
New Development of the
Inclusive-cone-based Method for

Linear Optimization

by

Ding, Ming-Fang

B.Sc.(Hons) (Shanxi U.), M.Sc. (Southwest Jiaotong U.)

Dissertation submitted in fulfilment of the requirements for the

Doctor of Philosophy

School of Mathematical and Geospatial Sciences

RMIT University

Melbourne

Australia

February 7, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RMIT Research Repository

https://core.ac.uk/display/20319751?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DECLARATION

The candidate hereby declares that the work in this thesis, presented for the

award of the Doctor of Philosophy and submitted in the School of Mathematical

and Geospatial Sciences, RMIT University:

• has been done by the candidate alone and has not been submitted

previously, in whole or in part, in respect of any other academic

award and has not been published in any form by any other person

except where due reference is given, and

• has been carried out under the supervision of Dr Yanqun Liu

..

Ding, Ming-Fang

Certification

This is to certify that the above statements made by the candidate are correct

to the best of our knowledge.

.......................................

Dr Yanqun Liu

Supervisor

I

Acknowledgements

I welcome this opportunity to thank those people who provided me with help

and support throughout my candidature for PhD degree. Without them, this

dissertation would not have been completed.

First and foremost, I would like to express my heartfelt gratitude to my super-

visors, Dr Yanqun Liu and Dr John Gear, for their helpful guidance, constructive

suggestions and encouragement.

I would also like to extend my sincere appreciation to my friend Miss Linda

Nguyen for her friendship and helping install necessary study software on my

laptop, which greatly facilitated my research.

Last but not least, I would like to express my thanks and love to my whole

family. I am truly fortunate to have them as my families. Thank my parents

and my sister for their unconditional love, support and constant encouragement,

which helped me to overcome the difficulties and to get through this lengthy

challenging journey. I would also say thanks to my auntie for her helpful advice

whenever I needed it.

II

Contents

List of Figures VI

List of Tables VII

List of Publications VIII

Summary 1

1 Introduction 3

2 Fundamentals of Linear Programming Based on Inclusive Cone 8

2.1 The Linear Programming Problem and Conversion between its

Different Forms . 8

2.1.1 Forms of LP Problems . 8

2.1.2 Conversion between Different Forms 9

2.2 Inclusiveness, Boundedness, Feasibility, Optimality and Degeneracy 10

2.3 Duality Theory . 18

2.3.1 Classical Results . 18

2.3.2 Inclusive-cone-based Duality Theory 20

2.4 Inclusiveness under Transformation 23

2.4.1 Motivation . 23

2.4.2 Inclusiveness under Transformation 24

2.5 Sensitivity Analysis . 30

2.5.1 Introduction . 30

2.5.2 Perturbation in the Objective Function Data 31

III

CONTENTS

2.5.3 Perturbation in the Right-Hand-Side Data 34

3 Inclusive-cone-based Ladder Algorithms for Linear Programming 38

3.1 Introduction . 38

3.2 The Ladder Method . 40

3.2.1 Preliminaries . 41

3.2.2 The Ladder Algorithms . 42

4 Improved Ladder Algorithms for Linear Programming 47

4.1 Introduction . 47

4.2 An Improved Targeted Climbing Algorithm (ITCA) 48

4.2.1 Motivation . 48

4.2.2 Description of Algorithm 48

4.2.3 An Illustration . 50

4.2.4 Computational Experiments 51

4.3 Ladder Updating Criteria in the Framework of CCA 53

4.3.1 Description of Criteria . 54

4.3.2 A Specific Example . 54

4.3.3 Computational Experiments 56

5 Initialization Techniques 62

5.1 Finding an Initial Ladder in Special Cases 62

5.2 Finding an Initial Ladder by Means of the Dual System 63

5.3 Finding an Initial Ladder by Means of Transformation 64

5.4 Constructing an Artificial Ladder 67

5.4.1 Approach to Construction 68

5.4.2 An Inclusive-cone-based Solvability Criterion for LP 74

5.4.3 Illustrations . 77

6 Inclusive-cone-based Method for Linear Semi-infinite Program-

ming 87

6.1 Introduction . 88

6.2 Notation and Preliminaries . 91

IV

CONTENTS

6.3 An Optimality Result . 93

6.4 An LSIP Ladder Algorithm . 96

6.4.1 Initialization . 96

6.4.2 Description of Algorithm 98

6.5 Numerical Experiments . 104

6.6 Summary . 109

7 Conclusion and Future Works 117

8 Bibliography 119

A Procedure of Elimination for a Linear System 130

V

List of Figures

2.1 Classification of LP problems . 11

2.2 An LP example . 13

2.3 New classification of LP problems involving inclusiveness 14

2.4 An inclusive-infeasible LP example 15

2.5 A noninclusive-feasible (unbounded) LP example 16

2.6 A noninclusive-infeasible LP example 17

2.7 A degenerate LP example . 18

4.1 Geometric illustration of Example 4.1 52

6.1 Finding a pick along the centerline 99

6.2 Approximating functions g∗s(t) against b+(t) in Example 6.3 (n=5,

10, 15) . 112

6.3 Approximating functions g∗s(t) against b+(t) in Example 6.3 (n=25,

55, 200) . 113

6.4 Approximating functions g∗c (t) against b+(t) in Example 6.4 (n=5,

10, 15) . 115

6.5 Approximating functions g∗c (t) against b+(t) in Example 6.4 (n=25,

55, 200) . 116

VI

List of Tables

4.1 Average CPU time (in seconds) for Example 4.2 58

4.2 The tableau obtained from simplex for Example 4.3 59

4.3 The tableau obtained from simplex for Example 4.3 (to continue

Table 4.2) . 60

4.4 The table obtained from the ladder algorithm with Criterion 1 for

Example 4.3 . 60

4.5 The table obtained from the ladder algorithm with Criterion 2 for

Example 4.3 . 60

4.6 Average CPU time (in seconds) for test problems in Example

4.2 (m = 2n) . 61

4.7 Average CPU time (in seconds) for test problems in Example

4.2 (m− n = 100) . 61

6.1 Computational results for Example 6.2 (M = 50) 110

6.2 Computational results for Example 6.2 (to continue Table 6.1) . . 111

6.3 Computational results for Example 6.3 (M = 5, τ = 1) 111

6.4 Computational results for Example 6.4 (M = 5, τ = 1) 114

VII

List of Publications

Publications relative to the research of this thesis:

M.-F. Ding, Y. Liu and J. A. Gear. An improved targeted climbing algorithm for

linear programs. Numerical Algebra, Control and Optimization, 1(3): 399-405,

2011.

M.-F. Ding, Y. Liu and J. A. Gear. A modified centered climbing algorithm for

linear programming. Applied Mathematics, 3: 1423-1429, 2012.

Y. Liu and M.-F. Ding. A ladder method for linear semi-infinite programming.

Journal of Industrial and Management Optimization. Accepted for publication,

to appear in Volume 10, No. 2, April 2014.

M.-F. Ding, Y. Liu and J. A. Gear. An inclusive-cone-based solvability criterion

for linear programming. In preparation for submission.

Other publications:

M.-F. Ding, J. A. Gear and Y. Ding. Thermal storage and insulation properties

of a diver dry suit. ANZIAM Journal, 51 (EMAC2009): C625-C639, 2010.

VIII

Summary

The purpose of this dissertation is to present a simple method for linear op-

timization including linear programming (LP) and linear semi-infinite program-

ming (LSIP), which is termed “the inclusive-cone-based method”.

Using the inclusive cone as an analytic tool, theoretical aspects of linear pro-

gramming are investigated. Sensitivity analysis in linear programming is exam-

ined from the perspective of an inclusive cone. The relationship of inclusiveness

between correlated linear programming problems is also studied.

New inclusive-cone-based ladder algorithms are proposed to solve linear pro-

gramming problems in inequality form. Numerical experiments are implemented

to show effectiveness and efficiency of the new linear programming ladder algo-

rithms.

To start the ladder method for LP, a single artificial constraint technique is

introduced to find an initial ladder. Further, in the context of a new category

of linear programming problems, an inclusive-cone-based solvability criterion is

established to distinguish that a linear programming problem is inclusive-feasible

(i.e., optimal), noninclusive-feasible (i.e., unbounded), inclusive-infeasible or

noninclusive-infeasible.

The inclusive-cone-based method for linear programming is also generalized

to linear semi-infinite programming. An optimality result, based upon the con-

cept of the generalized base point, is established. With this optimality result

as a theoretical foundation, a ladder algorithm for solving linear semi-infinite

programming problems is developed. The new algorithm has several features: at

each iteration it only deals with a small fraction of constraints; at each itera-

tion it selects a constraint most violated along a “parameterized centerline”, by

solving a one-dimensional global optimization problem using the efficient bridg-

ing algorithm; at each iteration the selection of the incoming constraint has a

great degree of freedom, which is controlled by a parameter arising in the global

optimization problem; it can detect infeasibility and unboundedness after a fi-

nite number of iterations; it obviates extra work for feasibility verification as

1

SUMMARY

it handles feasibility and optimality simultaneously. A simple convergent result

is presented. Numerical behavior of the algorithm is examined on several test

problems.

2

Chapter 1

Introduction

In this dissertation, we deal with linear optimization problems in the following

form

(PLO) min cTx

s.t. a(t)x ≤ b(t), t ∈ T

where x ∈ Rn is the vector of decision variables, c ∈ Rn (c 6= 0) is a given vector of

objective function coefficients, T is a given index set, a : T → Rn and b : T → R

are given functions. The above formulation includes both linear programming

(LP) and linear semi-infinite programming (LSIP) problems. When T is a finite

set, say T = {t1, t2, · · · , tm}, problem (PLO) represents a linear programming

problem, which is conventionally expressed as

min cTx

s.t. Ax ≤ b,

where

A :=

















a(t1)

a(t2)
...

a(tm)

















, b :=

















b(t1)

b(t2)
...

b(tm)

















.

If T is an infinite set, problem (PLO) is a linear semi-infinite programming

3

CHAPTER 1. INTRODUCTION

problem.

Traditionally, linear programming and linear semi-infinite programming are

dealt with differently and separately, both in theory and in computation. In this

dissertation we present a recently developed method, namely, the inclusive-cone-

based method, for both LP and LSIP. Our purpose is twofold. Firstly, we give

a systematic summary of published work relevant to the inclusive-cone-based

method, including both theoretical and algorithmic aspects, for both LP and

LSIP. Secondly, we present new theoretical and computational results for LP

and LSIP that have been developed during my PhD studies.

LP is the most fundamental class of optimization problems. It is also one

of the most useful modeling paradigms. LP has been extensively applied to

modeling real-world problems arising in economics, engineering, science, military

and many other fields (see Gaitsgory and Quincampoix [25], Finlay et al. [22],

Moghaddam and Michelot [72] and Luenberger and Ye [69]). Furthermore, there

are more challenging applications that remain undiscovered. The prevalence of

LP, to a great extent, is ascribable to the important role it serves as an aiding tool

in constructing algorithms for more complex classes of optimization problems like

integer programming and combinatorial optimization problems.

LP has been studied for several decades. Early in 1939, a special LP problem

dealing with the organization and planning of production was formulated and

solved by the Soviet mathematician and economist L. V. Kantorovich. However,

it was not until 1947 that the general LP problems were formulated, and the first

computationally efficient LP algorithm known as the primal simplex algorithm

was developed, due to Dantzig’s contribution [14]. Ever since, many a simplex

variant has been proposed to advance Dantzig’s idea. For a long time since the

birth of Dantzig’s algorithm, it was believed that the worst case complexity of

the simplex method was polynomial. Eventually this surmise was overturned by

Klee and Minty, who constructed the famous Klee-Minty cube to demonstrate

that in the worst case the simplex method suffered from an exponential time

complexity (see Klee and Minty [52]). The year 1979 witnessed the first LP algo-

rithm with polynomial time complexity, that is, Khachiyan’s ellipsoid algorithm

4

CHAPTER 1. INTRODUCTION

[51]. Despite of its high theoretical value, the ellipsoid algorithm performs poorly

in practice. In 1984, Karmarkar [50] proposed an interior point algorithm with

polynomial time complexity using a sequence of projective transformations of a

polytope, which is regarded as the first practically efficient LP algorithm solving

LP problems in polynomial time. Since then, interior point methods (IPMs) have

been prospering in the LP community. To date, while a myriad of LP algorithms

have been proposed, the simplex method and the interior point methods are still

the most favorable methods for solving LP problems.

Unfortunately, any currently-existing solution method, even the most success-

ful simplex method and the interior point methods, is only suitable for solving

a certain type of LP problems. For example, the simplex method has superior-

ity for solving small- and medium-sized LP problems, whereas the interior point

methods win out for large-scale and sparse LP problems. Furthermore, it remains

unknown whether there exists a strongly polynomial time LP algorithm. Due

to these reasons, extensive research is still in progress to pursue LP algorithms

which have better numerical performance.

On the other hand, linear semi-infinite programming, as the extension of LP,

is the other case we would like to give special attention in this dissertation. In

contrast to LP dealing with a finite number of variables and constraints, the LSIP

we consider in this dissertation involves infinitely many constraints and finitely

many variables. Since the first papers on LSIP were published in the early 1960’s

(see Charnes et al. [10, 11]), LSIP has been receiving researchers’ attention for at

least three reasons as stated by Goberna [28]: First, for its real life and modeling

applications. Second, for providing nontrivial but tractable optimization problems

on which it is possible to check more general theories and methods. Finally, LSIP

can be seen as a theoretical model for large scale LP problems.

In this dissertation, we present a simple method for linear optimization (in-

cluding linear programming and linear semi-infinite programming), termed “the

inclusive-cone-based method”. As the term “inclusive-cone-based” suggests, the

method presented in this dissertation for both LP and LSIP is based on the con-

cept of the inclusive cone. The concept of the inclusive cone was first introduced

5

CHAPTER 1. INTRODUCTION

by Liu [60] for LP. Introduction of this concept resulted in the generalization

of boundedness concept, and further led to a “symmetric” inclusive-cone-based

strong duality theorem in the context of a new category of LP problems (see

Liu [61]), which not only completes the classical strong duality theorem but also

establishes the equivalent relation between primal and dual problems. The lad-

der method for solving LP problems (see Liu [60]) also builds upon this concept.

Motivated by the aforementioned work, in this dissertation, we make further and

more in-depth investigation into the inclusive-cone-based method for LP. More

importantly, we generalize this approach to the linear semi-infinite programming

case. Specifically speaking, what is done in this dissertation are the following:

• Examination of sensitivity analysis in LP from the perspective of an inclu-

sive cone.

• Investigation of the relationship of inclusiveness between correlated LP

problems.

• Development of new inclusive-cone-based ladder algorithms for solving LP

problems with inequality constraints.

• Introduction of an initialization technique for starting the ladder method.

• Development of an inclusive-cone-based solvability criterion for LP in the

context of a new category of LP problems.

• Establishment of an optimality result for LSIP, which is based upon the

concept of the generalized base point.

• Development of an inclusive-cone-based ladder algorithm for solving linear

semi-infinite programming problems.

All the work done in this dissertation centers around the core concept of an

inclusive cone. Our goal is to provide a graphically-intuitive approach with a

broad simplification and easy understanding for both LP and LSIP, which is

especially suitable for classroom teaching.

6

CHAPTER 1. INTRODUCTION

This dissertation consists of two major parts: linear programming and linear

semi-infinite programming. In the initial part of this dissertation, which encom-

passes Chapter 2–Chapter 5, we focus our attention on LP. In Chapter 2, we

introduce the concept of an inclusive cone and the resulting fundamental LP

theory including duality results. We then investigate the relationship of inclu-

siveness between correlated LP problems. We also examine sensitivity analysis

in LP using an inclusive-cone-based approach. Chapter 3 gives an overview of

algorithms for solving LP problems. This chapter ends with the detailed de-

scription of the ladder method, which is a basis of the subsequent algorithms to

be proposed. In Chapter 4, we develop several new inclusive-cone-based ladder

algorithms for solving LP problems with inequality constraints. In Chapter 5,

after giving an overview of some initialization methods for starting the ladder

method, we introduce a new initialization technique. Based on this technique, we

further develop an inclusive-cone-based solvability criterion for LP. In Chapter

6, we generalize the inclusive-cone-based method for LP to the LSIP case. We

first develop a fundamental theorem with regard to optimality for LSIP, which

is an LSIP version of inclusive-cone-based optimality condition for LP. With this

optimality result as a theoretical foundation, we propose a linear semi-infinite

programming algorithm with convergent properties. Finally, in Chapter 7, we

summarize the content and the contributions of this dissertation, concluding with

a brief discussion on possible future lines of research.

7

Chapter 2

Fundamentals of LP Based on

Inclusive Cone

2.1 The Linear Programming Problem and Con-

version between its Different Forms

A linear programming (LP) problem is an optimization problem dealing with

minimizing (or maximizing) a linear objective function which is subject to a

set of linear equality and/or inequality constraints or restrictions. It can be

formulated as any kind of the following different forms.

2.1.1 Forms of LP Problems

General form

(PG): min cTx

s.t. Ax ≤ b

Dx = g,

where x = [x1; x2; · · · ; xn] ∈ Rn is the vector of decision variables, A ∈ Rm×n

and D ∈ Rr×n are constraint matrices, c = [c1; c2; · · · ; cn] ∈ Rn (c 6= 0) is the

vector of objective function coefficients, b ∈ Rm and g ∈ Rr are right-hand-side

(RHS) vectors. Here and the remaining of this dissertation, a vector with its

elements separated by semicolons represents a column vector.

8

CHAPTER 2. FUNDAMENTALS OF LINEAR PROGRAMMING BASED
ON INCLUSIVE CONE

Inequality form

(P): min cTx

s.t. Ax ≤ b.

Standard form

(PS): min cTx

s.t. Dx = g

x ≥ 0.

Canonical form

(PC): min cTx

s.t. Ax ≤ b

x ≥ 0.

2.1.2 Conversion between Different Forms

An LP problem can be transformed from one form to another equivalent form

by simple manipulations. Here we take the typical reduction of general form

to inequality/standard form for examples to show how to convert one form to

another.

Reduction of general form to inequality form

Consider problem (PG). By writing equations of the form Dx = g as the equiv-

alent inequalities Dx ≤ g and −Dx ≤ −g, the above general form is reduced to

the equivalent inequality form

(P
′

G
): min cTx

s.t.











A

D

−D











x ≤











b

g

−g











.

Reduction from general form to standard form

Consider problem (PG). Let x = x+ − x−, where x+, x− ≥ 0. By introducing

a vector of slack variables s = [s1; s2; · · · ; sm], the general LP form (PG) can be

reduced to the standard form

9

CHAPTER 2. FUNDAMENTALS OF LINEAR PROGRAMMING BASED
ON INCLUSIVE CONE

(P
′′

G
): min

[

cT −cT 0
]











x+

x−

s











s.t.





A −A Im

D −D 0















x+

x−

s











=





b

g





x+, x−, s ≥ 0.

In the following and subsequent chapters for LP part of this dissertation, we

focus our attention on LPs in inequality form (see problem (P) as above). We

are concerned with problems in which the number of constraints is greater than

or equal to that of variables and constraint matrices are of full column rank.

2.2 Inclusiveness, Boundedness, Feasibility, Op-

timality and Degeneracy

In terms of solution state, LP problems are usually divided into three classes:

• Problems with optimal solutions. If a problem has feasible solutions and

the objective function values are bounded, then it has optimal solutions.

• Unbounded problems. A problem is called unbounded if it has feasible

solutions with unbounded objective function values.

• Infeasible problems. We call an LP problem infeasible if it has no feasible

solution.

We display Figure 2.1 for intuitive demonstration and subsequent comparison.

As seen from the above as well as Figure 2.1, the concept of boundedness is only

applicable to feasible case. Liu [61] introduced the concept of inclusiveness,

consequently extending the concept of boundedness to infeasible problems. This

concept is based on the concept of an inclusive cone, which we present as follows.

Definition 2.1. [60] Consider problem (P). Denote by J = {1, 2, · · · , m} the

constraint index set of problem (P). Let J = {j1, j2, · · · , jk} ⊂ J be an ordered

10

CHAPTER 2. FUNDAMENTALS OF LINEAR PROGRAMMING BASED
ON INCLUSIVE CONE

 LP problems

 feasible problems

 infeasible problems

 bounded and feasible
 problems (i.e., problems
 with optimal solutions)

 unbounded problems

Figure 2.1: Classification of LP problems

subset. If the outward normal vectors of constraints corresponding to J are inde-

pendent, then J is called independent. For an ordered independent subset J with

k = n, if the convex cone spanned by its corresponding n linearly independent

outward normal vectors

aTj1 , a
T
j2
, · · · , aTjn,

where aTji (1 ≤ i ≤ n) is the outward normal vector of the constraint ajix ≤ bji

pointing away from its feasible side, contains the vector −c, it is said to be an

inclusive cone generated by J . The generated cone is denoted by N(J). If J

generates an inclusive cone, the set defined by

L(J) = {x ∈ Rn : ajx ≤ bj , for j ∈ J}

is called the inclusive region or the ladder associated with J . The corresponding

ordered index set J is called the generator of the ladder L(J). The unique

solution of the linear system ajix = bji , i = 1, 2, · · · , n, denoted by xJ , is called

the base point of the ladder L(J).

We take the following two-dimensional problem for example to illustrate afore-

mentioned concepts.

11

CHAPTER 2. FUNDAMENTALS OF LINEAR PROGRAMMING BASED
ON INCLUSIVE CONE

Example 2.1. Consider the problem

(C1): min x2

s.t. − x1 − x2 ≤ 0

x1 − x2 ≤ 0

x1 − x2 ≤ −2.

The graph of this problem is displayed in Figure 2.2, where we put arrows

at both ends of each line to indicate the feasible side of the corresponding con-

straint and use the red arrow to represent the outward normal vector of the

corresponding constraint. (For the sake of elegance of the graphic display, we

chose this special example. Note that the particularity of this example causes the

outward normal vector of each constraint to be coincidentally parallel to some

hyperplane.)

As shown in Figure 2.2, the problem has two inclusive cones: one is spanned

by outward normal vectors of constraints x1−x2 ≤ 0 and −x1−x2 ≤ 0, the other

by outward normal vectors of constraints x1 − x2 ≤ −2 and −x1 − x2 ≤ 0. The

above problem has two ladders (inclusive regions), which are those shaded areas

in Figure 2.2. x0 and x1 are base points associated with the ladders (inclusive

regions).

We see from Figure 2.2 that the base point x1 is as well the optimal solution

of problem (C1). The relation between base points and optimal solutions was

dealt with in [60]. We state the main result as follows.

Theorem 2.1. [60] (Optimality Condition) Consider problem (P). A point x∗ ∈
Rn is an optimal vertex solution of problem (P) if and only if x∗ is the feasible

base point of some ladder of problem (P).

Careful readers may have noticed that the concept of the inclusive cone given

in the foregoing was developed for problems involving “ ≤ ”-type constraints. Liu

[61] further extended this concept to the problems containing both inequality and

equality constraints (see problem (PG)).

Definition 2.2. ([61]) Consider problem (PG) and its equivalent problem (P
′

G
).

An inclusive cone of problem (P
′

G
) is called an inclusive cone of problem (PG).

12

CHAPTER 2. FUNDAMENTALS OF LINEAR PROGRAMMING BASED
ON INCLUSIVE CONE

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

3

4

•

•

x
1
−x

2
=0

x0

x1

−c

x
1

−x
1
−x

2
=0 x

1
−x

2
=−2

−c=[0;−1]

x
2

 Ladder
(Feasible Region)

 Ladder

Figure 2.2: An LP example

Accordingly, we can also define the inclusive cone for problem (PS) in stan-

dard form (resp., problem (PC) in canonical form). The only work we need to

do is to convert problem (PS) (resp., problem (PC)) into its equivalent problem

with only “ ≤ ”-type constraints, denoted by (P
′

S
) (resp., (P

′

C
)):

(PS) :

min cTx

s.t. Dx = g

x ≥ 0

⇔ (P
′

S
) :

min cTx

s.t. Dx ≤ g

−Dx ≤ −g

−x ≤ 0

(PC) :

min cTx

s.t. Ax ≤ b

x ≥ 0

⇔ (P
′

C
) :

min cTx

s.t. Ax ≤ b

−x ≤ 0

Then the inclusive cone of problem (P
′

S
) (resp., problem (P

′

C
)) is called the in-

clusive cone of problem (PS)) (resp., problem (PC)).

On the basis of the concept of the inclusive cone, we now present the concept

of inclusiveness.

13

CHAPTER 2. FUNDAMENTALS OF LINEAR PROGRAMMING BASED
ON INCLUSIVE CONE

 LP problems

 feasible problems

 infeasible problems

 noninclusive−feasible
 problems (i.e., unbounded
 problems)

 inclusive−infeasible problems

 inclusive−feasible problems
 (i.e., problems with optimal
 solutions)

 noninclusive−infeasible problems

Figure 2.3: New classification of LP problems involving inclusiveness

Definition 2.3. ([61]) A linear programming problem with at least one inclusive

cone is called inclusive. We call a linear programming problem noninclusive if it

is not inclusive.

By virtue of inclusiveness concept, Liu [61] extended the boundedness concept

to infeasible problems, refining LP problems into four classes (see Figure 2.3):

• Inclusive-feasible problems (equivalently speaking, problems with optimal

solutions). If an LP problem has feasible solutions and has at least one

inclusive cone, then it is called inclusive-feasible (i.e., optimal).

• Noninclusive-feasible problems (equivalently speaking, unbounded prob-

lems). An LP problem is called noninclusive-feasible if the problem has

feasible solutions and no inclusive cone.

• Inclusive-infeasible problems. We call an LP problem inclusive-infeasible if

the problem has no feasible solution and has at least one inclusive cone.

• Noninclusive-infeasible problems. An LP problem is called noninclusive-

infeasible if the problem has neither a feasible solution nor an inclusive

cone.

14

CHAPTER 2. FUNDAMENTALS OF LINEAR PROGRAMMING BASED
ON INCLUSIVE CONE

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

3

4

x
1

x
2

−x
1
+x

2
=0

x
1
−x

2
=−2

−c=[0;−1]

−x
1
−x

2
=0

Ladder

Figure 2.4: An inclusive-infeasible LP example

Note that infeasible problems are further divided into inclusive-infeasible and

noninclusive-infeasible problems. We look at four examples for illustration.

First we revisit Example 2.1. This problem is inclusive-feasible, i.e., this

problem has an optimal solution. Indeed, from Figure 2.2, feasibility is obvious.

In addition, since the cone generated by outward normal vectors of constraints

x1 − x2 ≤ 0 and −x1 − x2 ≤ 0 contain −c = [0;−1], this problem is inclusive.

Example 2.2. This problem is inclusive-infeasible.

(C2): min x2

s.t. − x1 − x2 ≤ 0

−x1 + x2 ≤ 0

x1 − x2 ≤ −2.

