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ABSTRACT 12 

 13 

The removal of fluoride using red mud has been improved by acidifying red mud with 14 

hydrochloric, nitric and sulphuric acid. This investigation shows that the removal of fluoride 15 

using red mud is significantly improved if red mud is initially acidified. The acidification of 16 

red mud causes sodalite and cancrinite phases to dissociate, confirmed by the release of 17 

sodium and aluminium into solution as well as the disappearance of sodalite bands and peaks 18 

in infrared and X-ray diffraction data. The dissolution of these mineral phases increases the 19 

amount of available iron and aluminium oxide/hydroxide sites that are accessible for the 20 

adsorption of fluoride. The removal of fluoride is dependent on the charge of iron and 21 

aluminium oxide/hydroxides on the surface of red mud. Acidifying red mud with 22 

hydrochloric, nitric and sulphuric acid resulted in surface sites of the form ≡ SOH2
+ and        23 

≡ SOH. Optimum removal is obtained when the majority of surface sites are in the form        24 

≡ SOH2
+ as the substitution of a fluoride ion doesn’t cause a significant increase in pH. This 25 

investigation shows the importance of having a low and consistent pH for the removal of 26 

fluoride from aqueous solutions using red mud. 27 

 28 

 29 

 30 
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INTRODUCTION 35 

 36 

At the end of 2010, around 3 billion tonnes of bauxite refinery residue (red mud) had been 37 

produced globally using the Bayer process to convert aluminium oxides in bauxite ore to 38 

alumina.[1, 2]  It is estimated that an additional 120 million tonnes is produced each year.[1, 39 

2] The magnitude of waste generated by this industry clearly demonstrates the need for future 40 

developments that find a beneficial use for this material. Due to the complexity and 41 

classification (hazardous material under the Basel Convention)[3] of bauxite residue, 42 

numerous researchers are trying to utilise the waste residue in water purification applications.  43 

 44 

Red mud (generally a slurry) is comprised of iron oxides, titanium oxides, silicon oxides and 45 

undissolved alumina, along with a wide range of other oxides depending on the country of 46 

origin.[4-6] Trace levels of metal oxides, such as arsenic, cadmium, chromium, copper, 47 

gallium, lead, mercury, nickel and in some cases thorium and uranium, are of particular 48 

concern.[7] Apart from heavy metal contamination, the alkalinity of red mud also constrains 49 

viable applications due to the cost of neutralisation. Alkalinity in the residue exists in both 50 

solid and solution as: 1) entrained liquor (sodium hydroxide, sodium aluminate and sodium 51 

carbonate), 2) calcium compounds, such as hydrocalumite, tri-calcium aluminate and lime, 52 

and 3) sodalite ((NaAlSiO4)6(Na2X)), where X can be SO4
2-, CO3

2-, Al(OH)4
- or Cl-).[8]  53 

 54 

The potential environmental implications of seepage, dam failures and flooding can have a 55 

large negative impact on the surrounding water bodies, including groundwater, lakes and 56 

rivers, when soluble caustic chemicals are released. Mining industries employ precautionary 57 

measures to minimise environmental risks such as lining dams, however during natural 58 

disasters such as flooding there are no measures that can be taken to prevent spillage. Apart 59 

from the potential risks of tailing dams, there also exists the problem that large areas of land 60 

are being transformed into landfill to contain red mud residue. The discovery of a viable 61 

application (in-expensive and uses large quantities) for the reuse of red mud will significantly 62 

minimise environmental impacts caused by tailings dams and the associated costs of storage 63 

facilities (more than $80 million a year).[9] 64 

 65 

In recent years, many researchers have focused on utilising red mud as an adsorbent material, 66 

and have had success in the adsorption of heavy metals,[10, 11] arsenate[12-17], 67 

phosphates[18-20] and to a lesser extent fluoride.[21-23] Fluoride is naturally found in 68 
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groundwater due to the dissolution of fluoride bearing minerals over long periods of time.[24] 69 

However, elevated levels of fluoride in groundwater can generally be traced back to a number 70 

of industries, including but not limited to, glass and ceramic production, electroplating, coal 71 

fired power stations, brick and iron works, and aluminium smelters.[21, 25] It is estimated 72 

that more than 200 million people rely on contaminated drinking water containing more than 73 

