken through the 
homeostatic carrying capacity of the tissue (200 cells). 
 

 

Also, because of the high variability, statistical comparison across experiments cannot be made. 

A contributing factor to this exponential increase in genotype diversity is that the genes can be 
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shuffled in 15 different combinations (such as Apoptosis and Division in Chromosome1 and 

Segregation, Stability and Contact inhibition in Chromosome 2; or Apoptosis and Stability in 

Chromosome 1 and Division, Segregation and Contact inhibition in Chromosome 2) and the 

genotypes that result from that reach the dozens by the time cancer-like behaviour initially arises. 

This suggests that, in order for a more direct comparison, the effects of chromosome 

missegregation should be dampened and the number of genotypic combinations should be 

reduced. This will be reflected in the next iteration of the model. 

 

 

Figure 4.7- A plot of the number of dead cells and born cells for each time step. The effects of 
chromosome missegregation unbalance the rate between cell death and cell birth. While some death 
mechanisms still remain active, massive death can still be overrun by even greater cell birth. This 
leads to emergent overproliferation. 
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Figure 4.8- A plot of the average number of chromosomes per time step throughout an over 
proliferative simulation. Depending on the genetic arrangement, cells lose or gain copies of a given 
chromosome, depending on the advantaged that it brings. Losing chromosomes with genes that 
regulate apoptosis and gaining chromosomes that contain copies of genes that promote division is a 
trend observed in overproliferative simulations. 
 

 

Figure 4.9- An illustrative plot of the number of cells with a given genotype. The numbers in the 
parenthesis denote the number of copies of Chromosome 1 and Chromosome 2 respectively. 
Different genotypes emerge though an overproliferative simulation. When a successful 
overproliferative genotype is reached, cells are able to grow from the hundreds to the thousands in a 
few dozen time steps. Depending on the genetic configuration, some cells consistently lose a 
chromosome and gain another. However, this analysis tool needs to be refined and more time steps 
are needed in the simulation to understand the population dynamics.  
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4.4.3.  Model Version 2 Evaluation 

As a new iteration of the model is reached, a new assessment is to be made through Web's 

methodology.  It is important to remember that many Webb's criteria are qualitative and cannot 

be quantified. The effort of the collaborating biologists comes as a crucial part of this assessment. 

This iteration of the model stands in Webb’s seven dimensions as follows: 

 

• Relevance: The modelling of genes within chromosomes makes this a complete, 

dynamical model of homeostasis and aneuploidy. This is biologically relevant, since 

important questions can now be addressed, such as, which genetic combinations lead to 

the overproliferative behaviour observed in Figure 4.5. 

• Level: The genetic component compliments the cellular components and brings out 

emergent behaviour at the tissue level, as seen in Figure 4.2.  

• Generality: This is a model more specific to the phenomenon of aneuploidy than the 

previous general model of homeostasis. Because the model considers chromosome 

missegregation as the only form of variation, this model cannot be applied as is to other 

kinds of aberrations. However, the general nature of the framework is general and can be 

easily adapted to represent diverse genetic arrangements, as seen in Figure 4.4. 

• Abstraction: The abstraction of genes was a key part of the modelling process. The 

abstractions regulate a direct analogy of the biological features of death, division and 

segregation. At this stage, discussion with molecular biologists resulted in the 

recommendation that this model is overcomplex and difficult to analyse.  

• Accuracy: The representations of genes in the model accurately reflect the dynamic 

mechanism of chromosome missegregation and the disruption of homeostasis. However, 

the rate of chromosome missegregation damped by segregation genes is assumed to be 

equal to the effect of the other genes, as current research suggests (Kunda et al., 2008). 

However, this high rate of chromosome missegregation leads to high variation across 

experiments. A lower rate of chromosome missegregation could be considered in the next 

iteration, which may lead to more reproducible results. 

• Match: The behaviour now matches the literature and current biological theories on what 

is observed experimentally such as the existence of cells with excess chromosomes due to 

chromosome missegregation (Rajagopalan & Lengauer, 2004), imbalances in gene 
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expressions (Torres et al., 2008); and clinically such as the emergence of various degrees 

of aneuploidy and chromosomal instability (Swanton et al., 2006), and the association of 

higher chromosomal instability with a worse prognosis (Walther, Houlston, & 

Tomlinson, 2008). However, this is at the expense of computational feasibility. Results 

can hardly be compared amongst themselves due to the high variability in the data. For 

the next iteration, the growth rates of cells should be proportionately reduced to make the 

model more computationally feasible. Care must be taken so that this re-scaling does not 

affect the overall dynamics of the system.  

• Medium: The computational model provides complete transparency of the evolutionary 

pathways of each cell in each simulation. However, this evolutionary tractability of the 

genotypes proves to be challenging because of the large amount of data that is being 

calculated and the number of variables that are in play. Also, simulations are highly 

variable. Some take minutes, while other take hours or even days. In some simulations, 

the limits of the hardware were reached and, by necessity, were aborted after days of 

simulation. A restriction on the number of cells that the hardware can comfortably model 

needs to be established.  

A quantitative assessment of the changes with respect to the previous version of the model can be 

appreciated in Table 4.2. 

 

Table 4.2- Assessment of the Model Version 2 with respect to Webb’s seven dimensions, from 0 to 5 
stars. The metric ranges from 0 to 5 stars, where more stars reflect an improvement over the model. 
Stars in black are an improvement over the previous model rating in grey.   
Dimension Relevance Level Generality Abstraction Accuracy Match Medium 

Assessment **** *** **** *** **** **** *** 

 

 

4.5. Model Refinement and Final Implementation 

The model, as evaluated in the previous section (Table 4.2), successfully recreates the ideal 

experimental conditions in which the key questions of this investigation can be addressed. This 

model has been verified against the literature and approved by molecular biologists at the Baum 
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Lab as accurate and relevant. However, the data obtained by exploring the new cell population 

that emerges in time, quickly reveals a high degree of complexity arising from the interaction of 

the few constituents. This complexity is such that it becomes unclear which are the key elements 

and interactions that give rise to the emergent cancer-like behaviour.  To address this problem, 

further refinements and simplifications are required. 

 

4.5.1.  Goal 3.1: Simplifying the Model 

Further abstracting and re-implementing the crucial functions that give rise to homeostasis can 

reduce the number of genes used. The key motivation for these refinements is to have the 

simplest model possible that allows for the traceability of key transitions (such as the kind of 

chromosome missegregation event that leads to the emergence of an overproliferative genotype or 

the loss of tumour suppression in tandem with varying degrees of chromosome stability), while at 

the same accounting for the biological behaviours that are observed experimentally. Aspects that 

were considered important to reframe or exclude via this process are: 

• Genes that regulate apoptosis via contact inhibition. These genes were merged with 

the genes that regulate stochastic apoptosis since their function was the same: the 

negative regulation of proliferation.  

• Genes that maintain genetic stability by inducing apoptosis when there are 

insufficient chromosomes. Although, in reality, cells that have too few chromosomes 

usually die, this biological feature is not relevant for the process being investigated. Also, 

this feature was considered by the molecular biologists at the Baum Lab to be 

overabstracted, since the number of chromosomes was also highly abstracted. Because of 

this, this gene is to be removed. 
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4.5.2.  Goal 3.2: Model Calibration and Final Implementation 

To obtain more detail throughout the simulations while maximizing processing time, it was 

decided that a simulation would end when 7000 cells had been reached or after 200 time steps. 

This modelling decision is based on calculating a balance between the highest number of cells 

that can be currently simulated, and the need to explore the divergence of genotypic trajectories 

that the initial and subsequent chromosome missegregation create. This would model in real life a 

square area of 2x10-4 m of a constantly renewing epithelial tissue, or a typical 96-well wet lab 

experiment. Also, the rate of chromosome missegregation has been proportionately reduced to 

make the model more computationally feasible. Care was taken so that this re-scaling did not 

affect the overall dynamics of the system. These new limits allow a better comparison across the 

simulations.  

 

The final genes simulated and their functions, described below, are: 

• Apoptosis regulatory genes, as depicted in Figure 4.10.A, are an abstraction of tumour 

suppressor genes such as tRb (Amato et al., 2009) and  p53 (Matlashewski et al., 1984) 

that regulate cell death, and enables us to model the fact that tissue crowding leads to a 

corresponding increase in the rate of delamination and cell death within an epithelium to 

maintain homeostasis  (Zeng & Hong, 2008) (Marinari et al., 2012).  

• Cell division regulatory genes, as shown in Figure 4.10.B, provide an abstraction of 

proto-oncogenes such as Ras (M. Wu et al., 2010), Myc (Soucek et al., 2008) and p110 

PI3K (Brunet, 2009) and act to promote cell growth and cell cycle progression. Again the 

action of these genes is sensitive to the “homeostatic capacity” of the tissue in order to 

model the process know as contact inhibition (Carmona-Fontaine et al., 2008) that limits 

cell proliferation in crowded tissues.  
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• Chromosome segregation regulatory genes, as depicted in Figure 4.10.C, model genes 

controlling the fidelity of cell division such as BUB1 (Ricke et al., 2011) and 

MAD1/MAD2 (Sotillo et al., 2007) that reduce the likelihood of chromosome 

missegregation at cell division. The ERM gene, whose expressed proteins crosslink actin 

filaments with plasma membranes and regulate key cell functions in mitosis, will also be 

considered, based on experiments described in Chapter 7. 
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A.         B.       C. 

       

Figure 4.10- Gene abstractions in the final model. A. Apoptosis Regulatory Genes that control cell 
death via contact inhibition. B. Cell division regulatory genes promote cellular division and wound 
healing. C. Chromosome segregation regulatory genes ensure fidelity during replication.  
 

Through an incremental approach, a final iteration of the model was reached. In this 

implementation, each cell has a simulated genome composed of three kinds of genes, as depicted 

in Figure 4.10. Each of the three genes code for corresponding actions at a cellular level, inspired 

by biological systems. Inspired by the processes in biological cellular behaviour through which 

homeostasis is maintained in organisms, the algorithm (with changes in bold) is as follows:  

 

1. An initial population of 100 cells is created, each with diploid chromosomes. Each initial 

genome was equipped with 2 copies of each type of gene. The normal carrying capacity 

of the tissue is fixed at 200 cells. 

2. For each time step, the total number of cells is measured and is not updated until the next 

time step. Each cell is examined every time step. 

3. If a measurement of the total number of cells is greater than the tissue’s carrying 

capacity, then the probability of cell death is calculated. The probability of death 

depends on the number of available copies of the apoptosis regulatory genes, Nap, within 

each cell’s genome. The probability of apoptosis, pap, is determined by: 

pap = rap Nap 

where rap is a parameter for the rate of apoptosis. The cell is then killed with a probability 

of pap. 

4. If the cell has not died, it has a chance to divide. The probability of division depends on 

the number of available copies of the division regulatory genes, Ndiv, and a parameter that 

determines the rate of division, rdiv. The probability that a cell divides, pdiv, is: 

pdiv = rdiv Ndiv 
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5. If dividing, the probability of chromosome missegregation is calculated. If there is a 

chromosome missegregation event, one of the 4 types of chromosomes is chosen at 

random. If the cell still has copies of this chromosome, it is asymmetrically distributed 

during cell division leading to the creation of two aneuploid cells. Otherwise, the genome 

is duplicated and copied with fidelity, thus generating two identical daughter cells. The 

probability of chromosome missegregation, pmsg, in the model is: 

pmsg = rmsg (4-Nmseg ) 

where Nmseg is the number copies of the chromosome segregation regulatory genes within 

the cell’s genome, and rmsg is a parameter for the rate of chromosome missegregation.  

 

To investigate the properties and the dynamics of the system, and specifically the role that 

chromosome segregation regulatory genes have, four genome distributions were considered, and 

will be discussed in detail in the next chapter. The parameter settings were determined through 

the literature and a series of preliminary experiments, in order to ensure that the behaviour of the 

system was both biologically plausible and computationally feasible. After calibrating the 

simulations with the literature available and with feedback from molecular biologists from the 

Baum Lab to accurately reflect what we know so far of the interactions, the following initial 

parameters were decided upon: 

For biological plausibility, from the literature discussed in section 4.3.2: 

• Intrinsic rate of apoptosis  (gene adjusted): rap =0.045 

• Intrinsic rate of division  (gene adjusted):  rdiv =0.045 

• Intrinsic rate of chromosome missegregation  (gene adjusted):  rmsg =0.02 

For computational feasibility: 

• Initial population: 100 cells 

• Homeostatic size of the tissue: 200 cells 

• Simulation end time: when reaching 7000 cells or reaching 200 time steps 
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These refinements conserve the same emergent properties of the previous successful iteration of 

the model, and allow for the effects obtained through simulations to be traced to particular events 

with a better clarity regarding the key players and interactions involved. 

 

The model was tested under diverse genetic initial conditions, which will be the focus of the next 

chapter. After these tests, it was found that the reduction in components did not affect the 

emergent behaviour (Figure 4.11). The total number of combinations for the different possible 

genetic arrangements has been effectively reduced from 15 to 3, giving us a much clearer view of 

the dynamics of the genetic populations.  

 

Figure 4.11- A representative plot of the total number of cells for two simulations with different 
genetic initial conditions. Homeostasis can be invariantly observed for one genetic configuration and 
Emergent overproliferative behaviour was invariantly observed for the other. Although the 
components were rescaled, the Model Version 3 not only conserves all of the key behaviours of the 
previous models, but also allows for a more transparent analysis of the behaviour, which is the focus 
of Chapter 5.  
 

Using the discussed agent-based model, in silico experiments can be carried out to explore the 

different genetic arrangements and their properties. There is also a possibility to use this 

framework to simulate the interaction between chromosome missegregation and abstractions of 
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cancer treatments such as of surgery, the physical removal of tumour mass; and chemotherapy, a 

treatment where overproliferating cells are targeted and killed. 

 

4.5.3.  Model Version 3 Evaluation 

As the final iteration of the model is reached, it is key to measure the model against reality 

through comparing it with the available literature, and with feedback from biologists (and real 

data when available). Following Webb's methodology, we found that the final iteration of the 

model stands in Webb’s seven dimensions as follows: 

 

1. Relevance: The model is an abstraction of current biological knowledge. It will be used 

to assess a new hypothesis and the behaviour that can occur. 

2. Level: The elemental units of the model are cells. Each cell is equipped with an internal 

genome, which can change through time. The collection of cells makes up an organized 

cellular system, abstracting the formation of a homeostatic tissue. Changes in the 

genomes of individual cells give rise to different cell behaviours and emergent properties 

at the tissue level. 

3. Generality: The system can represent organized cellular systems with diploid genomes. 

It has been designed with the abstractions of key factors in carcinogenesis. Although not 

specific to a single type of cancer, this general model can be expanded or tailored to a 

more specific type of cancer. Also, the time frame of this model is scalable.  It could 

represent days in in vitro experiments (such as cultured cells), or months in in vivo 

studies (such as animal models) or clinical settings (in real patients). 

4. Abstraction: A general model of carcinogenesis, the model is specifically cellular. For 

computational tractability, necessary simplifications in the individual genetics of each 

cell were made. Abstractions of cellular behaviour have a solid basis in cell biology. 

5. Accuracy: The biological mechanisms represented in the model are a simplification of 

the real, mechanisms, which are too complex or still subject of intense research, to be 

included mechanistically. A compromise was reached by scaling down accuracy in 

exchange of a more abstract, but computationally feasible model. The abstractions, 



 

 

131 

however, accurately represent the triggers and key results of the mechanisms relevant to 

the hypothesis addressed in this work. 

6. Match: Experiments that will be discussed in the next chapter show that the behaviour 

obtained in the model matches the behaviour found in real cancers. The key genetic 

properties, as explored in depth in the next chapter, also match qualitatively experimental 

results. 

7. Medium: The simplifications made in this final implementations result in more 

manageable data. Through this implementation, it is possible to isolate the effects of the 

different kinds of genes, without losing the rich emergent behaviour obtained in the 

previous iteration. The computational resources (2.4 GHz Intel Core 2 Duo processor 

with 4 Gb of memory). were taken to the limit of their capacities and we are confident 

that the framework is efficiently taking advantage of all the resources available. 

Simulations usually take minutes to run and the output files occupy only a few gigabites 

of hard drive space. 

 

After this successful assessment, it was decided that the compromise between accuracy and 

feasibility had been successfully met. With this implementation, key questions can be formulated 

in terms of the model, and confidently addressed.  

