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Abstract

Recently, a growth in the renewable energy market, especially in the field of so-

lar and wind energy sector have increased considerably due to uncertain and

unstable future supply of crude oil and problems caused by pollution. This con-

tinuous growth of renewable energy market will demand new technologies in the

area of power electronics, especially in grid connected systems. Furthermore

as the regulations and standards put a stringent limitation on individual and total

harmonic distortion level allowed to be injected into the grid, the control require-

ments for grid connected systems consequently become even more complex

and challenging. In order to meet these demands, a continuous progress in the

field of converters topologies and control techniques is necessary.

In this thesis, the main focus is on the design and implementation of an

advanced control scheme, namely model predictive control (MPC) to the grid-

connected voltage source converter (VSC) for a three phase system. MPC is

a control paradigm that solves a mathematical optimization problem based on

a dynamic model of the system. Due to the computationally demanding nature

of MPC, the areas of applications have long been restricted to slow dynamical

systems. However, with the recent advancement of microprocessor and simu-

lation technologies, application of MPC is now even possible for the control of

power electronics. With a very powerful concept such as on-line cost optimi-

sation, input/output constraint handling and model-based design, MPC is able

to offer the optimal actuation that allows one to achieve very fast dynamics,

while also considering uncertainties such as system parameter variations and

unknown disturbances. Furthermore, it is also possible to take advantage of the

discrete nature of the power converters and choose from the possible switching

states the optimal solution according to the minimization of a predefined cost.
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Exploring these advantages of MPC and making them suitable for the control

of power converters are the key focus of the thesis.

The first part of the thesis investigates a multi-variable control scheme,

namely a predictive voltage controller that controls both DC bus voltage and re-

active current (i.e. q-axis current) in the synchronous reference frame. Explicit

tuning methods of MPC are introduced to improve the closed-loop transient re-

sponse as well as improving the robustness against the parameter variations

such as the grid inductance.

The second part of the thesis focuses on the predictive current control

design. A predictive current controller for VSC with LCL (inductor-capacitor-

inductor) input filter is first proposed with a robust control scheme that employs

nominal and disturbance rejection control parts. The nominal control part is

designed using the reduced-order model (i.e. L filter model) to control domi-

nant dynamics of the LCL filter where as the disturbance rejection control part

actively suppresses the disturbance due to unmodeled dynamics of LCL filter

(i.e. resonance of the LCL filter). Following from this, a predictive resonant

controller is presented to control the converter in the stationary frame axis. A

resonant module with a grid frequency is embedded in the model to handle the

periodicity in the measured states and the reference inputs. The proposed de-

sign considers the periodic input constraints in the stationary frame as well as

disturbances due to grid voltage distortion. The last part of the thesis inves-

tigates the stability aspect of a finite control set predictive control (FCS-MPC)

method and presents a design framework to handle the imposed the output

current constraints in the cost function.

All of the presented control methods in this thesis are experimentally vali-

dated on a 1kW prototype converter that has been built by the author.
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Chapter 1

Introduction

1.1 Background

Recently, a growth in the renewable energy market, especially in the field of

solar and wind energy sector have increased considerably due to uncertain

and unstable future supply of crude oil and problems caused by pollution. This

continuous growth of renewable energy market will demand new technologies

in the area of power electronics, especially in grid connected systems.

The most conventional configuration of a grid connected renewable energy

system is shown in Figure 1.1, where a renewable energy source can either

be supplied by a photovoltaic array or a wind turbine. As also indicated in the

figure, the output stage, which is connected to the main grid, essentially re-

mains the same regardless of the type of renewable energy source. For this

output stage, a PWM controlled converter is typically used to convert and adapt

the energy accumulated in an intermediate storage element (dc-link capacitor).

The converter must be controlled to ensure that the correct flow of energy from

the generator to the grid or vice-versa is guaranteed. Furthermore as the regu-

lations and standards such as IEC 1000-3-2, IEC 1000-3-4 and IEEE Standard

519 [1],[2],[3] put a stringent limitation on individual and total harmonic distor-

tion level allowed to be injected into the grid, the control requirements for grid

connected systems consequently becomes even more complex and challeng-

ing. In order to meet these demands, a continuous progress in the field of

converters topologies, semiconductor devices and control techniques is neces-
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Figure 1.1: A renewable energy source with a grid-connected three phase volt-
age source converter

sary.

In this thesis, the main focus is on the design and implementation of an

advanced control scheme, namely model predictive control (MPC) to the grid-

connected voltage source converter (VSC) for a three phase system. MPC is

a control paradigm that solves a mathematical optimization problem based on

a dynamic model of the system. Due to the computationally demanding nature

of MPC, the areas of applications have long been restricted to slow dynamical

systems. However, with the recent advancement of microprocessor and simu-

lation technologies, application of MPC is now even possible for the control of

power electronics. With a very powerful concept such as on-line cost optimi-

sation, input/output constraint handling and model-based design, MPC is able

to offer the optimal actuation that allows one to achieve very fast dynamics,

while also considering uncertainties such as system parameter variations and

unknown disturbances. Furthermore, it is also possible to take advantage of the

discrete nature of the power converters and choose from the possible switching

states the optimal solution according to the minimization of a predefined cost.

Exploring these advantages of MPC and making them suitable for the control

of power converters are the key focus of the thesis.
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1.2 Literature Review

This section presents a literature review on the major topics relating to grid-

connected voltage source converters (VSC) and model predictive control (MPC).

The first two sections (section 1.2.1 and 1.2.2) focus on the area of grid-

connected VSC, where we review some of the major converter topologies and

closed-loop control techniques which have been used to achieve bi-directional

power transfer in grid-connected systems. In the last part of the section (section

1.2.3), a literature review of MPC is presented, where the main focus of the

review is to give an overview of the wide and constantly expanding field of MPC,

and to discuss the topics relating to the stability and robust stability problems of

MPC.

1.2.1 Voltage Source Converter Topologies

Two-level converter

The most commonly used topology of a three phase voltage source with bidirec-

tional energy flow capability and high quality input current waveforms is shown
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Figure 1.3: Input filter topologies: (a) L-filter (b) LCL filter

in Figure 1.2. In this topology, there are six semi-conductor switches which

are coupled with free-wheeling diodes. The switches are typically controlled

through PWM signals to allow the current to conduct in bi-directional way (from

AC grid to DC load and vice versa). When the switches are controlled through

PWM it is generally referred to as a ’hard-switching’ scheme which generates a

sequence of short pulse current during the switching cycle. These short bursts

of current is rich in harmonics which can induce excessive harmonics on the

main grid. To reduce the switching harmonics in the current, a line inductor

must be placed between the grid and the converter, so the current generated

from the converter is filtered to produce a near sinusoidal current. The line in-

ductors also play a role in boosting DC-bus voltage level, where the boosted

inductor current is transferred to DC link capacitor of the VSC which acts as an

energy storage and filter for the DC link voltage.

Based on this configuration of topology, a size of passive component such

as line inductors (and ESR) and DC-link capacitor, as well as the voltage/current

rating of IGBT switches must be carefully selected to achieve the desired power

ratings. In particular, for high power applications such as modern wind-turbines

ranging from kW-MW, the switching frequency of the converter is generally cho-

sen to be low in order to minimise the switching losses in the converter. A L-filter

topology, shown in Figure 1.3 (a), is essentially the first order filter with atten-

uation of 20 dB/dec for the ranges of PWM harmonic frequency, which means
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that a relatively large inductance is required for a low PWM switching frequency.

Generally, a large inductance in the input filter also means a slow current dy-

namics which in turn affect the dynamics of the whole converter system. As

such, the trade-off between the size, cost and filtering capacity of L-filter be-

comes a serious limitation in high power applications. For this reason, the

LCL circuit shown in Figure 1.3 (b), is often preferred as an input filter in high

power applications which has a better filtering characteristics than the L-filter

with comparatively smaller size of passive components [77].

There is one major disadvantage in LCL filter which is the inherent reso-

nance present in the LCL filter. The resonance in LCL filter can cause static

and transient distortion of the grid currents. The common countermeasures in

the literature is to connect resistors to the filter in order to damp the resonance,

known as passive damping. However a main disadvantage of such technique is

that the damping resistance value required to provide satisfactory performance

generally results in very high power losses. Alternatively the active damping

method which emulates the damping resistor within the controller algorithm is

also often used to avoid any extra losses.

In overall, the choice of the input filter must be chosen carefully consider-

ing various factors such as level of harmonics allowed to inject into the grid,

power rating of VSC and cost of hardware etc. A comprehensive guidelines of

choosing LCL filter component is illustrated in [64].

Multi-level converter

For low power systems, the two-level inverter is typically employed as the inter-

face between dc-link and grid. However, as the power rating of the converter

increases to around hundreds of kilowatts up to a few megawatts, the two-

level converter with hard-switching scheme is no longer a viable option due
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Figure 1.4: Topology of three-level Neutral-Point Clamped (NPC) converter

to a large voltage stress (dv/dt) that exceeds the power semi-conductor de-

vice rating. For these reasons, several alternative structure of the converter

have been suggested in the literature. One alternative which is emerging as

the standard solution for high power medium voltage applications, is the Multi-

level Converter [54] [87],[52], where Figure 1.4 shows a topology of three-level

Neutral-Point Clamped (NPC) converter. Compared to the two-level converter

in the previous section, output waveform from the multi-level converter con-

sists of several levels of voltages which improves the harmonic quality. As the

number of levels increases, the synthesized output waveform approaches the

sinusoidal wave with minimum harmonic distortion [52]. Furthermore, it per-

mits the use of power devices with lower voltage rates due to a smaller voltage

stress (dv/dt). Moreover, multilevel converters produce smaller common-mode

(CM) voltage which reduces the stress in the bearings of a motor connected

to a multilevel motor drive. Recently, with the development in modulation tech-

niques and control techniques for multilevel converters, the area of multilevel

converter application has expanded to include industrial medium-voltage motor

drives [113] and utility interface for renewable energy systems [48],[99]
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Unfortunately, one of the main disadvantages of multilevel converters is the

greater number of power semiconductor switches needed as shown in Fig-

ure 1.4. Although lower voltage rated switches can be utilized in a multilevel

converter, each switch requires a related gate drive circuit, thus it causes the

overall system to be more expensive and complex.
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1.2.2 Voltage Source Converter Control

Voltage oriented control

The most widely used control method for grid-connected VSC is the voltage-

oriented control (VOC) method [69],[34], which regulates the active and re-

active power indirectly by their respective currents in the synchronous refer-

ence frame axis. In general, the VOC employs a cascaded control structure

consists of outer voltage control loop and inner current loop as shown in Fig-

ure 1.5. The voltage control loop regulates a DC-bus voltage to a desired

value by manipulating the d-axis reference current i⇤d, while the q-axis cur-

rent i⇤q is controlled to zero to obtain a unity power factor. Since the dynam-

ics of the inner current is faster than the DC-bus voltage dynamics, the in-

ner loop are tuned to achieve a fast setting time, where as the outer voltage

loop is designed to achieve an optimum regulation and stability. Symmetri-

cal and modulus optimum tuning method is generally used to tune the volt-

age and current control loops respectively [61],[75]. Apart from the cascaded

control loops, a grid-synchronisation module (shown as PLL in Figure 1.5)

and synchronous-reference transformation are required as a part of the overall

control system. The grid-synchronisation module mainly consists of a Phase-

Locked-Loop (PLL) which tracks the phase angle of the grid voltage [102],[28].

The phase angle output from PLL is then used to generate the synchronous-

reference transformed grid voltages and current.

Proportional Resonant Control

For the inner current loop control, a Proportional-Resonant control technique

in a stationary frame is also often considered to overcome the computational

burden while achieving virtually similar frequency response characteristics as

a synchronous frame PI controller [56],[88],[115]. As evidently shown in Figure
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1.6, a PLL is not required and the transformation is much simpler in the PR

control implementation. In essence, the main idea of the PR controller is to in-

troduce an infinite gain at a selected resonant frequency for eliminating steady-

state error at that frequency, which is conceptually similar to a PI control whose

infinite DC gain forces the DC steady-state error to zero. The resonant portion

of the PR controller can therefore be viewed as a generalised AC integrator

(GI), as proven in [88],[33]. The PR control system in Figure 1.6 assumes non-

distorted grid voltage conditions, however, since the grid frequency often varies,
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the resonant module of the following is often employed.

G(s) = Kp + Kr
!cs

s2 + 2!cs + !2

(1.1)

which has a damping term (!c) that can be tuned to give a robust performance

subject to frequency variation.

Direct Power Control

Another control strategy, called direct power control (DPC), is based on the

instantaneous active and reactive power control loops. In DPC, there are no

internal current control loops and no PWM modulator block, and the converter

switching states are appropriately selected by a switching table based on the

instantaneous errors between the commanded and estimated values of active

and reactive power. Figure 1.7 shows the block diagram of a typical DPC sys-

tem. The instantaneous active and reactive power can be obtained from the

estimated virtual flux or measured currents. The outputs of the power controller

go through a switching table to decide the converter switching states appropri-

ately.

As shown in Figure 1.7, the main part of DPC system is the estimation of

the active and reactive line power which must be fast and accurate to guarantee

the satisfactory control performance.

Many authors proposed an estimation algorithm which can largely be di-

vided into voltage-based and virtual flux based estimation. For the voltage

based estimation [104], the instantaneous active (P) and reactive power (Q)
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in ac voltage sensorless system are estimated using (1.2) and (1.3).

P = L
 
dia

dt
ia +

dib

dt
ib +

dic

dt
ic

!
+ Vdc(S aia + S bib + S cic) (1.2)

Q =
1p
3

(
3L

 
dia

dt
ic +

dic

dt
ia

!
+ Vdc(S a(ib � ic) + S b(ic � ia) + S c(ia � ib))

)
(1.3)

Unfortunately, the above algorithm involves the computation of the derivative

of the measured currents, so the computation may become noisy, especially at

low currents.

To improve the voltage-based estimation, another method based on the vir-

tual flux concept has been proposed by Malinowski et al. [75]. The concept of

virtual flux is to relate the main grid to a virtual AC motor by making an analogy
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of grid inductance L and ESR R to the stator resistance and stator leakage in-

ductance of the virtual motor. Based on the flux equation and the voltage loop

equations in (1.4) and (1.5) respectively,

 g =

Z
ugdt (1.4)

ug = us � Rig � Lg
dig
dt

(1.5)

Neglecting the ESR, the line virtual flux is calculated based on the measured

line current and the inverter voltage

 g =

Z
usdt � Lg ⇧ ig (1.6)

Using the virtual flux estimation in (1.6), the active and reactive power can be

estimated as

P =
3

2

!( ↵i� �  �i↵) (1.7)

Q =
3

2

!( ↵i↵ �  �i�) (1.8)

The DPC offers an interesting alternative to the VOC where there is no need

for a complex transformation and the estimations can easily be implemented.

The work by Noguchi et al. [104] showed that DPC can improve the total power

factor and efficiency over VOC. One of the main drawback of DPC is the high

sampling frequency required in response to obtain the estimated instantaneous

active and reactive power accurately. Hence it is only feasible for a system with

the fast microprocessor and A/D converters.
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Deadbeat Control

With the development of digital control technology, especially with high-speed

microprocessors, a control technique known as a deadbeat control has been

well adopted in the control of power converters [56],[55],[103]. An application

of deadbeat control in VSC requires a sampling of input current of the converter

at each sampling instant, then prediction of input current given value is made

based on the discrete model of the converter for the next sampling period. In

order to make the phase current reach its reference by the end of the following

modulation period the corresponding phase voltage is calculated and applied

to the switching converter. For instance, the command voltage of Ud and Uq

can be computed by the following equations in deadbeat control.

Ud(k) = �(

L
T
+

R
2

)[i⇤d(k) � id(k)] � Rid(k) + !L
i⇤q(k) + iq(k)

2

+ ed(k) (1.9)

Uq(k) = �(

L
T
+

R
2

)[i⇤q(k) � iq(k)] � Riq(k) � !L
i⇤d(k) + id(k)

2

+ eq(k) (1.10)

where i⇤d(k) and i⇤q(k) are the reference current inputs at sampling instant k.

Since the future prediction is made based on the model, it is also often referred

to as a direct predictive control in the literature [92]. The calculations are often

performed in the synchronous-reference frame, and the space vector modula-

tion strategy is often employed, which very well suits the digital implementation.

A control block diagram of a deadbeat control for VSC is depicted in Figure 1.8.

It is known that deadbeat current control technology has faster dynamic

response than other digital feedback control, thus it can greatly improve the dy-

namic performance of VSC. On the other hand, due to the model uncertainties

and the inherent delay due to the calculations cause a serious drawback for this

technique [24], which may imply an unsatisfactory performance level. In more
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Deadbeat Control System
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Figure 1.8: Deadbeat control system for grid-connected VSC: i⇤d and i⇤q are the
reference input current. Two inner control loop is based on (1.9) and (1.10),
where S d = Ud/Vdc and S q = Uq/Vdc

recent work of the deadbeat controller, robust issues of deadbeat controller has

been addressed using the additional observers or estimators to improve the

disturbance rejection and to reduce the sensitivities to the computational delay

and the plant uncertainties [58],[37],[46].

Hysteresis Control

The most well known control method without PWM is the hysteresis current

control. The basic idea of hysteresis control is to directly control the switches

to keep the output current (ia) trajectories to follow reference current (i⇤a) wave-

forms within a fixed hysteresis band as shown in Fig. 1.9. In the actual imple-

mentation, shown in Fig. 1.10 the feedback error is used with the pre-defined

error band for which the switching input is applied to force the error to zero
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or origin whenever the error touches the band. As can be seen, an error sig-

nal is used to control the switches (i.e.IGBT) in the converter, where the error

(e(t) = i(t) � i⇤(t)) is the difference between the desired current, (i⇤(t)), and the

current being injected by the converter, (i(t)). When the error reaches an upper

limit, the switches are opened to force the current down, and if the error reaches

a lower limit the switches are closed to force the current to increase. Hence, the

range between the lower hysteresis limit and the upper hysteresis limit directly

controls the amount of ripple in the output current from the converter.

The main advantage of hysteresis control is the simpler implementation

compared to the PWM based control which only requires comparator blocks

to determine the correct switching of bipolar switches. Moreover, it is reported

that it also leads to a higher dynamic response as well as being robust to pa-

rameter variations. However a noticeable disadvantage of this approach is the

wide spectrum of the switching frequency, which leads to a stochastic switch-

ing losses and it is no longer a linear control. Moreover when applied to a three

phase system, the phase errors between the actual and the reference can reach

twice the hysteresis band. This is mainly due to the interference between the

commutations of the three phases, since each phase current not only depends

on the corresponding phase voltage but is also affected by the voltage of the

other two phases [74],[23].

Many improvements to the original control structure have been suggested

by industrial applications. For example, a three-level comparators with a lookup

table is proposed in [68],[13] to reduce the switching frequency by selecting

zero voltage vectors, fixed modulation frequency with a variable width of the

hysteresis band as function of the instantaneous output voltage [21],[83]. All of

these provisions have allowed a substantial improvement in the performance of

the hysteresis current controller, as is discussed in [56].
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Finite Control Set Predictive Control System
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Finite-Control-Set Predictive Control

As we described earlier in ’deadbeat control’ review section, the concept of

predicting the future current behaviour based on the electrical dynamic equation

(usually R-L equations for the current control) has long been applied in the

control of power converters. However, the most of these earlier predictive or

deadbeat controllers use either PWM or SVM techniques to produce switching

inputs to the power converter. In recent years, a new control concept called

Finite-Control-Set (FCS) predictive control is fast becoming as one of the main

control techniques to control the power converters [86],[100],[81],[49],[39].

As explained in the work by Kouro et.al in [100], the main concept that differs

from the earlier predictive current control is the use of the cost function to find

the optimal switching vector based on the finite number of switching vectors.
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Without any fixed modulation, the optimal switching vector is directly applied to

switch the converter. More specifically, at each sample time, the output current

is predicted for each one of the valid switching states using a model of the

converter. Based on the following cost function,

Ji = |i⇤xx � iP
xx(S i)| + |i⇤xx � iP

xx(S i)| f ori = 1..7 (1.11)

where xx indicates the reference frame which can either be ↵� for the stationary

frame and dq for the synchronous reference frame. All the predicted values

are evaluated in the cost function and the switching state that minimizes this

function is selected to be applied at the next sample time.

The main benefit of the FCS-MPC is the ability to use the different combina-

tion of cost terms to consider various performance aspect of the converter, such

as switching losses, common-mode voltage reduction etc [100]. For example,

to consider increasing the efficiency of the VSC in FCS-MPC, one can choose a

cost function of the following form (1.12) that not only penalises the deviation of

trajectories from the reference, but also minimises the switching loss [86],[89].

J⇤ = Jp + � ·Cp (1.12)

where Cp is the number of the switched commutations involved when changing

from the present to the future switching state. � is the associated weighting

factor. Hence, the computed optimal control input from the above cost function

gives the best possible dynamic response with minimum switching losses by

avoiding those switching states that would produce more commutations.

Compared to VOC and other traditional control methods, FCS-MPC is still a

relatively new concept, hence there are vast amount of open research problems

to be addressed, one of them is to find the guaranteed stability condition for
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FCS-MPC [8],[9]. So far in the available literature, only the recent work by

Aguilera et.al [8] addressed this issue by applying the terminal cost approach

similar to the concept used in the robust MPC problem. Their main idea is

to consider the practical stability of FCS-MPC and to design the cost function

as a practical Lyapunov function by finding a suitable local controller and the

terminal weighting matrix based on the LQR problem.

Other area of concern includes the variable switching frequency and the

lack of analytical or numerical solution to obtain an optimal solution to the prob-

lem for FSC-MPC. Especially the variable switching frequency problem con-

sequently leads to a spread harmonic spectrum which directly affects the effi-

ciency of the converter.

In many aspects, FCS-MPC approach resembles a classical MPC design.

However, as pointed out in number of publications, a discrete minimisation of

cost function for possible finite switching states allows an implementation of

FCS-MPC to be much simpler and intuitive, even compared to a standard VOC

method. Due to this reason and many other advantages of FSC-MPC, a con-

tinuous extension of the FCS-MPC to different converter topologies have also

been reported for the grid-connected converters [34],[53] for multi-level invert-

ers [90] and for motor drive applications [59],[50]. Recent work by Rodriguez

et al.[51], summarises the current state of art of FCS-MPC in power electronics

applications.

1.2.3 Model Predictive Control

Model predictive control (MPC), also referred to as receding horizon control, is

essentially a class of standard optimal control algorithm that solves the con-

strained optimal control problem on-line for the current state of the plant by

defining a finite horizon. Over the last few decades, MPC has been an ac-
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tive research area from both academic and industries and has become one of

the most commonly encountered control methodologies for multivariable con-

trol problems. A number of major publications have appeared in the literature,

which includes the tutorial papers by Rawlings [94] and Wang [108], an exten-

sive theoretical review paper by Garcia et al. [25], Morari [78], as well as books

by Maciejowski [72], Rossiter [97] and Wang [109]. In industry applications,

MPC control systems have first appeared in the process industry [25]. Since

then the widespread applications of MPC have been reported in the area of

chemical process industries, automotive, and power electronics.

The main principle of MPC is to compute the predicted evolution of the sys-

tem based on the current state at each sampling instant and the state prediction

is optimized with respect to some cost function subject to linear inequality con-

straints. By the receding horizon concept, the first element of the computed

sequence of predicted optimal control actions is applied to the plant, and the

whole process is repeated for all subsequent sampling. The use of finite horizon

and the receding horizon principle is what differentiates from the other optimal

control methods and it is the key factor that allows the optimization problem to

be solved on-line with a finite number of decision variables and a finite number

of constraints.

The most of MPC literatures consider a linear discrete-time system of the

following state space form

x(k + 1) = Ax(k) + Bu(k) (1.13)

y(k) = Cx(k) (1.14)

where x(k) 2 Rn, u(k) 2 Rm, y(k) 2 Rp denote the state, control input and

controlled output respectively. Subsequently the prediction of the model based
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on the current state for a finite horizon is solved iteratively as shown below,

x(k + 1) = Ax(k) + Bu(k)

x(k + 2) = Ax(k + 1) + Bu(k + 1)

= A2x(k) + ABu(k) + Bu(k + 1)

...

x(k + Np) = ANp x(k) + ANp�1Bu(k) + ANp�2Bu(k + 1)

+ ANp�Nc Bu(k + Nc � 1) (1.15)

where Np and Nc denote prediction horizon and control horizon respectively.

Generally for a stability purpose, a large Np is often preferred.

Based on the predicted behaviour of the system, usually a quadratic cost is

used to compute the optimal control solution.

J =
NpX

i=1

(r(ki) � y(ki + Np)

T Q(r(ki) � x(ki + Np)) +

NcX

i=1

u(ki + Nc)
T Ru(ki + Nc)

(1.16)

where r(ki) is the set-point signal for the output y at time ki, and the weighting

matrices Q and R are symmetric positive semi-definite and symmetric positive

definite matrices, which are used to tune the optimal performance of MPC.

Without constraints, the objective of model predictive control is to minimise

the cost function (1.16) and to find the control law that will drive the predicted

plant output y(ki+Np) as close as possible to the future trajectory of the set-point

r(ki).

For a continuous-time implementation of MPC, a state-space model of the
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following form is used

ẋm(t) = Amxm(t) + Bmu(t) (1.17)

y(t) = Cmxm(t) (1.18)

The corresponding state prediction based on the continuous time model is

solved based on the following convolution.

x(ti + ⌧ | ti) = eAm⌧x(ti) +

Z ⌧

0

eAm(⌧��)Bu(�)d� (1.19)

Unlike the discrete time case in (1.15), solving the above convolution is com-

putationally more demanding. Due to this reason, the continuous time MPC

received a comparatively less attention than the discrete-time counterpart. Ma-

jor works on continuous time MPC includes Gawthrop et al. [82], Kouvaritakis

et al.[16] and Wang [107].

In particular, the work by Wang [107] addresses the apparent difficulties

with a continuous time implementation and proposes a method of describing

the control trajectory and formulation of constraints using a set of orthonormal

basis functions.

By using an augmented system model with embedded integrators, also

known as ’velocity’-form model, and assuming that first derivative of control

inputs converges exponentially to zero for a chosen control horizon, the control

input trajectory is approximated using a set of pre-chosen orthonormal basis

functions, which allows the future prediction to be calculated in an analytical

form. Based on the model prediction and by defining positive definite matrices

(the performance weights), the underlying goal is same as the discrete-time im-

plementation which is to find the optimal control input that minimizes a quadratic
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cost function with prediction horizon N.

J =
Z Tp

0

x(ti + ⌧ | ti)
T Qx(ti + ⌧ | ti)d⌧ + uT RLu (1.20)

The detailed summary of the method is described in [109].

