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Structure-preserving Runge-Kutta methods for Stochastic

Hamiltonian equations with additive noise

Pamela M. Burrage∗, Kevin Burrage∗†

Abstract

There has been considerable recent work on the development of energy con-
serving one-step methods that are not symplectic. Here we extend these ideas to
stochastic Hamiltonian problems with additive noise and show that there are classes
of Runge-Kutta methods that are very effective in preserving the expectation of the
Hamiltonian, but care has to be taken in how the Wiener increments are sampled
at each timestep. Some numerical simulations illustrate the performance of these
methods.

1 Introduction

One of the most important developments in recent years in the field of numerical
solution of ordinary differential equations (ODEs) is that of geometric numerical
integration theory. A numerical method is said to be geometric if it preserves one
or more geometric properties of the system exactly, and of this new theory perhaps
the concept of symplecticity is the most important. In the Introduction we briefly
review some of these concepts.

When applied to the nonlinear multidimensional system of ODEs

y′ = f(y), y(0) = y0, y ∈ R
d (1)

an s-stage Runge-Kutta method takes the form

Yi = yn + h
s
∑

j=1

aij f(Yj), i = 1, · · · , s

(2)

yn+1 = yn + h
s
∑

j=1

bj f(Yj).

This class of methods is often characterised by the so-called Butcher tableau
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where A = (aij)i,j=1,··· ,s, b" = (b1, · · · , bs), c = Ae, e = (1, · · · , 1)". If the matrix
A is strictly lower triangular then the method is said to be explicit and is suitable
for nonstiff problems, otherwise the method is implicit and may be suitable for stiff
problems if the method has appropriate stability properties.

The system (1) is said to be dissipative if

〈y − z, f(y)− f(z)〉 ≤ 0 ∀y, z

and is said to be a Hamiltonian problem if, with d = 2m,

f(y) = J∇H(y), y ∈ R
2m,

where

J =

(

0 Im
−Im 0

)

,

Im is the Identity matrix and H(y) is the Hamiltonian associated with the problem.
A dissipative problem has the property

‖y(t)− z(t)‖ ≤ ‖y(s)− z(s)‖, t > s

and so a Runge-Kutta method is said to be B-stable if two numerical solutions
satisfy

‖yn+1 − zn+1‖ ≤ ‖yn − zn‖.

Burrage and Butcher [8] and Crouzeix [13] independently showed that an algebraic
property, called algebraic stability, guarantees B-stability. Thus a Runge-Kutta
method is said to be algebraically stable if bi > 0, i = 1, · · · , s and if M = BA +
A"B − bb" is non-negative definite, where B = diag(b1, · · · , bs).

In the case that M = 0, then for Hamiltonian problems

‖yn+1 − zn+1‖ = ‖yn − zn‖

and the method is said to be symplectic [22]. The concept of symplecticity has
opened up a new field of study called structure-preserving methods [16].

The maximum order of an s-stage Runge-Kutta method is 2s; these methods have
stage order s and quadrature order 2s, so that the weights (bi) and abscissae (ci)
correspond to those associated with the Legendre polynomials that are orthogonal
on [0, 1]. These methods can also be constructed through the technique known as
collocation. These so-called Gauss methods of order 2s are known to be symplectic
[6].

We will find it convenient to write a Hamiltonian problem in the form

q′ = ∇pH(p, q)
p′ = −∇qH(p, q),

(3)

where in many applicationsH(y), y = (q, p)" is often the total energy (kinetic energy
plus potential energy) of the system. Since the Hamiltonian is a first integral of the
system, it is constant along exact solutions. It is known that symplectic Runge-Kutta
methods nearly conserve the Hamiltonian of (3) over exponentially long times [15].
However, Faou et al. [14] noted that certain non-symplectic methods can also be
effective in terms of energy conservation. Using B-series and backward error analysis,
they gave conditions on the coefficients of a method that guarantee the existence
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of a first integral of a modified equation that is close to the Hamiltonian. If these
conditions are satisfied up to a certain order, then the Hamiltonian is conserved
up to this same order by the numerical method. They also showed that not all
symmetric Runge-Kutta methods behave this way even if (3) is reversible under
the reflection p ↔ −p. One of the consequences of this analysis is that the three
stage collocation Lobatto IIIA method of order 4 has the property that for every
Hamiltonian system the dominating error term in the numerical Hamiltonian has
no drift. Thus the overall behaviour of the energy error of the Lobatto IIIA method
is O(h4 + th6), whereas the Lobatto IIIB method behaves as O(th4).

