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Abstract 1

The report provides a literature review on the topic of estimation of demand

and supply elasticities. To this end, it starts the discussion by summarizing

the main facets of production theory and consumer theory to introduce the

concept of elasticities, with examples of different types of elasticities most

utilized in the literature. Next, it discusses the identification problem in es-

timating elasticities, i.e. the issue of having to solve for unique values of the

parameters of the structural model from the values of the parameters of the

reduced form of the model. It summarizes various methodologies employed

in the literature to solve this problem and gives practical examples. These

solutions include, but are not limited to, using instrumental variables, adopt-

ing a recursive structure, holding demand constant, and imposing inequality

constraints in order to restrict the domain of estimates.

1The research was supported by African Growth and Development Pol-
icy Modeling Consortium facilitated by IFPRI. The report is also available
at: http://www.agrodep.org/resource/no-10-estimation-supply-and-demand-elasticities-
agricultural-commodites
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1 Production theory

A preliminary description of theory of production is necessary to introduce

the concept of elasticities.

The production function is the set of all possible production plans for the

current state of knowledge. Factors of production can be grouped in fixed

factors, which cannot be altered during a particular production period, and

variable factors, those factors of production which can be altered. In the

long-run all factors of production are variable2.

It is common to denote inputs by xi and outputs by yi. More precisely,

the set of inputs and outputs is defined as follows:

{x1, x2, . . . , xk−1, xk, y1, y2, . . . , yn−1, yn}.

Numerous assumptions are made in production theory in order to ensure

a well defined problem or to make the resolution of producers’ problem easier.

They are as follows: monotonicity (weak or strong), concavity (or quasicon-

cavity), essentiality (weak or strong). Moreover, we assume the production

function f(x) to be finite, non-negative, single valued and real valued for

x ∈ R+. Moreover f(x) is everywhere continuous and twice differentiable,

homogeneous of degree θ in x. Few implications of the above mentioned as-

sumptions are worth noting: the input set and the isoquant are convex sets;

the marginal rate of technical substitution is diminishing; the Hessian matrix

of second order partial derivatives is negative semi-definite3; Young’s theo-

2Unlike consumer theory, estimating production functions is significantly easier since
production is cardinal, unlike utility which is ordinal.

3From an empirical perspective, a simple rule to assess the negative semi-definiteness
of the Hessian matrix consists in checking if the largest eigen value of the Hessian matrix
is zero or negative.
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rem implies that the Hessian matrix is symmetric. The producer problem

can be stated as follows:

(1) Maxx p ∗ f(x)−w ∗ x

where p is the output price vector, and w the vector of input prices.

Commonly adopted production functions are the well-known Cobb-Douglas

(CD) 4, the Leontief5 and the Constant Elasticity of Substitution (CES)6.

1.1 On supply elasticities: theory and empirics

In production theory, we are interested in analyzing changes in production

function due to changes in input use. Those changes can be computed in dis-

crete or continuous time. The latter is the most commonly adopted approach

and relies on the use of derivatives (∂y/∂x), that is the infinitesimal changes

in the objective function due to the infinitesimal change in the variable7. The

elasticities of interest are the elasticity of output, and the elasticity of scale.

The substitutability among inputs is a further measure to be considered.

In analytical terms, the elasticity of output is defined as the (infinitesimal)

change in output due to the (infinitesimal) change in input use, evaluated at

4This is one of the most famous production functions, introduced by Charles W. Cobb
and Paul H. Douglas (1928), although anticipated by Knut Wicksell (1901: p.128, 1923)
and, some have argued, by J.H. von Thunen (1863). For a review of theoretical and
empirical literature on the Cobb-Douglas production function, see Douglas (1934, 1967),
Nerlove (1965) and Samuelson (1979). The analytical formulation is as follows:
y = A

∏
i x

αi
i , αi > 0.

5This is also known as perfect complements production function in that inputs’ substi-
tutability is zero. The formulation is as follows: y=min{α1x1, α2x2, . . . , αnxn}.

6It has been introduced by Arrow, Chenery, Minhas and Solow (1961), and generalized
to the multiple factors case by Hirofumi Uzawa (1963) and Daniel McFadden (1963).
The CES function, as its name reveals, shows a constant elasticity of inputs substitution

throughout. Its formulation is as follows: y = β[α1x
σ−1
σ

1 + α2x
σ−1
σ

2 + · · ·+ αnx
σ−1
σ

n ]
σ
σ−1 .

7Elasticities are a local concept in that they are measured at a specific point of interest:
if not specified, elasticities are intended to be measured at mean values.
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a specific point. The measure is analytically obtained by the first derivative

of f(x) with respect to x, times the input over output ratio8. The formula

to compute the elasticity of output is as follows:

(2) εi,y = ∂f
∂xi

xi
y

which can be rewritten as εi,y =MPi

APi
where MPi and APi are, respectively,

the marginal product and the average product.

