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Abstract 

A new two-dimensional zeolitic imidazolate framework with leaf-shaped morphology (ZIF-L) 

was incorporated into polyethersulfone (PES) ultrafiltration membranes to investigate how 

the ZIF nanoflakes affect functional membrane properties. The membranes were 

characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy 

(EDX), atomic force microscopy (AFM), and contact angle goniometry. The water 

permeability and molecular weight cut-offs (MWCO) of membranes were also determined 

under constant pressure filtration. Membrane fouling resistance was characterized under 

constant flux operation using bovine serum albumin (BSA) as foulant. The modified UF 

membrane with 0.5% ZIF-L loading showed around 75% increase in water flux without 

greatly affecting the MWCO. Also, the same membrane showed almost twice the fouling 

resistance improvement against BSA with more than 80% water flux recovery. The 

improvement was due to the combined effect of the lower zeta potential of the modified 

membrane, increased hydrophilicity and reduced surface roughness, which made the 

attachment of BSA protein on the membrane surface more difficult. These results 
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demonstrate that the addition of 2-dimensional ZIF-L nanoflakes is effective for improving 

polymer membrane fouling resistance and water flux. 

  

1. Introduction 

Ultrafiltration (UF) has been widely used in industrial processes including food, 

pharmaceutical and biotechnological industries as well as water treatment [1]. Significant 

efforts have been made to improve UF process performance via feed pretreatment, advanced 

membrane materials and module design, and process optimization [2]. However, in many 

cases, the key for the improved performance is the membrane itself [2]. Commercial UF 

membranes with asymmetrical porous structure are manufactured from common polymers 

such as polysulfone (PSf), polyethersulfone (PES), and polyvinylidene fluoride (PVDF) via 

phase separation process [3, 4]. Membrane fouling and physical durability has been one of 

the main problems in the filtration processes, which significantly increases the operating 

costs and restricts their practical applications [5, 6]. In order to address the issue of fouling, 

membrane modification has been an approach by researchers to improve membrane fouling 

resistance by: (i) membrane polymer modification, (ii) surface modification, and (iii) 

blending of modifier [1, 7]. 

 

It is known that phase separation process is affected by the composition of casting solution 

and the casting conditions. Modifiers are often added to tailor the membrane properties, and 

small amounts of modifiers can significantly change the membrane performance [1]. To date, 

a range of materials with different properties and morphologies have been studied for their 

effects on phase inversion process, they include polymer additives and inorganic particles as 

summarized in Table 1 [2, 6, 8-20]. For instance, nanoparticles, zero-dimensional materials, 

were favoured over micron-sized particles to improve polymer-filler compatibility [21]. 
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Nanofibers/ nanotubes, one-dimensional materials, were also selected for their high porosity 

and interconnected open-pore structure [20]. This is because nanomaterials possess immense 

surface area per volume ratio (SA: V) between the nanomaterial and the host polymer. Thus, 

using nano-sized particles provides better interaction with the polymer phase, which also 

minimizes interfacial defects. The very large SA: V and nanoscale dimension offer the 

opportunities to transcend traditional composite membrane performance produced by macro-

sized fillers [22].  

 

One common problem encountered for the synthesis of polymer/filler composite membrane is 

filler-polymer incompatibilities [23]. While this issue is more commonly found in gas 

separation membrane, incompatibilities between filler and polymer also affect the phase 

inversion process. Thus, there exists a need for new filler material to mitigate this problem. 

Zeolitic Imidazolate Frameworks (ZIFs) are a class of porous crystalline material comprised 

of  tetrahedral transition metal ions (e.g. Zn, Co) linked by imidazolate (IM) type organic 

linkers [24]. Rational combination of different metal ions and organic linkers in the synthesis 

of ZIFs results in materials with various pore size and connectivity, offering at least millions 

of theoretical possibilities [25]. Next to exceptional chemical stability and rich structural 

diversity, the unique advantage of incorporating ZIFs over many nanoporous materials is 

their organic components, which may improve filler-polymer compatibilities. They can also 

be easily organic-functionalized to produce various pore size and chemical properties [26].  