In a slightly different setting Quispel and McLaren [21] developed a new class of
B-series methods that preserves energy for all canonical Hamiltonian vector fields.
It is called the averaged vector field method and takes the form

yn+1 = yn + h

∫ 1

0

f((1− s)yn + syn+1) ds. (4)

In some sense method (4) could be viewed as a Runge-Kutta method with an
infinite number of stages. We can write down finite stage approximations to (4)
leading to, for example, the symmetric Kahan method [17], and when restricted to
quadratic vector fields, it has the form

yn+1 = yn +
h

2

(

−f(yn) + f(
yn + yn+1

2
)− f(yn+1)

)

. (5)

Celledoni et al. [11] show that when the vector field is Hamiltonian the map
determined by discretisation (5) has both a conserved modified Hamiltonian and an
invariant measure. Similarly, the method

yn+1 = yn +
h

6

(

f(yn) + 4f(
yn + yn+1

2
) + f(yn+1)

)

(6)

can be shown to preserve a quartic Hamiltonian. We will call this method the MQ
method. We note in passing that Chartier et al. [12] have also shown that there are
energy preserving B-series methods.

Very recently, Brugnano et al. [1, 2, 3, 4, 5] have developed new classes of
Runge-Kutta methods, that they call Hamiltonian BVMs (HBVMs) that are energy
preserving for canonical Hamiltonian systems. The idea is based on the discretisation
of a local Fourier expansion of the given ODE problem in which different choices of
the basis lead to different classes of methods. Thus Brugnano et al. [1, 2, 3, 4] have
constructed classes of s-stage Runge-Kutta methods based on generalising the idea
of collocating polynomials up to degree r. These are known as HBVM(s,r) and take
the form (2) where

aij = bj

r−1
∑

l=0

Pl(cj)

∫ ci

0

Pl(τ)dτ, i, j = 1, · · · , s, (7)

where P0, · · · , Pr−1 are the shifted Legendre polynomials orthonormal on [0, 1].
If the quadrature order of the method is q, then an HBVM(s, r) has order p =
min(q, 2r). Note that if s = r, and the nodes are placed at the Gauss points, then
q = 2s, and these methods reduce to the Gauss methods of order 2s.
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HBVM(s, r) methods with quadrature order 2s based on Gaussian quadrature
are A-stable with the stability region coinciding with the left half complex plane C−

and have the remarkable property that they are energy conserving for all polynomial
Hamiltonians of degree not larger than 2s/r. Furthermore, since these methods are
of low rank r, the computational efficiency is closer to an r-stage Runge-Kutta
method, rather than an s-stage method, apart for the additional s − r function
evaluations [1, 2, 3].

The outline of this paper is as follows. In section 2 we introduce our stochastic
Hamiltonian problem which takes the form of (3) with additive noise terms intro-
duced in the p equation. In section 3 we discuss various numerical approaches that
have been introduced in an attempt to mimic the expectation of the Hamiltonian
(E(H(t))) over time as accurately as possible. In section 4 we introduce new classes
of Runge-Kutta methods that possess the same property. In particular we focus on
the Kahan, MQ and three stage Lobatto IIIA methods with a particular implementa-
tion of the additive noise terms. Finally, in section 5, we compare the performance of
the midpoint rule, MQ and Lobatto IIIA methods, on two test problems, where the
Hamiltonian corresponds to the double well problem and the Hénon-Heiles problem.
The paper concludes with some comments.

2 Stochastic Hamiltonian problems with additive

noise

Very recently, there has been considerable focus on the dynamics of stochastic Hamil-
tonian problems driven by additive Wiener noise. Mattingly et al. [19] studied the
dynamics of gradient systems of the form

dy = −∇F (y)dt+ ΣdW, y ∈ R
d, W ∈ R

m, (8)

where W (t) is a vector of independent Wiener processes and the columns of Σ ∈
Rd×m are linearly independent. Under appropriate conditions on F including F ≥
0, F (a) → ∞ as |a| → ∞, (8) has a unique invariant measure and sharp bounds
on the behaviour of E(F (y(t))l), l > 0, are possible. They also showed that the
Euler-Maruyama method does not preserve ergodicity but that the implicit Euler
method will, under appropriate conditions on F .