The elasticity of scale provides a measure of the impacts of changes in

inputs use on the scale of production. The elasticity of scale is computed as

follows:

(3) ε =∂ ln(f(λx))
∂ ln(λ)

|λ=1.

The value of ε characterize the return to scale (constant, increasing, or

decreasing), in that ε = 1 implies constant returns to scale, ε < 1 implies

diminishing returns to scale, and ε > 1 implies increasing returns to scale.

As mentioned above, it is interesting to measure the substitutability of

inputs in production function.

Several elasticities can be computed. A standard measure of input sub-

stitutability is the Hicks elasticity of substitution (σi,j). Let fi = ∂f
∂xi

be the

change in output due to a change in input xi, and let i, j = {1, 2}, {2, 1}.

The Hicks elasticity of substitution is computed as follows (for the two inputs

case):

(4) σi,j =
∂ln(xi/xj)

∂lnMRTSij
=

∂ ln(xi/xj)

∂ ln(fi/fj)

8It is a common procedure to evaluate elasticities at the mean: in this specific case we
compute the elasticity at mid point.
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where MRTSij (marginal rate of technical substitution for goods i and

j) is the amount by which the quantity of i has to be reduced when one extra

unit of the input j is used, such that the output remains constant9. In other

terms, the Hicks elasticity of substitution measures the relative changes in

output induced by (infinitesimal) changes in inputs i and j 10.

The direct elasticity of substitution (σDi,j), or short run elasticity of sub-

stitution, is computed as follows:

(5) σDi,j =
∂ ln(xi/xj)

∂ ln(fi/fj)
|xk = x̄k

For the two inputs case, the direct elasticity is identical to the Hicks

elasticity in that it is assuming that the other factors in the production

function are fixed, thus can be ignored. Roy G.D. Allen (1938) proposed a

different measure. The Allen elasticity of substitution (σAi,j), also known as

the partial elasticity of substitution, is defined as follows:

(6) σAi,j =
∑
i

xi
xj

fi
fj

(Fj,i
F

)
where Fi,j represents the cofactor of H with respect to fi,j, F is the

determinant of the bordered Hessian (H) of the production function.

It is easy to recognize that if the total number of factors is two, the

Allen elasticity of substitution11 reduces to the direct elasticity of substitution

(σDi,j = σAi,j.). A relevant property of the Allen elasticity of substitution is that

it is symmetric (i.e. σAi,j = σAj,i.). In the case of two inputs, the Allen elasticity

of substitution allows to distinguish among complement and substitute inputs

9The concept is analogous to the marginal rate of substitution in consumer theory.
10The elasticity can be computed for more than two inputs, holding all but two inputs

constant.
11This is perhaps the most popular measure of the elasticity of substitution.
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in that σAi,j < 0 implies xi and xj are complements, while σAi,j > 0 implies xi

and xj are substitutes.

The Morishima elasticity of substitution (Morishima, 1967) has the seem-

ingly unusual property of being asymmetric12 (σMi,j 6= σMj,i .). The elasticity is

computed as follows:

(7) σMi,j =
∂fi
∂xi

Fi,j
F
− ∂fi
∂xj

Fi,j
F
.

As pointed by Blackorby and Russell (1981, 1989), the Morishima elastic-

ity of substitution should be natural for a multi-factor case. The Morishima

measure can be re-written in terms of the Allen measure as follows:

(8) σMi,j =
fj
fi

xj
xi

(σAi,j − σAj,j)

In general, factors that are substitutes by the Allen measure, will be sub-

stitutes by the Morishima measure; but factors that are complements by the

Allen measure may still be substitutes by the Morishima measure. In other

terms, the Morishima measure has a bias towards treating inputs as substi-

tutes (or, alternatively, the Allen measure has a bias towards treating them

as complements). This seemingly paradoxical result reflects the fluidity of

the concept of elasticity of substitution in a multiple factor world (Blackorby

and Russell, 1981, 1989).

Nowadays a widely adopted functional forms to estimate supply elas-

ticities is the the translog function (also named transcendental logarithmic

function, Christiansen et al., 1971, 1973 ). It has been introduced by Kmenta

(1967), in order to approximate the CES function with a second order Taylor

12It is possible for two inputs to be Hicks/Allen substitutes while Morishima comple-
ments.
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expansion. Moreover, it nests the CD function for elasticity of substitution

close to the unitary value.

An example of a generalized translog cost function, for the one-output

and multi-input firm, is as follows:

(9) log(c) = α0 +
∑

i αilog(wi) + αylog(y) + 0.5
∑

i

∑
j αijlog(wi)log(wj) +∑

i αiylog(wi)log(y) + 0.5αyy[log(y)]2

where c is the cost function, y is the output level, wi is the input price for

good i. An advantage of the translog functions is their flexibility. Using out-

put(s) as dependent variables and input(s) as regressors, we have the translog

production function. It consents the estimation of the Allen elasticities of

substitution, the estimation of the production frontier or the measurement

of the total factor productivity.