 

Very recently, we have synthesized a new type of ZIF (named as ZIF-L) in zinc salt and 2-

methylimidazole aqueous solution at room temperature. The same zinic salt and 2-

methylimidazole are commonly used to synthesize ZIF-8. Both zinc/2-methylimidazole ratio 

and the use of water as solvent are the key to synthesis of ZIF-L. ZIF-L is a unique 2-
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dimensional ZIF which has a semi-SOD topology and leaf-like morphology [27]. The aim of 

this work was to investigate the effect of the two-dimensional ZIF-L nanoflakes on the phase 

inversion process which influences the overall membrane morphology and performance. It 

was hypothesized that the organic linkers in the flake-shaped ZIF-L may also improve filler-

polymer compatibility and addition of small percentage of ZIF-L may have significant effect 

on membrane properties.  Flat-sheet PES/ZIF-L composite membrane was prepared via non-

solvent induced phase separation. The effects of varying the concentration of ZIF-L 

nanoflakes in the dope solution on the morphology and performance of the membranes were 

also investigated. A series of characterisation techniques such as scanning electron 

microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy 

(AFM), and contact angle goniometry were carried out on the various fabricated membranes. 

Membrane fouling resistance was also studied under constant flux operation using bovine 

serum albumin (BSA) as a foulant, and its fouling mechanisms were discussed. 

 

2. Experimental 

2.1.  Materials 

Zinc nitrate hexahydrate (
3 2 2

( ) 6Zn NO H O ; 99.9%), 2-methylimidazole (Hmim; 99.0%), 1-

methyl-2-pyrrolidinone (NMP; 99.0%), polyvinylpyrrolidone (PVP; 40 kDa), polyethylene 

glycol (PEG; with MW of 20, 35, 100 and 200 kDa), and bovine serum albumin (BSA; 66 

kDa) were purchased from Sigma-Aldrich, Australia. Sodium hydroxide (NaOH) pellets were 

purchased from Merck Millipore, Australia. Polyethersulfone (PES; Ultrason E6020P, 51 

kDa) was purchased from BASF Co. Ltd., Germany. The water used for the experiments was 

purified with a water purification system (Milli-Q integral water purification system, Merck 
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Millipore Australia) with a resistivity of 18.2 MΩ/cm. Distilled water was obtained from a 

laboratory water distillation still (Labglass Aqua III). 

2.2.  Synthesis of ZIF-L 

The synthesis of ZIF-L followed a typical process as recently reported [27]. Equal volumes 

(40 mL) of zinc nitrate hexahydrate (14.7 g/L) and Hmim (32.5 g/L) were dissolved in water 

and stirred at room temperature for 4 h. The product was collected by centrifugation (8000 

rpm, 20 min) and rinsed with methanol. This process was repeated 3 times to remove 

unreacted chemicals. The synthesized product was used to prepare the membranes.  

2.3.  Preparation of membranes 

The PES and PES/ZIF-L nanocomposite membranes were prepared via non-solvent induced 

phase separation at room temperature. The casting solution was prepared by mixing 0.8 g of 

PVP powder and 0.05 g of methanol-wetted ZIF-L nanoflakes into 15.95 g of NMP. The PVP 

powder was dispersed and dissolved in an ultrasonic bath for 10 min, followed by stirring for 

another 30 min to ensure good dispersion. 3.2 g of PES was then added, and the solution was 

stirred overnight or until the PES was completely dissolved. The solution was left to degas 

for 8 h before use. Table 2 shows the compositions of the casting solutions. 