1.5mg/L of fluoride (World Health Organisation safe level).[26] Continual and excess 74 

exposure to fluoride results in diseases such as osteoporosis, arthritis, brittle bones, cancer, 75 

infertility, brain damage, Alzheimer and thyroid disorders in humans.[21]  76 

 77 

Traditionally, contaminated fluoride drinking waters have been treated using lime, which 78 

results in the precipitation of fluorite. However, due to the slight solubility of CaF2, it is 79 

difficult to treat F- levels below 20mg/L.[27] Other precipitating and coagulating reagents 80 

have been used and include iron (III), alum, calcium and activated alumina.[21] More 81 

involved processes, such as ion exchange, reverse osmosis and electrodialysis, have also been 82 

explored, but have subsequent waste disposal issues and high operating and maintenance 83 

costs.[21, 28] 84 

 85 

Of particular interest, is the removal of fluoride using activated alumina and iron-based 86 

materials, schwertmannite (Fe8O8(OH)6(SO4)·nH2O), granular ferric hydroxide (Fe(OH)3), 87 

and goethite(α-FeOOH),[21, 28] as they are found in red mud and thus suggest red mud can 88 

potentially be an adsorbent. Fluoride sorption using iron-based sorbents is facilitated by 89 

exchange reactions involving F- and OH- with FeOH surface groups. A maximum Langmuir 90 

adsorption capacity of 0.368 mmol/g of fluoride on granular ferric hydroxide has been 91 

reported by Kumar et al.,[29] in the pH range 6.0 to 7.0. Phosphate and sulphate (inner-92 

sphere forming species) have been shown to have negative effects on the loading capacity of 93 

fluoride, while outer-sphere forming species (chloride and nitrate) improved fluoride removal 94 

slightly.[21] At pH values less than 3.7, fluoride removal generally decreases due to the 95 

formation of AlFx soluble species, while in alkaline solutions OH- displaced F-.[30] A study 96 

by Cengeloglu et al.[23] investigated the adsorption capacity of untreated and hydrochloric 97 

treated red mud. The maximum removal capacity was obtained using the acid treated red mud 98 

and observed a Langmuir loading capacity of 0.331 mmol/g at pH 5.5 after 2 hour 99 

equilibration. Granular red mud prepared by Tor et al.,[31] exhibited a Langmuir loading 100 

capacity of 0.339 mmol/g at pH 4.7 after 6 hours equilibration during a batch trial. Previous 101 
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studies have also shown that the spent red mud satisfies the toxicity characteristic leaching 102 

procedure (TCLP) used to classify inert wastes.[31] 103 

 104 

The majority of papers in this field of research focus on the use of hydrochloric acid to 105 

activate red mud, however this can reduce the iron content available for subsequent 106 

adsorption applications. Consequently, this investigation will assess the structural changes 107 

and resulting adsorption capacities of Australian red mud untreated and treated with 108 

hydrochloric, nitric and sulphuric acid. Particular emphasis will be placed upon determining 109 

the reactions involved during acid activation and how the remaining mineralogical 110 

composition correlates with fluoride removal efficiencies. 111 

 112 

MATERIALS AND METHODS 113 

 114 

Acid activated red mud 115 

Red mud from an Australian alumina refinery was dried over a period of 2 days at 105°C 116 

before being crushed to a fine powder using an agate ball mill. Using a Retsch AS200 sieving 117 

stack consisting of 10 sieves, ranging from 4mm to 64µm, red mud was processed to give a 118 

size fraction < 250µm. Known concentrations of hydrochloric (HCl), nitric (HNO3) and 119 

sulphuric (H2SO4) acid were prepared from concentrated AR reagents (Rowe Scientific). Red 120 

mud (12.5g) was measured into 250mL Nalgene bottles and then reacted with 200mL of DI 121 

water and each acid. Each bottle was placed on a Ratek rotary stirrer for 1 hour at 200rpm. 122 

These samples were subsequently centrifuged at 400rpm for 10 min using a C2041 Centurion 123 

centrifuge. The red mud was placed in the oven to dry (90°C), while the solution was stored 124 

for analysis. 125 

 126 

Fluoride adsorption 127 

The 100ppm fluoride solutions were prepared using AR grade sodium fluoride purchased 128 

from Sigma-Aldrich. Adjustment of the pH was achieved using a transfer pipette to add 1M 129 

nitric acid dropwise while the pH was monitored with a TPS WP40 pH meter and Sentek 130 

laboratory probe.  To 12, 50mL centrifuge tubes, a known amount of acid activated red mud 131 

