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Abstract Robust facial expression recognition (FER) under occluded face conditions is 

challenging. It requires robust algorithms of feature extraction and investigations into the effects of 

different types of occlusion on the recognition performance to gain insight. Previous FER studies 

in this area have been limited. They have spanned recovery strategies for loss of local texture 

information and testing limited to only a few types of occlusion and predominantly a matched 

train-test strategy. This paper proposes a robust approach that employs a Monte Carlo algorithm to 

extract a set of Gabor based part-face templates from gallery images and converts these templates 

into template match distance features. The resulting feature vectors are robust to occlusion because 

occluded parts are covered by some but not all of the random templates. The method is evaluated 

using facial images with occluded regions around the eyes and the mouth, randomly placed 

occlusion patches of different sizes, and near-realistic occlusion of eyes with clear and solid 

glasses. Both matched and mis-matched train and test strategies are adopted to analyze the effects 

of such occlusion. Overall recognition performance and the performance for each facial expression 

are investigated. Experimental results on the Cohn-Kanade and JAFFE databases demonstrate the 

high robustness and fast processing speed of our approach, and provide useful insight into the 

effects of occlusion on FER. The results on the parameter sensitivity demonstrate a certain level of 

robustness of the approach to changes in the orientation and scale of Gabor filters, the size of 

templates, and occlusions ratios. Performance comparisons with previous approaches show that the 

proposed method is more robust to occlusion with lower reductions in accuracy from occlusion of 

eyes or mouth. 

Keywords Facial expression recognition, Face occlusion, Gabor based template, 

Support vector machine 

1 Introduction 

Facial expression recognition (FER) has received significant interest from computer scientists and 

psychologists over recent decades, largely driven by its potential in applications such as human 

computer interaction, video surveillance, and multimedia content analysis. Although many 

systems for FER [1] have been proposed and implemented, the vast majority of them use non-
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occluded facial images taken under controlled laboratory conditions [1]. In the real world, however, 

facial occlusion is common and arises mainly from clothing, eyewear, and hand movements in 

front of a face. Building robust FER systems under facial occlusion is still a challenging task. 

There are two types of facial occlusion: temporary and systematic [2]. Temporary occlusion 

can result from a part of the face obscured by a hand or an object or owing to head movement. 

Systematic occlusion results from wearing an item such as sunglasses, a scarf or mask. Unlike 

other degradations such as pose variations, whose characteristics can be inferred beforehand, facial 

occlusion is particularly difficult to handle due to its “random” characteristic: occlusion can occur 

at random positions and occluding patches can be arbitrarily large in size.  

Existing FER studies on handling occlusion try to reconstruct the occluded geometric or 

texture features based on the configuration and visual properties of human face. Techniques for 

reconstructing geometry include principal component analysis (PCA) [2], the improved Kanade-

Lucas tracker [3], [4], Bayesian tracker [5], and the transferable belief model [6], and those for 

reconstructing texture rely on robust PCA [7], [8]. These systems depend heavily on accurate 

detection of geometric points and occlusion regions. They either lack the capacity to fully capture 

the regional texture features or lose a part of local texture information due to the reconstruction 

error. Local texture information is important for FER. 

Investigations into the effect of occlusion on recognition performance have either used a 

combination of geometric and texture features [9], [10], or approached FER from the view of 

human perception [11], [12]. While these works have provided useful insight such as the most 

discriminative facial areas for specific expressions, they have been restricted to occlusion over 

specified regions such as the mouth, eyes, nose, or left and right sides. To model the “random” 

characteristic of occlusion in the real world, it is desirable to test with occlusion at random 

locations and occluding patches of different sizes. Further, most training and testing data sets used 

in these studies were matched and have been both occluded in the same manner. It is of interest to 

test the recognition performance on occluded images when non-occluded images are used for 

training (mismatched conditions). This is particularly important for real-world applications in that 

it can eliminate the step of generating the occluded training images by requesting clients at the 

time of enrolment. It is not practically possible to obtain training images with all possible types of 

occlusion. 

In this work, a new approach is adopted and there is no attempt to reconstruct occluded parts 

of a face. Instead, a robust FER approach using randomly sampled Gabor-based templates is 

proposed. The templates are extracted by a Monte Carlo algorithm and serve as a pool of local 

features; therefore, only a part of them are influenced by occlusion. Template matching is used to 

find the most similar features located within a space around these templates. In this way, robust 

features are generated in the sense that occluded templates can be replaced by nearby non-

occluded templates during matching. The salient features that are least influenced by occlusion are 

further determined in the learning process using a norm-based support vector machine (SVM). 

This approach is designed based on the observation that even when parts of a face are occluded 

other parts still contain facial expression information, and a machine learning algorithm can learn 

to avoid the occlusion from training samples automatically in a feature selection process. This 
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approach is inspired by recent work on object recognition [13] and action recognition [14], for 

which Gabor based templates exhibit excellent performance in terms of position, scale and 

orientation-invariance, and randomly extracted Gabor features show a good generalization 

capacity of representing all features. It should note that Gabor filters are one of the most widely 

used feature descriptors in previous FER on occluded data [9], [10]. As most cases in realistic 

situations, it is assumed that the size of occlusion is limited to a certain proportion of the face 

region (i.e. less than 40%) and the location of occlusion can be fixed or random in the train-test 

datasets. The adoption of a space for template matching also determines that the proposed 

approach is more suitable for small occlusion rather than large ones. 

Compared with previous studies, the novelty of this paper primarily consists of two parts: a) a 

novel FER approach that is based on the Monte Carlo based feature selection and template 

matching, which are specifically designed to overcoming facial occlusion by utilizing un-occluded 

information in neighbouring regions; and b) one of the most comprehensive and extensive 

evaluations of FER under occlusion conditions to date, which include five types of patch-like 

occlusion (occluded eyes, occluded mouth, and three occluding patches at random locations and 

with different sizes), two types of near-realistic occlusion (clear and solid glasses), and two testing 

strategies (training and testing are both performed on occluded images i.e. matched; training is 

performed on non-occluded images and testing is done on occluded images i.e. mismatched). To 

the best of our knowledge, this is the first study that investigates the effects of random occlusion 

patches on the overall performance and performance of each expression, and uses the two testing 

strategies. In our previous work [15], the classification results of the proposed approach on the CK 

database has been reported, and this paper presents an extension and continuation of [15] with a) 

detailed description about the proposed approach, b) thorough review on previous related work, c) 

expanded experiments of different occlusion types on the JAFFE database, d) sensitivity analysis 

of vital parameters, e) inclusion of occlusion of eyes with clear and solid glasses, and f) 

computational time performance. 