One of the key advantages of MPC is the handling of system constraints in

the on-line optimisation problem. Since the cost function of MPC is generally

chosen to be as a quadratic cost function, a quadratic programming (QP) is

used to solve the constrained optimisation problem on-line. Generally, the QP

methods can not be solved explicitly and requires an iterative computational

approach. From a practical point of view, especially for a fast sampling system,

this can also be the one of the main drawbacks of MPC due to the substantial

computational load required by the on-line minimisation.

To minimise the computational load, various approaches have been sug-

gested [5],[10]. In particular, the work by Bempoad et al.[5], a method referred

to as ’Explicit MPC’ has been proposed. The resulting control law of this method

is a piecewise-affine (PWA) function of the system state, which uses parametric

programming to pre-compute the solution of the optimal control problem for all

initial states off-line, and the resulting piecewise-affine control law is stored in a

lookup table. Therefore there is no need to solve an optimization problem on-

line, and is effective to control fast-sampling systems. However this approach

is found to be only feasible for a system with low dimension and a number of

constraints.

In contrast to the off-line approach, recent work by Wang [109] uses a com-

putationally efficient QP solver known as Hildreth’s programming to solve on-

line the quadratic cost function.
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Nominal Stability and Feasibility of MPC

Unlike the infinite horizon optimal control problem, the stability and recursive

feasibility are not automatically inherited by the finite horizon MPC problem

without the pre-setting of parameters, such as weighting matrices Q and R, the

length of prediction horizon as well as the terminal cost in the cost function

[31],[95]. Typically to ensure the stability of MPC, the cost function of the fol-

lowing form is used which is an extension of (1.16) to include the terminal cost

and terminal set constraints.

J =
NpX

i=1

`(xi, ui) + Vf (xN) (1.21)

where `(xi, ui) = xT Qx+uT Ru, Vf (x) = xT Px. Based on the above cost function,

the main idea of guaranteeing the stability is to choose the terminal cost and

terminal set, such that the MPC is approximately equal to or an upper bound

on the infinite horizon cost and as an invariant subset around the origin respec-

tively.

The exact conditions for which terminal cost and terminal set must satisfy to

guarantee the stability and the recursive feasibility are discussed in the seminal

paper by Mayne et al. [31].

Robust MPC

Since the control quality of MPC relies heavily on the fidelity of the mathemati-

cal model of the underlying plant and because of the fact that there will always

be some exogenous disturbances acting on the plant, as well as the presence

of uncertainty in the model parameter, the robust aspect of MPC under uncer-

tainty for practical applications is an important topic and have been extensively

covered in the literature [18],[73],[31].
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Generally for a system with persistent but bounded disturbances, asymp-

totic stability of the origin can not be achieved but instead under certain con-

ditions the stability of the uncertain system can be achieved by converging the

state trajectories to a robust positive invariant set (see Definition 1.2.1), which

can be seen as the ’enlarged’ origin of the uncertain system [29]. The main

goal of robust MPC is therefore to achieve this condition while satisfying the

state and control input constraints.

Definition 1.2.1 (Robust Positive Invariant Set) For the system xk+1

= Axk+!k,

xk 2 X, a set ⌦ ✓ Rn is said to be a robust positive invariant set, if Axk + !k 2
⌦ ✓ X, 8x 2 ⌦ and 8!k ✓ W.

The seminal work by [26] proposed a method referred to as ’Min-Max Model

Predictive Control’ which is designed to minimize the worst-case performance

achievable under any admissible uncertainty. Under the framework of Min-Max

MPC, it is further divided into open-loop and closed-loop min-max MPC.

In open-loop min-max MPC, the worst-case realisation of the uncertainty is

minimised over the sequence of open-loop control actions, which often leads to

a very conservative solution. In closed-loop min-max MPC, instead of optimis-

ing over a nominal control sequence, it optimises a sequence of control policies

and thereby introduces a feedback to the disturbances to contain the spread of

predicted trajectories resulting from the influence of uncertainty [93].

Another important contribution was made by Kothare et al.[70],[71] which

the author used LMI framework to formulate a Min-Max MPC. The main prin-

ciple of their method is to introduce the control policy for the prediction model

which is computed at each time step based on the minimisation of a worst-case

upper bound on the infinite horizon cost. Despite the strong theoretical devel-

opment, many of the Min-Max Robust MPC methods that have been presented

in the literature have high computational complexity, which is a major drawback
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in terms of practicality.

In a more recent work, a method called ’Tube-Based Robust Model Pre-

dictive Control’ was proposed in Langson et al.[106],[32], to reduce the on-line

computational load. The basic concept of Tube-Based Robust MPC is to solve

a nominal Model Predictive Control problem for suitably tightened constraints,

while bounding the error between nominal1 and uncertain system state by a

robust positively invariant set. The method is based on the use of the following

form of control input

u = ū + K(x � x̄) (1.22)

where ū and x̄ are state and control input of the nominal system. The linear

time-invariant feedback controller K, also referred to as the disturbance rejec-

tion controller, is computed off-line and ensures that the deviation of the actual

system state from the nominal system state is bounded. Tube-Based Robust

MPC can be seen as a way of separating the problem of constrained optimal

control from the problem of ensuring robustness in the presence of uncertainty.

As was shown in [32], this controller only involves the solution of a stan-

dard Quadratic Program which is similar to the conventional MPC which can

be solved fast and efficiently using standard mathematical optimization algo-

rithms. Hence Tube-Based Robust MPC can also be applied for fast dynamical

systems.

1.3 Objectives

The research objectives of this thesis are:

• To develop voltage and current feedback control systems for grid-connected

VSC based on a model predictive control approach: The proposed con-
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trol system must be applicable to major topologies of grid-connected VSC,

and must ensure a fast response to transient events as well as provide

good steady-state regulation. Furthermore, the achieved closed-loop per-

formance must be within the physical bounds of the grid-connected VSC.

• To implement the proposed control system on a laboratory scaled grid

connected system, to verify the practicality and the control performances.

1.4 Thesis Contribution

Thesis presents several key contributions to the application of MPC in the field

of power electronic converters.

The first contribution of this thesis is the development of a model predic-

tive voltage controller (MPVC) which offers a centralised control structure to

regulate both DC-bus voltage and input currents in the synchronous reference

frame. In order to reduce the complexity of tuning, explicit tuning techniques

based on a regional pole placement method are presented to confine the closed-

loop poles of MPVC in the desired region of the complex plane. So the exten-

sive tuning of cost-weighting factors are avoided and offers a systematic way

of tuning the MPVC to satisfy desired closed-loop responses. Furthermore, the

parameter uncertainties, especially the grid impedance variation is considered

and also presents a systematic way of designing a MPVC to ensures the robust

stability. Lastly, a constrained optimisation problem with switching control input

constraints is formulated and implemented in the synchronous reference frame

to regulate the closed-loop response of the proposed controller to be within a

linear modulation region.

The second major contribution of this thesis is the development of a model
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predictive current controller for grid-connected VSC with an LCL filter. A novel

current control system which consists of nominal and disturbance rejection con-

troller is proposed to ensure a good tracking performance of the input current in

the synchronous reference frame while sufficiently suppressing the resonance

harmonics caused by the LCL filter. For the disturbance rejection controller,

the concept of finite frequency H1 control is employed to reject the LCL res-

onant harmonics in a finite frequency interval which improves the damping of

LCL filter harmonics compared to other traditional methods. In order to ensure

the system constraints are satisfied, an approach similar to the constraint tight-

ening approach is used to ensure the feasibility of switching input constraints

while rejecting LCL filter harmonics.

The third contribution is the development of a model predictive resonant

current controller (MPRC) for a grid-connected VSC. The presented MPRC em-

beds a sinusoidal module in the original model to track the sinusoidally varying

reference inputs and the measured system states in the stationary reference

frame. A grid-frequency variation problem is considered and a robustly stabil-

ising controller has been proposed to improve the robust tracking of reference

input current for different grid frequencies. The selective harmonic compen-

sation controller is also proposed to minimise the odd-order harmonics in the

grid-side current caused by the grid-voltage harmonics. Model based harmonic

compensator along with MPRC is designed to ensure a sufficient reduction of

the harmonics while ensuring the stability and the tracking performance of ref-

erence inputs.

The last contribution of this thesis is the development of a finite-control-set

MPC (FCS-MPC) with state constraints. The main idea of this contribution is

to augment a general cost-function of FCS-MPC with linear inequalities such

that both initial and final states ( input currents) are confined within the maximal

admissible set that satisfies input and state constraints. The optimal switching
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input from the finite control set is computed based on the concept of dual-model

control to ensure that the initial state in a relaxed final state constraint is steered

towards an invariant set around the equilibrium/reference point for ensuring the

stability. The presented concept is applied to a grid-connected VSC and verified

in the experimental tests.
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1.5 Thesis Organisation

The thesis consists of 6 chapters and 2 appendices which are organised as

follows.

Chapter 2 presents a control-oriented linear model of a three phase voltage

source converter which is derived from a nonlinear model using a well-known

technique called state averaging method. Based on the state averaged model,

separate linear models of the converter are derived in both the synchronous

reference frame and stationary frame which will be used for the control design.

Chapter 3 presents a multi-variable control scheme based on a general frame-

work of model predictive control. The presented control scheme departs from

the conventional cascaded control, and constructs an unified controller that reg-

ulates both DC-bus voltage and input currents based on the state-averaged

model of the VSC in the synchronous reference frame. In order to reduce the

complexity of tuning, pre-stabilisation techniques are presented to satisfy de-

sired closed-loop response and to improve the numerical conditioning of the

predictive controller with a long prediction horizon. In order to keep the mod-

ulation index of switching control input to within a linear region, a constrained

optimisation with switching control input constraints are formulated and imple-

mented in the synchronous reference frame.

Chapter 4 presents MPC based control of three phase VSC with an LCL filter.

An identification of frequency characteristics of the LCL filter is presented first

to analyse the resonance frequency of LCL filter. Following from the identifi-

cation, a novel MPC based current control method is presented based on the

reduced-order model of LCL filter. The proposed scheme comprises of nominal
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and disturbance rejection control parts where each part of control is designed

separately. For the disturbance rejection control, a finite-frequency H1 control

method is adopted to reduce the effect of resonance of LCL filter.

Chapter 5 presents a model predictive control scheme that tracks periodic ref-

erence current inputs of i↵ and i� in the stationary frame. The main idea of the

proposed scheme is based on the internal model principle which embeds the

resonant module of 1

s2+!2

in the model of VSC in the stationary frame. From this

model, the future prediction of states and optimum switching inputs are com-

puted by minimizing the error function between the predicted and measured

input currents (i↵ and i�). An extension of MPRC is presented to selectively

compensate for multiple harmonics caused by the grid voltage harmonics. The

proposed scheme controls the nominal current dynamics as well as the har-

monic at a specific frequency by resonant harmonic compensator which en-

sures the overall system stability in the presence of harmonic distortions.

Chapter 6 presents a FCS-MPC scheme with state constraints, where the pro-

posed scheme handles the system constraints on-line while minimising the cost

function based on a one-step ahead prediction. An application of the proposed

FCS-MPC scheme to VSC is explained and simulation and experimental results

are presented for the analysis.





Chapter 2

Mathematical Model

This chapter presents a mathematical model of grid-connected VSC, which will

form a basis of the model predictive control design proposed in this thesis.

In section 2.1, a control-oriented model is first derived based on the op-

eration principle of a three phase VSC by using a well-known method called

state averaging method. In sections 2.2 and 2.3, a linearised model of VSC is

derived using the concept of synchronous-reference frame and the stationary-

frame transformations, which allows dynamics of the linearised model to trans-

form from time-varying to time-invariant. In the last section, a brief discussion

on the design constraint for VSC in grid-connected applications is presented.

2.1 Nonlinear Model

Before proceeding to the model derivation, several assumptions are made about

the operation of the converter. First, it is assumed that all switches are ideal and

operate in a continuous conduction mode (CCM), and the grid voltage is sym-

metric and balanced as follows.

Ea = Em sin(!t) (2.1)

Eb = Em sin(!t +
2⇡

3

) (2.2)

Ec = Em sin(!t +
4⇡

3

) (2.3)
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Figure 2.1: Grid-connected three phase voltage source converter

where ! = 2⇡ f , f is the grid frequency. Furthermore, the system is assumed to

be a three wire system, thus the sum of three phase currents and voltage are

equal to zero.

Ia + Ib + Ic = 0 (2.4)

Van + Vbn + Vcn = 0 (2.5)

Based on these assumptions, voltage equations for each phase are written as

follows.

Ea = Ls
dia

dt
+ Ria + Vdn + Vno (2.6)

Eb = Ls
dib

dt
+ Rib + Ven + Vno (2.7)

Ec = Ls
dic

dt
+ Ric + Vf n + Vno (2.8)

The symbol [S i, S ⇤i ] in Figure 2.1 denotes a bipolar switching input [0, 1] for an

upper and lower leg of each phase respectively. Since these switching inputs
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are conducted in a complementary manner, S a + S ⇤a = 1 (i.e. only one of the

switch is allowed to conduct in any one time), two linear equations are obtained

for Vdn,Ven,Vf n. For example,

Vdn =

8>>>><
>>>>:

IaRs + Vdc, S a = 1

IaRs, S ⇤a = 1

(2.9)

where Rs is the equivalent resistance of switching device. Now, substituting

(2.9) into (2.6) yields

Ea = L
dia

dt
+ Ria + (IaRs + Vdc)S a + (IaRs)S ⇤a + Vno (2.10)

Since S a + S ⇤a = 1, it is further simplified to

Ea = L
dia

dt
+ Ria + (VdcS a + Vno) (2.11)

The same procedure can be applied for phase B and C, to yield the similar

expressions,

Eb = L
dib

dt
+ Rib + (VdcS b + Vno) (2.12)

Ec = L
dic

dt
+ Ric + (VdcS c + Vno) (2.13)

Based on the assumptions made in (2.4) and (2.1), the equation for Vno is given

by adding (2.11)–(2.12) together,

Vno =
�Vdc

3

3X

k=1

S k (2.14)
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For the DC-side of the converter, it can be written as

C
dVdc

dt
= Idc � IL (2.15)

=
S aIa

2

+
S bIb

2

+
S cIc

2

� IL (2.16)

In a more compact form, the converter model is written in a state-space form

as follows,

2
6666666666666666666666664

d
dt ia

d
dt ib

d
dt ic

d
dt Vdc

3
7777777777777777777777775

=

2
6666666666666666666666664

� R
Ls

0 0

S
0
a

Ls

0 � R
Ls

0

S
0
b

Ls

0 0 � R
Ls

S
0
c

Ls

S a
Cdc

S b
Cdc

S c
Cdc

0

3
7777777777777777777777775

2
6666666666666666666666664

ia

ib

ic

Vdc

3
7777777777777777777777775

+

2
6666666666666666666666664

Ea
Ls

Eb
Ls

Ec
Ls

0

3
7777777777777777777777775

(2.17)

where S 0abc are given as

S 0a = S a � 1

3

(S a + S b + S c) (2.18)

S 0b = S b � 1

3

(S a + S b + S c) (2.19)

S 0c = S c � 1

3

(S a + S b + S c) (2.20)

A further simplification of the model in (2.17) is possible given that a PWM

switching frequency is assumed to be much higher (i.e typically � 1 KHz)

than a grid frequency (i.e 50Hz in this work). Based on such assumptions the

switching functions (S a, S b, S c) can be approximated by their averaged function

(i.e duty-ratio) as follows:

da =
m cos(!t) + 1

2

(2.21)

db =
m cos(!t � 2⇡

3

) + 1

2

(2.22)

dc =
m cos(!t + 2⇡

3

) + 1

2

(2.23)
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Figure 2.2: Phasor diagram of synchronous reference frame: d-axis is aligned
with the grid voltage and the d-axis lags the q-axis by 90

�.

This type of approximation in the model is known as a state-averaging method.

For a detailed derivation and proof of the method can be found in [91].

Now, by substituting the (2.21)–(2.23) into (2.17), a continuous-time model

of the VSC is obtained as

2
6666666666666666666666664

d
dt ia

d
dt ib

d
dt ic

d
dt Vdc

3
7777777777777777777777775

=

2
6666666666666666666666664

� R
Ls

0 0

m cos(!t)
Ls

0 � R
Ls

0

m cos(!t� 2⇡
3

)

Ls

0 0 � R
Ls

m cos(!t+ 2⇡
3

)

Ls

m cos(!t)+1

Cdc

m cos(!t� 2⇡
3

)+1

Cdc

m cos(!t+ 2⇡
3

)+1

Cdc
0

3
7777777777777777777777775

2
6666666666666666666666664

ia

ib

ic

Vdc

3
7777777777777777777777775

+

2
6666666666666666666666664

Ea
Ls

Eb
Ls

Ec
Ls

0

3
7777777777777777777777775

(2.24)

2.2 Synchronous-Reference-Frame Axis

The dynamic equations of the converter given in (2.17) are time-varying and

nonlinear. For the purpose of controller design, it is preferable to transform the
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Figure 2.3: Equivalent circuit of three-phase VSC in the synchronous reference
frame: Ploss is the total power loss which mainly consist of switching and con-
duction losses.

non-linear model into a linear time-invariant (LTI) model. First, a synchronous-

reference frame transformation, also known as d-q axis transformation is ap-

plied to (2.17) to obtain a time-invariant equivalent model. An in-depth treat-

ment of the synchronous-reference frame transformation is not presented in

this work, however a transformed model can simply be obtained by applying

the matrix given below.

T =

2
666666664

cos(!t) cos(!t � 2⇡
3

) cos(!t � 4⇡
3

)

�sin(!t) �sin(!t � 2⇡
3

) �sin(!t � 4⇡
3

)

3
777777775 (2.25)

The phasor diagram and the equivalent circuit of a three-phase VSC in syn-

chronous reference frame aligned with grid voltage at ! frequency is shown

in Figure 2.2 and Figure 2.3 respectively. After applying the transformation to

(2.17), dynamic equations of the VSC in synchronous-reference axis are ex-
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pressed as,

Ls
did

dt
= �Rid + !Lsiq + ed � vd (2.26)

Ls
diq

dt
= �vq � Riq � !Lsid (2.27)

Cdc
dvd
dt
=

3

4

⇣
S did + S qiq

⌘
� iL (2.28)

where ed is a grid source voltage, id, iq are the input currents and vd , vq denotes

control inputs, which are defined as below,

vd = S d ⇤ (vdc/2) (2.29)

vq = S q ⇤ (vdc/2) (2.30)

S d and S q are switching functions. Note that with the switching functions S d and

S q as control variables, (2.26)-(2.28) become a set of bilinear equations.

Supposing that at steady state operating condition, the converter maintains

a target DC bus voltage with unity power factor, in other words both the magni-

tude of iqo and vq are assumed to be zero, then the steady state values of the

parameters in the linear model are selected as iqo = 0,vq = 0,Vdco = Vre f . For

steady-state switching functions S do, S qo are computed as ([57]),

S do =
2(Vd � Rid)

Vdco
(2.31)

S qo =
�2!Lsid

Vdco
(2.32)

Therefore by linearising the bilinear model of VSC using the above operating

point calculation, the linear time-invariant model can be obtained as follows

˙Xm(t) = AmXm(t) + Bmu(t) (2.33)

y(t) = CmXm(t) (2.34)
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Figure 2.4: Phasor diagram of stationary frame: ↵-axis is aligned with a-phase
and the orthogonal ↵–� axis does not rotate with respect to the three phase
axis at ! frequency.

where Am, Bm and Xm are defined as,

Am =

2
66666666666666664

� R
Ls

! �S do
2Ls

�! � R
Ls
� S qo

2Ls

3S do
4Cdc

3S qo

4Cdc
0

3
77777777777777775
, Bm =

2
66666666666666664

�vdco
2Ls

0

0

�vdco
2Ls

3ido
4Cdc

3iqo

4Cdc

3
77777777777777775
, (2.35)

Cm =

2
666666664

0 1 0

0 0 1

3
777777775 , Xm =

2
66666666666666664

id

iq

vdc

3
77777777777777775
, u =

2
666666664

S d

S q

3
777777775 (2.36)

where S do, S qo,Vdco, ido and iqo represents steady state equivalent solutions.

2.3 Stationary-Frame Axis

Another transformation commonly used is called a stationary frame transfor-

mation, also known as ↵-� frame transformation. As shown in Figure 2.4, in
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Figure 2.5: Equivalent circuit of three-phase VSC in the stationary frame: Ploss
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this frame the three-phase vectors are projected into a stationary orthogonal

vectors, where the projected two-axis vectors remain stationary with respect to

three-phase vector rotating at !. Mathematically, the SF transformation can be

obtained by applying the matrix below.

T↵� =

2
666666664

1 �1

2

�1

2

0

p
3

2

�
p

3

2

3
777777775 (2.37)

Due to the omission of phase angle in (2.37), the computation is simpler com-

pared to the synchronous-reference transformation, where the grid synchroni-

sation is also no longer needed. However it is important to note that the station-

ary frame transformed variables such as current and voltage vary sinusoidally

at the grid frequency.

By applying the stationary frame transformation to (2.17), a three phase
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VSC model in terms of i↵ and i� in the stationary frame can be expressed as,

Ls
di↵
dt
= �Ri↵ + e↵ � v↵ (2.38)

Ls
di�
dt
= �Ri� + e� � v� (2.39)

where e↵,e� and i↵, i� are the stationary frame grid voltages and input currents

respectively. v↵ and v� denote control inputs with

v↵ =
S ↵vdc

2

(2.40)

v� =
S �vdc

2

(2.41)

where S ↵ and S � are switching functions. The DC-link bus voltage equation can

be expressed as,

C
dvdc

dt
=

3(S ↵ · i↵ + S � · i�)
4

� vdc

RL
(2.42)

The equivalent circuit of three-phase VSC in synchronous reference frame is

shown in Figure 2.5, compared to the synchronous reference frame in Figure

2.3, a cross-coupling terms do exist.

Considering only the dynamics of i↵ and i�, the above model is linearized

and casted into the state-space form below,

ẋm(t) = Amxm(t) + Bmu(t) (2.43)

y(t) = Cmxm(t) (2.44)

where Am, Bm and Cm are defined as

Am =

2
666666664
� R

Ls
0

0 � R
Ls

3
777777775 , Bm =

2
666666664

�vdco
2Ls

0

0

�vdco
2Ls

3
777777775
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Cm =

2
666666664

1 0

0 1

3
777777775 , xm =

2
666666664

i↵

i�

3
777777775 , u =

2
666666664

S ↵

S �

3
777777775

vdco is the chosen operating voltage of the DC-link bus.





Chapter 3

Model Predictive Voltage Control

3.1 Introduction

The objective of the control system for the VSC is to regulate DC-bus voltage

to follow the reference value, while the line current should be sinusoidal shape

and in phase with the grid voltage. A control system of the VSC to achieve this

objective often employs a cascaded control structure in which DC-bus voltage

and current controllers are designed and tuned separately. Predominantly in

the literature, PI controllers are used for each control loops where an outer-loop

voltage controller generates reference value of current for the inner controller.

In this chapter, departing from the conventional cascaded PI control, a multi-

variable structure of the MPC is utilised to construct a centralized controller that

regulates both DC-bus voltage and input currents based on the state-averaged

model of the VSC in the synchronous reference frame (herein referred to as

Model Predictive Voltage Controller (MPVC)). An overview of the complete con-

trol structure of MPVC with a grid connected VSC is shown in Figure 3.1.

In section 3.3, a concept known as Prescribed Degree of Stability is intro-

duced to simplify the tuning of MPVC. The presented method allows a simple

weighting matrix in the quadratic cost function and introduces a scalar parame-

ter as an exponential weighting factor on the cost function to tune the minimum

decay rate of the closed-loop response.

In section 3.4, an extension of Prescribed Degree of Stability and Damping

is proposed to consider a more complex performance requirement such as min-
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imum damping and decay rate. A desired region in the complex plane based on

the minimum damping and decay rate requirements is defined and formulated

in terms of LMI expressions and solved using a LMI solver. The resulting state-

feedback law which satisfies the performance requirements of the closed-loop

system is then employed into the finite horizon optimisation problem using the

technique known as the Closed-Loop Paradigm [97].

Section 3.5 explains Laguerre function based MPC design technique which

parametrises the control trajectories and solves a quadratic cost function with

the parametrised control inputs. Furthermore, the switching constraints used for

VSC application is explained and formulated as a linear constraints. To close

the chapter, experimental validations of all proposed methods are presented.
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3.2 Mathematical Model

The model of the VSC used in this section is based on the synchronous-

reference frame model in (2.33)) which is reproduced in the following

ẋm(t) = Amxm(t) + Bmu(t) (3.1)

y(t) = Cmxm(t) (3.2)

where Am, Bm, Cm and Xm are defined as

Am =

2
66666666666666664

� R
Ls

! �S do
2Ls

�! � R
Ls
� S qo

2Ls

3S do
4Cdc

3S qo

4Cdc
0

3
77777777777777775
, Bm =

2
66666666666666664

�vdco
2Ls

0

0

�vdco
2Ls

3ido
4Cdc

3iqo

4Cdc

3
77777777777777775
, (3.3)

Cm =

2
666666664

0 1 0

0 0 1

3
777777775 , xm =

2
66666666666666664

id

iq

vdc

3
77777777777777775
, u =

2
666666664

S d

S q

3
777777775 (3.4)

In the synchronous-reference frame, the reference inputs for i⇤d and i⇤q currents,

DC-bus voltage (V⇤dc) as well as the physical measurements of id, iq and Vdc

are converted into DC vector quantities. So for a controller in the synchronous-

reference frame an integral action is required to achieve a zero steady-state

error. One way of integral action in the MPC framework is to embed integrators

for output variables in the above model, where the output variables of the inter-

est in this case are DC-bus voltage (Vdc) and reactive current (iq). To embed

the integrator, two auxiliary variables are first chosen as

z(t) = ẋm(t) (3.5)

y(t) = Cmxm(t) (3.6)
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and based on them, a new state variable vector is defined as x(t) = [z(t)T y(t)T
]

T ,

where y(t) = [iq Vdc]. With these auxiliary variables, in conjunction with the

original plant model, the augmented state space model is defined as:

2
666666664
ż(t)

ẏ(t)

3
777777775 =

Az          }|          {2
666666664

Am 0

T
3⇥2

Cm 0

2⇥2

3
777777775

xz  }|  {2
666666664

z(t)

y(t)

3
777777775+

Bz   }|   {2
666666664

Bm
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2⇥2

3
777777775

u̇z }| {2
666666664

˙S d(t)

˙S q(t)

3
777777775 (3.7)

y(t) =


0

2⇥3

I
2⇥2

�

|           {z           }
C

2
666666664

z(t)

y(t)

3
777777775 (3.8)

where I
2⇥2

is the identity matrix with dimensions 2⇥2, 0

3⇥2

is a 3⇥2 zero matrix,

0

2⇥2

is a 2 ⇥ 2 zero matrix and 0

2⇥3

is a 2 ⇥ 3 zero matrix. Note that the control

input to the above model is the derivative of the actual control signal. From

hereafter the model in (3.7) and (3.8) are used for the control design.