In a slightly more general setting, Soize [24] has considered non-linear Hamilto-
nian dissipative systems excited by white noise, ξ(t), of the form

y′′ + εf(H)y′ +∇V (y) = S ξ(t),

which can be written as

dq = p dt

dp = (−εf(H) p−∇V (q)) dt + S dW,

where the Hamiltonian is given by

H(q, p) =
1

2
p2 + V (q).
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Soize showed there exists a unique solution that tends asymptotically as t → ∞ to
a stationary process whose stationary probability density function satisfies

pS = C0 exp

(

−
2ε

S2

∫ H

0

f(x)dx

)

.

Such classes of problems arise in statistical mechanics as a Langevin formulation
in which a particle is considered to be moving under a potential V with a frictional
term εf(H)p. For higher dimensional systems the theory is more complicated, but
results are known for specific cases [24].

Consider now the stochastic Hamiltonian system with additive noise, namely

dq = ∇pH dt

dp = −∇qH dt+ Σ dW, (9)

where q, p ∈ Rm (d = 2m) and Σ is a diagonal matrix given by Σ = diag(ε1, · · · , εm)
and W ∈ Rm is a vector of independent Wiener processes.

Using Itô’s Lemma [18], a Stochastic Differential Equation (SDE) can be written
for which the Hamiltonian is a solution. Thus, given the multidimensional Wiener
noise Itô SDE,

dy = f(t, y) dt+ g(t, y) dW, y(0) = y0, y ∈ R
2m

the SDE for U = H(t, y) is given by

dU =

(

∂U

∂t
+

2m
∑

i=1

fi
∂U

∂yi
+

1

2
tr(gg"∇2U)

)

dt+
m
∑

i=1

gi
∂U

∂ym+i
dWi,

where the gi are the columns of g. Therefore, from (9), with U = H(q, p) and

f = (∇pH,−∇qH)"

∇U = (∇qH,∇pH)"

∇2U =

(

∇qqH ∇qpH
∇pqH ∇ppH

)

,

and gi = εi(0, ei)", where 0 is the zero vector of length m and ei is the ith basis
vector of Rm, we find

dH = (
1

2

m
∑

i=1

ε2i∇ii
ppH) dt+

m
∑

i=1

εi∇i
pH dWi,

where ∇i
pH is the ith component of ∇pH and ∇ii

ppH is the ith diagonal element of
∇ppH .

Integrating gives

H(t) = H(t0) +
1

2

m
∑

i=1

ε2i

∫ t

t0

∇ii
ppH ds+

m
∑

i=1

εi

∫ t

t0

∇i
pH dWi(s)

and using the expectation property of Itô integrals this gives

E(H(t)) = E(H(t0)) +
1

2

m
∑

i=1

ε2i

∫ t

t0

E(∇ii
ppH) ds. (10)
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Now if the Hamiltonian is separable of the form

H(q, p) =
1

2

m
∑

j=1

p2j + V (q)

then (10) becomes

E(H(t)) = E(H(t0)) +
1

2

m
∑

j=1

ε2j (t− t0) (11)

and the expected value of the Hamiltonian grows linearly with time.

3 Numerical methods for additive noise problems

In the case of additive noise problems, we could ask a numerical method to per-
form well in terms of the stationary distribution function and the evolution of the
mean of the underlying Hamiltonian. Schurz [23], for example, showed that the
implicit midpoint rule has the same stationary distribution as a multidimensional
Ornstein-Uhlenbeck process. Burrage et al. [9] extended this analysis and showed
that for linear second order equations with additive white noise and damping, only
the implicit midpoint rule is measure-exact, that is, preserves the position, veloc-
ity and absence of correlation at equilibrium. Not only that, the implicit midpoint
rule seems to be very effective on nonlinear second order equations with damping,
although the leapfrog (Verlet) method can also be effective and has the advantage
of being explicit. Burrage and Lythe [10] extended these ideas by constructing ad-
ditional classes of s-stage Runge-Kutta methods that can preserve the correlation
matrix to O(hs).

In terms of considering the evolution of the mean of the Hamiltonian, Melbo
and Higham [20] showed that partitioned approaches can be effective. Burrage and
Burrage [7] explored under what conditions a Runge-Kutta method can preserve
property (11) for a separable Hamiltonian problem driven by additive noise.

The analysis was given for the linear, additive noise problem

dy = Qy dt+ ε r dW, (12)

where

Q =

(

0 1
−1 0

)

, r =

(

0
1

)

,

corresponding to the Hamiltonian H = 1
2
(p2 + q2).