The rest of the paper is organized as follows. Section 2 reviews related work. Section 3 

presents the proposed approach. Section 4 describes the experiments. Finally, conclusions are 

drawn in Section 5. 

2 Related work 

Existing FER studies on occluded data can be generally classified into two categories: a) methods 

that address occlusion by reconstruction, and b) investigations into the effects of occlusion on 

recognition performance. 

2.1 Methods for handling occlusion 

Occlusion handling methods try to remove the impact of occlusion by recovering missing 

geometric or texture features based on the configuration and visual properties of the face. Bourel et 

al. [3] conducted the first study on handling occlusion of the mouth, upper face, and left/right half 

of the face for FER using recovered geometric features. An enhanced Kanade-Lucas tracker is 



4 

employed to recover lost or drifting facial points. Independent local spatio-temporal vectors are 

created from geometrical relations between 12 facial points. A rank-weighted KNN local classifier 

is then used to make sure that occlusion in a region does not affect other regions. To further reduce 

noise in the spatio-temporal vectors, they have added a state-based model to convert continuous 

values into discrete ones through a quantization process [4]. Towner and Slater [2] utilized three 

PCA-based methods to reconstruct the positions of missing points at the top and bottom of the face. 

Their results showed that occlusion of the top of the face can be reconstructed with little loss, 

while occlusion of the bottom is reconstructed less accurately but still gives comparable expression 

recognition performance. Dat and Ranganath [5] proposed a Bayesian tracker. This tracker 

augments the KLT tracker with a Bayesian feedback mechanism to improve results of tracking 

facial points under temporal occlusion by hands. Hammal et al. [6] recognized facial expressions 

from partially occluded images based on facial point deformations and a modified transferable 

belief model (TBM). The different types of occlusion are simulated by adding bubble masks into 

the face and handled by the TBM, which can integrate information from different local facial 

regions, and deal with uncertain and imprecise data. Miyakoshi and Kato [16] presented an 

emotion system that utilizes a Bayesian network classifier to infer the dependencies among target 

attribute and explanatory variables without filling in the facial gap caused by occlusion.  

Techniques have also been used for recovering texture features in occluded regions. Xia et al. 

[7] first detected regions of occlusion based on robust PCA (RPCA) and saliency detection, and 

then replaced occluded regions by corresponding regions in the face reconstructed using RPCA. A 

similar RPCA algorithm was also applied for reconstructing the regions of occluded eyes and 

mouth in [8]. Different from all above work, Cotter [17], [18] represented occluded test images 

using a linear combination of pixel vectors from local regions in training samples from the same 

class. Yongmian and Qiang [19] inferred facial expressions in occluded frames via temporal 

reasoning. Recently, Huang et al. [20] proposed a complete system consisting of facial 

representation, occlusion detection, and multiple feature fusion in video sequences. Temporal 

texture and shape features from the eyes, nose, and mouth components are integrated using a mean 

rule and a weight learning strategy, and the occluded components in sequences are determined 

using a binary codebook generated based on both sparse representation and residual statistics of 

these components. 

FER performance improvements have been provided by these methods, but they still have the 

following shortcomings: 

1) Limited robustness against occlusion. Techniques for constructing geometric features face 

the difficulty to accurately detect and track the geometric points in video with occluded regions. 

Techniques for constructing texture features have to pre-locate occluded regions, which is still a 

challenging issue. 

2) Loss of local texture information. The PCA-based recovering technologies cannot fully 

represent complicated and local changes of facial appearance without some loss of useful texture 

information. 

To overcome these shortcomings, the random template method proposed in this paper does 

not require pre-location of occluded regions and does not depend on recovering texture in the 
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occluded regions. It uses randomly collected features and selects a subset of those that is least 

influenced by the types of occlusion present in the training set. 

2.2 Investigations into the effects on performance 

Investigations into the effects of occlusion on FER performance are generally based on texture 

features in static images. Buciu et al. [9] explored the classification performance of seven 

emotions under occlusion of the mouth and occlusion of the eyes using Gabor features. Their 

results showed that the eyes and mouth affect the overall performance on the JAFFE database in a 

similar manner, while the mouth plays a more important role than the eyes on the CK database. 

The eyes and mouth have the most impact on sad and neutral expressions, respectively, on JAFFE, 

while they both have the most impact on anger and sadness on CK. Buciu et al. [10] also presented 

an analysis, probably the most detailed to date, on the effects of occlusion of the eyes, mouth, and 

left and right face regions, on the FER performance. Their results demonstrate that occlusion on 

the left and right do not affect the recognition accuracy, but occlusion of the mouth affects anger, 

fear, happiness and sadness, while occlusion of the eye affects disgust and surprise, more than 

other emotions. 

Attempts have also been made to experimentally analyze the effect of occlusion on facial 

expressions based on human perception. Halliday [21] demonstrated that the mouth and eyes are 

the most important regions for accurately identifying genuine happiness, sadness and fear. Bassili 

[11] indicated that the bottom part of the face tends to produce a better overall recognition 

performance than the top part. Nusseck [12] reported that the combination of eyes, eyebrows, and 

mouth regions is sufficient to produce acceptable recognition rates. 

Useful insights have been provided by these studies, but they have: 

1) Used a limited range of occlusion types. Only occluded regions over the mouth, eyes, 

nose, and left/right halves of the face are used for testing. In the real-world, a face can become 

occluded at any location, and it is necessary to test more comprehensively with occluded regions at 

random locations and of random sizes. 

2) Adopted a matched train-test strategy. Both the training and test sets are occluded images. 

It is also important to test the mismatched strategy, where no-occluded images are used for 

training and occluded images are used for testing. 

Overcoming these limitations, the evaluation in this paper addresses the effects of a wider 

range of occluded regions on FER performance, and uses a mismatched train-test strategy as well. 

3 The proposed approach 

Figure 1 demonstrates the framework of the proposed approach. For an input image, the facial 

region is located by the widely used Viola-Jones face detector and scaled to 48×48 pixels. 