3.3 Prescribed Degree of Stability

In the continuous-time setting of MPC, the model prediction is given by

x(ti + ⌧ | ti) = eA⌧x(ti) +

Z ⌧

0

eA(⌧��)Bu(�)d� (3.9)

where in general the plant model A is assumed to be stable and a long pre-

diction horizon is chosen to give a stable closed loop response. But for the

case of marginally stable/unstable system, such as the augmented system ma-

trix in (3.7 and 3.8) which has three poles on the origin of the complex plane,

the prediction computation becomes numerically ill-conditioned with a long pre-

diction horizon [109],[97]. Therefore, there is a need to improve the numerical

conditioning of the model prediction in (3.9). One approach to predictive con-

trol with Prescribed Degree of Stability has been developed in [109] and ap-



3.3. Prescribed Degree of Stability 49

plied to the VSC in [112] where the resulting design overcomes the numerical

ill-conditioning problem by applying exponential weighting factor on the sys-

tem states. The following section describes the Prescribed Degree of Stability

method developed in [109] which involves two steps of pre-conditioning the sys-

tem matrix in the cost function. Following from this, Robust Prescribed Degree

of Stability method is presented to consider the model parameter uncertainties.

3.3.1 Pre-stabilisation

As a first step of pre-conditioning, a constant ↵ is chosen as an exponential

weighting factor on states x(t) as follows.

x↵(t) = e�↵t x(t) (3.10)

Differentiating the above with respect to time gives

ẋ↵(t) = �↵e�↵t x(t) + e�↵t ẋ(t) (3.11)

= A↵x↵(t) + Bu̇↵(t) (3.12)

where A↵ = A � ↵I and u̇↵ = e↵tu̇(t). For an appropriate choice of ↵, the

prediction of the state variables based on (A�↵I) is numerically well conditioned

(i.e. stable eigenvalues) and prediction horizon Tp can be selected sufficiently

large to capture the transformed state variable response. In the case where the

plant is unstable with all its eigenvalues lying to the left of the line s = �" line in

the complex plane, where " > 0, ↵ > " is required.

Now, by using the transformed state x↵ and assuming that at the current

time, say ti, the state variable vector x(ti) is measured. The predicted state

vector, denoted by x↵(ti + ⌧ | ti) at the future time ⌧, ⌧ > 0, is described by the
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following equation

x↵(ti + ⌧ | ti) = eA↵⌧x(ti) +

Z ⌧

0

eA↵(⌧��)Bu̇↵(�)d� (3.13)

Based on the above prediction, a cost function with a finite horizon of the form

below is used in MPC

J =
Z Tp

0

x↵(ti + ⌧ | ti)
T Qx↵(ti + ⌧ | ti)d⌧ + u̇T

↵RLu̇↵ (3.14)

where Q and RL are symmetric positive definite and positive semi-definite ma-

trices, written as Q > 0 and RL � 0 respectively. The use of exponential data

weighting (e�↵t
) alters the original closed-loop performance as specified by the

cost function weighting matrices Q and R and in order to compensate for this

variation, the Q matrix is replaced by

Q↵ = Q + 2↵P (3.15)

where P is based on the solution of the Riccati equation for the cost function of

(3.68) with infinite horizon.

PA + AT P � PBR�1BT P + Q = 0 (3.16)

It is easy to see from the following that

J =
Z Tp

0

x↵(ti + ⌧ | ti)
T Q↵x↵(ti + ⌧ | ti)d⌧ + u̇T

↵RLu̇↵ (3.17)

To this end, a positive constant ↵ is used to improve the numerical conditioning

of predictive formulation by applying the exponential weighting factor on the

original matrix A. As such, we can assume that a predictive controller with the

augmented model of the converter with a sufficient value of ↵ gives a stable
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response for a relatively large prediction horizon (Tp). In fact, in the absence of

constraints, it is known that if exponential data weighting is employed then the

predictive controller converges to the corresponding linear quadratic regulator

with sufficiently large prediction horizon Tp [109].

3.3.2 Prescribed Degree of Stability

Now, if Q in (3.68) is simply chosen as Q = CTC, the closed-loop poles of

the predictive control system follows the stable branches of the symmetric root-

locus, dictated by the choice of the weight coefficient rw (R = rwI).

det(I +
1

rw

G(s)G(�s)

s(�s)

) = 0 (3.18)

where G(s) = Cm(sIn
1

� Am)

�1Bm is the Laplace transfer function of VSC. The

stable branches of the symmetric root-locus provide limited options for the de-

sired closed-loop eigenvalues in the design [110]. In order to overcome such

performance limitations with a simple Q matrix, we introduce Prescribed De-

gree of Stability method, which was first proposed by B.O Anderson and Moore

[12] in the context of LQR design. The main idea of this method is to improve

the stability margin of the original system by shifting the closed-loop eigenvalue

placement through a positive scalar factor � while minimizing the quadratic cost

function.

J =
Z 1

0

e2�t
h
x(t)T Qx(t) + u̇(t)T Ru̇(t)

i
dt (3.19)

subject to

ẋ(t) = Ax(t) + Bu̇(t) (3.20)



52 Chapter 3. Model Predictive Voltage Control

For a positive scalar factor � > 0, we can denote

ẋ�(t) = e�t x(t), u�(t) = e�tu(t) (3.21)

Then, the minimisation of the cost function (3.19) is equivalent to

J =
Z 1

0

h
x�(t)T Qx�(t) + u̇�(t)T Ru̇�(t)

i
dt (3.22)

subject to

ẋ�(t) = Ax�(t) + Bu̇�(t) (3.23)

The solution to the cost function (3.22) is found from the following Riccati equa-

tion.

P(A + �I) + (A + �I)

T P � PBR�1BT P + Q = 0 (3.24)

Assuming that the system matrix A is pre-stabilised as described in Section

3.3.1, A↵ in (3.11) is substituted in the above to give

P(A � ↵I) + (A � ↵I)

T P � PBR�1BT P + Q + 2↵P + 2�P = 0 (3.25)

with Q� = Q + 2↵P + 2�P, it can be rewritten as

P(A � ↵I) + (A � ↵I)

T P � PBR�1BT P + Q� = 0 (3.26)

Using the above result, the cost function of (3.68) is altered in the following

form to introduce the prescribed degree of stability �.

J =
Z Tp

0

x↵(ti + ⌧ | ti)
T Q�x↵(ti + ⌧ | ti)d⌧ + u̇T RLu̇ (3.27)
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β 

Im 

Re 

Figure 3.2: A region in the complex plane (shaded area) which meets the mini-
mum decay rate of �.

where Q� = Q + 2↵P + 2�P. The effect of � on the location of closed-loop

eigenvalues is illustrated in Figure 3.2.

3.3.3 Robust prescribed degree of stability

A linearised model of VSC in (3.7 and 3.8) are sensitive to system uncertainties

such as the steady-state duty-cycle, the load, or the parametric uncertainty of

passive elements, which may change the model response considerably. For

instance, we have so far assumed the input inductance to be constant and

equal to the total inductance of the system (LT ) as

LT = L + Lg (3.28)

where Lg is the grid inductance and assumed to be negligible (Lg ⇡ 0). However

it is expected that the grid impedance may change (Lg � 0), if the VSC is

installed in under developed remote areas (e.g., rural areas) characterized by

weak grid conditions due to low power transformers and long distribution wires

[66]. The presented method extends the Prescribed Degree of Stability method
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to systematically find the Q matrix in (3.27) subject to parametric uncertainties

of the model for a given a prescribed degree of stability of �

To facilitate the proposed approach, we will first establish the LMI formula-

tion of the LQR optimal problem, as described in [35].

Consider the following linear system,

ẋ(t) = Ax(t) + Bu(t) (3.29)

The optimal LQR controller for this system is obtained by using the state-

feedback gain K (u(t) = �Kx(t)) that minimises the following cost function

J =
Z 1

0

(x(t)T Qx(t) + u(t)T Ru(t))dt (3.30)

where Q is symmetric and semi-definite positive matrix and R is a symmetric

and definite positive matrix. The closed-loop form of (3.30) is rewritten as

J =
Z 1

0

x(t)T
(Q � KT RK)x(t)dt (3.31)

In order to transform the above LQR problem into LMI formulation, we first apply

the trace operator Tr(⇤) which satisfies aT Xb = Tr(XbaT
) to (3.31), which yields

J =
Z 1

0

Tr((Q � KT RK)xxT
)dt

= Tr((Q � KT RK)P) (3.32)

where P =
R 1

0

x
0

xT
0

dt is a positive symmetric matrix that satisfies the stability

condition with a prescribed degree of stability and x
0

is the initial condition. For

the constraint on the matrix P, we can formulate as follows:

Let us first consider that the prescribed degree of stability, � (or the decay
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rate) is given such that

lim

t!1 e�tkx(t)k = 0 (3.33)

Considering the quadratic Lyapunov’s function

V(x(t)) = x(t)T Px(t) (3.34)

a quadratic stability with a prescribed degree of stability can be defined as (see

[22])

˙V(x(t))  �2�V(x(t)) (3.35)

From (3.34) and (3.29), considering the closed-loop system we can derive

˙V(x(t)) = ẋ(t)T Px(t) + x(t)T Pẋ(t)

= x(t)T
(A � BK)

T Px(t) + x(t)T P(A � BK)x(t) (3.36)

Applying the prescribed degree of stability condition in (3.35) to (3.36) and after

some simplifications we can derive

(A � BK)P + P(A � BK)

T + 2�P < 0 (3.37)

P > 0 (3.38)

The LQR problem with a prescribed degree of stability can now be found by the

following optimisation

minimize
X

Tr(QP) + Tr(R
1

2 KPKT R
1

2

)

subject to (A � BK)P + P(A � BK)

T + 2�P < 0

(3.39)
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However, (3.39) is not linear due to the multiplication of P and K, so introducing

a new variable Y = KP, (3.39) is rewritten as

minimize
X

Tr(QP) + Tr(R
1

2 YP�1YT R
1

2

)

subject to AP + PAT + BY + YT BT + 2�P < 0

(3.40)

Furthermore, it was shown in [35] that the nonlinear term Tr(R
1

2 YP�1YT R
1

2

) can

be replaced by a second auxiliary X as

minimize
X

Tr(X)

subject to X > R
1

2 YP�1YT R
1

2

(3.41)

which can further be decomposed by Schur’s complement as follows

X > R
1

2 YP�1YT R
1

2 $
2
666666664

X R
1

2 Y

YT R
1

2 P

3
777777775 > 0 (3.42)

Combining (3.40) and (3.41), the complete LMI formualtion of the LQR problem

is given as follows

minimize
X

Tr(QP) + Tr(X)

subject to AP + PAT + BY + YT BT + 2�P < 0

2
666666664

X R
1

2 Y

YT R
1

2 P

3
777777775 > 0, P > 0

(3.43)

If there exist symmetric matrices X 2 Rn⇥n and Y 2 Rm⇥n such that the above

condition is satisfied, then the state feedback gain is given by K = YP�1 which

is the optimal LQR controller. For the interest of Prescribed Degree of Stability,

the Q matrix in (3.27) is set to Q = P.

The main advantage of this formulation is that the solution may include un-
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certainty in the model whereas the classical LQR control is only valid for sys-

tems without uncertainty. In order to handle parameter uncertainties, the un-

certain model is re-expressed as a function of uncertain parameters, which in

general can be expressed as follows

ẋ(t) = A(p)x(t) + B(p)u(t) (3.44)

where the uncertain terms are grouped in a vector p. The vector p consists of

Np uncertain parameters p = (p
1

, ..., pNp), where each uncertain parameter pi

is bounded between a minimum (p) and a maximum value (p̄) as follows

pi 2 [pi p̄i] (3.45)

Assuming that the matrix [A(p), B(p)] depends linearly on p for all admissible

values of p, the LMI-LQR formulation including decay rate constraints for un-

certain system is formulated as follows

minimize
P,Y,X

Tr(QP) + Tr(X)

subject to AiP + PAT
i + BiY + YT BT

i + 2�P  0

2
666666664

X R
1

2 Y

YT R
1

2 P

3
777777775 > 0, P > 0

i = 1, . . . ,Np

(3.46)

If there exist symmetric matrices X 2 Rn⇥n and Y 2 Rm⇥n such that the above

condition is satisfied, then the weighting matrix of Q in (3.27) is set to Q = P

which guarantees the prescribed degree of stability � under model parameter

variations.
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Figure 3.3: Region S (�, r, ✓)

3.4 Prescribed degree of stability and damping ra-

tio

In this section, we extend the result in the preceding section to achieve both de-

gree of stability and damping ratio by confining the eigenvalues in a prescribed

region shown in Figure. 3.3. If we let complex poles be defined as x + iy, then

it is easy to see that the complex poles of the system inside the S (�, r, ✓) region

in Figure. 3.3 satisfies

x < ��, |x + iy| < r, y < cot(✓)x (3.47)

Furthermore, if we let x + iy = ⇣!n + i!d, the boundaries of S (�, r, ✓) specifies

a minimum decay rate �, a minimum damping ratio ⇣ > sin ✓, and a maximum

damped natural frequency !d < r cos ✓, where !d = !n

p
1 � ⇣2.
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The S (�, r, ✓) region in the complex plane can be defined using an LMI re-

gion which is defined as

D = {z 2 C : fD(z) < 0} (3.48)

for fixed real matrices L = LT and a complex number z, where fD(z) = L +Mz+

MT z̄ is the characteristic function of D. So for any subset of the stable region

in the complex plane (i.e. the left of the imaginary axis), it can be described

using the LMI region. For instance, it can be shown that convex regions in the

complex plane which are symmetric with respect to the real axis including half

planes, horizontal strips, circles and sectors can be expressed as LMI regions.

Furthermore, the intersection of a number of LMI regions is also a LMI region

which allows to construct a more complicated regions as the intersection of a

number of individual LMI regions. For example,

• half-plane Re(z) < ��: fD(z) = z + z̄ + 2� < 0

• disk centered at (�q, 0) with radius r:

fD(z) =

2
666666664
�r q + z

q + z̄ �r

3
777777775 < 0 (3.49)

• conic sector with apex at the origin and inner angle 2✓:

fD(z) =

2
666666664

sin ✓(z + z̄) cos ✓(z � z̄)

cos ✓(z̄ � z) sin ✓(z + z̄)

3
777777775 < 0 (3.50)

Now, it is easy to see that if the closed-loop poles (A � BK) are placed

in the S (�, r, ✓) region in the complex plane, the response of the closed-loop

system will guarantee to have minimum damping ratio and decay rate. The
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seminal work by [27] showed that if there exist symmetric matrices X 2 Rn⇥n

and Y 2 Rm⇥n such that

AX + XAT + BY + YT BT + 2�X < 0 (3.51)
2
666666664
�rX XAT + YT BT

AX + BY �rX

3
777777775 < 0 (3.52)

2
666666664

cos ✓(AX + XAT + BY + YT BT
) cos ✓(AX + XAT + BY + YT BT

)

sin ✓(�AX + XAT + BY + YT BT
) sin ✓(AX + XAT + BY + YT BT

)

3
777777775 < 0 (3.53)

then, a state feedback gain (K) which guarantees the closed-loop poles lying in

S (�, r, ✓) is given by K = YX�1. A detailed proof can be found in [27].

In order to retain the degree of stability and damping ratio as specified in

the above LMI problem, using the closed-loop model (A � BK) instead of the

open-loop model of A in (3.7) is more desirable for the design of MPVC. To do

that, the control signal leads to the following form

u̇(t) = �Kx(t) (3.54)

However, a serious drawback of the above control input is the lack of degree of

freedom to handle the system constraints. Therefore, it is more appropriate to

consider the control signal of the following form

u̇(t) = �Kx(t) + ⌫̇(t) (3.55)

where the auxiliary control signal ⌫ represents a degree of freedom which are

no longer the predicted control moves, but perturbations on an unconstrained

control law. The approach taken here is known as the closed-loop paradigm

(CLP), where we give a brief overview and the application for MPVC in the

following section.



3.4. Prescribed degree of stability and damping ratio 61

3.4.1 Closed-Loop Paradigm

The basic idea of closed-loop paradigm (CLP), which was originally proposed

as part of a stable generalised predictive control [14] is to choose a stabilising

control law and to apply it throughout the predictions. As described in [97], one

could take the view of CLP that the control law is hard-wired into the prediction

computation which implies one has pseudo closed-loop predictions. Alterna-

tively one could consider this as analogous to the control law used in mode 2

of dual mode MPC [76] with the only difference being that the terminal law is

now also deployed during mode 1. Based on the stabilising control law, the

CLP gives better numerical conditioning [98] of the optimisation and the stabil-

ity and robustness analysis are more straightforward even for the constrained

case [15]. Especially, the CLP can also be used to improve the robustness of

MPC by choosing a control law that incorporates some design for robustness

and using it as the terminal control law in the prediction. As such the pertur-

bations used for constraint handling (⌫̇(t) in (3.55)) are acting on a robustified

loop so one can achieve a constrained control law with better robustness than

a conventional MPC.

Now, to apply the CLP to the design MPVC, we first consider substituting the

closed-loop control signal (4.21) into the state dynamic equation, which leads

to the closed-loop model prediction of the following form,

xk(ti + ⌧ | ti) = eAk⌧x(ti) +

Z ⌧

0

eAk(⌧��)B⌫̇k(�)d� (3.56)

where Ak = (A � BK). So the key idea of (3.55) and (3.56) is to embed the pre-

dictions of the unconstrained optimal behaviour and to find the global optimum

with respect to the cost function in (3.57).

J =
Z Tp

0

h
xk(ti + ⌧ | ti)

T Qxk(ti + ⌧ | ti) + ⌫̇(⌧)

T R⌫̇(⌧)

i
d⌧ (3.57)
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Figure 3.4: A circular region in the complex plane proposed by [36] to satisfy
the prescribed degree of stability and damping ratio.

It is important to note that when the constraints are not violated the closed-

loop response is dictated by the design of unconstrained optimal control law K,

whereas for the case when the unconstrained optimal solutions are infeasible

(i.e. violation of state and control input constraints) auxiliary control input ⌫(⌧)

are allowed to perturb over a finite horizon Tp; which constitute the degrees of

freedom (d.o.f.) within the optimisation. The design of K in (3.55) is therefore

immensely important to ensure the stability and desired closed-loop response

of MPC. Furthermore, since (A�BK) is stable, (3.56) and (3.57) are numerically

stable for a long prediction horizon.

3.4.2 Alternative regional pole placement

As an alternative to the LMI-based method in the previous section, another

regional pole placement method proposed by [36] can also be used to place

the closed-loop poles in a circular region defined by ↵ and r as shown in Fig-

ure. 3.4. As shown, the placement of eigenvalues inside a prescribed region is
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defined by (↵, r) where the specification is given in terms of damping ratio and

alpha only. For different values of damping ratio, it is clear to see that poles

are placed inside a region bounded by the minimum damping ratio. In their pro-

posed method, a state feedback control (u = �Kx) is found under the following

condition in which eigenvalues of (A� BK) lie within a disk of specified radius r

at the center ↵ if only if there is a P > 0 satisfying the equation.

�↵(A � BK)

⇤P�↵P(A � BK)+

(A � BK)

⇤P(A � BK) + (↵2 � r2

)P = �Q

where Q is positive definite, and the state feedback gain K is given by

K = �(r2R + BT PB)

�1BT P(A � ↵I)x (3.58)

P is the symmetric positive definite solution of the following discrete Riccati

equation

P =
(A � ↵I)

T

r
P

(A � ↵I)

r
+ HT H � (A � ↵I)

T

r
(3.59)

·PB(r2R + BT PB)

�1BT P
(A � ↵I)

r

Essentially the circular region defined above is the equivalent to the affine map

of the unit disk at the origin.

3.5 Model Predictive Voltage Control

Assuming that the system matrix has been pre-stabilised as described in the

previous section, the main part of MPVC design is presented in the following

sections, where we focus on the continuous-time implementation of MPVC, us-
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ing Laguerre function based technique described in [109]. A brief background

to Laguerre functions and the application to the MPC design is presented in the

Appendix B.

3.5.1 MPVC with Prescribed Degree of Stability

Following from (3.27), using the transformed state x↵ and assuming that at the

current time, say ti, the state variable vector x(ti) is measured, the predicted

state vector, denoted by x↵(ti + ⌧ | ti) at the future time ⌧, ⌧ > 0, is described by

the following equation

x↵(ti + ⌧ | ti) = eA↵⌧x(ti) +

Z ⌧

0

eA↵(⌧��)Bu̇↵(�)d� (3.60)

where u̇↵ is the transformed derivative of the control signal. In VSC, the deriva-

tive of switching input signal u̇↵(⌧) with two inputs is expressed as

u̇↵(⌧) =


˙S d(⌧)

˙S q(⌧)

�T
(3.61)

and the input matrix B is partitioned as

B =


B
1

B
2

�
(3.62)

where B
1

and B
2

are the first and second columns of the B matrix. With

this formulation, each input signal is described with a Laguerre function ex-

pansion (see Appendix B for detailed explanations). Namely, by choosing two

continuous-time Laguerre function vectors L
1

(⌧) and L
2

(⌧) with dimensions N
1
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and N
2

, the derivative of the control signal u̇↵(⌧) is represented by

u̇↵(⌧) =

2
666666664

LT
1

(⌧) 0

T
L2

0

T
L1

LT
2

(⌧)

3
777777775

2
666666664
⌘

1

⌘
2

3
777777775 (3.63)

where 0L1

and 0L2

are the zero column vectors with the same dimensions as

L
1

(⌧) and L
2

(⌧). In addition, both L
1

(⌧) and L
2

(⌧) satisfy the differential equa-

tion as below, with their own scaling factors and number of terms (p and N

parameters)

˙L(⌧) = ApL(⌧) (3.64)

where

Ap =

2
6666666666666666666666664

�p 0 . . . 0

�2p �p . . . 0

...
...
. . .

0

�2p . . . �2p �p

3
7777777777777777777777775

and L(0) is the N ⇥ 1 vector with each element equal to
p

2p.

By substituting (3.63) into the state prediction equation, the predicted state

vector, x↵(ti + ⌧ | ti) is rewritten as

x↵(ti + ⌧ | ti) = eA↵⌧x(ti) +

Z ⌧

0

eA↵(⌧��)


B

1

LT
1

(�) B
2

LT
2

(�)

�
d�

2
666666664
⌘

1

⌘
2

3
777777775 (3.65)

To simplify the notation, let the convolution integral be denoted as

�(⌧)

T =

Z ⌧

0

eA↵(⌧��)


B

1

LT
1

(�) B
2

LT
2

(�)

�
d� (3.66)

where �(⌧)

T can be easily computed by solving a set of linear algebraic equa-

tions (see Appendix B for the derivation). By defining the coefficient vector of

Laguerre polynomials as ⌘T = [⌘T
1

⌘T
2

], the prediction of future states is ex-
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pressed as

x↵(ti + ⌧ | ti) = eA↵⌧x(ti) + �(⌧)

T⌘ (3.67)

Considering the cost function of below with a prescribed degree of stability.

J =
Z Tp

0

x↵(ti + ⌧ | ti)
T Q↵x↵(ti + ⌧ | ti)d⌧ + ⌘T RL⌘ (3.68)

where Q and RL are symmetric positive definite and positive semi-definite ma-

trices, written as Q > 0 and RL � 0 respectively, by substituting the predicted

state equation of (3.60) into the above cost function yields

J = ⌘T⌦⌘ + 2⌘T x(ti) + constant (3.69)

where the quantities of ⌦ and  are

⌦ = {
Z Tp

0

�(⌧)Q��(⌧)

T d⌧ + RL}; =
Z Tp

0

�(⌧)Q�eA↵⌧d⌧

Considering the unconstrained minimization with respect to the parameter vec-

tor ⌘ of the cost function (3.69), the minimizing ⌘ is found from the following

least squares solution

⌘ = �⌦�1 x(ti) (3.70)

By the principle of receding horizon control, the optimal control u̇(t) for the un-

constrained problem at time ti is

u̇↵(ti) =

2
666666664

LT
1

(0) oT
L2

oT
L1

LT
2

(0)

3
777777775

2
666666664
⌘

1

⌘
2

3
777777775 (3.71)

With the derivative of the control signal computed, the actual control signal is

written as

u(ti) = u(ti � �t) + u̇↵(ti)�t (3.72)
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where �t is the sampling interval.

3.5.2 MPVC with Prescribed Degree of Stability and Damp-

ing Ratio

Since we are optimising the auxiliary control signal ⌫̇(⌧) in a finite horizon, a

state prediction based on the auxiliary control signal is given as

xk(ti + ⌧ | ti) = eAk⌧x(ti) +

Z ⌧

0

eAk(⌧��)


B

1

LT
1

(�) B
2

LT
2

(�)

�
d�

2
666666664
⌘

1

⌘
2

3
777777775 (3.73)

where each auxiliary control signal ⌫̇(⌧) is described with a Laguerre function

expansion by choosing two continuous-time Laguerre function vectors L
1

(⌧) and

L
2

(⌧) (see the previous section for the definition of L
1

(⌧) and L
2

(⌧)). Similarly

the cost function with auxiliary control signal ⌫̇(⌧) is given below

J =
Z Tp

0

h
xk(ti + ⌧ | ti)

T Qxk(ti + ⌧ | ti) + ⌫̇(⌧)

T R⌫̇(⌧)

i
d⌧ (3.74)

Substituting the predicted state variables and rearranging the terms in (3.74)

yields the following equation which is quadratic in ⌘

J = ⌘T⌦⌘ + 2⌘T x(ti) + constant (3.75)

where the quantities of ⌦ and  are

⌦ = {
Z Tp

0

�(⌧)Q�(⌧)

T d⌧ + RL}; =
Z Tp

0

�(⌧)QeAk⌧d⌧

The unconstrained minimization of the above cost function yields

⌘ = �⌦�1 x(ti) (3.76)



68 Chapter 3. Model Predictive Voltage Control

By the principle of receding horizon control, the optimal auxiliary control input

⌫̇(t) for the unconstrained problem at time ti is

⌫̇k(ti) =

2
666666664

LT
1

(0) oT
L2

oT
L1

LT
2

(0)

3
777777775

2
666666664
⌘

1

⌘
2

3
777777775 (3.77)

From (3.55), the derivative of the control signal u̇(t) is given by

u̇(t) = (�K + Kmpc)x(t) (3.78)

where Kmpc = �⌦�1 . Finally, the actual control signal u(t) defined in () is given

by

u(ti) = u(ti � �t) + u̇(ti)�t (3.79)

where �t is the sampling interval.

3.6 Constrained MPVC

In the grid-connected VSC, the amplitude of switching functions (i.e modulation

index) must be restricted within a linear modulation region to avoid inducing

any unwanted harmonics on the input currents, which leads to the following

relationship in the synchronous reference frame [114].