 

The membranes were cast on a glass plate using an adjustable micrometer film applicator 

(stainless steel blade at a gap of 150 µm, Gardco, USA) at room temperature. The phase 

inversion step was carried out by immersing the membranes in a coagulation bath of distilled 

water for 24 h. The membranes were then removed from the bath, rinsed thoroughly with 

double-deionized water (DDI) water and stored in fresh DDI water for later use. 0.25%, 0.5%, 

and 1% PES/ZIF-L nanocomposite membranes were denoted as Z0.25, Z0.5, and Z1.0, 

respectively. 
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2.4.  Characterization of ZIF-L nanoflakes and membranes 

Structure and morphology of ZIF-L nanoflake was confirmed using powder X-ray diffraction 

(PXRD; Rigaku MiniFlex, CuKa radiation, Japan) and field emission scanning electron 

microscopy (FESEM; Magellan 400 and Nova NanoSEM 450, FEI, USA). Membrane 

surface and cross-sectional images were obtained using FESEM. Membrane samples were 

prepared by drying at room temperature and sputter coating with a 0.5 nm thickness of Pt 

(208 HR sputter coater, Cressington, UK).  For imaging the cross section, the membrane was 

fractured in liquid nitrogen to retain the membrane structure. Elemental analysis of the 

membrane samples was conducted using EDX equipped in Nova NanoSEM 450 (Quantax 

400 X-ray analysis system, Bruker, USA). 

 

The surface morphology and roughness of the membranes were characterized by AFM 

(Dimension Icon Atomic Force Microscope, Bruker, USA). The samples were taped onto a 

glass slide and scanned in tapping mode (scan size of 1, 5, and 25 µm, scan rate of 1 Hz, 

samples/line of 256) with an AFM silicon probe (RTESPA, MPP-11120-10, Bruker, USA) 

for different projected area. The probe had a spring constant of 20–80 N/m, resonant 

frequency of 200–400 kHz and a nominal tip radius of 8 nm. The roughness average (Ra), 

which was the arithmetic average of the absolute values of the roughness profile ordinates, 

was calculated using a software package (NanoScope Analysis v1.40r1, Bruker, USA). 

 

The water contact angles of the membranes surface were measured using a contact angle 

goniometer by the sessile drop technique (PGX+, Fibro System Ab, Sweden). Images were 

taken at 1 s intervals for 10 s. An average of 5 measurements for 2 or more membrane 

samples was reported. 
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The molecular weight cut-off (MWCO) was characterized by measuring the rejection of PEG 

(20, 35, 100, and 200 kDa). A total organic carbon analyzer (TOC-LCSH/CSN with auto-

sampler ASI-L, Shimadzu, Japan) was used to measure the amount of organic carbon in the 

permeate in order to determine the amount of PEG. The pore size of the membrane was then 

estimated based on MWCO according to  0.50.1 0.524( ) 0.6d MWCO  , where d is the 

pore diameter (nm) [28]. 

 

The zeta potential of membranes was determined using an electrokinetic analyser (SurPASS 

electrokinetic analyser, Anton Paar, Austria). Membranes with a diameter of 4 cm were 

placed in a clamping cell. The measurement was carried out with DDI water adjusted to pH 7 

to simulate the same experimental condition as the fouling tests.  

 

2.5 Membrane Performance 

Water flux and flux recovery were measured in a dead end cell (HP4750 Stirred Cell, 

Sterlitech, USA). A schematic diagram of the bench-scale flux test setup is shown in Figure 1. 

The DDI water flux test was performed at 100 kPa and room temperature with an effective 

membrane area of 1.4 × 10
-3

 m
2
. The membrane was pre-compacted at 150 kPa until constant 

flux was reached. The initial water flux was determined under a constant pressure of 100 kPa, 

as was PEG rejection when determining the rejection characteristics of the membrane.  The 

membrane resistance was also determined from the water flux results.  

 

Constant flux fouling test was carried out to determine the fouling resistance of the 

membranes. The membranes were fouled by filtration of BSA (0.5 wt%, pH 7) at a constant 

flux of 50 l m
-2

 h
-1

 (LMH) for 2 h using a peristaltic pump (L/S Digital Drive, L/S Easy-Load 



8 

 

3 pump head, peroxide-cured silicone tubing, L/S 13, Masterflex, USA) and fixed nitrogen 

gas feed pressure. The transmembrane pressure (TMP) was measured using two pressure 

transducers. The fouled membranes then underwent an in-place physical and chemical 

cleaning cycle. For physical cleaning, the membranes in the cell were rinsed twice with DDI 

water. For each rinse, the cell is half-filled with DDI water before pouring the water away. 