(ranging from 0.025 to 2.000g) was added followed by the addition of 40mL of the 100mg/L 132 

fluoride solution. The centrifuge tubes were then placed on a rotary stirrer at 200rpm for 2 133 

hours. After equilibrium was reached, the tubes were removed from the rotary stirrer and 134 

subsequently centrifuged at 400rpm for 10 min using a C2041 Centurion centrifuge. The red 135 
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mud was placed in the oven to dry (90°C), while the solution was stored for analysis. The 136 

supernatant was kept for fluoride analysis using a fluoride ion selective electrode (ISE).  137 

 138 

Characterisation techniques 139 

Fluoride analysis was obtained using a TPS uniPROBE Fluoride (F-) ISE. A fluoride ISE 140 

buffer was prepared using 1 M of sodium chloride (NaCl) and 1 M sodium citrate dehydrate 141 

(Na3C6H5O7·2H2O) dissolved in approximately 1.5 L deionised water. Sodium hydroxide 142 

(NaOH) was use to  adjust the solution pH to 5.5 before making the solution up to 2 L. 143 

Calibration standards of 1, 10, 100, 1000 mg / L fluoride stock solutions were prepared from 144 

AR grade sodium fluoride (NaF). The electrode was calibrated with standards in the range of 145 

the sample. Standards and samples were analysed by combining 10 mL of the calibration 146 

standard solution (or sample) and 10 mL of the buffer solution whilst being stirred. The 147 

concentration of fluoride was then measured using the fluoride ISE. 148 

 149 

X-Ray diffraction patterns were collected using a Philips X'pert wide angle X-Ray 150 

diffractometer, operating in step scan mode, with Co K radiation (1.7903 Å). Patterns were 151 

collected in the range 5 to 90° 2 with a step size of 0.02° and a rate of 30s per step. Samples 152 

were prepared as Vaseline thin films on silica wafers, which were then placed onto 153 

aluminium sample holders. The XRD patterns were matched with ICSD reference patterns 154 

using the software package HighScore Plus. The profile fitting option of the software uses a 155 

model that employs twelve intrinsic parameters to describe the profile, the instrumental 156 

aberration and wavelength dependent contributions to the profile.  157 

 158 

Samples of the residual acid solutions, after centrifugation, were analysed using an Agilent 159 

ICP-MS 7500CE instrument. The samples were diluted by a factor of 20 using a Hamilton 160 

dilutor with 10 and 1mL syringes. A certified standard from Australian Chemical Reagents 161 

(ARC) containing 1000ppm of aluminium, magnesium, calcium, iron and sodium were 162 

diluted to form a multi-level calibration curve and an external reference that was used to 163 

monitor instrument drift and accuracy of the results obtained. Results were obtained using an 164 

integration time of 0.15 seconds with 10 replications. Calibration curves had an r2 value of 165 

0.998 or higher. 166 

 167 
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Infrared spectra were obtained using a Nicolet Nexus 870 Fourier Transform infrared 168 

spectrometer (FTIR) with a smart endurance single bounce diamond ATR (attenuated total 169 

reflectance) cell. Spectra over the 4000-525 cm-1 range were obtained by the co-addition of 170 

64 scans with a resolution of 4 cm-1 and a mirror velocity of 0.6329 m/s.  171 

 172 

2.0 RESULTS AND DISCUSSION 173 

 174 

2.1 Elemental and mineralogical composition 175 

The elemental composition of this Australian red mud comprised of predominately iron 176 

(Fe2O3), titanium (TiO2) and aluminium (Al2O3 and AlO(OH)) mineralogical compounds. 177 

Although the elemental analysis of red mud has been reported in numerous papers, the 178 

composition of each red mud sample differs, due to the original composition of the bauxite 179 

ore and the operating conditions used to extract alumina. The elemental abundance in bauxite 180 

residues generally follow Fe > Si ~ Ti > Al > Ca > Na.[32] The red mud used in this work 181 

has a particularly high content of aluminium, suggesting that the operating conditions were 182 

not optimised. The phase composition of untreated red mud (Figure 1) comprised of majorly 183 

hematite (Fe2O3), gibbsite (Al(OH)3), boehmite (γ-AlO(OH)), sodalite (Na8(Al6Si6O24)Cl2 or 184 

Na8(Al6Si6O24)CO3), TiO2 (anatase and rutile), quartz (SiO2) and possibly cancrinite 185 