Acreage response to prices is a further information of great interest. A

simplified model à la Nerlove may clarify how to proceed:

(10) A∗ = α + βPt

(11) At − At−1 = (1− γ)(At − A∗
t−1)

where equations (10) refers to the desired acreage and equation (11) mod-

els the actual acreage,respectively. Through substitution and simplifications

we can derive the following specification:

(12) At = (1− γ)α + (1− γ)βPt + γAt−1

where At is the acreage (or land size), Pt is the grower price per pound.

The specification (12) incorporates the behavior of producers that adjust
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their acreage when they realize that the desired acreage differs from the

acreage realized in the previous year. The adjustment coefficient (1 − γ)

indicates the rate of adjustment of actual acreage to desired acreage (Kmenta,

1986).

Finally, we may be interested in estimating the supply elasticity to prices.

A simple specification is to regress prices on output. Nerlove (1956) suggested

to regress logarithms of quantities on current and (or) lagged output and

input prices, also in logarithms13. A simple specification may be adopted:

(13) ln(Qt) = α + βln(Pt−1) + γln(Zt) + δln(Qt−1)

where β represents the price elasticity, Zt collects the control variables,

and Qt−1 allows to control for possible temporal correlation of production 14.

13Askari and Cummings (1977) provide an excellent survey.
14The model should provide an estimate for δ less than |1|. If δ = |1| we should use a

model for non-stationary series (e.g. use a first-order difference model)
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2 Consumer theory

In analogy with the previous section, we will first review the theory and

afterward we will describe the empirics of demand estimation.

The problem faced by the consumer is to maximize its utility function U(·)

subject to a budget constraint. The utility derives from consumption of the

goods that are included in the economy. It is assumed to be a strictly quasi-

concave, monotonic increasing function. The utility function is an ordinal

indicator of preferences over a given set of n commodities. It is derived from

the following set of axioms: 1) reflexivity; 2) completeness; 3) transitivity;

4) continuity; 5) non-satiation; 6) convexity 15.

The (primal) problem of utility maximization is postulated as follows:

(14) Maxq U(q)

s.t.
∑

k pkqk ≤ x

qk ≥ 0, ∀k

The solution (qi) to the maximization problem provide the so called Mar-

shallian (uncompensated) demand functions (gi), x(P,M), where P and M

are respectively the vector of prices and the consumer’s income. Marshallian

demand functions satisfy the following properties: 1) adding-up; 2) homo-

geneity. Those properties are better known if expressed in elasticity form:

the Engel aggregation states that the uncompensated elasticities, weighted

by expenditure shares, sum to unity; the Euler aggregation states that the

15A detailed description of the axioms and their implications is beyond the scope of this
report. An excellent review is provided in Mas Colell et al. (1995)
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uncompensated cross-elasticities plus own-elasticity sum to zero; the Cournot

aggregation states that expenditure shares times the uncompensated cross-

elasticities plus the own expenditure share sum to zero. Analytically, the

properties are expressed as follows16:

i)
∑

k wkek = 1 ;

ii)
∑

k eik + ei = 0 ;

iii)
∑

k wkeki + wi = 0

where wk represent the budget shares, ek stand for the income (or expendi-

ture) elasticities for good k, and eik are the uncompensated cross-elasticities.

Those properties can be derived through direct differentiation of the first

order conditions (FOC) or through the use of duality theory.

The dual problem is postulated as follows:

(15) Minq p q

s.t. u = V (q)

where V (q) represents the indirect utility function. The solution to the

dual problem are the so called Hicksian (compensated) demand functions

(hi), which are functions of prices and utility. The Marshallian and Hicksian

demand functions are tightly linked in that the following identity holds17:

(16) qi = hi[U, p] = hi[ψ(M, p), p] = gi(M, p)

More intuitively, the fundamental difference between the Marshallian and

the Hicksian demand functions is that if we consider a change in the Hick-

sian demand at a price increase, the consumer will preserve the same utility

16The reader may refer to Deaton and Muellbauer (1980) for further details.
17Moreover, the Marshallian and Hicksian demand functions are linked through the

Roy′s identity: qi = gi(M,p) = −∂ψ(M,p)/∂pi
∂ψ(M,p)/∂x .
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level before and after the price increase. In other terms we assume that the

consumer gets compensated for the price increase through a rise of income:

the income effect is disregarded so that only the substitution effect is left.

The opposite applies to the Marshallian demand, that is the income is held

constant while the utility level might change (Varian, 1992).

