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Since the 1970s, hydrogen has been considered as a possible energy carrier for the storage of renewable

energy. The main focus has been on addressing the ultimate challenge: developing an environmentally

friendly successor for gasoline. This very ambitious goal has not yet been fully reached, as discussed in

this review, but a range of new lightweight hydrogen-containing materials has been discovered with

fascinating properties. State-of-the-art and future perspectives for hydrogen-containing solids will be

discussed, with a focus on metal borohydrides, which reveal significant structural flexibility and may

have a range of new interesting properties combined with very high hydrogen densities.

Introduction
The first wake-up call drawing attention toward our fossil fuel

dependencies and the vulnerability of our present energy system

came in 1973 with the oil crisis. And a second came after the turn

of the millennium with increased focus on climatic changes due to

increasing levels of carbon dioxide in the atmosphere. Since the

start of industrialization the global energy demand has increased

exponentially and is expected to increase by �75% in the period

2000–2030, partly due to the expanding world population, which

might reach 8 billion people within the same time frame. Despite

the extreme human energy consumption there is plenty of renew-

able energy available to us. The sun is the primary renewable

energy source for the earth and the energy influx is 8000 times

larger than the total human energy consumption. This energy is

created by the fusion of 600 million tons of hydrogen per second

forming helium in the sun. A major inconvenience is that renew-

able energy sources such as sunlight and wind fluctuate strongly

over time and geography, and the most difficult challenge appears

to be the development of efficient and reliable long-term storage,

over days, weeks and months [1]. Perhaps, someday, humans will

convert some of this renewable energy back to hydrogen, which is

considered a promising future energy carrier [2,3]. Electricity, which

is the other main energy carrier of today (beside hydrocarbons),

cannot presently be stored efficiently in large amounts, so produc-

tion and consumption must be maintained in a very delicate

balance [4,5].

The idea of creating a hydrogen society was initially proposed by a

Danish scientist, Poul La Cour (1846–1908), who utilized hydro-

gen for the storage of wind energy as early as 1895 and produced up

to 1000 L H2/h, which was stored in a gas tank [6]. In this scenario,
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hydrogen is produced using renewable wind energy, which can

then be conveniently transported as a gas, stored and utilized as an

energy carrier. This is illustrated in Fig. 1. In fact, ‘city gas’ contain-

ing about 50% hydrogen, was used for ca. 100 years from mid-1800

to mid-1900 and was transported in cast iron pipe lines [7]. The

first 240 km steel pipe lines for pure hydrogen was established in

1938 in the Rhine-Ruhr district in Europe and is still in operation.

Today, there are about 1600 km pipelines for distribution of

hydrogen in Europe and ca. 900 km in North America, which

was also an argument for suggesting hydrogen as an energy carrier

in the late 1960s [8,9] (Text box 1).

In the industrialized world a large fraction of the total energy

consumption is used for transportation, e.g. �2/3 in the USA and

�1/4 in the EU [15,16]. The U.S. Department of Energy (DOE) has

invested significant effort in the research and development of

hydrogen storage for mobile applications and published impor-

tant documents and targets mainly based on present day vehicles

as well as demands from the automobile industry [16–19]. Further-

more, fossil fuels are indirectly subsidized by neglecting the

impacts on human health, the cost of increased healthcare from

noxious emissions and the segregation of greenhouse gasses from

the atmosphere to avoid climate change, which hamper and often

bias direct economical comparisons with renewable, sustainable

energy systems [20]. A multitude of criteria must be satisfied,

simultaneously; the storage must be lightweight and compact,

still with significant capacity to allow long-range use but also safe,

inexpensive and should allow rapid refueling. The latter appears as

one of the most difficult challenges, since heat is released during

hydrogen absorption in a solid.

Despite significant research effort and advances within solid-

state hydrogen storage, a material that fulfills all the demands

simultaneously and can act as the successor for gasoline in mobile

applications has not yet been discovered [21–25]. Nevertheless, a

variety of novel materials with fascinating structures and proper-

ties have been discovered, which will be illustrated in this review

and in another paper in this issue of Materials Today.