(Na6Ca2Al6Si6O24(CO3)2). These mineralogical phases agree with the elemental analysis 186 

results (Table 1). The broadness of the peaks in the XRD pattern align with the following 187 

remarks from Grafe et al.,[32] that approximately 70% (by weight) of bauxite phases are 188 

crystalline, while the remaining 30% are amorphous materials.  189 

 190 

A comparison of the washed and acid treated red mud XRD patterns (Figure 2) shows some 191 

phase intensity changes, and suggests that a portion of the mineralogical phases are unstable 192 

in acidic media. In particular, the sodalite peaks at around 16.2, 28.1 and 40.2 °2θ 193 

significantly decrease in intensity indicating the dissolution of this phase. Multiple decreases 194 

in intensities are observed between 30 and 35 °2θ, and are associated with quartz (HNO3 and 195 

H2SO4 predominately) and cancrinite. It appears that 0.5M acid solutions have a limited 196 

effect on the overall mineralogical structure of iron and titanium oxide phases. This is ideal, 197 

as a high iron content in red mud has been found to be beneficial in the removal of 198 

fluoride.[23]  199 

 200 
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2.2 Leachants (ICP and reactions) 201 

2.2.1 SEM-EDX 202 

A comparison of the amount of Al, Na, Si and Ti to the amount of Fe in the washed and acid 203 

treated red muds is provided in Table 1. Interestingly, a higher concentration of acid doesn’t 204 

necessarily mean that a greater amount of a particular element will be removed from the solid 205 

phase. In the case of HCl and H2SO4, the 0.5M acids had a greater effect on the dissolution of 206 

compounds containing aluminium, sodium and/or silica than their respective concentrated 207 

acid counterparts. This can be explained by the formation of additional phases between the 208 

dissolution species and excess Cl- ions when using concentrated HCl, for example that forms 209 

NaCl. This is confirmed by XRD (Figure 2), which showed halite peaks (~ 36.9 °2θ). The 210 

SEM image of red mud reacted with concentrated HCl (Figure 3) also clearly shows the 211 

formation of an addition mineralogical phase, and based on the XRD pattern it can be 212 

assumed that halite (NaCl) has coated the exterior of the red mud particles. The formation of 213 

this phase is not expected to hinder the removal of fluoride as it is highly soluble, however 214 

due to its solubility it will increase the salinity of any treated solutions. 215 

 216 

2.2.2 ICP-MS 217 

After the treatment of red mud with each of the 1M acids, the filtrate was analysed using ICP-218 

MS to determine the concentration of major ions being released into solution (Figure 4). It 219 

was found that sodium containing compounds are the most susceptible to acidic solutions. An 220 

increase in Na+ is also observed for the washed red mud sample indicating that about a third 221 

of sodium released into solution is due to the dissolution of residual NaOH or NaOH trapped 222 

in sodalite aggregates. The general formula for sodalite is Na8(Al6Si6O24)CO3, which has a 223 

Na:Al mole ratio of 1.3. By subtracting the amounts of Na and Al ions released by the 224 

dissolution of NaOH (based on red mud washed values) from the concentrations of ions in 225 

the leachant solution of HCl, H2SO4 and HNO3 gives the following Na:Al ratios: 1.52, 1.26 226 

and 1.27, respectively. This indicates that the majority of sodium and aluminium ions 227 

released in solution are due to the dissolution of sodalite. A lower amount of sodium is 228 

released into solution for HCl treated red mud due to the formation of NaCl. The release of 229 

calcium is proposed to be due to Ca substituted sodalite and/or cancrinite 230 

(Na6Ca2Al6Si6O24(CO3)2). The dissolution of sodalite is predicted to form the following 231 

products:[33] 232 

 233 

 234 
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Equation 1  235 

Na8(Al6Si6O24)CO3 +  13H2SO4  →  4Na2SO4 + 3Al2(SO4)3 + 6Si(OH)4 + H2O + CO2↑ 236 

Equation 2  237 

Na8(Al6Si6O24)CO3 +  24HCl  →  8NaCl  + 6AlCl3 + 6Si(OH)4 + H2O + CO2↑ 238 

Equation 3 239 

Na8(Al6Si6O24)CO3 +  24HNO3  →  8Na(NO3)  + 6Al(NO3)3 + 6Si(OH)4 + H2O + CO2↑ 240 

 241 

2.3 Infrared Spectroscopy 242 

2.3.1 Red mud 243 

Infrared spectroscopy has been used to monitor changes in bonding environments of the 244 

numerous components of red mud with the addition of different acids. These changes include 245 

both shifts in band position (strength of bonds) and also decreases/increases in intensity due 246 

to the dissolution/formation of phases. Washed red mud (Figure 5) will be used as a baseline 247 

to any changes that have occurred with the addition of different strengths of acid. A broad 248 

band between 3650 and 3000 cm-1 is associated with multitude overlapping hydroxyl-249 

stretching bands, in particular metal-OH groups and water. Based on the XRD pattern of red 250 

mud it is believed that the multiple of bands between 3650 and 3300 cm-1 are due to the 251 