Occluded regions are simulated by adding masks into the facial regions. Then Gabor images are 

obtained by convolving eight-scale and four-orientation Gabor filters with the facial regions. A 

Monte Carlo algorithm is used to extract a set of templates, which are only partially influenced by 

occlusion. Template matching is then performed to find the most similar features located within a 
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space around these templates, resulting in distance features robust against occlusion. Based on the 

distance features, a norm-based support vector machine (SVM) is used for selecting salient 

templates that are least influenced by occlusion. At the testing stage, the same template matching 

is performed on the salient templates to obtain the distance features in a testing image, which are 

fed into an SVM to recognize seven emotions: anger (AN), disgust (DI), fear (FE), happiness 

(HA), neutral (NE), sadness (SA) and surprise (SU).  

 

Fig. 1 Framework of the proposed approach 

3.1 Gabor filters 

Gabor filters are one of the most commonly used texture descriptors for representing facial 

expression information under occlusion situations in previous studies (see Section 2). In this paper, 

2D Gabor filter [22] is adopted and it can be mathematically expressed as: 

 
 

                    (1) 

where, orientation 𝜃, the effective width 𝜎, the wavelength 𝜆, the aspect ratio 𝛾. Instead of the 

widely used five scales, eight scales (5:2:19 pixels) are adopted here to test the results using a 

larger number of scales. The values of the rest of the parameters are set based on [13], which 

reported high performance on object recognition using these parameters. As a result, four 

orientations (-45°, 90°, 45°, 0°) are used. The given image is effectively convolved with impulse 

response of the Gabor filters as in equation 1, resulting in a series of Gabor images with features 

such as bars and edges usefully emphasized for better discriminating between facial expressions. 
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3.2 Template extraction 

 

Fig. 2 (a) Input image, (b) set of Gabor filter outputs, (c) one scale from the space of all Gabor 

outputs showing a template being selected at random location (X,Y), (d) the selected 3D template 

of width Pj , height Pj and Onum orientations. 

As shown in Figure 2, template extraction adopts a Monte Carlo algorithm to collect a set of 

templates from the occluded Gabor images. Each template has patches of Gabor filter outputs at 

four orientations, all from the same scale. These templates serve as a pool of local features and 

contain emotional information robust against occlusion. Figure 3 explains the algorithm. For each 

emotion and each template size, a number (Num) of templates are extracted. The final template set 

is obtained by combining the Num extracted templates of all emotions and all template sizes. To 

extract each of the Num templates, a five-step process is proposed: First, randomly select one 

image I from all training images with the emotion Ek. Second, randomly select one Gabor scale Sm 

from eight scales of the image I. Third, randomly select the X- and Y-axis positions from the scale 

Sm. Fourth, extract one template with a size of Pj×Pj×Onum at the position of X and Y in the scale 

Sm. Finally, record the matching area and matching scale (details explained in Section 3.3). 

This algorithm is designed based on the “random” characteristic of regions of facial occlusion 

and the fact that local features have an advantage over holistic features in overcoming occlusion 

[4]. In real situations, facial occlusion can randomly occur across the whole face region, but often 

influence only on a small part of the region. Therefore, it is expected that only a small proportion 

of the randomly extracted templates are affected by facial occlusion, while the majority of the 

templates obtained in the non-occluded regions remain uninfluenced. Similar algorithms have been 

used to extract a subset of features with a good generalization capacity of representing all features 

[13]. In this paper, four template sizes are used: 2×2×4, 4×4×4, 6×6×4, 8×8×4, and the Num is set 

to 1000. Given seven emotions, the final set contains 28,000 templates. 

 
Input: Template size Pj (j=1,…,4); emotion Ek (k=1,…,7); Gabor scale 
Sm (m=1,…,8); Gabor orientation number Onum. 
Output:  Templates, matching area and matching scale. 
For each emotion Ek  and each template size Pj                                        
     For 1 to Num (Num = 1000)                             
         Randomly select one image I from training images of Ek;            
         Randomly select one scale Sm from all scales in I;                   
         Randomly select X- and Y-axis positions in Sm;                
         Extract templates with sizes of Pj×Pj×Onum;   
         Record the matching area Area;  
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         Record the matching scale Sm;  
      End 
End 
Return Templates, matching area and matching scale. 

Fig. 3 Algorithm for template extraction 

3.3 Template matching 

Template matching aims to find the most similar features located within a space around the 

extracted templates. The matching helps to reduce the influence of occlusion because occluded 

templates can be replaced by nearby non-occluded templates. Thereby, robust features can be 

extracted. For each of the extracted templates, the matching produces a distance value by 

performing the following two steps, and the distances of all templates are concatenated to form the 

final feature set. 

First, the matching area and matching scale are defined for each template to provide the 

matching space. As shown in Figure 4, the matching area has twice the width and height of each 

template but with the same orientation number and centre point. The matching scale is set as the 

same with the scale of Pa because the facial regions obtained by the Viola-Jones detector normally 

have the same scale. A larger matching area (e.g. the whole face) or matching scale can be used, 

but it also may increase the possibility of error introduced because the extracted template is 

matched against more templates which may contain similar texture. 

Second, the distances between the template Pa and all templates within the matching space 

are calculated. Each calculation takes two templates as inputs and yields one value based on a 

distance metric. The minimum value in the matching space is the chosen feature for Pa. Two 

distance metrics are used: sparse L1 (SL1) and sparse L2 (SL2). The sparse metrics calculate the 

distances using the maximum value of all orientations in the template: 

              (2) 

     
       

(3) 

where, Pb and Pc represent two templates, Pijo represents the pixel value in the ith row, jth column 

and oth orientation of the templates, Onum indicates the number of Gabor orientations, and Pj 

indicates the size of the jth template. 
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Fig. 4 Matching area. (a) One template Pa and its (b) corresponding matching area ‘Area’ in a new 

image. W and H are the width and height of images. 

3.4 Template selection 

Norm-based SVM [23] is used to select a subset of the most discriminative templates and 

eliminate those influenced most by occlusion. The SVM solves classification tasks by finding a 

hyperplane in a high dimensional space that can separate the negative examples from the positive 

examples with a maximum margin. The output prediction P for a linear SVM is expressed as: 

𝑃 𝑥 = sgn 𝑤!𝑥 + 𝑏 = sgn( 𝑤!𝑥! + 𝑏! )      (4) 

where, 𝑥! is the jth distance obtained from template matching, which is concatenated to form a 

feature vector, and 𝑤! is its weight. Thus, a feature 𝑥! with the weight 𝑤! close to 0 has smaller 

impact on the prediction result than features with big absolute values of weights. The weights w 

can be seen as normal vectors to the hyperplane determined by the SVM classifier, and these 

normal vectors are updated every round to reflect the importance of each feature. Template 

selection with the SVM will also reduce computation time. 