 

Table 4.3- Assessment of the Model Version 3 with respect to Webb’s seven dimensions, from 0 to 5 
stars.  A star in accuracy was lost in favour of reaching 5 stars in all of the other dimensions. 
Dimension Relevance Level Generality Abstraction Accuracy Match Medium 

Assessment ***** ***** ***** ***** *** ***** ***** 

 

 

4.6. Summary 

To address whether chromosome missegregation plays a causal role in the course of a cancer we 

developed a model of tissue homeostasis in which to study cancer evolution. Individual cells were 

modelled, each equipped with a genetically defined genome, as agents in a computational 
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simulation. A collection of these cells makes up a tissue that initially exhibits homeostatic 

behaviour, as the result of balanced rates of cell proliferation and cell death. These were modelled 

as stochastic processes that are regulated at a genetic level, based upon the properties of known 

proto-oncogenes and tumour suppressor genes (Futreal et al., 2004). We made the key 

abstractions of a single gene regulating a specific behaviour, and that the impact of each gene is 

proportional to the number of copies of a given gene found in the genome of each cell, as 

suggested by recent studies on the effects of differences in chromosome number on gene 

expression in biological systems (Huettel et al., 2008). Having established this model system, we 

then introduced genes that regulate the rate of division, apoptosis and chromosomes segregation. 

After each incremental refinement of the model, an assessment using Webb’s modelling 

guidelines (B. Webb, 2009) was carried out. This assessment included comparing the model with 

the current literature, the feedback from molecular biologists at the Baum Lab and the 

incorporation of real data whenever possible.  

 

 After several iterations, a final version, which enables us to test the role of evolving 

chromosomal instability in cancer development and treatment, was reached. In this model, we can 

isolate the effects of chromosome instability, tumour suppressor and oncogene activity and 

genetic linkage on cancer progression. 
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5. Simulating Chromosome Missegregation 

 

This chapter focuses on chromosome missegregation and the role that the distribution of genes 

across the genome have on tumourigenesis. Through this chapter, the key properties of the model 

will be investigated. The chapter starts with a recapitulation of the key components in the model 

derived in the previous chapter. Following this, key questions regarding the role of the genetic 

arrangement on the behaviour observed will be addressed. For this, new analysis tools had to be 

created, which will be explained. With these analysis tools, the model will be studied and new 

insights will be drawn. The chapter will end with a brief summary of the chapter.  

  

5.1. Introduction 

In the previous chapter, it was described how the relevant biological concepts were determined, 

abstracted and incorporated into a working model. The model aims to capture the dynamics and 

behaviours of the complex biological phenomenon of chromosome missegregation. In the model, 

each cell in the initial population has two sets of identical chromosomes: a diploid genome. Just 

like in real life, when dividing, the genome of each cell is duplicated and the two sets of 

chromosomes are then segregated into two daughter cells. It is during this stage that chromosome 

missegregation events can occur, resulting in asymmetric cell division: one daughter cell with an 

extra chromosome, and one lacking the same chromosome.   

 

In the final version of the model, each cell in the system has a simulated genome composed of 

three kinds of genes:  

• Apoptosis regulatory genes, as depicted in Figure 4.10.A, are an abstraction of tumour 

suppressor genes such as tRb (Amato et al., 2009) and  p53 (Matlashewski et al., 1984) 
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that regulate cell death, and enables us to model the fact that tissue crowding leads to a 

corresponding increase in the rate of delamination and cell death within an epithelium to 

maintain homeostasis  (Zeng & Hong, 2008) (Marinari et al., 2012).  

• Cell division regulatory genes, illustrated in Figure 4.10.B, provide an abstraction of 

proto-oncogenes such as Ras (M. Wu et al., 2010), Myc (Soucek et al., 2008) and p110 

PI3K (Brunet, 2009) and act to promote cell growth and cell cycle progression. Again the 

action of these genes is sensitive to the “homeostatic capacity” of the tissue in order to 

model the process know as contact inhibition (Carmona-Fontaine et al., 2008) that limits 

cell proliferation in crowded tissues.  

• Chromosome segregation regulatory genes, represented in Figure 4.10.C, model genes 

controlling the fidelity of cell division such as BUB1 (Ricke et al., 2011) and 

MAD1/MAD2 (Sotillo et al., 2007) that reduce the likelihood of chromosome 

missegregation at cell division. ERM will also be considered, based on experiments 

described in Chapter 7. 

 

A.         B.       C. 

       

Figure 5.1- Gene abstractions in the final model. A. Apoptosis Regulatory Genes that control cell 
death via contact inhibition. B. Cell division regulatory genes promote cellular division and wound 
healing. C. Chromosome segregation regulatory genes ensure fidelity during replication.  
 

 

It was determined through Webb’s assessment, as discussed in the previous chapter, that the agent 

based model captures the essence of the biological phenomenon of chromosome missegregation. 
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Through the creation of the model, a set of analysis tools was created to understand the dynamics 

of the system. Measurements were taken from the output of the simulations with an algorithm 

created in Mathematica. After a parameter readjustment, as discussed in the previous chapter 

(Section 4.5.2), a measurement of the total cell number per time step revealed that the readjusting 

of the growth, division and missegregation rates have a scaling effect on the overall behaviour. 

However, it is the actual distribution of the genes across the chromosomes that has a direct impact 

on the kind of behaviour obtained. This chapter will investigate the properties that the genetic 

arrangements that lead to homeostasis or to over proliferation have, their initial mechanism of 

action and how they shape the subsequent evolution of the system. 

 

5.2. Answering Questions with the Model 

The aim of this work is to discover if the model provides an effective approach to assess the role 

of aneuploidy in the evolution of cancer. For this, it was decided that the most relevant question 

to be tackled is one that could not be easily modelled in vitro or in vivo, and which could be used 

to further inform experiments in whole chromosome missegregation. From the literature review, 

it was clear that there is a gap in the understanding of chromosome missegregation as a 

mechanism for aneuploidy. This is because the exact role, location and linkage of the key genes 

regulating cell growth, death and chromosome segregation in real human chromosomes is 

currently unknown (Rajagopalan & Lengauer, 2004). However with an abstract computational 

model of this complex system it would be possible to explore how differences in the distribution 

of genes on chromosomes affects the evolution of the system as a whole.  The model developed 

in this work is in an advantageous position to address such a complex interaction with a 

transparent computational analysis. Results from this model could be used to inform cancer 
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biologists on the kinds of behaviour and their organizing principles that can be found in real life 

chromosome missegregation. 

 

The first investigation using the model will aim to answer the following questions: 

1. Are there any kinds of genetic arrangements through which chromosome missegregation 

may lead to the disruption of homeostasis? 

2. If there are any overproliferative behaviours, could they be classified according to their 

evolution given a set of genetic constraints? 

3. Are there any key genetic transitions that could result in the disturbance of homeostasis? 

4. Does the distribution of genes in chromosomes have a role on the disturbance of 

homeostasis and over proliferation through the mechanism of chromosome 

missegregation? 

To answer these questions, key measurements are needed of the simulations. For this, a 

Mathematica algorithm was created. The model, written in C++ outputs a text file containing the 

state of every cell (the number and kinds of chromosomes that it has, as well as its age) for every 

time step of the simulation. The Mathematica algorithm extracts such information and transforms 

it into something more statistically manageable. The Mathematica algorithm uses as input the 

information on individual cells and calculates the average number of copies of a given gene 

throughout the cell population for each time step. Also the Mathematica calculates the genetic 

diversity (how many different genotypes comprise the cell population) per time step of the 

simulation.  The average rate of death, division and segregation, and the genetic diversity per time 

step are then plotted in data software such as Excel to give us a clear picture of the dynamics of 

the model.  
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5.3. Gene Distribution Across Chromosomes 

 Seeking to bridge a gap in our understanding of aneuploidy that cannot be currently addressed 

with biological experiments, an experiment was designed to understand the role of the 

distribution of genes across chromosomes in chromosome missegregation. The focus of this 

experiment is to change the initial genetic makeup and genetic restriction of cells and measure the 

effect that this has on cell death, division, segregation and genetic diversity.  

 

To do this, it was decided to place the abstracted genes in the three different chromosomal 

configurations (Figure 5.2). These are distribution A, where apoptosis regulatory genes and cell-

division regulatory genes are “linked” in the same chromosome; distribution B, where cell-

division regulatory genes and chromosome segregation regulatory genes lie on the same 

chromosome; and Distribution C where genes regulating apoptosis and chromosome segregation 

are genetically linked. At the start of simulations each cell was then modelled as diploid, 

containing two copies of each chromosome. 

 

A.     B.    C. 

     

Figure 5.2- The different gene abstractions were placed into chromosomes in 3 different 
configurations, which led to different kinds of linkages between the genes. A. Gene Distribution A: 
apoptosis and division genes in Chromosome 1; segregation genes in Chromosome 2. B. Gene 
Distribution B: apoptosis gene in Chromosome 1; division and segregation genes in Chromosome 2.  
C. Gene Distribution C: division gene in Chromosome 1; apoptosis and segregation gene in 
Chromosome 2. The icons for each kind of gene are described in Figure 4.10. 
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The evolutionary dynamics in the model are then determined by the gene expression of the 

individual cells and the global behaviour that emerges through cell death, proliferation and 

missegregation over time. By quantifying the number of chromosomes that a cell has at a given 

time, a genotype state GT is defined as: 

GT = ( Ndiv , Nap, Nmsg) 

 

where Ndiv , Nap and Nmsg are the number of copies of Cell Division Regulatory Genes, Apoptosis 

Regulatory Genes and Chromosome Segregation Regulatory Genes respectively. The initial 

genotype consists of two functional copies of each chromosome: genotype state (2, 2, 2), 

corresponding to 2 functional copies of each gene (Division, Apoptosis and Segregation, 

respectively). Exploring the three different gene distributions, 100 simulations were performed 

for each configuration. Because instances of cell division, birth and cell death are expected to be 

stochastic in nature, and have been modelled as such, the behaviour of the system may be highly 

variable. Consistent trends may give us insights on the internal dynamics and help us extract 

organizing principles.  

 

5.3.1. Experiment 1: Gene Distribution A 

a) Objective and Setup 

To investigate the role of the chromosome segregation regulatory genes, the following 

configuration was used:  

 

• Chromosome 1: apoptosis regulatory genes and cell-division regulatory genes 

• Chromosome 2: chromosome segregation regulatory genes 
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Figure 5.3- Setup for the distribution of genes into diploid chromosomes for Gene Configuration A. 
 

This gene configuration, as seen in Figure 5.3, isolates the effects of the loss or gain of 

Chromosome 2 to those caused by the loss or gain of the chromosome segregation regulatory 

genes.

 

 

Figure 5.4- The graph shows the total number of cells for 100 simulations of Configuration A. Each 
simulation is represented as line of different colour, with the median as a thick, black line (calculated 
until one of the simulations came to an end). Homeostatic behaviour was always observed for 
Configuration A. Colours are purely used to distinguish runs and do not denote genetic distribution. 
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b) Results 

Homeostatic behaviour can be observed in Figure 5.4. In normal conditions this kind of 

homeostatic behaviour provides the tissue with robustness if there were a sudden loss of cells 

(wound-healing capabilities), maintaining the total number of cells close to that of the carrying 

capacity of the tissue (200 cells).  

 

c) Analysis 

A comparison of the plot of the total number of cells across the simulations of Configuration A 

revealed the high variability of the simulation outcomes, as seen in Figure 5.4. Thus, it is difficult 

to distil meaningful information with traditional statistical methods. Despite the stochastic nature 

of the final cell number across experiments, an invariant qualitative behaviour can be observed 

for each configuration. To analyse such behaviour, measurements on the average number of 

genes per time step were made. These measurements were then plotted for the 100 simulations of 

Configuration A to generate a Broom Plot of the average number of genes per time step.  

 

The initial genotype, genotype state (2, 2, 2), contains 2 functional copies of each gene (Division, 

Apoptosis and Segregation genes, respectively).  Figure 5.5 shows that, on average the number of 

apoptosis regulatory genes is maintained around the original 2 copies per cell. The same holds 

true for the average number of division regulatory genes, as can be seen in Figure 5.6. It is 

interesting to note, however, that the chromosome segregation regulatory genes have a more 

pronounced behaviour, with a higher deviation across experiments towards the end of the 

simulations (Figure 5.7). The mean reveals that the trend is to gain more copies of the 

chromosome segregation regulatory genes, which makes the cell more chromosomally stable. 

This chromosomal stability has profound effects on genotype diversity, as can be seen in Figure 
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5.8, where the actual number of different genotypes increases throughout the simulation, but the 

rate of increase is less.  

 

For there to be cancer-like behaviour, tumour suppressor genes need to have their function 

reduced and oncogenes in turn must have an increase in their expression. Because the abstracted 

genes that model the role of oncogenes and tumour suppressor genes are found in the same 

chromosome, they become auto-regulated and maintain the balance between the two. As the 

system evolves however, novel genotypes emerge but, because of the auto-regulation of the 

cancer genes, the overall behaviour generated by the new genotypes is similar to that of the 

original cell population, as depicted in Figure 5.4 and Figure 5.8. This leads to a micro diversity 

of homeostatic genotypes.  The measure of diversity that will be considered in this work is the 

number of different genotypes coexisting at a given time point. It is of interest that the more 

successful genotypes naturally acquire more resistance against chromosome missegregation. 

 

Figure 5.5- Measurement of the average number of Apoptosis Gene per time step represented in 
Broom Diagrams for 100 simulations. Each individual simulation is represented as line of different 
colour, with the median as a thick, black line (calculated until one of the simulations came to an end). 
Colours are purely used to distinguish runs and do not denote genetic distribution. 
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Figure 5.6- Measurement of the average number of division genes per time step represented in 
Broom Diagrams for 100 simulations. Each individual simulation is represented as line of different 
colour, with the median as a thick, black line (calculated until one of the simulations came to an end). 
Colours are purely used to distinguish runs and do not denote genetic distribution. 

 

Figure 5.7- Measurement of the average number of segregation regulatory genes per time step 
represented in Broom Diagrams for 100 simulations. Each individual simulation is represented as 
line of different colour, with the median as a thick, black line (calculated until one of the simulations 
came to an end). Colours are purely used to distinguish runs and do not denote genetic distribution. 
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Figure 5.8 Measurement of the genotype diversity per time step represented in Broom Diagrams for 
100 simulations. Each individual simulation is represented as line of different colour, with the 
median as a thick, black line (calculated until one of the simulations came to an end). Colours are 
purely used to distinguish runs. Genotype numbers stabilize towards the end of the simulations. 
 

 

5.3.2. Experiment 2: Gene Distribution B 

a) Objective and Setup 

To better understand the role of the distribution of the genes in the chromosomes, the initial 

configuration was modified to:  

• Chromosome 1: apoptosis regulatory genes 

• Chromosome 2: cell-division regulatory genes and chromosome segregation regulatory genes 

This gene distribution is depicted in Figure 5.9.  
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Figure 5.9- Setup for the distribution of genes into diploid chromosomes for Gene Configuration B. 
   

 

 

 

 Figure 5.10- The graph shows the total number of cells for 100 simulations of Configuration B. Each 
simulation is represented as line of different colour, with the median as a thick, black line (calculated 
until the time step in which any of the simulations first came to an end).  Simulations were stopped 
when they reached 7000 cells. Cancer-like behaviour emerged through the evolution of the system.  
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b) Results 

During the 100-time step experiment, a stable homeostatic behaviour can be observed for a period 

of time. After that homeostatic period however, an uncontrolled proliferative behaviour follows. 

The total number of cells increases exponentially, reaching the values of the order of thousands in 

a very short period of time, as shown in Figure 5.10. This kind of behaviour is obtained across all 

simulations.  

 

 

Figure 5.11- Measurement of the average number of Apoptosis Gene per time step represented in 
Broom Diagrams for 100 simulations for Configuration B. Each individual simulation is represented 
as line of different colour, with the median as a thick, black line (calculated until the time step in 
which any of the simulations first came to an end). Colours are purely used to distinguish runs and 
do not denote genetic distribution. The trend is to lose copies of the genes throughout the evolution of 
the system. 
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Figure 5.12- Measurement of the average number of Division Genes per time step represented in 
Broom Diagrams for 100 simulations of Configuration B. Each individual simulation is represented 
as line of different colour, with the median as a thick, black line (calculated until the time step in 
which any of the simulations first came to an end). Colours are purely used to distinguish runs and 
do not denote genetic distribution. The trend is to gain copies of this gene, which leads to over 
proliferation. 

 

Figure 5.13- Measurement of the average number of Segregation Regulatory Genes per time step 
represented in Broom Diagrams for 100 simulations of Configuration B. Each individual simulation 
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is represented as line of different colour, with the median as a thick, black line (calculated until one 
of the simulations came to an end). Colours are purely used to distinguish runs and do not denote 
genetic distribution. The trend is to gain copies of this gene, leading to more genetically stable 
genotypes. 
 