To illustrate these ideas, first consider the general additive noise problem

dY = f(Y ) dt+ εr dW, (13)

where Y and r (constant vector) are 2m× 1 column vectors, ε is a scalar value and
W (t) is a scalar Wiener process. If only one Wiener increment W (tn+h)−W (tn) =
∆Wn ∼ N(0, h) is sampled per step then an s-stage Runge-Kutta method is given
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by

Yi = yn + h
s
∑

j=1

aijf(Yj) + ε ci r∆Wn

yn+1 = yn + h
s
∑

j=1

bjf(Yj) + ε r∆Wn. (14)

Applying Runge-Kutta method (14) to (12) gives

yn+1 = R(hQ) yn + ε∆Wn S(hQ) r,

where for a scalar z

R(z) = 1 + z b"(Is −Az)−1 e, S(z) = 1 + zb"(Is −Az)−1 c.

It is trivial to show that

S(z) =
1

z
(R(z)− 1) .

This can be easily seen by noting that with c = Ae and b"e=1 then

S(z) = 1− b"(Is −Az)−1(−zAe)

= 1− b"(Is −Az)−1(Is −Az − Is)e

= 1− b"e+ (zb"(Is −Az)−1e)/z

= (R(z)− 1)/z.

For a system

R(hQ) = I2 + h(b" ⊗Q) (Is ⊗ I2 − h(A⊗Q))−1 (e ⊗ I2)

and
S(hQ) = (hQ)−1 (R(hQ)− I2) ,

where e = (1, · · · , 1)" ∈ Rs.
Thus

E[y"n+1 yn+1] = E[y"n R"(hQ)R(hQ) yn] + ε2hr"S"(hQ)S(hQ) r.

Since Q" = −Q, and letting

P (hQ) = R(−hQ)R(hQ),

then

E[y"n+1 yn+1] = E[y"n P (hQ)yn] + ε2hr"(Qh)−2 (P (hQ)−R(−hQ)−R(hQ) + I2) r.

In the case of a symmetric Runge-Kutta method of order two or more, P = I2 and
as E[Hn] = 1

2
E[y"n yn] then

E[Hn+1] = E[Hn] +
ε2

2
hr"(hQ)−2 (2I2 − (R(−hQ) +R(hQ))) r.
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Thus Burrage and Burrage [7] concluded it is not possible for any Runge-Kutta
method, even one that is symmetric, to preserve property (11) given only one Wiener
increment per step.

Burrage and Burrage [7] then propose a new formulation of a Runge-Kutta
method that involves using s+1 samples of a Wiener process per step. This idea is
in line with the ideas of Brugnano et al. [1, 2, 3].

Thus let

zi = W (tn + cih)−W (tn + ci−1h) =
√

ci − ci−1 ∆Wi, i = 1, · · · , s+ 1,

where c0 = 0, cs+1 = 1 and ∆Wi are s + 1 independent samples of N(0, h). Thus
the Runge-Kutta formulation for (13) is

Yi = yn + h
s
∑

j=1

aijf(Yj) + ε
i
∑

j=1

zj r

yn+1 = yn + h
s
∑

j=1

bjf(Yj) + ε
s+1
∑

j=1

zj r. (15)

Let
Z = (z1, · · · , zs)"

and note that


z1, z1 + z2, · · · ,
s
∑

j=1

zj





"

= V Z,

where V is the s × s matrix whose lower triangular component has ones, and the
strictly upper triangular component has zeros. Applying this method to the linear
test equation gives

yn+1 = R(hQ) yn + εS(hQ) r

where

S(hQ) = zs+1I2 + e" ZI2 + h(b" ⊗Q) (Is ⊗ I2 − h(A⊗Q))−1 (V Z ⊗ I2).

For example, in formulation (15), the implicit midpoint rule is

Y = yn +
h

2
f(Y ) +

1√
2
∆W1 ε r

yn+1 = yn + h f(Y ) +
1√
2
(∆W1 +∆W2) ε r (16)

and so

R(hQ) = (I2 −
h

2
Q)−1 (I2 +

h

2
Q)

S(hQ) = z2I2 +R(hQ) z1. (17)

Thus

E(y"n+1 yn+1) = E(y"n R
"(hQ)R(hQ) yn) + ε2 r" E(S"(hQ)S(hQ)) r. (18)
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With Q" = −Q then the midpoint rule has the property

R"(hQ)R(hQ) = I2

E(S"(hQ)S(hQ)) = E(z21 + z22) I2 = h I2,

and so

E(Hn+1) = E(Hn) +
ε2

2
h. (19)

Thus the implicit midpoint rule (16) with two Wiener samples per step preserves
(11) when the Hamiltonian is given by 1

2
(p2 + q2).