In this paper, a one-against-all SVM is trained for each emotion. For each template, the 

average weights over the seven emotions are updated each training round based on the trained 

SVM. The templates with low average weights are dropped out (i.e. setting the weights to 0). The 

number of the selected templates is controlled in such a way that it initially starts from 28,000, and 

reduces to a half at each training iteration until it becomes less than 1000, then decreases by 50 

until less than 100, and then by 10 when bigger than 10. 

4 Experimental results 

This section introduces the databases and simulation of occluded regions, and analyzes the effects 

of different types of occlusion on the overall FER performance and the recognition performance 

for each expression. Classification accuracies and average computational time are reported and 

performance is compared with previous approaches. 

The effects of occlusion on the performance are described based on two train-test strategies: a) 

matched strategy means that training and testing are both performed on occluded images; b) 

mismatched strategy indicates that training is performed on non-occluded images and testing is 

done on occluded images. The average correct recognition accuracy over 10 cross validations with 

a linear SVM classifier is used. The performance for the case of no occlusion (No) serves as a 

baseline for comparisons. Since SL1 and SL2 produce similar performance for the two testing 

strategies and for most types of occlusion, the performance obtained by SL1 alone is used for 

analysis of the results. 
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4.1 Databases 

The Cohn-Kanade (CK) database [24] is one of the most comprehensive databases for facial 

expression benchmark tests. The released part includes 486 digitized image sequences from 97 

subjects. These sequences from neutral to target display were digitized into 640×480 or 640×490 

pixels. Six basic expressions were based on descriptions of prototypic emotions. For the 

experiment here, 1,616 images that represent one of the seven emotions are selected from 92 

subjects. For six basic emotions, the four frames with the highest intensity of emotions are chosen 

in each sequence. For the neutral case, the first frame from each video sequence is chosen. At most 

four are retained, ensuring that the neutral class has almost the same number of images as the other 

emotion classes for each subject. Only when there are less than four emotions for a subject is there 

a discrepancy. The statistics of the chosen CK images are listed in Table 1. All images are 

classified into 10 similar sets and all images of one subject are included in the same set. 

Table 1 Statistics of images chosen from CK database 

 Total AN DI FE HA NE SA SU 
Image 1616 132 140 200 316 356 184 288 

Subject 92 33 35 50 79 92 46 72 
 

The Japanese female facial expression (JAFFE) database [25] contains 213 gray images of 

seven facial expressions posed by 10 Japanese females. Each image has a resolution of 256×256 

pixels. Each object has three or four frontal face images for each expression. All images have been 

rated on six emotion adjectives by 60 subjects. All images are used here and classified into 10 sets 

according to the subject identity. 

4.2 Simulation of occlusion 

No comprehensive public FER database has been reported with images that exhibit different types 

and extent of facial occlusion. To simulate such occlusion, we add white masks to different 

positions of the face region, including (i) the two eyes, (ii) the mouth, (iii) randomly placed 8x8 

patch R8, (iv) R16 and (v) R24. RS means adding a mask with a size of S×S into the face region at a 

random location. This random patch technique has been used previously to simulate occluded 

regions in face recognition [26]. A sample set of occluded facial images on the CK database is 

shown in Figure 5 (a). In addition to the five types of patch-like occlusion, two types of near-

realistic occlusion are also included: by clear and solid glasses, which are simulated by adding a 

white frame and by adding a black frame together with a white interior over the eye region, 

respectively, as shown in Figure 5 (b). The motivation for testing with these types of occlusion is 

the fact that in real situations glasses often occlude the two eyes, scarves and masks often occlude 

the mouth, and other unpredictable objects can occlude any part of the face randomly. In addition, 

eyes and mouth are widely regarded as the most important areas for facial expressions, therefore, 

occlusion of the eyes and mouth can be used to validate the robustness of the proposed approach. 

It is worth mentioning that occlusion of the left or right halves of the face is not tested here as this 

type of occlusion has been shown to have little effect on the performance [10]. 
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(a) 

 
(b) 

Fig. 5 Samples of different types of simulated occlusion. (a) From top to bottom: no occlusion, 

occluded eyes, occluded mouth, R8, R16 and R24 on the CK database. (b) Near-realistic occlusion 

by simulated clear and solid glasses on the JAFFE (first two rows) and CK (last two rows) 

databases. 

4.3 Effect of occlusion on overall FER performance 

Figure 6 demonstrates the effects of the five types of patch-like occlusion on the overall FER 

performance of the proposed approach. 

(1) Matched train-test strategy (using occluded images for training) 

For both the CK and JAFFE databases, no occlusion (No) achieves the highest overall 

performance. The second best performance is for occluded eyes with 95.1% and 80.3% accuracy 

on the CK and JAFFE databases respectively. The next ones are R8, occluded mouth and R16, 

whereas R24 ranks last. Compared to no occlusion, occlusion of the eyes leads to a small 

performance reduction (<1% for both databases), whereas occlusion of the mouth results in 

reductions of about 5% for CK and 3% for JAFFE. When the size of random occlusion patches 

increases from 8×8 to 24×24, the overall performance has a significant reduction. However, the 

proposed approach still has 75% accuracy on CK and 48.8% accuracy on JAFFE under R24, for 
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which one-quarter of the face is occluded. This demonstrates the high robustness of the proposed 

approach. 

The proposed approach has much lower accuracy on JAFFE than on CK for all types of 

occlusion, which is owing to the more ‘exaggerated’ emotions in CK than in JAFFE. R16 and R24 

have bigger impact on the performance on JAFFE than that on CK. This is partially caused by the 

fact JAFFE images need bigger sizes of Gabor templates than CK images to represent the useful 

information for FER as shown in [27]. Accordingly, larger sizes of random occlusion cause higher 

variance in the Gabor templates extracted from JAFFE images during training. 

 

(a) CK database          (b) JAFFE database 

Fig. 6 Overall recognition performance (%) under five types of occlusion on the (a) CK and (b) 

JAFFE databases. “No” indicates no occlusion. Under the matched strategy, R8 has the biggest 

impact on overall performance for both the databases. Under the mismatched strategy, occlusion of 

the mouth degrades performance on CK significantly, while occlusion of the eyes and R24 exert 

major impact on performance on JAFFE. 