 

 

Figure 5.14- Measurement of the Genotype Diversity per time step represented in Broom Diagrams 
for 100 simulations of Configuration B. Each individual simulation is represented as line of different 
colour, with the median as a thick, black line (calculated until one of the simulations came to an end). 
Colours are purely used to distinguish runs.  
 

c) Analysis 

 

The loss of function of the tumour suppressor-inspired Apoptosis regulatory genes through 

chromosome missegregation, as seen in Figure 5.11, leads to the generation of a niche of these 

mutants. However, although the activation of the apoptotic mechanisms is reduced, this 

population remains relatively homeostatic until copies of the Division regulatory genes are gained. 

Also, the mean of the curves shows that there is a dampening effect on the loss of the Apoptosis 

genes (Figure 5.12), suggesting the stabilization of that chromosome. Because the Division genes 
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are genetically linked to the Segregation genes, the more proliferative a mutant the cell is, the 

more genetically stable it is (Figure 5.13). It is because of these low levels of chromosome 

missegregation that the genotypes evolve at a slower pace in time, as can be seen in Figure 5.14.  

 

The evolution of the system with low levels of aneuploidy resulted in the generation of few very 

successful mutants that quickly dominated the entire population, suggesting a counterintuitive 

pathway for cancer-like behaviour with low aneuploidy. These kinds of mutations are seen in 

leukaemia, lymphomas and some mesenchymal tumours, where there are simple, disease-specific 

abnormalities (Johansson et al., 1996). 

 

5.3.3. Experiment 3: Gene Distribution C 

a) Objective and Setup 

The next logical combination to try, as seen in Figure 5.15, is: 

• Chromosome 1: cell-division regulatory genes 

• Chromosome 2: and apoptosis regulatory genes and chromosome segregation regulatory 

genes 

 

Figure 5.15- Setup for the distribution of genes into diploid chromosomes for Gene Configuration C. 
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b) Results 

This configuration results in cancer-like behaviour (Figure 5.16). Although similar to the 

overproliferative behaviour that was obtained through the simulations with Gene Configuration B, 

as seen in  Figure 5.10, there are significant differences.    

   

 

Figure 5.16- The graph shows the total number of cells for 100 simulations of Configuration C. Each 
simulation is represented as line of different colour, with the median as a thick, black line (calculated 
until one of the simulations came to an end).  Simulations were stopped when they reached 7000 cells. 
Cancer-like behaviour emerged through the evolution of the system, but at a faster rate than that of 
Configuration B (Figure 5.10).  
 

c) Analysis 

An analysis of the loss and acquisition of genes in the evolution of the system sheds some light 

onto the emergence of the proliferative, cancer-like behaviour. Although the behaviour is similar 

to that of Gene configuration B, the emergence of a genotype that produces the cancer-like 

behaviour happens at an earlier stage and is faster than that observed in Configuration B. As in 

Configuration B, the genes that regulate apoptosis are consistently lost. This time, however, the 
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median shows a tendency to continue losing this gene at the latter stages Figure 5.17; with no 

dampening effect as in the case of Configuration B (Figure 5.11). This is due to two important 

facts. Firstly, because the Division regulatory genes start, on average, gaining copies earlier in 

time (Figure 5.18) than in Configuration B (Figure 5.12), which translates to increased levels of 

cell division early and thus higher chance of chromosome missegregation. Secondly, because the 

Apoptosis regulatory genes and the Segregation regulatory genes are linked, the more resistant a 

genotype becomes to cell death, the more genetically unstable it becomes (Figure 5.19). This 

genetic instability leads to an increase in diversity, as seen in Figure 5.20. Thus, this genetic 

arrangement makes it more likely for advantageous asymmetrical missegregations to take place 

either for the acquisition of oncogenes as well as the loss of tumour suppressors.  

 

Figure 5.17- Measurement of the average number of Apoptosis Genes per time step represented in 
Broom Diagrams for 100 simulations of Configuration C. Each individual simulation is represented 
as line of different colour, with the median as a thick, black line (calculated until one of the 
simulations came to an end). Colours are purely used to distinguish runs and do not denote genetic 
distribution. The trend is to lose copies of this gene. 
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Figure 5.18- Measurement of the average number of Division Genes per time step represented in 
Broom Diagrams for 100 simulations of Configuration C. Each individual simulation is represented 
as line of different colour, with the median as a thick, black line (calculated until one of the 
simulations came to an end). Colours are purely used to distinguish runs and do not denote genetic 
distribution. The trend is to gain copies of this gene, which leads to over proliferation. This 
acquisition is on average considerably faster than in Configuration B (Figure 5.12) 
 

 

The pathway discovered through this Gene Configuration may help shed some light on the reports 

of increasing levels of chromosome instability during premalignant neoplastic progression (Lai et 

al., 2007) and the development of tumours characterized by multiple and nonspecific aberrations, 

similar to most epithelial tumour types (Johansson et al., 1996). 
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Figure 5.19- Measurement of the average number of Segregation regulatory genes per time step 
represented in Broom Diagrams for 100 simulations of Configuration C. Each individual simulation 
is represented as line of different colour, with the median as a thick, black line (calculated until one 
of the simulations came to an end). Colours are purely used to distinguish runs and do not denote 
genetic distribution. The trend is to lose copies of this gene, which leads to chromosomal instability. 
 

 

Figure 5.20- Measurement of the Genotype Diversity per time step represented in Broom Diagrams 
for 100 simulations of Configuration C. Each individual simulation is represented as line of different 
colour, with the median as a thick, black line (calculated until one of the simulations came to an end). 
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Colours are purely used to distinguish runs. The number of different genotypes increases 
dramatically towards the end. 
 

5.3.4. Control Experiment: Gene Distribution D 

a) Objective and Setup 

To generate a control experiment, it was necessary that each gene was unlinked. This brought a 

complication, since an extra chromosome would be needed. It was decided that, although the 

precise numbers may not match the previous experiments due to the genetic rescaling, it was 

important to confirm the results previously obtained. The genetic arrangement, as seen in Figure 

5.21 is as follows: 

• Chromosome 1: cell-division regulatory genes 

• Chromosome 2: apoptosis regulatory genes  

• Chromosome 3: chromosome segregation regulatory genes 

 

Figure 5.21- Setup for the unlinked distribution of genes into diploid chromosomes.  
 

b) Results 

Results indicate that all three previously obtained behaviours can be obtained in this unlinked 

configuration. However, given enough time, overproliferation will ensue as seen in Figure 5.22. 

This overproliferative behaviour takes, on average, longer to occur than the previous two 

overproliferative configurations: Gene distribution B and Gene distribution C. 
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Figure 5.22- The graph shows the total number of cells for 100 simulations of Configuration D. Each 
simulation is represented as line of different colour, with the median as a thick, black line (calculated 
until one of the simulations came to an end).  Simulations were stopped when they reached 7000 cells. 
Cancer-like behaviour emerged through the evolution of the system sometimes until very late in the 
simulation. 
  

 

c) Analysis 

The linking of genes in chromosomes imposes restrictions on the behaviour that can be observed. 

Without such linkage, stochasticity takes over and organizing principles cannot be easily 

extracted. As is the case with the previous experiments, there is a tendency to lose the gene that 

regulates death (Figure 5.23), and a trend to acquire genes that regulate division (Figure 5.24). 

However, the effects of stochasticity are most apparent on the large deviation across experiments: 

some simulations quickly acquire overproliferative behaviours while others remain homeostatic 

for considerably longer; a reflection on having no linkage between the genes.  
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A most interesting case is the plot of the evolution of the Chromosome segregation regulatory 

genes on Figure 5.25. The plot reveals that there is not a clear trend on either the loss or the 

acquisition or this gene. This measurement suggests that when linked with other genes, this 

mutation helps shape the pathway to the tumour initiation and subsequent evolution. On its own, 

however, it has a diminished role in the fate of the system.  

 

The number of genotypes that evolve through this configuration is, on average, higher than in the 

previous configurations Figure 5.26. Although the effects that the acquisition and loss of 

segregation genes play a minor role in this, it is mostly because of the constraints from the gene 

linkage have been removed. Although these results are not directly comparable numerically to the 

previous experiments, they have helped us validate the results from the previous sections, and 

expanded our understanding of the key genetic transitions that occur throughout the evolution of 

the system. 
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Figure 5.23- Measurement of the average number of Apoptosis regulatory genes per time step 
represented in Broom Diagrams for 100 simulations of Configuration D. Each individual simulation 
is represented as line of different colour, with the median as a thick, black line (calculated until one 
of the simulations came to an end). Unlinked from other genes, the tendency was to lose this gene. 
 

 

Figure 5.24- Measurement of the average number of Division regulatory genes per time step 
represented in Broom Diagrams for 100 simulations of Configuration D. Each individual simulation 
is represented as line of different colour, with the median as a thick, black line (calculated until one 
of the simulations came to an end). Unlinked from other genes, the tendency was to gain copies this 
gene. 
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Figure 5.25- Measurement of the average number of Segregation regulatory genes per time step 
represented in Broom Diagrams for 100 simulations of Configuration D. Each individual simulation 
is represented as line of different colour, with the median as a thick, black line (calculated until one 
of the simulations came to an end).  Unlinked from other genes, there is no general tendency on 
losing or acquiring this gene. 
 

 

Figure 5.26- Measurement of the Genotype Diversity per time step represented in Broom Diagrams 
for 100 simulations of Configuration D. Each individual simulation is represented as line of different 
colour, with the median as a thick, black line (calculated until one of the simulations came to an end). 
Colours are purely used to distinguish runs.  
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5.4. Significance and Discussion 

Simulations of Gene Distribution A resulted in homeostatic behaviour, in which the system as a 

whole responds to fluctuations in cell number to maintain the total number of cells close to that of 

the carrying capacity of the tissue (200 cells). As expected, the plot of the total number of cells 

across the simulations of Distribution A, as seen in Figure 5.4, revealed increasing variability in 

the genetic make-up of individual cells over time as the result of chromosome missegregation 

induced genetic drift; similar to that which might be seen in an ageing homeostatic tissue. 

Although this variation makes the statistical analysis challenging, an invariant behaviour can be 

observed for each configuration; best visualized by broom plots. In this case, because the 

abstracted genes that model the role of oncogenes and tumour suppressor genes were coupled by 

being situated on the same chromosome, the balance between death (Figure 5.5) and division 

(Figure 5.6) was maintained despite the generation of new genotypes (Figure 5.8) emerged 

through chromosome missegregation events (Figure 5.7). Significantly, some of the more 

successful genotypes naturally acquired more resistance against chromosome missegregation, 

through the acquisition of an extra copy of the chromosome segregation regulatory gene (such as 

genotype states (2,2,3), (3,3,3) and (1,1,3)).  

 

For Gene Distribution B, the gradual accumulation of chromosome missegregation events leads 

to a breakdown in homeostatic behaviour, giving rise to uncontrolled proliferation, as seen in 

Figure 5.10. Once this occurred, total cell number increased exponentially, reaching the values of 

the order of thousands in a very short period of time. This kind of overproliferative behaviour was 

consistent across simulations. Emergent aneuploid genotypes evolved through Gene Distribution 

B, would create mutants either increasing proliferation (and stability), such as (3,2,3); or reducing 

the probability of Apoptosis, as in genotype (2,1,2). From these aneuploid genotypes, initially 

only slightly different to the original one, the population branches out to generate more malignant 
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genetically distinct variants such as (3,1,3) and (2,0,2). Different kinds of successful (and less 

successful) genotypes are gradually evolved. Successful genotypes have the qualities of being 

apoptosis-resistant (low number of apoptosis genes) and overproliferative (increased number of 

division genes). In this distribution, however, because the genes that regulate division are coupled 

to those that regulate fidelity during segregation, there is a brake applied to the subsequent 

generation of aneuploid genotypes with increased division rates. As a result, this population of 

aneuploid cells remained relatively homogeneous once cells had acquired the key genetic 

anomalies driving deregulated tumour growth. This kind of evolution observed across 

experiments suggests a possible pathway for oncogenesis that is associated with stable aneuploidy. 

Diseases such as leukaemia, lymphomas and some mesenchymal tumours that exhibit specific 

abnormalities may follow a similar path (Johansson et al., 1996). 

 

 

Figure 5.27- A Plot of the average of the ratios of Apoptosis Genes to Division Genes for the four 
configurations. Configuration A keeps the same ratio of 1 throughout the simulations. 
Configurations B, C and D tend to lower this ratio with different slopes, characteristic of their own 
characteristic internal dynamics. 
 

Simulations of Gene Distribution C displayed overproliferative behaviour, similar to that of Gene 

Distribution B (Figure 5.16). On a closer inspection, however, significant differences in the 

dynamics of cancer evolution were observed. Because the genes that regulate death are 
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genetically linked to those that regulate segregation in Gene Distribution C, cancer evolution was 

accompanied by an increase genotypic diversity as the loss of apoptosis regulators drive an 

increase in aneuploidy, such as genotype (3,1,1) and then a more malignant genotype (3,0,0). This 

in turn drives to the emergence of ever more aggressive clones such as  (4,0,0), (5,0,0) and (6,0,0), 

which corresponds to a 3-fold increase in the rate of cell proliferation. This serves as a model for 

the emergence of heterogeneous tumours, like those seen in clinical settings, for example during 

the neoplastic progression characteristic of epithelial tumours (Lai et al., 2007) (Johansson et al., 

1996).  

 

These simulations for Distribution B and C show how chromosome missegregation events can 

drive tumour evolution by inducing a change in the balance of regulators that maintain normal 

tissue homeostasis. Our control experiment Distribution D shows that gene linkage plays a key 

role in the kind of aneuploidy that is obtained through chromosome missegregation. As can be 

seen on the broom plot for Chromosome Segregation regulatory genes (Figure 5.25), when 

unlinked, the gene that regulates chromosome missegregation follows a stochastic drift, while the 

division and apoptosis regulatory genes continue their previous trends (Figure 5.24 and Figure 

5.23, respectively). Taken together these experiments recapitulate some of the findings of 

Komarova, in which evolutionary pathways differ whether chromosomal instability is an early 

event in oncogenesis or not (Komarova et al, 2003). 

 

Finally, a plot of the average of the ratio between Apoptosis regulatory genes and Division 

regulatory genes across the different configurations (Figure 5.27) reveals that, although the trends 

of behaviour are similar across Configurations B, C each one has a different slope ("an average 

slope of -0.0080 for Configuration B and -0.0116 for Configuration C) which reflects a 

configuration-specific mechanism that is heavily influenced by the Chromosome segregation 
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regulatory genes. This graph shows Configuration C as having the steepest slope, which 

correlates with a more aggressive behaviour. On average, simulations of Configuration C reached 

the simulation limit of 7000 cells 10 time steps earlier than those of Configuration B (last average 

time step in simulations for Configuration B is 127.78 and 117.87 for Configuration C). 

 

5.5. Summary 

In this chapter a computational model was created in order to investigate the role of chromosome 

missegregation in tumour evolution. By integrating the concept of chromosome missegregation in 

an otherwise homeostatic model, new genotypes were evolved. Those evolved genotypes that 

enabled cells to express high levels of cell division genes and low levels of cell death genes 

quickly spread through the population. Two different pathways to overproliferative behaviour 

were found: one chromosomally stable (Configuration B) and one chromosomally unstable 

(Configuration C). The questions proposed in Section 5.2 can now be answered. 

 

Are there any kinds of genetic arrangements through which chromosome missegregation 

may lead to the disruption of homeostasis? 

From experiments carried out, it was only Configuration A, which remained homeostatic through 

its entire evolution. An analysis of the genetic evolution revealed that the linkage between genes 

that regulate division and segregation was responsible for maintaining the balance in the event of 

chromosome missegregation. If these kinds of genes are uncoupled, the balance may be broken 

which may lead to the disruption of homeostasis.  

 

If there are any overproliferative behaviours, could they be classified according to their 

evolution given a set of genetic constraints? 
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Two main pathways were found to occur, depending on the type of insult to the genetic integrity. 

  

Are there any key genetic transitions that could result in the disturbance of homeostasis? 

If the first hit is the loss of tumour suppression (Gene Configuration B), cells endure for longer 

despite stress conditions. This resistance to apoptosis makes it more likely for cells to acquire an 

oncogene with time and then combine the death resilience with an increase in cell proliferation, 

leading finally to tumourigenesis.  If the first hit is the activation of an oncogene (like in Gene 

Configuration C), increased proliferation is counterbalanced at first by a high death rate until the 

activation of tumour suppression occurs. These results are consistent with the observed activation 

of oncogenes and loss of tumour suppressor genes in tumours (Michor, Iwasa, & Nowak, 2004).  

 

Does the distribution of genes in chromosomes have a role on the disturbance of 

homeostasis and over proliferation through the mechanism of chromosome missegregation? 