The above problem is shown geometrically in Figure 2.4. Inconsistency of the

second and third constraints implies the problem is infeasible. On the other hand,

from the fact that the cone generated by outward normal vectors of constraints

−x1−x2 ≤ 0 and x1−x2 ≤ −2 contains −c = [0;−1], we know that this problem

is inclusive.

15

CHAPTER 2. FUNDAMENTALS OF LINEAR PROGRAMMING BASED
ON INCLUSIVE CONE

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

3

4

x
1

x
2

−x
1
+x

2
=0

−x
1
+x

2
=2

−c

x
1
+x

2
=0

−c=[0;−1]
Feasible Region

Figure 2.5: A noninclusive-feasible (unbounded) LP example

Example 2.3. This problem is noninclusive-feasible (i.e., unbounded).

(C3): min x2

s.t. x1 + x2 ≤ 0

−x1 + x2 ≤ 0

−x1 + x2 ≤ 2.

The graphical representation of this problem is displayed in Figure 2.5. As

seen in the figure, no cone generated by outward normal vectors of any two

constraints contains −c = [0;−1], which implies this problem is noninclusive.

On the other hand, feasibility of this problem is clear. Hence the problem is

noninclusive-feasible (i.e., unbounded).

Example 2.4. This problem is noninclusive-infeasible.

(C4): min x2

s.t. x1 + x2 ≤ 0

−x1 + x2 ≤ 0

x1 − x2 ≤ −2.

16

CHAPTER 2. FUNDAMENTALS OF LINEAR PROGRAMMING BASED
ON INCLUSIVE CONE

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

3

4

x
1

x
2

−x
1
+x

2
=0

x
1
−x

2
=−2

−c

x
1
+x

2
=0

−c=[0;−1]

Figure 2.6: A noninclusive-infeasible LP example

This problem is shown geometrically in Figure 2.6, where the red arrow

with double arrowheads indicates two overlapped outward normal vectors with

opposite direction: one for constraint −x1 + x2 ≤ 0 and the other for constraint

x1 − x2 ≤ −2. As seen from this figure, the problem is noninclusive-infeasible.

We conclude this section with the following definitions.

Definition 2.4. [60] The set defined by

Ek(J) = {x : x ∈ L(J), ajix ≤ bji , 1 ≤ i ≤ n, i 6= k}

is called the k-th edge of the ladder L(J), where J = {j1, j2, · · · , jn}.

From the above definition, it is clear that a ladder has n edges.

Definition 2.5. [60] A ladder L(J) of problem (P) is said to be degenerate if

at least one of its n edges is normal to the vector c. Problem (P) is said to be

non-degenerate if it does not have a degenerate ladder.

As shown in Figure 2.2, Example 2.1 is non-degenerate since it has no degener-

ate ladder. If we replace the last constraint x1−x2 ≤ −2 by −x2 ≤ −2, the result-

ing problem has a degenerate ladder constructed from constraints −x1 − x2 ≤ 0

17

CHAPTER 2. FUNDAMENTALS OF LINEAR PROGRAMMING BASED
ON INCLUSIVE CONE

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

3

4

x
1

−x
1
−x

2
=0

x
2

x0

x1

−c

Degenerate Ladder

•

Ladder

x
1
−x

2
=0

−x
2
=−2

−c=[0;−1]

•

Figure 2.7: A degenerate LP example

and −x2 ≤ −2. Thus, the resulting problem is degenerate. See Figure 2.7 for

illustration.

In the presence of degeneracy, Liu [60] illustrated that cycling may occur.

However, this case can be readily treated by imposing a random perturbation on

the objective function of the original problem, and that the perturbed problem

has the same optimal solution as the original problem provided that the per-

turbation is small enough. For this reason, we only consider the case in which

problem (P) is non-degenerate throughout LP part of this dissertation.

2.3 Duality Theory

2.3.1 Classical Results

Consider the following primal problem:

(P): min cTx

s.t. Ax ≤ b.

The dual problem associated with (P) can be written as:

18

CHAPTER 2. FUNDAMENTALS OF LINEAR PROGRAMMING BASED
ON INCLUSIVE CONE

(D): min bT y

s.t. ATy = −c

y ≥ 0.

With regard to the relations of (P) and (D), there are the following classical

results (see Vanderbei [89]) .

Theorem 2.2. (Weak Duality Theorem) If x0 and y0 are feasible solutions

to the primal problem (P) and its dual problem (D), then cTx0 ≥ −bT y0.

Theorem 2.3. (Strong Duality Theorem) Given a pair of primal and dual

problems (P) and (D), exactly one of the following statements holds true:

(1) If one of the primal or dual problems possesses a finite optimal solution, then

both possess optimal solutions and the optimal objective function values

satisfy cTx∗ = −bT y∗, where x∗ and y∗ are the optimal solutions of the

primal and dual problems (P) and (D) respectively.

(2) Both problems are infeasible.

(3) If one of the primal or dual problems possesses an unbounded optimal ob-

jective value, then the other must not have feasible solutions.

The classical strong duality theorem (or trichotomy theorem) tells us, if one

of a pair of primal and dual problems is unbounded, then its counterpart is

infeasible, but the reverse need not be true, which implies the strong duality

theorem is not completely symmetric.

Theorem 2.4. (Complementary Slackness Theorem) Consider a pair of

primal and dual problems (P) and (D). Let x∗ = [x∗
1; x

∗
2; · · · ; x∗

n] and y∗ =

[y∗1; y
∗
2; · · · ; y∗m] be feasible solutions for the primal and dual programs, respec-

tively. Then x∗ and y∗ are optimal solutions for their respective problems if and

only if for all i (i = 1, 2, · · · , m)

aix
∗ < bi ⇒ y∗i = 0,

y∗i > 0 ⇒ aix
∗ = bi.

19

CHAPTER 2. FUNDAMENTALS OF LINEAR PROGRAMMING BASED
ON INCLUSIVE CONE

The complementary slackness theorem tells us that if a constraint in the

primal problem (P) is not binding at optimality, then the corresponding variable

in the dual problem (D) must be zero. If a variable in the dual problem (D)

is positive, then the corresponding constraint in the primal problem must be

binding at optimality. This theorem reveals the relation of the optimal solutions

of the primal and dual problems under the premise that a feasible solution pair

of the primal problem and dual problem is given.

2.3.2 Inclusive-cone-based Duality Theory

Based on inclusiveness concept, Liu [61] reinvestigated the relations between the

primal problem and dual problem, developing two main results which we present

here as Theorem 2.5 and Theorem 2.6.

Theorem 2.5. [61] (A duality principle) Consider a pair of primal and dual

problems (P) and (D). The following hold true:

a) Problem (P) is inclusive if and only if the corresponding dual problem (D) is

feasible.

b) Problem (P) is feasible if and only if the corresponding dual problem (D) is

inclusive.

Theorem 2.5 shows that inclusiveness and feasibility are two parallel, coexist-

ing and mutually dual concepts, one of which is possessed by the primal problem

if and only if the counterpart is possessed by its dual problem.

As mentioned above, the classical strong duality theorem is asymmetric,

which may be one of the reasons why some current LP solvers fail to provide

correct solvability information, in particular in the case that the primal problem

is infeasible or unbounded. By means of the inclusiveness concept, a “symmet-

ric” strong duality theorem termed “quadrachotomy theorem” was proposed in

the framework of a new category of LP problems in [61], which we state as below:

Theorem 2.6. [61] (A Quadrichotomy Theorem) Given a pair of primal and

dual problems (P) and (D), one of the following statements holds true:

20

CHAPTER 2. FUNDAMENTALS OF LINEAR PROGRAMMING BASED
ON INCLUSIVE CONE

(a) Both problem (P) and problem (D) possess finite optimal solutions

⇔ Problem (P) possesses a finite optimal solution

⇔ Problem (D) possesses a finite optimal solution

⇔ Problem (P) is inclusive-feasible

⇔ Problem (D) is inclusive-feasible

⇔ Both problem (P) and problem (D) are inclusive-feasible

⇔ Both problem (P) and problem (D) are inclusive

⇔ Both problem (P) and problem (D) are feasible

At optimality, the optimal objective function values of problem (P) and

(D) satisfy cTx∗ = −bT y∗.

(b) Problem (P) is inclusive-infeasible

⇔ Problem (D) is unbounded

⇔ Problem (D) is noninclusive-feasible

⇔ Problem (P) is infeasible and problem (D) is feasible

⇔ Problem (P) is inclusive and problem (D) noninclusive

(c) Problem (P) is noninclusive-infeasible

⇔ Problem (D) is noninclusive-infeasible

⇔ Both problem (P) and problem (D) are infeasible

⇔ Both problem (P) and problem (D) are noninclusive

⇔ Both problem (P) and problem (D) are noninclusive-infeasible

(d) Problem (P) is unbounded

⇔ Problem (P) is noninclusive-feasible

⇔ Problem (D) is inclusive-infeasible

⇔ Problem (P) is feasible and Problem (D) is infeasible

⇔ Problem (P) is noninclusive and Problem (D) is inclusive

21

CHAPTER 2. FUNDAMENTALS OF LINEAR PROGRAMMING BASED
ON INCLUSIVE CONE

Compared with the classical strong duality theorem (see Theorem 2.3), the

quadrichotomy theorem not only completes the classical strong duality theorem,

but also establishes the equivalent relationship between the primal problem and

dual problems. More importantly, combination of the quadrichotomy theorem

and an inclusive-cone-based solvability criterion to be proposed in Chapter 5

enables us to diagnose accurately the solvability of both the primal and dual

problems, particularly in the case that an LP problem has no optimal solution.

In Chapter 5, we will discuss in detail all the cases with regard to the solvability

of LP problems in the context of the new category of LP problems and the

quadrichotomy theorem.

In the foregoing we have mentioned that the complementary slackness the-

orem requires that a feasible solution pair of the primal and dual problems be

known. With the powerful analytical tool an inclusive cone at hand, an inclusive-

cone-based version of complementary slackness theorem is readily derivable.

In the following, we denote by J \ Jk the set difference of an index set Jk

from a given index set J . Given Jk = {j1, j2, · · · , jn} ⊆ J , we use A(Jk) to

denote a matrix consisting of j1-th, j2-th, · · · , jn-th rows of the matrix A. Also

we denote by b(Jk) and y(Jk) the column vectors consisting of j1-th, j2-th, · · · ,
jn-th components of the column vectors b ∈ Rm and y ∈ Rm, respectively.

Theorem 2.7. (Complementary Slackness Theorem —–Inclusive-cone-

based Version) Consider a pair of primal and dual problems (P) and (D). Let

Jk ⊆ J be the ladder generator associated with the ladder L(Jk), and let y

be a feasible solution of the dual problem (D) which satisfies y(Jk) > 0 and

y(J \ Jk) = 0. Then xk is the base point of the ladder L(Jk) if and only if the

following hold true:

(A(Jk)x
k − b(Jk))y(Jk) = 0

and

(A(J \ Jk)x
k − b(J \ Jk))y(J \ Jk) = 0.

Proof. According to Definition 2.1, it is obvious.

22

CHAPTER 2. FUNDAMENTALS OF LINEAR PROGRAMMING BASED
ON INCLUSIVE CONE

In contrast with the foregoing complementary slackness theorem (see Theo-

rem 2.4), the inclusive-cone-based complementary slackness theorem reveals the

relation between the base points (not necessarily feasible) of the primal prob-

lem (P) and dual feasible solutions, instead of only the relation between the

optimal solutions of the primal and dual problems. It encompasses the original

complementary slackness theorem as a special case.

2.4 Inclusiveness under Transformation

2.4.1 Motivation

We have seen from the foregoing that an LP problem can be put into different

forms. A particular numerical method may be suitable for a specific form (for

example, the simplex method was designed for LP problems in standard form).

On the other hand, a method may have different versions corresponding to differ-

ent forms of an LP problem. When an LP problem is transformed from one form

to another form, some inherited properties (e.g., feasibility, boundedness and ex-

istence of an optimal solution etc.) remain unchanged. Since inclusiveness, as

a generalization of boundedness concept, is a parallel and coexisting concept to

feasibility, we naturally raise a question: does inclusiveness of an LP problem

remain unchanged after an LP problem is transformed (or converted) from one

form to another? Our aim in this section is to provide a positive answer to the

above question.

In this section, we are concerned with the LP problems of the following two

forms

(P): min cTx

s.t. Ax ≤ b,

(H): min wTx

s.t. Dx = g

Gx ≤ h,

23

CHAPTER 2. FUNDAMENTALS OF LINEAR PROGRAMMING BASED
ON INCLUSIVE CONE

where x = [x1; x2; · · · ; xn] ∈ Rn is the vector of decision variables, c ∈ Rn (c 6= 0)

and w ∈ Rn (w 6= 0) are vectors of objective function coefficients, b ∈ Rm, g ∈ Rr

and h ∈ Rm−r are given RHS vectors, and A, D and G are given m × n, r × n

and (m− r)× n matrices respectively.

In this section, we assume that m ≥ n and rank(A)=rank









D

G







=n.

Two cases will be investigated:

• Transforming problem (H) to a problem with only inequality constraints

by eliminating the equalities.

• Converting problem (P) to a problem in standard form by adding slack

variables and splitting the decision variables.

For each case, the relationship of inclusiveness between the original problem and

the transformed problem is explored in the following subsection.

2.4.2 Inclusiveness under Transformation

In this subsection, we will investigate whether the property of inclusiveness keeps

invariant after converting problem (P) or problem (H) to another form. The

following two cases are considered.

Case 1: Convert problem (H) to an LP problem with only inequality

constraints by eliminating equality constraints

Consider problem (H). We assume for this moment that rank(D)=r (r < n).

If rank(D) < r, then obviously part of equality constraints are either unsolvable

or can be eliminated without changing the original problem. The occurrence of

the former will cause infeasibility of problem (H). Under this circumstance there

is no need to reformulate problem (H). Thus here we assume that redundant

equality constraints have been removed andD is of full row rank. For simplicity of

exposition and without loss of generality, we also assume that the first r columns

of the matrix D are independent. In fact, if not, we just need to rearrange the n

columns of the matrix D in such a manner that all the independent columns are

listed first. Correspondingly, the rows of x need to be rearranged as well.

24

CHAPTER 2. FUNDAMENTALS OF LINEAR PROGRAMMING BASED
ON INCLUSIVE CONE

On the basis of the above assumptions, we can remove r variables of x by

solving the linear system Dx = g and convert problem (H) into a problem in-

volving only n − r variables but no equality constraints. This can be done as

follows.

Partition the coefficient matrix D as

D = [B, P],

where B and P are r × r and r × (n − r) matrices, respectively. Vector x is

partitioned conformably as

x =





x̂

x̄



 .

Therefore the linear system Dx = g can be written as

Bx̂+ P x̄ = g.

The fact that B is invertible gives

x̂ = −B−1P x̄+B−1g.

Therefore, by the following transformation

x =





x̂

x̄



 = Qx̄+ q, (2.1)

where

Q =





−B−1P

In−r



 and q =





B−1g

0(n−r)×1



,

we obtain the problem

(H̄): min w̄T x̄

s.t. Ḡx̄ ≤ h̄,

where w̄ = QTw, Ḡ = GQ and h̄ = h−Gq.

We want to know how the inclusiveness of problem (H) relates to the inclu-

siveness of (H̄). The following theorem gives the answer.

Theorem 2.8. Problem (H) is inclusive if and only if problem (H̄) is inclusive.

25

CHAPTER 2. FUNDAMENTALS OF LINEAR PROGRAMMING BASED
ON INCLUSIVE CONE

Proof. (Necessity) Suppose that problem (H) is inclusive. That means its equiv-

alent problem (H
′

)

(H
′

): min wTx

s.t. Dx ≤ g

−Dx ≤ −g

Gx ≤ h

is inclusive. It follows from Theorem 2.5 that the dual problem of problem (H
′

)

(DH): min
[

gT −gT hT

]











λ(1)

λ(2)

λ(3)











s.t.
[

DT −DT GT

]











λ(1)

λ(2)

λ(3)











= −w

λ(i) ≥ 0 (i = 1, 2, 3)

is feasible. Let λ0 = [λ
(1)
0 ;λ

(2)
0 ;λ

(3)
0] (λ0 ≥ 0) be an arbitrary feasible solution

of problem (DH). Then DTλ
(1)
0 − DTλ

(2)
0 + GTλ

(3)
0 = −w. Pre-multiplying this

equality by QT gives QTDT (λ
(1)
0 − λ

(2)
0) +QTGTλ

(3)
0 = −QTw. Note that

DQ =
[

B P

]





−B−1P

In−r



 = 0r×(n−r).

Therefore we have QTGTλ
(3)
0 = −QTw, i.e., ḠTλ

(3)
0 = −w̄, which implies that

the dual problem of problem (H̄)

(D̄H): min h̄T ȳ

s.t. ḠT ȳ = −w̄

ȳ ≥ 0

is feasible. Thus by Theorem 2.5, problem (H̄) is inclusive.

(Sufficiency) Suppose that problem (H̄) is inclusive. Then from Theorem 2.5,

problem (D̄H) is feasible. Let ȳ0 ≥ 0 be an arbitrary feasible solution of problem

(D̄H). Then ḠT ȳ0 = −w̄, i.e., QTGT ȳ0 = −QTw. That is QT (GT ȳ0 + w) = 0.

Partitioning GT ȳ0 + w as

GT ȳ0 + w =





ŷ0

ỹ0



 ,

26

CHAPTER 2. FUNDAMENTALS OF LINEAR PROGRAMMING BASED
ON INCLUSIVE CONE

we have
[

−P T [B−1]T In−r

]





ŷ0

ỹ0



 = 0,

which yields ỹ0 = P T [B−1]T ŷ0. Let λ̄0 = −[B−1]T ŷ0. Then

GT ȳ0 + w =





ŷ0

ỹ0



 =





−BT λ̄0

−P T λ̄0



 = −





BT

P T



 λ̄0 = −DT λ̄0.

Therefore DT λ̄0 + GT ȳ0 = −w, which implies that problem (DH) is feasible.

Thus it follows from Theorem 2.5 that problem (H
′

) is inclusive. Hence problem

(H) is inclusive. This completes the proof.

Case 2: Convert problem (P) to an LP problem in standard form

Consider problem (P). Let x = x+ − x−, where x+, x− ≥ 0. Introducing a

vector of slack variables s = [s1; s2; · · · ; sm] ≥ 0, the original problem (P) can be

transformed to the following standard form

(P̃): min cTx+ − cTx−

s.t. Ax+ − Ax− + s = b

x+, x−, s ≥ 0.

For convenience of analyzing the relationship of inclusiveness between prob-

lem (P) and problem (P̃), we rewrite problem (P̃) as the equivalent inequality

form

(P̃
′

): min
[

cT −cT 0
]











x+

x−

s











s.t.























A −A Im

−A A −Im

−In 0 0

0 −In 0

0 0 −Im

































x+

x−

s











≤























b

−b

0

0

0























.

With regard to the relation of inclusiveness between problem (P) and problem

(P̃), we have the following main result similar to Theorem 2.8.

27

CHAPTER 2. FUNDAMENTALS OF LINEAR PROGRAMMING BASED
ON INCLUSIVE CONE

Theorem 2.9. Problem (P) is inclusive if and only if problem (P̃) is inclusive.

Proof. Suppose that problem (P) is inclusive. Without loss of generality, we

assume that problem (P) has an inclusive cone, which is generated by outward

normal vectors aT1 , a
T
2 , · · · , aTn of its first n constraints. (If not, we just need to

rearrange constraints of problem (P) in such a manner that some n constraints

associated with one of inclusive cones are listed ahead of other constraints.)

Then, there exist n non-negative constants δ1, δ2, · · · , δn, such that

−c = δ1a
T
1 + δ2a

T
2 + · · ·+ δna

T
n , (2.2)

which can be equivalently written as










−c

c

0m×1











= δ1











aT1

−aT1

e
(1)
m











+ δ2











aT2

−aT2

e
(2)
m











+ · · ·+ δn











aTn

−aTn

e
(n)
m











+0











−e
(1)
n

0n×1

0m×1











+ 0











−e
(2)
n

0n×1

0m×1











+ · · ·+ 0











−e
(n)
n

0n×1

0m×1











+δ1











0n×1

0n×1

−e
(1)
m











+ δ2











0n×1

0n×1

−e
(2)
m











+ · · ·+ δn











0n×1

0n×1

−e
(n)
m











+0











0n×1

0n×1

−e
(n+1)
m











+ 0











0n×1

0n×1

−e
(n+2)
m











+ · · ·+ 0











0n×1

0n×1

−e
(m)
m











, (2.3)

where e
(i)
m (1 ≤ i ≤ m) denotes the unit column vector with m components

and its i-th element 1, and e
(j)
n (1 ≤ j ≤ n) the unit column vector with n

components and its j-th element 1. It is noticeable that the 2n +m vectors on

the right-hand-side of Equation (2.3) are outward normals of those constraints

in problem (P̃
′

) associated with the constraint index set {1, 2, · · · , n}⋃{2m +

1, 2m + 2, · · · , 2m + n}⋃{2m + 2n + 1, 2m + 2n + 2, · · · , 2m + 2n + m}. Also

note that these 2n+m vectors are independent, which is easily verified by means

of the independence of aTi (1 ≤ i ≤ n). Therefore, it follows from Equation (2.3)

28

CHAPTER 2. FUNDAMENTALS OF LINEAR PROGRAMMING BASED
ON INCLUSIVE CONE

that problem (P̃
′

) has an inclusive cone, which is generated by aforementioned

2n + m outward normal vectors. Thus, problem (P̃
′

) is inclusive, which means

that problem (P̃) is inclusive.

Conversely, suppose that problem (P̃) is inclusive. This means that problem

(P̃
′

) is inclusive. It follows from Theorem 2.5 that the dual problem of problem

(P̃
′

)

(D̃P
′

): min
[

bT −bT 0 0 0
]























u(1)

u(2)

u(3)

u(4)

u(5)























s.t.











AT −AT −In 0 0

−AT AT 0 −In 0

Im −Im 0 0 −Im

































u(1)

u(2)

u(3)

u(4)

u(5)























= −











c

−c

0











u(i) ≥ 0 (i = 1, 2, 3, 4, 5)

is feasible. Let u0 =
[

u
(1)
0 ; u

(2)
0 ; u

(3)
0 ; u

(4)
0 ; u

(5)
0

]

≥ 0 be an arbitrary feasible

solution to problem (D̃P
′

). Then we have











AT −AT −In 0 0

−AT AT 0 −In 0

Im −Im 0 0 −Im

































u
(1)
0

u
(2)
0

u
(3)
0

u
(4)
0

u
(5)
0























= −











c

−c

0











,

i.e., the following hold:

AT (u
(1)
0 − u

(2)
0)− u

(3)
0 = −c, (2.4)

−AT (u
(1)
0 − u

(2)
0)− u

(4)
0 = c, (2.5)

u
(1)
0 − u

(2)
0 = u

(5)
0 , (2.6)

(u
(i)
0 ≥ 0 i = 1, 2, 3, 4, 5).

29

CHAPTER 2. FUNDAMENTALS OF LINEAR PROGRAMMING BASED
ON INCLUSIVE CONE

From (2.4)-(2.6) we can easily deduce that ATu
(5)
0 = −c. Note that u

(5)
0 ≥ 0.

Therefore we conclude that the dual problem of problem (P)

(DP): min bT y

s.t. AT y = −c

y ≥ 0

is feasible. Hence from Theorem 2.5, problem (P) is inclusive. This completes

the proof.

2.5 Sensitivity Analysis

2.5.1 Introduction

Sensitivity analysis is an important part of linear programming. It investigates

how the optimal solution of an optimization problem changes with respect to

changes in the problem data. Theoretically, sensitivity analysis of LP problems

provides useful information for the decision makers.

The study of sensitivity analysis in linear programming can be traced back

to the early 1950’s. For pioneering works, we refer the reader to [70] by Manne

and [84] by Saaty and Gass. Traditionally, the study of sensitivity analysis is

based on the simplex method and therefore associated with an optimal basis (see

Gal [26], Vanderbei [89] and Wendell [96]). Later, the prevalence of the interior

point methods arouses the researchers’ reconsideration of the sensitivity analysis

in linear programming from a different point of view (see Adler and Monteiro

[1], Jansen et al. [46], Greenberg [37, 38], Greenberg et al. [39] and Yildirim and

Todd [100]).

In this section, we attempt to examine sensitivity analysis in linear program-

ming from the perspective of the inclusive cone in order to explore the potentials

of the new approach in sensitivity analysis.

We focus on the analysis with respect to perturbation of the objective function

coefficients (OFC) or the right-hand-side (RHS) elements of the constraints. Suf-

ficient and necessary conditions for the optimal solution invariancy with respect

30

CHAPTER 2. FUNDAMENTALS OF LINEAR PROGRAMMING BASED
ON INCLUSIVE CONE

to perturbations of OFC as well as the optimal ladder generator invariancy with

respect to perturbation of RHS elements are presented. In addition, we identify

the ranges of parameter variation in which the optimal vertex solution or the

optimal ladder generator remains unchanged. These results obtained are similar

to the classical results. However, the approach we present here is simpler and

more geometrically intuitive.

The remaining of this section is organized as follows. In Subsection 2.5.2,

we present the main results with respect to the perturbation of OFC. The main

results with respect to the perturbation of RHS are given in Subsection 2.5.3.

Throughout this section, we assume that problem (P) has been solved to

optimality and x∗ is an optimal vertex solution. Given a ladder generator J , we

denote by A(J) the matrix formed from rows of A with row indices in J . Also

we denote by b(J) the vector formed from rows of b with row indices in J .

2.5.2 Perturbation in the Objective Function Data

Let us consider the perturbed primal LP problems as follows:

P(∆c, ǫ): min (c+ ǫ∆c)Tx

s.t. Ax ≤ b,

where ǫ is a real parameter, and ∆c is a perturbation vector.

We hope to find the range of variation of parameter ǫ, which is called the

optimal solution invariant range, such that x∗ is still an optimal vertex solution

for the perturbed problem P(∆c, ǫ) .

Different from ordinary sensitivity analysis in LP, which is traditionally asso-

ciated with an optimal basis (as in the simplex method), we adopt the inclusive-

cone-based approach to present a sufficient and necessary condition for the per-

turbation of c and identify the range of variation of the parameter ǫ within which

the vertex solution x∗ remains optimal.

To begin, we develop the following theorem.

Theorem 2.10. Let x∗ be an optimal vertex solution to problem (P). Suppose

that there are exactly n active constraints at the optimal vertex solution x∗ to

31

CHAPTER 2. FUNDAMENTALS OF LINEAR PROGRAMMING BASED
ON INCLUSIVE CONE

problem (P). Let J∗ be a unique ladder generator associated with x∗ and N(J∗)

be the inclusive cone associated with J∗. Then x∗ is still an optimal vertex

solution to the perturbed problem P(∆c, ǫ) if and only if −(c + ǫ∆c) ∈ N(J∗).

Proof. It is obvious according to Theorem 2.1.