2.1 On demand elasticities: theory and empirics

In consumer theory we are interested in several elasticities, namely the own-

price elasticity, the income elasticity, the cross-price elasticity, the elasticity

of substitution, and the compensated and uncompensated elasticities. We

will review them in more detail.

The own-price elasticity (also called price elasticity) measures the per-

centage change in the demand at a percentage rise in the price of the good

itself. As the demand curves is downward sloping the own-price elasticity is

negative too: a price increase causes a decline in the quantity demanded (the

well known Law of Demand) (Marshall, 1890)18.

The own-price elasticity is given by the following formula:

(17) εp =∂qipi
∂piqi

.

If |εp| = 1, the demand is defined as being unit elastic, while the demand

is defined as being elastic if |εp| > 1 and inelastic if |εp| < 1. If the demand is

inelastic, a price increase means that the decrease in the purchased quantity

will be relatively smaller than the increase in price in % terms. So the

18Probably worthy to recall that the negative slope of the demand curve is due to the
fact that the demand is function of price and the curve is depicted in a coordinate system
with the price on the y-axis and the quantity on the x-axis.
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consumer’s total expense for the good in question increases. The opposite is

the case at a price increase of a good where the demand is elastic.

The income elasticity measures the percentage change in the demand for

a given good as a result of a percentage change in income:

(18) εM =∂qiM
∂Mqi

where M is the income. Generally, the income elasticity for necessaries is

smaller than for luxury goods, that is a reduction in income will not reduce

the consumption of bread just as much as the consumption of exotic fruits.

Moreover, the so called Engel’s law states that consumers increase their ex-

penditures for food products (in % terms) less than their increases in income

(Timmer et al., 1983).

The cross-price elasticity shows the percentage change in demand for good

i as a result of a percentage change in the price of good j. The analytical

formulation is as follows:

(19) εik =∂qipk
∂pkqi

Cross-price elasticity for a good having a close substitution or comple-

mentarity would numerically be relatively big. If there is a close substitution

the cross-price elasticities will be positive as a price increase of good i (e.g.

wine) will make the consumers substitute towards demanding good j (e.g.

beer). If i and j are complementary goods (e.g. beer and pizza) the cross-

price elasticity will be negative. For goods that are neither close substitutes

nor complementary goods, the cross-price elasticity will be insignificant (e.g.

pizza and exotic fruits).
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The elasticity of substitution measures the percentage change in the rel-

ative consumption of two goods as a consequence of a change in the relative

prices of the goods. Thus, an increase of 1% in the relation between the two

commodity prices will push the relation between the commodities φ % in

the direction of the commodity which has become relatively cheaper. The

elasticity of substitution is computed as follows:

(20) σij = -
(∂qi/qj)MRSij

∂MRSij(qi/qj)

MRS indicates the marginal substitution relationship between good i and

good j which corresponds to the slope of the indifference curve. At the opti-

mum bundle, the slope of the indifference curve is equal to the price relation

among the goods. The bigger the elasticity of substitution between good

i and good j the more substitutional the goods (e.g. wine and beer) are.

Opposite, if the elasticity of substitution approaches zero, the good i and j

will be complementary goods (e.g. beer and pizza). The size of the elasticity

of substitution determines the slope of the indifference curve: they converge

towards a straight line when the elasticity of substitution approaches infinity

(and the goods are sad to be perfect substitutes), while the curve converges to-

wards making a 90 degree kink when the elasticity of substitution approaches

zero (and the goods are said perfect complements (Figure 1), while the IC

are said Leontief ).

The elasticity of substitution and the cross-price elasticity are closely re-

lated in that they allow to characterize the change in the demand function of

good i due to the price change of good j. However, the cross-price elasticity

does not take into account the price sensitivity of the good whose price has

15



Figure 1: Perfect substitutes and perfect complements

been changed (say good j), while the elasticity of substitution takes this into

account. Therefore, equal cross-price elasticities does not imply equal elas-

ticities of substitution 19. From an empirical point of view, a functional form

which implies a constant elasticity of substitution will have the advantage

that the percentage change in the relative consumption of the two goods is

independent of the level of prices and consumption. Furthermore, the elas-

ticity of substitution will be independent of the price development of other

goods. On the contrary, if the function does not have a constant elasticity

of substitution the elasticity has to be measured at a specific point on the

demand curve (usually it is computed at the mean or median value) 20.

We turn now to the empirical estimation of demand functions. The sim-

19A clarificatory example. Let the cross-price elasticity between good x and good z be
the same as between good y and good z, that is a price increase of good x, or good y,
will have the same influence on the consumption of good z. If the price sensitivity for
good x is larger than for good y, the consumption of good x will decrease more than the
consumption of good y when the price of the two goods increases. Therefore, the elasticity
of substitution becomes bigger between good x and good z than between good y and good
z.