Although the model makes a number of assumptions, including the assumption that the number of 

copies of a gene has a direct effect on the up or down regulation of that gene, the interactions and 

results can be interpreted in terms of actual biological behaviour (i.e.; the up or down regulation 

of an oncogene or a tumour suppressor gene). The model suggests that through chromosome 

missegregation, the arrangement of genes on chromosomes has a profound effect on genetic 

diversity, giving rise to different kinds of cancer-like behaviours, which resemble key differences 

observed in real cancers (Cahill et al., 1999). These results are dependent on the modelling 

decision regarding contact inhibition affecting apoptosis. 

 

The role that chromosome segregation regulatory genes play in this model is largely determined 

by their position with respect to the other genes in the chromosomes. The model suggests that 

high levels of chromosome missegregation lead to a genetic diversity that helps cells overcome 
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the low probability of oncogenic mutations, as shown in the analysis of Gene Configuration C. 

Surprisingly, low levels of chromosome missegregation may also give rise to a different kind of 

cancer-like behaviour, as shown in the simulations of Gene Configurations B. By maintaining a 

relatively uniform population, specific mutations are conserved and spread throughout the 

population until a cancer-like genotype is reached. To determine the precise role that 

chromosome segregation regulatory genes have in cancer systems, the development of 

appropriate tools for statistical analysis and further experiments are needed.   
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6. Cancer Therapies and Chromosome Missegregation 

6.1. Introduction 

From the experiments on the model in the previous chapter, it was found that cancer-like growth 

will ensue if the number of oncogenes increases and/or if tumour suppressors are lost. However, 

it was also revealed that there is a high level of variability across experiments. This variability is 

the kind of biological variability that is found in real cancer systems. Like the simulations, no two 

cancers are the same. This has made the process of extracting general organizing principles from 

in vivo and in vitro experiments very difficult. It is anticipated that the model developed in this 

work can help address this issue. Because the computer uses a pseudo random number generator, 

which uses a seed number, individual simulations are reproducible. This gives us the unique 

situation in which it is possible to explore the outcome of different treatments on the exact same 

individual simulation. With the tools developed, we set out to simulate the two most common 

cancer therapies: surgery and chemotherapy, and investigate the effects that chromosome 

missegregation has on them. 

 

No two tumours are alike, as our computational model has highlighted in the previous chapter. 

Because of this, one of the main goals of cancer research is to be able to offer individualized 

diagnoses and treatments. In the clinic, the most common cancer treatments are surgery and 

chemotherapy. Surgery, the oldest form of cancer treatment, is often used to remove localized 

tumours. Chemotherapy uses drugs to control rapidly dividing cancer cells.  Physicians often use 

a combination of these treatments to obtain the best results.  

 

Usually, when a patient is diagnosed with cancer, treatment methods are determined based on the 

kind of cancer, its location and its stage. However, the genetic stability of the tumour is 
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something that is not usually considered. Although chromosome instability has been associated 

with poor prognosis, the precise role that chromosome missegregation has on the mechanisms of 

cancer a therapy is poorly, if at all, understood. Biological experiments may address some of the 

issues surrounding this phenomenon. Our model can help develop insights regarding the role of 

chromosome missegregation under diverse therapeutic scenarios. These insights may be used to 

help devise biological experiments, and bridge the gap between the laboratory and the clinic. 

 

6.2. Questions in Cancer Therapies 

It is currently unknown how chromosome missegregation affects cancer therapies. However, it 

has been recently proposed that chromosomally unstable cancers, such as the ones modelled by 

Configuration C, have a poorer prognosis than stable cancers, such as the ones addressed by 

Configuration B (Swanton, Nicke, Marani, Kelly, & Downward, 2007). With the computational 

tool developed in the previous chapter, it is possible to tackle some of the questions that cannot be 

addressed in vitro or in vivo. In this work we address these specific questions:  

• Is there a genetic configuration that has a better general prognosis? 

• Are there key genetic events in the evolution of tumours that make them more or less 

susceptible to cancer treatments?  

• Are there any predictive markers for a successful therapy?(Walther et al., 2009) 

 

To address such questions, cancer therapies must be abstracted and then incorporated in the 

context of the model developed. 

6.3. Simulating Cancer Therapies 

In patients, tumours composed of cells that are chromosomally unstable have been associated 

with a poor prognosis (Swanton et al., 2009). Therefore, it was decided to used Gene Distribution 
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B (Figure 6.1.A) and Gene Distribution C (Figure 6.1.B) to determine the relative efficacy of 

different treatment strategies in dealing with tumour evolution under conditions of low and high 

levels of genome instability. Because configuration D served as a null experiment, it will not be 

used in the experiments for this section. 

 

A.    B. 

   

Figure 6.1- Genetic configurations used to evaluate the role of chromosome missegregation in cancer 
therapies. 
 

Although in real cancer, treatment occurs late in the development of the tumour, the model 

developed can still address this relevant question because we have considered an initial high rate 

of chromosome missegregation, such as the one observed in early tumours and some cancer cells. 

Because of the previously discussed computational limitations (Chapter 4), we considered that 

tumour detection would occur when the population reached 1000 cells (10 times the initial size of 

the population). It will be at this step that treatment will be administered. This modelling decision 

was based on the numbers of cells that are considered in wet-lab experiments (see Chapter 7), for 

which this model could serve as a guide without any re-scaling. By the same standard, we 

considered that the tumour had relapsed when it again reached the 1000 cell mark after treatment. 

To make these comparable to the simulations obtained in the previous chapter, it will be 

considered that a simulation has reached the end (the death of the organism) at 7000 cells. 
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With these considerations, we modelled the outcome of different treatments on a single tumour 

(or patient, if the system is re-scaled), so that we could directly compare the outcomes in each 

case, despite the expected variability in the course of tumour growth between different 

simulations (tumours/patients).  

 

6.4. Scenario i: Surgical Treatment 

6.4.1. Objective and Setup 

For these experiments, the same system as described in Section 5.3 was used. For Gene 

Configuration B (Section 5.3.2) and Configuration C (Section 5.3.3), the overproliferative 

genotypes, surgery was implemented at the time step when each simulation reached 1000 cells. 

The simulation of tumour removal was implemented by eliminating 90% of the cells, regardless 

of the cell type. The simulation is considered to have relapsed when, after the surgery, it grows 

back to 1000 cells and beyond. 100 simulations with each configuration, with the same seeds as 

those described in Section 5.4, were performed. 

 

6.4.2. Results 

Invariantly, the tumour recovers and grows back, as can be seen in Figure 6.2. Complete relapse 

takes place once the size of the population reaches again 1000 cells. The most distinctive 

difference between the two Gene Configurations, from Figure 6.2, is the average time of relapse. 

Configuration C (Figure 6.2.B) has, on average, a faster relapse than Configuration B (Figure 

6.2.A). This difference is a reflection of the internal dynamics: the gain and loss of oncogenes and 

tumour suppressors, which is regulated by the genetic instability. This is best visualized by broom 

plots with data re-centered around the time of therapy. Unlike the broom plots shown in the 

previous chapter, in which all data sets are shown to start at time step 0, these plots have starting 
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points at different time steps. This starting offset was calculated so that all the graphs share the 

same start of therapy time point: the time step when each individual run initially reaches 1000 

cells. With the time of start therapy as an alignment point, it is easier to understand the 

relationship between key genetic aspects of simulations and the therapies. 

 

As seen in the broom plots, the consistent loss of the Apoptosis Genes (Figure 6.3) reveals the 

different ways surgery interacts with the dynamics of specific genetic arrangements. For 

Configuration B (Figure 6.3.A), surgery appears to stabilize, on average, the loss of the tumour 

suppressor. In contrast, Configuration C  (Figure 6.3.B) seems to maintain the same rate of loss of 

Apoptosis Genes as before the treatment. The effect of surgery on Division regulation genes is 

more subtle. Configuration B (Figure 6.4.A) has a shift, on average, back towards the original 

diploid state. The slope of the rate of gain of this oncogene however remains the same. 

Configuration C (Figure 6.4.B) has a bigger shift towards diploidy: however, this gain is only 

temporary. The slope of the rate of gain changes after surgery in such a way that the acquisition 

of Division Genes is, on average, faster than before surgery.  

 

Surgery has a noticeable effect on the Segregation Genes for the chromosomally stable 

Configuration B (Figure 6.5.A), than for the chromosomally unstable Configuration C (Figure 

6.5.B). However, on average, the slope of the rate of acquisition (Configuration B) and loss 

(Configuration C) seem to be unaffected by this therapy. This is reflected on the emergence of 

new genotypes. Configuration B (Figure 6.6.A) continues to generate new genotypes at a linear 

progression after surgery, while Configuration C (Figure 6.6.B) generates increasing diversity. 

Removing more than 90% of the tumour may cause even more variable results. For example, 

removing 99.9% of the cells would result in leaving 1 cell that could be from the precancerous 

cell population, or one of the most aggressive clones.  
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A. 

 

B. 

 

Figure 6.2 Total number of cells for simulated Surgery. A. 100 simulations for Configuration B. B. 
100 simulations for Configuration C. Each simulation is represented as line of different colour, with 
the median as a thick, black line (calculated until one of the simulations came to an end). Simulations 
were re-aligned with respect to the time step in which treatment starts.   
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A. 

 

B. 

 

Figure 6.3- Measurement of the average number of Apoptosis Genes under Surgery scenario in 
Broom Diagrams A. 100 simulations of Configuration B. B. 100 simulations of Configuration C. Each 
individual simulation is represented as line of different colour, with the median as a thick, black line 
(calculated until one of the simulations came to an end). Simulations were re-aligned with respect to 
the time step in which treatment starts 
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A. 

 

B. 

 

Figure 6.4- Measurement of the average number of Division Genes under Surgery scenario in Broom 
Diagrams A. 100 simulations of Configuration B. B. 100 simulations of Configuration C. Each 
individual simulation is represented as line of different colour, with the median as a thick, black line 
(calculated until one of the simulations came to an end). Simulations were re-aligned with respect to 
the time step in which treatment starts  
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A. 

 

B. 

 

Figure 6.5- Measurement of the average number of Segregation Genes under Surgery scenario in 
Broom Diagrams A. 100 simulations of Configuration B. B. 100 simulations of Configuration C. Each 
individual simulation is represented as line of different colour, with the median as a thick, black line 
(calculated until one of the simulations came to an end). Simulations were re-aligned with respect to 
the time step in which treatment starts.   
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A. 

 

B. 

 

Figure 6.6- Measurement of the Genotype Diversity under Surgery scenario represented in Broom 
Diagrams A. 100 simulations of Configuration B. B. 100 simulations of Configuration C. Each 
individual simulation is represented as line of different colour, with the median as a thick, black line 
(calculated until one of the simulations came to an end). Colours are purely used to distinguish runs. 
Simulations were re-aligned with respect to the time step in which treatment starts.  
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6.5. Scenario ii: Chemotherapy 

6.5.1.  Objective and Setup 

Chemotherapy, in real clinical settings, consists of drugs that selectively kill rapidly dividing cells 

(McClelland et al., 2009). For these simulations, the same system as described in Section 5.3 was 

used: Gene Configuration B (Section 5.3.2) and Configuration C (Section 5.3.3). This procedure 

was implemented as an algorithm that killed all the cells that attempted cell division in the nine 

consecutive time steps following tumour detection; when the simulation reaches 1000 cells. A 

simulation is considered to have relapsed when reaching again 1000 cells, and the death of the 

organism at 7000 cells. 100 simulations with each configuration, with the same seeds as those 

described in Section 5.4, were performed. 

 

6.5.2. Results 

After the therapy, simulations invariantly relapse. Like the simulation of Surgery (Scenario i), 

tumours seem to take a reduction of the order of 90% after the nine rounds of Chemotherapy. 

This reduction is short lived however, as the tumour recovers and continues to grow 

exponentially (Figure 6.7). As is the case for surgery, Gene Configuration B (Figure 6.7.A) has, 

on average, a longer relapse time than Configuration C (Figure 6.7.B). 

 

In contrast to Scenario i (surgery), Chemotherapy has a more gradual impact on the evolution of 

new genotypes. Although the consistent loss of the Apoptosis Regulatory Gene for Configuration 

B (Figure 6.8.A) and Configuration C (Figure 6.8.B) appear to be only lightly dampened, the 

consistent gain of Division Genes has a noticeable offset for both Configuration B (Figure 6.9.A) 

and Configuration C (Figure 6.9.B). As in Scenario i, the rate of gain of Division Genes in 

Configuration B is maintained, whereas the rate of Configuration C increases after therapy.    
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An interesting situation occurs with respect of the Segregation Genes. Configuration B usually 

acquires Segregation Genes in its evolution. However, because of therapy, Configuration B 

(Figure 6.10.A) loses a considerable number of Segregation Genes, as it is driven back towards an 

average diploidy. Hence, these cells become on average more genetically unstable after therapy. 

In contrast, Configuration C (Figure 6.10.B) conserves the linear rate of loss of this kind of genes 

after therapy. The Genetic Diversity, the number of different genotypes at any time step, is on 

average higher for Configuration C (Figure 6.11.B), than for Configuration B (Figure 6.11.A). 

Also Configuration B on average responds better than Configuration C to Chemotherapy.  
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A. 

 

B. 

 

Figure 6.7- Total number of cells for simulated Chemotherapy. A. 100 simulations for Configuration 
B. B. 100 simulations for Configuration C. Each simulation is represented as line of different colour, 
with the median as a thick, black line (calculated until one of the simulations came to an end). 
Simulations were re-centered around the start of treatment.   
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A. 

 

B. 

 

Figure 6.8- Measurement of the average number of Apoptosis Genes under Chemotherapy scenario 
in Broom Diagrams A. 100 simulations of Configuration B. B. 100 simulations of Configuration C. 
Each individual simulation is represented as line of different colour, with the median as a thick, 
black line (calculated until one of the simulations came to an end). Simulations were re-aligned with 
respect to the time step in which treatment starts.   
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A. 

 

B. 

 

Figure 6.9- Measurement of the average number of Division Genes under Chemotherapy scenario in 
Broom Diagrams A. 100 simulations of Configuration B. B. 100 simulations of Configuration C. Each 
individual simulation is represented as line of different colour, with the median as a thick, black line 
(calculated until one of the simulations came to an end). Simulations were re-aligned with respect to 
the time step in which treatment starts.   
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A. 

 

B. 

 

Figure 6.10- Measurement of the average number of Segregation Genes under Chemotherapy 
scenario in Broom Diagrams A. 100 simulations of Configuration B. B. 100 simulations of 
Configuration C. Each individual simulation is represented as line of different colour, with the 
median as a thick, black line (calculated until one of the simulations came to an end). Simulations 
were re-aligned with respect to the time step in which treatment starts.   
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A. 

 

B. 

 

Figure 6.11- Measurement of the Genotype Diversity under Chemotherapy scenario represented in 
Broom Diagrams A. 100 simulations of Configuration B. B. 100 simulations of Configuration C. Each 
individual simulation is represented as line of different colour, with the median as a thick, black line 
(calculated until one of the simulations came to an end). Colours are purely used to distinguish runs. 
Simulations were re-aligned with respect to the time step in which treatment starts.   
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6.6. Scenario iii: Combination Therapy  

6.6.1. Objective and Setup 

As in common in the clinic, due to a significant improvement in overall survival, it was decided 

to model surgery combined with postoperative adjuvant chemotherapy (X. Wu et al., 2011). This 

combination was modelled by implementing surgery, the removal of 90% of tumour mass as 

described in Scenario 1; followed by 9 rounds of chemotherapy, the systematic killing of cells 

that enter mitosis during the 9 therapy time steps. For these experiments, the same system as 

described in Section 5.3 was used. 100 simulations for Gene Configuration B (Section 5.3.2) and 

Configuration C (Section 5.3.3), with the same seeds as those described in Section 5.4, were 

performed. 

 

6.6.2. Results 

As in the clinic, the combination of both treatments yield more noticeable results towards longer 

survival times of both configurations, as can be seen in a plot for the total number of cells for 

Configuration B (Figure 6.12.A) and Configuration C (Figure 6.12.B). Broom Plots for the loss of 

Apoptosis Regulatory Genes for Configuration B (Figure 6.13.A) and Configuration C (Figure 

6.13.B) reveal that the initial cell removal creates an offset for the average number of apoptosis 

genes, bringing the average back to the original diploid state. After this, chemotherapy maintains 

this gene stable. However, at the end of therapy, there is a linear relapse for both configurations.  

 

During this Combination Therapy, the number of Division Genes continues decreasing after the 

initial offset caused by surgery. Configuration B (Figure 6.14.A) has a larger rate of decrease 

compared to Configuration C (Figure 6.14.B). Afterwards, both configurations have a linear gain 
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of this kind of oncogene, with Configuration C having a higher rate of acquisition than 

Configuration B. 