ν(OH) stretching modes of gibbsite.[34-36] Boehmite peaks are observed at around 3235 and 252 

3124 cm-1.[34, 35] Bands associated with surface hydroxyl groups of hematite appear in the 253 

range 3700, 3635, 3490, 3435 and 3380cm-1.[37] In many cases these bands are not observed 254 

because the surface hydroxyl groups are removed during the drying process. The overall 255 

broadness of the band is due to multiple water stretching modes. Corresponding water 256 

bending modes are observed as a low intensity broad peak centred at 1655 cm-1. 257 

 258 

In the lower wavenumber region, several bands are observed between 1550 and 1350 cm-1, 259 

predominately due to carbonate ions in different bonding environments. The only carbonate 260 

containing minerals identified in the XRD patterns are sodalite and cancrinite, however some 261 

form of carbonate mineral may also be present in the amorphous content of red mud. The 262 

most intense peak in the infrared spectrum (987 cm-1) is believed to be due to stretching 263 

vibrations of Si(Al)-O in sodalite and cancrinite.[38] The small band at 696 cm-1 is also 264 

thought to be associated with the Si-O-Al framework of sodalite.[39] It is also possible that 265 

nitrate is incorporated in these cage structures due to the presence of bands at around 1430 266 

cm-1.[40]  267 

 268 
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2.3.2 Acid treated red mud 269 

The dissolution of sodalite (disappearance of the intense band at 987 cm-1 and the bands 270 

between 1400 and 1500 cm-1) is clearly observed in Figure 6 with the addition of 271 

hydrochloric acid. These observations coincide with the interpretation of the elemental 272 

analysis and the proposed dissolution reactions. In the absence of sodalite, bands associated 273 

with Si-O vibrations (possibly quartz) are observed at 1036 cm-1, which gradually decreases 274 

and is confirmed by XRD patterns. The band profile also indicates the formation of 275 

SiO2·xH2O (formed from dissolved silica – Si(OH)4), which has characteristic bands at 800 276 

(w), 948 (w), 1090 (vs) 1190 (s,sh) and 3330 cm-1(m).[41]  This dissolution product appears 277 

to be relatively stable. Minimal changes in the higher wavenumber region indicates that the 278 

major iron and aluminium oxide/hydroxide components of red mud remain relatively 279 

unscathed until the concentration of acid reached 1M (significant decrease in intensity 280 

suggesting the initial stages of dissolution).  281 

 282 

The infrared spectra of red mud treated with nitric acid (Figure 7) and sulphuric acid (Figure 283 

8) show many similar bands as those described for hydrochloric acid treated red mud. Nitric 284 

acid treated red mud showed additional bands at 1406 and 1352cm-1 due to Al hydroxylated 285 

nitrate and ν3 NO3
- co-adsorbed with H2O on the red mud particles, respectively.[40] 286 

Sulphuric acid treated red mud also showed an additional band (broad shoulder on the 1074 287 

cm-1) ascribed to sulphate vibrational modes found in the dissolution product thenardite 288 

(Na2SO4). The broadness of the higher wavenumber region is proposed to be water adsorbed 289 

to thenardite. 290 

 291 

2.4 Removal of fluoride using acid treated red mud 292 

The effect of acid activated red mud and pH on the removal of fluoride from aqueous 293 

solutions was investigated and found that red mud treated with sulphuric acid has the greatest 294 

efficiency in fluoride removal (approximately 70% removed from an initial concentration of 295 

100ppm), independent of the initial solution pH (Figures 9 and 10). It is clear from the results 296 

that the best removal percentages are achieved at low pH < 4.5. The study by Cengeloglu et 297 

al.,[23] reported similar removal percentages using red mud, however maximum adsorption 298 

was reported to occur at a pH around 5.5. Deviations in results between the studies are 299 

believed to be due to the different activation processes used.  300 

 301 
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The removal mechanism of fluoride using red mud primarily involves neutral (≡SOH) and 302 

protonated (≡SOH2
+) sites on the oxide/hydroxide components (such as hematite and 303 

gibbsite) when the pH is less than 7.[42] The increased removal efficiencies of acid treated 304 

red mud compared to washed red mud are consistent with the protonation of the surface 305 

hydroxyl groups (Equation 4). Increased removal efficiencies for sulphuric acid treated red 306 

mud are due to 2 protons being available to protonate the surface hydroxyl groups. 307 