S 2

d + S 2

q 
4

3

(3.80)

The figure 3.5 shows this relationship graphically and a region of linear modu-

lation is defined by the area inside a circle with a radius of 2p
3

.

Within a linear modulation region defined in (3.80), a stricter constraint re-

gion such as shown in Figure 3.6 can be defined by considering the maximum

deviation of Id currents from the nominal values (i.e a maximum load distur-
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Sq

Sd

(0, �2p
3
)

( 2p
3
, 0)(�2p

3
, 0)

(0, 2p
3
)

Figure 3.5: Switching function space of S d and S q: a linear modulation region
is defined by the area inside the circle with a radius 2p

3

bance). Recall that the steady-state d-q axis switching function is defined by

the equation below,

S do =
2(ed � RId)

Vdco
(3.81)

S qo = �2!LId

Vdco
(3.82)

where Id is the nominal active current for the chosen operating condition. If the

saturation limit for Id current is defined as

Idmax = Id + �Id (3.83)

Idmin = Id � �Id (3.84)

where �Id is the amplitude of the maximum deviation from the nominal Id cur-

rent, and thus by substituting the above into (3.81) and (3.82). S max
d , S max

q , S min
d
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Figure 3.6: Redefined constraint region of S d and S q by considering the max-
imum deviation of Id current from the nominal value in both rectification and
regeneration mode: (•) indicates a steady-state switching inputs

and S min
q are defined as.

S max
d =

2(E � R(Id + �Id))

Vdco
(3.85)

S max
q = �2!L(Id + �Id)

Vdco
(3.86)

S min
d =

2(E � R(Id � �Id))

Vdco
(3.87)

S min
q = �2!L(Id � �Id)

Vdco
(3.88)

Having formulated the constraints for switching inputs S d and S q, the next step

is to translate them into linear inequalities, and relate them to the original model

predictive control problem.

The key here is to parametrize the constrained variables using the same
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orthonormal basis functions as the ones used in the design of predictive control.

Subsequently, we represent the constraints in terms of the parameter vector

⌘. For the ’Prescribed Degree of Stability’ approach, assuming that �t is the

sampling interval for implementation, the first sample of the control signal at the

optimization window, is calculated as

u(ti) = u(ti � �t) +

2
666666664

LT
1

(0) oT
L2

oT
L1

LT
2

(0)

3
777777775

2
666666664
⌘

1

⌘
2

3
777777775�t (3.89)

This leads to the constraints for the control signal at the first sample time of the

window for the lower limit as

umin � u(ti � �t) 
2
666666664

LT
1

(0) oT
L2

oT
L1

LT
2

(0)

3
777777775

2
666666664
⌘

1

⌘
2

3
777777775�t (3.90)

for the upper limit as

2
666666664

LT
1

(0) oT
L2

oT
L1

LT
2

(0)

3
777777775

2
666666664
⌘

1

⌘
2

3
777777775�t  umax � u(ti � �t) (3.91)

Similarly, for the approach in section 3.4, the first sample of the control signal

at the optimization window, is calculated as

u(ti) = u(ti � �t) � Kx(ti)�t +

2
666666664

LT
1

(0) oT
L2

oT
L1

LT
2

(0)

3
777777775

2
666666664
⌘

1

⌘
2

3
777777775�t (3.92)

This leads to the constraints for the control signal at the first sample time of the

window for the lower limit as

umin � u(ti � �t) + Kx(ti)�t 
2
666666664

LT
1

(0) oT
L2

oT
L1

LT
2

(0)

3
777777775

2
666666664
⌘

1

⌘
2

3
777777775�t (3.93)
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for the upper limit as

2
666666664

LT
1

(0) oT
L2

oT
L1

LT
2

(0)

3
777777775

2
666666664
⌘

1

⌘
2

3
777777775�t  umax � u(ti � �t) + Kx(ti)�t (3.94)

More specifically, with the control vector defined by u = [S d S q]

T , the limits

corresponding to the operation of the converter are umin = [S min
d S min

q ]

T and

umax = [S max
d S max

q ]

T .

With the operational constraints specified, the predictive control problem

with hard constraints imposed in the design becomes the problem of finding the

optimal solution of the quadratic cost function

J = ⌘T⌦⌘ + 2⌘T x(ti) (3.95)

subject to constraints

2
666666664

S min
d � S d(ti � �t)

S min
q � S q(ti � �t)

3
777777775  C⌘ 

2
666666664

S max
d � S d(ti � �t)

S max
q � S q(ti � �t)

3
777777775 (3.96)

and for the constraints in (3.93) and (3.94)

2
666666664

S min
d � S d(ti � �t) + Kx(ti)�t

S min
q � S q(ti � �t) + Kx(ti�t)

3
777777775  C⌘ 

2
666666664

S max
d � S d(ti � �t) + Kx(ti)�t

S max
q � S q(ti � �t) + Kx(ti)�t

3
777777775

(3.97)

where

C =

2
666666664

LT
1

(0) oT
L2

oT
L1

LT
2

(0)

3
777777775

2
666666664
⌘

1

⌘
2

3
777777775�t (3.98)

There are three categories of methods in solving the above equation which

are primal methods, dual methods and the primal-dual methods. In this work,
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primal-dual method of Hildrethis Quadratic Programming algorithm is chosen

to provide the numerical solution to the constrained optimal problem [109]

3.7 Experimental Results

The experimental validation of the proposed method in this section is carried

out using the test bench that was developed by the author, where the detailed

description of the test bench set up is given in Appendix A.

Table 3.1: System parameters of grid-connected VSC

Symbol Parameter Name Value Unit
Ls Input filter inductance 3.0 mH
Rs Input filter ESR 0.2 ⌦

Cdc DC-link Capacitance 700 µF
Rdc DC-link load resistance 20–40 ⌦

Vg Grid Voltage 30 V
Fg Grid Frequency 50 Hz

3.7.1 Comparison study with and without prescribed degree

of stability

To illustrate the efficacy of the prescribed degree of stability used in the design

of MPVC, a comparison study is done between the case where the prescribed

degree of stability � = 0 and the case where � = 100. With the value of � = 100,

all closed-loop poles of the MPVC lie on the left of �100 line on the complex

plane as shown in Figure 3.8. In the experimental results shown in Figure.3.7,

a step load change of DC link resistance from 20 ⌦ to 40 ⌦ occurs at around

1 second, and the transient responses of the DC bus voltage are compared. It

is seen from this figure that it took about 0.02 second for the DC bus voltage to

return to the reference signal when � = 100, whilst when � = 0 it took at least



74 Chapter 3. Model Predictive Voltage Control

0.7 0.8 0.9 1 1.1 1.2 1.3
70

72

74

76

78

80

82

84

Time(sec)

V
o

lta
g

e
(V

)

 

 

β = 0

β = 100

Figure 3.7: Comparison of DC bus voltage response to a step load change with
� = 0 and � = 100.
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Figure 3.8: Comparison of closed-loop eigenvalue placement with � = 0 and
� = 100.
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Figure 3.9: Plot of closed-loop pole placement with � = 200 for a system with
the nominal input inductance 3mH (x) and the system with the input inductance
variation 3.5mH (⇧)
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Figure 3.10: Plot of closed-loop pole placement with � = 200 for a system
with the nominal input inductance 3mH (x) and the system with the input induc-
tance variation 3.5mH (⇧) based on Robust Prescribed Degree of Stability in
section 3.3.

more than 0.2 seconds for DC bus voltage to get in the vicinity of the reference

signal. The results clearly show that the transient response of DC bus voltage

to a step load change is greatly improved for the case of � = 100. This result

demonstrates that by tuning a scalar value of �, the desired transient closed-

loop response of MPVC can now be achieved without extensively tuning the

weighting matrices.
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Figure 3.11: Comparison of DC bus voltage response to a step load change
with � = 200 for PDS (red) and robust PDS (blue)

3.7.2 Robust prescribed degree of stability

In this section of the experimental validation, a variation of input inductance

(e.g. change in the grid condition) is considered to analyse the effect on the

closed-loop poles of MPVC with a prescribed degree of stability method.

To see how the inductance variation affects the prescribed degree of stability

method, the matrix P in (3.26) is first obtained based on the nominal inductance

value of 3 mH for � = 200.

P =

2
6666666666666666666666666666666664

1.058e�5

1.230e�6

7.376e�5

3.505e�4

2.621e�3

1.230e�6

2.571e�5

1.266e�6

1.086e�3

2.237e�4

7.376e�5

1.266e�6

6.235e�6

6.634e�4

2.308e�5

3.505e�4

1.086e�3

6.634e�4

0.008 0.0015

2.621e�3

2.237e�4

2.308e�5

0.0015 0.0106

3
7777777777777777777777777777777775

(3.99)

Based on (3.99) and the weighting matrix of Q� in (3.27), the resulting closed-

loop poles of MPVC are shown (indicated as x) in Figure 3.9, which indicates

that the closed-loop poles of MPVC satisfy the stability requirement (� = 200).

Now if the same P matrix in (3.99) is applied to the system with a variation of

0.5 mH, the resulting closed-loop poles of MPVC (indicated as (⇧)) in Figure 3.9
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do not satisfy the stability requirement, which indicates that when there is a mis-

match in the input inductance between the actual system and the model used

to obtain the P matrix, the prescribed degree of stability requirement (� = 200)

can not be guaranteed, and it will also lead to a slower closed-loop response

speed than the desired minimum decay rate.

To overcome this issue, a robust prescribed degree of stability method in

section 3.3 is applied considering the variation of inductance.

Ls = {Ls � 0.5mH, Ls + 0.5mH} (3.100)

Based on above interval of input inductance, the LMI-LQR in (3.46) is solved

and obtained the following P matrix

P =

2
6666666666666666666666666666666664

0.0018 �7.978e�6

0.0029 0.0771 0.8522

�7.978e�6

5.315e�6

1.266e�6

0.0021 �4.237e�4

0.0029 1.266e�6

0.0046 0.1240 1.3734

0.0771 0.0021 0.1240 406.1952 29.2509

0.8522 �4.237e�4

1.3734 29.2509 837.5592

3
7777777777777777777777777777777775

(3.101)

The resulting closed-loop poles of the system based on (3.101) is shown in Fig-

ure.3.10. Clearly, the closed-loop poles of both nominal and uncertain system

now satisfies the minimum decay rate by lying left to the minimum prescribed

degree of stability requirement (� = 200).

To further validate the robust prescribed degree of stability strategy, an ex-

perimental test is carried out to compare two strategies on the DC-bus voltage

disturbance rejection. For the test, the input inductance is set to 3.5mH and

the P matrix in (3.99) and (3.101) are used to obtain the unconstrained MPVC

control laws for PDS and robust PDS strategies respectively. Figure 3.11 is the

response of DC-bus voltage when the DC load was step changed from 40⌦ to
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20⌦. Comparing the two responses, it is clear that the response of PDS method

is slower and has a larger overshoot than the robust PDS which aligns with the

response expected from the closed-loop poles in Figure 3.9.

3.7.3 Experimental results for prescribed degree of stability

and damping ratio

Table 3.2: System parameters of VSC and the main grid

Symbol Parameter Name Value Unit
Ls Input filter inductance 3 mH
Rs Input filter ESR 0.2 ⌦

Cdc DC-link Capacitance 326 µF
RL DC-link load resistance 20–40 ⌦

Vg Grid Voltage 30 V
Fg Grid Frequency 50 Hz

An experimental validation of the method proposed in section 3.4 is carried

out based on the system parameters listed in Table 3.2. A noticeable difference

compared to the Table 3.1 is the DC-link capacitance which has been reduced

from 740µF to 326µF. In practical applications, a reduction in DC-link capac-

itance is often desired since the required number of physical capacitors can

significantly be reduced to decrease the hardware cost and the size of overall

system.

However, a reduced DC-link capacitance makes the response of DC-link

voltage and id and iq current to become more oscillatory as can be seen from

the plot of open-loop poles (indicated as (⇧)) in Figure 3.12. If we apply the PDS

method to pre-stabilise the system, the trace of closed-loop pole placement

with increasing � value is also shown in the same figure (indicated as (X)), in

which the under-damped poles are simply shifted horizontally. Hence it can be

expected that the closed-loop response of the system will also exhibit under-
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damped response which may lead to an undesirable overshoot response in the

voltage and current.

The above observation clearly shows the limitation of the design framework

of MPVC with PDS that a desired damping ratio of closed-loop response can

not be attained easily by just tuning the scalar parameter of �. For the same

system, the method in section 3.4 is applied with a minimum damping ratio of

0.4 (✓ = 25) and decay-rate (� = 200) are chosen respectively. Solving the LMI

in (3.51) using SeDuMi in YALMIP tool, yields a unconstrained control law K

as,

K =

2
666666664

0.0475 0.0209 0.0692 0.0001 14.7629

�0.0209 0.0133 0.0017 10.4158 �0.0001

3
777777775 (3.102)

Figure 3.13 shows the resulting closed-loop poles of MPVC and comparing to

the closed-loop poles in Figure 3.12, it is clear that CLP method provides an

extra degree of freedom in the design such that, in the case of lightly damped

system considered here, both the desired overshoot and the response speed

can be satisfied simultaneously in the closed-loop response of MPVC.

Remark 3.7.1 The weighting matrix R in the cost function in (3.57) can still

be used to fine tune the system either on-line or off-line to obtain the desired

closed-loop response.

To experimentally validate the above observations, a step change in the

voltage command is applied from 60V to 90V, and the response of Vdc, id and

iq currents are compared between MPVC with PDS and MPVC with CLP as

shown in Figure 3.14,3.15 and 3.16 respectively. Generally, the response of

CLP compared to PDS has a more damped response as we expected from

the closed-loop pole placement in Figure 3.13. However, a difference in the

response of iq current in Figure 3.16 can be noted where a large oscillation
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Figure 3.12: Plot of open-loop poles (⇧) based on the VSC parameter in Ta-
ble 3.2 and the trace of closed-loop poles (x) of MPVC with Prescribed Degree
of Stability (PDS) method for increasing value of �.
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Figure 3.13: Plot of open-loop poles (⇧) based on the VSC parameter in Ta-
ble 3.2 and the closed-loop poles (x) of MPVC with Prescribed Degree of Sta-
bility and Damping (CLP) method for .

in iq current with the maximum overshoot around -19A is shown for the PDS.

A significance of this difference is highlighted in Figure 3.17 and 3.18, where

the response of a phase current and voltage are shown. It can be seen that

when the step change occurs at 1 sec, for 0.03 sec the phase current is not

synchronised with the phase voltage (i.e. loss of unity-power factor) due to the

oscillation observed in iq current in Figure 3.16, where as shown in Figure 3.18

for CLP method, the unity power factor between the phase voltage and current
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Figure 3.14: Comparison of DC-link voltage response to a step change in the
reference input: MPVC with PDSD (gree) and MPVC with PDS (blue)
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Figure 3.15: Comparison of id current response to a step change in the refer-
ence input: MPVC with PDSD (gree) and MPVC with PDS (blue)

is maintained.

3.7.4 Experimental results for rectification mode

Having validated the proposed pre-stabilisation techniques in MPVC, the fol-

lowing two sections presents experimental results for the rectification and the

regeneration mode.

Starting with the rectification mode, the control objective of this mode is to

keep the DC bus voltage at 80V, and iq current at zero for unity power factor. In

the experimental testing, prior to the rectification mode, the converter is operat-
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Figure 3.16: Comparison of iq current response to a step change in the refer-
ence input: MPVC with PDSD (gree) and MPVC with PDS (blue)
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Figure 3.17: Response of a phase current (Ia) and the grid voltage based on
MPVC with PDS (blue)
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Figure 3.18: Response of a phase current (Ia) and the grid voltage based on
MPVC with PDSD (blue)
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Figure 3.19: DC bus voltage response to a step input in rectification mode.

ing as a diode rectifier where the switching functions of IGBT are disabled and

the current is only conducting through the freewheeling diode of IGBT. This is a

necessary step for any VSC to naturally charge the DC-bus voltage.

When the rectification mode is switched on, the predictive controller is acti-

vated to boost the DC bus voltage from 35 V to 80 V. After the DC-bus voltage

has been stabilised a step disturbance is injected by changing the load resis-

tance from 40⌦ to 20⌦. Figure 3.19–3.21 shows the closed-loop responses of

the outputs Vdc(t) and iq(t), as well as the state variable id(t). Figure 3.21 shows

that while drawing an extra current from the grid, iq is well maintained around

zero which results in zero phase shift between phase voltage and phase current

(i.e unity power factor) and id is increased to a new steady-state value accord-

ing to the required DC bus voltage level. Figure 3.23 shows the corresponding

switching control inputs of S d and S q which are inside a linear modulation re-

gion.
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Figure 3.20: A step Id current response in the rectification mode: a step load
disturbance is injected at 1 sec by changing the load resistance from 40⌦ to
20⌦
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Figure 3.21: Iq current response in the rectification mode: a step load distur-
bance is injected at 1 sec by changing the load resistance from 40⌦ to 20⌦

3.7.5 Experimental results for regeneration mode

The control objective of regeneration mode is the same as before, which is to

keep the DC bus voltage at 80 V, and iq current at zero for unity power factor.

Prior to the regeneration mode, the converter is operating in rectification mode.

At around 1sec, an extra current is injected in the DC bus, which resulted in

initial overshoot of DC bus voltage and the MPVC regulates the DC bus voltage

around 80V as shown in Figure 3.24. Figure 3.25 and 3.25 show the closed-
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Figure 3.22: Three-phase current in rectification mode
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Figure 3.23: Response of S d and S q in rectification mode: (a) response of S d

and S q with respect to the circle representing the maximum linear modulation
region in (3.80) and (b) zoomed-in view of S d and S q

loop responses of id and iq in regeneration mode. It is seen that the steady-

state value of id is negative which indicates that the current flow is reversed

compared to the rectification mode. In this case the extra current injected into

DC bus is converted to AC currents which feeds back into the main grid. For

unity power factor operation, iq is still maintained around zero. Figure 3.28

shows the corresponding switching control inputs of S d and S q.



86 Chapter 3. Model Predictive Voltage Control

0.9 0.95 1 1.05 1.1
75

80

85

90

95

100

Time(sec)

V
o

lta
g

e
(V

)

Figure 3.24: DC bus voltage response when a step disturbance input is injected
to activate the regeneration mode.
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Figure 3.25: Response of Id current: a mode change occurs at 1 sec from
rectification mode to regeneration mode

3.7.6 Constrained Control

In this set of experimental results, the DC voltage is also maintained at 80V in

the presence of operational constraints while load and mode changes occur.

In the rectification mode, the load variations are generated using the variation

of resistance in the DC load, while in the regeneration mode, an extra current

is injected in the DC bus at the time interval 4  t  5. The constraints are

specified as 0.48  S d  0.88 and �0.29  S q  0.2. Figure 3.29 shows
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Figure 3.26: Response of Iq current: a mode change occurs at 1 sec from
rectification mode to regeneration mode
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Figure 3.27: Response of three phase current: at 1 sec the mode is changed
from rectification mode to regeneration mode

the responses of S d and S q with respect to the constraints whilst Figure 3.30

illustrates the variation of S q with respect to S d. It is seen that all constraints

are satisfied. With the constraints on the amplitudes of the control signals,

Figure 3.31 shows the responses of id and iq currents. At the time interval

2  t  3 second, because the required steady-state values for S d and S q

to achieve unity power factor operation are beyond the specified lower limits,

there is a steady-state error for the iq current, showing that the q-axis current
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Figure 3.28: Response of S d and S q in regeneration mode: (a) response of S d

and S q with respect to the circle representing the maximum linear modulation
region in (3.80) and (b) zoomed-in view of S d and S q
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Figure 3.29: Plot of constrained control inputs of S d and S q. Amplitude limits of
S d and S q (dashed-line); S d and S q (solid line).

no longer operates at zero in the steady-state. Similarly, in the regeneration

mode (4  t  5), the required steady-state value for S d and S q to achieve unity

power factor operation is beyond the specified upper limit, as a result, the q-axis

current is not at zero in the steady-state. These conclusions are drawn from the

observations of the plots of S d and S q, where the constraints are active in the

steady-state operations of these two intervals.
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Figure 3.31: Responses of id and iq in constrained control: a step load change
of Rdc from 40⌦ to 20⌦. A regenerative power source is injected between 4 and
5 sec

3.8 Conclusions

This chapter has investigated the design and implementation of a continuous-

time model predictive control system for a grid-connected VSC. In particular, a

centralised control of DC-bus voltage and the grid currents is presented with

a pre-stabilisation technique known as a prescribed degree of stability as well



90 Chapter 3. Model Predictive Voltage Control

damping ratio in the algorithm to provide an effective tuning parameter for the

desired closed-loop performance. In comparison to the traditional cascaded PI

control structure, the presented method offers not only the simplified control

structure, but also the robustly stabilising controller that ensures the desired

closed-loop performance under parametric uncertainties. To avoid the over-

modulation of switching inputs, hard constraints based on the maximum linear

modulation region have been formulated and implemented in the synchronous

reference frame.



Chapter 4

Model Predictive Current Control

with LCL filter

4.1 Introduction

The harmonics generated by the switching of the VSC are the main factor for

causing grid voltage distortions which adversely affects the near-by sensitive

equipment and the connected loads [42]. As the power ratings of the VSC

increases, especially for applications above several kilowatts, harmonics distor-

tion becomes an important consideration in the systems design phase [69]. For

the VSC considered so far in this work, the input inductance (L filter) of the VSC

have been used to reduce these harmonics. However, as the power rating of

the VSC increases, a higher value of inductances are required as the switching

frequency is reduced to minimise the switching losses. So realizing practical

input filters becomes difficult due to the price rises and the poor dynamic re-

sponses.

These problems can be alleviated by using an LCL filter which has a better

filtering characteristics even with comparatively smaller size of passive compo-

nents than L filter [77]. This makes an LCL well suited for high-power con-

version systems and have already been widely employed in wind farms of over

hundreds of kilowatts [47],[67]. Typically, an LCL filter is connected to a grid-

connected three phase VS C as shown in Figure 4.1, which is made up of three

reactors with resistance and inductance on the converter side, three reactors
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Figure 4.1: Three-phase voltage source converter with an LCL filter: The sub-
script g indicates the grid-side and c denotes the converter side for each com-
ponents and measurements.

with resistance and inductance on the grid side, and three capacitors (each of

them damped with a resistor).

In this chapter, we begin with analysing the frequency characteristics of

the LCL filter in Section 4.2. The analysis identifies the resonant frequency of

the LCL filter which must be sufficiently damped to avoid inducing excessive

harmonics on the grid current. Following from the analysis, the MPC based

current control method is presented in section 4.3 based on the reduced-order

model of LCL filter which adopts the disturbance rejection controller to reduce

the effect of resonance of LCL filter.

4.2 Frequency Characteristics of the LCL Filter

Assuming all filter losses are negligible (e.g. iron losses), LCL filter can be

simplified to a per-phase equivalent circuit shown in Figure 4.2, and considering
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Figure 4.2: Single-phase equivalent circuit of LCL filter neglecting filter losses

z2

LgC =
1

LgC f
and !2

res =
LT z2

LgC

Lc
(LT = Lg + Lc) the transfer function of the LCL filter

is given as follows [96],[41]

G(s) =
i(s)

v(s)

=
1

Ls

(s2 + z2

LC)

(s2 + !2

res)
(4.1)

where Lc is the converter-side inductor, LT is the sum of grid-side and trans-

former inductance, C f is parallel capacitor of LCL filter. Based on the transfer

Table 4.1: System parameters of grid-connected VSC with an LCL filter

Symbol Parameter Name Value Unit
Lc Input filter inductance (converter side) 2.0 mH
Lg Input filter inductance (grid side) 0.75 mH
C f Filter Capacitance 16.1 µF

function in (4.1), the amplitude frequency characteristics of the LCL filter is cal-

culated and compared to the L-filter as shown in Figure 4.3. It can be seen that

the LCL filter has a better filtering characteristics in a higher frequency region,

where the most of PWM switching harmonics appears. Furthermore, based on

the parameters of both filters in Table 4.2, the total inductances in both filters

are same, which indicates that even smaller source inductance in LCL filter
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can be used to achieve the similar filtering characteristic which potentially can

reduce the overall cost significantly. However, since LCL filter is essentially a

high order filter which has a resonant peak at the frequency given by [44],

fr =
1

2⇡

s
Lg + Lc

C f LgLc
(4.2)

Hence, despite the aforementioned advantages, stabilising the system incor-

porating the LCL filter becomes a challenging problem, especially when the

resonance peak of the LCL filter is excited by a feedback controller or an ex-

ternal load which in both cases result in excessive input current ripples or even

possibly a closed-loop instability.

For a closer illustration of the associated stability problem with LCL filter,

Figure. 4.4 shows the closed-loop response of three phase Iabc current of a

current controller without proper damping of the LCL filter resonance. It can be

seen that excessive ripples are present in the input currents, and the frequency
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Figure 4.5: Frequency spectrum of a phase current with undamped LCL filter
resonance: LCL filter resonant harmonic is shown as 1694 Hz

spectrum of the input current shown in Figure. 4.5 confirms that frequency of

the ripple input current aligns with the resonance frequency of the LCL filter.

4.2.1 Damping methods of LCL filter

Various approaches have been suggested in the literature to damp the amplifi-

cation of current and voltages at the resonant frequency of LCL filter. The most

straightforward approach is the passive damping method. This method intro-
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duces a damping resistor in the LCL filter circuit as shown in Figure 4.6 where

the transfer function is given as follows.

G(s) =
i(s)

v(s)

=
1

Ls
(s2 + RdC f z2

LC s + z2

LC)

s2 + s2 + RdC f!2

res + !
2

res
(4.3)

Comparing the frequency characteristics between damped and undamped

LCL filter as shown in Figure 4.7, the resonant peak is substantially reduced

in the case of passive damping circuit. However, by introducing the damping

resistor in the circuit, the overall effectiveness of the LCL filter is reduced as

it incurs more power losses which also compromises its attenuation factor at

higher frequencies, hence neutralizing those benefits originally introduced by

the undamped LCL filters [111]. An analytical design approach for passively

damping LCL-filters was discussed in [77], however, due to the physical losses

the passive damping approach is often limited to a specific application [60].

An alternative approach is the active damping approach. Generally, this is a
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Figure 4.7: Comparison of frequency characteristics between passively
damped LCL filter (rd = 1.5⌦) and undamped LCL filter (solid line)

software-based approach that requires no physical components to suppress the

resonance of LCL filter, therefore it does not incur any physical power losses

[77],[44],[45],[96],[105]. However the most of these methods relies on the feed-

back of the other control variables such as capacitor voltages or currents to the

current control loop, which forms as an extra damping term to suppress the res-

onance of the LCL filter. Therefore, the realisation of this scheme often requires

a more circuitry and sensors, in turn it may increases the circuit complexity and

the cost. A comprehensive review on various active damping approaches for

LCL filters and their resonance damping performances can be found in [77].