20The great advantage of the family of CES functions is that it is easy to switch from
the direct utility function to the indirect utility function, and vice-versa. When we use
the Hicksian demand functions, we consider the compensated elasticities which are the
Hicksian-equivalent uncompensated (or general) elasticities. The latter are computed from
the Marshallian demand function.
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plest model to estimate demand elasticities is the log-log single equation

model:

(21) log(qi) = αi + eilog(M) +
n∑
k=1

eiklog(pk)

where qi represent per capita consumption, M is the per capita total expen-

diture, and p stand for prices 21.

The model has been extensively used to estimate own-price and income

elasticities for individual when the systems of demand functions were not yet

developed. Nowadays the model is still applied for empirical analysis (Russo

et al.,2008) due to its advantages: the model is linear, assume a “nicely

shaped” demand function, and it is simple to be estimated. Furthermore,

the model interpretation is straightforward in that the coefficients for income

and prices are directly interpretable as elasticities.

A more structured model, thus more consistent with the theory, is the

Stone model (Stone, 1954). Its functional form is as follows:

(22) log(qi) = αi + eilog(M/P ) +
∑n

k=1 e
∗
iklog(pk/P )

where P is the so called Stone index, a geometric price index22, and ei is

the income elasticity, and e∗ik represent the compensated elasticities.

A drawback of the Stone model is that there is no guarantee symmetry will

be satisfied. The Linear Expenditure System (LES) is able to overcome these

problems (Stone, 1954). The LES is derived from a linear demand functional

form (piqi = βiM+
∑

i βikpk) by imposing the general restrictions of consumer

21The model is expressed in per capita terms in order to neutralize the effects of changes
in population. Therefore, the elasticities refer to the “representative” consumer.

22The Stone price index is defined as follows: log(P ) =
∑n
k=1 wklog(pk), where wk is

the budget share of good k.

17



behavior, namely homogeneity, adding-up property and symmetry23:

(23) piqi = piγi + βi(M −
∑

i pkγk)

where γi is interpreted to be the minimum quantity demanded of com-

modity i, the first term on the RHS (piγi) is referred to as “committed expen-

diture” in that it represents expenditures on a fixed bundle of consumption.

The second term on the right-hand side (M −
∑

i pkγk) of the equation is

referred to as “supernumerary income”: it represents expenditures above the

committed expenditures.

The number of parameters to estimate for the LES is rather limited. This

desirable characteristic is due to the restrictiveness of the linearity. However,

there is no free lunch. The LES suffers of several limitations: it does not

admit inferior goods; it implies that all goods must be net substitutes; it

imposes additivity restriction on the direct utility function; absolute values

of all uncompensated own-price elasticities are constrained to be less than

their income elasticities. On the contrary, a nice feature of the LES is that

both the Cobb-Douglas and Constant Elasticity of Demand functional forms

are special cases of the LES model.

The Rotterdam model (Theil, 1965; Barten, 1969) also deserves partic-

ular attention. The RM is the differential form of Stone’s model. However,

expressed in differential form the model is more general, in that restrictions

have to hold on deviations, not in level. The empirical formulation of the

Rotterdam model is as follows:

(24) wit∆logqit = bi∆logxt +
∑

k cik∆logpkt + εit

23For further details the reader may refer to Deaton (1986).
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where ∆ is the first-order differential operator (i.e. ∆logqit = logqit −

logqit−1), wit = 0.5(wt − wt−1), and ∆logxt = ∆logxt −
∑

k wkt∆logpkt. The

income and compensated price elasticities of the RM model can be obtained

by dividing estimated coefficients by the budget share of the good in question:

e∗ik = cik
wi

. In turn, the Slutsky equation (e∗ik = eik + wkei) can be used to

estimate uncompensated price elasticities.

Nowadays the most commonly used form in demand analysis is the Almost

Ideal Demand System (AIDS) proposed by Deaton and Muellbauer (1980).

With more than three thousands citations, their paper has become a must

read reference in applied economics. The empirical formulation is as follows:

(25) wi = αi +
∑

k γkilog(pk) + βilog(M/P )

where logP = α0+
∑

k αklog(pk)+0.5
∑

k

∑
l γkilog(pk)log(pl). The AIDS

model has some nice properties: satisfies axioms of consumer choice exactly;

aggregates perfectly from a representative consumer; its estimate implies a

Engel curves consistent with household data; can be viewed as a first-order

approximation to arbitrary demand system; allow to test for homogeneity

and symmetry. In the AIDS model, the elasticities are obtained through the

following formulas: eik =γik−βi[wk−βklog(M/P )]
wi

−δik ; ei = βi
wi

+1.