In the next section we address the question as to whether there are other classes
of Runge-Kutta methods that possess this property of the implicit midpoint method.

4 Geometric properties of additive stochastic Runge-

Kutta methods with multiple Wiener processes

In section 1 we introduced three new methods that are not symplectic but perform
well on deterministic separable Hamiltonian problems. Kahan’s method (5) can be
written in Runge-Kutta tableau form as

0 0 0 0
1
2

− 1
4

1 − 1
4

1 − 1
2

2 − 1
2

− 1
2

2 − 1
2

(20)

The MQ method (6) can be written as

0 0 0 0
1
2

1
12

1
3

1
12

1 1
6

2
3

1
6

1
6

2
3

1
6

(21)

and the Lobatto IIIA method as

0 0 0 0
1
2

5
24

1
3

− 1
24

1 1
6

2
3

1
6

1
6

2
3

1
6

(22)

Remarks

1. The stability function of the MQ method (21) is

R(hQ) = (I2 −
h

2
Q)−1 (I2 +

h

2
Q), (23)

which is the same as that of the implicit midpoint method, while for the
Lobatto IIIA method (22) it is

R(hQ) = (I2 −
h

2
Q+

h2

12
Q2)−1 (I2 +

h

2
Q+

h2

12
Q2), (24)

since the Lobatto IIIA method is order 4.
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2. Both (21) and (22) can be written in a concise manner as

yn+1 = yn+
h

6

(

f(yn) + 4f

(

yn + yn+1

2
+

θh

8
(f(yn)− f(yn+1))

)

+ f(yn+1)

)

,

(25)
where θ = 0 in the case of (21) and θ = 1 in the case of (22).

3. (20) has quadrature order 2 but (21) and (22) have quadrature order 4.

Because of Remark 3, we will focus on methods (21) and (22) and we need to see
how we can add the Wiener processes into these formulations in order to preserve
the mean of the Hamiltonian property (11).

Before doing so, let us revisit the two Wiener process implementation of the
Implicit Midpoint rule, namely

Y = yn +
h

2
f(Y ) +

1√
2
z1εr

yn+1 = yn + hf(Y ) +
1√
2
(z1 + z2)εr. (26)

Now let

ȳn = yn +
1√
2
z1εr

yn+1 = ȳn+1 +
1√
2
z2εr (27)

and

ȳn+1 = ȳn + h f(
ȳn + ȳn+1

2
), (28)

then it is easily seen that the method given by (27) and (28) is equivalent to (26).
Now all three methods (20), (21) and (22) have the same structure: they have

the first row in the Runge-Kutta tableau set to zero, they are stiffly accurate (the
last row of the RK tableau is equal to the update row), they have symmetric weights,
and they have an intermediate approximation at the midpoint of the interval. Thus
they only need two Wiener increment evaluations per step just as in the case of the
Implicit Midpoint rule. Consequently, formulations (27) and (28) give us the key to
introducing the Wiener increments into these formulations.

Focusing on (21) and (22), and their characterisation via (25), leads to the for-
mulation

ȳn = yn +
1√
2
z1εr

ȳn+1 = ȳn +
h

6

(

f(ȳn) + 4f

(

ȳn + ȳn+1

2
+

θh

8
(f(ȳn)− f(ȳn+1))

)

+ f(ȳn+1)

)

yn+1 = ȳn+1 +
1√
2
z2εr. (29)

Applying this formulation to the linear test problem (12) we find

ȳn+1 = R(hQ)ȳn

10



where R(hQ) is either the order 2 (23) or order 4 (24) symmetric Padé approxima-
tion. Using the independence of z1 and z2 and the fact that R(−hQ)R(hQ) = I2 in
both cases then it is easily seen that

E(y"n+1 yn+1) = E(y"n yn) +
1

2
ε2r"r(E(z21) + E(z22))

and hence

E(Hn+1) = E(Hn) +
ε2

2
h,

as required.
In the next section we will compare the performance of the Implicit Midpoint

rule, the MQ method and the Lobatto IIIA method on the double well and Hénon-
Heiles additive noise problems.