 

Segregation Genes in Configuration B (Figure 6.15.A) have a similar response as in Scenario ii: 

The gene has a linear rate of loss towards diploidy, making it less genetically stable for the 

duration of therapy. Afterwards, the rate of gain of this gene is reinstated. For Configuration C 

(Figure 6.15.B), There is an initial offset that increases the average number of this gene. 

Synergizing with this initial reduction, chemotherapy maintains this gene stable for the duration 

of the therapy, making cells are more genetically stable. 

 

During treatments, the number of different genetic populations in the simulation is reduced in 

both configurations. After treatments, Configuration B has stabilized its genotype diversity 

(Figure 6.16.A), while that in Configuration C continues to increase linearly (Figure 6.16.B).  
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A. 

 

B. 

 

Figure 6.12- Total number of cells for the simulation of Combined Treatments. A. 100 simulations 
for Configuration B. B. 100 simulations for Configuration C. Each simulation is represented as line 
of different colour, with the median as a thick, black line (calculated until one of the simulations 
came to an end). Simulations were re-aligned with respect to the time step in which treatment starts.   
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A. 

 

B. 

 

Figure 6.13- Measurement of the average number of Apoptosis Genes for a scenario of Combined 
Treatments in Broom Diagrams A. 100 simulations of Configuration B. B. 100 simulations of 
Configuration C. Each individual simulation is represented as line of different colour, with the 
median as a thick, black line (calculated until one of the simulations came to an end). Simulations 
were re-aligned with respect to the time step in which treatment starts.   
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A. 

 

B. 

 

Figure 6.14- Measurement of the average number of Division Genes for a scenario of Combined 
Treatments in Broom Diagrams A. 100 simulations of Configuration B. B. 100 simulations of 
Configuration C. Each individual simulation is represented as line of different colour, with the 
median as a thick, black line (calculated until one of the simulations came to an end). Simulations 
were re-aligned with respect to the time step in which treatment starts.   
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A. 

 

B. 

 

Figure 6.15- Measurement of the average number of Segregation Genes for a scenario of Combined 
Treatments in Broom Diagrams A. 100 simulations of Configuration B. B. 100 simulations of 
Configuration C. Each individual simulation is represented as line of different colour, with the 
median as a thick, black line (calculated until one of the simulations came to an end). Simulations 
were re-aligned with respect to the time step in which treatment starts.   
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A. 

 

B. 

 

Figure 6.16- Measurement of the Genotype Diversity under Combined Treatment scenario 
represented in Broom Diagrams A. 100 simulations of Configuration B. B. 100 simulations of 
Configuration C. Each individual simulation is represented as line of different colour, with the 
median as a thick, black line (calculated until one of the simulations came to an end). Colours are 
purely used to distinguish runs. Simulations were re-aligned with respect to the time step in which 
treatment starts.   
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6.7. Analysis 

For the analysis of such complex interactions, a set of new tools was developed. These tools will 

be explained and then referred to through the analysis section. 

6.7.1. Analysis Tools 

a) Heat Maps 

Because we tested the therapies with simulations that have the same integral state, it is very 

useful to compare the outcome of therapies for those individual simulations across the different 

scenarios. For this, we developed Heat Maps as a way to visually analyse the relapse time for 

individual simulations across experiments. This was accomplished by writing Mathematica code 

that reads the text-based output of the C++ simulation, as described in Section 5.2, in which the 

entire state of the simulation, time step by time step, is stored. As the Mathematica code reads the 

entire set of simulations, it generates a record of the time of relapse for each simulation; when 

cells grow back to 1000 after treatment. The Mathematica output is then fed into graphics 

software, in this case Excel, to produce the visual output that is required. This is done by using a 

Visual Basic script to assign a colour to each configuration based on its time of relapse. This 

produces a Heat Map in which the best outcomes (the ones with the most delayed relapse time) 

across simulations were coloured blue, and the ones with the worst outcomes were coloured red, 

as seen in Figure 6.17. 
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   95ts 14ts 

Figure 6.17- Sample of a Heat Map for relapse of a Genetic Configuration. Columns are the different 
scenarios, while rows are the individual simulations. The Heat Map scale goes from better prognosis 
(the longest relapse time was 95 time steps, and was assigned blue at one end of the spectrum) to 
worse prognosis (the shortest relapse time was 14 time steps, and was assigned red at the other end of 
the spectrum) according to the scale shown. The number of time steps was determined through a 
Mathematica code, as described in Section   6.7.1.a. 
 

b) Marble Diagrams 

To better understand the key genetic alterations and cellular processes that affect the treatments, 

interesting simulations can be individually analysed. This can be accomplished by generating a 

Heat Map for the entire set of simulations (Figure 6.17) and then selecting those that, based on 

the results obtained in the previous section, could give us a representative view into the evolution 

of the genotypes. From the Heatmap, two representative simulations of each configuration, one 

with the best general prognosis and one with the worst general prognosis can give us a better 

insight on specific genetic events. These can then be plotted as Marble Diagrams, where the 

stacked percentage of Genetic Diversity across time can be visualized, as seen in Figure 6.18.  
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Time Steps     

Figure 6.18- Sample of a Marble Diagram. The percentage that a given genetic population, such as 
the initial genotype (2,2,2), occupies in the genotype population is calculated across time. Each 
genotype is assigned a colour and plotted as a stacked percentage within the population. The 
dominant populations change across time, and the dynamics of the diminishing and emergent 
genotypes are visualized. In this example the proportion of the population with genotype (2,2,2) green 
reduces as new genotypes (2,1,2) orange and (3,2,3) purple increase by time step 75. By the end of the 
simulation these are now reducing as genotypes (2,0,2) dark green and (3,0,3) dark purple take over, 
with yet more genotypes (4,1,4) red and (4,0,4) cyan starting to emerge. 
 

c) RGB Diagrams 

It is of interest to understand the key similarities that the two simulations with the best prognosis 

have. We determined that a visual comparison between the two was required. Fort this, an RGB 

scale was implemented. Colours in the RGB model are defined by three components (Figure 

6.23). Because of this, a three-dimensional volume is described by treating the component values 

as ordinary Cartesian coordinates in a Euclidean space. For the RGB model, this is represented by 

a cube using non-negative values within a 0–1 range, assigning black to the origin at the vertex (0, 

0, 0), and with increasing intensity values running along the three axes up to white at the vertex (1, 

1, 1), diagonally opposite black. An RGB triplet (red, green, blue) represents the three-

dimensional coordinate of the point of the given colour within an RGB colour cube, or its faces or 

along its edges in a simplified version. This approach allows computations of the colour 

similarity of two given RGB colours by simply calculating the distance between them: the shorter 
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the distance, the higher the similarity. We have taken advantage of this to describe the different 

genotypes that evolve in our system by normalizing the maximum observed Genotype State (The 

triplet  used for gene quantification, as described in Chapter 5.3). We have assigned a colour to 

each of the abstracted genes: Red for division, green for death and blue for segregation; or in 

triplet notation (Division=Red, Apoptosis=Green, Segregation=Blue), as seen in Figure 6.19. By 

comparing the similarity of the colours assigned to a given genotype, we are able to tell visually 

the proportions in which the genes are distributed, with intensity values corresponding to the 

number of genes: (0,0,0) being black, the initial genotype (2, 2, 2) being dark grey and the 

maximum observed genotype of interest (5, 5, 5) being white.  

 

 

        
Time Steps    

Figure 6.19- A sample RGB Diagram. We have used the RGB colour model, as seen to the left, to 
visually describe the different genotypes that evolve in the system by normalizing the maximum 
observed Genotype State (Division, Apoptosis, Segregation). We have assigned a colour to each of the 
abstracted genes: red for division, green for death and blue for segregation. By comparing via an 
RGB system the colours assigned to a given genotype, we are able to tell visually the proportions in 
which the genes are distributed, with intensity values corresponding to the number of genes: (0,0,0) 
being black, the initial genotype (2, 2, 2) being dark grey and the maximum observed genotype of 
interest (5, 5, 5) being white. In this example, we start with grey (2,2,2). The proportion of the 
population with genotype (2,2,2) grey reduces as new genotypes (3,2,3) grey-pink and (2,1,2) purple 
increase by time step 75. By the end of the simulation these are now reducing as genotypes (3,1,3) 
pink and (2,0,2) purple take over. Purple represents a mixture of a genotype with Segregation and 
Division genes, with no Apoptosis Genes. Green genotypes, those still containing copies of the 
Apoptosis Gene disappear at the end of the simulation.  
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d) Statistical tests  

For the statistical tests we used an unpaired t-test (Rochon, Gondan, & Kieser, 2012) to determine 

if the means of the results in our two sets of experiments (Configuration B and C) are 

significantly different in key aspects of simulated treatments. Our null hypothesis is that the 

observed response of the two configurations to treatments is due to chance. The alternative 

hypothesis is that the observed response to treatments depends on the configuration. For the tests, 

we have assumed a two-tailed distribution and equal variance. 

 

6.7.2. Analysis 

Sections 6.4, 6.5 and 6.6 investigated the dynamics of each gene across the simluations; how 

therapies affected these dynamics and the impact on the number of different genotypes in the cell 

populations. We now analyse the results from those experiments using the new analysis tools. It 

was decided to search for those simulations with the best and worse prognosis. Heat Maps were 

used to search for this information. It is important to note that all results depend on the settings 

used and may not be valid for other values. 

 

When the simulation of tumour removal surgery was implemented by eliminating all but 10% of 

cells in the tissue (Scenario i), results were highly variable and depended on the kind of tumour 

cells that survived (Figure 6.2). Though the actual evolutionary pathways exhibit a high degree of 

variation across simulations, a pair of representative Marble Diagrams for each gene distribution 

captured the kinds of evolutionary pathway that most of the simulations followed, as shown in 

Figure 6.21 for Configuration B and Figure 6.22 for Configuration C.  
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95ts 14ts 

Figure 6.20- Heat Map for relapse of Configuration B (left) and Configuration C (right). Columns 
are the different scenarios, while rows are the individual simulations. The Heat Map scale goes from 
better prognosis (95 time steps, blue) to worse prognosis (14 time steps, red) according to the scale 
shown. 

Configuration B Relapse Time Configuration C Relapse Time
Exp Surgery Chemo Combined Exp Surgery Chemo Combined

1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
11 11
12 12
13 13
14 14
15 15
16 16
17 17
18 18
19 19
20 20
21 21
22 22
23 23
24 24
25 25
26 26
27 27
28 28
29 29
30 30
31 31
32 32
33 33
34 34
35 35
36 36
37 37
38 38
39 39
40 40
41 41
42 42
43 43
44 44
45 45
46 46
47 47
48 48
49 49
50 50
51 51
52 52
53 53
54 54
55 55
56 56
57 57
58 58
59 59
60 60
61 61
62 62
63 63
64 64
65 65
66 66
67 67
68 68
69 69
70 70
71 71
72 72
73 73
74 74
75 75
76 76
77 77
78 78
79 79
80 80
81 81
82 82
83 83
84 84
85 85
86 86
87 87
88 88
89 89
90 90
91 91
92 92
93 93
94 94
95 95
96 96
97 97
98 98
99 99
100 100



 

 

194 

 

 

 Marble Diagrams for Configuration B (Figure 6.21) reveal that treatments effectively reduce the 

size of some genetic populations, while leaving room for a small number of populations to 

dominate the relapsed tumour. From these diagrams, it can be appreciated how the recovery of 

genotypes with better tumour suppression, as denoted in the triplet Genotype Notation (Division, 

Apoptosis, Segregation), lead to a better prognosis.  

 

On the other hand Marble Diagrams for Configuration C (Figure 6.22) reveal that Genetic 

Instability plays a key role in determining the prognosis of a tumour. Simulations with better 

prognosis (Figure 6.22.i) have recovered some tumour suppression in the form of Division Genes, 

and some stability in the form of Segregation Genes. However, a more chromosomally unstable 

simulation (Figure 6.22.ii) reveals that once tumour suppression is lost, a few, highly aggressive 

genotypes will take over the population even in the presence of therapies. To directly compare the 

two overproliferative configurations, it was decided to use a colour-coding key to represent the 

information as the RGB Diagrams. 

 

A more direct comparison across the two best outcomes through RGB Diagrams, that of 

Configuration B (Figure 6.23.i) and Configuration C (Figure 6.23.ii), across all the scenarios 

reveals that the tumour strives to gain copies of oncogenes (acquiring red colour) and lose copies 

of the Tumour Suppressor (shedding green colour). However, Configuration B is modulated by 

the acquisition of Segregation Genes (a blue shade that mixes with the oncogene red to create 

purple), while Configuration D lacks this Gene (as the resulting genotypes are pure red). 
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 i. Good Prognosis (Configuration B-18) ii. Bad Prognosis (Configuration B-27) 
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Figure 6.21- Marble Diagrams. These diagrams display the stacked percentage of Genetic Diversity 
across time for two representative simulations of Gene Configuration B (Column i. Better Prognosis; 
Column ii. Worse Prognosis) across different scenarios: Row A. The Model; row B. Surgery 
(scenario i); row C. Chemotherapy (scenario ii); row D. Combination Therapy (scenario iii).     
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 i. Good Prognosis (Configuration C- 51) ii. Bad Prognosis (Configuration C-29) 
A

. M
od

el
 

  

B
. S

ur
ge

ry
 

  

C
. C

he
m

ot
he

ra
py

 

  

D
. C

om
bi

na
tio

n 
Th

er
ap

y 

  

 

  

Figure 6.22- Marble Diagrams. These diagrams display the stacked percentage of Genetic Diversity 
across time for two representative simulations of Gene Configuration C (Column i. Better Prognosis; 
Column ii. Worse Prognosis) across different scenarios: Row A. The Model; row B. Surgery 
(scenario i); row C. Chemotherapy (scenario ii); row D. Combination Therapy (scenario iii).    
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Figure 6.23- The two overproliferative genetic arrangements, in simulated diploid chromosomes, and 
the RGB key in the middle. These diagrams display the stacked percentage of Genetic Diversity 
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across time for a representative simulation of Gene Configurations B and C across different 
scenarios. The beginning of therapies (when reaching 1000 cells) are marked with a black vertical 
line, while relapse times (when reaching again 1000 cells) are marked using a dashed line. A. 
Representative Marble Diagram for a simulation with the Model. B. Representative Marble Diagram 
for a Simulation of Surgery. C. Representative Marble Diagram for a Simulation of Chemotherapy. 
D. Representative Marble Diagram for a therapy combination of Surgery followed by Chemotherapy. 
 

After surgery an average of 105 cells were left (std. 4.50) for distribution B and 106 cells (std. 

5.13) for distribution C. However, over 100 simulations the prognosis was significantly better 

(p=0.0499) for tumours with Gene Distribution B, which exhibit relatively low levels of 

chromosome missegregation (relapse time was an average of 35.22 time steps and a standard 

deviation of 8.33), compared to those with Gene Distribution C and high levels of chromosome 

missegregation (with an average of 32.84 and a standard deviation of 8.70), as seen in Figure 

6.24.A. This behaviour was due in part to the greater likelihood of a relatively normal population 

of cells remaining after surgery from a population with low genetic heterogeneity in comparison 

to that from a highly heterogeneous population.  

 

   

Figure 6.24- Distribution of the response to treatments under different scenarios. The histograms 
correspond to a measure of the distribution of the relapse times (the time it took each simulation to 
grow back to 1000 cells after treatment) for 100 simulations of each gene configuration 
(Configuration B- dark grey, Configuration C- light grey) under three different therapy scenarios: A. 
Surgery Scenario, B. Chemotherapy Scenario and C. Combination of both treatments (Surgery 
followed by Chemotherapy).  
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Simulation to simulation variability was determined in part by the kind of initial aberrations 

present in the population. Thus, cells that suffered a loss of tumour suppressors did not 

overproliferate until they underwent additional missegregation events, delaying the period of time 

until relapse. In contrast, for simulations in which overproliferative genotypes are the first to 

emerge, cells that remain after surgery quickly re-grow into a full-sized tumour. Thus, the relapse 

time in simulations is determined, primarily, by the oncogenic load, which is higher in the 

chromosomally unstable populations. As a measure of the difference in the two types of lesion 

driving tumour growth, we compared the ratio of the average number of Apoptosis Genes to the 

average number of Division Genes, as seen in Figure 6.25.A for Surgery. When this was analysed 

in the 25 time steps after surgery, it was clear that Distribution C has a reproducibly higher rate of 

loss of Tumour Suppression and Oncogene acquisition. This can be seen most clearly by 

comparing changes in the rate of the ratio of the average number of Apoptosis Genes to the 

average number of Division Genes following treatment (Figure 6.25.A), which has an near linear 

slope of -0.0067 (std. 0.0037) for Distribution C, which is significantly steeper (p=0.005E-1) than 

the average slope for Distribution B (slope -0.0049, std. 0.0030). This reflects the greater 

generation of new more malignant genotypes in type C simulations, where chromosomal 

instability is high, compared to simulations for Distribution B, where aneuploidy is relatively 

stable. This in turn correlates with a worse prognosis for the genetically unstable tumours. 