19



3 Identification

Identification is a main issue in econometrics, the branch of economics that

aims to answer to empirical questions based on economic models. Econo-

metrics models are always based on some assumptions, sometimes testable,

sometimes not. In this framework, identification deals with the relationship

between the assumptions of an econometric model and the possibility of an-

swering or not, an empirical question using that model. More specifically,

the area of identification studies the necessary and sufficient conditions to

estimate (consistently) parameters of interest24.

From a different perspective, the identification problem in econometrics

is the issue of having to solve for unique values of the parameters of the

structural model from the values of the parameters of the reduced form of

the model (i.e. a single estimate of the structural parameters from the re-

duced form parameters for each structural equation, cfr. Maddala, 1992)

25. Therefore, if there are multiple solutions which make the reduced form

coefficients compatible with the structural coefficients, the model is underi-

dentified. Instead if there are no compatible solutions, the model is said to

be overidentified. Finally, if a solution exists and is unique, the model is said

to be just identified or exactly identified26.

24A formal, and simple, definition is provided by A. M. Shaikh. See
http://home.uchicago.edu/ amshaikh/webfiles/ident.pdf. We provide a shorter version.
Let P denote the true distribution of the observed data X. Denote by P = {Pθ : θ ∈ Θ} a
model for the distribution of the observed data, assuming correctly specification, that is
P ∈ P. We know that θ ∈ Θ0(P ), where Θ0(P ) = {θ ∈ Θ : Pθ = P} where Θ0(P ) is the
identified set and θ is identified if the identified set is a singleton for all P ∈ P

25The reduced form of a model is the one in which the endogenous variables are expressed
as functions of the exogenous variables.

26In general, a linear system of M equations, with M > 1, cannot be identified from the
data if less than M−1 variables are excluded from that equation. This is a particular form
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All in all, the identification problem can be viewed as the (unresolved)

dilemma of economists to make (correct) inference by reducing at most the

number and strength of (necessary) assumptions. A major criticism related

to this puzzle is the well known Law of Decreasing Credibility (Manski, 2003)

which states that “the credibility of inference decreases with the strength of

the assumptions maintained”. Let us provide a practical example of the

identification problem: the estimation of a system of demand and supply

equations (Koopmans, 1949).

Consider a linear model for the supply and demand: the former will

be upward sloping with respect to price and the latter is expected to be

downward sloping. We observe data on both the price (P) and the traded

quantity (Q) of this good for several years. Unfortunately this information

does not suffice to identify both demand and supply by using regression

analysis on observations of Q and P. In fact it is impossible to estimate a

downward slope and an upward slope with one linear regression line involving

only two variables. Indeed, additional variables solve this issue and help to

identify the individual relations. Figure 2 depicts the identification problem

in supply and demand and clarifies how the use of additional information can

solve the puzzle. In particular, the graph shows that by observing shifts in

the demand curve, due to an exogenous variable (Z) we are able to identify

the (positive) slope of the supply equation.

of the order condition for identification, which is necessary but not sufficient for identifi-
cation. The rank condition is a necessary and sufficient condition for identification. In the
case of only exclusion restrictions, it must “be possible to form at least one nonvanishing
determinant of order M−1 from the columns of A corresponding to the variables excluded
a priori from that equation”, where A is the matrix of coefficients of the equations (Fisher
1966, p. 40).
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Figure 2: Identification of supply and demand

It should be also noted that the (negative) slope parameter of the de-

mand equation cannot be identified. More generally, we are able to identify

the parameters of the equation (in our case the supply) not affected by the

exogenous variable (Z). In order to identify both the supply and the demand

equation, we would need both a variable (or shifter) Z entering the demand

equation but not the supply equation27, and X entering the supply equation

but not the demand equation28:

demand: Q = a1 + b1P + c1Z ; supply: Q = a2 + b2P + c2X

with positive b2 and negative b1. Here both equations are identified if c1 and

c2 are nonzero.

27In agricultural economics it is common to use weather variables. More details are
provided in subsequent sections.

28In agricultural economics a common approach is to introduce income as demand
shifter. More details are provided in subsequent sections.
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Solving for P and Q we obtain the reduced-form equations:

Q = a1b2−a2b1
b2−b1 + c1b2

b2−b1Z −
c2b1
b2−b1X

Q = a1−a2
b2−b1 + c1

b2−b1Z −
c2

b2−b1X

where π1 = a1b2−a2b1
b2−b1 , π2 = c1b2

b2−b1 , etc. are the reduced-form parameters.

Suppose we observe Z, but not X. In this case we have two estimates for

b2, and a2: the supply is said over-identified; the demand is under-identified.

When we have unique estimates for the structural parameters, the equations

are said exactly identified; multiple estimates imply over-identification; no

estimates imply under-identification.

3.1 Solutions to the identification problem

As previously described, the identification problem arises when we try to

identify parameters using a reduced form. In the example of supply and

demand, we may solve the problem by using an instrumental variable. Few

points need to be recalled. More precisely, an instrument will be valid if the

variable is correlated with the endogenous regressor and uncorrelated with

the regression error.