300 mL of DDI water was then added to the cell and stirred for 10 min. After that, the 

membrane was rinsed another 2 times. For chemical cleaning, 100 ml of NaOH solution (2 

g/L, pH 12) was added to the cell and stirred for 20 min. After that, the membrane was rinsed 

twice to wash off the solution. After every cleaning step, the water flux was measured at 

constant pressure. Each membrane went through 3 fouling cycles at constant flux and 

cleaning cycles, with the membrane flux determined at constant pressure of 100 kPa after 

each cycle.  

 

In order to evaluate the fouling performance of membranes, flux recovery (FR) and resistance 

of membranes was calculated as follows: 

(%) 100AF

BF

J
FR

J
      (1) 

where JBF and JAF are the pure water flux of the membrane before and after the fouling and 

cleaning, respectively. Fouling behaviour can be investigated by estimation of resistance of 

membranes as shown below: 

1) Total resistance (Rt) 

t m r ir
R R R R    

Where Rm is the intrinsic membrane resistance, Rir is the irreversible resistance, Rr is the 

reversible resistance. 

2) Intrinsic membrane resistance (Rm) 



9 

 

m

BF

TMP
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J



   (2) 

where TMP is the transmembrane pressure and µ is the permeate viscosity. 

3) Irreversible resistance (Rir) 

ir m

AF

TMP
R R

J
 


   (3) 

where JAF is the water flux at 100 kPa after physical and chemical cleaning. 

4) Reversible resistance (Rr) 

r m ir

F

TMP
R R R

J
  


   (4) 

where JF is the BSA filtration flux which was set at 50 LMH in our experiment. TMP was 

taken after 2 h BSA filtration. 

 

The fouling behaviour was compared to linearized constant flux fouling model developed by 

Hlavacek (1993)   to investigate the effect of ZIF-L nanoflakes on the fouling mechanisms 

before cake formation. The four blocking filtration models initially derived by Hermia (1982)  

are as follows: (1) complete pore blocking (standard), (2) internal pore blocking, (3) partial 

pore blocking (intermediate) and (4) cake filtration [29]. Table S1 (Supplementary Material) 

shows the blocking filtration model and transport equations for dead-end flow under constant 

flux operation. The equation is in the form of y = mx + c. The derivations can be found 

elsewhere [29, 31]. 

 

3. Results and Discussion 

3.1. Crystal structure and morphology of ZIF-L 

Figure 2(a) shows the PXRD pattern of the prepared ZIF-L. The peaks corresponded to ZIF-L 

structure as reported previously [27]. Figure 2(b) shows the SEM image of ZIF-L nanoflakes. 



10 

 

The nanoflakes appeared ‘leaf-like’, and had a size of about 1 µm   3 µm and a thickness of 

150 nm. 

 

3.2.  Membrane morphology 

Figure S1 (Supplementary Material) shows the FESEM images of the surfaces of the 

membranes. The porosity of the skin layer was estimated using an image processing software 

(UTHSCSA Image Tool, USA [32]) and results are tabulated in Table 3. The results showed 

that the surface porosity increased as the loading of ZIF-L nanoflakes increased. Sample Z0.5 

has the highest surface porosity. The processed images of the control PES and Z0.5 showed 

that they had pores were uniformly distributed over the membrane surface (Figure S1e, f). 