(b) Mismatched train-test strategy (using non-occluded images for training) 

For both the databases, the best and second performers are no occlusion and R8 respectively. 

An increase in the size of random occlusion patches results in lower performance. On the other 

hand, there are also some differences in performance on the two databases. Occlusion of the mouth 

has a big impact on the performance on CK, but little impact on JAFFE. Occlusion of the eyes and 

R24 significantly influence the performance on JAFFE, but not so much for CK. This shows that 

the most influencing types of occlusion may be different for different data. Emotions in JAFFE are 

expressed mainly through regions of the two eyes, while those in CK are largely through the 

mouth region. The results agree with previous finding [27] that the Gabor features selected by 

Adaboost from JAFFE images focus more on the eyes, while those from CK images are more on 

the mouth. Such differences can arise from factors such as cultural differences, the intensity of 

posed emotions, etc. 

The performance for mismatched train-test strategy is significantly reduced from that for a 

matched train-test strategy for most types of occlusion. For the CK database, occlusion of the 

mouth leads to the biggest reduction (e.g. from 90.8% to 30.3%). The one that follows in 

performance reduction is R24, which suffers from a reduction from 75.0% to 62.5%. Occlusion of 

the eyes and R16 lead to reductions of about 5% and 2% only, respectively. Surprisingly, R8 

achieves little higher accuracy than that using matched train-test strategy, which may be regarded 
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as being within a reasonable performance fluctuation. For the JAFFE database, occlusion of the 

eyes brings about the biggest reduction (e.g. from 80.3% to 34.3%), which is followed by R24 (e.g. 

from 48.8% to 23.5%). In contrast, R8 even has little higher accuracy, which is similar to the result 

on CK. This indicates that the use of a matched or mismatched train-test strategy has little impact 

on R8. 

As shown by the above results, for both the testing strategies and both the databases, R8 has 

little influence on the overall performance, while R24 exerts a great influence. This implies that the 

size of the occluded regions is one important factor determining the performance. Our results also 

reveal that regions of the two eyes have a big effect on JAFFE, while the mouth region has a 

significant impact on CK. The performance difference between the two testing strategies is owing 

to the fact that the SVM feature selector only selects features from non-occluded regions based on 

the knowledge learnt from training images during matched conditions, whereas there is no such 

knowledge when non-occluded images are used for training in the mismatched case. 

4.4 Effects of occlusion on each facial expression 

(1) Matched train-test strategy 

Figure 7 illustrates the effects of the five types of occlusion on each expression based on the 

matched train-test strategy. For both the databases, occlusion of the eyes has little influence on any 

expression, except for anger and neutral on JAFFE. Furthermore, it slightly outperforms no 

occlusion (No) for anger, fear and sadness on CK and fear on JAFFE. This is due to the 

performance fluctuations caused by the Monte Carlo algorithm of template extraction. Occlusion 

of the mouth tends to impact different emotions on the two databases. For CK, occluded mouth has 

a relatively significant effect on anger, sadness and fear, while it has little effect on happiness, 

neutral and surprise. This accords with the results in [9], and it is reasonable for anger, sadness, 

and fear, but is contrary to the common understanding that the most distinguishing characteristic 

of surprise is an “open mouth”. The reason may be that surprise on faces in the CK database is 

expressed not only by the mouth, but also by other regions. For JAFFE, occluded mouth impacts 

happiness the most, following by neutral and sadness. 

Increasing size of random occluded patches decreases the performance for most of the 

expressions, except for happiness on JAFFE, which has higher accuracy under R16 than under R8. 

All expressions are most affected by R24, and this affection is more obvious on JAFFE than CK. 

Furthermore, anger and sadness on CK, and disgust, neutral, surprise and sadness on JAFFE are 

also strongly affected by R16. For both the databases, similar performance is obtained for disgust 

and surprise with occlusion of the eyes, the mouth and occlusion by random R8 patches. This is 

also true for happiness and neutral on CK. In addition, neutral and surprise also have the same 

accuracy under R16 and R24 on JAFFE. It should be noted that, due to the Monte Carlo algorithm of 

template extraction and varying locations of simulated occlusion regions, a larger random 

occlusion can sometimes lead to better performance than smaller occlusion for certain emotions. 

For example, R16 obtains higher accuracy than R8 for happiness on the JAFFE database. This is 

also true for some results of the mismatched train-test strategy in Figure 8. 
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(a) CK database 

(b) JAFFE database 

Fig. 7 Effects of five types of occlusion on the recognition performance (%) of each facial 

expression using the matched train-test strategy. Note that R24 impacts all emotions significantly 

on the two databases. 

(2) Mismatched train-test strategy 

Figure 8 (a) shows the effects on each expression for the CK database based on the 

mismatched strategy. Occlusion of the mouth demonstrates a significant impact on the 

performance of sadness, neutral, disgust, surprise, and fear, but a small effect on that of anger and 

happiness. All sad images are misclassified, and this agrees with the result in [3] that only 20% 

accuracy is obtained for sadness. Moreover, neutral, disgust and surprise have far lower accuracy 

at 3.8%, 15%, and 15% respectively, than anger and happiness. Occlusion of the eyes has little 

influence on all emotions. These findings confirm the results in [9] that the eyes region is not as 

important as the mouth region for FER on the CK database. R24 and R16 also have a big influence 

on all emotions, while R8 has little impact. Note that for anger higher accuracy is obtained under 

R24 than under R16 (62.6% versus 54.6%) and this is an exception. 

Figure 8 (b) illustrates the effects on the JAFFE database. R8 has little impact on any emotion, 

while R24 has a big impact on all emotions. R16 also tends to have a significant effect on most of 

the emotions. However, the effects of R8 and R16 on JAFFE are not as significant as those on CK. 

For both the databases, R16 has little influence on performance for fear. On the CK database 

occlusion of the mouth has a significant impact on performance. By contrast, on JAFFE, occlusion 

of the mouth exerts a relatively small influence on most emotions. Occlusion of the eyes exerts the 

biggest influence amongst all types of occlusion, on anger, neutral, and surprise. This illustrates 

that the eyes rather than the mouth convey the most discriminative information in the JAFFE 

images, as opposed to the results in the CK images. Note that for fear and disgust accuracy is 

better under R8 and R16 than for the case of no occlusion. 
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(a) CK database 

 
(b) JAFFE database 

Fig. 8 Effects of five types of occlusion on the recognition performance (%) of each facial 

expression using the mismatched train-test strategy. Note that occlusion of the mouth degrades 

recognition performance of disgust, fear, neutral, sadness and surprise significantly but does not 

affect anger and happiness as much on the CK database. For the JAFFE database, occlusion of the 

eyes significantly impacts performance of anger, neutral, and surprise, but does not affect 

happiness much, while R24 has the biggest impact on fear, happiness and sadness. 