Maddala (1977) pointed it is very difficult to have such kind of a vari-

able, and econometrics textbooks do not provide clear guidelines. Angrist

and Krueger (2001, p. 73) argue that “good instruments often come from

detailed knowledge of the economic mechanism and institutions determin-

ing the regressor of interest”. For example, a valid instrument shifts only

one “curve” (e.g. supply, but not demand). In agricultural markets, the

instrument may be rainfall or weather shocks.
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Wright (1928) has pioneered the use of instrumental variables. He esti-

mated they supply and demand for flaxseed and used prices of substituted

goods as instrumental variables for demand, and yield per acre as instru-

ments for supply. He averaged out the estimates obtained using different

instruments. Current researches have shown that a more efficient way to rely

on multiple instruments is to use a two-stage least squares (2SLS) procedure.

The method is described below.

First we provide a chronological review of the solutions have been pro-

posed to solve the identification problem.

A simple, probably too naive, solution is to ignore the problem. Indeed

this solution is not lacking of a theoretical justification. As Wright (1929)

pointed in JASA, ignoring the issue is a valid solution if “it may be assumed

that the dynamic forces will continue to operate thereafter in the same man-

ner as they have been operating during that period”.

Another solution is to adopt a recursive structure:

(i) pt = β1qt + uD ;

(ii) qt = β2pt−1 + uS.

In this formulation pt−1 is exogenous in the supply equation, uS is uncor-

related with uD (therefore there are no common shifters), and qt is exogenous

in the demand equation with pt on the left hand side.

Frisch and Waugh (1933) have proposed another approach. They sug-

gested to hold demand constant. Given that the observed quantity demanded

differs from the true (or latent) demand, the approach consists of estimat-

ing the observed demand and correcting for the bias. We clarify with an
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example. Suppose that quantity is measured with error εt, that is:

(true/latent demand) q∗t = βpt + γWt

(observed quantity) qt = q∗t + εt

where Wt represents all determinants of demand and εt is pure indepen-

dent measurement error. Solving for observed demand:

(observed demand) qt = βpt + γWt + εt

where E(ptεt) = 0. The approach suggested by Frisch and Waugh (1933)

is to adjust for the bias, given the “known” γ and Wt. In this case, as they

prove, OLS estimates are consistent.

Another approach is to use an instrumental variables (IV) regression. In

the case of a single equation, the Limited Information Maximum Likelihood

method (LIML) is a valid alternative. The method has been proposed by

Anderson and Rubin (1949), and has been popular until the introduction

of the 2SLS by Theil (1965). The LIML consists in minimizing the residual

sum of squares (RSS)to select the regressors. More precisely, the LIML mini-

mize the ratio of RSS under the restricted and unrestricted model (Maddala,

1992). The analogy with the 2SLS is very strong in that the latter mini-

mize the difference of RSS under the restricted and unrestricted model. As

a consequence, if the model is exactly identified the 2SLS and LIML pro-

vide identical. estimates. Sargan (1958) has extended the IV approach to

multiple instruments through the 2SLS method.

In a nutshell, the approach is as follows. In the first stage, each explana-

tory variable that is an endogenous covariate in the equation of interest is
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regressed on all of the exogenous variables in the model (including both ex-

ogenous covariates in the equation of interest and the excluded instruments).

This first stage allows us to obtain the predicted values. In the second stage,

the regression of interest is estimated as usual, except that in this stage each

endogenous covariate is replaced with the predicted values from the first stage

(Wooldridge, 2002).

Empirically, the 2SLS is performed as follows. Let y be the dependent

variable, x1, ..., xk−1 the explanatory variables, xk the endogenous regressor,

z1, ..., zM the set of instruments.

(I) First stage: compute x̂k regressing xk on regressors and instruments.

(26) xk = α +
∑k−1

i=1 βixi +
∑N

j=1 γjzj

(II) Second stage: estimate the model replacing xk with x̂k.

(27) y = α +
∑k−1

i=1 βixi + βkx̂k

From an empirical point of view, it is worth recalling the pitfalls of instru-

mental variables approach. The 2SLS provides consistent, but not unbiased

estimates, therefore researchers that use this approach should always aspire

to use large datasets. Moreover, an instrumental variable correlated with

omitted variables can lead to biased estimates that is much greater than the

bias in ordinary least squares estimates. However, the bias is proportional to

the degree of overidentification, hence using fewer instruments would reduce

the bias. Moreover, it is wise to test for the validity of instruments. Many

tests have been proposed and some are implement in common packages (see
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Berkowitz et al., 2012)29.