5 Simulations and Conclusions

In both our test problems, we perform 50000 simulations for varying values of the
stepsize and the additive noise on the interval [0,40], and present the numerical error
in the mean of the Hamiltonian at T = 40.

Example 1.

Our first example is the double well potential with Hamiltonian

H =
1

2
p2 +

1

4
q4 −

1

2
q2.

We take (q0, p0) = (
√
2,
√
2)", and take ε = 0, 0.01, 0.1, 0.5 and compute E(H(t))

on the interval [0, 40]. In this case (11) gives

E(H(40)) = 1 + 20ε2 = 1, 1.002, 1.2, 6.

Numerical results are given in Table 1.

ε h MQ L IM
0 0.05 9.5(-15) 7.9(-7) 4.3(-4)
0 0.2 5.6(-14) 2.1(-4) 6.1(-3)
0.001 0.1 8.4(-6) 2.1(-5) 1.6(-3)
0.01 0.1 1.5(-5) 4.7(-6) 1.2(-4)
0.01 0.2 4.3(-5) 1.5(-4) 6.0(-3)
0.5 0.05 1.5(-2) 8.0(-3) 1.2(-2)
0.5 0.2 1.6(-2) 6.5(-3) 6.9(-2)

Table 1: Errors in E(H(40)) for the three methods

Example 2.

Our second problem is the Hénon-Heiles problem with Hamiltonian

H =
1

2
(p21 + p22) +

1

2
(q21 + q22) + α(q1q

2
2 −

1

3
q31).
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We take (q0, p0) = (
√
3, 1, 1, 1) and α = 1

16
. In this case (with noise ε1 = ε2 = ε),

(11) gives
E(H(T )) = 3 + ε2T.

Numerical results are given in Table 2.

ε h MQ L IM
0 0.1 3.1(-15) 3.4(-8) 6.9(-5)
0.001 0.1 4.1(-5) 4.0(-5) 9.8(-5)
0.01 0.1 4.0(-4) 3.9(-4) 2.1(-3)
0.01 0.2 1.9(-4) 2.2(-4) 1.9(-3)
0.2 0.1 2.6(-3) 2.4(-3) 7.9(-1)
0.2 0.2 1.3(-2) 1.3(-2) 7.6(-1)

Table 2: Errors in E(H(40)) for the three methods

Discussion

In the case of the deterministic formulations of problems 1 and 2, the MQ method
preserves the Hamiltonian almost exactly, while the Lobatto method and the Im-
plicit Midpoint rule show an O(h4) and O(h2) behaviour, respectively. In the case
of very small additive noise this property of the MQ method is lost, but it still per-
forms better than the other two methods and substantially better than the Implicit
Midpoint rule. As the additive noise increases further then the MQ and Lobatto
methods seem to perform about the same, and both perform substantially better
than the Implicit Midpoint rule. Trying to elucidate a dependence on the stepsize
is a little harder and that is due to the presence of the Monte Carlo error and the
fact that as the additive noise component increases, the error due to this drowns the
stepsize dependence.

Implementation

The formulation described in (29) for both the MQ and Lobatto IIIA methods is
elegant since it merely needs the same solution technique for the nonlinear equations
to be solved at each time step as the deterministic case. This could be either via a
fixed point iteration or Newton’s method. We prefer the latter and in this case we
need to solve a set of linear systems per step of the form

Ay = b

where

A = I −
h

2
Jn + θ

h2

12
J2
n

where Jn is the Jacobian of f evaluated at yn, and θ = 0 or 1, respectively.

Conclusions

We have shown that we can take certain classes of non-symplectic Runge-Kutta
methods that are very effective in terms of energy preservation over time and by
introducing additive noise terms in an appropriate manner, demonstrate that these

12



methods will preserve very accurately the expectation of the Hamiltonian for addi-
tive noise problems. This work extends the analysis given in Burrage and Burrage
[7] for the implicit midpoint rule. We only focussed on three-stage methods, as in
these cases only two Wiener increments per stage were needed. However, we ex-
pect the ideas introduced here can be extended to higher stage, and hence higher
order, methods, but at the cost of simulating more Wiener increments per step.
Our theoretical numerical analysis of these methods was based on the stochastic
linear Hamiltonian problem, corresponding to the Hamiltonian 1

2
(q2 + p2), but we

believe the deterministic analysis based on B-series and backward error analysis
could be extended to additive noise nonlinear Hamiltonian problems. All of these
are considerations for future work.
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