 

For simulations of chemotherapy (Scenario ii), the outcome for both distributions was generally 

worse, reflecting in part the differences in the overall rate of killing induced by the treatment. On 

average, 226.17 cells (std. 53.12) were left after therapy for Distribution B and 231.88 (std. 

50.06) cells for Distribution C. More significantly, while Gene Distribution B relapsed in average 

at 21.95 time steps (std. 4.89), the relapse time seen in Gene Distribution C was again faster, 

occurring at an average of 18.30 time steps (std. 3.42) as can be seen in Figure 6.24.B. This 
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significant difference (p=0.003E-5) in relapse time could again be attributed to differences in 

genetic diversity. Moreover, when we measured the rate of acquisition of new variants that have 

increased oncogenic load and a reduced number of tumour suppressor genes (the ratio of the 

average number of Apoptosis Genes to the average number of Division Genes) there was a 

marked and significant difference (p=0.004E-7) between simulations over 25 time steps after 

chemotherapy - an average slope of -0.0048 (std. 0.0016) for Distribution B, and -0.0068, (std. 

0.0019) for Distribution C (as seen in Figure 6.25.B). In addition, the spread of behaviour across 

individual simulations (quantified as a difference in the standard deviation in the two cases) was 

significantly different between the recovery of tumours following chemotherapy and following 

surgery.  

 
A combination of the two therapies (Scenario iii) yielded an overall better prognosis for both 

gene distributions. After this combined therapy there were on average 36.09 (std. 8.56) cells left 

for Distribution B and 36.29 (std. 7.99) cells for Distribution C. Again, the results indicate that 

Gene Distribution B still has a significantly better prognosis (p=0.008) than Gene Distribution C: 

Gene Distribution B had an average relapse of 46.55 (std. 10.06), while Gene Distribution C had 

an average relapse of 43.09 (std. 9.44). These results can be compared across scenarios in the 

form of histograms in Figure 6.24.C. Again, the overall impact of genetic linkage on the 

evolution of the tumour after treatment can be most easily visualized by comparing the average 

slope of the ratio between Apoptosis and Division Genes (Figure 6.25.C). When we considered 

the 25 time steps after therapy, this shifted significantly (p=0.005E-2): -0.0036 (std. 0.0025) for 

Distribution B and  -0.0052 (std. 0.0034) for Distribution C. 
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 i. Configuration B  ii. Configuration C 
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Figure 6.25- The average ratio of apoptosis to division genes. These graphs show the tendency of 
reducing the number of apoptosis genes and increasing the number of division genes with respect to 
time across different scenarios: A. Surgery Scenario, B. Chemotherapy Scenario and C. Combination 
of both treatments (Surgery followed by Chemotherapy). The dark line is the median of the samples 
and the shadowed area represents the variance. Interventions were carried out at time step zero. The 
reported slopes were measured taking into account 25 time steps after each therapy. 
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6.4. Summary 

In our model we observe two distinct pathways for evolution towards oncogenesis that have a 

direct impact on the tumour’s response to treatments. In the first case, dominant proliferating 

clones within the tumour exhibit a relatively stable state of aneuploidy, as seen in leukaemia, 

lymphomas and some mesenchymal tumours (Johansson et al., 1996) . In the second, selection for 

the loss of the aneuploidy gene results in tumours that continually generate increasing levels of 

heterogeneity and ever-more malignant subclones, such as those observed in the neoplastic 

progression characteristic of epithelial tumours (Lai et al., 2007) (Johansson et al., 1996).  In this 

chapter, we explored the effects of 3 different types of simulated treatment in each case. This 

revealed interactions between the treatments and the gene distribution in each case. We are now 

ready to answer the question proposed at the beginning of the Chapter. 

 

Is there a genetic configuration that has a better general prognosis? 

Generally, the chromosomally stable configuration (Configuration B) had an overall better 

prognosis than the genetically unstable configuration (Configuration C), as can be appreciated in 

the histograms on Figure 6.24. 

 

Are there key genetic events in the evolution of tumours that make them more or less 

susceptible to cancer treatments?  

For this analysis, as a measure of the types of lesion driving tumour formation and relapse, we 

compared the ratio of the average number of Apoptosis Genes to the average number of Division 

Genes in simulations. When this was analysed in the 25 time steps after surgery, it was clear that 

Gene Configuration C has a reproducibly higher rate of loss of Tumour Suppression and 

Oncogene acquisition than Configuration B. This can be seen most clearly by comparing changes 

in the rate of the ratio of the average number of Apoptosis Genes to the average number of 
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Division Genes following treatment , which has an near linear slope of -0.0067 (std. 0.0037) for 

Configuration C, which is significantly steeper (p=0.005E-1) than the average slope for 

Configuration B (slope -0.0049, std. 0.0030). This reflects the greater generation of more 

malignant novel genotypes in Configuration C simulations, where chromosomal instability is 

high, compared to simulations for Configuration B, where aneuploidy is relatively stable. This in 

turn correlates with a worse prognosis for the genetically unstable tumours. Thus, in our 

simulations, surgery acts as a hit-or-miss therapy because it leaves cells that are related to each 

other. We observed a marked and significant difference (p=0.004E-7) between simulations over 

25 time steps after chemotherapy - an average slope of -0.0048 (std. 0.0016) for Configuration B, 

and -0.0068, (std. 0.0019) for Configuration C. This reflects the presence of higher numbers of 

cells poised in a pre-cancerous state following treatment in Distribution C.. However there is a 

high degree of variability across experiments.  

 

Adding to this, treatments seem to reduce the number of populations that make up most of the 

tumour; especially in the case of chemotherapy. The reduced spread in gene distributions seen 

following chemotherapy is due to the selective killing of overproliferating cells, compared to 

surgery, which does not discriminate based upon genetic makeup. In both cases, however, the 

number of tumour suppressor genes remaining after treatment appeared to be a critical factor in 

determining the course of the relapse. As can be appreciated from Figure 6.21.C and Figure 

6.22.C, once the chemotherapy was applied and the number of cells with overproliferative 

genotypes reduced, the likelihood that the remaining cells are able to resist overproliferation by 

means of contact inhibition is increased if they retain an intact apoptosis regulator. If the 

remaining cells lack an intact tumour suppression gene at the time of therapy, the intervention can 

act as an evolutionary bottleneck to leave a population dominated by malignant cells. In addition, 

in simulations in which chromosomal instability is high, cells that survive the treatment as the 
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result of a slow rate of cell proliferation rapidly acquire extra copies of the oncogenes to reinitiate 

tumour formation. 

 

Are there any predictive markers for a successful therapy? 

Our simulations suggests that if there are a number of genotypes that retain functional tumour 

suppressors at the time of therapeutic intervention, it is possible to recover less aggressive 

genotypes, leading to a better prognosis. If tumour suppressor function is compromised prior to 

treatment, the intervention can lead to an evolutionary bottleneck that selects for malignancy. 

 

Why does surgery appear to give rise to the best outcomes in simulations? Even though it seems 

intuitively likely that chemotherapy, by selectively targeting actively proliferating cells, would be 

more a effective treatment than surgery, in reality there are two kinds of dangerous cells. There 

are cells that have lost tumour suppression and the ones that have acquired oncogenes. While 

surgery acts against both kinds of cells, chemotherapy will miss cells that divide slowly but which 

are no longer subject to apoptosis-mediated tumour suppression. Thus, while both therapies lead 

to recoveries that are characterised by a similar average change in the ratio of Apoptosis to 

Division Genes; there was a larger variation in the response to surgery. This data spread, as seen 

in Figure 6.25, translates into chemotherapy being a consistent therapy, while surgery is a “hit or 

miss” therapy that can on occasion cure the tumour. Surgery, when successful, was accompanied 

by the recovery of genotypes with active tumour suppression, leading to a better outcome than 

chemotherapy. From these simulations, it is clear that the best outcomes are mainly due to the 

recovery of tumour suppression. If tumour suppression is not recovered, the treatment fails. 

 

Thus, targeting chromosomally unstable cells may be an important part of future cancer therapies. 

It has been suggested that chromosomal instability may also play a role later in generating the 



 

 

205 

genetic diversity required for cancer cells to survive the trials of invasion and metastasis. It is 

important to note that heterogeneity is often seen as being detrimental in the clinical setting 

(Gerlinger,et al., 2012). Only through the tracing of clear evolutionary pathways will it be 

possible to understand the different roles that these complex mutations have throughout the 

process of carcinogenesis and thus help us to develop better treatments.  

 

In sum, our model in exploring the evolutionary pathway of cancer clones in tumour development 

provides new insights into the interplay between aneuploidy and tumour therapies. Future work 

will need to build on such models to bring them closer to reality; to study the role of aneuploidy 

on more advanced kinds of tumours, and to simulate other kinds of cancer treatments. Future 

work will be needed to assess how scrambling of the genome may combine with missegregation 

events to drive the evolution of chromosomes that have specific complements of genes. 
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7. Preliminary Experimental Data 

7.1. Introduction 

The hypothesis tested in this work is that an integrated computational model of chromosome 

missegregation during cell division provides an effective approach to assess the role of 

aneuploidy in the initiation and evolution of cancer.  To test this theory, a computational model 

has been developed and implemented with chromosome missegregation as the main drive for the 

generation of novel genotypes in the absence of chromosome recombination. For the creation of 

this model, experimental evidence was initially gathered. Once complete, in silico experiments 

with the computational model were carried out, suggesting that chromosome missegregation has a 

key role in shaping the development of cancer. The computational model suggests the existence 

of two kinds of tumour development: one that is chromosomally stable (Gene Configuration B) 

and one that is chromosomally unstable (Gene Configuration C). From the analysis of the 

previous chapters, it was found that the chromosomally unstable genetic configuration is more 

aggressive and has a generally worse prognosis under surgery and chemotherapy than the 

chromosomally stable one.  

 

Although the main method used to measure the effectiveness of the tool developed in this work is 

to compare with published results of independent experiments, this can be supplemented with 

biological experiments performed specifically for the computational model. It was decided to 

carry out biological experiments, informed by the computational model, with real cancer cell 

lines and tissues. The objective was to provide proof of principle of how this computational 

model can help biologists design experiments and how data from those experiments can be fed 

back into the computational model. 

 



 

 

207 

7.2. Experiments for the Analysis of Ploidy 

Chromosome missegregation may be a key moulding force in real cancer systems (Chin et al., 

2004); however, to use the computational model presented in this work in biological settings, 

there is an experimental gap that needs to be addressed: The development of tools for measuring 

ploidy. The computational model developed in this work can be used to formulate specific 

questions about ploidy, the number of homologous sets of chromosomes in a biological cell. In 

humans, like in our computational model, cells are usually diploid, containing two copies of the 

same chromosome. Because the quantity of nuclear DNA can change during an organism’s 

lifetime by means of replication, poly-ploidization, gain or deletion of bases, such changes may 

lead to an abnormal DNA chromosome content that could lead to cancer (Holland & Cleveland, 

2009). In vitro experiments require tools for a quantitative analysis of local and global ploidy-

related characteristics that are just beginning to be developed. During this work, biological 

experiments that both informed and were informed by the computational model were carried out. 

Some of the data and principles obtained from these experiments were incorporated in the 

computational model in the process of model refinement. 

 

7.3. Immunohistochemical Staining of ERM 

7.3.1. Objective 

During the initial development of the computational model, a gene that regulates chromosome 

segregation was incorporated. This Chromosome Segregation Gene was based on recent evidence 

suggesting that the ERM gene family; consisting of the EZRIN, RADIXIN and MOESIN genes, 

might have such a behaviour in the context of real tumours. In a ground-breaking publication, 

Patricia Kunda, a Postdoctoral researcher at the Baum Lab at the time when these experiments 

were carried out, discovered that one of the ERM genes, MOESIN, controls cortical rigidity, cell 
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rounding, and spindle morphogenesis during mitosis (Kunda et al., 2008), The more this gene is 

expressed, the more likely it is to help carry out a faithful cell division segregation (Hunter, 2004). 

If this gene is missing, however, aberrations during cell division may occur (Curto & 

McClatchey, 2004).  

 

The hypothesis derived from Dr. Kunda’s work is that tumours that have low levels of ERM 

proteins may be linked to chromosomal instability and aneuploidy. To test this theory it was 

decided that a quantification of ERM expression in tumour samples would provide a starting 

point for the validation of this theory. These initial results would then be incorporated in our 

computational model in as the dynamics of the Chromosome Segregation Regulatory Gene. 

 

7.3.2. Setup 

In an initial test of the method proposed, selected human cancer tissues was collected. We used 

the technique of immunohistochemical staining on human graded cancer tissues for the purpose 

of testing this hypothesis. Breast cancer samples were obtained from the Wolfson Institute for 

Biomedical Research, University College London, on collaboration with Marco Loddo (a PhD 

student at the time of writing). We stained six samples, from tumours whose ploidy had been 

previously analysed, in order to detect the level of ERM proteins.  

 

The immunostaining protocol was developed through a series of preliminary experiments, in 

which we found the ideal concentrations for our novel P-ERM antibody. The procedure is as 

follows: 

 

1. Fix and embed the tissue. 

2. Cut and mount a tissue section. 
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3. Remove Paraffin and rehydrate the tissue section. 

4. Wash away the lipids with TRIS and Triton X-100 for 5 minutes. 

5. Blocking Step: Block in specific sites with 5% BSA mixed in PBS.  

6. Incubate Primary Antibody (P-ERM 30 µl with a dilution of 1/100 TBS with 1% BSA). 

7. Incubate overnight at 4°C. 

8. Wash 3 times with TRIS and Triton X-100 for 5 minutes each. 

9. Incubate Secondary Antibody (P.HST3 30 µl with a dilution of 1/200 TBS with 1% BSA). 

10. Wash 2 times was TRIS and Triton X-100 for 5 minutes each.  

11. Incubate overnight at 4°C. 

12. Wash with TRIS and Triton X-100 for 5 minutes. 

13. Fix with formaldehyde. 

14. Dehydrate and stabilize with mounting medium. 

15. Fix sample in a 3mm slide and label. 

16. View the staining under a microscope. 

For the experiments, we used Custom Anti-Peptide Polyclonal Antibodies from Eurogentec, 

rabbit variation (http://www.eurogentec.com/). 
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A 

 

B.   

 

Figure 7.1- Immunohistochemical staining on a diploid human breast cancer tissue.  A. The 
histogram describes the sample as Diploid according to measurements correlating the Integrated 
Optical Density with ploidy. B. The dark staining in this initial experiment suggests a high level of 
ERM protein expression, which may be implicated in faithful chromosome segregation. 
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A. 

 

B. 

 

Figure 7.2- Immunohistochemical staining on a diploid human breast cancer tissue.  A. The 
histogram describes the sample as Aneuploid according to measurements correlating the Integrated 
Optical Density with ploidy. B. The light staining in this initial experiment suggests a low level of 
ERM protein expression, compared to that of Figure 7.1. 
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7.3.3. Results 

A considerable number of samples need to be analysed in order to obtain a quantitative measure 

of the real effect that this gene might have on chromosome missegregation. However, this initial 

test suggests an important result: high levels of ERM expression may be associated with diploidy 

(Figure 7.1), while low levels of may be associated with aneuploidy (Figure 7.2). These dynamics 

were incorporated into our model as the behaviour of Chromosome Segregation Regulation 

Genes, such that a lower expression would translate in less fidelity during chromosome 

segregation and a higher expression in higher fidelity (Chapter 4.4.2). It is important to note that, 

in some samples, relatively high and low levels of ERM were found localized in certain parts of 

the tumour in an uneven distribution. This may be a result of tumour heterogeneity, as results 

from our computational model highlight. Current research carried out by Gigna Patel, at the 

Baum lab, continues this investigation.  