Today, the leading car manufacturers focus on on-board com-

pressed hydrogen gas storage (700 bar) mainly due to fast refueling

(<3 min) and it being a mature technology. This also opens a new

research field to be explored: solid-state hydrogen storage at

p(H2) = 300–700 bar. The combination of high-pressure tanks

and metal or complex hydrides working in a suitable tempera-

ture-pressure range could help fulfill the targets for volumetric

storage density. This is the focus of a research initiative funded by

the Danish Council for Strategic Research via the project HyFillFast

[26].

Solid-state hydrogen storage – how it began
The interstitial metal hydrides (MH) formed by the heavier d- and

f-block metals and some alloys have received significant attention

due to reversible hydrogen storage at moderate conditions. Unfor-

tunately, the gravimetric hydrogen storage density is low, typically

1–2 wt% H2, but the heat release upon hydrogen uptake is mod-

erate, DHr � �30 kJ/mol H2, allowing relatively fast hydrogen

uptake with cooling [21,22]. Moreover, from a chemical point

of view the reaction is simple without any intermediate com-

pounds, but with significant volume changes (�20%). Clearly,

mobile material handling applications, such as fork lifts, based

on hydrogen stored in transition metal alloys and converted to

electricity and heated by a fuel cell (FC) can compete on perfor-

mance with similar lead acid battery technologies, e.g. no gradual

loss of lifting power and much faster (>20�) re-charging of the

alloy with hydrogen. The replacement of ‘empty’ MH tanks at

hydrogen refueling stations has also been suggested, which may
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FIGURE 1

Water can be ‘split’ into oxygen and hydrogen (green arrows) either

electrochemically from ‘renewable’ electricity or in future maybe by direct

photocatalytic water splitting [10,11]. Most of the energy used in this
process can be released again when hydrogen reacts with oxygen

providing 120.0 MJ/kg H2 (lower heating value) either in a fuel cell or an

internal combustion engine. A carbon-based energy carrier system is also

illustrated (blue arrows) but hydrocarbons are currently energy-consuming
and difficult to produce from biomass or CO2 from the atmosphere and

hydrogen from renewable sources [12]. However, this may be possible in

the future. Notice, a sustainable future can only be created with closed

materials cycles for all chemicals and materials that we use. Today, most
materials are unfortunately ‘single-use’ and not re-cycled. Likewise, CO2

produced from fossil fuels is discarded into the atmosphere symbolized by

personal vehicles and industrial emission ultimately leading to global
warming (black arrow, picture row) [13].

TEXT BOX 1

Hydrogen is the most abundant element and accounts for �90% of
all atoms in the universe and �15% on the surface of earth and
occurs in compounds like water, natural gas and biomass, but
rarely as a free element. Hydrogen forms kinetically stable mixtures
with oxygen similar to natural gas and is a nonpoisonous, odorless,
colorless and tasteless gas [14]. Hydrogen, the lightest element of
all (Z = 1), has the largest gravimetric energy density of all chemical
substances, a factor �3 higher than gasoline. Unfortunately,
hydrogen has a very low density both as a gas and as a liquid, i.e.
0.0899 g/L in gaseous state (at 20 8C and 1 bar, which is 7% of the
density of atmospheric air) and 70.8 g/L as a liquid at �253 8C (7%
of the density of water) [15,16]. Therefore, the volumetric energy
density of hydrogen is very low, which is a fundamental drawback
for the utilization of hydrogen as a gas or liquid, in particular for
mobile applications.
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allow the heat released during refueling to be used for water

electrolysis. The advantage may be faster recharging with a minor

loss of cycling capacity compared to a lithium battery of similar

mass. In colder places the H2-FC technology both provides heat

and electricity, which may contribute to a similar driving range in

both summer and winter [27]. Thus, MH may provide the highest

‘round trip’ energy efficiency compared to compressed or liquefied

hydrogen [28].