According to Theorem 2.10, ǫ is in the optimal solution invariant range if and

only if −(c + ǫ∆c) ∈ N(J∗), or equivalently there exists δ(ǫ) = [δ1(ǫ); δ2(ǫ); · · · ;
δn(ǫ)] ≥ 0 such that

−(c + ǫ∆c) = AT (J∗)δ(ǫ). (2.7)

Since A(J∗) is invertible, we have

−[AT (J∗)]−1(c + ǫ∆c) = δ(ǫ). (2.8)

Therefore, ǫ is in the optimal solution invariant range if and only if

−[AT (J∗)]−1(c+ ǫ∆c) ≥ 0,

equivalently,

ǫ[AT (J∗)]−1∆c ≤ −[AT (J∗)]−1c.

Let

∆z = [AT (J∗)]−1∆c, z = [AT (J∗)]−1c, (2.9)

we have

ǫ∆z ≤ −z. (2.10)

Since −c ∈ N(J∗), it follows that there exists δ = [δ1; δ2; · · · ; δn] ≥ 0 such that

−c = AT (J∗)δ.

Therefore −z = −[AT (J∗)]−1c ≥ 0.

By solving the above (2.10), we can get the range of ǫ. The solution of (2.10)

is generalized into the following cases.

(1) If all the components of ∆z are positive, i.e., ∆z > 0, then Equation

(2.10) is valid as long as

ǫ ≤ min

(

− zi

∆zi

)

, (1 ≤ i ≤ n). (2.11)

32

CHAPTER 2. FUNDAMENTALS OF LINEAR PROGRAMMING BASED
ON INCLUSIVE CONE

(2) If all the components of ∆z are negative, i.e., ∆z < 0, then by solving

Equation (2.10) we get

ǫ ≥ max

(

− zi

∆zi

)

, (1 ≤ i ≤ n). (2.12)

(3) If ∆z consists of both positive and negative components, then Equation

(2.10) holds as long as

max

{

− zi

∆zi

∣

∣

∣

∣

∆zi < 0, 1 ≤ i ≤ n

}

≤ ǫ ≤ min

{

− zi

∆zi

∣

∣

∣

∣

∆zi > 0, 1 ≤ i ≤ n

}

.

(2.13)

Note that, in the process of discussing the solution of (2.10) we omit the case

that some components of ∆z are zeroes. When some components of ∆z are

zeroes, say ∆z1 = 0, the inequality ǫ∆z1 ≤ −z1 inevitably holds for arbitrary ǫ.

Obviously it is trivial to consider this case since our aim is to find a bound on

the parameter ǫ.

To illustrate the results developed here, consider the following example taken

from [60].

Example 2.5. Consider the following LP problem

min x1 + x2

s.t.























−2 −1

−2 4

−1 3

−1 0

0 −1



























x1

x2



 ≤























4

−8

−7

0

0























.

Assume that we have got the optimal solution x = [7; 0] by the targeted

climbing algorithm (see Liu [60]). The optimal ladder generator is {3, 5}. Here,
we see that

c =





1

1



 , A(J∗) =





−1 3

0 −1



 .

Given

∆c =





−1

4



 ,

33

CHAPTER 2. FUNDAMENTALS OF LINEAR PROGRAMMING BASED
ON INCLUSIVE CONE

we want to find the optimal solution invariant range of ǫ. From (2.9) we have

z =





−1

−4



 , ∆z =





1

−1



 .

Therefore, according to (2.13) we can get the optimal solution invariant range

of ǫ

−4 ≤ ǫ ≤ 1.

In the case that there are l (l > n) active constraints at the optimal vertex

solution x∗ to problem (P), we can use the following theorem to judge whether

x∗ is still the optimal vertex solution to the perturbed problem P(∆c, ǫ).

Theorem 2.11. Let x∗ be an optimal vertex solution to problem (P). Suppose

that, at the optimal solution x∗, there are l (l > n) active constraints and there

are k inclusive cones N(J∗
i) (1 ≤ i ≤ k) with the associated ladder generators

J∗
i (1 ≤ i ≤ k). Then x∗ is still the optimal vertex solution to the perturbed

problem P(∆c, ǫ) if and only if −(c+ ǫ∆c) ∈ ⋃

N(J∗
i), (1 ≤ i ≤ k).

Proof. It is obvious according to Theorem 2.1.

We can adopt the following procedure (similar to that in [27]) to find the op-

timal solution invariant range of ǫ when there are more than n active constraints

at the optimal vertex solution x∗ to problem (P).

Firstly, for every inclusive cone N(J∗
i) (1 ≤ i ≤ k), identify the range of

parameter variation. The range, denoted by Λi, (1 ≤ i ≤ k), can be derived from

one of (2.11)-(2.13).

Secondly, obtain the overall range of ǫ within which x∗ is the optimal vertex

solution to the perturbed problem P(∆c, ǫ). The overall range is
⋃

Λi, (1 ≤ i ≤
k).

2.5.3 Perturbation in the Right-Hand-Side Data

In this subsection, the following perturbed LP problem is considered.

34

CHAPTER 2. FUNDAMENTALS OF LINEAR PROGRAMMING BASED
ON INCLUSIVE CONE

P(∆b, ǫ): min cTx

s.t. Ax ≤ b+ ǫ∆b.

We first give a definition which will be used throughout this subsection.

Definition 2.6. Consider the linear programming problem (P). Suppose problem

(P) has been solved to obtain the optimal solution x∗. The ladder generator J∗

associated with the optimal solution x∗ is called the optimal ladder generator of

problem (P). The ladder L(J∗) associated with the optimal ladder generator J∗

is called the optimal ladder of problem (P).

We hope to find the range of variation of parameter ǫ, which is called the

optimal ladder generator invariant range, such that J∗ is still an optimal ladder

generator for the perturbed problem P(∆b, ǫ).

Following a similar line to the above subsection, we first perform the optimal

ladder generator invariancy sensitivity analysis for the case in which there are

exactly n active constraints at the optimal vertex solution x∗ to problem (P). We

hope to find the range of variation of ǫ to guarantee that the perturbed problem

P(∆b, ǫ) has the same optimal ladder generator as the original problem (P).

The main results in this subsection are presented as follows.

Theorem 2.12. Let x∗ be an optimal vertex solution to problem (P). Suppose

that there are exactly n active constraints at the optimal vertex solution x∗ to

problem (P). Let J∗ be a unique ladder generator associated with x∗ and N(J∗)

be the inclusive cone associated with J∗. Then J∗ is still an optimal ladder

generator to the perturbed problem P(∆b, ǫ) if and only if there exists a vector

x̄∗ ∈ Rn such that the following hold:

(1) A(J∗)x̄∗ = b(J∗) + ǫ∆b(J∗) (2.14)

(2) A(K∗)x̄∗ ≤ b(K∗) + ǫ∆b(K∗), (2.15)

where K∗ = {1, 2, · · · , m} \ J∗.

Proof. It is obvious according to Theorem 2.1.

35

CHAPTER 2. FUNDAMENTALS OF LINEAR PROGRAMMING BASED
ON INCLUSIVE CONE

By virtue of Formulae (2.14) and (2.15) we can obtain the range of variation of

ǫ within which the ladder generator J∗ is still optimal to the perturbed problem

P(∆b, ǫ). In fact, from (2.14) we have

x̄∗ = [A(J∗)]−1(b(J∗) + ǫ∆b(J∗)).

Substituting the above expression in (2.15) and doing simple manipulation gives

ǫ(∆b(K∗)− A(K∗)[A(J∗)]−1∆b(J∗)) ≥ A(K∗)[A(J∗)]−1b(J∗)− b(K∗).

Take

∆u = ∆b(K∗)− A(K∗)[A(J∗)]−1∆b(J∗) (2.16)

and

u = b(K∗)− A(K∗)[A(J∗)]−1b(J∗), (2.17)

we have

ǫ∆u ≥ −u. (2.18)

Note that u ≥ 0 in (2.18). In fact, since x∗ is the optimal vertex solution to

problem (P), it follows that

A(J∗)x∗ = b(J∗), (2.19)

and

A(K∗)x∗ ≤ b(K∗) (2.20)

hold. From Equation (2.19), we have

x∗ = [A(J∗)]−1b(J∗).

Plugging this into (2.20), we can see that u ≥ 0.

In order to obtain the range of ǫ we need only solve (2.18). We have manipu-

lated this type of inequality in Subsection 2.5.2. Similarly, the solution of (2.18)

can be divided into the following cases.

(1) If all the components of ∆u are positive, i.e., ∆u > 0, then Equation

(2.18) is valid as long as

ǫ ≥ max

(

− uj

∆uj

)

, (1 ≤ j ≤ m− n). (2.21)

36

CHAPTER 2. FUNDAMENTALS OF LINEAR PROGRAMMING BASED
ON INCLUSIVE CONE

(2) If all the components of ∆u are negative, i.e., ∆u < 0, then by solving

Equation (2.18), we get

ǫ ≤ min

(

− uj

∆uj

)

, (1 ≤ j ≤ m− n). (2.22)

(3) If components of ∆u have different signs, then Equation (2.18) holds as

long as

max

{

− uj

∆uj

∣

∣

∣

∣

∆uj > 0, 1 ≤ j ≤ m− n

}

≤ ǫ ≤ min

{

− uj

∆uj

∣

∣

∣

∣

∆uj < 0, 1 ≤ j ≤ m− n

}

.

(2.23)

Note that in the process of discussing the solution of (2.18) we omit the case in

which some components of ∆u are zeroes. The reason is same as that presented

in Subsection 2.5.2. We do not restate here for conciseness.

When there are l (l > n) active constraints at the optimal vertex solution x∗

to problem (P), we have the following result.

Theorem 2.13. Assume that problem (P) has been solved to optimality and x∗

is an optimal vertex solution to problem (P). Suppose also that, at the optimal

vertex solution x∗, there are l (l > n) active constraints and there are k inclusive

cones N(J∗
i) (1 ≤ i ≤ k) with the associated ladder generators J∗

i (1 ≤ i ≤ k).

Then at least one J∗
i (1 ≤ i ≤ k) is the optimal ladder generator to the perturbed

problem P(∆c, ǫ) if and only if there exists a vector x̄∗ ∈ Rn such that the

following hold:

(1) A(J∗
i)x̄

∗ = b(J∗
i) + ǫ∆b(J∗

i), (1 ≤ i ≤ k) (2.24)

(2) A(K∗
i)x̄

∗ ≤ b(K∗
i) + ǫ∆b(K∗

i), (1 ≤ i ≤ k), (2.25)

where K∗
i = {1, 2, · · · , m} \ J∗

i (1 ≤ i ≤ k).

Proof. It is obvious according to Theorem 2.1.

We can apply a two-step procedure similar to that presented at the end of

Subsection 2.5.2 to find the optimal ladder generator invariant range of ǫ in the

case that there are more than n active constraints at the optimal vertex solution

x∗ to problem (P). For avoidance of repetition, we omit the presentation of the

similar procedure.

37

Chapter 3

Inclusive-cone-based Ladder

Algorithms for Linear

Programming

3.1 Introduction

The (primal) simplex algorithm conceived by Dantzig [13, 14] in the late 1940’s

was, by common consent, the first highly viable solution procedure for solving

LP problems. Since its inception, dozens of simplex variants have been proposed

to advance this algorithm (see Goldfarb and Reid [34], Harris [41], Forrest and

Goldfarb [23], Lemke [56] and Arsham et al. [5]). Among them, the dual simplex

algorithm is one of the most successful variants. However, when this algorithm

was first introduced by Lemke [56] in 1954, it was not viewed as an alternative

of the primal simplex method. It was not until nearly forty years later that

this situation changed due to the contribution of Goldfarb [33], Fourer [24] and

Forrest and Goldfarb [23]. In point of the overall performance, the dual simplex

method may win out over the primal simplex method. In particular, it is effectual

for solving relaxations of discrete optimization problems and has an indubitable

superiority over the primal simplex method in a branch-and-bound framework.

It has turned out in practice that the simplex method is efficient and reliable

38

CHAPTER 3. INCLUSIVE-CONE-BASED LADDER ALGORITHMS FOR
LINEAR PROGRAMMING

LP solution methods, particularly suitable for solving small- and medium-sized

problems. Borgwardt [8, 9] showed the average number of pivot steps required

by the simplex method is polynomial. However, its computational complexity is

not polynomial for the worst case (see Goldfarb and Sit [35], Klee and Minty [52]

and Roos [83]). Khachiyan’s ellipsoid algorithm [51] developed in 1979 solves LP

problems in polynomial time. Unfortunately, it performs poorly in practice. On

the basis of Dikin’s affine-scaling method (see Dikin [16, 17]), Karmarkar [50]

proposed an interior point algorithm with polynomial time complexity in 1984

using a sequence of projective transformations of a polytope. Emergence of this

algorithm is a significant breakthrough over the Khachiyan’s ellipsoid method.

Ever since, the interior point methods (IPMs) have been flourishing in the LP

community (see Xu and Ye [99], Kojima et al. [53] and Anstreicher [3]).

To date, the simplex method and the interior point methods are still the

most favored approaches, competitive to each other, for solving LP problems.

As stated by Illés and Terlaky [44]: “There is no clear champion in the race to

solve LP problems in practice. Theoretical criteria, such as worst case complexity,

the ability to generate strictly complementary solutions, clearly favor IPMs, but

in practice pivot methods keep competing. The IPMs win for very large, sparse

LP problems, while pivot algorithms are favorable for integer linear problems”.

Unfortunately, so far there has not existed a single LP algorithm which works

well for solving all types of LP problems. Any currently-existing approach is

only suitable for solving a certain type of LP problems. Furthermore, it remains

unknown whether there exists a strongly polynomial time LP algorithm. For

these reasons, a considerable amount of research is under way to pursue LP

algorithms with better numerical performance (see Arsham [4], Barnes et al. [6],

Liu [60, 61], Ding et al. [18, 19] and the references therein).

Recently, an inclusive-cone-based ladder method for solving LP problems was

developed in [60]. The ladder method iteratively updates the inclusive cone

and ladder to obtain a sequence of base points which converges to an optimal

solution (if an LP problem has an optimal solution), or it concludes the problem is

infeasible or unbounded. A ladder updating scheme, which involves picking up a

39

CHAPTER 3. INCLUSIVE-CONE-BASED LADDER ALGORITHMS FOR
LINEAR PROGRAMMING

violated constraint and dropping a constraint from the current ladder, is of crucial

importance in determining the performance of a ladder algorithm. Two ladder

algorithms, employing different ladder updating strategies, were proposed in the

aforementioned paper. Our new algorithms to be developed in the subsequent

chapter as well as Chapter 6 (for LP and LSIP) build upon the ladder method.

Therefore, for sake of readability, it is necessary to give a overall review of the

ladder method in the remainder of this chapter.

3.2 The Ladder Method

The ladder method (see Liu [60]) works on LP problems with inequality con-

straints (see problem (P) in Chapter 2) with the assumption that the problem is

of full column rank. For clarification, we rewrite the problem as follows

(P): min cTx

s.t. Ax ≤ b,

where x ∈ Rn is the vector of decision variables, A ∈ Rm×n (m > n), c =

[c1; c2; · · · ; cn] ∈ Rn (c 6= 0), and b = [b1; b2; · · · ; bm] ∈ Rm.

Throughout this section, we use the following notation:

F : the feasible region of problem (P).

x∗: an optimal solution of problem (P).

J : the constraint index set, J = {1, 2, · · · , m}.
J : an ordered subset of J .

J \ J : the set difference of the index set J from the index set J .

J(i ↔ j): the ordered subset with i-th entry of J replaced by j ∈ J \ J .
aj: the j-th row of A.

A(J): the submatrix of A containing the rows aj such that j ∈ J .

b(J): the subvector of b containing the elements bj such that j ∈ J .

P(J): the subproblem of (P) consisting of constraints associated with the

index set J .

40

CHAPTER 3. INCLUSIVE-CONE-BASED LADDER ALGORITHMS FOR
LINEAR PROGRAMMING

3.2.1 Preliminaries

The ladder method developed by Liu [60] is based on Definition 2.1 and Theorem

2.1 presented in the previous chapter. In addition, the following theorems were

used.

Theorem 3.1. [60] For problem (P), the following statements hold true:

(1) If the problem has no optimal solution, then it is either infeasible or un-

bounded.

(2) If the problem has an optimal solution, it must have an optimal solution at

the base point of some ladder.

Theorem 3.2. [60] For problem (P), the following properties hold true:

a) Let xJ be the base point of a ladder L(J). The objective value at xJ serves as

a lower bound for the optimal value if the feasible region F is non-empty.

If xJ violates no constraint, then xJ is optimal.

b) If the feasible region F is non-empty and there is no bounded optimal solu-

tion, then there exists no inclusive cone and hence there exists no ladder.

c) If the problem does not have an inclusive cone, then the problem either is

infeasible or has no bounded optimal solution.

d) If there exists an inclusive cone, then the following are true.

(1) Problem (P) either is infeasible or has an optimal solution at a base

point.

(2) Problem (P) is infeasible if and only if all the base points are infeasible.

e) If at the base point xJ of a ladder L(J) a constraint asx ≤ bs is violated, that

is, asxJ > bs, then:

(1) Either there exists an index j ∈ J such that J
′

= J(j ↔ s) is a ladder

generator. In this case, among all such generators, there must be one

J
′

such that its associated base point xJ
′ is in L(J).

41

CHAPTER 3. INCLUSIVE-CONE-BASED LADDER ALGORITHMS FOR
LINEAR PROGRAMMING

(2) Or problem P(J
⋃{s}) is infeasible (hence problem (P) is infeasible).

f) Let J ⊂ J be a ladder generator. If for some j ∈ J \ J , aTj ∈ N(J)

and ajxJ < bj , then the j-th constraint of problem (P) is redundant (not

binding at the optimal solution). On the other hand, if −aTj ∈ N(J) and

ajxJ > bj , then problem (P) is infeasible.

3.2.2 The Ladder Algorithms

In this subsection, we discuss in detail two ladder algorithms proposed in [60]

(termed “the targeted climbing algorithm” and “the centered climbing algo-

rithm” respectively). To start, we give basic steps of these two ladder algorithms.

The Targeted Climbing Algorithm (TCA):

Step 0 Initialization.

Start with a feasible reference point and a known ladder generator, which

are denoted by xr and J0 = {j01 , j02 , · · · , j0n} ⊂ J , respectively. (Refer to

Chapter 5 for how to find such a reference point and a generator if they are

not immediately at hand.) Denote by x0 = xJ0 the base point associated

with J0. Compute the initial base point x0 = [A(J0)]
−1b(J0). Set k = 0

and Dk−1 = ∅.

Step 1 Optimality criterion.

Let V k = {j ∈ J \(Jk

⋃

Dk−1) : ajx
k > bj}.

• If V k = ∅, exit with “ Problem (P) has an optimal solution x∗ = xk”.

• Otherwise, go to next step.

Step 2 Updating the ladder.

2.1 Selecting an index from V k .

Set

tj =
ajx

k − bj

aj(xk − xr)
, j ∈ V k. (3.1)

42

CHAPTER 3. INCLUSIVE-CONE-BASED LADDER ALGORITHMS FOR
LINEAR PROGRAMMING

Determine an index pk ∈ V k as a pick such that tpk = max
j∈V k

{tj}.

2.2 Dropping an index from Jk .

Find an index jkd ∈ Jk as a drop such that Jk+1 = Jk(j
k
d ↔ pk) is a

ladder generator and the associated base point xk+1 ∈ L(Jk).

2.3 Update.

Denote the elements of Jk+1 by Jk+1 = {jk+1
1 , jk+1

2 , · · · , jk+1
n }. Let

Dk = {jkd}. Compute the updated base point xk+1 = [A(Jk+1)]
−1b(Jk+1).

Set k := k + 1. Return to Step 1.

The Centered Climbing Algorithm (CCA):

Step 0 Initialization.

Start with a known ladder generator, which is denoted by J0 = {j01 , j02 , · · · , j0n}
⊂ J . (Refer to Chapter 5 for how to find such a generator if it is not im-

mediately available.) Denote by x0 = xJ0 the base point associated with

J0. Compute the initial base point x0 = [A(J0)]
−1b(J0). Set k = 0 and

Dk−1 = ∅.

Step 1 Optimality criterion.

Let V k = {j ∈ J \(Jk

⋃

Dk−1) : ajx
k > bj}.

• If V k = ∅, exit with“Problem (P) has an optimal solution x∗ = xk”.

• Otherwise, go to next step.

Step 2 Updating the ladder.

2.1 Selecting an index from V k.

Let vk = −[A(Jk)]
−11n×1, where 1n×1 = [1; 1; · · · ; 1] ∈ Rn, and vk is

the center vector of the current ladder L(Jk).

43

CHAPTER 3. INCLUSIVE-CONE-BASED LADDER ALGORITHMS FOR
LINEAR PROGRAMMING

• If vk is perpendicular to at least one of the aTj ’s (j ∈ V k), arbi-

trarily select pk ∈ V k as a pick such that apkv
k = 0.

• Otherwise, set

tj =
bj − ajx

k

ajvk
. (3.2)

Determine pk ∈ V k as a pick such that tpk = max
j∈V k

{tj}.

2.2 Dropping an index from Jk.

Try to identify an index jkd ∈ Jk as a drop such that Jk+1 = Jk(j
k
d ↔

pk) is a ladder generator and the associated base point xk+1 ∈ L(Jk).

• If such an index does not exist, exit with “Problem (P) has no

feasible solution.”

• Otherwise, go to next step.

2.3 Update.

Denote the elements of Jk+1 by Jk+1 = {jk+1
1 , jk+1

2 , · · · , jk+1
n }. Let

Dk = {jkd}. Compute the updated base point xk+1 = [A(Jk+1)]
−1b(Jk+1).

Set k := k + 1. Return to Step 1.

With respect to the TCA and CCA, we would like to point out:

Remark 3.1. Both the TCA and CCA require an initial ladder to start. To

find a ladder L(J) is to find the associated generator J = {j1, j2, · · · , jn} ⊂ J ,

equivalently, to find n linearly independent outward normal vectors aTjk (k =

1, 2, · · · , n) such that there exist n constants λjk ≥ 0 (k = 1, 2, · · · , n) satisfying

−c =
n

∑

k=1

λjka
T
jk
.

There are different techniques to obtain an initial ladder. We will discuss in

detail how to find such a ladder in Chapter 5.

Remark 3.2. For the TCA, it is noticeable that existence of both an initial

ladder and a feasible reference point implies that problem to be solved is inclusive-

feasible, that is, the problem to be solved must have an optimal solution.

44

CHAPTER 3. INCLUSIVE-CONE-BASED LADDER ALGORITHMS FOR
LINEAR PROGRAMMING

Remark 3.3. For the CCA, since this algorithm starts with a known ladder,

which implies that problem (P) is inclusive, then the output information in Step

2.2 means “Problem (P) is inclusive-infeasible”.

Remark 3.4. Step 2.1 of the above CCA involves the selection of a violated

constraint, which is probed along the centerline of the current ladder L(Jk). The

centerline of the ladder L(Jk) is a line emanating from the base point xk of L(Jk)

and parallel to the center vector vk of L(Jk) [60]:

l(xk, vk) : x = xk + µvk, −∞ < µ < ∞.

Remark 3.5. Different ladder updating criteria are used to choose a violated

constraint in the TCA and CCA, which constitutes the main difference between

these two algorithms (see Step 2.1). In the TCA, at each iteration a violated

constraint is probed by means of the line joining the feasible reference point xr

and the current base point, whereas the CCA selects a violated constraint along

the centerline of the current ladder. The ladder updating scheme plays a crucial

role in determining the performance of a ladder algorithm. In Chapter 4, we

will propose several new ladder algorithms employing various ladder updating

strategies, in an effort to find a ladder algorithm with as little computational

effort as possible.

Step 2.2 of the above two algorithms deals with determining a drop jkd ∈ Jk

such that Jk+1 = Jk(j
k
d ↔ pk) is a ladder generator and the associated base point

xk+1 ∈ L(Jk). It was proven in [60] that the requirement xk+1 ∈ L(Jk) is satisfied

in the absence of degeneracy. As for how to identify a drop, an efficient procedure

was introduced in the above-mentioned paper, which we present as below:

Procedure for identifying a drop in the absence of degeneracy:

Given the current ladder L(Jk) with Jk = {jk1 , jk2 , · · · , jkn},

1. Calculate

δk = [δk1 ; δ
k
2 · · · ; δkn] = −[AT (Jk)]

−1c,

45

CHAPTER 3. INCLUSIVE-CONE-BASED LADDER ALGORITHMS FOR
LINEAR PROGRAMMING

and

γk = [γk
1 ; γ

k
2 · · · ; γk

n] = [AT (Jk)]
−1aTpk .

2. • If at least one γk
j > 0 (1 ≤ j ≤ n), determine an index d (1 ≤ d ≤ n)

such that
δkd
γk
d

= min

{

δkj

γk
j

∣

∣

∣

∣

γk
j > 0, 1 ≤ j ≤ n

}

. (3.3)

The associated index jkd ∈ Jk is the drop.

• Otherwise, the problem is infeasible.

As seen from the TCA and CCA, at each iteration the inverse of the matrix

is involved. It is not necessary to recalculate the inverse of the matrix afresh

at each iteration due to the change in a row or column. In [60], the following

procedure was adopted to update the inverse of the matrix. Suppose that at the

k-th iteration [A(Jk)]
−1 is known, [A(Jk+1)]

−1 is computed according to

[A(Jk+1)]
−1 = [A(Jk)]

−1ET
k , (3.4)

where

Ek = [e1, e2, · · · , ed−1, γ̄
k, ed+1, · · · , en],

and

γ̄k =
1

γk
d

[−γk
1 ;−γk

2 ; · · · ;−γk
d−1; 1;−γk

d+1; · · · ;−γk
n],

and ei is the unit column vector with the i-th component 1.

46

Chapter 4

Improved Ladder Algorithms for

Linear Programming

4.1 Introduction

As previously mentioned in Chapter 3, a ladder updating scheme plays an im-

portant role in determining the performance of a ladder algorithm. In particular,

the selection of a violated constraint is crucial, directly influencing the efficiency

of a ladder algorithm. In this chapter, we propose new ladder algorithms em-

ploying various ladder updating criteria for selecting a violated constraint, in an

effort to improve the ladder method. Still we are concerned with problems with

inequality constraints, which are restated here

(P) : min cTx

s.t. Ax ≤ b,

where A ∈ Rm×n with m ≥ n. Throughout this chapter, we assume the problem

is non-degenerate and use the same notation as introduced in Section 3.2 in

Chapter 3. Still, we assume that rank(A) = n. We denote by ‖ · ‖ the Euclidean

norm in Rn.

This chapter is organized as follows. We develop a ladder algorithm termed

“an improved targeted climbing algorithm ”(ITCA) in Section 4.2. As the term

suggests, the ITCA is a variant of the original targeted climbing algorithm. To

47

CHAPTER 4. IMPROVED LADDER ALGORITHMS FOR LINEAR
PROGRAMMING

show the efficiency of this new algorithm, we also provide an illustration, as well

as computational implementation. In Section 4.3, we introduce several ladder

updating rules for picking up a violated constraint in the framework of CCA, and

examine these rules on the famous Klee-Minty problem and randomly generated

test problems.