Compared to the results using a matched strategy in Figure 7, R24 and R16 result in large 

performance reductions for both the databases. In addition, occlusion of the mouth and occlusion 

of the eyes also degrade the performance significantly for CK and JAFFE, respectively. On the 

other hand, R8 leads to similar results for the two testing strategies. When matched train-test 

conditions are used, all emotions are mostly affected by R24 for both the databases. For 

mismatched conditions, all emotions except for anger and happiness are mostly affected by 

occluded mouth on CK, and anger, neutral, and surprise are mostly affected by occluded eyes, 

while fear, happiness and sadness are mostly affected by R24 on JAFFE. Similar to the results 

presented in [9], [10], occlusion of the mouth is observed to result in a bigger performance 

reduction than occlusion of the eyes for most expressions on the CK database. 

4.5 Parameter sensitivity 

The relevant parameters in the proposed approach include: (a) the orientation and scale of Gabor 

filters, (b) the size of templates, (c) the ratio of the height and width of occlusion, (d) the size of 

the match area, and (e) the distance function. Changes made to these parameters may have big 

impact on the performance, thus, it would be interesting to investigate the sensitivity of the 

approach to parameters that use values different from those set initially. Due to space limitation, 

this section reports only the results obtained using different values for each of the parameters of (a-
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c) and the database used is JAFFE. 

   (1) Gabor filter 

The orientation and scale of Gabor filters imposed on facial images are two key parameters 

that determine the effectiveness of the extracted texture features. Fig. 9 compares the classification 

results obtained using two, four, and eight orientations of Gabor filters (the number of the scale of 

Gabor filters is fixed to eight). The three sets of orientation are (90° 0°), (-45°, 90°, 45°, 0°) and 

(90° 67.5° 45° 22.5° 0° -22.5° -45° -67.5°) respectively. It can be seen that using the default four 

orientations of Gabor filters produces the highest accuracy among the three sets of orientation 

values on all types of occlusion under matched train-test conditions, and it is also the best 

performer for non-occlusion and occlusions of R8, R16, and R32 under mismatched conditions. In 

addition, an increase of the orientation of Gabor filters from four to eight leads to slightly inferior 

performance and both of them outperform using two orientations (more than 5%) for nearly all 

occlusions and both mismatched and matched conditions. The result may indicate that Gabor 

filters require at least four orientations to be capable to capture most of the information for 

discriminating facial expressions in occluded images. A significantly higher accuracy is reported 

for using eight orientations over using two and four orientations for occlusion of the mouth under 

mismatched conditions, implying that it might be helpful to adopt a larger number of the 

orientation of Gabor filters to capture rich facial movements in the mouth region that possibly 

occur in all directions . 

 
     (a) mismatched                            (b) matched 

Fig. 9 Classification performance (%) obtained using three sets of orientation of Gabor filters (i.e. 

2, 4 and 8) on the JAFFE database. The number of the scale of Gabor filters is fixed to eight. 

Fig. 10 compares the accuracies obtained using four, six, eight, and ten scales of Gabor filters 

(the number of the orientation of Gabor filters is fixed to four). The four sets of scale are 

composed of (5:2:11), (5:2:15), (5:2:19), and (5:2:23) pixels respectively. Similar to the 

comparison results for different orientations of Gabor filters in Fig. 9, using eight scales of Gabor 

filters produces the highest accuracy among the four sets of scale values on nearly all types of 

occlusion under matched conditions, and it also performs the best for non-occlusion and 

occlusions of R8, R16, and R32 under mismatched conditions. The results also confirm that the 

default four orientations and eight scales of Gabor filters are the optimal parameters for FER in 

occluded images, at least for non-occlusion and random occlusion. Two exceptions occur when the 

eyes and the mouth are occluded, for which the scales of six and four obtain the highest 

performance respectively under mismatched conditions. The results again imply the necessity to 
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set proper individual values to the orientation and scale of Gabor filters for FER in images with 

occluded eyes or mouth. It can be concluded that the changes in the orientation and scale of Gabor 

filters only pose limited impact on the performance of the proposed approach for most types of 

occlusion and both train-test strategies. 

 
     (a) mismatched                             (b) matched 

Fig. 10 Classification accuracy (%) obtained using four sets of scales of Gabor filters (i.e. 4, 6, 8 

and 10) on the JAFFE database. The number of the orientation of Gabor filters is fixed to four. 

   (2) Template size 

The size of the template determines the extent to which the useful discriminative features can 

be extracted from the facial image. Fig. 11 compares the accuracies obtained using four sets of 

template sizes (i.e. 2, 4, 6, and 8) individually and their combination (i.e. ‘All’). It can be observed 

that all the four sets of template sizes have similar performance for non-occlusion and occlusion of 

R8, R16, and R24 under both mismatched and matched conditions. Therefore, the changes in 

individual size of templates exert little influence on the performance. This is mainly due to the fact 

that these occlusions can be distributed equally at any position in the facial image, and thus the 

information for discriminating facial expressions also tends to be distributed equally in all sets of 

template sizes. The combination of all the four template sizes helps to achieve higher accuracy for 

all of the tested occlusion, except for occlusion of the mouth for which the sizes of four and eight 

perform the best under mismatched conditions and the size of eight the best under matched 

conditions. Thus, it seems to suggest that a combination of different sets of template sizes is 

advisable for FER on most types of occlusion in general, but for bigger occlusion at a roughly 

fixed location such as the mouth, a larger size of templates is recommended. 
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(b) matched 

Fig. 11 Classification performance (%) obtained using four sets of template sizes (i.e. 2, 4, 6 and 8) 

and their combination on the JAFFE database. 