Some metals and alloys, e.g. Pd and Pd0.8Ag0.2, absorb large

amounts of hydrogen and simultaneously retain a high degree of

ductility, hydrogen diffusion rate and practically negligible per-

meability of all other gases, including helium [29]. Thus, highly

selective filters for production of ultra-pure hydrogen and for

removing hydrogen from mixtures, such as natural gas and hydro-

gen transported in the natural gas grid may be produced. Other

thin film MH reveal novel properties as sensors and ‘smart win-

dows’, which change transparency as a function of hydrogen

content [30].

Magnesium-based hydrogen storage materials
Virtually limitless amounts of magnesium are available, i.e.

0.13 wt% in sea water and 2.7 wt% in the earth crust of this cheap

and light metal (r = 1.74 g/cm3). Magnesium hydride, MgH2, has

both high gravimetric and volumetric hydrogen contents,

rm(MgH2) = 7.6 wt% H2 and rV(MgH2) = 109 g H2/L, and a rutile

structure, which suggests partly covalent bonding [14]. Unfortu-

nately, magnesium hydride has a high exothermic formation

enthalpy, i.e. unfavorable thermodynamics for mobile applica-

tions, DH � �75 kJ/mol and DS � �135 kJ/mol [38]. Several dif-

ferent approaches have been explored in order to improve the

thermodynamics and kinetics for hydrogen release and uptake in

magnesium hydride, e.g. nanoconfinement [39,40], nanostruc-

turing by ball milling [41], utilization of catalytic additives [42] or

alloying with different metals [43,44]. MgH2 nanoparticles

(�7 nm) embedded in a LiCl matrix and MgH2 in a carbon aerogel

(pore size �7 and 22 nm) reveal improvement of the thermody-

namic and kinetic properties, respectively [38,40]. Most additives

appear to react in different ways, which usually improves the

kinetics and may also influence the thermodynamics. The metals,

Al, Cu and Pd, form alloys [45–47] and Ni and Fe form complex

hydrides, i.e. Mg2NiH4 or Mg2FeH6 [48–50]. Halides, e.g. ScCl3,

and oxides, e.g. Nb2O5, may be reduced to MH or metals, but also

inert MgCl2 or the very stable magnesium oxide MgO is formed,

which significantly reduces the hydrogen storage capacity

[51,52]. In contrast, magnesium in combination with a heat

storage material (phase-change material) provides a safe and

efficient method for stationary large-scale hydrogen storage (up

to 700 kg), long lifetime (>5000 absorption/desorption cycles),

without degradation of the hydrogen uptake capacity (>6.6 wt%)

[53–55].

The high stability and high formation enthalpy of magnesium

hydride and similar compounds can be utilized for heat storage in

solar thermal power technology. By changing the applied hydro-

gen pressure or temperature an M/MH system may either absorb

hydrogen and release heat, or release hydrogen and absorb heat.

Thus, the large heat exchange involved in hydrogen release and

uptake can be utilized to store solar energy and make it available

also at night time [32,56].

Complex hydrides
Clearly, the light elements and more covalent hydrides, BH3, AlH3

and NH3 have high energy densities, but are very difficult to

handle safely and they decompose to very stable elements, B, Al

and N2, which are very challenging to re-fuel with hydrogen on

board a vehicle. All three compounds readily react with ionic

hydrides, e.g. alkali MH, forming LiBH4, NaAlH4 and LiNH2

[57–59]. This class of material contains stable solids, which are

more convenient to handle and consist of an electropositive

counter ion and a coordination complex where hydrogen is cova-

lently bonded, i.e. [BH4]�, [AlH4]� and [NH2]�. A significant

paradigm shift occurred in the mid-nineties where Bogdanović

observed hydrogen release and uptake for titanium-catalyzed

sodium tetrahydridoalanate, NaAlH4 (often denoted sodium ala-

nate), at moderate conditions [60]. Reversible nitrogen-based

complex hydrides, e.g. based on LiNH2–Li2NH–LiH, were discov-

ered by P. Chen in 2002 [61] while A. Züttel and K. Yvon and co-

workers were among the first to investigate metal tetrahydrido-

boranates, e.g. LiBH4 in 2003 [62,63]. This class of materials,

known as metal borohydrides, is the focus of the remaining part

of this review paper and new methods for tailoring structure and

properties are discussed.