4.2 An Improved Targeted Climbing Algorithm

(ITCA)

4.2.1 Motivation

In the TCA, at each iteration, a fixed reference point is used in the ladder up-

dating scheme to determine a violated constraint. We present in the following

a variant of the targeted climbing algorithm. Instead of using a fixed reference

point in the ladder updating scheme, as in the original targeted climbing algo-

rithm, we use a different reference point (at each iteration). The reference points

used in the new algorithm are feasible and have improved objective values. We

can see geometrically (see Figure 4.1) that a reference point with a smaller ob-

jective value provides a better chance of choosing a more efficient constraint to

form the next ladder and hence enhance the rate of convergence. In particular,

the proposed algorithm is efficient for problems with a number of constraints

near an optimal solution.

4.2.2 Description of Algorithm

An Improved Targeted Climbing Algorithm (ITCA):

Step 0 Initialization.

Start with a feasible reference point and a known ladder generator, which

are denoted by x0
r and J0 = {j01 , j02 , · · · , j0n} ⊂ J , respectively. (Refer to

48

CHAPTER 4. IMPROVED LADDER ALGORITHMS FOR LINEAR
PROGRAMMING

Chapter 5 for how to find such a reference point and generator if they are

not immediately available.) Denote by x0 = xJ0 the base point associated

with J0. Compute the initial base point x0 = [A(J0)]
−1b(J0). Set k = 0

and Dk−1 = ∅.

Step 1 Optimality criterion.

Let V k = {j ∈ J \(Jk

⋃

Dk−1) : ajx
k > bj}.

• If V k = ∅, exit with “Problem (P) has an optimal solution x∗ = xk”.

• Otherwise, go to Step 2.

Step 2 Updating the ladder.

2.1 Selecting an index from V k.

Identify an index pk ∈ V k as a pick such that tpk = max
j∈V k

{tj} where

tj =
ajx

k − bj

aj(xk − xk
r)
, j ∈ V k. (4.1)

2.2 Updating the reference point.

Set

xk+1
r = xk + tpk(x

k
r − xk). (4.2)

2.3 Dropping an index from Jk.

Find an index jkd ∈ Jk as a drop such that Jk+1 = Jk(j
k
d ↔ pk) is a

ladder generator and the associated base point xk+1 ∈ L(Jk).

2.4 Updating.

Denote the elements of Jk+1 by Jk+1 = {jk+1
1 , jk+1

2 , · · · , jk+1
n }. Let

Dk = {jkd}. Compute the updated base point xk+1 = [A(Jk+1)]
−1b(Jk+1).

Set k := k + 1. Return to Step 1.

Note that, existence of both an initial ladder and a feasible reference point

implies that problem (P) is inclusive-feasible, that is, problem (P) can achieve

optimality.

49

CHAPTER 4. IMPROVED LADDER ALGORITHMS FOR LINEAR
PROGRAMMING

Remark 4.1. The proposed algorithm is different from the TCA (see Subsection

3.2.2) in the following aspect. In the original targeted climbing algorithm a

stationary reference point is adopted during the process of iterations, whereas in

the proposed algorithm the reference point is dynamic and is updated at each

iteration (see Step 2.2). Due to the fact that the sequence of reference points

moves in the descending direction, changing the reference point at each iteration

increases the chance that the active constraints at the optimal solution are picked

up, thus speeding up the solution process and reducing the number of iterations.

Remark 4.2. In order to implement the improved targeted climbing algorithm,

there must be an initial ladder and a feasible reference point. We can adopt the

method introduced in Chapter 5 to obtain a known ladder and a feasible point.

For details, see Chapter 5.

Remark 4.3. The iterative process possesses the following properties:

i) The sequence of reference points {xk
r}Nk=0 converges to the optimal solution

x∗, where N denotes the number of iterations.

ii) The sequence {cTxk − cTx∗}Nk=0 is non-positive and increasing.

iii) The sequence {cTxk
r − cTx∗}Nk=0 is non-negative and decreasing.

Remark 4.4. In Step 2.3 a drop needs to be identified. We can follow the

procedure presented in Subsection 3.2.2 to determine a drop.

Remark 4.5. In light of the above properties ii) and iii), it is clear that the

improved targeted climbing algorithm is finite on non-degenerate LP problems.

4.2.3 An Illustration

For illustration, we present the following simple example to show how the im-

proved targeted climbing algorithm works.

50

CHAPTER 4. IMPROVED LADDER ALGORITHMS FOR LINEAR
PROGRAMMING

Example 4.1. Consider the following linear programming problem:

min x1 + 8x2

s.t. x1 − x2 ≤ 0

−x1 − x2 ≤ 0

−4x1 − 3x2 ≤ −12

5x1 − 4x2 ≤ −20

−x1 ≤ 1.

Take x0
r = [0; 10] as the initial reference point. An initial ladder generator J0 =

{1, 2} with base point x0 = [0; 0] is easily identified. Following the improved

targeted climbing algorithm, we need to update the ladder generator twice (the

subsequent ladder generators are J1 = {2, 4} and J2 = {3, 4}) and change the

reference point once (the updated reference point is x1
r = [0; 5]) for obtaining the

optimal solution x∗ = [−12
31
; 140

31
]. See Figure 4.1 for a geometric illustration.

For comparison, the targeted climbing algorithm (for details, see [60]) is also

implemented to solve the same problem. Still we take [0; 10] as the initial refer-

ence point. Starting from the initial ladder generator J0 = {1, 2} with base point

x0 = [0; 0], the optimal solution is reached by three iterations. The subsequent

ladder generators are J1 = {2, 4}, J2 = {4, 5} and J3 = {3, 4}.

4.2.4 Computational Experiments

In this section, we present results of numerical tests (without dealing with large-

scale and sparse problems) to show the efficiency of the improved targeted climb-

ing algorithm. We implemented the proposed algorithm in the MATLAB envi-

ronment (MATLAB 7.7.0 (R2008b)) and ran the tests on a desk-top computer

(HP Compaq, Intel Core 2 Duo, 3.16GHz, 3.48GB RAM) under the Microsoft

Windows XP operating system. The machine precision used is 16 decimal places.

For sake of comparison, the original targeted climbing algorithm, the linprog

solver (the medium-scale simplex algorithm was implemented) in MATLAB op-

timization toolbox (Version 4.1 (R2008b)) and lpSimplex solver in TOMLAB

(Version 7.6) were used for solving the same test problems. Our objective is to

51

CHAPTER 4. IMPROVED LADDER ALGORITHMS FOR LINEAR
PROGRAMMING

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

12

x
1

x
2

5x
1
−4x

2
=−20

x
r
0

•

•

•
•

x2

•

x
r
1

Feasible
Region

x1

•

x0

−x
1
=1

−x
1
−x

2
=0 x

1
−x

2
=0

−4x
1
−3x

2
=−12

−c=[−1;−8]

x *

Figure 4.1: Geometric illustration of Example 4.1

compare the CPU time. Since our algorithms and simplex algorithms actually

work on problems of different forms and dimensions, the number of iterations

does not provide us much helpful information. Therefore, here we do not take a

comparison of iteration numbers into consideration.

Example 4.2. [60] (Randomly generated feasible problems) Generate a linear

programming problem by specifying A ∈ Rm×n, c = [c1; c2; · · · ; cn] ∈ Rn, and

b = [b1; b2; · · · ; bm] ∈ Rm in the following method.

1. Randomly generate c ∈ Rn and a vector x̄ ∈ Rn such that components of

c take values between -25 and 25, and components of x̄ between 0 and 20.

2. Generate A and b by two steps.

(a) For 1 ≤ j ≤ n, the j-th row aj of A is aj = −cT + 2sign(cj)ej, where

ej is the j-th row of the n× n identity matrix. Then, bj is defined by

bj = aj x̄+ κj, where κj is a random number in (0, 1).

(b) For n + 1 ≤ j ≤ m, randomly generate a row vector αj ∈ Rn and a

number βj ∈ R such that βj and all the components of αj are between

52

CHAPTER 4. IMPROVED LADDER ALGORITHMS FOR LINEAR
PROGRAMMING

-25 and 25. If αj x̄ ≤ βj, then the j-th row aj of A and the j-th element

of b are defined by aj = αj , bj = βj. Otherwise, they are defined by

aj = −αj , bj = −βj .

Computational results for running 20 problems with less than 1000 variables

and constraints are reported in Table 4.1. We had to give up test problems with

greater dimensions due to the limitation of computer memory.

As seen from Table 4.1, numerical test results are encouraging. Our tests

show that for problems whose number of variables (n) is between 100 and 200,

the current algorithm is faster than linprog solver and lpSimplex solver when

the number of constraints (m) is approximately within the range of 1.4n < m ≤
4n (for 100 ≤ n ≤ 200). For problems with at least 200 variables, our algorithm

performs better when the number of constraints is at least 50 more than the

number of variables. It seems when n increases, the range for m also increases.

It is worth mentioning that the proposed ladder algorithm has significant

advantages over the simplex method for solving LP problems with overly strin-

gent constraints. This class of problems can be solved by the proposed ladder

algorithm and ladder algorithms in general, while the linprog solver which im-

plements the the medium-scale simplex algorithm from MATLAB optimization

toolbox fails to solve the same problems.

We would also like to point out that in the present code we adopt the tra-

ditional technique of the inverse of matrix to calculate base points. If advanced

numerical techniques were adopted, the algorithmic performance could be im-

proved.

4.3 Ladder Updating Criteria in the Framework

of CCA

In the framework of CCA (see Subsection 3.2.2 in Chapter 3), we restrict atten-

tion to the k-th iteration of this ladder algorithm and examine several ladder

updating criteria for picking up a violated constraint in Step 2.1.

53

CHAPTER 4. IMPROVED LADDER ALGORITHMS FOR LINEAR
PROGRAMMING

4.3.1 Description of Criteria

• Criterion 1

We can select a violated constraint along c direction. The detailed rule is

introduced as follows.

If c is orthogonal to at least one of the aTj ’s (j ∈ V k), arbitrarily choose

pk ∈ V k such that apkc = 0.

Otherwise, select pk ∈ V k such that tpk = max
j∈V k

{tj}, where

tj =
bj − ajx

k

ajc
. (4.3)

A distinct feature of the above rule is its simplicity and ease of implementa-

tion. �

• Criterion 2

Select pk ∈ V k such that tpk = max
j∈V k

{tj}, where

tj =
ajv

k

‖aj‖
, (4.4)

and vk is the center vector of the current ladder L(Jk).

At the k-th iteration, a violated constraint is selected whose associated outer

normal vector forms the minimum angle with the center vector.�

4.3.2 A Specific Example

We take the famous Klee-Minty problem with n = 3 (see, e.g., Vanderbei [89],

Klee and Minty [52]) for illustration to examine the efficiency of the above criteria.

For comparison, we also use the simplex method to solve the same problem.

Example 4.3. Consider the following Klee-Minty problem with n = 3

min −100x1 − 10x2 − x3

s.t. x1 ≤ 1

20x1 + x2 ≤ 100

54

CHAPTER 4. IMPROVED LADDER ALGORITHMS FOR LINEAR
PROGRAMMING

200x1 + 20x2 + x3 ≤ 10000

x1, x2, x3 ≥ 0.

On the one hand, we use the simplex method to solve the above problem.

Introducing the slack variables s1, s2, s3 ≥ 0, write the above problem as the

standard form

min −100x1 − 10x2 − x3

s.t. x1 + s1 = 1

20x1 + x2 + s2 = 100

200x1 + 20x2 + x3 + s3 = 10000

x1, x2, x3, s1, s2, s3 ≥ 0.

Tables 4.2–4.3 show that the simplex method with the most negative rule

requires 2n − 1 = 23 − 1 = 7 iterations to attain optimality.

On the other hand, we solve the same problem using the ladder method.

Firstly we rewrite all constraints as ≤-type:

min −100x1 − 10x2 − x3

s.t. x1 ≤ 1

20x1 + x2 ≤ 100

200x1 + 20x2 + x3 ≤ 10000

−x1 ≤ 0

−x2 ≤ 0

−x3 ≤ 0.

Here an initial ladder is not immediately available for this problem. To find an

initial ladder, we add an artificial constraint x1+x2+x3 ≤ M . (See Section 5.4,

Chapter 5 for construction detail of the initial ladder.) This results in the problem

with the additional constraint as below:

min −100x1 − 10x2 − x3

s.t. x1 ≤ 1

20x1 + x2 ≤ 100

200x1 + 20x2 + x3 ≤ 10000

−x1 ≤ 0

−x2 ≤ 0

55

CHAPTER 4. IMPROVED LADDER ALGORITHMS FOR LINEAR
PROGRAMMING

−x3 ≤ 0

x1 + x2 + x3 ≤ M ,

where M is a sufficiently large real number.

In the next chapter we will discuss in detail how to construct an initial ladder.

The interested reader can temporarily skip to Section 5.4 in Chapter 5 to acquire

the construction detail of an initial ladder.

It is easy to verify that the index set {7, 5, 6} is an initial ladder genera-

tor. With the known ladder generator at hand, it takes four iterations to reach

an optimal solution using the ladder algorithm with Criterion 1. And it takes

only two iterations to reach an optimal solution using the ladder algorithm with

Criterion 2. For solution details, see Table 4.4 and Table 4.5.

Clearly, the ladder algorithms using the above-proposed criteria are much

more efficient for solving the Klee-Minty problem. Firstly, our algorithms require

no additional variables (slack, surplus and artificial variables). Secondly, the

number of iterations is reduced greatly. In addition, we would like to address

that although here we use an example with non-negative variables to illustrate the

efficiency of our algorithms, there is no non-negativity requirement for variables

in our problem form. Thus, our algorithms are suitable for a wide range of LP

problems.

4.3.3 Computational Experiments

In this subsection, we carry out computational experiments on randomly gener-

ated problems from Example 4.2 to examine numerical behavior of the new ladder

algorithms (with the foregoing two ladder updating criteria implemented). The

following codes were tested and compared against one another:

• LCR1: Using the ladder algorithm with Criterion 1.

• LCR2: Using the ladder algorithm with Criterion 2.

• CCA: Using the centered climbing algorithm.

• linprog: Using the medium-scale simplex algorithm.

56

CHAPTER 4. IMPROVED LADDER ALGORITHMS FOR LINEAR
PROGRAMMING

Except for the linprog solver which is from the MATLAB optimization tool-

box (Version 5.1 (R2010b)), the others were coded in the MATLAB environment

(MATLAB 7.11.0 (R2010b)). Tests were run on a desk-top computer (HP In-

tel(R) Core(TM), i7-2600 CPU@3.40GHz, 3.39GHz, 3.24GB of RAM) under the

Microsoft Windows XP operating system. The machine precision used is 16 dec-

imal places. Tables 4.6–4.7 present computational results for 20 test problems

with various dimensions. The average CPU time is reported in seconds. Since

our algorithm and the simplex method actually work on problems with different

forms and dimensions, the number of iterations does not provide much helpful

information. Therefore, here we do not take a comparison of iteration numbers

into consideration.

Tables 4.6–4.7 reveal that, the ladder algorithm using Criterion 2 has sur-

prisingly excellent performance, particularly for the case where m − n = 100.

We would like to point out that in the present code we adopt the traditional

technique of the inverse of matrix to calculate base points. If advanced nu-

merical techniques were incorporated into the current code, then computational

performance may be improved.

57

CHAPTER 4. IMPROVED LADDER ALGORITHMS FOR LINEAR
PROGRAMMING

Table 4.1: Average CPU time (in seconds) for Example 4.2

Size Algorithms

(m, n) ITCA TCA linprog lpSimplex

(130, 100) 1.2559 1.2725 1.1221 1.1397

(150, 100) 1.5773 1.6648 1.8008 2.1820

(280, 100) 5.2721 7.2318 8.2370 20.4518

(470, 100) 19.1250 26.9861 18.9201 74.6580

(165, 125) 1.8799 1.9597 1.8380 1.7936

(175, 125) 2.0703 2.1893 2.6809 2.5811

(245, 125) 3.8125 5.2272 7.4808 9.0012

(525, 125) 25.6830 40.8002 32.9319 128.9565

(180, 150) 2.2432 2.3193 1.8086 2.3193

(370, 150) 11.6641 20.3105 24.2402 67.1992

(750, 150) 70.3969 122.8031 84.9000 395.3281

(220, 200) 3.4229 3.4323 2.2198 1.1927

(280, 200) 5.6547 7.6266 11.3234 18.8266

(400, 200) 13.9340 29.7750 42.2090 135.2770

(600, 200) 44.3320 99.0390 93.8906 521.7660

(335, 300) 8.5156 9.0495 7.3919 7.4297

(350, 300) 9.6853 10.9476 10.4174 13.6071

(550, 300) 34.2148 100.2161 154.4714 471.2057

(900, 350) 177.0365 588.9167 580.5000 1138.6563

(550, 500) 29.3465 32.7013 37.1572 38.5689

58

CHAPTER 4. IMPROVED LADDER ALGORITHMS FOR LINEAR
PROGRAMMING

Table 4.2: The tableau obtained from simplex for Example 4.3

Iteration x1 x2 x3 s1 s2 s3 rhs

0 z -100 -10 -1 0 0 0 0

s1 1 0 0 1 0 0 1

s2 20 1 0 0 1 0 100

s3 200 20 1 0 0 1 10000

1 z 0 -10 -1 100 0 0 100

x1 1 0 0 1 0 0 1

s2 0 1 0 -20 1 0 80

s3 0 20 1 -200 0 1 9800

2 z 0 0 -1 -100 10 0 900

x1 1 0 0 1 0 0 1

x2 0 1 0 -20 1 0 80

s3 0 0 1 200 -20 1 8200

3 z 100 0 -1 0 10 0 1000

s1 1 0 0 1 0 0 1

x2 20 1 0 0 1 0 100

s3 -200 0 1 0 -20 1 8000

4 z -100 0 0 0 -10 1 9000

s1 1 0 0 1 0 0 1

x2 20 1 0 0 1 0 100

x3 -200 0 1 0 -20 1 8000

5 z 0 0 0 100 -10 1 9100

x1 1 0 0 1 0 0 1

x2 0 1 0 -20 1 0 80

x3 0 0 1 200 -20 1 8200

59

CHAPTER 4. IMPROVED LADDER ALGORITHMS FOR LINEAR
PROGRAMMING

Table 4.3: The tableau obtained from simplex for Example 4.3 (to continue Table

4.2)

Iteration x1 x2 x3 s1 s2 s3 rhs

6 z 0 10 0 -100 0 1 9900

x1 1 0 0 1 0 0 1

s2 0 1 0 -20 1 0 80

x3 0 20 1 -200 0 1 9800

7 z 100 10 0 0 0 1 10000

s1 1 0 0 1 0 0 1

s2 20 1 0 0 1 0 100

x3 200 20 1 0 0 1 10000

Table 4.4: The table obtained from the ladder algorithm with Criterion 1 for

Example 4.3

Iteration Ladder generator Base point Optimal value

0 {7, 5, 6} [M ; 0; 0]

1 {7, 1, 6} [1; M − 1; 0]

2 {7, 1, 3} [1; 9801−M
19

; −9820+20M
19

]

3 {7, 5, 3} [10000−M
199

; 0; −10000+200M
199

]

4 {4, 5, 3} [0; 0; 10000] -10000

Table 4.5: The table obtained from the ladder algorithm with Criterion 2 for

Example 4.3

Iteration Ladder generator Base point Optimal value

0 {7, 5, 6} [M ; 0; 0]

1 {7, 5, 3} [10000−M
199

; 0; −10000+200M
199

]

2 {4, 5, 3} [0; 0; 10000] -10000

60

CHAPTER 4. IMPROVED LADDER ALGORITHMS FOR LINEAR
PROGRAMMING

Table 4.6: Average CPU time (in seconds) for test problems in Example 4.2 (m =

2n)

Size Algorithms

(m, n) LCR1 LCR2 CCA linprog

(40, 20) 0.0906 0.0843 0.0953 0.6406

(80, 40) 0.3875 0.3937 0.4375 1.2609

(120, 60) 0.6281 0.4921 0.5093 2.1656

(160, 80) 0.9062 0.8484 1.2281 3.9640

(200, 100) 1.3875 1.4312 1.775 7.0625

(240, 120) 1.8906 2.4078 2.9609 10.3703

(280, 140) 4.9375 4.4765 4.7421 18.5488

(320, 160) 5.8437 6.6347 7.6992 28.5644

(360, 180) 8.75 10.9609 12.3066 42.7851

(400, 200) 18.3812 16.1437 16.9937 61.7343

Table 4.7: Average CPU time (in seconds) for test problems in Example 4.2 (m−
n = 100)

Size Algorithms

(m, n) LCR1 LCR2 CCA linprog

(600, 500) 101.1484 35.8554 40.8424 126.6692

(650, 550) 113.3549 44.75 57.9263 148.9732

(700, 600) 212.5703 52.25 72.5273 185.5312

(750, 650) 198.9479 62.2291 73.6718 225.5625

(800, 700) 190.0729 75.7187 118.7760 239.6666

(850, 750) 799.7265 97.3125 99.4531 240.1953

(900, 800) 69.4531 94.9375 122.8281 252.8281

(950, 850) 987.1563 112.5312 155.4531 280.9843

(1000, 900) 95.625 117.5937 147.9531 345.1093

61

Chapter 5

Initialization Techniques

The ladder algorithms presented in the previous chapters require an initial ladder

at hand, which is not readily available in many cases. Some work may need to

be done to find an initial ladder. In this chapter, we introduce several techniques

on how to obtain an initial ladder for starting the ladder method.

Throughout this chapter, the reader needs to keep in mind that, to find

a ladder L(J) is to find the associated generator J = {j1, j2, · · · , jn} ⊂ J ,

equivalently, to find n independent outward normal vectors ajk (k = 1, 2, · · · , n)
such that there exist n constants λjk ≥ 0 (k = 1, 2, · · · , n) satisfying

−c =

n
∑

k=1

λjka
T
jk
.

5.1 Finding an Initial Ladder in Special Cases

For the case that problem (P) includes constraints taking the form of

−sign(ci)xi ≤ di for all ci 6= 0, i = 1, 2, · · · , n, where di are constants, any

independent set of n indices including those corresponding to the non-zero rows

of diag[−sign(c)] is a ladder generator, where sign(c) = [sign(c1); sign(c2); · · · ;
sign(cn)].

For another case that the feasible region F of problem (P) satisfies

F ⊂ {x ∈ Rn : (−sign(ci)− |sign(ci)|+ 1)xi ≤ di, i = 1, 2, · · · , n},

62

CHAPTER 5. INITIALIZATION TECHNIQUES

adding n constraints with the form of (−sign(ci) − |sign(ci)| + 1)xi ≤ di, i =

1, 2, · · · , n, obtains a new problem with m + n constraints (which has the same

solutions as the original problem). The corresponding index set associated with

n added constraints generates a ladder. For details, see [60].

5.2 Finding an Initial Ladder by Means of the

Dual System

Consider the dual system of problem (P)

(D): min bTy

s.t. ATy = −c

y = [y1; y2; . . . ; ym] ≥ 0.

Observing the dual system (D), we know that J = {j1, j2, · · · , jn} ⊂ J is a

ladder generator of problem (P) if and only if the dual problem (D) has a solution

y∗ which satisfies

y∗j ≥ 0 for j ∈ J and y∗j = 0 for j ∈ J \ J.

In the following, let us see how such a y∗ can be found if it does exist, which

will lead to a ladder of problem (P). To achieve this goal, Liu [60] constructed a

problem as below:

(P1): min b̃Ty

s.t.





AT

−Im



 y ≤





−c

0m×1



,

where b̃ = −[
∑n

i=1 a1i;
∑n

i=1 a2i; · · · ;
∑n

i=1 ami]. Noting that −AT y ≥ c implies

b̃Ty ≥ ∑n

i=1 ci, it is easy to see that the dual system (D) allows an optimal

solution y∗ if and only if y∗ is an optimal solution of problem (P1) with the

optimal value b̃T y∗ =
∑n

i=1 ci.

Also note that, any independent index set of the form J = {1, 2, · · · , n, n +

i1, n + i2, · · · , n + im−n} ⊂ {1, 2, · · · , m + n} is a ladder generator of the above

problem (P1), where {i1, i2, · · · , im−n} ⊂ {1, 2, · · · , m}. Therefore, problem (P1)

63

CHAPTER 5. INITIALIZATION TECHNIQUES

can be solved using CCA or any ladder algorithm in the frame of CCA (see

Subsection 4.3.1). In the progress of solving problem (P1), it can be detected

whether problem (P) has a ladder and an initial ladder of (P) can be found by

means of (P1) if it has. The following three cases can occur.

• Case A: Problem (P1) is infeasible. (Note that the case of unboundedness

cannot occur since problem (P1) has an ladder.) In this case problem (D) is

infeasible. Hence problem (P) has no inclusive cone, which implies problem

(P) is infeasible or unbounded.

• Case B : Problem (P1) has an optimal solution y∗ with the optimal value

b̃Ty∗ >
∑n

i=1 ci. In this case problem (D) has no solution. Hence prob-

lem (P) has no inclusive cone, which implies problem (P) is infeasible or

unbounded.

• Case C : Problem (P1) has an optimal solution y∗ satisfying the optimal

value b̃Ty∗ =
∑n

i=1 ci. Let K = {j : y∗j > 0, 1 ≤ j ≤ m}. In view of the

special form of constraints of problem (P1), clearly at least m − n of the

active constraints are from −Imy ≤ 0. Therefore, y∗ has at least m − n

zero components and hence at most n positive components. This means the

number of elements in K, denoted by k1, satisfies k1 ≤ n. Noting that y∗ is

also an optimal solution of the dual system (D), we have −c = Σk1
k=1y

∗
jk
aTjk .

Therefore, a ladder generator J can be easily obtained by expanding K to

an independent set of n indices.

5.3 Finding an Initial Ladder byMeans of Trans-

formation

We can use the following technique to find an initial ladder and a feasible point

for starting ITCA. This method was first proposed by Liu [60] to start TCA,

which we restate as follows.

64

CHAPTER 5. INITIALIZATION TECHNIQUES

Combining primal problem (P) and its dual problem (D), the following prob-

lem is constructed:

(P2): min ξ

s.t. −(cTx0 + bT y0)ξ + cTx+ bTy = 0

−(Ax0 + z0 − b)ξ + Ax+ z = b

−(c + ATy0)ξ + AT y = −c

−ξ ≤ 0

−y ≤ 0

−z ≤ 0,

where x0 ∈ Rn, y0 ∈ Rm
+ and z0 ∈ Rm

+ are chosen in such a way that y0 and z0

have strictly positive components and cTx0 + bT y0 6= 0.

Observing the first constraint of problem (P2), we know that (cTx0 + bTy0)ξ

represents duality gap between primal problem (P) and its dual problem (D).