In the following section, a model predictive current control method is pre-

sented based on the reduced-order model of the LCL filter to control a three

phase VSC with an LCL filter. In order to compensate the instability caused by

the inherent undamped mode of the LCL filter, the disturbance rejection control

term is used to suppress a high frequency disturbance.
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4.3 MPCC with Finite-frequency H1 control

The previously mentioned stability problem associated with the LCL filter (see

Figure 4.4 and 4.5) is largely due to the simplification in the control design

that ignores the undamped mode of LCL filter (i.e.reduced-order model de-

sign). The underlying problem of such simplification is the closed-loop inter-

action between the current controller and the undamped dynamics of LCL fil-

ter [77],[19],[63]. In order to overcome this instability caused by the resonant

dynamics of LCL filter, this section presents a model predictive current control

strategy based on a reduced-order model of the LCL filter with a model-based

disturbance rejection controller.

Firstly, the reduced order model LCL filter used in the proposed control

design is obtained by approximating the LC part of the filter as shown in Fig-

ure 4.8. The approximation is valid because the LC part of the LCL filter aims

to primarily reduce the high-frequency current harmonics [20]. Based on this

assumption, the reduced-order model of LCL filter is obtained as below

ẋm(t) = Amxm(t) + Bmu(t) (4.4)

y(t) = Cmxm(t) (4.5)
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where Am, Bm, Cm and Xm are given as

Am =

2
666666664
�RT

LT
!

�! �RT
LT

3
777777775 , Bm =

2
666666664

�vdco
2LT

0

0

�vdco
2LT

3
777777775 , (4.6)

Cm =

2
666666664

1 0

0 1

3
777777775 , xm =

2
666666664

id

iq

3
777777775 , u =

2
666666664

S d

S q

3
777777775 (4.7)

where LT = Lc + Lg and RT = Rc +Rg are the value of total inductance and ESR

in the LCL filter respectively. Note that the order of the model in (4.4) is kept

same as the L-fiter system.

However, because the reduced-order model in (4.4) neglects the resonant

part of LCL filter, the performance of the current tracking will be affected as we

observed in Figure 4.4–4.5. To overcome this problem, a novel current control

scheme which mitigates this resonance problem with the reduced-order model

is presented in the following section.

4.3.1 Control Overview

The control scheme proposed in this section is shown in Figure 4.9, where the

main current controller comprises of disturbance rejection control and nominal

predictive control parts. The predictive control part is calculated on-line and

steers the nominal system states to the desired set-point of id and iq currents

subject to hard constraints. The control design for this part follows the same

process as in previous sections, which optimises the derivative of the control

input, u̇(t), with respect to the following cost function in a receding horizon man-

ner,

J =
Z Tp

0

x(ti + ⌧ | ti)
T Qx(ti + ⌧ | ti)d⌧ + u̇T Ru̇ (4.8)
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The actual control input applied to system is then obtained as follows

u(t) = u(t � �t) + u̇(t)�t (4.9)

where �t is the sampling time of the discrete implementation.

The design for the nominal control input considers a disturbance free case,

however because the model of LCL filter has been simplified, the influence of

LCL filter resonance can be viewed as a disturbance w(t) acting on the reduced-

order system (4.4), which can be described as,

ẋ(t) = Ax(t) + Bu(t) + w(t) (4.10)
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The influence of state disturbance w(t) on the actual system implies that if the

control (4.9) computed from the conventional optimal control problem is applied

to the uncertain system, it is not possible to establish robust exponential stability

of the system (4.10).

To illustrate this effect in an intuitive manner, let us consider xe(ti) = x(ti) �
x̄(ti) to be the error between the actual system state and nominal state at

timestep ti respectively, and the corresponding nominal model of the following

form

˙x̄(t) = Ax̄(t) + Bu(t) (4.11)

The actual system and the closed-loop state prediction at time step ti are given

as follows

x(ti + ⌧ | ti) = eA⌧x
0

(ti) +

Z ⌧

0

eA(⌧��)Bū(�)d� +
Z ⌧

0

eA(⌧��)w(�)d� (4.12)

x̄(ti + ⌧ | ti) = eA⌧x
0

(ti) +

Z ⌧

0

eA(⌧��)Bū(�)d� (4.13)

From (4.12) and (4.13), the error between the actual system and predicted

nominal state at time ti is

xe(ti + ⌧ | ti) =

Z ⌧

0

eA(⌧��)w(�)d� (4.14)

Hence the error dynamics are stable if and only if the open-loop system is

stable, and the error dynamics are independent of the reference. However, it is

easy to see that due to the presence of disturbance w(t) the evolution of actual

state may diverge from the nominal optimal state.

In order to mitigate the influence of the disturbance, we introduce an extra

control term in (4.9), namely the disturbance rejection control, to keep the actual
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state close to the nominal state, for which the following form of the control input

is used as similar to the tube-based MPC design [32] .

u(t) = ū(t) + Kd(x(t) � x̄(t)) (4.15)

where ū(t), x̄(t) and x(t) denotes the nominal control input in (4.9), the nominal

closed-loop state and the measured state of id and iq currents respectively.

The nominal closed-loop state x̄ is calculated based on the state equation with

the nominal control input (4.9). In (4.15), the disturbance rejection control law

(Kd) is designed off-line based on a stabilising state feedback control policy, to

keep the evolution of the constrained system around the nominal trajectory in

the presence of disturbance. In fact the disturbance rejection control plays a

role of an active damping method here which will reduce the effect of LCL filter

resonance on the closed-loop response.

Now to see how the error between the actual system state and nominal

state propagates over time using the control input in (4.15), the actual system

with state disturbance and the nominal system are defined as

ẋ(t) = Ax(t) + Bū(t) � BKd(x(t) � x̄(t)) + w(t) (4.16)

˙x̄(t) = Ax̄(t) + Bū(t) (4.17)

The error dynamics between the actual system state (4.16) and nominal state

(4.17) at time step t can be expressed as.

xe(ti + ⌧ | ti) =

Z ⌧

0

eAk(⌧��)w(�)d� (4.18)

Thus, if the disturbance rejection control law Kd is chosen to stabilize the open-

loop matrix A, the error dynamics will be stable as well. Furthermore the above

approach gives a freedom of shaping the error signal by appropriately choosing
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the disturbance rejection control Kd.

It is easy to see that the robustness properties of proposed controller is fun-

damentally determined by the disturbance rejection controller Kd, which bounds

on the error between actual state x and nominal state x̄. For instance, one can

expect to have a good disturbance rejection properties if a relatively large feed-

back gain Kd is selected, however this immediately limits the available nominal

control input hence will affect the tracking performance of the nominal predic-

tive controller. So there is an inevitable trade-off between disturbance rejection

properties and controller performance. In the following section, we describe

both part of control design for LCL filter in detail.

4.3.2 Nominal Predictive Current Control

The nominal predictive control part of the design is designed based on the re-

sponse of the reduced-order model of (4.4) in the synchronous-reference frame.

To achieve a zero steady-state error in the synchronous-reference frame, the

model in (4.4) is augmented with integrators for output variables of the interest

which in this case are active current id and reactive current iq. Therefore, in

conjunction with the original plant model, the augmented state space model is

defined as:

2
666666664
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ẏ(t)

3
777777775 =

Az          }|          {2
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2

Cm o
2⇥2
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
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z(t)

y(t)

3
777777775 (4.20)

where I
2

is the identity matrix with dimensions 2 ⇥ 2; o
2

is a 2 ⇥ 2 zero matrix

and two auxiliary variables are first chosen as z(t) = ẋm(t) and y(t) = Cmxm(t),
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where xm(t) = [id(t) iq(t)]T .

From this model, a pre-stabilisation technique as described in Chapter 3 is

applied to tune the desired closed-loop response of the unconstrained MPC,

which yields the following control signal form.

u̇(t) = �Kx(t) + ⌫̇(t) (4.21)

where the auxiliary control signal ⌫(t) represents the perturbations to the un-

constrained MPC and the state-feedback law K in (4.21) is designed to place

the closed-loop poles in the complex plane to satisfy the decay rate and damp-

ing ratio. Consequently using the control input (4.21), the closed-loop model

prediction in the continuous-time is given by the following,

xk(ti + ⌧ | ti) = eAk⌧x(ti) +

Z ⌧

0

eAk(⌧��)B⌫̇(�)d� (4.22)

where Ak = (A � BK). Following the same framework as in previous chapters,

the auxiliary control signal ⌫̇(⌧) for two switching inputs are parametrized using

Laguerre function expansions.

For optimising the switching control inputs of S d and S q, the following quadratic

cost function is considered.

J =
Z Tp

0

h
xk(ti + ⌧ | ti)

T Qxk(ti + ⌧ | ti) + ⌫̇(⌧)

T RL⌫̇(⌧)

i
d⌧ (4.23)

where Q and RL are symmetric positive definite and positive semi-definite matri-

ces, written as Q > 0 and RL � 0 respectively. Substituting the model prediction

and rearranging the above terms, and minimising with respect to the control

input, the unconstrained minimization of the above cost function yields

⌘ = �⌦�1 x(ti) (4.24)
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for the definition of ⌦ and  (see also Chapter 3). By the principle of receding

horizon control, the optimal auxiliary control input ⌫̇(t) for the unconstrained

problem at time ti is

⌫̇(ti) =

2
666666664
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(0) 0

T
L2

0

T
L1

LT
2

(0)

3
777777775

2
666666664
⌘

1

⌘
2

3
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where 0L1

and 0L2

are the zero column vectors with the same dimensions as

L
1

(⌧) and L
2

(⌧). From (4.25), the derivative of the control signal u̇(t) without

constraints is given by

u̇(t) = �Kx(t) �
2
666666664

LT
1

(0) oT
L2

oT
L1

LT
2

(0)

3
777777775 Kmpcx(t) (4.26)

where Kmpc = �⌦�1 . Finally, the actual control signal u(t) is given by

u(ti) = u(ti � �t) + u̇(ti)�t (4.27)

where �t is the sampling interval. Here, the first feedback control gain K is

designed off-line whilst the actual control signal, corresponding to Kmpc is solved

on-line.

4.3.3 Disturbance Rejection Control

The main role of the disturbance rejection control is to minimise the disturbance

caused by the unmodeled dynamics of LCL filter and to keep the evolution of

the id and iq currents within neighbourhood of the optimal current trajectories.

For this purpose, the main focus of Kd is to suppress the disturbance caused

by the LCL filter resonance (i.e. the unmodeled disturbance of the LCL filter)

such that the closed-loop disturbance rejection control guarantees the following
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finite frequency H1 constraints,

sup

!
1

<!<!
2

k G( j!) k1< � (4.28)

where G( j!) = Cm(sIn
1

� Am)

�1Bm is the transfer function of VSC. There are

several control design techniques available to exist in the literature for finite

frequency domain control problems. The most well-known approach is the

weighting function approach where a low/band/highpass filter is added to the

system in series to emphasise a particular frequency range. This method has

been proven useful in practice, however, the additional weights increase the

system complexity. Besides, the process of selecting appropriate weights can

be time-consuming. An alternative approach is to grid the frequency axis. This

approach has a practical significance, but it lacks a rigorous performance guar-

antee in the design process.

Departing from the conventional methodologies of weighting function and

frequency gridding, recently the generalised KYP lemma (GKYP) based on cel-

ebrated KYP lemma have been developed by Iwasaki and Hara [43]. The GKYP

lemma establishes the equivalence between a frequency domain property and

an LMI over a finite frequency range, which is found to be very useful for the

analysis and synthesis problems in practical applications, where imposed per-

formance requirements are over chosen finite frequency ranges. In this work,

the disturbance rejection control law based on GKYP lemma is considered. In

particular, by using the generalized KYP lemma, the focus is on the design of

a state feedback control law of kd based on matrix inequalities such that the

resulting closed-loop system is asymptotically stable with a prescribed level of

disturbance attenuation in the frequency range of LCL filter resonance.

To facilitate the finite frequency H1 control design, extensive use of the

following lemma is presented for which the proof can be found in [43],[38],[80].
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Lemma 4.3.1 (GKYP lemma [43]) Defining the transfer function G(s) from the

input to the output as

G( j!) = C( j!I � A)

�1B + D (4.29)

the following inequalities are equivalent

• The frequency domain inequality

2
666666664

G( j!)

I

3
777777775

T

⇧z       }|       {2
666666664

1 0

0 ��2

3
777777775

2
666666664

G( j!)

I

3
777777775 < 0 (4.30)

• The LMI

2
666666664
A B

I 0

3
777777775

T

⌅

2
666666664
A B

I 0

3
777777775 +

2
666666664
C D

0 I

3
777777775

T

�

2
666666664
C D

0 I

3
777777775 < 0 (4.31)

where for Q > 0 the matrix � can be defined based on the frequency

region of interest as below

– For low frequency range |!| < !l

⌅ =

2
666666664
�Q P

P !2

l Q

3
777777775 (4.32)

– For middle frequency range !
1

 !  !
2

⌅ =

2
666666664

�Q P + j!cQ

P + j!cQ �!l!hQ

3
777777775 (4.33)

!c = (!l + !h)/2
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– For high frequency range |!| � !h

⌅ =

2
666666664

Q P

P �!2

hQ

3
777777775 (4.34)

Lemma 4.3.2 (Projection Lemma [38],[80]) Let �,⇤,⇥ be given, there exists

a matrix F satisfying �F⇤ + (�F⇤)

T + ⇥ < 0 if and only if the following two

conditions hold

�?⇥�?
T
< 0,⇤T?⇥⇤T?T

< 0 (4.35)

Lemma 4.3.3 (Reciprocal Projection Lemma [80]) For a given matrix Y = YT >

0, the following statements are equivalent

•  + S + S T < 0

• The following LMI is feasible for W

2
666666664
 + Y � (W +WT

) S T +WT

S +W �Y

3
777777775 < 0 (4.36)

In this section, we are interested in designing a state feedback controller

u(t) = �Kx(t) (4.37)

where K must be designed to reduce the resonant harmonics of the LCL filter.

Based on the following state-space representation of the open-loop system,

ẋ(t) = Ax(t) + Bu(t) + B
0

w(t) (4.38)

y(t) = Cx(t) (4.39)
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the closed-loop system is obtained by substituting (4.37) into (4.38)

ẋ(t) =
Akz     }|     {

(A � BK) x(t) + B
0

w(t) (4.40)

y(t) = Cx(t) (4.41)

In next, we present the H1 control problem to minimise the H1 norm from the

disturbance inputs w(t) to the controlled output y(t) over the fixed frequency

range !l  !c  !h, where the !c corresponds to the resonant frequency of

LCL filter.

According to Lemma 4.3.1, the finite frequency specification in the middle

frequency is given as

2
666666664

G( j!)

I

3
777777775

T

⇧

2
666666664

G( j!)

I

3
777777775 < 0,!l  !  !h (4.42)

which is equivalent to

2
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Ak B

0

I 0

3
777777775

T

⌅

2
666666664
Ak B

0

I 0

3
777777775 +

2
666666664
C D

0 I

3
777777775

T

�

2
666666664
C D

0 I

3
777777775 < 0 (4.43)

Following from the result in [43], an alternative condition of the above inequality

can be rewritten as

WT
(J⌅JT + H⇧HT

)W < 0 (4.44)

U(J⌅JT + H⇧HT
)UT < 0 (4.45)
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where

J =

2
66666666666666664

I 0

0 I

0 0

3
77777777777777775
,⌅ =

2
666666664
�Q P + j!cQ

P + j!cQ �!l!hQ

3
777777775 (4.46)

⇧ =

2
666666664
I 0

0 ��2I

3
777777775 ,H =

2
66666666666666664

0 0

CT
0

0 I

3
77777777777777775

(4.47)

W =

2
666666664
I 0 0

0 0 I

3
777777775

T

,U =

2
666666664
AT

k I 0

BT
0

0 I

3
777777775

T

(4.48)

According to the Lemma 4.3.2, the inequalities (4.44) and (4.45) are equivalent

to

J⌅JT + H⇧HT + �F⇤ + (�F⇤)

T (4.49)

where

� =

2
66666666666666664

�I

AT
k

BT
0

3
77777777777777775
,⇤ =

2
66666666666666664

0

I

0

3
77777777777777775

T

(4.50)

Applying the Schur’s complement to (4.49), we can obtain

2
6666666666666666666666664

�Q P + j!cQ � F 0 0

? �!l!hQ + FT Ak + AkF FT B
0

CT

? ? ��2I 0

? ? ? �I

3
7777777777777777777777775

< 0 (4.51)

where the symbol ? denotes the symmetric entries. Therefore, if there exists
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a positive scalar �, symmetric matrices P, Q > 0 and matrix F such that the

LMI (4.51) is feasible, then the closed-loop system in (4.40) satisfies the finite

frequency condition in (4.42).

Now let us impose the stability condition, where we consider the following

Lyapunov’s inequality with a decay rate written as

(A � BK)

T P + P(A � BK) + 2↵P < 0 (4.52)

P > 0 (4.53)

where P is the Lyapunov matrix.

Letting S T = (A�BK)X+↵X and  = 0, the inequality with a decay rate can

be rewritten as

 + S + S T = (A � BK)X + X(A � BK)

T + 2↵X < 0 (4.54)

where X = P�1. According to the Lemma 4.3.3 the above equation is also

equivalent to

2
666666664

Y � (W +WT
) (A � BK)X + ↵X +WT

X(A � BK)

T + ↵X +W �Y

3
777777775 < 0 (4.55)

Multiplying (4.55) on the left and on the right by diag[I, Ps] with Ps = X�1

gives

2
666666664

Y � (W +WT
) (A � BK) + ↵I +WT Ps

(A � BK)

T + ↵I + PsW �PsYPs

3
777777775 < 0 (4.56)

Multiplying (4.56) on the left and on the right by diag[WT�1

, I] and diag[W�1, I]
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respectively with F = W�1 gives

2
666666664

FT YF � (F + FT
) FT

(A � BK) + ↵FT + Ps

(A � BK)

T F + ↵F + Ps �PsYPs

3
777777775 < 0 (4.57)

Applying the Schur complement in (4.57) yields

2
66666666666666664

�(F + FT
) FT

(A � BK) + ↵FT + Ps FT

(A � BK)

T F + ↵F + Ps �PsYPs 0

F 0 �Y�1

3
77777777777777775
< 0 (4.58)

Considering the variable Y = P�1

s to (4.59) yields

2
66666666666666664

�(F + FT
) FT

(A � BK) + ↵FT + Ps FT

(A � BK)

T F + ↵F + Ps �Ps 0

F 0 �Ps

3
77777777777777775
< 0 (4.59)

Since the inequalities in (4.51) and (4.59) are nonlinear, we perform a con-

gruence transformation to (4.51) and (4.59) by pre and post-multiplying

diag
⇣
F�1, F�1, I, I

⌘
and diag

⇣
F�1, F�1, I

⌘
respectively. Furthermore, by setting

bQ = (F�1

)QF�1,bP = (F�1

)PF�1,bPs = (F�1

)PsF�1,bK = KF�1,bF = F�1, we can

derive the following LMI

2
66666666666666664

�(

bF + bFT
)

bFT AT � BbK + ↵bF + bPs bF

? �Ps 0

? ? �bPs

3
77777777777777775
< 0 (4.60)

2
6666666666666666666666664

�bQ bP + j!c bQ � bF 0 0

? �!l!h bQ + sym(AbF � BbK) B
0

bFTCT

? ? ��2I 0

? ? ? �I

3
7777777777777777777777775

< 0 (4.61)
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where the symbol ? and sym(X) denotes symmetric entries and X+XT respec-

tively. Therefore if inequalities (4.60)–(4.61) have a set of feasible solutions (i.e.

there exits P, Ps, Q > 0 and matrix F), the state feedback gain which satisfies

the finite frequency specification in (4.28) is given by K = bKF�1.

4.3.4 Constrained Control

As was shown in (4.15), the control input to the VSC consists of the input of

MPCC, ū(t) and the disturbance rejection control input, ud(t)

u(ti) = ū(ti) +

ud(ti)z             }|             {
Kd(x(ti) � x̄(ti)) (4.62)

In order to keep the the amplitude of switching inputs within a linear modula-

tion region, it is required that the control input of u(t) is bounded by the hard

constraint as shown below,

umin  u(ti)  umax (4.63)

where the umin and umax are the limits corresponding to the operation of the

converter such that umin = [S min
d S min

q ]

T and umax = [S max
d S max

q ]

T .

To express the above inequalities in terms of constrained input of ū(ti), we

can rewrite (4.63) based on (4.62) as,

umin � ud(ti)  ū(ti)  umax � ud(ti) (4.64)

Since the control input ū(ti) is parametrised using the orthonormal basis func-

tions in the design of predictive control as shown

u(ti) = u(ti � �t) +

2
666666664

LT
1

(0) oT
L2

oT
L1

LT
2

(0)

3
777777775

2
666666664
⌘

1

⌘
2

3
777777775�t (4.65)
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where �t is the sampling interval for implementation. The constraints for the

control signal for the lower limit is represented as

umin � ud(t) � u(ti � �t) 
2
666666664

LT
1

(0) oT
L2

oT
L1

LT
2

(0)

3
777777775

2
666666664
⌘

1

⌘
2

3
777777775�t (4.66)

for the upper limit as

2
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2

(0)

3
777777775

2
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⌘

1

⌘
2

3
777777775�t  umax � ud(ti) � u(ti � �t) (4.67)

Based on the above constraints and given that ū(ti) is defined by ū = [S d S q]

T ,

the predictive control problem with hard constraints imposed in the design be-

comes the problem of finding the optimal solution of the quadratic cost function

minimize
⌘

J = ⌘T⌦⌘ + 2⌘T x(ti)

subject to
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3
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⌘
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777777775�t 
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umax � ud(ti) � u(ti � �t)

�umin � ud(t) � u(ti � �t)

3
777777775

(4.68)

As before, primal-dual method of Hildrethis Quadratic Programming algo-

rithm is chosen to provide the numerical solution to the above constrained opti-

mal problem [109]

4.4 Experimental Results

4.4.1 MPCC with finite frequency H1 control

The experimental validation of the method proposed in section 4.3 is carried out

based on the system parameter shown in Table 4.2. For controller parameters,

The Laguerre parameters are selected as N1 = N2 = 4 and p1 = 1.5; p2 = 1.5.
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Table 4.2: System parameters of grid-connected VSC with an LCL filter

Symbol Parameter Name Value Unit
Ls Input filter inductance (converter side) 2.0 mH
Lg Input filter inductance (grid side) 0.75 mH
C f Filter Capacitance 16.1 µF
Rs Input filter ESR (converter side) 0.1 ⌦

Rg Input filter ESR (grid side) 0.1 ⌦

Cdc DC-link Capacitance 700 µF
Rdc DC-link load resistance 20–40 ⌦

Vg Grid Voltage 30 V
Fg Grid Frequency 50 Hz

Q = CTC and R = 0.2I. The prediction horizon is selected as Tp = 50 for the

nominal MPCC. The disturbance rejection control law in (4.69) is obtained by

solving set of LMI (4.60)–(4.61) for the frequency range between 10000  ! 
12000 [rad/sec] with decay rate � = 200.

Kd =

2
666666664
�0.0228 0.0148 0.0017 �0.0001

�0.0149 �0.0233 �0.0001 0.0008

3
777777775 (4.69)

In order to validate the proposed method and to show the comparison with and

without the disturbance rejection control, an experiment validation is carried out

at the beginning with the disturbance rejection control input ud first disabled,

hence the nominal current control based on reduced-order model is only used

to control the id and iq current. Consequently, the phase current of LCL filter

in this period, shown in Figure 4.10 contains the excessive harmonics due to

the resonance in the LCL filter. Similarly, the id and iq current of LCL filter is

also distorted as shown in Figure 4.11. The frequency spectrum in Figure 4.12

confirms the presence of the LCL filter resonance in the distorted phase current

in Figure 4.10.

In order to suppress this resonant harmonics in the current, the disturbance
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Figure 4.10: The response of phase current Ia of LCL filter with/without the dis-
turbance rejection control: Prior to 1.5 sec, disturbance rejection control is dis-
abled and at 1.5 sec a small transient response in the phase current is caused
by switching on the disturbance rejection control.
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Figure 4.11: The response of Id (a) and Iq (b) current of LCL filter with/without
the disturbance rejection control: at 1.5 sec, the disturbance rejection control is
enabled to damp the LCL filter resonance

rejection controller is activated at 1.5 sec. As a result, a reduction of resonant

harmonics is achieved which can be seen from the response of phase current

and the id and iq current in Figure. 4.10 and 4.11 respectively. More clearly,

the frequency spectrum of the phase current in Figure 4.13 shows the relative

reduction of LCL filter resonance harmonics compared to Figure 4.12.
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Figure 4.12: Frequency spectrum of the phase current Ia of LCL filter without
the disturbance rejection control
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Figure 4.13: Frequency spectrum of the phase current Ia of LCL filter with the
disturbance rejection control

Comparison with Entire-frequency approach

To illustrate the effectiveness of the proposed disturbance rejection controller in

the finite frequency domain, a comparison is made between the finite frequency

controller in section and H1 state feedback controller, which is designed over

the entire frequency range based on the following condition.

2
66666666666666664

AX + XA
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+ B
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Y + Y
0
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0
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�CX + DY ��2I ?

B
0
0

C
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< 0 (4.70)
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Figure 4.14: The response of phase current based on entire frequency ap-
proach
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Figure 4.15: The response of Idq current based on entire frequency approach
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Figure 4.16: The frequency spectrum phase current based on entire frequency
approach
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where the symbol ? denotes the term induced by symmetry. The resulting

control law based on LMI (4.70) with the attenuation factor set to � = 200 is

obtained as

K1d =

2
666666664
�0.0245 0.0515 �0.0004 0.0308

�0.0550 �0.0207 �0.0328 0.0022

3
777777775 (4.71)

To compare the K1d and Kd in (4.69), the nominal MPCC part and test conditions

are kept same and the the amount of attenuation of resonant harmonics in the

current are observed.

The response of phase current and id and iq currents based on the dis-

turbance rejection control in (4.71) are shown in Figure 4.14 and Figure 4.15

respectively. In overall, the results shows similar responses to the previous sec-

tion where damping of LCL filter resonance occurs after activating the distur-

bance rejection controller at 1.5 sec. For a precise comparison, the frequency-

spectrum of phase current in Figure 4.16 is compared to Figure 4.13. This result

shows that the finite-frequency controller approach gives a better attenuation of

LCL filter resonant harmonics than the entire-frequency approach.

Rectification Mode

Having validated the performance of the proposed method in attenuating the

LCL filter resonance, the following two sections presents experimental results

for the rectification and the regeneration mode. For both modes of the opera-

tion, the control objective is to control the id current to follow the reference input

i⇤d current, and iq current at zero for unity power factor.