(3) Occlusion ratio 

Realistic occlusion may change dramatically in the ratio of its height and width. To simulate 

occlusions RH×W with different ratios, we follow the process of simulating R8, R16 and R32 in 

Section 4.2, by adding a mask with a size of the height H and the width W into the face region at a 

random location. The height H is assumed to eight or 16 pixels for simplicity, but the width W is 

allowed to be a set of integer values within the range of (0 48), resulting in two sets of random 

occlusions with different ratios as shown in Fig. 12. 

 
Fig. 12 Samples of two sets of simulated images with different occlusion ratios. ‘H×W’ indicates a 

simulated occlusion with a height H and a width W. 

 

Fig. 13 shows the results of the proposed approach evaluated on the simulated occlusions 

with different ratios. As expected, the performance gradually decreases as the width of the 

occlusion increases under both mismatched and matched conditions, but the performance for 

occlusion with a height of 16 declines more quickly than that with a height of eight, and this is also 

the case for the performance under mismatched conditions as compared to under matched 

conditions. It is interesting to observe that, under matched conditions, the proposed approach has 

higher accuracy on R16×4 than on R8×4, and similar performance between R16×8 and R8×8. This is 

partly due to: a) performance fluctuation caused by the Monte Carlo algorithm for feature 

extraction; and b) occluded features on the left part of the face can be equivalently replaced by 

similar features on the right part, and vice versa (note that R16×4 and R16×8 appear more vertically 

than R8×4 and R8×8). However, the proposed approach still achieves around 60% and 40% 

accuracies on occlusion of R8×48 and R16×48 respectively under matched conditions, and around 40% 

and 20% accuracies respectively under mismatched conditions. In addition, the approach also 

exhibits a certain degree of robustness to changes in occlusion ratios, which is particularly 
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evidenced by the comparable performance obtained for all occlusion with the same height of eight 

and only 20% decline in accuracy when the width of the occlusion increases from 0 to 48 pixels 

under matched conditions. 

 
       (a) mismatched               (b) matched 

Fig. 13 Classification performance evaluated on two sets of random occlusion with different ratios 

on the JAFFE database. The two sets of simulated occlusion have the same height of 8 and 16 

pixels respectively. 

4.6 Classification performance on occlusion by glasses (eyewear)  

To prove the robustness of the proposed approach, we also report the classification performance on 

two types of near-realistic occlusion by simulated clear and solid glasses as shown in Figure 5(b). 

Both matched and mismatched train-test strategies are used. For the mismatched strategy, in 

addition to using non-occluded images for training, we also give the results of using training 

images with patch-like occluded eyes. The adoption of occluded eyes is to test whether patch-like 

occlusion in training images helps to improve the classification performance for occlusion by 

glasses presented at the same location in testing images. 

Table 2 shows the classification results for seven emotions using the proposed approach on 

the CK and JAFFE databases. The accuracy of the proposed approach reduces only by a small 

amount as a result of occlusion by clear or solid glasses, compared to results for no occlusion 

under matched train-test conditions. The reductions are 0.3% and 3.8% for occlusion by clear and 

solid glasses, respectively, on the CK database, and 0.4% and 6.1% on the JAFFE database. For a 

mismatched train-test strategy, the performance reduction remains small (<7.1%) on CK, but it 

becomes significant (>33%) on JAFFE. Compared with non-occluded training images, using 

training images with occluded eyes does not improve the performance on CK, but it leads to much 

better performance on JAFFE, particularly for occlusion by solid glasses. Occlusion by solid 

glasses leads to greater performance reduction than that by clear glasses for both the databases and 

this is true for both matched and mismatched train/test strategies. However, the performance 

reduction on CK is not as significant as that on JAFFE. As explained in Section 4.3, the reason for 

these contrasting results on the two databases lies in the fact that emotions in JAFFE are expressed 

mainly through the two eyes, while those in CK involve the mouth region. Thus, it appears that the 

impact of occlusion by glasses on FER performance is dependent on cultural differences in 

expression of emotion and hence on the database. 
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Table 2 Classification accuracy (%) of the proposed approach under occlusion by clear and solid 

glasses. ‘No’, ‘Clear’, ‘Solid’, and ‘Eye’ refer to no occlusion, occlusion by clear and solid 

glasses, and occlusion of the eyes, respectively. 

 

Matched	  (train-‐test)  Mismatched	  (train-‐test) 
No-‐
No 

Clear-‐
Clear Solid-‐Solid 

 No-‐
Clear 

No-‐
Solid Eye-‐Clear Eye-‐Solid 

CK 95.3 95.0 91.5  94.4 89.7 89.5 88.2 
JAFFE 81.2 79.8 75.1  42.7 20.7 47.9 35.2 

 

4.7 Computational time performance 

Table 3 displays the average computational time per image used for different processing steps at 

the training and the testing stages on the JAFFE database. The number (Num) of extracted 

templates for each emotion and each template size equals to 1000, and the distance metric is L1. 

The programs are developed in Matlab 7.6.0 with a dual core 3.20GHz CUP having 4GB RAM 

and a 64-bit Window 7 operating system. The program is quite fast and is able to process four 

testing images per second. Among all the processing steps, template matching is the most 

computationally expensive one, accounting for more than 70% of the overall time for both the 

training and testing stages. The training stage takes much longer than the testing stage 

(approximately 3.42 vs. 0.24 seconds), which is the preferred asymmetry because the training can 

be performed off-line. Due to the adoption of norm-based SVM for discriminative template 

selection, template matching at the testing stage takes as little as 6% of the time required by 

matching at the training stage. 

Table 3 Average computational time (millisecond) per image on the JAFFE database (Num = 

1000; L1 distance) 

 Gabor	  
Feature 

Template	  
Extraction 

Template	  
Matching 

Template 
Selection 

SVM	  
Classification 

Overall	  
Time 

Training	  stage 54.3 15.8 2950 398.2 -‐ 3418.3 
Testing	  stage 54.3 15.8 173.2 -‐ 1.0 244.3 

 

4.8 Performance comparison with previous approaches 

The performance of the proposed approach is compared with the reported results in previous 

approaches in this section. The approaches in Tables 3 and 4 are chosen due to their state-of-the-

art performance on the CK and JAFFE databases, and they may adopt feature descriptors and 

emotion classifiers that are different from our approach. The performance is the average accuracy 

over 10 cross validations. For fair comparison, only the performance with occlusion of the eyes 

and occlusion of the mouth based on the matched strategy is used. The performance on non-

occluded images is also given as a reference to evaluate the accuracy reduction caused by different 

types of occlusion. No previous research has reported tests on FER performance based on the 

mismatched strategy to the best of our knowledge and these results obtained by us are new and 

therefore not comparable to any previously reported. 
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Seen from the results on the CK database in Table 4, the proposed approach outperforms all 

benchmarked approaches in [9], [10] for both types of occlusion and no occlusion. The accuracy of 

the proposed approach is 0.8%, 2.8% and 3.6% higher for no occlusion, occluded eyes and 

occluded mouth, respectively, compared to the best performance in previous approaches. The 

reduction in accuracy owing to occlusion for our approach is the lowest (-0.2%) for occluded eyes 

and the second lowest (-4.5%) for occluded mouth.  