The slight increase in surface porosity after ZIF-L incorporation may be due to the increased 

formation of polymer-poor phase induced by ZIF-L nanoflakes (non-polymer) during the 

phase inversion process. However, the surface porosity started to decrease as ZIF-L loading 

increased beyond 1%. As more ZIF-L nanoflakes were added, the casting solution became 

more viscous. The increase in polymer-rich phase caused by the decreased solvent 

outweighed the formation of polymer-poor phase by ZIF-L nanoflakes. Thus, further 

increasing ZIF-L loading beyond 1% reduced the overall surface porosity. Figure 3 shows the 

cross sectional SEM images of the membranes. The membranes exhibited a typical 

asymmetric structure. The pure PES membrane (Figure 3a) shows finger-like structure in the 

top layer and macrovoid in the sub-layer and bottom layer. As the loading of ZIF-L 

nanoflakes increased, the amount of finger-like structures in the top layer extended from the 

surface pores increased. The pore walls in the bottom layer also became thinner and the 

bottom layer macrovoids were elongated (Figure 3c) which may improve the water 

permeability through the membrane. When 1% of ZIF-L was added, the pore walls in the 

bottom layer became thicker, reducing the size of macrovoids. 
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The presence of ZIF-L nanoflakes was investigated using EDX mapping. Figure 3(e) and (f) 

show that ZIF-L nanoflakes were present within the PES matrix, including the active layer 

and supporting layer.  

 

 

3.3 Membrane surface property 

The wettability of PES/ZIF-L membrane surfaces was characterized by measuring their water 

contact angle. The contact angle of the membranes decreased by around 6.5% to 9% when 

ZIF-L nanoflakes were added (Figure 4), indicating that the active surfaces of PES/ZIF-L 

membranes were slightly more hydrophilic than that of PES membrane. The increase in 

hydrophilicity should mainly arise from the combined effects of surface smoothness and 

surface pores size distribution. The extremely small amount of hydrophobic ZIF-L nanoflakes 

on the membrane surface plays a minimal role in the change of membrane surface wettability. 

 

ZIF-L consists of Zn centre linked by 2-methylimidazole. In water, the deprotonation of 2-

methylimidazole produced negatively-charged surfaces. Zeta potential measurements for the 

control and modified membranes revealed that at pH 7, the surface charges increased with 

ZIF-L nanoflakes loading (Table 4). According to Derjaguin-Landau-Verwey-Overbeek 

(DLVO) theory, particles with a more negative zeta potential would exhibit higher 

electrostatic double layer repulsion [33]. This will be beneficial for the filtration of protein 

solution with lower isoelectric point such as BSA protein and lysozyme. BSA protein has an 

isoelectric point (IEP) of 4.7. At pH values greater than 4.7, BSA protein is negatively 

charged [34]. The increase in zeta potential on the surface of the membrane will increase the 

repulsion of negatively charged organic compounds such as BSA, potentially leading to 

improved membrane fouling resistance. 
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AFM images of the control and PES/ZIF-L membrane are shown in Figure 5. The roughness 

values were determined based on five random points as tabulated in Table 5. In a projected 

area of 5 µm × 5 µm, the roughness values of the modified membranes were similar to that of 

control membrane. However, the roughness values in the projected area of 1 µm × 1 µm 

decreased from 5.99 nm to 3.55 nm as 0.5% of ZIF-L was added. It was reported that the 

membrane with lower roughness had stronger anti-fouling abilities as foulants were likely to 

be absorbed in the valleys of the membranes with rough surface [35].  

 

3.4 Membrane Performance 

3.4.1. Water flux 

Figure 6 shows the average pure water fluxes at 100 kPa for control and PES/ZIF-L 

membrane. Z0.5 showed the highest water flux which was could be related to the increased 

porosity (Table 3). As the surface porosity increased, the water flux also increased. The 

extended finger-like structures towards macrovoids in the modified membrane as observed in 

the SEM images (Figure 3) also provided lower resistance to the water flow. For Z1.0, the 

water flux was lower than that of Z0.5 due to the decrease surface porosity (Table 3).  