It is clear that problem (P2) has a feasible solution [ξ; x; y; z] = [1; x0; y0; z0].

In addition, noting that problem (P2) contains constraint −ξ ≤ 0, it is easy to

know that problem (P2) is inclusive. Hence, problem (P2) can achieve optimality.

Denote by [ξ∗; x∗; y∗; z∗] an optimal solution of problem (P2). If ξ∗ = 0, then we

have

cTx∗ + bTy∗ = 0,

Ax∗ ≤ b,

AT y∗ = −c,

which implies that x∗ and y∗ are the optimal solutions of problem (P) and its dual

problem (D), respectively. Otherwise, if ξ∗ > 0, then problem (P) is infeasible

or unbounded since the duality gap (cTx0 + bTy0)ξ
∗ 6= 0.

In the remaining of this section, we focus on how to reduce problem (P2) to

a problem with less constraints and variables, which contains a feasible reference

point and an initial ladder, and thus can be solved using TCA or ITCA.

Rewrite problem (P2) as the equivalent matrix form as below:

65

CHAPTER 5. INITIALIZATION TECHNIQUES

min ξ

s.t.











−(cTx0 + bT y0) cT bT 01×m

−(Ax0 + z0 − b) A 0m×m Im

−(c + ATy0) 0n×n AT 0n×m



























ξ

x

y

z

















=











0

b

−c





















−1 01×n 01×m 01×m

0m×1 0m×n −Im 0m×m

0m×1 0m×n 0m×m −Im



























ξ

x

y

z

















≤ 0(2m+1)×1.

With the assumption that cTx0+ bTy0 = 1 and ξ and z eliminated, the above

problem is reduced to

min
[

cT bT
]





x

y





s.t.
[

(c+ AT y0)c
T (c+ ATy0)b

T − AT

]





x

y



 = c (5.1)

M1



M2





x

y



+





0(m+n+1)×1

b







 ≤ 0(2m+1)×1,

where

M1 = −





1 01×n 01×2m

02m×1 02m×n I2m





M2 =

















cT bT

In 0n×m

0m×n Im

(Ax0 + z0 − b)cT −A (Ax0 + z0 − b)bT

















.

Further we solve the system of linear equations (5.1) to remove n of y’s

components. That is, we can express n of y’s components in terms of x and

ŷ, where ŷ consists of y’s remaining m − n components (see Appendix A for

elimination procedure). Suppose this gives

66

CHAPTER 5. INITIALIZATION TECHNIQUES





x

y



 = M3





x

ŷ



+ c
′

0,

where M3 is an (m+ n)×m matrix and c
′

0 is an (m+ n)-vector. This will lead

to the following problem

(P3): min ĉT x̂

s.t. Âx̂ ≤ b̂,

where x̂ = [x; ŷ], ĉ = MT
3 [c; b], b̂ = −M1(M2c

′

0 + [0(m+n+1)×1; b]), and Â =

M1M2M3. Noting that the normal vector of the first constraint in problem (P3)

is −ĉT , it is obvious that any m independent indices including index 1 is a

ladder generator of (P3). Meanwhile, a feasible interior point of (P3) is given by

x̂r = [x0; ŷ0], where x0 satisfies cTx0 + bT y0 = 1 and ŷ0 is formed from y0 in the

same way as ŷ is formed from y.

With an initial ladder and a feasible point at hand, problem (P3) can be

solved using ITCA or TCA. Denote by x̂∗ = [x∗; ŷ∗] an optimal solution to

problem (P3). Let

ξ∗ = [cT bT]M3[x
∗; ŷ∗] + [cT bT]c

′

0.

If ξ∗ = 0, then problem (P) has an optimal solution x∗. Otherwise, problem (P)

is infeasible or unbounded.

5.4 Constructing an Artificial Ladder

We can also adopt the single artificial constraint technique to construct an initial

ladder for starting the ladder method. This technique is typically used in the dual

simplex method for finding a dual feasible basis. While applying this technique to

the dual simplex method, an extra constraint taking the form of
∑n

i=1 xi+xn+1 =

M needs to be appended to the original problem in the standard form (see

problem (PS) in Subsection 2.1.1), where xn+1 ≥ 0 is an artificial variable and

M is a sufficiently large number. Undoubtedly, introduction of the artificial

variable results in extra computational load. In the following, we will adopt a

67

CHAPTER 5. INITIALIZATION TECHNIQUES

similar technique to construct an artificial ladder for starting the ladder method.

Different from the aforementioned technique adopted in the dual simplex method,

the ladder construction technique does not involve any additional variable. More

importantly, as we will see in Subsection 5.4.2, this technique will lead to an

inclusive-cone-based solvability criterion for LP in the context of the new category

of LP problems, which enables us to identify accurately that an LP problem

is inclusive-feasible (i.e., optimal), noninclusive-feasible (unbounded), inclusive-

infeasible or noninclusive-infeasible.

5.4.1 Approach to Construction

In most practical settings variables are usually bounded. Therefore we first deal

with the cases in which variables are bounded, then we consider the general case

in which variables are unrestricted in sign.

Case 1: Variables with upper bounds

Here we consider the case where variables of problem (P) have upper bounds.

Temporarily, we assume that at least one component of c is positive. For conve-

nience of discussion, write the problem as below:

(P4): min c1x1 + c2x2 + · · ·+ cdxd + · · ·+ cnxn

s.t. a11x1 + a12x2 + · · ·+ a1nxn ≤ b1

a21x1 + a22x2 + · · ·+ a2nxn ≤ b2

· ·
a(m−n)×1x1 + a(m−n)×2x2 + · · ·+ a(m−n)×nxn ≤ bm−n

xi ≤ bm−n+i, i = 1, 2, · · · , d, · · · , n.
With this assumption that c contains at least one positive component, it is easily

seen that the index set {m−n+1, m−n+2, · · · , m−n+d, · · · , m} (corresponding
to the bound constraints xi ≤ bm−n+i, i = 1, 2, · · · , n) is not a ladder generator.

In order to obtain a ladder for the above problem, we add an artificial constraint

−∑n

i=1 xi ≤ M , where M is a sufficiently large number. For clarity, display the

problem with the additional constraint as follows:

68

CHAPTER 5. INITIALIZATION TECHNIQUES

(PM4): min c1x1 + c2x2 + · · ·+ cdxd + · · ·+ cnxn

s.t. a11x1 + a12x2 + · · ·+ a1nxn ≤ b1

a21x1 + a22x2 + · · ·+ a2nxn ≤ b2

· ·
a(m−n)×1x1 + a(m−n)×2x2 + · · ·+ a(m−n)×nxn ≤ bm−n

xi ≤ bm−n+i, i = 1, 2, · · · , d, · · · , n
−x1 − x2 − · · · − xn ≤ M .

Executing the following simple procedure, we can readily find an initial ladder for

problem (PM4). To begin, take J = {m−n+1, m−n+2, · · · , m−n+d, · · · , m}.
Let cd = max

1≤i≤n
{ci} > 0 (1 ≤ d ≤ n). Select j = m − n + d as a drop (the

associated constraint is xd ≤ bm−n+d) and p = m + 1 as a pick (the associated

constraint is −∑n

i=1 xi ≤ M). It is easy to verify that J(j ↔ p) is a ladder

generator of problem (PM4). Indeed, from

−









































c1

c2
...

cd−1

cd

cd+1

...

cn









































=









































1 0 · · · 0 −1 0 · · · 0

0 1 · · · 0 −1 0 · · · 0

· ·
0 0 · · · 1 −1 0 · · · 0

0 0 · · · 0 −1 0 · · · 0

0 0 · · · 0 −1 1 · · · 0

· ·
0 0 · · · 0 −1 0 · · · 1

















































































λ1

λ2

...

λd−1

λd

λd+1

...

λn









































,

we have

λi = cd − ci ≥ 0 (i 6= d), λd = cd > 0,

which implies J(j ↔ p) is a ladder generator of the above problem.

Case 2: Variables with lower bounds

In this part, we consider the case in which variables of problem (P) have lower

bounds. For convenience of discussion, we rewrite the problem in the following

form:

69

CHAPTER 5. INITIALIZATION TECHNIQUES

(P5): min c1x1 + c2x2 + · · ·+ cdxd + · · ·+ cnxn

s.t. a11x1 + a12x2 + · · ·+ a1nxn ≤ b1

a21x1 + a22x2 + · · ·+ a2nxn ≤ b2

· ·
a(m−n)×1x1 + a(m−n)×2x2 + · · ·+ a(m−n)×nxn ≤ bm−n

−xi ≤ bm−n+i, i = 1, 2, · · · , d, · · · , n.
Note that here we use the same notations in problem (P5) as in (P4) for con-

venience. In this case, we temporarily assume that c contains at least one neg-

ative component. With this assumption, it is easy to be seen that the index

set {m− n+ 1, m− n+ 2, · · · , m− n+ d, · · · , m} (corresponding to the bound

constraints −xi ≤ bm−n+i, i = 1, 2, · · · , n) is not a ladder generator. Adding an

artificial constraint
∑n

i=1 xi ≤ M , where M is a sufficiently large number, we get

the following system:

(PM5): min c1x1 + c2x2 + · · ·+ cdxd + · · ·+ cnxn

s.t. a11x1 + a12x2 + · · ·+ a1nxn ≤ b1

a21x1 + a22x2 + · · ·+ a2nxn ≤ b2

· ·
a(m−n)×1x1 + a(m−n)×2x2 + · · ·+ a(m−n)×nxn ≤ bm−n

−xi ≤ bm−n+i, i = 1, 2, · · · , d, · · · , n
x1 + x2 + · · ·+ xn ≤ M .

Performing a similar procedure as in the above Case 1, we can easily obtain

an initial ladder for this problem with additional constraint. Initially, take J =

{m−n+1, m−n+2, · · · , m−n+d, · · · , m}. Let cd = min
1≤i≤n

{ci} < 0 (1 ≤ d ≤ n).

Choose j = m − n + d as a drop (the associated constraint is −xd ≤ bm−n+d)

and p = m + 1 as a pick (the associated constraint is
∑n

i=1 xi ≤ M). It is easy

to verify that J(j ↔ p) is a ladder generator of this problem. In fact, from

70

CHAPTER 5. INITIALIZATION TECHNIQUES

−









































c1

c2
...

cd−1

cd

cd+1

...

cn









































=









































−1 0 · · · 0 1 0 · · · 0

0 −1 · · · 0 1 0 · · · 0

· ·
0 0 · · · −1 1 0 · · · 0

0 0 · · · 0 1 0 · · · 0

0 0 · · · 0 1 −1 · · · 0

· ·
0 0 · · · 0 1 0 · · · −1

















































































λ1

λ2

...

λd−1

λd

λd+1

...

λn









































,

we have

λi = −cd + ci ≥ 0 (i 6= d), λd = −cd > 0,

which implies J(j ↔ p) is a ladder generator of the above problem.

For illustration, we consider the famous Klee-Minty problem with n = 3:

min −100x1 − 10x2 − x3

s.t. x1 ≤ 1

20x1 + x2 ≤ 100

200x1 + 20x2 + x3 ≤ 10000

x1, x2, x3 ≥ 0.

Rewriting all constraints as ≤-type, yields

min −100x1 − 10x2 − x3

s.t. x1 ≤ 1

20x1 + x2 ≤ 100

200x1 + 20x2 + x3 ≤ 10000

−x1 ≤ 0

−x2 ≤ 0

−x3 ≤ 0.

An initial ladder is not immediately at hand for this problem. To find an

initial ladder, we add an artificial constraint x1+x2+x3 ≤ M . For clarity, write

the problem with the additional constraint as below.

71

CHAPTER 5. INITIALIZATION TECHNIQUES

min −100x1 − 10x2 − x3

s.t. x1 ≤ 1

20x1 + x2 ≤ 100

200x1 + 20x2 + x3 ≤ 10000

−x1 ≤ 0

−x2 ≤ 0

−x3 ≤ 0

x1 + x2 + x3 ≤ M .

Following the procedure in Case 2, it is easy to verify that the index set {7,
5, 6} is an initial ladder generator.

If the variables in problem (P) are bounded from both below and above, that

is, problem (P) contains bound constraints taking the form of Li ≤ xi ≤ Ui (1 ≤
i ≤ n), where Li and Ui denote the lower and upper bounds of xi and Li < Ui,

then after rewriting the above constraints as two constraints −xi ≤ −Li and

xi ≤ Ui we can follow the procedure in either Case 1 or Case 2 to obtain an

initial ladder in order to start the ladder method.

Case 3: Variables unrestricted in sign

Now we deal with problem (P) in which the variables are unrestricted in sign.

In this case, we can use the conventional variable transformation techniques to

convert this problem to an equivalent problem in which the variables have lower

bounds. For the equivalent problem, we can take the procedure introduced in

Case 2 to construct an initial ladder in order to start the ladder method. We

discuss in detail in the following.

Suppose that there are k variables x1, x2, · · · , xk that are unrestricted in sign

in problem (P). We can let xi = x+
i − x−

i , (x
+
i ≥ 0, x−

i ≥ 0, i = 1, 2, · · · , k).
Replacing each xi by x+

i − x−
i wherever it appears in this problem, we obtain

an equivalent problem which can be formulated into the same form as problem

(P5). Then, we can follow the procedure introduced in Case 2 to construct an

initial ladder for the converted problem.

Alternatively, we can let xi = x
′

i − x
′′

(x
′

i ≥ 0, x
′′ ≥ 0, i = 1, 2, · · · , k).

Replacing xi by x
′

i−x
′′

wherever they appear in the problem, we get an equivalent

72

CHAPTER 5. INITIALIZATION TECHNIQUES

problem which can also be formulated into the same form as problem (P5). Again,

using the procedure in Case 2, we can readily construct an initial ladder for the

converted problem.

For illustration, we give the following two-dimensional example.

min x2

s.t. x1 − x2 ≤ 1

−x1 − x2 ≤ 0.

Note that both x1 and x2 are unrestricted in sign in the above problem. Since this

problem has only two variables, we may readily solve it graphically. However,

here we would rather apply our current procedure to solve it, in order to make

the reader understand better the aforementioned ladder construction technique.

Applying the first method of variable transformation, we get the following

equivalent problem

min x+
2 − x−

2

s.t. x+
1 − x−

1 − x+
2 + x−

2 ≤ 1

−x+
1 + x−

1 − x+
2 + x−

2 ≤ 0

−x+
1 ≤ 0

−x−
1 ≤ 0

−x+
2 ≤ 0

−x−
2 ≤ 0.

An initial ladder generator is not immediately at hand. Thus, we add the con-

straint x+
1 + x−

1 + x+
2 + x−

2 ≤ M , leading to the problem

min x+
2 − x−

2

s.t. x+
1 − x−

1 − x+
2 + x−

2 ≤ 1

−x+
1 + x−

1 − x+
2 + x−

2 ≤ 0

−x+
1 ≤ 0

−x−
1 ≤ 0

−x+
2 ≤ 0

−x−
2 ≤ 0

x+
1 + x−

1 + x+
2 + x−

2 ≤ M .

Following the procedure in Case 2, we know J = {3, 4, 5, 7} is an initial ladder

73

CHAPTER 5. INITIALIZATION TECHNIQUES

generator. Then the ladder method can be used to solve the above transformed

problem, leading to an optimal solution [x+
1 ; x

−
1 ; x

+
2 ; x

−
2] = [80.1359; 79.6359;

69.4768; 69.9768]. According to xi = x+
i −x−

i , we can reconstruct the solution of

the original problem as [x1; x2] = [0.5;−0.5].

As an alternative, we can also let xi = x
′

i − x
′′

, x
′

i ≥ 0, x
′′ ≥ 0 (i = 1, 2),

resulting in the problem as below

min x
′

2 − x
′′

s.t. x
′

1 − x
′

2 ≤ 1

−x
′

1 − x
′

2 + 2x
′′ ≤ 0

−x
′

1 ≤ 0

−x
′

2 ≤ 0

−x
′′ ≤ 0.

An initial ladder generator is not immediately available. Thus, introducing the

constraint x
′

1 + x
′

2 + x
′′ ≤ M , we obtain the problem

min x
′

2 − x
′′

s.t. x
′

1 − x
′

2 ≤ 1

−x
′

1 − x
′

2 + 2x
′′ ≤ 0

−x
′

1 ≤ 0

−x
′

2 ≤ 0

−x
′′ ≤ 0

x
′

1 + x
′

2 + x
′′ ≤ M .

Following the procedure in Case 2, we know J = {3, 4, 6} is an initial ladder

generator. Then the ladder method can be used to solve the above transformed

problem, resulting in an optimal solution [x
′

1; x
′

2; x
′′

] = [73.0235; 72.0235; 72.5235].

From xi = x
′

i−x
′′

, we know that the solution of the original problem is [x1; x2] =

[0.5;−0.5].

5.4.2 An Inclusive-cone-based Solvability Criterion for LP

The classical strong duality theorem (or trichotomy theorem) tells us, if one

of a pair of primal and dual problems is unbounded, then its counterpart is

74

CHAPTER 5. INITIALIZATION TECHNIQUES

infeasible, but the reverse is not necessarily true. Asymmetry of the strong du-

ality theorem may be one of the reasons why some current LP solvers fail to

provide correct solvability information, in particular in the case that an LP

problem is infeasible or unbounded. By virtue of the inclusiveness concept,

Liu [61] extended the boundedness concept to infeasible problems, refining an

LP problem into four classes: inclusive-feasible (i.e., optimal), noninclusive-

feasible (i.e., unbounded), inclusive-infeasible and noninclusive-infeasible prob-

lems (note that infeasible problems are further divided into inclusive-infeasible

and noninclusive-infeasible problems). Further, the author proposed a “sym-

metric” strong duality theorem, termed “a quadrachotomy theorem”. It follows

from the quadrachotomy theorem that: (1) an LP problem is inclusive-feasible

(i.e., optimal) if and only if its dual is inclusive-feasible (i.e., optimal); (2) an

LP problem is noninclusive-feasible (i.e., unbounded) if and only if its dual is

inclusive-infeasible; (3) an LP problem is inclusive-infeasible if and only if its

dual is noninclusive-feasible (i.e., unbounded); (4) an LP problem is noninclusive-

infeasible if and only if its dual is noninclusive-infeasible. In the context of the

new category of LP problems and the quadrachotomy theorem, in this subsec-

tion we aim to propose an inclusive-cone-based solvability criterion to detect that

an LP problem is inclusive-feasible (i.e., optimal), noninclusive-feasible (i.e., un-

bounded), inclusive-infeasible or noninclusive-infeasible.

At the moment, we restrict our attention to the pair of problems (P4) and

(PM4) (see Subsection 5.4.1). Recall that an initial ladder is available for problem

(PM4). With an initial ladder at hand, we can solve problem (PM4) using the

ladder method. In the following, we shall discuss how we identify the solvability

of the original problem (P4) while solving the auxiliary problem (PM4). (Note

that the “solvability” includes the aforementioned four cases!) From now on until

the end of this subsection, those notations introduced for solving problem (P) in

Section 3.2 will carry over to problem (PM4) for use. Also, we denote by Ja the

constraint index set associated with the artificial constraint in problem (PM4).

We would like to point out that, while solving problem (PM4), if at some

iteration there exist multiple candidates for a drop (including the index associated

75

CHAPTER 5. INITIALIZATION TECHNIQUES

with the artificial constraint), we choose the index associated with the added

constraint as a priority for a drop since the artificial constraint itself is not part

of problem (P4) and naturally we do not hope that the index associated with

the additional constraint remains in the ladder generator. In fact, in order to

reduce the amount of computation, we can drive out the index associated with

the artificial constraint at the start as long as it is a candidate for a drop. We have

the following main result with regard to the solvability of the original problem

(P4).

Theorem 5.1. Consider the pair of problems (P4) and (PM4). The following

statements hold:

(1) If problem (PM4) achieves optimality and J∗ ∩ Ja = ∅, where J∗ is the

ladder generator at an optimal solution of problem (PM4), then problem

(P4) is inclusive-feasible (i.e., optimal).

(2) If problem (PM4) achieves optimality and J∗ ∩ Ja 6= ∅, then problem (P4)

is noninclusive-feasible (i.e., unbounded).

(3) At some iteration k, if γk = [AT (Jk)]
−1aT

pk
≤ 0 and Jk ∩ Ja = ∅, then

problem (P4) is inclusive-infeasible.

(4) At some iteration k, if γk = [AT (Jk)]
−1aT

pk
≤ 0 and Jk ∩ Ja 6= ∅, then

problem (P4) is noninclusive-infeasible.

Proof. On the one hand, from the fact that problem (PM4) has a ladder, we

know that the solvability of problem (PM4) includes two cases:

• Problem (PM4) is inclusive-feasible (equivalently, problem (PM4) can achieve

optimality). (This tells us that problem (P4) is feasible.)

• Problem (PM4) is inclusive-infeasible, which means at some iteration k,

γk = [AT (Jk)]
−1aT

pk
≤ 0 (see Subsection 3.2.2). (If so, we can assert that

problem (P4) is infeasible since M is sufficiently large.)

76

CHAPTER 5. INITIALIZATION TECHNIQUES

On the other hand, noting that both J∗ ∩ Ja = ∅ and Jk ∩ Ja = ∅ imply

that problem (P4) is inclusive, it is straightforward to come to the above four

conclusions.

Remark 5.1. The above theorem is proposed to identify the solvability of prob-

lem (P4) by solving the auxiliary problem (PM4). Likewise, for the pair of

problems (P5) and (PM5), we can develop the same result as above which can

be used to recognize the solvability of problem (P5) by solving the auxiliary

problem (PM5). For avoidance of repetition, we omit the presentation of the

similar result. We would like to emphasize once more that the “solvability” we

refer to here includes four cases, that is, inclusiveness-feasibility (i.e., optimality),

noninclusiveness-feasibility (i.e. unboundedness), inclusiveness-infeasibility and

noninclusiveness-infeasibility, instead of the conventional three cases—optimality,

unboundedness and infeasibility. In view of the function of the proposed theorem,

which is to diagnose the solvability of an LP problem in the context of the new

category of LP problems, we prefer to call it “an inclusive-cone-based solvability

criterion for LP” hereafter.

Remark 5.2. Combining the proposed solvability criterion and the quadri-

chotomy theorem, we are capable of identifying accurately the solvability of both

primal and dual problems, especially in the case that an LP problem has no

optimal solution, as we will see from the subsequent illustrations.

5.4.3 Illustrations

In this subsection, we will illustrate the ability that the above new criterion

distinguishes the solvability of an LP problem.

Example 5.1. Consider the following LP problem

(E1): min x1 +
1
2
x2

s.t. x1 − x2 ≤ −1

−x1 + x2 ≤ −1

77

CHAPTER 5. INITIALIZATION TECHNIQUES

x1 ≤ 1

x2 ≤ 0.

Adding the constraint −x1 − x2 ≤ M , yields the following problem:

min x1 +
1
2
x2

s.t. x1 − x2 ≤ −1

−x1 + x2 ≤ −1

x1 ≤ 1

x2 ≤ 0

−x1 − x2 ≤ M .

We solve this problem with the additional constraint to detect that problem

(E1) is inclusive-feasible (i.e., optimal), noninclusive-feasible (i.e., unbounded),

inclusive-infeasible, or noninclusive-infeasible. The ladder algorithm implement-

ing the ladder updating Criterion 2 (see Section 4.3, Chapter 4) is adopted. Here,

J = {1, 2, · · · , 5}, Ja = {5}.
Initialization:

Following the procedure in Subsection 5.4.1, obtains the initial ladder generator

J0 = {5, 4},

A(J0) =





−1 −1

0 1



 ,

x0 = A−1(J0)b(J0) =





−1 −1

0 1









M

0



 =





−M

0



 .

Since V 0 = {2} 6= ∅, iteration starts.

Iteration 1

Select a pick:

With only one element in V 0, we choose

p0 = 2.

Select a drop:

Calculate

δ0 = [AT (J0)]
−1(−c) =





−1 0

−1 1









−1

−1
2



 =





1

1
2





78

CHAPTER 5. INITIALIZATION TECHNIQUES

and

γ0 = [AT (J0)]
−1aTp0 =





−1 0

−1 1









−1

1



 =





1

2



 .

By means of Formula (3.3), we get

j0d = 4.

Updating the ladder:

J1 = {5, 2}, A(J1) =





−1 −1

−1 1



 ,

x1 = A−1(J1)b(J1) =





−1
2

−1
2

−1
2

1
2









M

−1



 =





−M+1
2

−M−1
2



 .

Since V 1 = {1} 6= ∅, iteration continues.

Iteration 2

Select a pick:

Since only one element is in V 1, we see

p1 = 1.

Select a drop:

Calculate

δ1 = [AT (J1)]
−1(−c) =





−1
2

−1
2

−1
2

1
2









−1

−1
2



 =





3
4

1
4





and

γ1 = [AT (J1)]
−1aTp1 =





−1
2

−1
2

−1
2

1
2









1

−1



 =





0

−1



 .

Note that γ1 ≤ 0 and J1

⋂

Ja = {5, 2}⋂{5} 6= ∅. We conclude that the origi-

nal problem (E1) is noninclusive-infeasible. Further, according to Liu’s quadri-

chotomy theorem (see Theorem 2.6), we can conclude that the dual problem of

problem (E1) is noninclusive-infeasible.

79

CHAPTER 5. INITIALIZATION TECHNIQUES

We also used the linprog solver in MATLAB optimization toolbox (Version

5.1 (R2010b)) to solve the same problem. When the simplex algorithm was im-

plemented, the output was as follows:

>> options=optimset(‘LargeScale’, ‘off’, ‘Simplex’, ‘on’);

[x0, v0]=linprog([1; 0.5], [1 -1; -1 1; 1 0; 0 1], [-1; -1; 1; 0], [], [], [], [], [],

options)

Exiting: The constraints are overly stringent; no feasible starting point found.

Example 5.2. Consider the following LP problem

(E2): min x1 − 4x2

s.t. − 2x1 − x2 ≤ 4

−2x1 + 4x2 ≤ −8

−x1 + 3x2 ≤ −7

−x1 ≤ 0

−x2 ≤ 0.

Adding the constraint x1 + x2 ≤ M , yields the following transformed problem:

min x1 − 4x2

s.t. − 2x1 − x2 ≤ 4

−2x1 + 4x2 ≤ −8

−x1 + 3x2 ≤ −7

−x1 ≤ 0

−x2 ≤ 0

x1 + x2 ≤ M .

Following the same line as the above example, we solve this problem with the

additional constraint. Here, J = {1, 2, · · · , 6}, Ja = {6}.
Initialization:

By executing the procedure in Subsection 5.4.1, we find the initial ladder gener-

ator

J0 = {4, 6},

80

CHAPTER 5. INITIALIZATION TECHNIQUES

A(J0) =





−1 0

1 1



 ,

x0 = A−1(J0)b(J0) =





−1 0

1 1









0

M



 =





0

M



 .

Since V 0 = {2, 3} 6= ∅, iteration starts.