 

7.4. DNA Ploidy Tests in HeLa Cell Line 

7.4.1. Objective  

The computational model makes testable predictions regarding the relationship between the 

ploidy of a tumour in chromosomally stable/unstable configurations and the aggressiveness of the 

tumour. The computational model suggests that the more chromosomally unstable the tumour, the 

more aggressive it could be. It also suggests that the ploidy changes with time. To test these 

results, the creation of tools for the reliable measurements of ploidy is needed. It is possible to 

measure ploidy with Flow Cytometry techniques. Because cell cytometry works by suspending 

cells in a stream of fluid and passing them one by one through a laser-based detection apparatus, 

cells that initially were part of a specific colony (possibly clonal), are mixed with cells from other 
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colonies. The use of this procedure can give an accurate ploidy assessment, but all the spatial 

information regarding heterogeneity across the sample (such as clone colonies and regions of 

high diversity) is lost. This is because taking high-resolution images of the sample can preserve 

spatial information; and then it is possible to use image cytometry techniques to investigate the 

sample’s ploidy. Although ploidy cannot be quantified directly by image cytometry techniques, 

such as correlating the Optical Integrated Density within the nuclei of the cells in the sample with 

ploidy,  it is possible to qualitatively identify DNA outside the euploid regions as abnormal (or 

aneuploid) (Mendelsohn et al., 1969). An initial test using the software CellProfiler was carried 

out in order to determine the ploidy of a control laboratory sample of HeLa cancer cells.  Once 

we have obtained a proof of principle for this technique, it is possible to then apply this analysis 

to more specific ploidy experiments.  

 

7.4.2. Setup 

High-resolution images were acquired from HeLa cell line samples. Once categorized, the images 

were then processed using CellProfiler, a free, open-source cell image analysis software package 

(Vokes & Carpenter, 2008). CellProfiler was used for the detection, segmentation and 

quantification of an image of scattered HeLa cells and their stained nuclei (Carpenter et al., 2006). 

The following CellProfiler segmentation values, determined through preliminary experiments, 

were used: 

 

• Threshold of the image: 0.171 

• It was calculated that, for our samples, 12.7% of the image consist of nuclei (one 

important parameter that affects cell profiler’s accuracy. A parameter that will have to be 

adjusted depending on how sparse cells are plated). 

• Smoothing Filter size: 4.7 

• Maxima suppression size: 5 
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• Don’t merge identified close objects. 

• The typical HeLa nucleus is approximately 23 pixels wide.  

Once the image has been segmented (nuclei and cells outlined), the intensity of the nuclei against 

the background can be plotted in a histogram. It is then possible to estimate the levels of Ploidy 

on a sample through image Cytometry techniques (Mendelsohn et al., 1969). After obtaining a 

measure of the “Integrated intensity” per cell, per image, the information is stored in the form of a 

MySQL database. This vast amount of information can then be sorted, classified and represented 

as a histogram of the distribution of Integrated Intensity by means of the data exploration 

software CPAnalyst, a complement of the CellProfiler software that is able to handle biological 

data in a MySQL database format.  

 

Before a data histogram can be interpreted as the DNA content of the sample, a “c scale” should 

be determined. A “c scale” is a rescaling of the Integrated Density Values obtained through 

CellProfiler. This can be achieved by measuring the Integrated Density Values of cells with 

known DNA content. The Integrated Density Values of these normal, diploid cells are then 

transformed to a reference unit scale based on the number of chromosomes in cells, or “c” scale, 

which peaks at a value of “2c” in a histogram of a sample of diploid cells. The value “2c” 

obtained in this histogram then represents the mean nuclear DNA content of cells from a diploid 

population in G0/G1 cell cycle phase (“4c” for G2 Mitotic cells) (Haroskea et al., 1998).   

 

7.4.3. Results 

Once the “c” scale was introduced by identifying the diploid peak on the histogram (Figure 

7.3.A) of a diploid sample (Figure 7.3.B), the rest of the data obtained was then assessed as either 

having a ploidy multiple of c, or as aneuploid if more peaks are observed (Girouda et al., 1998), 

as can be seen in Figure 7.4.A. for an aneuploid HeLa sample (Figure 7.4.B). To implement this 
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technique to sort cells according to their stage in cell cycle in high throughput data, machine-

learning methods for the correct identification of phenotypes could be implemented through the 

same CPAnalyst software.  

 

This technique can also be corroborated by means of a Flow Cytometer analysis: a technique for 

counting and examining microscopic particles, such as cells and chromosomes, by suspending 

them in a stream of fluid and passing them by an laser detection apparatus. It is important to use 

Image Cytometry together with Flow Cytometry analysis to obtain a reliable global measure of 

aneuploidy, as well as local measures that may give some clues as to the identity of the viable 

karyotypes of aneuploid cells. Together these methods can shed light on the evolutionary 

dynamics of aneuploidy and chromosome missegregation at different stages of the cancer 

evolution, and will be addressed as Future Work in the next chapter.  
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A. 

 

B. 

 

Figure 7.3- Ploidy Analysis of a diploid sample of cancer HeLa cells using the software Cell Profiler. 
A. The histogram correlates Optical Integrated Intensity with Ploidy. DNA content seems to be 
divided into two separate groups, hinting at a high level of diploid cells and a lower level of tetraploid 
cells (presumably cells in mitosis). B. The sample, segmented by Cell Profiler. 
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A. 

 

B. 

 

Figure 7.4- Ploidy Analysis of a previously measured diploid sample of cancer HeLa cells using the 
software Cell Profiler. A. The histogram correlates Optical Integrated Intensity with Ploidy. In the 
histogram, the occurrence of several peaks in the distribution is an indication of aneuploidy in the 
sample. B. The sample, segmented by Cell Profiler. 
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7.5. Inducing Aneuploidy in Cell Lines 

7.5.1. Objective 

To bring the computational model closer to reality, measurements of the properties of aneuploid 

cells are needed. It is currently unknown, for instance, whether aneuploidy is detrimental, neutral 

or beneficial for division/death rate. For these kinds of measurements, the controlled creation of 

aneuploid cells is needed. It may be possible to use a drug to increase the likelihood of generating 

aneuploid cells. In the literature one such drug exists for the inhibition of Aurora Kinases 

(Scharer et al., 2008). Aurora kinases regulate cell cycle transit from G2 through cytokinesis. A 

new drug, Aurora Inhibitor, has been proven to scatter the mitotic spindles of dividing cells. In 

this experiment, we seek to test whether this drug can be used to de-stabilize the mitotic apparatus 

of cells and generate defects in cell division.  

 

7.5.2. Setup  

In this experiment, we seek to induce aneuploidy in two cell lines: HeLa and RPE1. It was 

decided to initially test for best time for Aurora Inhibitor to induce aneuploidy. Cells were 

exposed to the drug for 0, 5, 8 and 24 hours. Then the cells were stained for DNA (DAPI, blue), 

cytoskeleton (TRITC, red) and cellular cortex (FITC, green). 

 

A low cell concentration (50 cells per well) was used, in order to isolate aneuploid cells that could 

be used later in a follow up experiment (ideally allowing them to grow and measuring the growth 

rate of low DNA vs high DNA aneuploidy). This number was determined through a simple 

plating experiment with different cell concentrations.  

 



 

 

219 

 The protocol used were developed with the help of Marina Fedorova, the lab assistant at the 

Baum Lab at the time of the experiments; based on a previous protocols used in the Baum Lab. 

The protocol for the Aurora Inhibitor was a novel design, and was tested on a series of previous 

experiments to determine the optimal drug concentration for the generation of aneuploidy. For 

this experiment the following protocols, in order of execution, were used: 

 

a) Thawing Cells 

1. Pre-heat medium to 37ºC (Do not use drug containing media for the first few days 

after thawing). 

2. Remove cells from liquid nitrogen and defrost. 

3. Place cells in a 15ml tube and add 10ml of warm medium. 

4. Centrifuge at 1000 rpm for 4 minutes. 

5. Remove supernatant and re-suspend in 10ml medium  

6. Plate cells in a culture dish. 

 

b) Splitting Cells 

1. Pre-heat media and trypsin to 37ºC 

2. Carefully aspirate the old medium from cells. 

3. Add 10ml PBS, rinse briefly and aspirate to remove. 

4. Add 1.5ml of trypsin and incubate at 37ºC for 2-3 minutes. 

5. Harvest cells by adding 8.5ml of fresh medium. 

6. Pipette up and down to remove clumps (but avoid bubbles). 

7. Dilute cells appropriately in a new dish with fresh medium. (e.g. for a 1:20 split add 

0.5ml cells to 9.5ml medium) 

 

c) Changing The Cell Media 

1. Carefully aspirate the old media from the cells 
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2. Add 10 ml of PBS. 

3. Rinse briefly. 

4. Aspirate to remove PBS. 

5. Add 10ml of fresh medium to the cells. 

 

d) Create new media for cells 

For Hela Cells (Complete DMEM) 

       500 ml  250 ml 

1 x DMEM (+4.5% G/L/Glucose)   445  222.5 

10% Fetal Bovine Serum    50  25 

1% Penicillin-Streptomycin    5  2.5 

 

For RPE-1 Cells (DMEM F-12) 

       500 ml  250 ml 

1 x DMEM/F12 + Glutamax    428  214 

10% Fetal Bovine Serum    50  25 

1% Penicillin-Streptomycin    5  2.5 

7.5% Sodium Bicarbonate    17  8.5 

 

e) Diluting Cells 

1. Pre-heat media and trypsin to 37ºC. 

2. Carefully aspirate the old medium from cells. 

3. Add 10ml PBS, rinse briefly and aspirate to remove. 

4. Add 1ml trypsin and incubate at 37ºC for 3 minutes. 

5. Harvest cells by adding 9ml fresh medium –pipette up and down to remove clumps 

(but avoid bubbles) 
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6. Count cells and dilute accordingly (50 cells per well) 

 

f) Prepare Dishes for Cell Plating 

1. Add 700µl of Fibronectin 10µg/ml per well (100 times dilution in PBS from 1mg/ml 

stock) 

2. Place dishes in incubator at 37º for 1 hour 

3. Suck out Fibronectin 

4. Plate cells 

 

g) Adding Aurora Inhibitor Drug  

During this time, a novel protocol was designed and tested through previous experiments 

to obtain the adequate concentration of the drug for our samples. The protocol for the 

addition of this novel drug, developed with the help of Marina Fedorova, is as follows: 

1. Prepare Aurora Inhibitor 10mM (from 2M stock) 

2. Aspirate Media. 

3. Add fresh Media with drug diluted to 2µM (1:5000). 

4. Incubate for 6 hours (or the time it requires for treatment). 

5. Aspirate Media and add 4% Formaldehyde (fresh). 

6. Incubate for 10 to 20 minutes at room temperature. 

7. Aspirate Formaldehyde. 

8. Wash 3 times with PBS. 

9. Incubate or Para-film dish and store in a refrigerator. 

 

h) Cell Fixing 

1. Prepare 4% Formaldehyde (4 times dilution from 16% solution) + PBS. 

2. Aspirate media. 

3. Add (200µl) of a mix of 4% Formaldehyde diluted in PBS. 
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4. Leave for 20 minutes at room temperature. 

5. Aspire Formaldehyde mix. 

6. Wash wells 3 times with PBS. 

7. If necessary, permeabilize, block and add antibodies. 

8. Cover with Para-film and Foil. 

 

i) Permeabilization and Blocking 

1. Suck media from wells 

2. Add 20µl of 0.2% Triton 100 in PBS (as detergent mix) per well 

3. Leave for 5 minutes at room temperature. 

4. Aspirate Triton mix and add blocking Solution (5% BSA in PBS) (or 5% BSA in 

PBS + 3% FBS in PBS). 

5. Leave 30 minutes to 1 hour at room temperature. 

6. Aspirate blocking solution and add antibodies (this blocks non-specific sites). 

 

j) Create Staining Antibody Solution 

1. Prepare antibodies as follows: 

2. Create 1% BSA from 5% BSA solution (dilute 5 times in PBS). 

i. DAPI-    1/1000 concentration from 1mg/ml 

ii. PH-TRITC   1/1600 concentration from 0.2mg/ml 

iii. TUBULIN- FITC  1/400 concentration 

3. Add antibodies and stain for 1 hour at room temperature using (20µl) per well. 

4. Wash 3 times with PBS 

5. Store in (70µl) of Triton 0.2% in PBS (to prevent bacteria from growing) or in PBS 

0.1%NaN3 

 

k) Staining in Cover Slip for analysis on a Confocal Microscope 

1. Add antibodies and stain for 1 hour at room temperature using 50-100µl per well. 
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2. Wash 3 times with PBS. 

3. Put 300µl PBS in each well. 

4. Remove off plastic from the glass (make sure there is no glue left). 

5. Use FluourSave reagent (deliver 10µl by drops). 

6. Place Cover Slip on top and cover in foil. 

7. Store in a refrigerator overnight or in an incubator at 37º for 1 hour. 

8. View in Confocal Microscope. 

 

l) Freezing Cells for further experiments 

1. Prepare freezing Medium:    10ml 

a. Complete DMEM    7ml 

b. + 20% FBS     2ml 

c. + 10% DMSO     1ml 

2. Label freezing vials with cell line, passage number, name and date. 

3. Harvest cells into a 15ml tube. 

4. Centrifuge at 1000 rpm for 4 minutes. 

5. Remove supernatant and re-suspend in the freezing medium. 

6. Quickly aliquot 1ml into each vial. 

7. Quickly place in a cryobox and then in a -80ºC freezer (checking that there is enough 

iso-propanol in the cryobox). 

8. Once cells are frozen, cells can be transferred to a liquid nitrogen tank and stored. 
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Drug  i. HeLa ii. RPE1 

A.  

No drug 

  

B. 

5 hours 

  

C. 

8 hours 

  

D. 

24 hours 

  

Figure 7.5- Aurora Inhibitor was applied to HeLa and RPE1 cells for the duration of 0 (no drug), 5, 8 
and 24 hours. Representative images from each experiment are shown. A. Without drugs, cells have 
their cortex (red) intact. B. After 5 hours of drug, the cells begin to have problems with their cortex 
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and cytoskeleton (green). C. After 8 hours of drug, the DNA content (blue) of some of the cells 
increases, preparing for cell division but failing to do so. After 24 hours of the drug, the ploidy of 
both cell lines has changed, and chromosome missegregation can be observed (as in the centre of D.i.). 
 

7.5.3. Results 

The experiments reveal a progression towards the cortical and mitotic destabilization for both cell 

lines, as seen in Figure 7.5. Progressively, cells that enter mitosis under Aurora inhibition either 

suffer from mitotic frustration (Figure 7.5.C) and become tetraploid, or start having asymmetrical 

divisions (Figure 7.5.D). This experiment suggests that Aurora Inhibitor, as used in the protocol 

presented in this work, can be used to generate aneuploid cells. These aneuploid cells can be used 

to validate some of the model predictions, such as the interplay between of aneuploidy with and 

cancer treatments (as described in Chapter 6), and make model refinements, as will be proposed 

in Future Work (Chapter 7). 

 

7.6. Conclusions 

In this chapter, key biological experiments that both inform and are informed by our 

computational model were carried out. In the first experiment, immunostaining experiments with 

the ERM gene product suggest that over expression of this gene family correlates with diploidy in 

cancer tissues, while the lack of activity may correlate with aneuploid samples. These initial 

experiments became the basis for the dynamics of our theorised Segregation Regulatory Gene 

(Chapter 4.4.2). Further experiments are being carried out at the Baum lab to quantify the 

behaviour of this gene. Those results can then be incorporated into the computational model, to 

bring it closer to reality.  

 

In section 7.4, we noted the lack of tools to measure the kind of results that experiments informed 

by our computational model would yield. To bridge this gap, a technique for measuring the 
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Ploidy via Image cytometry techniques was proposed. The principles were tested on a sample of 

HeLa cells, resulting in the detection of diploid and aneuploid samples. With this method 

developed, it is possible to preserve important information regarding the space, such as the kind 

of colonies that are formed in a sample (such as clonal with low missegregation or heterogeneous 

with high missegregation). However, for an accurate measure of ploidy, it is recommended to use 

this technique in tandem with a flow cytometer since a scale for DNA comparison has to be first 

established.  

 

Finally, we noted that aneuploid cells need to be created in order to carry out the kind of 

experiments that could be informed by our computational model. For this, we developed a 

protocol for generating aneuploid cells in controlled conditions. We used Aurora Inhibitor on the 

cell lines HeLa and RPE1 to successfully induce chromosome missegregation and generate 

aneuploid cells that can be used in future work. All of these experiments taken together are the 

first step towards bridging the gap between theories and experiments regarding the role of 

chromosome missegregation of cancer. These experiments have provided valuable information 

that has been incorporated in our computational model, and they have been in turn been informed 

by results from the computational model.  
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8. Conclusions and Future Work 

8.1.  Summary and Objectives Revisited 

The aim of this work has been to investigate whether an integrated computational model of 

chromosome missegregation during cell division provides an effective approach to assess the role 

of aneuploidy in the initiation and evolution of cancer. The first chapter of this work presented a 

brief introduction to the biological phenomenon of aneuploidy. The question of the role of 

chromosome missegregation in cancer was asked, and a computational model as an effective 

mean to address this question was proposed. In this chapter, the objectives and work plan that 

were carried out throughout this work were set. The main objectives, as presented in Chapter 1, 

were met as in the following chapters, as will be described. 