 308 

Equation 4 309 

≡SOH + H+ → ≡SOH2
+  310 

  311 

The benefit of the protonated sites in acid treated red mud is that the replacement of a proton 312 

(H+) with fluoride (F-) releases water (Equation 5), while the substitution of a proton with a 313 

neutral site (Equation 6) releases a hydroxyl unit and in turn causes the pH to rise. This is 314 

observed for the DI washed red mud sample (neutral pH and thus has ≡SOH sites) that 315 

showed promising removal efficiencies at low mass to volume ratios, however with the 316 

continued release of OH- units, as F- ions are adsorbed, the pH became alkaline and resulted 317 

in the deprotonation of the surface sites (≡SO-), Equation 7. This can be further confirmed by 318 

comparing the removal efficiencies of washed red mud; whereby the fluoride solution with an 319 

initial pH of 4.75 showed reasonable fluoride adsorption (approximately 35%) followed by a 320 

sharp decrease as the pH rose above 6 (Figure 9), while a maximum of 10% fluoride removal 321 

is observed for the fluoride solution with an initial pH of 8 (Figure 10). Fluoride adsorption is 322 

hindered when the pH is greater than 6 because of the increasing repulsive forces between the 323 

negatively charged surface (≡SO-) and fluoride ions. 324 

 325 

Equation 5 326 

≡ SOH2
+ + F- → ≡SF + H2O 327 

Equation 6 328 

≡SOH + F- → ≡SF + OH- 329 

Equation 7 330 

≡SOH + OH- → ≡SO- + H2O 331 

 332 

The efficiency of fluoride adsorption is highly dependent on the pH and any fluctuations in 333 

pH. This is clearly observed in Figure 10 for the adsorption of fluoride using sulphuric 334 

acidified red mud. This relationship shows that for consistent fluoride adsorption, a constant 335 



11 
 

pH needs to be maintained to avoid any sudden shocks to the surface adsorption sites. It is 336 

also highly possible that the formation of AlFx complexes, in particular aluminium trifluoride 337 

(AlF3), occurs when the pH of solution is less than 4. The formation of AlF3 would account 338 

for some of fluctuations in fluoride removal percentages.  The study by Cengeloglu et al.,[23] 339 

reported a decline in fluoride removal at pH below 4 and did not report the formation of any 340 

of these AlFx phases. This could be accounted for the difference in the quantity of gibbsite of 341 

the different red mud sources used, whereby this study had a greater amount of Al2O3 342 

(24.0%) than Cengeloglu (18.7%)[23]. The formation of this phase is a result of gibbsite in 343 

red mud reacting with HF that forms under these highly acidic conditions (Equation 9). 344 

 345 

Equation 9 346 

Al2O3 + 6HF → 2AlF3 + 3H2O  347 

 348 

CONCLUSIONS 349 

Red mud is comprised of a number of mineralogical phases, however the most important 350 

phases in the removal process are hematite and gibbsite. The treatment of red mud with acid 351 

improved the adsorption properties of red mud in 2 ways: 1) transformed ≡SOH / ≡SO- sites 352 

to ≡SOH2
+ and 2) increased the availability of metal oxide/hydroxide sites through the 353 

removal of sodalite and cancrinite phases. In order to achieve reasonable removal efficiencies 354 

for fluoride a pH < 4.5 needs to be maintained, with sulphuric acid producing the best 355 

removal efficiencies. Red mud treated with sulphuric acid gave the best removal efficiencies 356 

for fluoride due to 2 protons being available to protonate the surface hydroxyl groups. 357 

Sudden changes in pH have shown to have negative effects on the removal efficiencies and 358 

thus need to be controlled. 359 

 360 

 361 
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Table 1 445 

Red mud treatment Al:Fe Na:Fe Si:Fe Ti:Fe 

DI water 1.27 1.04 0.73 0.22 

Conc. HCl 0.98 1.04 0.71 0.21 

0.5M HCl 0.58 0.27 0.22 0.22 

Conc. HNO3 0.76 0.27 0.41 0.19 

0.5M HNO3 0.96 0.57 0.40 0.22 

Conc. H2SO4 1.07 0.97 0.73 0.00 

0.5M H2SO4 0.82 0.37 0.32 0.18 
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