Iteration 1

Select a pick:

Using the ladder updating criterion 2, obtains

p0 = 3.

Select a drop:

Calculate

δ0 = [AT (J0)]
−1(−c) =





−1 1

0 1









−1

4



 =





5

4





and

γ0 = [AT (J0)]
−1aTp0 =





−1 1

0 1









−1

3



 =





4

3



 .

According to Formula (3.3), we choose

j0d = 4.

Updating the ladder:

J1 = {3, 6}, A(J1) =





−1 3

1 1



 ,

x1 = A−1(J1)b(J1) =





−1
4

3
4

1
4

1
4









−7

M



 =





7+3M
4

−7+M
4



 .

Since V 1 = ∅, the transformed problem achieves optimality. J∗ = J1 = {3, 6}.
Note that J∗

⋂

Ja = {3, 6}⋂{6} 6= ∅. We conclude that the original prob-

lem (E2) is noninclusive-feasible (i.e., unbounded). Further, according to Liu’s

81

CHAPTER 5. INITIALIZATION TECHNIQUES

quadrichotomy theorem (see Theorem 2.6), we can conclude that the dual prob-

lem of problem (E2) is inclusive-infeasible.

When using CPLEX Dual Simplex LP solver in TOMLAB (Version 7.7 (R7.7.0))

to solve the same problem, there appeared the following incorrect output:

[x0, v0]=linprog([1; -4], [-2 -1; -2 4; -1 3; -1 0; 0 -1], [4; -8; -7; 0; 0])

linprog (CPLEX): The problem is infeasible.

Example 5.3. Consider the following LP problem

(E3): min −x1 + x2

s.t. x1 − x2 ≤ 2

x1 ≤ 1

x2 ≤ 1.

Adding the constraint −x1 − x2 ≤ M , yields the following transformed problem:

min −x1 + x2

s.t. x1 − x2 ≤ 2

x1 ≤ 1

x2 ≤ 1

−x1 − x2 ≤ M .

Following the same line as previous examples, we solve this problem with the

additional constraint. Here, J = {1, 2, 3, 4}, Ja = {4}.
Initialization:

By the procedure in Subsection 5.4.1, we obtain the initial ladder generator

J0 = {2, 4},

A(J0) =





1 0

−1 −1



 ,

x0 = A−1(J0)b(J0) =





1 0

−1 −1









1

M



 =





1

−M − 1



 .

Since V 0 = {1} 6= ∅, iteration starts.

82

CHAPTER 5. INITIALIZATION TECHNIQUES

Iteration 1

Select a pick:

With only one element in V 0, it is clear that

p0 = 1.

Select a drop:

Calculate

δ0 = [AT (J0)]
−1(−c) =





1 −1

0 −1









1

−1



 =





2

1





and

γ0 = [AT (J0)]
−1aTp0 =





1 −1

0 −1









1

−1



 =





2

1



 .

According to Formula (3.3), here we have two candidates for a drop (j0d = 2 or

j0d = 4). We prefer to choose j0d = 4 since our ultimate task is to solve the original

problem and naturally hope the index associated with the additional constraint

is driven out.

Updating the ladder:

J1 = {2, 1}, A(J1) =





1 0

1 −1



 ,

x1 = A−1(J1)b(J1) =





1 0

1 −1









1

2



 =





1

−1



 .

Since V 1 = ∅, the transformed problem achieves optimality. J∗ = J1 = {2, 1}.
Note that J∗

⋂

Ja = {2, 1}⋂{4} = ∅. We conclude that the original prob-

lem (E3) is inclusive-feasible (i.e., optimal). Further, according to Liu’s quadri-

chotomy theorem (see Theorem 2.6), we can conclude that the dual problem of

problem (E3) is inclusive-feasible (i.e., optimal).

83

CHAPTER 5. INITIALIZATION TECHNIQUES

Example 5.4. Consider the following LP problem

(E4): min x1 − 2x2

s.t. x1 − x2 ≤ −1

−x1 + x2 ≤ −1

x1 ≤ 1

x2 ≤ 1.

Adding the constraint −x1 − x2 ≤ M , yields the following transformed problem:

min x1 − 2x2

s.t. x1 − x2 ≤ −1

−x1 + x2 ≤ −1

x1 ≤ 1

x2 ≤ 1

−x1 − x2 ≤ M .

Following the same procedure as previous examples, we solve this problem with

the additional constraint. Here, J = {1, 2, · · · , 5}, Ja = {5}.
Initialization:

Executing the procedure in Subsection 5.4.1, we obtain the initial ladder gener-

ator

J0 = {5, 4},

A(J0) =





−1 −1

0 1



 ,

x0 = A−1(J0)b(J0) =





−1 −1

0 1









M

1



 =





−M − 1

1



 .

Since V 0 = {2} 6= ∅, iteration starts.

Iteration 1

Select a pick:

Since only one element is in V 0, clearly we choose

p0 = 2.

84

CHAPTER 5. INITIALIZATION TECHNIQUES

Select a drop:

Calculate

δ0 = [AT (J0)]
−1(−c) =





−1 0

−1 1









−1

2



 =





1

3





and

γ0 = [AT (J0)]
−1aTp0 =





−1 0

−1 1









−1

1



 =





1

2



 .

According to Formula (3.3), we have

j0d = 5.

Updating the ladder:

J1 = {2, 4}, A(J1) =





−1 1

0 1



 ,

x1 = A−1(J1)b(J1) =





−1 1

0 1









−1

1



 =





2

1



 .

Since V 1 = {1, 3} 6= ∅, iteration continues.

Iteration 2

Select a pick:

Using the ladder updating criterion 2, obtains

p1 = 1.

Select a drop:

Calculate

δ1 = [AT (J1)]
−1(−c) =





−1 0

1 1









−1

2



 =





1

1





and

γ1 = [AT (J1)]
−1aTp1 =





−1 0

1 1









1

−1



 =





−1

0



 .

85

CHAPTER 5. INITIALIZATION TECHNIQUES

Note that γ1 ≤ 0 and J1

⋂

Ja = {2, 4}⋂{5} = ∅. We conclude that the original

problem (E4) is inclusive-infeasible. Further, according to Liu’s quadrichotomy

theorem (see Theorem 2.6), we can conclude that the dual problem of problem

(E4) is noninclusive-feasible (i.e., unbounded).

We also used the linprog solver in MATLAB optimization toolbox (Version

5.1 (R2010b)) to solve the same problem. When the simplex algorithm was im-

plemented, the output was as follows:

>> options=optimset(‘LargeScale’,‘off’,‘Simplex’,‘on’);

[x0, v0]=linprog([1; -2], [1 -1; -1 1; 1 0; 0 1], [-1; -1; 1; 1], [], [], [], [], [],

options)

Exiting: The constraints are overly stringent; no feasible starting point found.

When using CPLEX Dual Simplex LP solver in TOMLAB (Version 7.7 (R7.7.0))

to solve the same problem, there appeared the following incorrect output:

>> [x0, v0]=linprog([1; -2], [1 -1; -1 1; 1 0; 0 1], [-1; -1; 1; 1])

linprog (CPLEX): The problem is infeasible.

86

Chapter 6

Inclusive-cone-based Method for

Linear Semi-infinite

Programming

In the previous chapters, we used the inclusive-cone-based method for linear

programming. In this chapter we apply this method to the linear semi-infinite

programming (LSIP) case, obtaining an optimality result for LSIP and a ladder

algorithm for solving LSIP problems. The main content of this chapter is to be

published in [62].

This chapter is organized as follows. In Section 6.1, we give an overview of

semi-infinite programming (SIP) (specifically, linear semi-infinite programming),

including applications and numerical methods. We then introduce the problem

formulation we are concerned with and end this section with the outline of our

work. In Section 6.2, we give notation and preliminaries. We present an op-

timality result for LSIP in Section 6.3, which lays a theoretical foundation for

our new algorithm. In the beginning of Section 6.4, we discuss a technique for

finding an initial ladder, followed by the main algorithm and some remarks. We

conclude this section with a simple convergence result. In Section 6.5, we test our

algorithm on several numerical examples to demonstrate the efficiency and per-

formance of the proposed algorithm. We make a brief summary for this chapter

87

CHAPTER 6. INCLUSIVE-CONE-BASED METHOD FOR LINEAR
SEMI-INFINITE PROGRAMMING

in Section 6.6.

6.1 Introduction

A semi-infinite programming (SIP) problem with finitely many variables subject

to an infinitely many constraints can be formulated as

(SIP): min f0(x)

s.t. f(x, t) ≤ 0, for all t ∈ T

where x ∈ Rn, f0 : Rn → R, T ⊆ Rm is an infinite parameter set, and f :

Rn × T → R.

SIP has been an active area of research for decades due to its wide range of

real-world applications in a variety of fields. Approximation theory (specifically,

Chebyshev approximation) may be the field where SIP found its inceptive ap-

plication (see Polak [78], Reemtsen and Rückmann [82] and Stein [85]). Other

fields in which SIP has been put into application include:

• air pollution control (see Hettich and Kortanek [43] and Vaz and Ferreira

[91]);

• robotics (see Vaz et al. [90], Haaren-Retagne [40] and Marin [71]);

• optimal control (see Reemtsen and Rückmann [82] and Liu et al. [63]);

• gemstone cutting industry (see Winterfeld [97]);

• signal processing (see Moulin et al. [73], Potchinkov [79] and Vo et al. [92]);

• geometry (see Juhnke and Sarges [49]);

• mathematical physics (see Dambrine and Pierre [12]);

• game theory (see Llorca et al. [67] and Timmer et al. [88]);

• probability and statistics (see Noubiap and Seidel [74]);

• mathematical economics (see Stein and Still [86], Kortanek and Medvedev

[54] and Jerez [48]).

88

CHAPTER 6. INCLUSIVE-CONE-BASED METHOD FOR LINEAR
SEMI-INFINITE PROGRAMMING

On the numerical aspect, the most commonly known categories of solution

methods for SIP problems are discretization methods (by grids and by cutting

planes) and methods based on local reduction.

In a discretization method, a sequence of relaxed subproblems is solved by

substituting the infinite parameter set T with Tk ⊂ T , where Tk is a finite

index set such that dist(Tk, T) := supt∈T inftk∈Tk
‖t − tk‖ tends to zero as the

iteration number k goes to ∞ (see Hettich [42], Teo et al. [87] and Reemtsen

[81]). A general discretization method is computationally expensive, since Tk

must be sufficiently dense in T when k is sufficiently large. The time, spent on

checking feasibility with respect to the subproblems and solving the subproblems,

increases dramatically with increasing size of the subproblems (unless an efficient

constraint dropping strategy is employed).

A local reduction approach replaces a semi-infinite programming problem

with a nonlinear system of equations and possibly some inequalities with finitely

many unknowns, which is usually solved by means of a quasi-Newton method (see

Price [80], Gramlich et al. [36] and Watson [94]). One advantage of reduction

based methods is that they have good local convergence properties, hence they

are typically employed in a final stage to improve the solution.

Beyond the methods discussed above, the exchange methods (including the

primal exchange methods and dual exchange methods) are also a well-known

family of methods. This class of methods can be viewed as a compromise between

discretization methods and local reduction methods. Hence, exchange methods

are usually more efficient than pure discretization methods (see Watson [93],

Okuno et al. [75], Wu et al. [98] and Anderson and Lewis [2]).

Other numerical methods include (but not limited to): dual parametrization

methods (see Liu and Teo [65] and Liu et al. [66]), non-differentiable optimization

methods (see Polak [77, 78] and Lin et al. [57]), constraint transcription methods

(see Jennings and Teo [47]), exact penalty methods (see Yu et al. [102] and Lin

et al. [58]) and interior point methods (see Liu [59], Ferris and Philpott [20, 21]

and Stein and Still [86]). Surveys on the development of SIP methods can be

found in López and Still [55] and Hettich and Kortanek [43]. For a comprehensive

89

CHAPTER 6. INCLUSIVE-CONE-BASED METHOD FOR LINEAR
SEMI-INFINITE PROGRAMMING

knowledge of SIP, we refer the interested reader to several monographs in which

SIP is discussed in an exhaustive way (see Goberna and López [30], Stein [85]

and Reemtsen and Rückmann [82]).

Linear semi-infinite programming (LSIP) is an important special case of prob-

lem (SIP), in which both the objective function f0(x) and constraint function

f(x, t) are linear in x for any fixed t ∈ T . According to Goberna [28], there

are at least three reasons that justify researchers’ interest in LSIP. First, for its

real life and modeling applications. Second, for providing nontrivial but tractable

optimization problems on which it is possible to check more general theories and

methods. Finally, LSIP can be seen as a theoretical model for large scale LP

problems. For these reasons, considerable efforts are under way to develop it (see

Betrò [7], Oskoorouchi et al. [76], Goberna et al. [32], Liu and Ding [62] and the

references therein). Development of LSIP theoretical and numerical aspects can

be found in recent survey articles [31, 28]. For a more in-depth treatment of this

topic, the interested reader is invited to consult [29, 82].

In this chapter, we particularly focus on LSIP problems which can be ex-

pressed as below:

(LSIP): min cTx

s.t. a(t)x ≤ b(t), for all t ∈ T = [α, β] ⊂ R

where x, c ∈ Rn (c 6= 0). a : T → Rn and b : T → R. Clearly when T is a finite

set, the above LSIP is reduced to a linear programming problem.

Our main aim is to develop a new method for LSIP, which is the generalization

of the inclusive-cone-based method for LP. On the basis of the concept of the

generalized base point, we first develop a fundamental theorem with regard to

optimality for LSIP, which is an LSIP version of inclusive-cone-based optimality

condition for LP. With this optimality result as a theoretical foundation, we

propose a ladder algorithm for solving LSIP problems, termed “the centered

climbing ladder algorithm for LSIP”. This new algorithm approaches an optimal

solution of an LSIP problem, which is essentially a feasible generalized base point,

through a sequence of improved base points which is obtained by iteratively

updating the inclusive cone as well as the ladder. The new algorithm has the

90

CHAPTER 6. INCLUSIVE-CONE-BASED METHOD FOR LINEAR
SEMI-INFINITE PROGRAMMING

features as follows:

1. The algorithm only deals with a fixed number of constraints at each iteration.

2. Instead of selecting the most violated constraint as required in most of solu-

tion methods for LSIP, at each iteration we pick up a violated constraint

along the “parameterized centerline”, by solving a one-dimensional global

optimization problem. It is worth emphasizing that the selection of the

entering constraint has a great degree of freedom, which is controlled by a

parameter arising in the global optimization problem.

3. It can detect infeasibility and unboundedness after a finite number of itera-

tions.

4. It obviates extra work for feasibility check, as it handles feasibility and opti-

mality simultaneously.

6.2 Notation and Preliminaries

In the case that elements of a matrix need to be displayed, we will often present

them in row form, with entries in the same row separated by commas and different

rows separated by semicolons. For example, A = [a, b; c, d] represents a 2 × 2

matrix, in which the first row elements are a and b and the second row elements

are c and d. If a1, a2, · · · , am are n-dimensional row vectors and b1, b2, · · · , bn are

m-dimensional column vectors, then A = [a1; a2; · · · ; am] and B = [b1, b2, · · · , bn]
are both m × n matrices. Furthermore, with this notation, the elements of the

row vector a1 and the column vector b1 above can be conveniently displayed as

a1 = [a11, a12, · · · , a1n] and b1 = [b11; b21; · · · ; bm1]. We will use Rn and Rn to

represent the n-column and the n-row vector spaces, respectively.

Throughout the remaining of this dissertation, we make the following assump-

tions:

Assumption 1: The functions a(t) and b(t) are continuously differentiable on

[α, β] and a(t) 6= 0 for all t ∈ [α, β].

91

CHAPTER 6. INCLUSIVE-CONE-BASED METHOD FOR LINEAR
SEMI-INFINITE PROGRAMMING

Assumption 2: There exist t1, t2, · · · , tn ∈ [α, β] such that a(t1), a(t2), · · · , a(tn)
form a basis for Rn.

Assumption 3: If the feasible region of problem (LSIP) is non-empty, it con-

tains at least a Slater point.

The main results to be proposed in this chapter build upon the concept of the

inclusive cone, which has been presented in Chapter 2 for LP case. This concept

is applicable directly to LSIP case as well. For convenience of discussion, we

restate this concept for problem (LSIP) as follows.

Definition 6.1. Consider problem (LSIP). Let J = {t1, t2, · · · , tn} ⊂ T be a

finite subset. A convex cone generated by n linearly independent vectors

aT (t1), a
T (t2), · · · , aT (tn)

is said to be an inclusive cone generated by J if it contains the vector −c. If J

generates an inclusive cone, the set defined by

L(J) = {x ∈ Rn : a(tj)x ≤ b(tj), for tj ∈ J, j = 1, 2, · · · , n}

is called the inclusive region or the ladder associated with J . The corresponding

finite set J is called the generator of L(J), and the unique solution of the linear

system a(tj)x = b(tj), j = 1, 2, · · · , n, denoted by xJ , is called the base point of

the ladder L(J).

For LP case, we know that a feasible base point is essentially an optimality

solution of an LP problem (see Theorem 2.1). In view of the fact that the feasible

region of an LSIP problem is in general no longer a polytope, the inclusive-cone-

based optimality result for LP case (see Theorem 2.1) may not automatically

apply to LSIP. For a proper generalization, it is necessary to introduce the fol-

lowing concept.

Definition 6.2. A point x ∈ Rn is called a generalized base point of problem

(LSIP) if there exists a sequence of base points xk, k = 1, 2, · · · , with correspond-

ing sequence of ladders L(Jk) such that xk → x (k → ∞).

92

CHAPTER 6. INCLUSIVE-CONE-BASED METHOD FOR LINEAR
SEMI-INFINITE PROGRAMMING

It is clear that base points are special generalized base points. The feasible

region of an LSIP problem may not contain a base point. However, it must

contain a generalized base point if an optimal solution exists, which we will

prove in the following Section 6.3. We have seen from the previous chapters that

the concept of base point plays an important role in development of the ladder

method for LP. In fact, the ladder method for LP was designed to generate

a sequence of base points, which eventually converges to a feasible base point

(namely, an optimal solution) if the problem can achieve optimality. Likewise,

we will perceive in the subsequent two sections the importance of the concept of

the generalized base point in development of both the optimality result and the

ladder algorithm for LSIP.

6.3 An Optimality Result

To begin, we present the following theorem with respect to optimality.

Theorem 6.1. Consider problem (LSIP). The following statements hold true:

(a) A generalized base point is an optimal solution if and only if it is feasible.

(b) Let Assumptions 1-3 be satisfied. Problem (LSIP) has an optimal solution

if and only if it has one at a feasible generalized base point.

(c) Let Assumptions 1-3 be satisfied. Problem (LSIP) has no optimal solution

if and only if it either has no generalized base point or all its generalized

base points are infeasible.

Proof. (a) From the fact that the objective function value at a generalized base

point is a lower bound of the optimal value, we know that a feasible generalized

base point must be an optimal solution. Therefore, this statement is obvious.

(b) We only need to prove the necessity. Suppose that problem (LSIP) has

an optimal solution x∗. Since the feasible region of problem (LSIP) contains a

Slater point (see Assumption 3), it follows from the KKT conditions (see, e.g.,

93

CHAPTER 6. INCLUSIVE-CONE-BASED METHOD FOR LINEAR
SEMI-INFINITE PROGRAMMING

Theorem 6 in [45]), there exist t1, t2, · · · , tp ∈ [α, β] for some p (1 ≤ p ≤ n) such

that the following hold:

a(tj)x
∗ = b(tj), j = 1, 2, · · · , p (6.1)

and

−c =

p
∑

j=1

λja
T (tj), λj > 0, j = 1, 2, · · · , p (6.2)

where a(tj) (1 ≤ j ≤ p) are linearly independent. By Assumption 2, we can

span {a(t1), a(t2), · · · , a(tp)} into {a(t1), a(t2), · · · , a(tn)} to form a basis for Rn.

It is clear that J = {t1, t2, · · · , tn} generates a ladder L(J). We take two cases

into consideration.

Case 1: Problem (LSIP) has a non-degenerate ladder L(J) .

In this case, none of the edges of L(J) is orthogonal to −c. Let Bk = J
⋃
{

α+

i
2k
(β − α)

∣

∣i = 0, 1, · · · , 2k
}

(k = 1, 2, · · ·). Consider the following problem

(PBk): min cTx

s.t. a(t)x ≤ b(t), for t ∈ Bk

For each k, problem (PBk) has an optimal solution since it is feasible and has

a ladder L(J). Denote by xk the optimal solution to problem (PBk). It is clear

that

xk ∈ X , {x|x ∈ L(J) and cTx ≤ cTx∗}.

Noting that the set X in the above expression is compact, we know that the

sequence {xk} has a convergent subsequence. Denote by {xki}∞i=1 such a sub-

sequence. Let xki → x̃. In view of Assumption 1, we know that x̃ satisfies

a(t)x̃ ≤ b(t) for all t ∈ ⋃∞

k=1B
k. Since

⋃∞

k=1B
k is dense in [α, β], we then have

that a(t)x̃ ≤ b(t) holds for all t ∈ [α, β], which implies x̃ is feasible. On the other

hand, it follows from cTxk ≤ cTx∗ that cT x̃ = cTx∗ . Hence, x̃, as a generalized

base point, is an optimal solution of problem (LSIP).

Case 2: All ladders of problem (LSIP) (especially L(J)) are degenerate.

From Formulae (6.1) and (6.2), it follows that the base point x0 associated

with the ladder L(J) satisfies cTx0 = cTx∗. Consider the following system of

94

CHAPTER 6. INCLUSIVE-CONE-BASED METHOD FOR LINEAR
SEMI-INFINITE PROGRAMMING

linear equations:

a(tj)x = b(tj), j = 1, 2, · · · , p. (6.3)

Note that a(tj), j = 1, 2, · · · , p, are linearly independent. Therefore, by solving

system (6.3), we can express p components of x in terms of its remaining n − p

components which we denote by y = [y1; y2; · · · ; yn−p]. In other words, for the

above system, there exist some n× (n− p) matrix H and a vector h0 ∈ Rn such

that

x = Hy + h0.

We consider the following problem:

(LSIP): min c̄Ty

s.t. ā(t)y ≤ b̄(t), for all t ∈ [α, β]

where

c̄ = −āT (tp+1)− āT (tp+2)− · · · − āT (tn),

ā(t) = a(t)H,

and

b̄(t) = b(t)− a(t)h0.

It is clear that each ladder L(r1, r2, · · · , rn−p) of the above problem with

base point y0 corresponds to a ladder L(t1, t2, · · · , tp, r1, r2, · · · , rn−p) of problem

(LSIP) with base point x0 = Hy0 + h0, and each feasible point y of the above

problem corresponds to an optimal solution x = Hy + h0 of problem (LSIP).

With c̄ constructed as above, we see that J̄ = {tp+1, tp+2, · · · , tn} ⊂ J gener-

ates a non-degenerate ladder for problem (LSIP). According to Case 1, problem

(LSIP) has an optimal solution y∗, which is also a generalized base point of prob-

lem (LSIP). Let L(ri1, r
i
2, · · · , rin−p) (i = 1, 2, · · ·) denote the sequence of ladders

of problem (LSIP) with the corresponding base point sequence {yi} convergent

to y∗. Then, from the above discussion it follows that x∗ = Hy∗ + h0 is an opti-

mal solution of problem (LSIP) and xi = Hyi + h0 (i = 1, 2, · · ·) is a sequence

of base points satisfying

lim
i→∞

xi = lim
i→∞

(Hyi + h0) = Hy∗ + h0 = x∗

95

CHAPTER 6. INCLUSIVE-CONE-BASED METHOD FOR LINEAR
SEMI-INFINITE PROGRAMMING

which implies that x∗ is a generalized base point of problem (LSIP) as well. This

completes the proof.

(c) This is a direct consequence of (b).

6.4 An LSIP Ladder Algorithm

In this section, we develop a ladder algorithm for solving problem (LSIP). The

new algorithm is a natural extension of CCA for LP (see Section 3.2). The main

idea is to produce a sequence of ladders {L(Jk)}, k = 0, 1, 2, · · · , such that the

corresponding sequence of base points {xk} converges to a generalized base point

which, according to Theorem 6.1, must be an optimal solution of problem (LSIP).

At the start of solution process, an initial ladder L(J0) with the associated base

point x0 is artificially constructed. Then, this ladder is iteratively updated in

such a way that L(Jk+1) is obtained from L(Jk) by climbing from the current

base point xk toward the feasible region along the so-called ‘centerline’ of L(Jk).

As will be seen below, the ladder updating scheme for this new algorithm derives

from CCA for LP. For this reason, we call this algorithm “the centered climbing

ladder algorithm for LSIP”.

Before presenting the new algorithm, we first introduce how to construct an

initial ladder.

6.4.1 Initialization

To start the ladder algorithm for LSIP, we need to get a ladder at hand. It is

natural to try to find such a ladder from
{

a(ti)
∣

∣ti ∈ TN

}

, where TN =
{

α +

iβ−α

N
: i = 0, 1, 2, · · · , N

}

and N is a positive integer. Unfortunately, it is not

always feasible to obtain a ladder in this way. In fact, in the discretization

methods proposed by Hettich [42] and Reemtsen [81], the authors assume that

the discretized problem

(PTN
): min cTx

s.t. a(t)x ≤ b(t), for t ∈ TN

96

CHAPTER 6. INCLUSIVE-CONE-BASED METHOD FOR LINEAR
SEMI-INFINITE PROGRAMMING

has an optimal solution for sufficiently large N , which means problem (PTN
) is

inclusive-feasible, and hence the original problem has at least one ladder which

can be constructed from
{

a(ti)
∣

∣ti ∈ TN

}

. However, the following counterexample

shows this strong assumption is easily violated and an initial ladder can not

always be obtained from
{

a(ti)
∣

∣ti ∈ TN

}

.

Example 6.1. Consider the problem given by

min x2

s.t. x1 sin
(

t−
√

π
2

)2

− x2 cos
(

t−
√

π
2

)2

≤ 1, for 0 ≤ t ≤ 2.

Discretizing this problem by taking ti ∈ TN =
{

α+ iβ−α

N
: i = 0, 1, 2, · · · , N

}

,

where α = 0 and β = 2, we attempt to find an initial ladder for the above

problem. Noting that the discretized problem

min x2

s.t. x1 sin
(

t−
√

π
2

)2

− x2 cos
(

t−
√

π
2

)2

≤ 1, for t ∈ TN

does not include the constraint at t =
√

π
2
, we know that this discretized problem

is unbounded for arbitrarily large N , even though the original problem has in-

finitely many solutions. This means that this discretized problem is noninclusive-

feasible. Hence, we cannot find an initial ladder for the original problem from
{

a(ti)
∣

∣ti ∈ TN

}

.

As shown above, it is not always workable to obtain an initial ladder by

discretization. In the following, we construct an artificial ladder which applies

to general LSIP problems.