Metal borohydrides
The initial interest in studies of metal borohydrides as possible

hydrogen storage materials originates from their extreme hydro-

gen content and the fact that a correlation exists between the

experimentally observed decomposition temperature and the

electronegativity of the metal, which coordinates most strongly

to the BH4
� groups [64,65]. This highlights the key role of the

complex anions in the structural stability of bimetallic borohy-

drides [66]. The bonding in the complex anions, such as

[Sc(BH4)4]� or [Zn2(BH4)5]� in MSc(BH4)4 and MZn2(BH4)5,

M = Li or Na, is mainly covalent with well-defined directionality,

whereas dominantly ionic bonding exists in the solid state

between the complex anions and counter cations [67–69].

The structures of mono-metallic borohydrides range from ionic

to framework structures, e.g. Mg(BH4)2 and Ca(BH4)2, [70,71]

and molecular structures, e.g. Al(BH4)3 and Zr(BH4)4, [72] illus-

trating increasing degrees of directionality and covalence in the

bonding. Interestingly, all metal borohydrides appear to be

structurally related to oxides, possibly due the fact that the ions

BH4
� and O2� are isoelectronic [73]. Structural investigations

reveal that polymorphs of Ca(BH4)2 are related to polymorphs of

TiO2 and Mg(BH4)2 to SiO2 structures [73,74]. It is also inter-

esting to note that only d-block metal borohydrides based on

metals with d0, d5 or d10 electron configurations have been

successfully obtained so far [66]. This provides a hint that not

only the electronegativity but also the electron configurations of

the metal may play a significant role in the stability of the

borohydride. The above-mentioned trends provide guidelines

for the rational design of novel materials and the number of

known compositions, structures and derivatives of metal bor-

ohydrides has expanded much over the past few years. Clearly,

the structural chemistry is fascinatingly diverse, in some cases

resembling covalently bonded metal organic frameworks, MOF,

and with new possibilities for tailoring physical properties

(Figs. 2 and 3).

RESEARCH Materials Today �Volume 17, Number 3 �April 2014
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Reversible hydrogen storage
The exact mechanism for hydrogen release and uptake for metal

borohydrides is not fully understood and a drawback appears to be

the very complex boron-hydrogen chemistry. An increased ten-

dency for formation of Li2B12H12 is observed during decomposi-

tion of LiBH4 at p(H2) > 10 bar, whereas amorphous boron is also

obtained at p(H2) < 10 bar [75,76]. Experimental data also show

that the closo-boranes, such as Li2B10H10 and Li2B12H12 can form in

a reaction between LiBH4 and B2H6, and that LiBH4 can be pre-

pared in a reaction between LiH and B2H6 [77,78]. Thus, ‘BH3’ or

diborane, B2H6 may be an intermediate for hydrogen release and

uptake. A high pressure of inert gas may also facilitate hydrogen

release possibly related to the physical state, which may involve a

melt, as well as sometimes eutectic melting and foaming during

hydrogen release [79–81]. For other metal borohydrides decom-

position under hydrogen pressure tends to facilitate the formation

of a metal boride, which was clearly observed for the system LiBH4-

MgH2 forming MgB2 at T > 400 8C and p(H2) = 2–5 bar [82,83].