To validate the proposed controller in rectification mode, a step change in

the reference input of i⇤d current is applied from 6A to 10A. The response of id

current in Figure 4.17 (a) shows a good tracking performance to a reference
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Figure 4.17: Plot of phase current with input constraints for the case when the
input constraint is violated when the disturbance rejection controller is activated
after 1.5 sec.
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Figure 4.18: Plot of phase current with input constraints for the case when the
input constraint is violated when the disturbance rejection controller is activated
after 1.5 sec.

input while drawing an extra current from the grid, iq is also well maintained

around zero (see Figure 4.17 (b)) which results in zero phase shift between

phase voltage and phase current (i.e unity power factor) as shown in Figure

4.18.
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Figure 4.19: Plot of phase current with input constraints for the case when the
input constraint is violated when the disturbance rejection controller is activated
after 1.5 sec.
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Figure 4.20: Plot of phase current with input constraints for the case when the
input constraint is violated when the disturbance rejection controller is activated
after 1.5 sec.

Regeneration Mode

To experimentally validate the proposed controller in regeneration mode, the

VSC is first kept to operate at rectification mode at the start of the experiment.

At around 2sec, an extra current is then injected in the DC-bus, which resulted

in initial overshoot of DC bus voltage. This in turn caused an external reference

generator (in this case PI control) to change the reference input of id current.
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Figure 4.19 shows the closed-loop responses of id and iq to a step change in

the reference inputs from 6A to -6A. The result shows a good tracking response

of id current to the reference input and the negative sign of id current after 2

sec indicates that the current flow is reversed and the extra current injected

into DC bus is converted and feeds back into the main grid. The response iq

current in Figure 4.19 (b) also shows that the reactive current is well regulated

around zero. To confirm the unity power factor operation, Figure 4.20 show the

corresponding phase current and voltage output which are 180

� out of phase

each other in regeneration mode.

Constrained Control

An experimental validation is carried out to test the input constraints in the pro-

posed MPCC with disturbance rejection control. For an illustrative purpose, a

test is first carried out by considering the saturation limit for the nominal MPCC

control input only, in other words the disturbance rejection control input ud is

omitted from the upper and lower saturation limit in (4.66) and (4.67) as shown

below.

umin � u(ti � �t) 
2
666666664

LT
1

(0) oT
L2

oT
L1

LT
2

(0)

3
777777775

2
666666664
⌘

1

⌘
2

3
777777775�t  umax � u(ti � �t) (4.72)

The main purpose of this test is to see the effect of disturbance control input on

the feasibility of the original input constraint.

The response of control inputs for the test is shown in Figure 4.21, where

we can see that after the disturbance rejection controller is activated at 1.5

sec, the original input constraints are violated due to the disturbance rejection

inputs. There are almost no change in the response of idq current as shown in

Figure 4.22.
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Figure 4.21: Plot of control inputs S d (a) and S q (b) with constraints set to set to
0.75 and -0.14 respectively: The input constraint (shown in red) for both inputs
are violated when the disturbance rejection controller is activated after 1.5 sec.

0.5 1 1.5 2 2.5

5

10

Time(sec)

I d
(A

)

0.5 1 1.5 2 2.5
−5

0

5

Time(sec)

I q
(A

)

Figure 4.22: The response of id and iq currents for the case when the input
constraint is violated when the disturbance rejection controller is activated after
1.5 sec.
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Figure 4.23: Plot of control inputs S d (a) and S q (b) with constraints set to set to
0.75 and -0.14 respectively: The input constraint (shown in red) for both inputs
are violated when the disturbance rejection controller is activated after 1.5 sec.

Now, the proposed control input constraint of the following linear inequalities

is applied.

umin�ud(ti)�u(ti��t) 
2
666666664

LT
1

(0) oT
L2

oT
L1

LT
2

(0)

3
777777775

2
666666664
⌘

1

⌘
2

3
777777775�t  umax�ud(ti)�u(ti��t) (4.73)

With the use of this inequality constraints, the input constraints of the nominal

MPCC is reduced by the amount of control input required for the disturbance

rejection, hence the feasibility of the original input constraint can be still guar-

anteed in the presence of disturbance. This is similar to a constraint-tightening

approach which has been used to guarantee the feasibility in robust MPC prob-

lem.

Figure 4.23 is the response of control inputs based on (4.73) which shows
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Figure 4.24: Plot of phase current with input constraints for the case when the
input constraint is violated when the disturbance rejection controller is activated
after 1.5 sec.

that the input constraints are satisfied even when the disturbance rejection con-

trol is activated after 1.5 sec. As mentioned, this is achieved by tightening the

original input constraint for the nominal MPCC. However, as shown in Figure

4.24 the tracking performance of iq current is affected since the available control

input is reduced as a result of tightened constraints. (Note that the switching

input constraints are chosen aggressively to highlight the effect of constraint

tightening.)

Comparison with L filter

Lastly, the response of input current based on L filter and LCL filter is compared

and shown in Figure 4.25 and Figure 4.26. As can be seen that if the LCL filter

resonance is sufficiently damped, the overall current harmonics in LCL filter

is significantly lower than the L filter despite having the same size of passive

components which is the main benefit of employing an LCL filter.
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Figure 4.25: The response of phase current based on L filter
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Figure 4.26: Comprison of frequency spectrum of phase current between (a) L
filter and (b) LCL filter

4.5 Conclusions

This chapter presented a model predictive current control method for grid-

connected VSC with an LCL filter. The presented method in this chapter utilised

a reduced-order model of LCL filter, which required only the input currents,

namely id and iq current and their derivatives as system states. However, in

order to overcome the LCL filter resonance issue with a reduce-order model

design, a separate disturbance rejection controller is designed to reduce the

effect of resonance. In the experimental results, it showed a satisfactory perfor-

mance of both tracking reference inputs and mitigating the LCL filter resonance.
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Finally the constrained control performance is analysed where we highlighted

the effect of constraint tightening on the control performance.





Chapter 5

Model Predictive Resonant Current

Control

5.1 Introduction

The chapter presents a model predictive control scheme that tracks periodic

reference current inputs of i↵ and i� in the stationary frame. The main idea of

the proposed scheme is based on the internal model principle which states that

a feedback control system must contain the resonant module of 1

s2+!2

to track

sinusoidal type reference inputs with zero steady-state errors. To satisfy this

condition, the proposed control scheme embeds the resonant module of 1

s2+!2

in the model of VSC in the stationary frame, where ! is the main grid frequency.

From this model, the future prediction of states and optimum switching inputs

are computed by minimizing the error function between the predicted and mea-

sured input currents (i↵ and i�).

The design of the proposed control scheme which we referred to as model

predictive resonant controller (MPRC) is described in Section 5.2. A robust

MPRC scheme is also presented to improve the robustness under grid fre-

quency variations. In Section 5.3, an extension of MPRC is presented to selec-

tively compensate for multiple harmonics caused by the grid voltage harmonics

(mainly fifth and seventh in three-phase systems). The proposed scheme builds

on a similar idea as in [65], to control the nominal current dynamics and to null

the harmonic at a specific frequency by resonant harmonic compensator which
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ensures the overall system stability in the presence of harmonic distortions. To

close the chapter the experimental validations are presented.

5.2 Model Predictive Resonant Current Control

Conventionally the majority of control design methods for the current control

have been implemented in the synchronous-reference frame. From the control

design point of view, the synchronous-reference frame implementation allows

a straightforward application of classical controller synthesis tools, since AC

variables, such as grid voltages and currents appear in DC vector quantities,

which leads to a simple derivation of a LTI model. However, the computational

load required for this transformation is substantial due to the constant tracking

of the phase angle, where for a grid-connected VSC a phase locked loop (PLL)

is often used to track the phase angle of the grid voltage.

Another transformation called stationary frame also exists for the control

system design of the three phase VSC [88]. The main advantage of trans-

forming into this frame is the reduction of computational loads due to a simpler

transformation as in (5.1),

T↵� =

2
666666664

1 �1

2

�1

2

0

p
3

2

�
p

3

2

3
777777775 (5.1)

Note also that the phase angle information is also no longer required in the

transformation.

The overview of the proposed MPRC system based on this frame of trans-

formation is shown in Figure 5.1. The main objective of the MPRC system is

to control the i↵� in the stationary frame, where the reference input of respec-

tive currents are assumed to be given from the outer control loop. As it also

can be seen in the figure, the main control system no longer requires a grid-
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Figure 5.1: An overview of the proposed MPRC system: i⇤↵� are the reference
current inputs and ’abc/↵�’ block corresponds to the stationary transformation
based on (5.1). S ↵� and S s

↵� are unconstrained and constrained control inputs
respectively.

synchronisation module (i.e. PLL) due to a simpler transformation in 5.1.

To proceed with the design of MPRC, the model of VSC in terms of i↵ and

i� in the stationary frame is first considered as shown below,

Ls
di↵
dt
= �Ri↵ + e↵ � v↵

Ls
di�
dt
= �Ri� + e� � v� (5.2)

where e↵,e� and i↵, i� are the stationary frame grid voltages and input currents

respectively. v↵ and v� denote control inputs with

v↵ =
S ↵vdc

2

(5.3)

v� =
S �vdc

2

(5.4)

where S ↵ and S � are the switching functions. The DC-link bus voltage equation
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can be expressed as,

C
dvdc

dt
=

3(S ↵ · i↵ + S � · i�)
4

� vdc

RL
(5.5)

Considering only the dynamics of input currents in the stationary frame (i.e. i↵

and i� currents), an LTI model in the following equation is used in the design of

the MPRC.

ẋm(t) = Amxm(t) + Bmu(t) (5.6)

y(t) = Cmxm(t) (5.7)

where Am, Bm and Cm are defined as

Am =

2
666666664
� R

Ls
0

0 � R
Ls

3
777777775 , Bm =

2
666666664

�vdco
2Ls

0

0

�vdco
2Ls

3
777777775 (5.8)

Cm =

2
666666664

1 1

0 1

3
777777775 , xm =

2
666666664

i↵

i�

3
777777775 , u =

2
666666664

S ↵

S �

3
777777775 (5.9)

vdco is the chosen operating voltage of the DC-link bus. Since the stationary

frame is based on the main frequency rather than phase angle, in contrast to the

synchronous reference frame, the reference inputs in this frame are sinusoidal

signals with their periods determined by the frequency of the main grid.

In order to track the sinusoidal inputs with no steady state error, the resonant

module of the form 1

s2+!2

is embedded in the model in (5.6). This is done by

first defining the auxiliary control signal us(t) as the function that satisfies the

following differential equation

d2u(t)
dt2

+ !2

ou(t) = us(t) (5.10)
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and the auxiliary state variable z(t) as

d2xm(t)
dt2

+ !2

oxm(t) = z(t) (5.11)

where in this case !o is the frequency of the main grid. From (5.10) it is seen

that us(t) is the inversely filtered control signal by the sinusoidal dynamics. By

using the auxiliary variables, the state space model in (5.6) can be transformed

into
dz(t)

dt
= Amz(t) + Bmus(t) (5.12)

and note that

d2y(t)
dt2

= Cm
d2xm

dt2

= Cm
d2xm

dt2

+ !2

oCmxm(t) � !2

oCmxm(t)

= Cmz(t) � !2

oy(t)

Finally, an augmented state space model is expressed as

2
66666666666666664

dz(t)
dt

d2y(t)
dt2

dy(t)
dt

3
77777777777777775
=

Az                  }|                  {2
66666666666666664
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2

0

2

Cm 0

2

�!2

0

I
2

0

2

I
2

0

2

3
77777777777777775

xz  }|  {2
66666666666666664

z(t)
dy(t)

dt

y(t)

3
77777777777777775
+

Bz }| {2
66666666666666664

Bm

0

2

0

2

3
77777777777777775

us(t) (5.13)

where I
2

and 0

2

are 2 ⇥ 2 identity and zero matrices respectively.

Based on the augmented model in (5.13) where the control signal to the

model is the filtered control, at the current time, ti, the predicted state variable

x(ti + ⌧ | ti) at the future time ⌧, ⌧ > 0 is described by the following equation

x(ti + ⌧ | ti) = eA⌧x(ti) +

Z ⌧

0

eA(⌧��)Bus(�)d� (5.14)



134 Chapter 5. Model Predictive Resonant Current Control

From a practical point of view, there are a couple of problems associated with

the use of the augmented system matrix in the predictive control design. First,

the open-loop eigenvalues of the augmented matrix (5.13) have complex eigen-

values on the imaginary axis, which as previously illustrated in section 3.3, it will

lead to an numerical conditioning problem. Second, the embedded resonant

mode of the form 1

s2+!2

assumes the grid frequency to be fixed at the resonant

frequency. However it is generally known that the grid frequency fluctuates

around the main frequency [96],[65],[6] and the magnitude of fluctuation de-

pends on the grid condition. As summarized in [6], for grid-connected systems

a control strategy must allow the system to ride-through under a large variation

of grid condition. In particular with the grid frequency, a frequency variation as

large as ±1Hz for PV systems [4] and ±5Hz for WT systems [7] can be expected

which must be coped by the controller.

In the design of Proportional-Resonant (PR) control design [65],[88], where

the PR controller of G(s) is defined as

G(s) = Kp + Kr
s

s2 + !2

(5.15)

The common remedies for the above PR controller for the frequency variation is

to introduce a damping term (!c) to mitigate the sensitivity issue with frequency

variation as below

G(s) = Kp + Kr
!cs

s2 + 2!cs + !2

(5.16)

or as suggested in [6] some type of adaptive frequency scheme is necessary.

Introducing the term !c in (5.16) however reduces the magnitude at the res-

onant frequency, therefore a designer must tune the frequency response of

(5.16) to satisfy both tracking and robust performance.
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In the case of MPRC considered here, if there is also a sufficient fluctuation

of the grid frequency from the resonant frequency (!), a mismatch between the

state prediction in (5.14) and the actual state will affect the tracking performance

and even possibly the stability of MPRC.

In order to improve the robustness against the frequency fluctuation while

also improving the numerical conditioning, the proposed MPRC design is built

on the concept of closed-loop paradigm (CLP) approach as described in section

3.4, which has the following control input

us(t) = �Kx(t) + ⌫̇(t) (5.17)

where K is an unconstrained linear control law and ⌫̇(t) is the auxiliary control

input. Since the auxiliary control input ⌫̇(t) in (5.17) is used for constraint han-

dling, the design of K is the key focus here to ensure the robustness against

the grid frequency fluctuation.

In order to systematically find a robustly stabilising control law K, we will

first derive the uncertain system matrix A in terms of the embedded resonant

frequency of ! which we assume to vary within a known interval,

! 2 [!min, !max
] (5.18)

where !min and !max are the expected minimum and maximum grid frequency

respectively during the operation of the converter.

From (5.18), the uncertain augmented model in terms of the resonant fre-
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quency variation is specified as follows

A
1

=

2
66666666666666664
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0

2
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2
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0

2

3
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(5.19)

Based on the uncertain model of grid frequency, a robustly stabilising control

law K is found from the LQR-LMI optimisation problem (see Section 3.3.3 for

detailed derivation) as follows,

minimize
X

Tr(QP) + Tr(X)

subject to AiP + PAT
i + BY + YT BT < 0

2
666666664

X R
1

2 Y

YT R
1

2 P

3
777777775 > 0, P > 0, i = 1, 2

(5.20)

if the above condition is satisfied to yield symmetric matrices X 2 Rn⇥n and

Y 2 Rm⇥n, then the LQR controller given by K = YX�1 ensures the stability of

closed-loop system under the grid frequency variations.

Assuming that we have obtained a robust control law K, substituting the

closed-loop control signal in (4.21) into the state dynamic equation, the closed-

loop model prediction is obtained as follows,

xk(ti + ⌧ | ti) = eAk⌧x(ti) +

Z ⌧

0

eAk(⌧��)B⌫̇(�)d� (5.21)

where Ak = (A � BK). Based on the predictions of the unconstrained optimal

behaviour in (5.21), the global optimal control input is found with respect to the

cost function,

J =
Z Tp

0

h
xk(ti + ⌧ | ti)

T Qxk(ti + ⌧ | ti) + ⌫̇(⌧)

T R⌫̇(⌧)

i
d⌧ (5.22)
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From herein, each auxiliary input signal of ⌫̇(t) is described with a Laguerre

function expansion, where by choosing two continuous-time Laguerre function

vectors L
1

(⌧) and L
2

(⌧), the control signal ⌫̇ is represented by

⌫̇(⌧) =

2
666666664
LT

1

(⌧) 0

T
L2

0

T
L1

LT
2

(⌧)

3
777777775

2
666666664
⌘

1

⌘
2

3
777777775 (5.23)

where 0L1

and 0L2

are the zero column vectors with the same dimensions as

L
1

(⌧) and L
2

(⌧). The predicted state vector, denoted by x(ti + ⌧ | ti) based on

the control parametrization is described by the following equation

x(ti + ⌧ | ti) = eAk⌧x(ti) +

Z ⌧

0

eAk(⌧��)


B

1

LT
1

(�) B
2

LT
2

(�)

�
d�

2
666666664
⌘

1

⌘
2

3
777777775 (5.24)

With ⌘T = [⌘T
1

⌘T
2

], the cost function used in MPRC has the form

J =
Z Tp

0

e(ti + ⌧ | ti)
T Qe(ti + ⌧ | ti)d⌧ + ⌘T RL⌘ (5.25)

where

e(ti + ⌧ | ti) =

2
666666664

r0(t) � y(⌧ | ti)

r(ti) � y(⌧ | ti)

3
777777775 (5.26)

where r(ti) is the set-point and r0(ti) is derivative of the set-point. The weighting

matrices Q and RL are symmetric positive definite and positive semi-definite

matrices, written as Q > 0 and RL � 0 respectively. By substituting the pre-

dicted state variables into the cost function, the unconstrained minimization

with respect to the parameter vector ⌘ in the cost function (3.75), is given as

follows

⌘ = �⌦�1 x(ti) (5.27)

By the principle of receding horizon control, the optimal control ⌫̇(t) for the
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unconstrained problem at time ti is

⌫̇(ti) =

LT
0z               }|               {2

666666664
LT

1

(0) oT
L2

oT
L1

LT
2

(0)

3
777777775

2
666666664
⌘

1

⌘
2

3
777777775 (5.28)

Now, the control signal us(t) is given by

us(t) = (�K + Kmpc)x(t) (5.29)

where Kmpc = �LT
0

⌦�1 . From the control signal us(t), and using the relation-

ship between us(t) and u(t) from (5.10), the actual control signal u(t) can be

derived by the following equation,

2
666666664

u̇(ti)

u(ti)

3
777777775 =

2
666666664

0 �!2

oI
2

I
2

0

3
777777775

2
666666664

u̇(ti)

u(ti)

3
777777775�t +

2
666666664

I
2

0

3
777777775 us(ti)�t +

2
666666664

u̇(ti)

u(ti)

3
777777775 (5.30)

In the above, the actual control signal u(ti) is computed using the optimal signal

us(ti) and the previous states of control u̇(ti�1

) and u(ti�1

).

Remark 5.2.1 It is also possible that by tuning the Q and R weighting matrices

in the cost function to reduce the sensitivity towards the frequency variation.

However, an obvious advantage of the proposed scheme is that it provides a

systematic way of designing a predictive controller to improve the robustness.

5.2.1 Constrained Control

As we have shown previously, it is important to limit the amplitude of the switch-

ing input S ↵ and S � to be within a linear region as shown in Figure. In order to

constrain the control input in MPRC, linear inequalities in terms of control input

u is included in the cost function, where from (5.30), we can express u̇(t) and
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u(t) as function of the parameter vector ⌘ (us(t) = L(0)

T⌘)

u̇(ti) =

c1z                           }|                           {
�!2

0

u(ti � 1)�t + u̇(ti � 1)�Kx(ti)�t + L(0)

T⌘�t (5.31)

u(ti) = u̇(ti)�t + u(ti � 1)

=

c2z                                               }|                                               {
�!2

0

u(ti � 1)�2t + u̇(ti � 1)�t + u(ti � 1)�Kx(ti)�t + L(0)

T⌘�t (5.32)

Given that the switching function constraints are bounded by the following hard

constraints,

umin  u(ti)  umax (5.33)

where u(ti) = [S ↵(ti) S �(ti)], umin and umax are the corresponding switching input

limits.

The constraint on the control input u(t) are then expressed as

L(0)

T�t2⌘  umax � c2 � Kx(ti)�t (5.34)

�L(0)

T�t2⌘  �umin + c2 � Kx(ti)�t (5.35)

With the operational constraints specified, the predictive control problem

with hard constraints imposed in the design becomes the problem of finding the

optimal solution of the quadratic cost function

minimize
⌘

J = ⌘T⌦⌘ + 2⌘T x(ti)

subject to

2
666666664

L(0)

T�t2

L(0)

T�t2

3
777777775 ⌘ 

2
666666664

umax � c2 � Kx(ti)�t

�umin + c2 � Kx(ti)�t

3
777777775

(5.36)

In this work, primal-dual method of Hildreth’s Quadratic Programming al-

gorithm is chosen to provide the numerical solution to the above constrained
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Figure 5.2: Distorted three-phase currents due to distorted grid voltage.
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Figure 5.3: Frequency spectrum of three-phase current showing 5

th (250Hz)
and 7

th (350Hz) harmonics due to the distorted grid voltage.

optimal problem [109]

5.3 MPRC with Selective Harmonic Compensa-

tion

So far we have assumed the condition of grid voltage to be stable, balanced and

non-distorted. However, due to faults, resonances and overloads etc. the actual

grid voltage condition varies which may give rise to uncontrolled oscillations in

the active and reactive power delivered to the network. In three phase systems,
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the main grid voltage harmonic distortion appears in 5

th and 7

th harmonics of

the grid frequency and the grid voltage harmonics influence the current con-

troller and generate current harmonics [65],[96]. Figure 5.2 shows the effect

of distorted grid voltage on the closed-loop response of grid current based on

MPRC of the previous section. Figure 5.3 is the frequency spectrum of the

corresponding distorted grid current. As it can be seen from both figures that

a single MPRC tuned at one frequency is not sufficient to compensate the grid

voltage distortion on the current, which indicates that the bandwidth of MPRC

needs to be extended to cover the frequencies of 5

th and 7

th harmonics.

In this section, the design of MPRC is extended in the stationary reference

frame to include a ’plug-in’ resonant harmonic compensator which is able to null

the harmonic at a specific frequency. The overall control structure shown in Fig-

ure 5.4 which mainly consists of nominal and disturbance rejection controller.

The nominal control part in this case is the MPRC tuned at the grid frequency

which controls the i↵ and i� currents to follow the desired reference inputs based

on the on-line constrained optimizations problem. Under the nominal switching

inputs and in the absence of disturbances, the trajectories of i↵ and i� currents

are designed to follow the closed-loop response of this nominal controller. In

order to ensure the stability and optimality in the presence of grid voltage dis-

turbances, a feedback disturbance rejection control is used to keep the actual

state of i↵ and i� currents close to the nominal state trajectories based on the

error between the actual system state and nominal state. Mathematically, the

proposed scheme in the figure can be represented as follows

u(t) = ū(t) + Kh5

(x(t) � x̄(t)) + Kh7

(x(t) � x̄(t)) (5.37)

where ū(t) is the nominal control input from the MPRC, x̄(t) = [i�↵ i�� ]

T is the

nominal current trajectories and the disturbance rejection term of Kh5

and Kh7
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Figure 5.4: Overview of the MPRC with selective harmonic compensations:
Disturbance rejection part corresponds to the 5

th and 7

th harmonic compensa-
tions. i⇤↵� and i�↵� indicates the reference current inputs and the nominal trajec-
tory respectively. The S ↵� corresponds to the combined control inputs and S s

↵�

is the constrained control input.

belong to disturbance rejection components which are designed to reject the

5

th and 7

th harmonics in the grid current respectively.

The following section discusses the detailed design of model-based selec-

tive harmonic compensator, Kh5

and Kh7

.

5.3.1 Model-based Selective Harmonic Compensator

Based on the internal model principle, in order to reject 5

th and 7

th harmonics

the following augmented model of the converter is considered in the stationary-
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reference frame

2
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us
5,7(t) (5.38)

where !h
5

and !h
7

are the targeted harmonic frequency of 250 Hz and 750 Hz

respectively. In fact the augmented model in (5.38) is the same as in (5.13)

except the frequency of embedded resonant module.

From the above model, the harmonic compensator is designed to find a

control law (i.e. u(t) = K
5,7x(t)) that minimise the following cost function.

J =
Z 1

0

e(t)T Qe(t) + uT
s

5,7
(t)Rus

5,7(t) (5.39)

where

e(t) =

2
666666664

x̄0(t) � x(t)

x̄(t) � x(t)

3
777777775 (5.40)

x(t) = [i↵ i�]T is the measured current in the stationary frame. x̄(t) = [i�↵ i�� ]

T

and x̄0(t) are the nominal and derivative of the nominal stationary frame current

trajectory respectively. Q � 0 and R > 0 are symmetric matrices which are used

to set the optimal performance of each compensator.

Whilst the stability of each compensator is guaranteed by the above LQR

design, we are further interested in imposing a stability condition on the overall

system in Figure 5.4 which includes each harmonic compensator as well as the

unconstrained control law used in the nominal MPRC.

The main motivation here is based on the fact that the closed-loop stability

of the overall system can be considered by taking a similar approach as in

the Piecewise Affine (PWA) systems stability analysis (see [30] for the analysis
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of the PWA systems), where we look for the common matrix P (i.e. terminal

weighting matrix) and Ki (state feedback law) that satisfy the condition below,

8>>>>><
>>>>>:

P > 0,

(Ai + BiKi)
T P + P(Ai + BiKi) < 0

(5.41)

Based on the above condition, we find a quadratic Lyapunov function V(x) =

xT Px, P > 0 that bounds the cost function such that

d
dt

V(x)  �xT
⇣
Q + KT

i RKi

⌘
x, i = 1, 5, 7 (5.42)

where K
5

and K
7

are the state feedback control law for 5

th and 7

th harmonic

compensator respectively. The state feedback control law of K
1

corresponds to

an unconstrained control law in MPRC as

u̇(t) = �K
1

x(t) + ⌫̇(t) (5.43)

where K
1

is designed based on the same cost function as in (5.39), and as we

described in section 3.4, this controller also acts as a terminal cost controller to

guarantee the stability of the MPRC.

To see how the condition on (5.42) sets the bound on the cost function of

(5.39), let us consider for some P = PT > 0, we can derive

d
dt

V(x) =
d
dt

(xT
t Pxt)  �xT

⇣
Q + KT

i RKi

⌘
x dt (5.44)

based on the second method of Lyapunov stability. Integrating this inequality

from t = 0 to t = t f , (5.44) becomes

xT
t f

Pxt f � xT
0

Px
0

 �
Z T

0

xT
⇣
Q + KT

i RKi

⌘
x dt (5.45)
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Since we know that xT
t f

Pxt f � 0 which holds for t ! 1, we have

Z 1

0

xT
⇣
Q + KT

i RKi

⌘
x dt  xT

0

Px
0

(5.46)

thus by finding a suitable matrix P the cost function can be bounded.