Consider problem (LSIP). We introduce an additional constraint −cTx ≤ M

to problem (LSIP), where M is a sufficiently large number. Clearly, for suffi-

ciently large M , addition of this constraint does not change optimal solutions of

the problem (if they exist) or solvability (if the problem is bounded or infeasi-

ble). From Assumption 2, we can span −c into n linearly independent vectors,

say, −c, aT (tj1), a
T (tj2), · · · , aT (tjn−1

). It is clear that these n vectors form an

inclusive cone, and hence the associated constraints produce a ladder with the

97

CHAPTER 6. INCLUSIVE-CONE-BASED METHOD FOR LINEAR
SEMI-INFINITE PROGRAMMING

corresponding base point given by

x0 =

















−cT

a(tj1)
...

a(tjn−1
)

















−1 















M

b(tj1)
...

b(tjn−1
)

















. (6.4)

For notational reasons, here we define a(α − 1) = −c, b(α − 1) = M , and

T = {α − 1}⋃[α, β]. Then, we can conveniently present any ladder generator,

including that of the artificial ladder, in the form of J = {t1, t2, · · · , tn}, where
tj ∈ T, j = 1, 2, · · · , n.

6.4.2 Description of Algorithm

Consider problem (LSIP). Let L(Jk) denote the current ladder with the corre-

sponding base point xk, where Jk = {tk1, tk2, · · · , tkn}. The center vector of L(Jk)

is defined as

vk = −A(Jk)
−11n×1,

where 1n×1 = [1; 1; · · · ; 1] ∈ Rn and A(Jk) = [a(tk1); a(t
k
2); · · · ; a(tkn)]. Here, in

order for A(Jk) to be well defined, we may consider Jk as ordered sets. The

centerline of L(Jk) is defined as a line emanating from xk and parallel to vk:

l(xk, vk) : x = xk + µvk, −∞ < µ < ∞.

If xk is not an optimal solution, the current ladder needs to be updated to

obtain a new base point. In CCA for solving LP problems, in order to update

the current ladder L(Jk) to L(Jk+1) and the current base point xk to xk+1, an

entering constraint index (called ‘a pick’ in CCA for LP) is determined along the

centerline of the current ladder. The selected index corresponds to the most vio-

lated constraint along the centerline (see Liu [60]). For LSIP problems, the most

violated constraint index tk ∈ [α, β] along the centerline is the global minimizer

of the following optimization problem:

P(Jk): min φ(t, Jk)

s.t. α ≤ t ≤ β,

98

CHAPTER 6. INCLUSIVE-CONE-BASED METHOD FOR LINEAR
SEMI-INFINITE PROGRAMMING

a(t k)x=b(t k)

−c

l(x k,v k)

vk

•

Feasible Region

L(J
k
)

xk

Figure 6.1: Finding a pick along the centerline

where

φ(t, Jk) =
b(t)− a(t)xk

|a(t)vk| .

Geometrically, if the global minimizer tk of the above problem exists, then

a(tk)x ≤ b(tk) is the constraint most violated at xk along the centerline of L(Jk)

(see Figure 6.1). However, problem P(Jk) may not be well posed since the de-

nominator |a(t)vk| of φ(t, Jk) in problem P(Jk) may take zero value for some

values of t. For this reason, we modify φ(t, Jk) as below:

φ(t, Jk, τ) =
b(t)− a(t)xk

√

τ + (1− τ)(a(t)vk)2
, for 0 < τ ≤ 1. (6.5)

Note that, when the parameter τ = 0 we obtain the objective function φ(t, Jk)

in problem P(Jk). For 0 < τ ≤ 1, the function φ(t, Jk, τ) is well defined and

continuously differentiable on T = [α, β]. Therefore, the global minimizer of the

following modified problem P(Jk, τ) always exists.

P(Jk, τ): min φ(t, Jk, τ)

s.t. α ≤ t ≤ β.

Still denote by tk the global minimizer of problem P(Jk, τ). Once tk is found,

99

CHAPTER 6. INCLUSIVE-CONE-BASED METHOD FOR LINEAR
SEMI-INFINITE PROGRAMMING

an entering constraint a(tk)x ≤ b(tk) is determined. Consistent with [60], we

call tk a ‘pick’. We would like to point out that the value of the parameter τ

needs to be preset for solving problem P(Jk, τ). Note that different τ values may

result in different entering constraint, and hence different base point. Naturally

we may expect that some τ values are better than others, thus enabling us to

find a more effective entering constraint. A number of experiments show that,

for the problems solved in Section 6.5, the algorithm performs much better for

0.9 ≤ τ ≤ 1 than for 0 < τ ≤ 0.2. In fact, the best τ value seems to be

problem-dependent, and can be anywhere in (0, 1].

In general, finding a global optimal solution of a non-linear optimization prob-

lem is intractable. However, for one-dimensional optimization problems, reliable

and efficient numerical methods are available (see Liu and Teo [64], Locatelli and

Schoen [68] and Yiu et al. [101]). In this dissertation, we use the right bridging

algorithm developed by Liu and Teo (see [64]) to solve the global optimization

problem P(Jk, τ). To put it briefly, the right bridging algorithm proceeds as

follows. Starting the bridging process from t = α, the right bridging algorithm

minimizes a bridged function which is initially constructed at the left end of the

interval. By minimizing the bridged function, points that are not better than

the current solution are skipped and a local minimum, better than the starting

point, is found. Then, by updating the bridged function at the local minimum,

better local minimum solutions are located. The entire process continues until a

global optimal solution is found. For details of the bridging method, we invite

the interested readers to consult [64]. After selecting a ‘pick’, that is, the global

minimizer tk, the procedure of ladder updating is the same as that for the LP

case. In the following, we describe the centered climbing ladder algorithm for

LSIP in detail.

A Centered Climbing Ladder Algorithm for LSIP:

Step 0 Initialization.

Start with an artificial ladder L(J0) with the associated generator

100

CHAPTER 6. INCLUSIVE-CONE-BASED METHOD FOR LINEAR
SEMI-INFINITE PROGRAMMING

J0 = {t01, t02, · · · , t0n} and base point x0. (Refer to the foregoing subsection

for how to find such a ladder.)

Set k = 0. Let η be a prescribed small number such that 0 < η < 1.

Set the parameter value τ ∈ (0, 1].

Step 1 Checking optimality.

1.1 Find the global minimizer tk of problem P(Jk, τ) with the global opti-

mal value Vk.

1.2 If Vk > −η, then output xk,

• If cTaT (tk) > 0, then exit with “the problem is infeasible.”

• Else if cTxk = −M , then exit with “the problem is unbounded.”

• Else exit with “the problem has an optimal solution x∗ = xk”.

1.3 Otherwise, go to next step.

Step 2 Updating the ladder.

2.1 Identifying an index from Jk.

Try to find an index tkj1 ∈ Jk (1 ≤ j1 ≤ n) as a drop such that

Jk+1 = {tk+1
1 , tk+1

2 , · · · , tk+1
n } is a ladder generator and the associated

base point xk+1 ∈ L(Jk), where

tk+1
j =







tkj , j 6= j1

tk, j = j1.

and

xk+1 = [a(tk+1
1); a(tk+1

2); · · · ; a(tk+1
n)]−1[b(tk+1

1); b(tk+1
2); · · · ; b(tk+1

n)].

• If such an index does not exist, exit with “the problem is infeasi-

ble.”

• Otherwise, go to next step.

2.2 Set k := k + 1. Return to Step 1.

101

CHAPTER 6. INCLUSIVE-CONE-BASED METHOD FOR LINEAR
SEMI-INFINITE PROGRAMMING

Remark 6.1. In Step 0, by means of the artificial constraint −cTx ≤ M , we

construct an initial ladder to start this algorithm. Specifically speaking, we take

t01 = α − 1 (note that a(α − 1) = −cT) and select randomly t0j ∈ [α, β] (j =

2, 3, · · · , n) to find a ladder. We would like to point out that this way of obtaining

a ladder is not rigorous. However, in many cases it is a remarkably effective

method. An alternative procedure for obtaining an initial ladder, which is more

formal but less efficient, is introduced as follows.

• Find n linearly independent outward normal vectors aT (t0j) (j = 1, 2, · · · , n),
where t0j ∈ [α, β].

• Calculate [λ1;λ2; · · · ;λn] = −[aT (t01), a
T (t02), · · · , aT (t0n)]−1c.

– If λj ≥ 0 (j = 1, 2, · · · , n), then J0 = {t01, t02, · · · , t0n} generates a

ladder L(J0).

– Otherwise, identify any λj0 6= 0. Set t0j0 = α − 1. Then a(t0j) (j =

1, 2, · · · , n) are linearly independent, which implies J0 = {t01, t02, · · · , t0n}
generates a ladder L(J0).

Remark 6.2. Step 1 requires solving a global optimization problem P(Jk, τ) to

find a pick tk as well as the global minimum value Vk of the function φ(t, Jk, τ)

over the interval [α, β], which is the main computational task of this algorithm.

As we have seen earlier, Vk is the negative of the ‘maximum constraint violation’

along the parameterized centerline emanating from the current base point xk.

Hence, if −Vk is less than a prescribed accuracy η, the current base point xk

is taken as an approximate optimal solution of problem (LSIP). Otherwise, the

global minimizer tk of problem P(Jk, τ) determines a constraint which is to enter

the current ladder. Then, the current ladder is updated and the new base point

is calculated with ease.

Remark 6.3. Step 2.1 involves identifying a drop, which can be fulfilled by the

procedure introduced in Subsection 3.2.2, Chapter 3.

Remark 6.4. This algorithm has the following advantages:

102

CHAPTER 6. INCLUSIVE-CONE-BASED METHOD FOR LINEAR
SEMI-INFINITE PROGRAMMING

1. It can detect infeasibility and unboundedness after a finite number of iter-

ations.

2. At each iteration, the entering constraint results in, generally speaking, an

effective improvement of the current base point. Although identifying the

entering constraint requires solving a global optimization problem, it turns

out that the bridging method is an efficient algorithm for finding a global

optimum as the computational effort involved is comparable to a few linear

searches.

3. This algorithm does not require extra feasibility checks as feasibility infor-

mation can be drawn from Step 1.1.

We conclude this section with the following theorem with regard to the con-

vergence of the proposed algorithm.

Theorem 6.2. Let {xk} be the sequence of base points generated by the above

algorithm. The following statements hold true:

(a) Once the algorithm terminates, the output xk is either an optimal solution,

or the problem is infeasible or unbounded.

(b) If {xk} is an infinite sequence, then the following are true:

(b.1) The objective value sequence {cTxk} is non-decreasing. If it diverges,
i.e. cTxk → ∞ (k → ∞), then problem (LSIP) is infeasible.

(b.2) Suppose, in the artificial constraint −cTx ≤ M , M is sufficiently

large. If the output xk satisfies that −cTxk = M , then problem (LSIP)

is unbounded.

(b.3) Assume that {cTxk} → V̂ , and max
t∈T

{a(t)xk − b(t)} → 0 (k → ∞).

Then any convergent subsequence of {xk} converges to an optimal

solution of problem (LSIP).

Proof. Statements (a), (b.1) and (b.2) are obvious. Statement (b.3) is true be-

cause in this situation any limiting point will be a feasible generalized base point,

and hence is optimal according to Theorem 6.1.

103

CHAPTER 6. INCLUSIVE-CONE-BASED METHOD FOR LINEAR
SEMI-INFINITE PROGRAMMING

6.5 Numerical Experiments

In this section, we solve several approximation problems to examine the compu-

tational behavior of the algorithm described in the previous section. The first

example is the famous one-sided L1 approximation of the tangent function on

[0,1] by polynomials with limited order. This is a typical LSIP test problem and

appears quite often in literature (see Goberna and López [29], Ito et al. [45],

den Hertog et al. [15] and Betrò [7]). The main intention for presenting this

example is to compare the proposed algorithm with other existing algorithms.

The other two examples we give in this section are one-sided approximations of

a given smooth function by sine and cosine series of given orders. The inclusion

of these two examples is to demonstrate that our algorithm is capable of dealing

with problems of larger size. To the best of the authors’ knowledge, these two

examples have not been documented in the research literature.

We implemented the proposed algorithm in the MATLAB environment (MAT-

LAB 7.11.0 (R2010b)) and ran experiments on a desk-top computer (HP Intel(R)

Core(TM), i7-2600 CPU@3.40GHz, 3.39GHz, 3.24GB of RAM) under the Mi-

crosoft Windows XP operating system. All calculations were done at 16 digit

precision. For the proposed algorithm, we set η =1.0e-7. As mentioned in the

foregoing, we used the bridging method [64] to solve the one-dimensional global

optimization problem in Step 1 of the new algorithm, which was coded in the

same MATLAB environment. A number of experimental tests showed that it

is a computationally efficient and reliable global optimization algorithm, capa-

ble of finding the global optimal solution of the optimization problem in Step 1

efficiently and accurately.

We report numerical test results for this section in Table 6.1–6.4. In all these

tables, we employ the following abbreviations for simplicity:

• Iters.: Number of iterations.

• CPU(s): CPU time elapsed in seconds.

• Max. Const. Vio.: The maximum constraint violation, max
t∈T

{a(t)x∗−b(t)}.

104

CHAPTER 6. INCLUSIVE-CONE-BASED METHOD FOR LINEAR
SEMI-INFINITE PROGRAMMING

• Opt. Dist.: The optimal L1 distance.

For convenience of reporting, computational results displayed were rounded

to at most 8 significant figures. We would like to point out that, for all test

problems, the number of iterations and CPU time depend not only on the problem

dimension and the value of parameter τ , but also on the initial ladder constructed

randomly in the initial step. Therefore, there may be noticeable change among

different runs.

Example 6.2. Find the best L1 approximation to the tangent function b+(t) =

tan(t) by polynomial functions gp(t) of order less than n from above over the

interval [0,1]:

inf
gp

{

‖gp − b+‖1
∣

∣

∣

∣

gp is a polynomial of order < n, and gp(t) ≥ b+(t) for t ∈ [0, 1]

}

Let gp(t) =
∑n

i=1 xit
i−1. For gp(t) ≥ b+(t), we have

‖gp − b+‖1 =

∫ 1

0

|gp(t)− b+(t)|dt

=

∫ 1

0

(

n
∑

i=1

xit
i−1 − tan(t))dt

=
n

∑

i=1

xi

i
+ ln(cos 1).

Therefore, the above problem can be formulated as the following LSIP prob-

lem :

(E1) : min
n

∑

i=1

xi

i

s.t. −
n

∑

i=1

ti−1xi ≤ − tan t, t ∈ [0, 1].

For each n, problem (E1) has a unique optimal solution x∗ = [x∗
1; x

∗
2; · · · ; x∗

n],

which determines a best L1 approximation g∗p(t) =
∑n

i=1 x
∗
i t

i−1 to the tangent

curve from above on [0, 1]. However, it is noticeable that, for n ≥ 3 the boundary

of its feasible region becomes very flat in the −c direction near the optimal

solution, and for n ≥ 6 the numerical solution becomes extremely sensitive (see

Watson [95]).

105

CHAPTER 6. INCLUSIVE-CONE-BASED METHOD FOR LINEAR
SEMI-INFINITE PROGRAMMING

We tested this example for n = 1, 2, · · · , 18. Here, we only report the test

results for the cases n = 6, n = 8 and 10 ≤ n ≤ 18 with different choice

of parameter τ , which are summarized in Table 6.1 and 6.2. The last column

of Table 6.1 and 6.2 reports the optimal L1 distance, which is calculated by

‖g∗p − b+‖1 =
∑n

i=1
1
i
x∗
i + ln(cos(1)). From the above expression, the optimal

value of problem (E1) can be readily obtained, which is, ‖g∗p − b+‖1 − ln(cos(1)).

For 1 ≤ n ≤ 16 our computational results are accurate in terms of both

feasibility and objective optimality. As mentioned in the foregoing, different

choices of parameter τ may bring in different entering constraint, thus influencing

the computational efficiency of our algorithm. For this problem, we tested quite

a few values of τ , in the hope to find the best value of τ at which our algorithm

achieves the best performance. It seems that, for this example, τ = 0.95 is close

to the best possible choice in terms of CPU time consumption when the same

level of accuracy of solution is taken into consideration.

The same problem has been considered in much literature. Most of the previ-

ous literature only reports computational results for n ≤ 9. Goberna and López

[29] solved the test problem for n = 8 by the grid discretization and the cutting

plane method, reporting the optimal solutions with accuracy 1.0e-3 and 1.0e-4,

respectively. In comparison, our algorithm takes much less CPU time to achieve

the optimal solution of accuracy 1.0e-4 with higher feasibility accuracy. Though

Ito et al. [45] reported optimal solutions with better accuracy, the authors did

not consider the CPU assumption. Adopting a logarithmic barrier cutting plane

algorithm, den Hertog et al. [15] tested the same problem for larger n values

(n = 10, 20, 30). Even though satisfactory duality gaps for subproblems were

achieved with this algorithm, the feasibility of obtained solutions was not guaran-

teed. By contrast, the proposed algorithm is capable of finding optimal solutions

with ignorable constraint violation for 1 ≤ n ≤ 16. However, we have to admit

that, for n ≥ 17, we frequently encountered the ill-conditioned linear systems in

the progress of solving the base points.

Example 6.3. Find the best L1 approximation of a given continuously differ-

entiable function b+(t) from above by a Fourier sine series of order ≤ n, in the

106

CHAPTER 6. INCLUSIVE-CONE-BASED METHOD FOR LINEAR
SEMI-INFINITE PROGRAMMING

form of gs(t) =
∑n

i=1 xi sin(it), over a given interval [α, β].

The problem is to determine the coefficient vector x = [x1; x2; · · · ; xn] of gs(t)

such that the L1 distance between gs(t) and b+(t)

‖gs − b+‖1 =
∫ β

α

|gs(t)− b+(t)|dt,

is minimized subject to gs(t) ≥ b+(t) for all t ∈ [α, β].

Here, we take a special case into consideration in which b+(t) = −
√
πt− t2

and [α, β] = [0, π]. For gs(t) ≥ b+(t), we have

‖gs − b+‖1 =

∫ π

0

|gs(t)− b+(t)|dt

=

n
∑

i=1

xi

∫ π

0

sin(it)dt +

∫ π

0

√
πt− t2dt

=

n
∑

i=1

1− cos(iπ)

i
xi +

π3

8
.

Therefore, the problem can be formulated as an LSIP problem as below:

(E2) : min

n
∑

i=1

1− cos(iπ)

i
xi

s.t. −
n

∑

i=1

sin(it)xi ≤
√
πt− t2, t ∈ [0, π].

For each n, an optimal solution x∗ of problem (E2) determines a best L1

approximation g∗s(t) =
∑n

i=1 x
∗
i sin(it). We solve problem (E2) for 1 ≤ n ≤ 200

and report computational results for various n values in Table 6.3.

To demonstrate the effect of approximation, we also depict the graphs of the

best approximation g∗s(t) against that of b+(t) with τ = 1 for n = 5, 10, 15, 25, 55,

and 200 in Figure 6.2 and Figure 6.3. As seen in Figure 6.3, the degree of ap-

proximation by g∗s(t) with n = 55 is satisfactory. And the effect of approximation

by g∗s(t) for n = 200 is ideal.

A number of tests show that the algorithm is numerically stable (at least for

tested cases). However, we would like to point out that, when n approaches 200,

some effort needs to be made to find an initial ladder that does not involve a

singularity (that is, the associated linear system is not ill-conditioned).

107

CHAPTER 6. INCLUSIVE-CONE-BASED METHOD FOR LINEAR
SEMI-INFINITE PROGRAMMING

Once the optimal solution x∗ of problem (E2) is found, the minimum L1

distance is given by

‖g∗s − b+‖1 =
n

∑

i=1

1− cos(iπ)

i
x∗
i +

π3

8
.

Example 6.4. Find the best L1 approximation of a given continuously differen-

tiable function b+(t) from above by a Fourier cosine series of order ≤ n − 1, in

the form of gc(t) =
∑n

i=1 xi cos((i− 1)t), over a given interval [α, β].

As in the above example, we take b+(t) = −
√
πt− t2 and [α, β] = [0, π].

By simple manipulation (similar to that in Example 6.3), we can formulate this

problem as an LSIP problem as following:

(E3) : min πx1

s.t. −
n

∑

i=1

cos((i− 1)t)xi ≤
√
πt− t2, t ∈ [0, π].

We solve this problem for 1 ≤ n ≤ 200 and summarize computational re-

sults for various n values in Table 6.4. In order to demonstrate the accuracy

of approximation, we also present the graphs of the best approximation g∗c (t) =
∑n

i=1 x
∗
i cos((i− 1)t) against that of b+(t) with τ = 1 for n = 5, 10, 15, 25, 55 and

200 in Figure 6.4 and Figure 6.5. As seen in Figure 6.5, the degree of approxi-

mation by g∗c (t) with n = 200 is satisfactory.

For tested cases, the algorithm is computationally efficient. However, we

would like to say that, when n is close to 200, some effort needs to be made to

find an initial ladder which does not involve a singularity.

Once the optimal solution x∗ of problem (E3) is found, the optimal L1 distance

is calculated by

‖g∗c − b+‖1 = πx∗
1 +

π3

8
.

108

CHAPTER 6. INCLUSIVE-CONE-BASED METHOD FOR LINEAR
SEMI-INFINITE PROGRAMMING

6.6 Summary

In this chapter, we have extended the inclusive-cone-based method for LP to the

LSIP case and done the following work:

Firstly, we introduced the concept of the generalized base point for LSIP. This

concept builds upon the concept of base point for LP. As we have seen from the

foregoing discussion, the concept of the generalized base point plays a significant

role in development of the optimality result and the ladder algorithm for solving

LSIP problems.

Secondly, we established an optimality result, which tells us that an LSIP

problem with continuous linear inequality constraints has an optimal solution if

and only if it has one at a feasible generalized base point.

Last but not the least, we developed a centered climbing ladder algorithm

for solving LSIP problems, which is an LSIP version of a center climbing algo-

rithm for LP. This algorithm iteratively updates the inclusive cone as well as the

ladder to generate a sequence of base points, which ultimately converges to a

feasible generalized base point, that is, an optimal solution of the problem. This

new LSIP ladder algorithm combines an LP ladder algorithm and an efficient

one-dimensional global optimization method—– the bridging method. At each

iteration, the bridging method is capable of finding the exact global optimal so-

lution which is corresponding to a violated constraint. (This global optimization

method works faster than the linear search strategy over a set of dense grid index

point used in discretization methods.) Computational results demonstrate that

our algorithm has surprisingly good performance in terms of both CPU time and

the accuracy of the solution.

109

CHAPTER 6. INCLUSIVE-CONE-BASED METHOD FOR LINEAR
SEMI-INFINITE PROGRAMMING

Table 6.1: Computational results for Example 6.2 (M = 50)

n τ Iters. CPU(s) Max. Const. Vio. Opt. Dist.

0.01 18 0.658005 3.026419e-15 4.586812e-4

6 1 15 0.536005 1.268621e-15 4.586810e-4

0.95 16 0.682806 2.344241e-16 4.586811e-4

0.01 20 1.135620 2.178005e-14 2.675330e-5

8 1 19 0.995219 0 2.675325e-5

0.95 20 0.932818 1.955741e-16 2.675318e-5

0.01 27 1.754113 0 1.589166e-6

10 1 21 1.021227 3.851927e-17 1.589145e-6

0.95 23 1.008900 4.058102e-16 1.589148e-6

0.01 31 2.124825 8.627571e-14 3.787589e-7

11 1 19 1.009225 5.048957e-14 3.737784e-7

0.95 20 0.946825 9.700573e-15 3.742882e-7

0.01 33 2.207455 6.047939e-14 1.145817e-7

12 1 20 1.753125 2.354116e-13 1.112370e-7

0.95 23 1.807025 2.438008e-14 1.123466e-7

0.01 35 2.956250 2.051373e-10 4.049794e-7

13 1 20 1.725000 4.913628e-10 1.590831e-7

0.95 18 1.523750 3.237483e-10 8.011145e-8

0.01 39 3.268125 3.262518e-10 9.787721e-7

14 1 32 2.843750 1.839627e-10 6.052919e-7

0.95 22 1.671650 7.038231e-10 7.424762e-8

110

CHAPTER 6. INCLUSIVE-CONE-BASED METHOD FOR LINEAR
SEMI-INFINITE PROGRAMMING

Table 6.2: Computational results for Example 6.2 (to continue Table 6.1)

n τ Iters. CPU(s) Max. Const. Vio. Opt. Dist.

0.01 41 3.687751 2.893904e-10 2.745783e-7

15 1 28 2.675305 8.132726e-10 4.655475e-7

0.95 30 2.031225 6.046296e-10 2.924098e-7

0.01 45 4.076100 7.884831e-10 8.275940e-7

16 1 36 3.425000 8.493327e-10 2.667424e-7

0.95 38 3.121875 8.174934e-10 1.616550e-7

0.01 37 2.500000 7.549062e-8 4.366051e-6

17 1 30 2.458435 7.482757e-8 5.687806e-6

0.95 31 2.346875 2.127828e-8 1.464241e-6

0.01 45 3.062500 7.048341e-8 7.458815e-5

18 1 52 3.578125 9.554832e-8 1.977110e-4

0.95 40 3.250000 7.360533e-8 5.147018e-5

Table 6.3: Computational results for Example 6.3 (M = 5, τ = 1)

n Iters. CPU(s) Max. Const. Vio. Opt. Dist.

5 21 1.078125 9.992007e-15 0.200884

10 57 2.703125 5.206305e-13 0.101011

15 65 2.687500 1.907363e-13 0.052233

20 81 2.984375 9.769962e-15 0.037951

25 98 5.328125 9.066787e-14 0.025969

35 147 8.140625 7.838174e-14 0.016149

55 210 11.859375 2.719638e-12 0.008424

95 360 21.593750 1.731947e-13 0.003782

200 521 37.203125 2.856625e-8 0.001253

111

CHAPTER 6. INCLUSIVE-CONE-BASED METHOD FOR LINEAR
SEMI-INFINITE PROGRAMMING

0 0.5 1 1.5 2 2.5 3 3.5
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

t

g
s
* (t)

b
+
(t)

n=5

0 0.5 1 1.5 2 2.5 3 3.5
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

t

g
s
* (t)

b
+
(t)

n=10

0 0.5 1 1.5 2 2.5 3 3.5
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

t

g
s
* (t)

b
+
(t)

n=15

Figure 6.2: Approximating functions g∗s(t) against b+(t) in Example 6.3 (n=5,

10, 15)

112

CHAPTER 6. INCLUSIVE-CONE-BASED METHOD FOR LINEAR
SEMI-INFINITE PROGRAMMING

0 0.5 1 1.5 2 2.5 3 3.5
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

t

g
s
* (t)

b
+
(t)

n=25

0 0.5 1 1.5 2 2.5 3 3.5
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

t

g
s
* (t)

b
+
(t)

n=55

0 0.5 1 1.5 2 2.5 3 3.5
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

t

g
s
* (t)

b
+
(t)

n=200

Figure 6.3: Approximating functions g∗s(t) against b+(t) in Example 6.3 (n=25,

55, 200)

113

CHAPTER 6. INCLUSIVE-CONE-BASED METHOD FOR LINEAR
SEMI-INFINITE PROGRAMMING

Table 6.4: Computational results for Example 6.4 (M = 5, τ = 1)

n Iters. CPU(s) Max. Const. Vio. Opt. Dist.