Magnesium borohydride contains large amounts of hydrogen

(14.8 wt%) and has a major hydrogen release of �10 wt% at

300 < T < 400 8C [84]. The rehydrogenation is possible but requires

extreme conditions of T � 400–500 8C and p(H2) � 800–950 bar

[85,86]. On the other hand, partial decomposition of Mg(BH4)2 at

lower temperatures (200 8C) appears to produce another borohy-

dride, Mg(B3H8)2, which is more readily rehydrogenated

(T = 250 8C, p(H2) = 120 bar and t = 48 h) [87].

The first nanoporous hydride g-Mg(BH4)2
The extreme structural flexibility observed for metal borohydrides

can be illustrated by numerous structurally different polymorphs

of Mg(BH4)2, e.g. a-, b-, g-, d- and e-Mg(BH4)2 [70,74,88,89].

Magnesium borohydride, Mg(BH4)2, is a potential solid-state

hydrogen storage material with a very high gravimetric hydrogen

content of 14.9 wt% H2 (Table 1). A new cubic nanoporous poly-

morph g-Mg(BH4)2 has 33% empty space in the structure and

reveals a remarkable volume collapse of 44% upon compression

and transforms to a new high-pressure polymorph, d-Mg(BH4)2

[74,89]. d-Mg(BH4)2 has the second-highest volumetric hydrogen

density, rV = 147 g H2/L, among all known hydrides, only slightly

below rV(Mg2FeH6) = 150 g H2/L [74]. Notice, this is more than

twice the density of liquid hydrogen, r(H2) = 71 g/L and there

Materials Today � Volume 17, Number 3 �April 2014 RESEARCH

FIGURE 2

Illustration of the state-of-the-art within applications of hydrogen

technology. (a) Magnesium hydride combined with heat storage in phase-

change materials is commercialized for large-scale solid-state hydrogen
storage [31]. (b) The large heat exchange during hydrogen release and

uptake in some metal hydrides can be utilized for solar thermal energy

storage [32]. (c) Metal hydrides for novel sensors or smart windows have

also been discovered, e.g. based on the metallic and reflecting yttrium
dihydride, YH2, which may absorb hydrogen and convert to a

semiconducting and transparent trihydride, YH3 [30,33]. (d) High-pressure

hydrogen gas provides fast refueling and in combination with a fuel cell

and a Li-battery also high energy efficiency, which is ideal for a small
vehicle [34]. (e) Traditional metal hydrides are used for solid-state hydrogen

storage and this technology is very competitive with similar lead battery

vehicles on performance, e.g. for material handling. (f ) Solid-state hydrogen
storage in metal hydrides and fuel cell technology is also implemented in

modern submarines, which allows long stay under water and less noisy

operation [35,36]. (g) Metal hydride batteries are today commercially

available [37].

FIGURE 3

Crystal structure of nanoporous cubic g-Mg(BH4)2 [74]. Mg atoms are
illustrated as orange spheres and BH4

� as dark blue tetrahedra. The pore

diameter is about 8.8 Å and there is �33% ‘empty space’ in the structure.

TABLE 1

Specific densities (r) of LiBH4 and Mg(BH4)2 polymorphs and their
gravimetric (rm) and volumetric (rv) hydrogen contents
(rv = rm � r).

Compound Space

group

r

(g/cm3)

rm

(wt%)

rV

(g H2/L)

Ref.

LiBH4 Pnma 0.668 18.5 121 [63]

a-Mg(BH4)2 P6122 0.783 14.9 117 [90]

b-Mg(BH4)2 Fddd 0.761 14.9 113 [91]

g-Mg(BH4)2 Id-3a 0.550 14.9 82 [74]
g-Mg(BH4)2�0.8H2 Id-3a 0.565 17.4 98 [74]

d-Mg(BH4)2 P42nm 0.987 14.9 147 [74]
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remains a huge potential for discovering novel solids with extreme

hydrogen densities.