To find the terminal weighting P matrix and the corresponding state feed-

back control laws in (5.42), the above LQR problem is formulated using the

following matrix inequalities, [22]

8>>>>><
>>>>>:

P > 0,

xT
⇣
(Ai + BiKi)

T P + P(Ai + BiKi)
⌘

x < �xT
⇣
Q + KT

i RKi

⌘
x

(5.47)

Furthermore, we impose an upper bound (� > 0) on xT Px � 0 such that

xT Px  � (5.48)

For obvious reasons it is useful to transform the nonlinear matrix inequality

(5.47) into an LMI. To do that, we employ the Schur complements based tech-

nique (see Appendix ) [22].

2
66666666666666664

(Ai + BiKi)
T P + P(Ai + BiKi) KT

i I

Ki �R�1

0

I 0 �Q�1

3
77777777777777775
� 0 (5.49)

Also for the inequality in (5.48)

� � xT
(P�1

)

�1x � 0 (5.50)
2
666666664
� xT

x P�1

3
777777775 � 0 (5.51)



146 Chapter 5. Model Predictive Resonant Current Control

Pre and post multiplying (5.49) by diag[P�1, I, I] and consider the variables X =

P�1 and Yi = KiP�1 and we obtain the following LMIs

2
66666666666666664

AiX + XAT
i + BY + YT

i BT YT
i X

Yi �R�1

0

X 0 �Q�1

3
77777777777777775
� 0 (5.52)

2
666666664
� xT

x X

3
777777775 � 0 (5.53)

X > 0 (5.54)

The problem is summarized to

minimise � (5.55)

subject to

2
66666666666666664

AiX + XAT
i + BYi + YT

i BT YT
i X

Yi �R�1

0

X 0 �Q�1

3
77777777777777775
� 0 (5.56)

2
666666664
� xT

x X

3
777777775 � 0 (5.57)

X > 0 (5.58)

Therefore, if the LMI (5.55) is feasible then the terminal weight and the feed-

back gains are recovered as P = X�1 and Ki = YiP�1 and it directly follows

that the function V(x) = xT Px is a common quadratic Lyapunov function which

ensures that the closed-loop system is asymptotically stable on some region of

attraction, e.g., the level set given by the � > 0.

Based on the state feedback found from the above LMI, and using the similar

approximation as in (5.30), the control signals of each harmonic compensator
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can be computed as follows
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777777775�t +
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I
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3
777777775 us

5,7(ti)�t +
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666666664

u̇h
5,7(ti�1
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uh
5,7(ti�1

)

3
777777775

(5.59)

where us
5

(ti) = �Kh
5

e(ti) and us
7

(ti) = �Kh
7

e(ti) are respectively. Finally, the

control input with harmonic compensator is given as

u(ti) = ū(ti) + uh
5

(ti) + uh
7

(ti) (5.60)

5.3.2 Constrained Control

The formulation of constraints on the control input follows the similar process as

in the previous section, except that there are now disturbance rejection control

inputs for rejecting 5

th and 7

th harmonics.

As it was defined in (5.60), the actual control input to the VSC can be for-

mulated as follows

uH(ti) = u(ti) + uh
5

(ti) + uh
7

(ti) (5.61)

where the disturbance control inputs uh
5

(t) and uh
7

(t) are given in (5.59) and the

constrained MPRC control input of u(t) in terms of parameter vector ⌘ is given

as

u(ti) = u̇(ti)�t + u(ti � 1) (5.62)

=

c2z                                               }|                                               {
�!2

0

u(ti � 1)�2t + u̇(ti � 1)�t + u(ti � 1)+L(0)

T⌘�t

Here, the switching function constraint are bounded by the following hard con-
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straints,

umin  uH(ti)  umax (5.63)

where umin = [S min
↵ S min

� ]

T and umax = [S max
↵ S max

� ]

T are the minimum and maxi-

mum switching inputs in the stationary reference frame respectively.

Based on (5.61) and (5.62), the constraints on the control input u(t) are then

expressed as

L(0)

T�t2⌘  umax � c2 � uh
5

(ti) � uh
7

(ti) (5.64)

�L(0)

T�t2⌘  �umin + c2 + uh
5

(ti) + uh
7

(ti) (5.65)

It immediately follows that when there are no disturbance (i.e. uh
5

(t) = 0 and

uh
7

(t) = 0) the above constraints are exactly same as in (5.34). But in the case

of grid disturbances, the original input constraints are reduced by the amount

of control input required for the disturbance rejection, which ensures that the

original input constraint in (5.63) is still satisfied (i.e. feasibility). In terms of

control performance, this also implies that if there is a large disturbances in the

system the available nominal control input of MPRC is consequently limited,

hence affects the tracking performance of the nominal system, whereas if there

is only a small or no disturbance, the tracking performance is mainly determined

by the nominal MPRC.

With the operational constraints specified, the following quadratic cost func-

tion is used to find the constrained optimal input of the MPRC:

minimize
⌘

J = ⌘T⌦⌘ + 2⌘T x(ti)

subject to

2
666666664

L(0)

T�t2

L(0)

T�t2

3
777777775 ⌘ 

2
666666664

umax � c2 � uh
5

(ti) � uh
7

(ti)

�umin + c2 + uh
5

(ti) + uh
7

(ti)

3
777777775

(5.66)
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5.4 Experimental Result

The experimental validation of MPRC is performed using the laboratory set-

up as described in Appendix, where the proposed MPRC is controlled digitally

using xPC target. The system parameters used in the experimental set-up are

shown in Table. 5.1.

Table 5.1: Grid-connected VSC system parameters

Symbol Parameter Name Value Unit
Vgrid Grid Voltage 30 V
fgrid Grid Frequency 50 Hz
Ls Input Filter Inductance 8.9 mH
RL Input Filter ESR 8.3 ⌦

Cdc DC-link Capacitance 700 µF
Rdc Load Resistance 20 � 40 ⌦

5.4.1 Model Predictive Resonant Control

An experimental validation of the MPRC is conducted for rectification and re-

generation modes. In the rectification mode, the converter draws the current

from the main grid to maintain a boosted DC bus voltage. In order to simulate

the rectification mode, a resistive load (Rdc) is connected to the DC bus and the

reference values of i↵ and i� are chosen to maintain a constant DC bus voltage.

Figure 5.5 shows good tracking responses of i↵ and i� to its reference inputs

in steady-state, as well as its transient response to a step change in reference

inputs from 5 Apeak to 8 Apeak at 1 sec. Figure 5.6 and 5.7 show the measured

control inputs of S ↵ and S � respectively, where the dotted-line indicates the cor-

responding saturation limit for each input. A box constraint for control inputs

similar to the one in Section can also be used here, however by employing the

sinusoidally varying constraints respect to the control input, we can also limit
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Figure 5.5: The measured response of I↵ currents (a) and I� currents (b) in
rectification mode: a step change of the reference current inputs (red) occurs
at 1 sec.
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Figure 5.6: The measured response of control input (S ↵) in rectification mode:
the dotted line is the corresponding control saturation limit.

the slew-rate on the control input at the same time. As it can be seen from both

figures that input constraints are satisfied during the step change in reference

inputs from 5 Apeak to 8 Apeak at 1 sec. Figure 5.8 is the plot of grid current in

the ↵-� axis respectively.

The proposed MPRC is also tested in the regeneration mode, where the

mode is triggered by the over-voltage in the DC bus. In order to simulate this

mode, the converter is first placed in the rectification mode to control the DC
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Figure 5.7: The measured response of control input (S �) in rectification mode:
the dotted line is the corresponding control saturation limit.
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Figure 5.8: The measured response of grid current with reference inputs (red)
in the stationary reference frame axis (↵-� axis): rectification mode.

bus voltage to a desired level. After that an over-voltage in the DC bus voltage is

caused by an external source, which in turn changed the reference inputs of i↵

and i� to re-direct the input current from the DC-bus to the main grid. Figures 5.9

and 5.10 show responses of i↵,i� currents obtained from the experimental data

which illustrates a good transient response, when the mode is switched from

the rectification to regeneration mode at 2 sec. Moreover, as shown in 5.11 and

5.12 when the mode transition occurs at 2 sec, the switching control inputs of

S ↵ and S � are constrained within the saturation limit, and as we mentioned the
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Figure 5.9: The measured response of I↵ currents (a) and I� currents (b) in
regeneration mode: a step change of the reference current inputs (red) due to
mode change occurs at 2 sec.
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Figure 5.10: The measured response of grid current with reference inputs (red)
in the stationary reference frame axis (↵-� axis): regeneration mode.

slew-rate of switching inputs are limited at the same time.

MPRC under Grid Frequency Variation

Due to the well-regulated main grid, an arbitrary variation of the actual grid

frequency as large as ±5Hz was not possible to achieve in the laboratory set

up used in this work. Therefore, in order to validate the method proposed,

a numerical simulation model based on Simulink’s Simpowersystems toolbox
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Figure 5.11: The measured response of control input (S ↵) in regeneration
mode: the dotted line is the corresponding control saturation limit.
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Figure 5.12: The measured response of control input (S �) in regeneration
mode: the dotted line is the corresponding control saturation limit.

is used. The dynamic representation of the simulation model is same as the

actual system and the same parameters as shown in Table 5.1 is used. The

clear advantage of using the simulation in this case is that the grid fault such as

frequency variation can now be inserted artificially.

To validate the robust MPRC in, a step change in the grid frequency of ±5Hz

is first injected at around 0.72 sec. Clearly this is simulating the worst-case

scenario since it is highly unlikely that the actual grid frequency varies in a step

manner with such a large magnitude. Figure. 5.13 shows the response of phase
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Figure 5.13: The simulated response of a grid voltage Va (blue) and current Ia

(red) under a step change of grid frequency from 50Hz to 55Hz at 0.72 sec.
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Figure 5.14: The simulated response of a grid voltage Va (blue) and current Ia

(red) under a step change of grid frequency from 50Hz to 45Hz at 0.72 sec.

current based on robust MPRC, when the grid frequency is step changed from

50Hz to 55Hz. It can be seen that the phase current are well tracked despite a

large change in the grid frequency. Figure. 5.14 is the response of the phase

current when a step change in the grid frequency from 50Hz to 45Hz. Again the

response of the phase current adapts well to the change in grid frequency. As

shown in Table, the response time is well within the specified regulation. Fig-

ure. 5.15 shows the response of phase current for the grid frequency variation

of 1Hz, which has no transient effect of the phase current.
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Figure 5.15: The simulated response of a grid voltage Va (blue) and current Ia

(red) under a step change of grid frequency from 50Hz to 51Hz at 0.72 sec.

5.4.2 MPRC with Selective Harmonic Compensations

Based on the same system parameter, the experimental validation of the con-

trol scheme proposed in section 5.3 is carried out by simulating the grid voltage

distortions. The following control gains are used for each harmonic compen-

sator:

K
5

=

2
666666664
�0.09 0 1.97e � 06 0 2.79e � 07 0 �0.03 0

0 �0.09 0 1.97e � 06 0 2.79e � 07 0 �0.03

3
777777775

(5.67)

K
7

=

2
666666664
�0.79 0 �1.68e � 06 0 3.67e � 06 0 �0.03 0

0 �0.79 0 �1.68e � 06 0 3.67e � 06 0 �0.03

3
777777775

(5.68)

Figure 5.16 and 5.17 first show the distorted three phase grid current due to grid

voltage distortion and its frequency spectrum. Figure 5.18 shows the response

of i↵ and i� current and the nominal closed-loop current trajectories. As it can

be seen that the measured currents of i↵ and i� are distorted compared to the

desired nominal current trajectories.
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Figure 5.16: The distorted three-phase current due to grid voltage harmonics
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Figure 5.17: The frequency spectrum of the distorted three-phase current due
to grid voltage harmonics

0.5 0.51 0.52 0.53 0.54 0.55
−8

−6

−4

−2

0

2

4

6

8

Time(sec)

C
u

rr
e

n
t(

A
)

 

 

I
α

I
β

I
α

−

I
β

−

Figure 5.18: The measured response of the i↵ (blue) and i� (green) current and
the corresponding nominal trajectories of i↵ (red) and i� (black) current.

In order to reduce the harmonics in the grid current, the selective harmonic

compensation scheme is applied to eliminate the 5

th and 7

th harmonics in the

grid current.
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Figure 5.19: The measured response of three-phase current after applying the
5

th harmonic compensation.
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Figure 5.20: The frequency spectrum of three-phase current after applying the
5

th harmonic compensation.

To illustrate the efficacy of the selective harmonic compensation, a valida-

tion is first carried out to eliminate the 5

th harmonic in the current. As shown in

the frequency spectrum of the grid current in Figure 5.20, the magnitude of the

5

th harmonic is reduced significantly and consequently the three-phase current

and i↵ and i� current shown in Figure 5.19 and 5.21 are less distorted than the

one shown in Figure 5.16.

Now to reduce the 5

th and 7

th harmonics in the grid current, the selective

harmonic compensation of both harmonics is applied. Figures 5.22,5.23 and

5.24 show the the significant reduction in both harmonics after applying the 5

th

and 7

th harmonics compensation along with the main MPRC.
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Figure 5.21: The measured response of the i↵ (blue) and i� (green) current and
the corresponding nominal trajectories of i↵ (red) and i� (black) current after
applying the 5

th harmonic compensation.
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Figure 5.22: The measured response of three-phase current after applying the
5

th and 7

th harmonic compensation.
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Figure 5.23: The frequency spectrum of three-phase current after applying the
5

th and 7

th harmonic compensation.
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Figure 5.24: The measured response of the i↵ (blue) and i� (green) current and
the corresponding nominal trajectories of i↵ (red) and i� (black) current after
applying the 5

th and 7

th harmonic compensation.

5.5 Conclusions

This chapter presented a model predictive resonant control (MPRC) scheme

for controlling the grid current in the stationary frame. The main idea of the

presented method was to embed a sinusoidal resonant module in the system

model to follow the sinusoidally varying current reference inputs. Following

from the description of the augmented model, a practical problem regarding

grid frequency variations was considered. For this problem, we have proposed

a robustly stabilising feedback law and introduced it into the design of MPRC

by using the concept of closed-loop paradigm approach. For another com-

monly encountered problem in the grid-connected VSC, problems of multiple

harmonic distortions on the grid current caused by grid voltage harmonics were

investigated and it presented a control solution that eliminates unwanted har-

monics while preserving the stability of the overall control system. All of the

presented methods were experimentally validated and showed a satisfactory

performance.





Chapter 6

Predictive Current Control with

Finite Control Set

6.1 Introduction

So far in this work, the switching control signals are converted to discretised

switching signals through a PWM module which allowed the converter output

voltage to be linearly controlled by the applied voltage inputs. However, to

implement the control strategies using the PWM, an extra computational load

and a specialised hardware are required to generate the correct PWM pulses

and controller timings.

In a bid to simplify the implementation and to enhance the lack of flexibility

in the PWM based control method, a cost function based switching technique

known as finite control set model predictive control (FCS-MPC) is considered

in this chapter. In section 6.2, based on a generic framework of FCS-MPC, we

propose a FCS-MPC scheme that handles the system constraints on-line while

minimising the cost funtion based on a one-step ahead prediction. In section

6.3, an application of FCS-MPC to a grid connected VSC is explained based on

the proposed scheme in section 6.2. To close the chapter, experimental results

are presented in the last section.
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6.2 FCS-MPC with Constraints

The main concept of a finite control set MPC approach is to use a discrete

time model of VSC to predict the future behaviour of the grid current at each

sampling instant. Based on the model prediction, a cost function is generally

evaluated by exploring the combination of finite number of switching states over

a finite horizon [100], For instance, the following cost function is often used to

compute the optimal switching input.

Ji = |i⇤dq � iP
dq(S i)| + |i⇤dq � iP

dq(S i)| for i = 0..7 (6.1)

where iP
dq(S i) is the prediction of current trajectories for each switching vector in

the synchronous reference frame which can be calculated as

id(k + 1) = id(k) +
�t
Ls

(�Rid(k) + !Lsiq(k) + ed(k) � vd(S i)) (6.2)

iq(k + 1) = iq(k) +
�t
Ls

(�vq(S i) � Riq(k) � !Lsid(k)) (6.3)

In three-phase VSC case, there are eight possible switching inputs. Naturally by

taking the all of eight possible switching inputs, evaluation of the cost function

leads to eight different costs and the control action with the minimum cost is

applied in the next sampling instant.

One of the concerned point for FCS-MPC, in particular with the above cost

function in (6.1) is the lack of guaranteed stability in the formulation [8]. This

issue stems from the fact that the cost function in (6.1) only penalises deviation

of state trajectories from the reference inputs, and there is no proper weighting

term or the terminal constraint to impose the stability. Furthermore, for a finite

control set system, the asymptotic stability becomes too strong requirement,

since the state trajectory does not converge and tend to oscillate around the
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|x(k)|

k

|x(k)|
�(x, k) + �

Figure 6.1: The concept of practical stability: The system is said to be practi-
cally stable if there exists a positive constant �, and a function �(|x|, k), which
is monotonically decreasing in k and monotonically increasing in |x|, such that
|x|  �(|x|, k) + � [17],[9]

origin or the desired system reference [17],[9],[11], which makes even harder

to establish the guaranteed stability condition. In the recent work by [8], the

stability problem of FCS-MPC is analysed by first considering the error due to

approximation of nominal inputs with finite control set (i.e. quantisation error),

as bounded state disturbances. Based on this observation, the stability prob-

lem of FCS-MPC, is then considered using the concept of practical stability,

where the term practical is used to differentiate from the asymptotic stability to

emphasise a condition of stability in the neighbourhood of the origin, which can

be illustrated intuitively as shown in Figure 6.1. To satisfy the practical stability,

they proposed to redesign the cost function of (6.1) according to the following

theorem.

Theorem 6.2.1 Let D�N = {x 2 Xf : |x|  �N} be a neighbourhood of the origin,
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where

�2

N =

 
1 + (1 � ⇢)N
�min(Q)(1 � ⇢)

!
|W |�2

q (6.4)

in which ⇢ = 1 � �min(Q)

�max(P)

2 (0, 1). If the cost function is designed such that the

terminal cost satisfies that

• The matrix P is the solution to the following ARE

AT
KPAK � P + Q⇤ = 0, Q⇤ = Q + KT RK (6.5)

where Ak = A � BK.

• There exists a local controller k f (x) which satisfies the following condition

in the terminal region

Vf ( f (x, k f (x))) � Vf (x) + `(x, k f (x)) < � (6.6)

for all x 2 X f and some � � 0.

then FCS-MPC is Practically Asymptotically Stable

The detailed proof of this theorem can be found in [93],[8]. The main essence

of the above theorem is to consider the cost function of FCS-MPC as a candi-

date Lyapunov function and design the terminal cost based on Algebraic Riccati

Equation (ARE). Hence the associated terminal region X f is first defined based

on a continuous (convex) control set and a local controller k f (x) is found to

characterise an ultimately bounded set D�N by considering the quantisation er-

ror as a bounded disturbance. This idea stems from a widely known technique

in establishing the stability of MPC which is to use a fixed stabilising controller

for the terminal region X f [93]. In this case, the ultimately bounded set D�N
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⌦c
⌦

x1

x2

Figure 6.2: The concept of proposed FCS-MPC: the initial state inside the ⌦c

(feasibility) is steered into the invariant set ⌦ in finite steps to guarantee the
stability.

represents a terminal region for a local controller k f (x) with a bounded distur-

bance. Furthermore, it is shown in [8] that this ultimate bounded set is subset

of the terminal region D�N ✓ X f to guarantee a sufficient stability condition.

Based on the above stability analysis result, a FCS-MPC scheme is proposed

in this section to handle system constraints in the on-line optimization problem

to guarantee the stability and feasibility of FCS-MPC.

As illustrated in Figure 6.2, the main objective of the proposed scheme is

to control the system state in side ⌦c, which is a maximal controlled invariant

into a smaller invariant set ⌦ in the neighbourhood of the equilibrium in finite

time to guarantee the stability of FCS-MPC. The control input that steers the

system state inside the invariant set is computed from a quadratic cost function

based on a finite control input set. For this purpose, the dual mode predictive

control scheme [79],[76],[101] is employed to handle state constraints along
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the predicted trajectories such that the state evolution is bounded in a pre-

determined invariant set.

To illustrate the main idea of the proposed scheme, the following discrete-

time model in a state space framework is considered.

xk+1

= Axk + Buk (6.7)

where the control input uk belongs to a finite control set of p elements, such that

uk = {u1

, u
2

, . . . , up} (6.8)

and let us first consider the dual-mode predicted control law as

8>>>>><
>>>>>:

uk = �Kxk + ck, k = 0, . . . , nc � 1

uk = �Kxk, k � nc

(6.9)

where K is an unconstrained linear control law and ck is the auxiliary control

input that perturbs from the optimal unconstrained control input to ensure hard

constraints.. The basic idea of the dual-mode control is to apply the constraints

on the auxiliary input ck up to a chosen horizon nc, and after that the uncon-

strained control law K is applied beyond nc, which in essence, the following

cost function is solved in the dual-mode control scheme [79]:

J =

Jncz                  }|                  {
nc�1X

k=0

xT
k Qxk + uT

k Ruk +

J1z                  }|                  {
1X

k=nc

xT
k Qxk + uT

k Ruk (6.10)

where the cost beyond the horizon nc can be viewed as a terminal control law.

Now let us illustrate the main idea of this section by first considering the
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system description given in (6.7) and the following cost function.

J =
1X

k=0

xT
k Qxk + uT

k Ruk (6.11)

where Q and R matrices are positive and semi-positive definite. In order to re-

parametrise the cost function (6.11) in terms of ck, let us first define Ak = A�BK,

where K is the state feedback gain in (6.9). Substituting (6.9) into (6.7), we can

derive the closed-loop state prediction as

8>>>>><
>>>>>:

xk+1

= Akxk + Bck, k = 0, . . . , nc � 1

xk+1

= Akxk, k � nc

(6.12)

Now based on the dual-mode control law (6.9) and the closed-loop state pre-

diction (6.12), the cost function (6.11) can be re-parametrised in terms of ck.

At first, the cost function is re-derived for when k � nc (J1 in (6.10)) which is

calculated as follows:

J =
1X

k=0

h
(Ai

kxk)
T Q(Ai

kxk) + (�KAi
kxk)

T R(�KAi
kxk)

i
(6.13)

= xT
k

Pz                                      }|                                      {
1X

k=0

h
(Ai

k)
T Q(Ai

k) + (Ai
k)

T KT RKAi
k

i
xk (6.14)

where P = Q + KT RK + AT
k PAk. Using the above result and substituting dual-

mode control law (6.9) and the closed-loop state prediction (6.12) into the cost
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function (6.11) yields (the following derivation is from [84]):

J =xk+nc Pxk+nc +

nc�1X

k=0

h
xT

k Qxk + (�Kxk + ck)
T R(�Kxk + ck)

i
(6.15)

=(Akxnc�1

+ Bck+nc�1

)

T P(Akxnc�1

+ Bck+nc�1

)+

xT
nc�1

Qxnc�1

+ (�Kxnc�1

+ ck+nc�1

)

T R(�Kxnc�1

+ ck+nc�1

)

+

nc�2X

k=0

h
xT

k Qxk + (�Kxk + ck)
T R(�Kxk + ck)

i

=xT
k+nc�1

(Q + KRK + AT
k PAK)xk+nc�1

+ cT
k+nc�1

(R + BT PBT
)ck+nc�1

+ 2xT
k+nc�1

(KT R + AT
k PB)xk+nc�1

+

nc�2X

k=0

h
xT

k Qxk + (�Kxk + ck)
T R(�Kxk + ck)

i
(6.16)

Moreover, assuming P as the solution of Riccati equation and given that

AT
k PB � KT R =(A � BK)

T PB � KT R

=AT PB � KT BT PB � KT R

=AT PB � AT PB(BT PB + R)

�1R

� AT PB(BT PB + R)

�1BT PB

=AT PB
h
I � (BT PB + R)

�1

(R + BT PB)

i

=0 (6.17)

we can write:

J = xT
k+nc�1

Pxk+nc�1

+ cT
k+nc�1

(R + BT PBT
)ck+nc�1

+

nc�2X

k=0

h
xT

k Qxk + (�Kxk + ck)
T R(�Kxk + ck)

i
(6.18)
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Similarly:

J = xT
k+nc�1

Pxk+nc�1

+

nc�2X

k=0

h
xT

k Qxk + (�Kxk + ck)
T R(�Kxk + ck)

i
(6.19)

= xT
k+nc�2

Pxk+nc�2

+ cT
k+nc�2

(R + BT PBT
)ck+nc�2

+

nc�3X

k=0

h
xT

k Qxk + (�Kxk + ck)
T R(�Kxk + ck)

i

which leads to

J = xT
k+nc�1

Pxk+nc�1

+

nc�2X

k=0

h
xT

k Qxk + (�Kxk + ck)
T R(�Kxk + ck)

i
(6.20)

= xT
k+nc�2

Pxk+nc�2

+ cT
k+nc�2

(R + BT PBT
)ck+nc�2

+

nc�3X

k=0

h
xT

k Qxk + (�Kxk + ck)
T R(�Kxk + ck)

i

By rearranging it, we can also write as:

J = xT
k+nc�2

Pxk+nc�2

+ cT
k+nc�1

(R + BT PBT
)ck+nc�1

+ cT
k+nc�2

(R + BT PBT
)ck+nc�2

+

nc�3X

k=0

h
xT

k Qxk + (�Kxk + ck)
T R(�Kxk + ck)

i

By repeating the above calculations and expressing all the terms in the sum

eventually leads to

J =
nc�1X

k=0

cT
k+i(R + BT PBT

)ck+i + xT
k Pxk (6.21)

Note here that the unconstrained control law K in (6.9) and P matrix in the above

cost function are chosen based on the stability condition specified in Theorem

6.2.1.
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Now let us consider the system constraints as specified below,

X  xk  X

U  uk  U (6.22)

where X, X and U,U are state and control input constraints respectively. To

guarantee the feasibility of the optimisation problem subject to constraints, it

is necessary to augment the cost function (6.21) to include linear inequality

constraints which represents a positive invariant set satisfying the constraints.

There are two main invariant set, namely an ellipsoid and polyhedra invariant

set. The ellipsoid invariant set is popular due to its link with Lyapunov stability

theory and can easily be computed using LMI. However the serious drawback is

that the set is too conservative and can not handle the asymmetric constraints.

On the other hand polyhedral invariant set does not have the problem of being

too conservative and also can handle asymmetric constraints. In the following,

we consider the polyhedral invariant set for FCS-MPC.

For the dual model scheme in (6.9), when k � N the resulting closed loop

system (Ak) can be considered as an unforced linear system which constraints

are not active. The largest set of initial conditions for which an unforced linear

system satisfies all constraints is often referred to as the Maximal Admissible

Set (MAS) denoted by O1.