 

3.4.2. Molecular weight cut-off (MWCO) 

Molecular weight cut-off curves for the control and ZIF-L blended PES membranes are 

shown in Figure 7.  The results show that the MWCO (90% PEG rejection) of the membranes 

shifted from 80 kDa to 100 kDa as ZIF-L loading was increased from 0.25% to 1.0%. The 

MWCO of 80 kDa and 100 kDa corresponded to pore size of 14.8 nm and 16.5 nm,  

respectively [28]. The increase in pore size contributed to the higher flux of the modified 

membrane. However, the flux was predominantly influenced by the surface porosity as 

shown in Z1.0, where lower surface porosity and larger MWCO leaded to lower water flux 

than that of Z0.5. 
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3.4.3. Fouling Resistance 

The anti-fouling performance of the membranes was investigated under constant flux 

operation. Figure 8 shows the change in transmembrane pressure (TMP) during 2 h BSA 

filtration at constant flux of 50 LMH (l m
-2

 h
-1

). The actual TMP after 3 fouling cycles are 

shown in Table 6. During the constant flux fouling test, the increase in TMP indicates the 

occurrence of fouling. The higher the fouling resistance of the membrane, the lower the 

increase in TMP. The membranes were pre-compacted before the fouling cycle to rule out an 

increase in TMP due to morphology change of the membrane. From Figure 8, all modified 

membranes showed lower TMP increases which were due to the more negatively-charged 

and smoother membrane surfaces (lower Ra). The quick increase in TMP in the first 30 min 

was an indicator of membrane pore blocking by BSA, which had a size of 4 nm   13 nm [36]. 

The modified membrane had more negatively-charged surface which repelled the negatively-

charged BSA. The improved fouling resistance was also contributed by the lower surface 

roughness. The modified membranes had less valleys of depression comparable to the size of 

BSA molecules and lower surface area for the attachment of BSA. Even though all modified 

membranes had improved fouling resistance compared to control PES membrane, the extent 

of fouling resistance improvement was not the same. The difference between the fouling 

resistances of the modified membrane could be due to their differences in the surface porosity. 

The water flux increased with the surface porosity; the fouling rate increases with the water 

flux. Thus, the fouling resistance shown by the modified membrane were consistent with the 

surface porosity and water flux measurement. 

 

 Also, reversibility of fouling is another important factor in determining the performance of 

the membrane. For sample Z0.5, the flux recovery after chemical cleaning was consistently 

more than 80%. The consistent reversibility of the foulants may be due to the more 
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negatively-charged membrane surface (Table 4). The BSA proteins were more easily 

removed from the more strongly negative-charged surface. Although overall flux recovery 

was only slightly improved, the pure water flux of Z0.5 after 3 fouling cycles was almost 

twice of that of the control membrane. After 3 fouling cycles, membrane Z0.5 showed pure 

water flux of 308 LMH as compared to the control membrane (155 LMH). It is also noted 

that all membranes showed BSA rejection of 95% and above during the fouling tests.  

 

To quantitatively examine the membrane fouling performance, flux recovery (FR), intrinsic 

membrane resistance (Rm), reversible resistance (Rr), and irreversible resistance (Rir) were 

calculated using Equations (1) ‒ (5). Table 7 shows the filtration resistances of the control 

PES and PES/ZIF-L membranes. The control PES membrane had higher intrinsic resistance 

than the modified membrane in which Z0.5 has the lowest intrinsic resistance. The reversible 

resistance over total resistance ratios (Rr/RT) did not vary much after incorporating ZIF-L 

nanoflakes, which were consistent with the overall flux recovery. The water flux of the 

modified membrane after fouling remained higher than that of the control PES membrane. 

Among all the membranes, Z0.5 showed the highest Rr/RT ratio. 

 

In order to understand the factors which contributed to better fouling resistance, the 

mechanisms of the fouling were predicted by Hlavacek’s model for constant flux fouling test 

[29]. The experimental results were compared to linearized constant flux fouling model as 

shown in Figure S2 (Supplementary Material). Here, the fouling plot was divided into two 

stages (Stage I and Stage II) to better fit the four models. To determine which model fits 

better the experiment results, correlation of determination (R
2
) for all line fittings were 

calculated as shown in Table S2. R
2
 value is always between 0 and 1, with 0 denoting the 

model does not explain any variation at all and 1 denoting it perfectly explains the observed 
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variation. Thus, higher R
2 

value indicates better fitting. For stage I, the result shows that 

complete pore blocking was more likely to occur for control and Z0.25 membrane while 

partial pore blocking was more likely to occur for sample Z0.5 and Z1.0. On the other hand, 

cake filtration dominated the fouling process after a certain period of time as indicated by the 

higher R
2

 value. The results were consistent with the MWCO of the membranes as Z0.5 and 

Z1.0 had slightly higher MWCO than control and Z0.25 membrane, thus, partial pore 

blocking occurred more significantly for Z0.5 and Z1.0.  