The polymorph g-Mg(BH4)2 has a 3D net of interpenetrated

channels with pore size up to �8.8 Å and is the first MH which

reversibly adsorbs smaller molecules such as hydrogen, nitrogen

and CH2Cl2. Recent in situ diffraction studies suggest a composi-

tion of g-Mg(BH4)2�0.8H2 at p(H2) = 105 bar (T � �143 8C), which

corresponds to rm = 17.4 wt% H2 [74]. The desorption isobars

extracted from diffraction data indicate that the isosteric heats

of adsorption of hydrogen in g-Mg(BH4)2 are Qst(H2) > 7 kJ/mol at

a loading of 15 mg H2/g (�6 kJ/mol average value), which is

among the highest values measured for MOFs and other porous

solids [74].

A standard fuel cell based family car may need 5 kg hydrogen to

reach a driving range of 500 km, which is about 60 m3 of gas (at

ambient temperature and atmospheric pressure), but only a

volume of 34 L and a mass of 34 kg if it is stored in the new

magnesium borohydride, d-Mg(BH4)2.

Anion substitution in metal borohydrides
The first example of anion substitution in metal borohydride

materials was reported in 2006 for a mixture of LiBH4-LiCl [92].

The heavier halide anions change size according to the sequence I�

(2.20 Å) > BH4
� (2.05 Å) > Br� (1.96 Å) > Cl� (1.81 Å) [93], pro-

viding an efficient tool to tune the unit cell volume, the internal

lattice pressure and possibly physical properties of borohydrides

[94].

Some trends in the structural chemistry appear to describe

anion substitution of metal borohydrides with the heavier halides,

(i) the solid containing the smaller anion tends to dissolve into the

compound containing the larger anion, and the structure of the

latter tends to be preserved in the obtained solid solution. This

trend can be interpreted as an increase in the lattice energy due to

the clearly observed decrease in the unit cell volume. Secondly, (ii),

some polymorphs of metal borohydrides are more prone to anion

substitution than others, typically at elevated temperatures, e.g. h-

LiBH4 or b-Mg(BH4)2 (Fig. 4) [95,96]. Experimental evidence sug-

gests that anion substitution is facilitated by dynamics of the BH4

unit, which appears to make it more spherical and similar to

halides. Thirdly, (iii), if compounds are isostructural then anion

substitution may occur in both compounds, which may lead to

two solid solutions observed for LiBH4-LiBr, LiBH4-LiI and NaBH4-

NaCl systems. Notice that b-LiBr, b-LiI and h-LiBH4 and also

NaBH4 and NaCl are isostructural. In general, anion substitution

with the heavier halides tends to stabilize the hydride, i.e. hydro-

gen release at increased temperatures, but facilitates hydrogen

uptake [97–101].

Multi-functional metal borohydrides
A new series of isostructural mixed-cation mixed-anion borohy-

dride chlorides based on rare-earths elements, LiM(BH4)3Cl,

M = La, Gd, or Ce, was recently discovered [104–106]. The struc-

ture contains isolated tetranuclear anionic clusters

[M4Cl4(BH4)12]4� with a distorted cubane Ce4Cl4 core charge-

balanced by Li+ cations (Fig. 5). The Li+ ions are disordered and

occupy 2/3 of the available sites. DFT calculations indicate that

LiCe(BH4)3Cl is stabilized by larger entropy rather than smaller

energy and agrees well with the very high lithium ion conductivity

measured for the LiM(BH4)3Cl samples (Table 2) [104,106]. Inter-

estingly, solid-state NMR of LiLa(BH4)3Cl reveals that the diffusive

RESEARCH Materials Today �Volume 17, Number 3 �April 2014

FIGURE 5

The structure of LiCe(BH4)3Cl (left) contains isolated tetranuclear anionic

clusters of [Ce4Cl4(BH4)12]
4� (right) with a distorted cubane Ce4Cl4 core

charge-balanced by Li+ cations (red spheres). Ce atoms (blue) coordinate

three chloride ions (yellow) and three borohydride groups (dark blue) via
the h3-BH3 faces [104].