O1 = {x : CAkx 2 Z,�KAkx 2 U, Akx 2 X} (6.23)

Due to the infinite horizon, the computation of the above set O1 is intractable.

Based on the results of Gilbert and Tan [40], if the system is closed-loop

stable and O1 is closed and bounded, the MAS (O1) is finitely determined

such that O1=Ot+1

= Ot, in turn O1 ✓ Ot+1

✓ Ot. The set Ot is the set of initial
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conditions for which all constraints are fulfilled up until time t.

Ot = {x : CAkx 2 Z,�KAkx 2 U, Akx 2 X,8i 2 {1, 2, . . . , t}} (6.24)

The determination of MAS is explained in detail in [40], [97],[85] and it is also

possible to obtain the MAS using the routines available in the Multi-Parametric

Toolbox [62].

Now considering when k  N in (6.9), the the auxiliary control ck is used as

a perturbation to satisfy the constraints, therefore an extension of MAS, referred

to as MCAS (maximum control admissible set) to incorporate ck can be defined

as follows [97]:

S c = {x : 9C s.t. M
0

x + N
0

C  d
0

} (6.25)

For ck > 0, the resulting MCAS in (6.25) is larger than the MAS, as increas-

ing the control horizon nc implies more time-steps to move the state into the

MAS through the action of perturbations. Hence, the MCAS gets larger as nc

increases. Finally, by incorporating the constraints in (6.25), the optimization

function in (6.21) is rewritten as

J =
nc�1X

k=0

CT
k+i(R + BT PBT

)Ck+i + xT
k Pxk (6.26)

subject to M
0

x + N
0

C  d
0

(6.27)

6.3 Application to Voltage Source Converter

The scope of the proposed FCS-MPC is set to control the current in syn-

chronous reference frame, hence we assume that there exists a DC-bus voltage

controller which commands the reference input for d-axis current (id) to stabilise
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the DC-bus voltage. Also, we assume that three-phase grid voltage is balanced

and symmetric, and the load is resistive. The following state space model of

the converter in discrete time is considered in the design.

x(k + 1) = Akx(k) + Bkud(k) (6.28)

y(k) = Ckx(k) (6.29)

where

A =

2
666666664

1 � Ts
R
Ls

!

�! 1 � Ts
R
Ls

3
777777775 , B =

2
666666664

�Ts
2Ls

0

0

�Ts
2Ls

3
777777775 , C =

2
666666664

1 0

0 1

3
777777775 (6.30)

and the state and control inputs are x = [id, iq]

T and ud = TdqSabc respectively,

where Tdq is the synchronous reference transformation matrix and the finite

switching inputs, Sabc in three phase frame is given as

Table 6.1: Switching vectors of three phase VSC

S i S a S b S c

S
0

0 0 0
S

1

1 0 0
S

2

1 1 0
S

3

0 1 0
S

4

0 1 1
S

5

0 0 1
S

6

1 0 1
S

7

1 1 1

For each switching vectors, we can associate the voltage vectors in the

synchronous-reference frame as shown in Table 6.2. To keep the system states,

namely id and iq currents closely to the reference trajectories, the cost function
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Table 6.2: Synchronous-reference frame transformed switching vectors of three
phase VSC

S i Vd Vq

S
0

0 0
S

1

2

3

Vdccos✓ �2

3

Vdcsin✓
S

2

2

3

Vdccos(✓ � 2⇡
3

) �2

3

Vdcsin(✓ � 2⇡
3

)

S
3

2

3

Vdccos(✓ � 4⇡
3

) �2

3

Vdcsin(✓ � 4⇡
3

)

S
4

�2

3

Vdccos✓ 2

3

Vdcsin✓
S

5

�2

3

Vdccos(✓ � 2⇡
3

)

2

3

Vdcsin(✓ � 2⇡
3

)

S
6

�2

3

Vdccos(✓ � 4⇡
3

)

2

3

Vdcsin(✓ � 4⇡
3

)

S
7

0 0

in (6.26) is modified to include the prediction penalty term as shown below,

J =
nc�1X

k=0

CT
k+i(R + BT PBT

)Ck+i + xT
k Pxk + Jp (6.31)

subject to M
0

x + N
0

C  d
0

(6.32)

where the extra term that penalises the predicted behaviour (Jp) is defined via

Jp = |x⇤ � xp
i (Ck)| (6.33)

Considering that the auxiliary control input Ck in (6.31) belongs to the finite set

of inputs as,

Ck = {S 0

, S
1

, . . . , S
7

} (6.34)

which represents the eight possible switching states of the converter, the xp
i (Ck)

is the predicted state variables of the system for each possible control action.

The optimisation problem in (6.31) can not readily be solved using a general

quadratic programming solver such as the one we presented earlier in sections.

Instead, due to the integer variables of switching input, the above optimisation
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Finite Control Set Predictive Control System
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idq

Model
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for n=0..7vdq
abc

dq for n=0..7

Figure 6.3: Finite control set predictive control system for grid-connected VSC:
Model Prediction and Cost Minimisation part is executed iteratively for all pos-
sible switching inputs (n = 0..7) at each sampling instant. The switching inputs
to the converter are directly controlled based on the cost minimisation

problem is regarded as an integer quadratic programming (IQP), which in gen-

eral one needs to consider the method called branch and bound, to efficiently

solve the problem. In this work, given that there are only eight switching inputs

and by keeping the length of prediction horizon relatively small (for a computa-

tional reason, one-step ahead prediction is used), the computational load be-

comes insignificant. Hence it is computationally feasible to enumerate the all

possible combination of inputs in the cost function (6.31), subsequently the cost

function values are compared and the solution generating the minimum value

is taken as the optimal solution.

Finally, the overall control scheme of FCS-MPC is shown in Figure 6.3, and

it can be seen that the PWM module is no longer required, which instead the

switching inputs are directly computed from the cost function minimisation.
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Figure 6.4: The simulated response of (a) id and (b) iq current (blue) to a step
change in reference id current (red) from 3 A to 6 A.
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Figure 6.5: The plot of simulated id and iq currents (blue) to a step change in
reference id current from 3 A to 6 A with MCAS.

6.4 Simulation and Experimental Results

The proposed FCS-MPC in section 6.2 is validated both experimentally and

using the nonlinear simulation model. The system parameter used for both

validations are shown in Table 6.3.

The cost function parameter is set as nc = 1, Q = I
2

and R = 0.1 ⇤ I
2

and

following from the Theorem 6.2.1 we obtain

P =

2
666666664
50.2787 �0.0000

�0.0000 50.2787

3
777777775 ,K =

2
666666664
�0.0157 �0.0000

�0.0000 �0.0157

3
777777775 (6.35)
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Figure 6.6: The simulated response of (a) id and (b) iq current (blue) for a step
change in reference id current (red) from 5 A to 8 A.
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Figure 6.7: The plot of simulated id and iq currents (blue) to a step change in
reference id current from 5 A to 8 A with MCAS.

By setting the constraints for id and iq currents as

�0.7A  iq(k)  0.7A (6.36)

�7A  id(k)  7A (6.37)

and on the above cost function parameters, a MCAS is obtained on a procedure

described in section 6.2 which is shown as a grey area in Figure 6.5. Note here

that the constraints specified in 6.36 represents the maximum allowed level of

current in the converter. This is usually defined based on various factors such
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Figure 6.8: The simulated response of id and iq current (blue) for a step change
in reference id current (red) from 5 Apeak to -6 Apeak.
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Figure 6.9: The simulated response of id and iq currents (blue) to a step change
in reference id current from 5 A to -6 A with MCAS.

as power rating of IGBT and the whole system but in this case the current limits

are chosen for the demonstration purposes.

First we discuss the simulation results of rectification mode. Figure 6.4 and

Figure 6.5 are the step response of id and iq current when the id current refer-

ence input is changed from 3A to 6A. A good tracking performance of reference

input in id current can be observed in Figure 6.4 (a), and the response of iq

current in Figure 6.4 (b) also shows a good regulation around zero current for

unity power factor. In terms of feasibility, Figure 6.5 shows both currents are

within the limits specified by the MCAS.
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Table 6.3: Grid-connected VSC system parameters

Symbol Parameter Name Value Unit
Vgrid Grid Voltage 30 V
fgrid Grid Frequency 50 Hz
Ls Input Filter Inductance 8.9 mH
RL Input Filter ESR 8.3 ⌦

Cdc DC-link Capacitance 700 µF
Rdc Load Resistance 20 � 40 ⌦

To test the handling of system constraints, a step change of id current ref-

erence from 5A to 8A is simulated. As shown in Figure 6.6, the response of

id current gets saturated to 7A after the reference input exceeds the current

constraint level specified in (6.36). However, it is also interesting to note the

increase in the amount of ripple in the iq current. This is mainly due to reduced

number of effective switching states, since the switching states that results in-

feasibility (i.e violation of constraint) are not considered in the cost optimisation.

In other words, a less number of switching states to control the converter results

in a larger feedback error in the current. Figure 6.7 shows clearly that the sim-

ulated id and iq currents are confined within the MCAS. For the regeneration

mode, a step change in the id current from 5A to -6A is applied. Figure 6.8–6.9

are the simulation results in regeneration mode which shows a good tracking

performance in id and iq current.

The same parameters and test scenarios are repeated in experimental val-

idations. First, experimental results in rectification mode is discussed.

Figure 6.10 is the measured response of id current to a step change in the

reference input from 5 A to 6 A and the response of iq current is shown in Figure

6.11. Both results shows a good tracking response to a reference input and a

regulation around zero current even during the transient phase. Figure 6.12 is

the measured response of three phase current. Figure 6.13 shows the mea-

sured current with respect to MCAS. Although the id and iq currents are mostly
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Figure 6.10: The measured response of id current (blue) to a step change in
reference id current (red) from 5 A to 6 A: rectification mode
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Figure 6.11: The measured response of iq current (blue) when a step change
in reference id current occurs from 5 A to 6 A: rectification mode

kept inside the MCAS, due to unaccounted noise/disturbance in the actual sys-

tem, there are occasions where the current level exceeds the boundaries of

MCAS.

For the regeneration mode test, a step change in the id current from 5A to -

9A is applied after an extra current is injected in the DC-bus. As shown in Figure

6.14, the id current is saturated to -7A which was the limit set in (6.36) and as we

also observed in the simulation result the amount of ripple in iq current (Figure

6.15) is slightly increased after id current is saturated. Figure 6.16 shows the
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Figure 6.12: The measured response of iabc current to a step change in refer-
ence id current from 5 A to 6 A: rectification mode
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Figure 6.13: The measured response of id and iq current in MCAS: rectification
mode

response of three phase current where a phase shift of 180

� occurs when the

mode transition is made. Figure 6.17 shows the response of id and iq current in

the MCAS, as we have observed earlier due to the noise in the actual system,

the level of idq current exceeds the boundaries of MCAS.
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Figure 6.14: The measured response of id current (blue) to a step change in
reference id current (red) from 5 A to -9 A: regeneration mode
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Figure 6.15: The measured response of iq current (blue) to a step change in
reference id current from 5 A to -9 A: regeneration mode

6.5 Conclusions

In this chapter we have presented first the stability analysis of FCS-MPC in two

different aspects. The first method, which we referred to as Lyapunov statbility

based approach, considered the effect of quantised control inputs on the sys-

tem states as bounded disturbances, and then treated the stability problem of

FCS-MPC based on the concept of practical stability. In order to satisfy the

practical stability condition, a terminal weighting matrix and a local controller

were designed to show that the cost function is practical CLF. In the second
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Figure 6.16: The measured response of iabc current to a step change in refer-
ence id current from 5 A to -9 A: regeneration mode

−8 −6 −4 −2 0 2 4 6 8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

I
d
(A)

I q
(A

)

Figure 6.17: The measured response of id and iq current in MCAS: regeneration
mode

method, a more direct approach was considered

Based on the Lyapunov statbility based approach of FCS-MPC, the cost

function of FCS-MPC was re-defined based on the dual-mode MPC strategy

and later augmented it with a linear inequality constraint that represented a

maximal control admissible set. The led to a new FCS-MPC method that not

only ensures the practical stability but also bounds the id and iq currents to

be within the safe operating limit. Both simulation and experimental results

showed a satisfactory control performance as well as a constraint handling of
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id and iq currents. However due to an unaccounted noise in the actual system,

an occasional violation of constraints were observed.





Chapter 7

Conclusions

This thesis has presented a continuous-time model predictive control paradigm

to control the bi-directional power flow of a grid-connected VSC. In the following,

we summarise key contributions as well as some recommended future works

based on this thesis.

7.1 Summary of Contributions and Future Works

Model Predictive Voltage Control

A multi-variable control scheme based on a general framework of model pre-

dictive control is presented which centralised the control structure to regulate

both DC-bus voltage and input currents in the synchronous reference frame.

In order to reduce the complexity of tuning, pre-stabilisation techniques were

presented to satisfy desired closed-loop responses as well as improving the

numerical conditioning of the predictive controller. An extension of prescribed

degree of stability method in [109] is made to consider the parameter uncertain-

ties and through experimental results it was shown that under a grid impedance

variation the proposed robust method improved the control performance. This

idea was further extended to consider a regional pole placement method as a

pre-stabilisation technique, which allowed to meet more complex closed loop

responses such as decay rate and minimum damping ratio. Both contributions

in the pre-stabilisation technique showed the improvement in robustness as
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well as reducing the complexity in the tuning of MPC. In order to keep the mod-

ulation index of switching control input to within a linear region, constrained

optimisation with switching control input constraints is also formulated and im-

plemented in the synchronous reference frame. Compared to the traditional

control scheme, such as a cascaded PI control, the presented work offers a

simpler framework to handle the parametric uncertainties which can be ob-

tained using the LMI framework, furthermore by using the idea of prescribed

degree of stability the tuning of the overall controller is simplified compared to

the cascaded control scheme. For the future work, as the proposed MPVC sys-

tem has been developed for a stand-alone grid-connected VSC with a simple

DC-load, an ideal extension of the system would be to include a more realistic

load conditions such as motor drives and renewable energy sources.

Model Predictive Current Control for LCL filter

Model predictive current control method have been presented for grid-connected

VSC with an LCL filter. In the proposed method, a reduced-order model of LCL

filter utilised to keep the complexity of the controller to minimal. However, since

the control design relies on the reduced-order dynamics, a nominal model pre-

dictive current controller alone was not enough to suppress the resonant har-

monics of LCL filter. To attenuate LCL filter resonance, a disturbance rejec-

tion controller was added which its main idea is to keep the measured current

close to the nominal current trajectories. For the design of disturbance rejec-

tion controller, we have employed a finite-frequency H1 approach based on

GKYP lemma. The experimental results showed a significant improvement in

suppressing LCL filter resonance while supplying the stable grid current to the

grid. Compared to the traditional active damping method, which requires an ex-

tra hardware circuitry for measuring grid side current of the filter capacitor, the

presented method requires no extra hardware. Furthermore, the disturbance
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rejection controller ensures the closed-loop stability with a prescribed transient

requirement and constrained control in account of disturbance ensures con-

straint feasibility. A recommended extension of this work is to consider the

grid impedance variation in the presented design framework. Since the grid

impedance variation affects the resonant harmonic frequency of LCL filter, a

further investigation into designing a robust stabilising control law for nominal

model predictive current controller and a robust finite-frequency control law for

damping the LCL filter resonance are required.

Model Predictive Resonant Control

A model predictive resonant control (MPRC) scheme has been proposed for a

three phase grid-connected VSC. The main idea of this approach was to embed

a sinusoidal resonant module in the system model to reject/follow periodic dis-

turbances/reference. The basic design framework of MPRC followed the same

as in the previous methods except the use of augmented model with an em-

bedded resonant module. We have also investigated a practical consideration

of grid frequency variations for the proposed MPRC. For this problem, we have

proposed a robustly stabilising feedback law and introduced it into the design

of MPRC by using the concept of closed-loop paradigm approach. A nonlinear

simulation test was carried out to confirm robust and stable responses of the

grid current under grid frequency variations. For another commonly encoun-

tered problem in the grid-connected VSC, we investigated a problem of multiple

harmonic distortions on the grid current caused by grid voltage harmonics. To

eliminate these unwanted harmonics while preserving the stability of the over-

all control system, two separate disturbance rejection controllers were designed

based on LQR method and the common Lyapunov matrix was found to ensure

the stability of the overall system. Experimental results were carried out to il-

lustrate the efficacy of the proposed method. As similar to the work in previous
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chapter, the main benefit of the proposed method lies at the development of

model-based harmonic compensator. The proposed method not only ensures

that the targeted harmonics are suppressed, but also develops the stability cri-

teria that ensures the closed-loop stability with nominal controller is ensured. By

using this approach, the parametric uncertainty especially with grid frequency

variation can be considered and compensated in a more systematic way.

Finite-Control-Set MPC with constraints

Based on the motivation that a conventional FCS-MPC for power electronic

applications does not incorporate stability guarantee by default, we have inves-

tigated a method that not only ensures the practical stability but also bounds the

system states, which were id and iq currents to be within the safe operating limit.

In the proposed method, the cost function of FCS-MPC was re-defined based

on the dual-mode MPC strategy and later augmented it with a linear inequality

constraint that represented a maximal control admissible set. Both simulation

and experimental results showed a satisfactory control performance as well as

a constraint handling of id and iq currents. The presented showed a way of in-

cluding system constraints in the traditional FCS-MPC. The modification of cost

function based on Lyapunov stability theorem and bounding the system states

within the invariant set enhances the stability of FCS-MPC. However due to an

unaccounted noise in the actual system, an occasional violation of constraints

were observed, Therefore a robust control strategy is recommended such as

the concept of constraint tightening to mitigate this problem.
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Appendix A

Experimental set-up

The laboratory prototype of three phase PWM converter has been developed

for this work to validate the proposed control design in the real hardware en-

vironment. As shown in this Figure A.1, the three phase voltage source con-

verter laboratory set-up consists of a step-down transformer (see mark (2)) that

is used to reduce the line voltage from the main grid voltage (see mark (1)) of

415V to 30V. From the transformer, there are three line inductors (see mark (3))

connected between the converter and the transformer. These line inductors are

a multi-tapped inductors whose value of inductance can be varied depending

on the connection.

For LCL filter applications, an extra filter capacitors are connected to these

inductors. The converter (see mark (4)) is made up of largely three compo-

nents: a soft-start circuit, a number of sensors and a switching module. The

soft-start circuit mainly provides a starting mechanism to limit the in-rush cur-

rent when the DC-link capacitor is fully discharged at the start. The sensors

include AC current sensors and DC bus voltage sensors. The switching mod-

ule consists of six IGBT devices including freewheeling diode. This module is

also fitted with a gate driver circuit and IGBT fault detection circuit. The real-

time model predictive controller is developed using xPC target (see mark 5),

and finally a DC-link load is connected to the system (see mark 6).

The overall control software and PWM switching output is executed in xPC

target. xPC target is Simulink’s real-time toolbox which allows easy and seam-

less transition from a Simulink model to a real-time executable code. Figure
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Figure A.1: Experimental set-up
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Figure A.2: Real-time simulation model of the grid-connected converter control
system

A.2 shows the overall control system model used in this thesis, which consists

of several sub-modules including the main control system module (indicated in

blue). In the main control system module, a grid-synchronisation and a phase
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Figure A.4: Grid-synchronisation module: Phase-locked loop

detection are also included as shown in Figure A.3.

The grid-synchronisation algorithm is implemented in a feedback-loop con-

figuration which mainly consists of synchronous reference transformation (dqo

transformation) and a PI controller, see Figure A.4. Here the instantaneous

phase angle is detected by synchronizing the PLL rotating reference frame to

the grid voltage. The PI controller sets the q-axis reference voltage Vq to zero,

which results in the reference being locked to the utility voltage vector phase

angle. Under ideal grid conditions without any harmonic distortions or unbal-

ance, a high bandwidth which is mainly determined by the gains of PI controller,

can yield a fast and precise detection of the phase of the grid voltage.

As shown in Figure A.5, the phase sequence detection part is to automat-

ically detect the orientation of three phase voltage input (e.g. U!V!W or
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Figure A.6: Soft-start module

U!W!V) by monitoring the zero crossings of each phase. Once the sequence

is detected at the start-up, synchronous reference transformation module is re-

configured to follow the correct orientation of the main grid voltage.

In the start-up module shown in Figure A.6, a soft start mechanism is im-

plemented to prevent a large in-rush current at the start-up when the DC-bus

is fully discharged. This is done by switching the soft-start relay at the start

to connect the main three phase to the converter via a set of resistor. To sim-

plify the design of this mechanism, a fixed but tunable time constant is used to

determine the duration of this phase.

In the PWM module shown in Figure A.7, control inputs from the main con-

troller is transformed from the two-phase coordinate frame (either in dq or ↵�)

into the three phase frame. After the transformation, control inputs are fur-
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Figure A.7: Pulse-width modulation module including inverse synchronous ref-
erence frame transformation

ther discretised into six switching input signals using a regular sampled PWM

method. For FCS-MPC in chapter 6, this stage is replaced by the fixed interval

task for updating the switching input signals.





Appendix B

Continuous-time Laguerre

functions

In this section, we first introduce the basic definitions and some useful prop-

erties of Laguerre functions. Based on the described properties of Laguerre

functions, we then present a detailed explanation of control input approxima-

tion using Laguerre function in the continuous-time MPC design. The most of

contents in this section are excerpted from Chapter 5 and 6 in [109].

B.1 Definitions of Laguerre functions

The Laguerre function is a set of complete orthogonal functions (see [] for a

general description of orthogonal functions) which is defined as below for p > 0

l
1

(t) =
p

2p ⇥ e�pt

l
2

(t) =
p

2p(�2pt + 1)e�pt

... =
...

li(t) =
p

2p
ept

(i � 1)!

di�1

dti�1

[ti�1e�2pt
] (B.1)

where the parameter p is referred to as a time scaling factor.

Figure B.1 and B.2 show the first three Laguerre functions with the time

scaling factor p = 1 and p = 2 respectively, where the scaling factor p = 2

shows a faster exponential decay rate. Therefore, in general a higher value of
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p corresponds to a faster convergence of these functions. By using this feature

of Laguerre functions in continuous-time MPC design, the time scaling factor p

plays an important role in tuning the closed response of MPC system.

In the interest of simplifying the representation of Laguerre function in (B.1),

we can derive a state-space form of Laguerre function by first considering the

Laplace transform of the Laguerre functions (B.1), which leads to the following
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Laguerre network.
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Z 1
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By letting L(t) = [l
1

(t), l
2

(t), . . . , lN(t)]T , a state-spce representation of Laguerre

function can be obtained as:
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The solution to the above differential equation can be represented by Laguerre

function for i = 1, 2, . . . ,N as:

L(t) = eAptL(0) (B.5)

where L(0) =
p

2p [1 1 . . . 1]

T and

Ap =

2
6666666666666666666666664

�p 0 . . . 0

�2p �p . . . 0

...
...
. . .

0

�2p . . . �2p �p

3
7777777777777777777777775

(B.6)
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B.2 Application to continuous-time MPC

B.2.1 Approximation of control trajectory

The continuous-time MPC design based on the augmented system model, such

as in section 3.2, transforms the optimisation problem of MPC from the control

input u(⌧) into the derivative of control input u̇(⌧) optimisation. In other words,

considering an unconstrained case we can represent the optimal control input

of MPC for the augmented system model as

u̇(⌧) = �Kx(⌧) (B.7)

where K is the unconstrained control law of MPC. The closed system with initial

condition x(ti) is then given by

x(⌧) = e(A�BK)⌧x(ti) (B.8)

u̇(⌧) = �Ke(A�BK)⌧x(ti) (B.9)

Assuming (A � BK) is Hurwitz, then it is seen that the control trajectory u̇(⌧)

decays exponentially to zero which also satisfies the following condition for 0 
⌧  Tp,

lim
Tp!1

Z Tp

0

u̇(⌧)

2d⌧ < 1 (B.10)

Based on the above observation, the derivative of control signal u̇(⌧) can be

described by a set of Laguerre functions. Namely, for o  ⌧  Tp

u̇(⌧) ⇡
NX

i=1

cili(⌧) = L(⌧)

T⌘ (B.11)
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where ⌘ = [c
1

c
2

. . . cN] is the vector of Laguerre function coefficients and

li(⌧) = [l
1

(⌧), l
2

(⌧), . . . , lN(⌧)]

T are the set of Laguerre functions. As defined

below, for a given scaling factor p > 0, the convergence of this approximation

increases with a larger value of N

Z 1

0

0
BBBBB@u̇(⌧) �

NX

i=1

cili(⌧)

1
CCCCCA

2

< " (B.12)



214 Appendix B. Continuous-time Laguerre functions


	 Introduction
	Background
	Literature Review
	Voltage Source Converter Topologies
	Voltage Source Converter Control
	Model Predictive Control

	Objectives
	Thesis Contribution
	List of Publications

	Thesis Organisation

	 Mathematical Model
	Nonlinear Model
	Synchronous-Reference-Frame Axis
	Stationary-Frame Axis

	Model Predictive Voltage Control
	Introduction
	Mathematical Model
	Prescribed Degree of Stability
	Pre-stabilisation
	Prescribed Degree of Stability
	Robust prescribed degree of stability

	Prescribed degree of stability and damping ratio
	Closed-Loop Paradigm
	Alternative regional pole placement

	Model Predictive Voltage Control
	MPVC with Prescribed Degree of Stability
	MPVC with Prescribed Degree of Stability and Damping Ratio

	Constrained MPVC
	Experimental Results
	Comparison study with and without prescribed degree of stability
	Robust prescribed degree of stability
	Experimental results for prescribed degree of stability and damping ratio
	Experimental results for rectification mode
	Experimental results for regeneration mode
	Constrained Control

	Conclusions

	Model Predictive Current Control with LCL filter
	Introduction
	 Frequency Characteristics of the LCL Filter
	Damping methods of LCL filter

	MPCC with Finite-frequency H control
	Control Overview
	Nominal Predictive Current Control
	Disturbance Rejection Control
	Constrained Control

	Experimental Results
	MPCC with finite frequency H control

	Conclusions

	Model Predictive Resonant Current Control
	Introduction
	 Model Predictive Resonant Current Control
	Constrained Control

	 MPRC with Selective Harmonic Compensation
	Model-based Selective Harmonic Compensator
	Constrained Control

	Experimental Result
	Model Predictive Resonant Control
	MPRC with Selective Harmonic Compensations

	Conclusions

	Predictive Current Control with Finite Control Set
	Introduction
	FCS-MPC with Constraints
	Application to Voltage Source Converter
	Simulation and Experimental Results
	Conclusions

	Conclusions
	Summary of Contributions and Future Works

	Bibliography
	Experimental set-up
	Continuous-time Laguerre functions
	Definitions of Laguerre functions
	Application to continuous-time MPC
	Approximation of control trajectory