5 14 0.718750 6.661338e-15 0.774061

10 39 1.765625 2.220446e-16 0.362608

15 86 3.140625 1.079370e-12 0.179977

20 120 5.031250 2.238653e-12 0.128976

25 120 6.421875 2.344791e-13 0.087129

35 133 7.281750 2.176868e-10 0.053535

55 252 14.125000 6.944051e-14 0.027616

95 404 23.906250 7.016610e-14 0.012366

200 766 55.468750 9.083422e-8 0.004103

114

CHAPTER 6. INCLUSIVE-CONE-BASED METHOD FOR LINEAR
SEMI-INFINITE PROGRAMMING

0 0.5 1 1.5 2 2.5 3 3.5
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

t

g
c
* (t)

b
+
(t)

n=5

0 0.5 1 1.5 2 2.5 3 3.5
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

t

g
c
* (t)

b
+
(t)

n=10

0 0.5 1 1.5 2 2.5 3 3.5
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

t

g
c
* (t)

b
+
(t)

n=15

Figure 6.4: Approximating functions g∗c (t) against b+(t) in Example 6.4 (n=5,

10, 15)

115

CHAPTER 6. INCLUSIVE-CONE-BASED METHOD FOR LINEAR
SEMI-INFINITE PROGRAMMING

0 0.5 1 1.5 2 2.5 3 3.5
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

t

g
c
* (t)

b
+
(t)

n=25

0 0.5 1 1.5 2 2.5 3 3.5
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

t

g
c
* (t)

b
+
(t)

n=55

0 0.5 1 1.5 2 2.5 3 3.5
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

t

g
c
* (t)

b
+
(t)

n=200

Figure 6.5: Approximating functions g∗c (t) against b+(t) in Example 6.4 (n=25,

55, 200)

116

Chapter 7

Conclusion and Future Works

In this dissertation, we have proposed a simple method for linear programming as

well as linear semi-infinite programming, which is called the inclusive-cone-based

method. Applying this method, we have done the following work.

In Chapter 2, we investigated theoretical aspects of linear programming from

the perspective of the inclusive cone, demonstrating that the concept of the

inclusive cone plays an indispensable role in deriving a set of inclusive-cone-

based LP theory (especially the “symmetric” strong duality theory). Using the

inclusive cone as an analytic tool, we examined sensitivity analysis in LP. In

addition, we established the relationship of inclusiveness between correlated LP

problems.

In Chapter 3, we presented an overview of LP algorithms. In Chapter 4,

we developed several inclusive-cone-based ladder algorithms for solving LP prob-

lems. Numerical test results reveal the new algorithms outperform the simplex

method in terms of CPU time for the tested problems.

In order to get the ladder algorithms started, we introduced some methods

on how to find an initial ladder in Chapter 5. In particular, we proposed a sim-

ple and efficient initialization technique in Section 5.4. The famous Klee-Minty

problem illustrated the effectiveness of this technique. Further, we developed

an inclusive-cone-based solvability criterion in the context of the new category

of LP problems, which enables us to diagnose accurately that an LP prob-

lem is inclusive-feasible (i.e., optimal), noninclusive-feasible (i.e., unbounded),

117

CHAPTER 7. CONCLUSION AND FUTURE WORKS

inclusive-infeasible or noninclusive-infeasible.

We further generalized the inclusive-cone-based method for LP to the linear

semi-infinite case in Chapter 6. On the basis of the concept of generalized base

point, we established an optimality result for LSIP. With the optimality result as

a theoretical foundation, we developed a new ladder algorithm for solving LSIP

problems, termed “the centered climbing ladder algorithm for LSIP”. The new

LSIP ladder algorithm is a natural extension of a ladder algorithm for LP. At each

iteration, the new algorithm chooses an incoming constraint most violated along

a “parameterized centerline”, by solving a one-dimensional global optimization

problem using the efficient bridging algorithm. It is worth pointing out that the

selection of the entering constraint allows a great degree of freedom, which is

controlled by a parameter arising in the global optimization problem. We tested

the proposed algorithm on several problems (the order of some tested problems

is up to 200). Computational results show that our algorithm is efficient and has

a superior numerical performance in terms of accuracy and CPU time.

Several possible directions are to be taken into consideration for future re-

search. One direction is to adopt advanced coding techniques in our algorithms

for further improvements in performance of the proposed ladder algorithms. For

example, in the present codes we adopt the traditional technique of the inverse

of matrix to calculate the sequence of base points xk (k = 0, 1, 2, · · · ,). If the

LU decomposition technique was incorporated to calculate the sequence xk, al-

gorithmic performance could be improved. We would like to point out that,

current numerical tests for new LP ladder algorithms are done on randomly gen-

erated problems. Once advanced coding techniques are adopted, we will test

our algorithms on NETLIB problems. Another research direction is to apply the

inclusive-cone-based method to parametric linear semi-infinite programming. As

we have seen earlier (see Section 2.5, Chapter 2), the inclusive cone is a simple and

useful tool for examining sensitivity analysis in LP. We will attempt to use this

analytic tool to study parametric LSIP, in the hope to obtain some encouraging

results. In addition, generalizing this inclusive-cone-based approach to general

convex optimization problems is also one main direction for our future research.

118

Bibliography

[1] I. Adler and R. D. C. Monteiro. A geometric view of parametric linear

programming. Algorithmica, 8:161–176, 1992.

[2] E. J. Anderson and A. S. Lewis. An extension of the simplex algorithm

for semi-infinite linear programming. Mathematical Programming, 44(1-

3):247–269, 1989.

[3] K. M. Anstreicher. Interior-point algorithms for a generalization of linear

programming and weighted centring. Optimization Methods & Software,

27(4-5):605–612, 2012.

[4] H. Arsham. A hybrid gradient and feasible direction pivotal solution algo-

rithm for general linear programs. Applied Mathematics and Computation,

188(1):596–611, 2007.

[5] H. Arsham, T. Damij, and J. Grad. An algorithm for simplex tableau

reduction: the push-to-pull solution strategy. Applied Mathematics and

Computation, 137(2-3):525–547, 2003.

[6] E. Barnes, V. Chen, B. Gopalakrishnan, and E. L. Johnson. A least-squares

primal-dual algorithm for solving linear programming problems. Operations

Research Letters, 30(5):289–294, 2002.

[7] B. Betrò. An accelerated central cutting plane algorithm for linear semi-

infinite programming. Mathematical Programming, 101(3):479–495, 2004.

119

BIBLIOGRAPHY

[8] K.-H. Borgwardt. The average number of pivot steps required by the sim-

plex method is polynomial. Zeitschrift für Operations Research, 26:157–

177, 1982.

[9] K.-H. Borgwardt. Some distribution-independent results about the asymp-

totic order of the average number of pivot steps of the simplex method.

Mathematics of Operations Research, 7(3):441–462, 1982.

[10] A. Charnes, W. W. Cooper, and K. Kortanek. Duality, Haar programs and

finite sequence spaces. Proceedings of the National Academy of Sciences of

the United States of America, 48(5):783–786, 1962.

[11] A. Charnes, W. W. Cooper, and K. Kortanek. Duality in semi-infinite

programs and some works of Haar and Carathéodory. Management Science,

9(2):209–228, 1963.

[12] M. Dambrine and M. Pierre. About stability of equilibrium shapes. Math-

ematical Modelling and Numerical Analysis, 34(4):811–834, 2000.

[13] G. B. Dantzig. Maximization of a linear function of variables subject to

linear inequalities. In T. C. Koopmans, editor, Activity Analysis of Produc-

tion and Allocation, pages 339–347, New York, 1951. John Wiley & Sons,

Inc. Proceedings of a Conference.

[14] G. B. Dantzig. Linear Programming and Extensions. Princeton University

Press, Princeton, NJ, 1963.

[15] D. den Hertog, J. Kaliski, C. Roos, and T. Terlaky. A logarithmic bar-

rier cutting plane method for convex programming. Annals of Operations

Research, 58(2):69–98, 1995.

[16] I. I. Dikin. Iterative solution of problems of linear and quadratic pro-

gramming. Doklady Akademii Nauk SSSR, 174:747–748, 1967. In Russian.

English Translation: Soviet Mathematics Doklady, 8: 674-675, 1967.

120

BIBLIOGRAPHY

[17] I. I. Dikin. On the speed of an iterative process. Upravlaemye Sistemy,

12:54–60, 1974. In Russian.

[18] M.-F. Ding, Y. Liu, and J. A. Gear. An improved targeted climbing algo-

rithm for linear programs. Numerical Algebra, Control and Optimization,

1(3):399–405, 2011.

[19] M.-F. Ding, Y. Liu, and J. A. Gear. A modified centered climbing algorithm

for linear programming. Applied Mathematics, 3:1423–1429, 2012.

[20] M. C. Ferris and A. B. Philpott. An interior point algorithm for semi-

infinite linear programming. Mathematical Programming, 43:257–276, 1989.

[21] M. C. Ferris and A. B. Philpott. On affine scaling and semi-infinite pro-

gramming. Mathematical Programming, 56(1-3):361–364, 1992.

[22] L. Finlay, V. Gaitsgory, and I. Lebedev. Duality in linear programming

problems related to deterministic long run average problems of optimal

control. SIAM Journal on Control and Optimization, 47(4):1667–1700,

2008.

[23] J. J. Forrest and D. Goldfarb. Steepest-edge simplex algorithms for linear

programming. Mathematical Programming, 57(1-3):341–374, 1992.

[24] R. Fourer. Notes on the dual simplex method. 1994. Unpublished.

[25] V. Gaitsgory and M. Quincampoix. Linear programming approach to deter-

ministic infinite horizon optimal control problems with discounting. SIAM

Journal on Control and Optimization, 48(4):2480–2512, 2009.

[26] T. Gal. Postoptimal Analysis, Parametric Programming and Related Top-

ics. McGraw-Hill, New York, 1979.

[27] T. Gal. Shadow prices and sensitivity analysis in linear programming under

degeneracy. OR Spectrum, 8(2):59–71, 1986.

121

BIBLIOGRAPHY

[28] M. A. Goberna. Linear semi-infinite optimization: recent advances. In

V. Jeyakumar and A. Rubinov, editors, Continuous Optimization: Current

Trends and Modern Applications, volume 99 of Applied Optimization, pages

3–22, New York, 2005. Springer.

[29] M. A. Goberna and M. A. López. Linear Semi-Infinite Optimization. John

Wiley & Sons, Chichester, 1998.

[30] M. A. Goberna and M. A. López. Semi-Infinite Programming: Recent Ad-

vances, volume 57 of Nonconvex Optimization and Its Applications. Kluwer

Academic Publishers, Dordrecht, The Netherlands, 2001.

[31] M. A. Goberna and M. A. López. Linear semi-infinite programming theory:

An updated survey. European Journal of Operational Research, 143(2):390–

405, 2002.

[32] M. A. Goberna, T. Terlaky, and M. I. Todorov. Sensitivity analysis in

linear semi-infinite programming via partitions. Mathematics of Operations

Research, 35(1):14–26, 2010.

[33] D. Goldfarb. Using the steepest-edge simplex algorithm to solve sparse

linear programs. In J. R. Bunch and D. J. Rose, editors, Sparse Matrix

Computations, pages 227–240, New York, 1976. Academic Press.

[34] D. Goldfarb and J. K. Reid. A practicable steepest-edge simplex algorithm.

Mathematical Programming, 12(1):361–371, 1977.

[35] D. Goldfarb and W. Y. Sit. Worst case behavior of the steepest edge

simplex method. Discret Applied Mathematics, 1(4):277–285, 1979.

[36] G. Gramlich, R. Hettich, and E. W. Sachs. Local convergence of SQP

methods in semi-infinite programming. SIAM Journal on Optimization,

5(3):641–658, 1995.

122

BIBLIOGRAPHY

[37] H. J. Greenberg. The use of the optimal partition in a linear programming

solution for postoptimal analysis. Operations Research Letters, 15(4):179–

185, 1994.

[38] H. J. Greenberg. Simultaneous primal-dual right-hand-side sensitivity anal-

ysis from a strictly complementary solution of a linear program. SIAM

Journal on Optimization, 10(2):427–442, 2000.

[39] H. J. Greenberg, A. G. Holder, K. Roos, and T. Terlaky. On the dimension

of the set of rim perturbations for optimal partition invariance. SIAM

Journal on Optimization, 9(1):207–216, 1998.

[40] E. Haaren-Retagne. A semi-infinite programming algorithm for robot tra-

jectory planning. Ph.D. Thesis, University of Trier, 1992.

[41] P. M. J. Harris. Pivot selection methods of the devex lp code. Mathematical

Programming, 5(1):128, 1973.

[42] R. Hettich. An implementation of a discretization method for semi-infinite

programming. Mathematical Programming, 34(3):354–361, 1986.

[43] R. Hettich and K. O. Kortanek. Semi-infinite programming: theory, meth-

ods and applications. SIAM Riview, 35(3):380–429, 1993.

[44] T. Illés and T. Terlaky. Pivot versus interior point methods: Pros and

cons. European Journal of Operational Research, 140(2):170–190, 2002.

[45] S. Ito, Y. Liu, and K. L. Teo. A dual parametrization method for convex

semi-infinite programming. Annals of Operations Research, 98(1-4):189–

213, 2000.

[46] B. Jansen, J. J. de Jong, C. Roos, and T. Terlaky. Sensitivity analysis

in linear programming: just be careful! European Journal of Operational

Research, 101(1):15–28, 1997.

123

BIBLIOGRAPHY

[47] L. S. Jennings and K. L. Teo. A computational algorithm for functional

inequality constrained optimization problems. Automatica, 26(2):371–375,

1990.

[48] B. Jerez. A dual characterization of incentive efficiency. Journal of Eco-

nomic Theory, 112(1):1–34, 2003.

[49] F. Juhnke and O. Sarges. Minimal spherical shells and linear semi-infinite

optimization. Contributions to Algebra and Geometry, 41(1):93–105, 2000.

[50] N. Karmarkar. A new polynomial-time algorithm for linear programming.

Combinatorica, 4(4):373–395, 1984.

[51] L. G. Khachiyan. A polynomial algorithm in linear programming. Soviet

Mathematics Doklady, 20(1):191–194, 1979.

[52] V. Klee and G. J. Minty. How good is the simplex algorithm? In O. Shisha,

editor, Inequalities III, pages 159–175, New York, 1972. Academic Press.

[53] M. Kojima, N. Megiddo, and S. Mizuno. A primal-dual infeasible-interior-

point algorithm for linear programming. Mathematical Programming, 61(1-

3):263–280, 1993.

[54] K. O. Kortanek and V. G. Medvedev. Building and using dynamic interest

rate models. Wiley Finance Series. John Wiley & Sons, Ltd., Chichester,

United Kingdom, 2001.

[55] M. López and G. Still. Semi-infinite programming. European Journal of

Operational Research, 180(2):491–518, 2007.

[56] C. E Lemke. The dual method of solving the linear programming problem.

Naval Research Logistics Quarterly, 1(1):36–47, 1954.

[57] C.-J. Lin, S.-C. Fang, and S.-Y. Wu. An unconstrained convex program-

ming approach to linear semi-infinite programming. SIAM Journal on

Optimization, 8(2):443–456, 1998.

124

BIBLIOGRAPHY

[58] Q. Lin, R. Loxton, K. L. Teo, Y. H. Wu, and C. Yu. A new exact penalty

method for semi-infinite programming problems. Journal of Computational

and Applied Mathematics, 261:271–286, 2014. Accepted for publication, to

appear in May 2014.

[59] G.-X. Liu. A homotopy interior point method for semi-infinite program-

ming problems. Journal of Global Optimization, 37(4):631–646, 2007.

[60] Y. Liu. An exterior point linear programming method based on inclu-

sive normal cones. Journal of Industrial and Management Optimization,

6(4):825–846, 2010.

[61] Y. Liu. Duality in linear programming: From trichotomy to quadrichotomy.

Journal of Industrial and Management Optimization, 7(4):1003–1011, 2011.

[62] Y. Liu and M.-F. Ding. A ladder method for linear semi-infinite program-

ming. Journal of Industrial and Management Optimization, 10(2), 2014.

Accepted for publication, to appear in April 2014.

[63] Y. Liu, S. Ito, H. W. J. Lee, and K. L. Teo. Semi-infinite programming ap-

proach to continuously-constrained linear-quadratic optimal control prob-

lems. Journal of Optimization Theory and Applications, 108(3):617–632,

2001.

[64] Y. Liu and K. L. Teo. A bridging method for global optimization. The Jour-

nal of the Australian Mathematical Society. Series B, 41(1):41–57, 1999.

[65] Y. Liu and K. L. Teo. An adaptive dual parametrization algorithm for

quadratic semi-infinite programming problems. Journal of Global Opti-

mization, 24(2):205–217, 2002.

[66] Y. Liu, K. L. Teo, and S. Y. Wu. A new quadratic semi-infinite pro-

gramming algorithm based on dual parametrization. Journal of Global

Optimization, 29(4):401–413, 2004.

125

BIBLIOGRAPHY

[67] N. Llorca, S. Tijs, and J. Timmer. Semi-infinite assignment problems and

related games. Mathematical Methods of Operations Research, 57(1):67–78,

2003.

[68] M. Locatelli and F. Schoen. An adaptive stochastic global optimization

algorithm for one-dimensional functions. Annals of Operations Research,

58(4):261–278, 1995.

[69] D. G. Luenberger and Y. Ye. Linear and Nonlinear Programming. Interna-

tional Series in Operations Research and Management Science. Springer,

New York, 3rd edition, 2008.

[70] A. S. Manne. Notes on parametric linear programming. RAND Report

P-468, The Rand Corporation, Santa Monica, CA, 1953.

[71] S. P. Marin. Optimal parametrization of curves for robot trajectory design.

IEEE Transactions on Automatic Control, 33(2):209–214, 1988.

[72] A. T. N. Moghaddam and C. Michelot. A contribution to the linear pro-

gramming approach to joint cost allocation: Methodology and application.

European Journal of Operational Research, 197(3):999–1011, 2009.

[73] P. Moulin, M. Anitescu, K. O. Kortanek, and F. A. Potra. The role of lin-

ear semi-infinite programming in signal-adapted QMF bank design. IEEE

Transactions on Signal Processing, 45(9):2160–2174, 1997.

[74] R. F. Noubiap and W. Seidel. An algorithm for calculating Γ-minimax de-

cision rules under generalized moment conditions. The Annals of Statistics,

29(4):1094–1116, 2001.

[75] T. Okuno, S. Hayashi, and M. Fukushima. A regularized explicit exchange

method for semi-infinite programs with an infinite number of conic con-

straints. SIAM Journal on Optimization, 22(3):1009–1028, 2012.

126

BIBLIOGRAPHY

[76] M. R. Oskoorouchi, H. R. Ghaffari, T. Terlaky, and D. M. Aleman. An

interior point constraint generation algorithm for semi-infinite optimization

with health-care application. Operations Research, 59(5):1184–1197, 2011.

[77] E. Polak. On the mathematical foundations of nondifferentiable optimiza-

tion in engineering design. SIAM Review, 29(1):21–89, 1987.

[78] E. Polak. Optimization: Algorithms and Consistent Approximation, volume

124 of Applied Mathematical Sciences. Springer-Verlag, New York, 1997.

[79] A. W. Potchinkov. Design of optimal linear phase FIR filters by a semi-

infinite programming technique. Signal Processing, 58(2):165–180, 1997.

[80] C. J. Price. Non-Linear Semi-Infinite Programming. University of Canter-

bury, New Zealand, 1992.

[81] R. Reemtsen. Discretization methods for the solution of semi-infinite pro-

gramming problems. Journal of Optimization Theory and Applications,

71(1):85–103, 1991.

[82] R. Reemtsen and J.-J. Rückmann. Semi-infinite Programming. Noncon-

vex Optimization and its Applications. Kluwer Academic Publishers, Dor-

drecht, The Netherlands, 1998.

[83] C. Roos. An exponential example for Terlaky’s pivoting rule for the criss-

cross simplex method. Mathematical Programming, 46(1-3):79–84, 1990.

[84] T. Saaty and S. Gass. Parametric objective function (part 1). Journal of

the Operations Research Society of America, 2(3):316–319, 1954.

[85] O. Stein. Bi-level Strategies in Semi-infinite Programming, volume 71 of

Nonconvex Optimization and its Applications. Kluwer Academic Publish-

ers, Boston, 2003.

[86] O. Stein and G. Still. Solving semi-infinite optimization problems with

interior point techniques. SIAM Journal on Control and Optimization,

42(3):769–788, 2003.

127

BIBLIOGRAPHY

[87] K. L. Teo, X. Q. Yang, and L. S. Jennings. Computational discretization

algorithms for functional inequality constrained optimization. Annals of

Operations Research, 98(1-4):215–234, 2000.

[88] J. Timmer, S. Tijs, and N. Llorca. Games arising from infinite production

situations. International Game Theory Review, 2(1):97–105, 2000.

[89] R. J. Vanderbei. Linear Programming–Foundations and Extensions. Inter-

national Series in Opterations Research and Management Science. Springer,

New York, 3rd edition, 2008.

[90] A. I. F. Vaz, E. M. G. P. Fernandes, and M. P. S. F. Gomes. Robot

trajectory planning with semi-infinite programming. European Journal of

Operational Research, 153(3):607–617, 2004.

[91] A. I. F. Vaz and E. C. Ferreira. Air pollution control with semi-infinite

programming. Applied Mathematical Modelling, 33(4):1957–1969, 2009.

[92] B.-N. Vo, A. Cantoni, and K. L. Teo. Envelope constrained filter with

linear interpolator. IEEE Transactions on Signal Processing, 45(6):1405–

1414, 1997.

[93] G. A. Watson. A multiple exchange algorithm for multivariate Chebyshev

approximation. SIAM Journal on Numerical Analysis, 12(1):46–52, 1975.

[94] G. A. Watson. Globally convergent methods for semi-infinite programming.

BIT Numerical Mathematics, 21(3):362–373, 1981.

[95] G. A. Watson. Lagrangian methods for semi-infinite programming prob-

lems. In E. J. Anderson and A. B. Philpott, editors, Infinite Program-

ming, volume 259 of Lecture Notes in Economics and Mathematical Sys-

tems, pages 90–107. Springer Berlin-Heidelberg, 1985.

[96] R. E. Wendell. Using bounds on the data in linear programming: The

tolerance approach to sensitivity analysis. Mathematical Programming,

29(3):304–322, 1984.

128

BIBLIOGRAPHY

[97] A. Winterfeld. Application of general semi-infinite programming to

lapidary cutting problems. European Journal of Operational Research,

191(3):838–854, 2008.

[98] S. Y. Wu, S. C. Fang, and C. J. Lin. Relaxed cutting plane method for

solving linear semi-infinite programming problems. Journal of Optimization

Theory and Applications, 99(3):759–779, 1998.

[99] X. Xu and Y. Ye. A generalized homogeneous and self-dual algorithm for

linear programming. Operations Research Letters, 17(4):181–190, 1995.

[100] E. A. Yildirim and M. J. Todd. An interior-point approach to sensitivity

analysis in degenerate linear programs. SIAM Journal on Optimization,

12(3):692–714, 2002.

[101] K. F. C. Yiu, Y. Liu, and K. L. Teo. A hybrid descent method for global

optimization. Journal of Global Optimization, 28(2):229–238, 2004.

[102] C. Yu, K. L. Teo, L. Zhang, and Y. Bai. A new exact penalty function

method for continuous inequality constrained optimization problems. Jour-

nal of Industrial and Management Optimization, 6(4):895–910, 2010.

129

Appendix A

Procedure of Elimination for

Linear System (5.1)

In this appendix we demonstrate how to eliminate n of y’s components from the

system of linear equations (5.1) (see Section 5.3, Chapter 5).

In the following, we use MATLAB function command [R, jb]=rref(•) to pro-

duce the reduced row echelon form R from the matrix •, where jb denotes the

index set of basic columns of R. Given an index set J = {1, 2, · · · , m}, we de-

note by J \ jb the set difference of index set jb from index set J . Supposing

jb = {i1, i2, · · · , in} ⊆ J , we use Im(:, jb) (alternatively, Im(:, i1 : in)) to denote

a matrix consisting of i1-th, i2-th, · · · , in-th columns of the identity matrix Im.

Also we denote by y(jb) a column vector consisting of i1-th, i2-th, · · · , in-th
components of the column vector y ∈ Rm.

Rewrite (5.1) as

[

(c+ ATy0)b
T − AT (c+ ATy0)c

T

]





y

x



 = c. (A.1)

Let R be the reduced row echelon form of the matrix

[

(c+ ATy0)b
T −AT (c + ATy0)c

T c

]

and let jb be the set of indices of the basic columns of R. That is

[R, jb] = rref

(

[

(c+ ATy0)b
T −AT (c + ATy0)c

T c

]

)

.

130

APPENDIX A. PROCEDURE OF ELIMINATION FOR A LINEAR
SYSTEM

Let c0 be the last column of R. c0 = R(:, m + n + 1), ĵb = {1, 2, · · · , m}\jb,
ȳ = y(jb), and ŷ = y(ĵb). Then y = Im(:, jb)ȳ + Im(:, ĵb)ŷ, and

R(:, jb)ȳ +R(:, ĵb)ŷ +R(:, (m+ 1) : (m+ n))x = c0.

Since R(:, jb) = In, we have

ȳ = −R(:, ĵb)ŷ −R(:, (m+ 1) : (m+ n))x+ c0

= −
[

R(:, (m+ 1) : (m+ n)) R(:, ĵb)
]





x

ŷ



+ c0.

Therefore

y = Im(:, jb)ȳ + Im(:, ĵb)ŷ

= Im(:, jb)



−
[

R(:, (m+ 1) : (m+ n)) R(:, ĵb)
]





x

ŷ



+ c0



+Im(:, ĵb)ŷ

=
[

−Im(:, jb)R(:, (m+ 1) : (m+ n)) −Im(:, jb)R(:, ĵb) + Im(:, ĵb)
]





x

ŷ





+Im(:, jb)c0.

This gives





x

y



 =





In 0n×(m−n)

−Im(:, jb)R(:, (m+ 1) : (m+ n)) −Im(:, jb)R(:, ĵb) + Im(:, ĵb)





×





x

ŷ



+





0n×1

Im(:, jb)c0





= M3





x

ŷ



+ c
′

0,

where

M3 =





In 0n×(m−n)

−Im(:, jb)R(:, (m+ 1) : (m+ n)) −Im(:, jb)R(:, ĵb) + Im(:, ĵb)



 ,

c
′

0 =





0n×1

Im(:, jb)c0



 .

131