 

Addition of ZIF-L nanoflakes into PES membrane led to increased surface porosity, surface 

pore size and morphology change in the membrane. The increased surface porosity and flow-

directing pore channels increased the pure water flux of the modified membrane. The fouling 

resistance and flux recovery of the membrane were also improved as observed in TMP 

changes during the fouling cycle and higher water flux after cleaning cycle. The improvement 

was due to the combined effect of the lower zeta potential of the modified membrane, 

increased hydrophilicity and reduced surface roughness, which made the attachment of BSA 

protein on the membrane surface more difficult. 

 

4. Conclusion 

PES/ZIF-L membranes were fabricated by the non-solvent induced phase separation. The 

two-dimensional ZIF-L nanoflakes demonstrated its potential as a casting solution modifier. 

The SEM results indicated the addition of ZIF-L nanoflakes resulted in finger-like structure 

in the sub-layer which extended to bottom layer. Membrane anti-fouling performance, 

surface porosity and water flux were improved by incorporating ZIF-L nanoflakes. The 

composite membrane with 0.5% of ZIF-L nanoflakes loading (Z0.5) was the overall best-

performing membrane, with pure water flux reaching 378 LMH, a 75% increase compared to 
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pure PES membrane. Sample Z0.5 also showed enhanced fouling resistance with more than 

80% flux recovery after 3 fouling cycles. 
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Fig. 1. Schematic diagram of bench-scale flux test system. 

 

 

Fig. 2. (a) PXRD pattern of ZIF-L nanoflakes, (b) SEM image of ZIF-L. 
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Fig. 3. Cross-sectional SEM images of PES and PES/ZIF-L membranes of (a) control PES, (b) 

Z0.25, (c) Z0.5, and (d) Z1.0; cross sectional EDX mapping of modified membrane with ZIF-

L nanoflakes loading of (e) 0.25 wt%, and (f) 0.50 wt%. 
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Fig. 4. The average contact angles on the skin layer of the PES membranes with different 

ZIF-L loading. 
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Fig. 5. AFM images of PES and PES/ZIF-L membranes with different amounts of ZIF-L 

nanoflakes: (a) control PES, (b) Z0.25, (c) Z0.5, and (d) Z1.0.  

 



25 

 

 

Fig. 6. Effect of ZIF-L content on the pure water flux of the membranes determined at 100 

kPa. 

 

Fig. 7. Molecular weights cut-off (MWCO) for control and PES/ZIF-L composite membrane. 
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Fig. 8. Transmembrane pressure change with time (0.5 wt% BSA, pH 7) for the control PES 

and PES/ZIF-L composite membranes at constant flux of 50 LMH (l m
-2

 h
-1

) for 2 h. 
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Table 1: Examples of modifiers based on structure and morphology. 

Polymer Modifier Size and Morphology Ref 

 inorganic dense material 

PVDF zirconium (ZrO2)  5 µm, micron-sized particle [8] 

PSf magnetite (Fe3O4)  8 to 12 nm, nanoparticle [9] 

PVDF alumina (Al2O3)  10nm, nanoparticle [10] 

PES boehmite (Al2O3) L × W: 30 nm × 15 nm, 

orthorhombic nanoparticle 

[11] 

PES titanium dioxide (TiO2)  20 nm, nanoparticle [12] 

PVDF nanoclay (Cloisite
®
 30B) Cloisite

®
 30B, mean diameter: 

231 nm, sub-micron particle  

[6] 

PVDF nanoclay (Nanomer
®
 I.44P ) Nanomer

®
 I.44P, mean diameter: 

867 nm, sub-micron particle 

[6] 

 inorganic porous material 

PES silica (SiO2) 100 nm spherical mesoporous 

nanoparticle 

[13] 