Results on the JAFFE database in Table 5, show that the proposed approach has higher 

accuracy than the approaches in [7], [8], [16] and a comparable performance to the approaches in 

[10] for occlusion of the eyes and occlusion of the mouth. It should also be pointed out that the 

results in [7], [10], [16] are based on six basic emotions as opposed to seven emotions used in our 

approach. The higher performance in [10] over the proposed approach should be viewed taking 

this into consideration. The performance reductions (-0.9% and -2.8%) for our approach are the 

lowest among all compared approaches for occlusion of the eyes and occlusion of the mouth, 

respectively. 

From the above analysis, we can see that the proposed approach not only achieves promising 

results for all three types of occlusion, but also shows robust performance to occluded eyes and 

mouth. The lower performance on JAFFE than that on CK is largely due to the fact that the 

expression of emotions in JAFFE images is more subtle than those in CK images. A shortcoming 

of the benchmarked approaches [9], [10] is that they extract a Gabor feature vector from facial 

regions without a further step of eliminating features influenced by occlusion. On the other hand, 

the proposed approach randomly extracts a set of templates from facial regions to represent local 

features and then utilizes SVM based feature selection to remove the templates influenced most by 

occlusion. 

Table 4 Performance (%) Comparison on the CK Database 

Reference Feature Classifier No Eyes Mouth 
Our Gabor template  SVM 95.3 95.1 (-0.2) 90.8 (-4.5) 

[9] Gabor filter (Lfr)  MCC 94.5 92.3 (-2.2) 87.2 (-7.3) 
Gabor filter (Lfr)  CSM 93.6 91.5 (-2.1) 86.4 (-7.2) 

[10] 
Shape SVM 91.4 88.4 (-3.0) 86.7 (-4.7) 

Gabor filter NN 91.6 86.8 (-4.8) 84.4 (-7.2) 
DNMF - 86.7 84.2 (-2.5) 82.9 (-3.8) 

Note: ‘No’ stands for ‘no occlusion’, and negative values in parentheses indicate reductions in 
accuracy due to occlusion (with reference to no occlusion). 

Table 5 Performance (%) Comparison on the JAFFE database 

Reference Feature Classifier No Eyes Mouth 
Our Gabor template  SVM 81.2 80.3 (-0.9) 78.4 (-2.8) 
[7] RPCA Adaboost 87.5 68.8 (-18.7) - 

[8] ALM+E 
ALM+E 

NN  
SVM 

- 
- 

77.7 
73.9 

73.3 
72.0 

[16] Motion units Bayesian 70.3 67.1 (-3.2) 49.5 (-20.8) 

[10] Gabor filter NN 88.1 83.1 (-5.0) 81.5 (-6.6) 
DNMF - 85.2 82.5 (-2.7) 81.5 (-3.7) 
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5 Conclusion 

This paper proposes a facial expression recognition approach robust to facial occlusion and 

investigates the effect of different types of occlusion on FER performance. We use a Monte Carlo 

algorithm to select Gabor templates from the gallery images and template matching over a search 

area to generate features that are robust to occlusion. This algorithm was tested with a range of 

different types of occlusion and found that the effect on the performance depends on the size of the 

occluded region. For 8x8 blocks the effect was seen to be minimal while for 24x24 blocks it is 

significant where the eye to eye distance is approximately 16. For train-test matched conditions, 

recognition accuracy is reduced less than 5% when the mouth or eyes are occluded. It is reduced 

only by 20% on the CK and 32% on the JAFFE database, respectively, even when a quarter of the 

face is occluded. Under near-realistic occlusion by simulated clear and solid glasses, the reductions 

are 0.3% and 3.8% accuracies respectively on the CK and 0.4% and 6.1% on the JAFFE. When the 

training images are not occluded but the test images are occluded (the mismatched condition), the 

methodology does not learn very well to reduce the effect of rectangular patch-like occlusion and 

hence the largest performance degradation is 65% on CK and 58% on JAFFE. However, the 

performance degradation is much lower for the more realistic eyewear occlusion cases, with less 

than 7.1% reduction for occlusion by both clear and solid glasses on the CK images, and around 

33% reduction in accuracy for occlusion by solid glasses on the JAFFE images. The performance 

of the approach is little impacted by the changes in parameters such as the orientation and scale of 

Gabor filters and the size of templates, for most types of occlusion. The evaluations on occlusion 

of the eyes, the mouth and eyewear demonstrate that the proposed approach can achieve more than 

75% and 90% accuracies on the JAFFE and CK databases respectively under matched conditions 

even when these traditionally recognized important regions for FER are occluded. Computational 

time tests on JAFFE images show that the proposed algorithm is fast and four test images can be 

processed per second on a dual core 3.2 GHz machine running Matlab. 

The effect of occlusion can also be data dependent because of factors such as cultural 

differences in facial expression of emotions, differences in exaggeration of the facial expression by 

the subjects, etc., particularly evident in the mismatched train-test case. Occlusion of the mouth 

has a significant effect on all emotions except anger and happiness on CK images. Occlusion of 

the eyes has significant impact on anger, neutral, and surprise, while occlusion with 24x24 blocks 

has the biggest effect on fear, happiness and sadness on JAFFE images. For robust performance, it 

is best to avoid occlusion of the eyes or mouth and also use training data with the same type of 

occlusion as that expected to be present in test data. For the case that occluded mouth exists, our 

results on parameter sensitivity indicate that it is recommended to set larger values to the 

orientation and scale of Gabor filters and a larger size of templates for better classification 

performance. Our future work will evaluate the proposed approach on images with occlusion by 

real objects, such as sunglasses and scarves. The current exhaustive template matching can be 

made more time efficient by employing a “smarter” strategy to prune some of the matches, such as 

performing exhaustive template matching only in regions around the mouth and the two eyes. 
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