 

Chapter 2 provided a review in the literature of the current ideas regarding the phenomenon of 

chromosome missegregation in the context of cancer. In the literature review, Objective 1, the 

investigation of possible pathways for cancer to originate through chromosome missegregation, 

or for the subsequent evolution to be affected by the phenomenon of aneuploidy was carried out. 

Following this, a review of some of the most representative cancer modelling techniques used in 

cancer research was also presented in Chapter 2. Through this, Objective 2, an investigation on 

which modelling paradigms would be better suited to model the biological phenomenon of 

aneuploidy, was met.  

 

In Chapter 3 the research methodology for this work was presented.. From all the modelling 

techniques reviewed, it was determined that an agent-based model would be ideal to address this 

kind of biological question. The modelling paradigm that was used for the development of the 
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model, an incremental approach to software development, was also selected. Here, objective 3, an 

investigation on how computational models could be validated or corroborated was performed. 

We selected Webb’s methodology for the assessment of each version of the model, as described 

in Chapter 3 and used in Chapter 4. Each new version of the model, assessed through Webb’s 

methodology, built on what was learned in the previous iteration.  

 

In Chapter 5, the first principles of chromosome missegregation were summarized and the 

relevant biological concepts were abstracted for computational implementation (Objective 4).  

The first version of the computational model addressed the modelling of homeostasis and 

aneuploidy. Once this model was assessed, a second version of the model incorporated models of 

genes and the behaviour they regulate. The final version of the model included a streamlined 

algorithm and more abstracted biology in favour of computational feasibility and relevance. 

 

Chapter 6 presents an exploration of the key properties of the model through a series of in silico 

experiments. The model presented in this work suggests that, though evolution, novel genotypes 

that promote unregulated cellular proliferation can be reached. In silico experiments were 

designed to explore key hypothesis of aneuploidy during the progression of cancer. These in 

silico experiments revealed that the location of genes plays an important role in determining the 

system’s behaviour and also suggest that chromosome missegregation plays a key role in shaping 

two types of evolution that match those reported in the literature: chromosomally stable and 

chromosomally unstable tumours (Swanton & Caldas, 2009).  

 

Results from the model (Objective 6) confirm that: 
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o Chromosome missegregation, under certain genetic conditions, can lead to 

further genetic instability, which may be advantageous to cancer progression (B. 

A. A. Weaver et al., 2007). 

o The levels of aneuploidy change at different stages of cancer progression, being 

moulded by the distribution of genes across chromosomes. These genetic 

restrictions heavily influence the subsequent tumour evolution (Jefford & 

Irminger-Finger, 2006).  

 

Analysis tools for the extraction of information from the model were designed and presented in 

Chapter 6. These tools were used to identify two key emergent tumour initiation pathways 

(Objective 5): initiation through oncogene activation and activation through tumour suppression. 

 

Chapter 6 introduced the simulation of cancer treatments using the model developed (Objective 

7). It was decided to model the two more common cancer treatments: surgery and chemotherapy; 

and a combination of both. Results suggest that a good marker for a successful cancer therapy is 

whether cells with some tumour suppression capabilities are rescued.  

 

Chapter 7 describes the development of biological tools and in vitro experiments carried out that 

are complementary to this work (Objective 8). An immunostaining technique used for the 

assessment of a candidate Chromosome Segregation Gene, and the initial results were described. 

A computational method using the software CellProfiler for the assessment of aneuploidy by 

image cytometry was also designed and tested. Finally, an in vitro experiment informed by the 

computational model presented in this work was carried out. A protocol was created to induce 

aneuploidy, and results are shown using two cell lines: HeLa and RPE1; providing proof of 

principle for in vitro experiments that could be carried out informed by results from the model. 
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8.2.  Discussion of this Work in the Context of Cancer Research 

In order to test the hypothesis presented in this work, a computational model was created. We 

developed a model of tissue homeostasis in which to study cancer evolution. Individual cells were 

modelled, each equipped with a genetically defined genome, as agents in a computational 

simulation. A collection of these cells makes up a tissue that initially exhibits homeostatic 

behaviour, as the result of balanced rates of cell proliferation and cell death. These were modelled 

as stochastic processes that are regulated at a genetic level, based upon the properties of known 

proto-oncogenes and tumour suppressor genes (Futreal et al., 2004). We made the key 

abstractions of a single gene regulating a specific behaviour, and that the impact of each gene is 

proportional to the number of copies of a given gene found in the genome of each cell.  

 

Having established this model system, we then introduced genes that regulate the rate of division, 

apoptosis and chromosomes segregation. Each incremental refinement of the model was assessed 

using Webb’s modelling guidelines (B. Webb, 2009). This assessment included comparing the 

model with the current literature, the feedback from molecular biologists at the Baum Lab and the 

incorporation of real data whenever possible. After several iterations, a final version, which 

enables us to test the role of evolving chromosomal instability in cancer development and 

treatment, was reached. In this model, we were able to isolate the effects of chromosome 

instability, tumour suppressor and oncogene activity and genetic linkage on cancer progression.  

Following Webb’s methodology, in order to present evidence that the model is effective and 

useful, the key discoveries made with this computational model will be discussed and assessed in 

the context of cancer research. 
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8.2.1. The Organizing Principles of Chromosome Missegregation 

Tumours have been recognised as aneuploid for over a century (Holland & Cleveland, 2009).  In 

addition, recent genomic sequencing studies have revealed enormous heterogeneity within single 

tumours (Meyerson et al., 2010). Nevertheless, the role of chromosome missegregation in cancer 

development is still debated, and experiments testing the effects of perturbing rates of 

chromosome segregation on tumour formation in mice have yielded contradictory results 

(Schvartzman et al., 2010). Therefore, to better understand the roles of chromosomal instability in 

the evolution of tumours, we have decided to take a theoretical approach and have developed an 

agent-based model of whole chromosome missegregation during cell division, in which we can 

test the hypothesis that chromosome missegregation can help drive cancer initiation. 

 

For this purpose, we focused on modelling individual cells and their genomes in a homeostatic 

tissue whose behaviour is determined by a balance of cell death and cell proliferation within the 

context of a constrained environment. When events of chromosome missegregation are 

introduced, however, the dynamics of the system change in such a way that new, interesting 

complex behaviours emerge, which can be used to shed some light on the basic principles of 

aneuploidy in tumourigenesis. In simulations, chromosome missegregation events generate novel 

genotypes that promote unregulated cellular proliferation and impaired cellular death can be 

reached, driving cancer development. Importantly, this analysis also revealed that the location of 

these genes across chromosomes plays a key role in determining the system’s behaviour and in 

shaping the genetic structure of the tumour population (Schneider & Grosschedl, 2007). This is 

driven by the fact that the copy number of genes, which regulate the fidelity of chromosome 

segregation, can alter as the result of the missegregation of their host chromosome at cell division. 

This leads to differences in the rates of missegregration that evolve during the course of tumour 

development in a way that depend on genetic linkage with oncogenes and tumour suppressors. So, 
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for example, in the absence of direct selection for chromosomes based upon the presence of genes 

promoting or inhibiting cell proliferation, we observed a reproducible increase in the number of 

clones with a decreased rate of chromosome missegregation. 

  

In our model we observe two distinct pathways for evolution towards oncogenesis that have a 

direct impact on the tumour’s response to treatments. In the first case, dominant proliferating 

clones within the tumour exhibit a relatively stable state of aneuploidy. In the second, selection 

for the loss of the aneuploidy gene results in tumours that continually generate increasing levels 

of heterogeneity and ever-more malignant subclones. Future work will be needed to assess how 

scrambling of the genome may combine with missegregation events to drive the evolution of 

chromosomes that have specific complements of genes. 

 

8.2.2.  The Role of Chromosome Missegregation in Cancer Therapies 

In this analysis we also explored the effects of three different types of simulated treatment in the 

model. This revealed interactions between the treatments and the gene distribution in each case. 

The reduced spread in gene distributions seen following chemotherapy was due to the selective 

killing of overproliferating cells, compared to surgery, which does not discriminate based upon 

genetic makeup. In both cases, however, the number of tumour suppressor genes remaining after 

treatment are a critical factor in determining the course of the relapse. Once the chemotherapy 

was applied and the number of cells with overproliferative genotypes reduced, the likelihood that 

the remaining cells are able to resist overproliferation by means of contact inhibition is increased 

if they retain an intact apoptosis regulator. If the remaining cells lack an intact tumour 

suppression gene at the time of therapy, the intervention can act as an evolutionary bottleneck to 

leave a population dominated by malignant cells. In addition, in simulations in which 
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chromosomal instability is high, cells that survive the treatment as the result of a slow rate of cell 

proliferation rapidly acquire extra copies of the oncogenes to reinitiate tumour formation. 

 

If there are a number of genotypes that retain functional tumour suppressors at the time of 

therapeutic intervention, it is possible to recover less aggressive genotypes, leading to a better 

prognosis. If tumour suppressor function is compromised prior to treatment, the intervention can 

lead to an evolutionary bottleneck that selects for malignancy. From our model, it is clear that the 

best outcomes in treatment simulations are mainly due to the recovery of tumour suppression. If 

tumour suppression is not recovered, the treatment fails. 

 

Targeting chromosomally unstable cells may be an important part of future cancer therapies. It 

has been suggested that chromosomal instability may also play a role later in generating the 

genetic diversity required for cancer cells to survive the trials of invasion and metastasis. Only 

through the tracing of clear evolutionary pathways will it be possible to understand the different 

roles that these complex mutations have throughout the process of carcinogenesis and thus help 

us to develop better treatments.  

 

8.2.3. Assessment Methodology 

Following Webb's methodology, we found that the model stands in Webb’s seven dimensions as 

follows: 

 

1. Relevance: The model is an abstraction of current biological knowledge. It was 

successfully be used to assess a new hypothesis and the behaviour that can occur under 

therapeutic scenarios. 
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2. Level: Changes in the genomes of individual cells give rise to different cell behaviours 

and emergent properties at the tissue level. This was important when analysing the 

genetic makeups of tumour populations and linking that to the outcome of therapies. 

3. Generality: The time frame of this model is scalable.  It could represent days in in vitro 

experiments (such as cultured cells), or months in in vivo studies (such as animal models) 

or clinical settings (in real patients). The tumours simulated, like the clinical ones were 

proven to be highly variable. As such, this model can be adapted to study many kinds of 

individual genetics and dynamics. 

4. Abstraction: A general model of carcinogenesis, the model is specifically cellular with a 

solid basis on cell biology. Therapies were abstracted and implemented in such a way 

that results are biologically and clinically meaningful. 

5. Accuracy: The abstractions of cancer therapies accurately represent the mechanisms 

relevant for biological and clinical settings. 

6. Match: In silico experiments show that the behaviour obtained in the model matches the 

behaviour found in real cancers. The simulation of therapies shed light on clinical settings 

that put in context individual observations in the literature.  

7. Medium: Because the computer uses a pseudo random number generator, which uses a 

seed number, individual simulations are reproducible. This gives us the unique situation 

in which it is possible to explore the outcome of different treatments on the exact same 

individual simulation. With the tools developed, it was possible to prove the simulation in 

ways that are not possible in vitro, and that can be used as a guide when devising 

biological experiments. 

 

8.3.  Self Evaluation 

From the literature review in Chapter 2, the modelling methodologies discussed in Chapter 3 and 

the development of the model in Chapter 4, the number of things that could have been done 

differently is apparent. With the benefit of hindsight, there are small things that could have helped 

the model be faster, such as representing the number of chromosomes as an integer number 

within cells (instead of being variables for each kind of chromosome). The implementation of a 

different way of traversing the linked list where all the information is stored could have been a 
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more effective approach (and will be considered in a future implementation of the model). 

However, the overall selection of the modelling paradigm, the evaluation methodology and the 

implementation of the model worked well.  

 

There are however big issues that can be improved. From the point of view of modelling, space 

could be explicitly modelled. Using a cellular automata-like display could be useful to identify 

the location of the colonies of clones, and regions of diversity within the tumour. While 

computationally intensive, that kind of model could be a source of the kind of information that 

pathologists and cell biologist would find easier to understand and integrate into experiments. It is 

also of interest to incorporate a realistic version of the environment into the model, since 

microenvironment selection could also cooperate with aneuploidy to promote tumour progression 

(Anderson, Math Med Biol, 2005) (Anderson, Weaver, Cummings, & Quaranta, 2006),  

 

A problem that persisted through the modelling process and the phase of in silico experimentation 

was the lack of metrics for such a complex process. This led to biological features such as point 

mutations, chromosome breakings or fusions and fitness penalties or benefits due to the loss of 

key genetic machinery being left outside of the scope of this work. Although such biological 

features could be modelled, researchers should take care that they maintain a reasonable level of 

complexity so that the behaviour can still be analysed in a transparent way. Finally, the issues 

faced with computational power available and the limitations faced when designing and 

measuring biological experiments are the subject of current research.   
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8.4.  Future Work 

We constructed our model to be flexible enough so that it can be adapted to incorporate more 

realistic biological features and consider diverse scenarios. From this body of work, it became 

clear that there are different kinds of aneuploidy. Aneuploid cells can develop different genetic 

properties, such as chromosomal instability, accelerated proliferation and resistance to apoptosis. 

However, it is still unknown whether gaining or losing chromosomes affect the fitness of 

aneuploid cells. This question should be investigated and can be readily implemented in our 

model. 

In our model, we can consider different kinds of cell fitness with respect to ploidy, such as:  

• Fitness proportional to chromosome number (Figure 8.1.A). 

• Fitness inversely proportional to chromosome number (Figure 8.1.B). 

• A general increase in fitness for non-diploid cells (Figure 8.1.C). 

• A general decrease in fitness for non-diploid cells (Figure 8.1.D).  

 

Implementing these fitness scenarios in the model, results that reflect changes in key properties 

such as growth and genetic instability can be obtained. These results can then be validated in an 

in vitro experiment. 

 

With the experimental the techniques developed in Chapter 7, it is possible to test for the growth 

rate associated with a kind of ploidy. For this experiment, Aurora inhibitor could be used for 24 

hours on sparsely plated cells (as described in section 7.5). Then, taking measurements of the 

different ploidy levels and cell numbers with the method proposed in section 7.4, it is possible to 

measure the difference in growth of diploid against non-diploid cells. This can be done across 

different kinds of aneuploid cells, if cells are sparsely plated: 100 cells per well, would directly 

correlate with the model. Cells with different levels of ploidy can be left to grow their own 
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colonies (clonal or genetically heterogeneous, depending on the level of chromosome segregation 

regulation). If samples of different ploidies are left to grow and then are fixed at different time 

points (1 day, 2 days, 3 days and 4 days), the growth rate of the individual colonies can be 

measured.  

 

 

 

Figure 8.1- Possible fitness scenarios for Aneuploid cells. Depending on the level of Ploidy, n (see 
Chapter 7), different scenarios can be modelled. A. Fitness proportional to ploidy; B. Fitness 
inversely proportional to ploidy; C. A general increase in fitness for non-diploid cells; D. A general 
decrease in fitness for non-diploid cells. 
 

 

These results can then be compared against model predictions and the results would be two: 

1. It will be determined which kind of fitness curve (or curves) aneuploid cells have, as seen 

in Figure 8.1. 

2. Realistic growth rates can then be directly incorporated in the model, thus bringing the 

model closer to reality. 
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Also, it is of interest to consider the real locations of known cancer genes across the genome. As 

more and more genes and the linkage between them are being mapped and understood through 

projects like the cancer genome atlas (http://cancergenome.nih.gov/), it will be probably feasible 

in the not too distant future to incorporate this information in a future version of the model. 

Future implementations could also make use of the continuously growing bio-informatics data; 

specifically information on where genes are on the chromosomes. These refinements could yield 

more realistic behaviour and may from a better bridge between basic research and the clinic.  

 

8.5.  Final Remarks 

This work has described how and why an integrated computational model of chromosome 

missegregation during cell division does provide an effective approach to assess the role of 

aneuploidy in the initiation and evolution of cancer. Our model explores the evolutionary 

pathway of cancer clones in tumour development, and shows the interplay between aneuploidy 

and tumour therapies. With the analysis tools developed, and the in silico and in vitro 

experiments carried out, we have shed some light on the mechanism through which chromosome 

missegregation generates variation and how it could shape tumour development. We have met all 

the objectives that we set out to do and contributed with original research that, through 

publications (as seen in Chapter 1) has had an impact on the computer science community and the 

cancer research communities. 

 

This interdisciplinary research has provided a tool that has the potential to help biologists and 

clinicians to ask questions that would have been near impossible to answer were it not for the 

transparency of the computational simulations. Future work will need to build on bringing the 
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model closer to reality; to study the role of aneuploidy on more advanced kinds of tumours, and 

to simulate other kinds of cancer treatments.  
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