For the above mentioned approaches we have implicitly assumed to deal

only with a single equation. Special attention needs the case in which we

consider a simultaneous equation model. An efficient way to estimate a

full system of equations is to use Generalized Method of Moments (GMM)

estimation. Unfortunately, GMM is usually unfeasible, unless the system

covariance matrix (Σ) is known. Alternative approaches consist in estimating

the system by using a three stage least squares (3SLS) procedure, or by

adopting a full information maximum likelihood (FIML) estimator. The

former consists in estimating a 2SLS (or equation-by-equation) and then

using the residuals to compute Σ. Using Σ̂ the estimation of the third stage

will be consistent. Alternatively a FIML estimator can be adopted. The

estimator uses information about all the equations in the system, providing

consistent estimates. Although asymptotically equivalent, the FIML is not

equal to the continuously updated 3SLS estimator (unless the system is just-

identified). Empirically, the 3SLS estimator is much easier to be computed

than the FIML estimator (Davidson and MacKinnon, 2004).

Alternative approaches have been proposed. Leamer (1981) has suggested

to solve the identification problem by imposing inequality constraints in order

to restrict the domain of estimates. His words are self-explanatory: “when

the regression of quantity on price yields a positive estimate, we may assume

that this is an attenuated estimate of the supply curve and that the data

contain no useful information about the demand curve 30. If the the estimate

29The FAR test, recently developed, does not overreject the null hypothesis when we
use half of the sample without replacement. The test is implemented in STATA.

30Thurman and Wohlgenant (1989) provide an empirical application of Leamer’s method
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is negative, th number may be treated as an attenuated estimate of the

demand slope, and we may assert that the data contain no useful information

about the supply curve” (Leamer, 1981, p. 321).

Rigobon (2003) exploits the intuition in Wright (1928) suggesting to

restrict the parametric space using the information provided by the het-

eroskedasticity in the data (e.g. due to crises, policy shifts, changes in col-

lecting the data, etc.). He provides necessary and sufficient conditions for

identification of a system of simultaneous equations. In particular, Rigobon

suggests to use the second moments to increase the number of relations be-

tween the parameters in the reduced and structural forms. An appealing fea-

ture of his approach is that it only requires the existence of heteroskedasticity

in that the direct modeling of the source of heteroskedasticity can be ignored

for the identification purpose. The approach is as follows. First, Rigobon

(2003) estimated a vector autoregressive model of interest rates (prices may

be used for agricultural markets); second, he defined subsamples according

to different volatility; finally he computed the covariances matrices that have

been used in the GMM estimation of contemporaneous shocks. Although the

intuition to use the variance of the shocks to reduce the bias in OLS esti-

mates has to be attributed to Wright (1928), Rigobon (2003) generalized the

intuition and provided the conditions to identify the system 31.

More recently, Roberts and Schlenker (2013) have revisited the problem

of identification of supply and demand for agricultural commodities. The

authors use theory of storage to derive the following empirical model:

in agricultural markets for the estimation of demand. Renuka Kalirajan (2002) applied
the method to the demand for services.

31See Okumura (2011), and Lütkepohl and Netšunajev (2013) for recent applications.
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(28) (Supply) log(st) = αs + βslog(E[pt|Ωt−1]) + γswt + f(t) + ut

(29) (Demand) log(ct) = αd + βdlog(pt) + g(t) + vt

and ct = st − zt (consumption, ct, is the difference of supply, st, and

storage, zt), αs and αd are intercepts for supply and demand, the Ω is the

information set, wt stands for the random weather-induced yield shocks, f(t)

and g(t) capture time trends in supply and demand, ut and vt are the error

terms. The rationale for (24) and (25) is that weather-induced shocks (cur-

rent and lagged) are expected to shift only the supply curve, and to leave

the demand unchanged. The model is solved in two stages. The first stage

consists in estimating log(pt) and log(E[pt|Ωt−1]). The authors suggest to use

a distributed lag model of yield shocks and a polynomial time trend. The

reduced forms are as follows:

(30) log(pt) = πd0 +
∑K−1

k=1 µdwt−k + f(t) + εdt

(31) log(E[pt|Ωt−1]) = πs0 +
∑K

k=1 µswt−k + f(t) + εst

where f(t) and g(t) represent the polynomial time trend functions,εdt and

εst are the error terms. In the second stage the lagged yield shocks are used

as instruments. In particular the supply is estimated as follows:

(32) log(st) = αs + βs ̂log(E[pt|Ωt−1]) + λs0γs0wt + f(t) + ut

and demand is obtained as follows:

(33) (Demand) log(ct) = αd + βd ̂log(pt) + g(t) + vt
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The novelty of this approach is that Roberts and Schlenker (2013) have

considered simultaneously four commodities that are substitutes in supply

and demand. Using weather as natural instrument has returned to the fron-

tier in identification of supply and demand for agricultural commodities.
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