FIGURE 4

Complex borohydrides have recently shown potential as fast lithium ion conductors. Substitution of the larger bromide and iodide ions in lithium
borohydride stabilizes the hexagonal polymorph, h-LiBH4 at room temperature and significantly improves the lithium ion conductivity (Lithium red, iodide

blue and BH4 dark blue) [97,98,102,103].
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Li ion jumps and a certain type of BH4 reorientation occur at the

same time scale and may be correlated [107]. In a number of other

borohydride systems, e.g. h-LiBH4 and LiBH4-LiI, the fast Li ion

diffusion is accompanied by the very fast BH4 reorientations,

suggesting a ‘‘paddle wheel’’ conductivity mechanism [108–110].

Unfortunately, solid-state batteries assembled using LiBH4-

based solid-state electrolytes often suffer from fast capacity loss

after just one cycle [111]. A new type of magnesium battery with a

liquid electrolyte of Mg(BH4)2 dissolved in dimethyl ether was

recently proposed but also suffers from capacity loss [112]. Mag-

nesium batteries have high volumetric energy capacity compared

to their lithium counterparts as well as improved safety, and

theoretical work suggests that the high-temperature polymorph

of Mg(BH4)2 may be a new solid-state electrolyte [113].

A number of rare-earth metal borohydrides have been discov-

ered over the past few years, which shows a clear trend in structure

type as a function of metal ion radius for the metal that coordi-

nates to BH4
� i.e. Li+ (0.76 Å) � Sc3+ (0.75 Å) < Yb3+ (0.87) < Y3+

(0.90 Å) < Gd3+ (0.94 Å) < Ce3+ (1.02 Å) < La3+ (1.01 Å). Appar-

ently, anionic structures are preferred for the smallest ions, e.g.

LiSc(BH4)4 and LiYb(BH4)3Cl containing [Sc(BH4)4]� and

[Yb(BH4)3Cl]�, [68,115] and framework structures for the medium

sized rare-earth metals, e.g. Y(BH4)3 and Gd(BH4)3 [106,116]. The

larger lanthanides appear to facilitate the formation of more

complex structures containing isolated tetranuclear anionic clus-

ters [Ce4Cl4(BH4)12]4� as for LiCe(BH4)3Cl (Fig. 5) [104,106]. How-

ever, a rich diversity exists as Yb3+ also forms Yb(BH4)3

isostructural to Y(BH4)3 and when heated Gd3+ forms LiGd(BH4)3

Cl [106,115,117].

This recent research reveals that the chemically very similar rare

earths metals have fascinating and diverse borohydride structural

chemistry. Furthermore, the partly filled f-orbitals may provide

new routes for rational design of materials with tailored magnetic

and optical properties illustrated by the discovery of highly lumi-

nescent divalent lanthanide borohydrides, Ln(BH4)2(THF)2

(Ln = Eu or Yb) [118].

Conclusion
A wide range of novel metal borohydrides has been discovered during

the past few years and our knowledge on this class of materials has

increased tremendously. This review describes new trends in their

crystal structures, thermal behavior and properties. New research

directions within rational design, synthesis and characterization

of hydrides have been developed. However, there is still limited

knowledge on the materials composition after the release of

hydrogen and the mechanism for hydrogen absorption. Several

other obstacles also need to be addressed, e.g. how to avoid the

release of diborane, segregation of amorphous boron or formation

of the more stable closo-boranes. Surprisingly, novel materials such

as the nanoporous g-Mg(BH4)2 have completely unexpected prop-

erties and both store hydrogen adsorbed to the inner surface and

also chemically bonded to boron. Other new materials show

tendencies toward multifunctionality, i.e. hydrogen storage prop-

erties combined with e.g. ion conductivity, magnetic or optical

properties. The multitude of hydrides and their diversity in struc-

ture and properties provide new hope for solid-state hydrogen

storage, also for mobile applications. New focus in off-board

regeneration of MH and combined use of solid-state storage and

high-pressure hydrogen gas systems has provided new promising

research directions that may prove fruitful in the near future.
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