PES multiwall carbon nanotube 

(CNT) 

O.D. × I.D. × L: 5 nm × 1.3 -

2.0 nm × 50 μm, nanotube 

[14] 

PES multiwall carbon nanotube 

(CNT) 

O.D. : 10 – 30 nm, nanotube [15] 

PSf Linde type A (LTA) zeolite sub-micron particle [16] 

PPESK
a
 NaA zeolite 2 µm, micron-sized particle [17] 

 organic material 

PES polyvinylpyrrolidone (PVP)  8000 Da [18] 

PES polyethylene glycol (PEG)  200 Da, 400 Da, 600 Da [19] 

PES Pluronic F127 12600 Da [2] 

PSf polyaniline (PANI) nanofiber  diameter: 43 nm, length: 259 nm, 

nanofiber 

[20] 

a
 poly(phthalazinone ether sulfone ketone). 

 

Table 2. The compositions of the casting solutions for PES and PES/ZIF-L nanocomposite 

membranes. 

Membrane PES (wt%) PVP (wt%) NMP (wt%) ZIF-L (wt%) 

Control 16.00 4.00 80.00 0.00 

Z0.25 16.00 4.00 79.75 0.25 

Z0.5 16.00 4.00 79.50 0.50 

Z1.0 16.00 4.00 79.00 1.00 
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Table 3. Surface porosity for control and modified membrane determined from SEM images. 

Membrane Surface porosity (%) 

Control 09.1 ± 0.7 

Z0.25 59.5 ± 0.3 

Z0.5 12.9 ± 0.2 

Z1.0 59.9 ± 0.7 

 

Table 4. Zeta potential for control and modified membrane at corresponding pH. 

Membrane pH ZP (HS) (mV) 

Control 6.99 -63.1 ± 0.8 

Z0.25 6.97 -63.3 ± 1.1 

Z0.5 7.01 -79.0 ± 1.5 

Z1.0 7.04 -91.1 ± 4.0 

 

Table 5. Roughness values (Ra) of projected areas for control and modified membranes. 

Membrane Ra in 5 µm × 5 µm (nm) Ra in 1 µm × 1 µm (nm) 

Control 23.43 ± 3.90 5.99 ± 0.89 

Z0.25 23.50 ± 4.43 3.69 ± 1.12 

Z0.5 23.53 ± 2.37 3.55 ± 0.63 

Z1.0 23.20 ± 3.09 5.48 ± 0.82 

 

Table 6. Initial water flux, final TMP and flux recovery after 3 cycles of fouling-cleaning 

experiments for control and PES/ZIF-L membranes. 

Membrane 
Initial water 

flux
a
 (LMH) 

BSA 2 h 

TMP 

(kPa)
b 

Flux recovery after 

chemical cleaning (%) 
Overall flux 

recovery (%) 
I II III 

Control 215 ± 5A 56 ± 7 77 71 69 72 ± 5 

Z0.25 272 ± 12 45 ± 4 81 72 72 75 ± 5 

Z0.5 378 ± 10 40 ± 3 84 81 81 82 ± 2 

Z1 265 ± 5A 41 ± 4 74 74 72 73 ± 1 
a
 constant pressure of 100 kPa. 

b
 final TMP after 2 h BSA filtration. 
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Table 7. Filtration resistances of control and PES/ZIF-L membranes. 

Membrane Rm Rir Rr RT Rir/RT Rr/RT 

Control 1.86 ± 0.10 0.61 ± 0.17 2.25 ± 0.84 4.72 ± 1.11 0.13 0.48 

Z0.25 1.58 ± 0.09 0.48 ± 0.14 1.53 ± 0.22 3.59 ± 0.45 0.13 0.43 

Z0.5 1.13 ± 0.04 0.37 ± 0.10 1.75 ± 0.14 3.26 ± 0.28 0.11 0.54 

Z1 1.46 ± 0.06 0.51 ± 0.04 1.24 ± 0.36 3.22 ± 0.46 0.16 0.39 

 

 


