Technical University of Denmark

Environmental impact assessment on the construction and operation of municipal solid waste sanitary landfills in developing countries: China case study

Yang, Na; Damgaard, Anders; Lü, Fan; Shao, Li-Ming; Brogaard, Line Kai-Sørensen; He, Pin-Jing

Published in: Waste Management

Link to article, DOI: 10.1016/j.wasman.2014.02.017

Publication date: 2014

Document Version Peer reviewed version

Link back to DTU Orbit

Citation (APA):

Yang, N., Damgaard, A., Lü, F., Shao, L-M., Brogaard, L. K-S., & He, P-J. (2014). Environmental impact assessment on the construction and operation of municipal solid waste sanitary landfills in developing countries: China case study. Waste Management, 34(5), 929-937. DOI: 10.1016/j.wasman.2014.02.017

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Accepted for publication in Waste management

Environmental impact assessment on the construction and operation of municipal solid waste sanitary landfills in developing countries: China case study

Na Yang^{*a*}, Anders Damgaard^{* *b*}, Fan Lü^{*a*, *c*}, Li-Ming Shao^{*c*, *d*}, Line Kai-Sørensen Brogaard^{*b*}, Pin-Jing He^{* *c*, *d*}

- ^a State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P.R. China
- ^b Department of Environmental Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- ^c Institute of Waste Treatment and Reclamation, Tongji University, 1239 Siping Road, Shanghai 200092, P.R. China
- ^d Research and Training Centre on Rural Waste Management, Ministry of Housing and Urban-Rural Development of P.R. China, 1239 Siping Road, Shanghai 200092, P.R. China
- * Corresponding authors: <u>solidwaste@tongji.edu.cn</u> (He P.J.); <u>adam@env.dtu.dk</u> (Damgaard A.)

"NOTE: this is the author's version of a work that was accepted for publication in Waste Management & Research journal. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Minor changes may have been made to this manuscript since it was accepted for publication. A definitive version is published in Waste management, vol 34(5), pp 929-937, doi: 10.1016/j.wasman.2014.02.017"

Abstract

An inventory of material and energy consumption during the construction and operation (C&O) of a typical sanitary landfill site in China was calculated based on Chinese industrial standards for landfill management and design reports. The environmental impacts of landfill C&O were evaluated through life cycle assessment (LCA). The amounts of materials and energy used during this type of undertaking in China are comparable to those in developed countries, except that the consumption of concrete and asphalt is significantly higher in China. A comparison of the normalized impact potential between landfill C&O and the total landfilling technology implies that the contribution of C&O to overall landfill emissions is not negligible. The non-toxic impacts induced by C&O can be attributed mainly to the consumption of diesel used for daily operation, while the toxic impacts are primarily due to the use of mineral materials. To test the influences of different landfill C&O approaches on environmental impacts, six baseline alternatives were assessed through sensitivity analysis. If geomembranes and geonets were utilized to replace daily and intermediate soil covers and gravel drainage systems, respectively, the environmental burdens of C&O could be mitigated by between 2 and 27%. During the LCA of landfill C&O, the research scope or system boundary has to be declared when referring to material consumption values taken from the literature; for example, the misapplication of data could lead to an underestimation of diesel consumption by 60 to 80%.

Key words

Municipal solid waste landfill, life cycle assessment, liner system, intermediate cover, alternative materials

1 Abbreviations

AC	Acidification
C&O	Construction and Operation
СМ	Construction of the Main parts of the landfill body
COF	Construction of Other Facilities in the landfill site
EDIP	Environmental Development of Industrial Products
ETs	Eco-Toxicity in soil
ETwc	Eco-Toxicity in water-chronic
GCL	Geosynthetic Clay Liner
GW	Global Warming
HDPE	High-density Polyethylene
НТа	Human Toxicity via air
HTs	Human Toxicity via soil
HTw	Human Toxicity via water
ISO	International Standardization Organization
LCA	Life Cycle Assessment
LCI	Life Cycle Inventory
LCIA	Life Cycle Impact Assessment
LFG	Landfill Gas
MSW	Municipal Solid Waste
NE	Nutrient Enrichment
OL	Operation of the Landfill
POF	Photochemical Ozone Formation
SOD	Stratospheric Ozone Depletion
SP	Site Preparation

2 1. Introduction

3 Nowadays, landfilling is still the most commonly used method for municipal solid waste (MSW) treatment in many countries. Taking China as an example, 100 4 million tonnes of MSW were disposed of in landfills during 2011, which accounted 5 6 for 77% of the total amount of treatable waste (National Bureau of Statistics of China, 7 2012). Life cycle assessment (LCA) can be used to evaluate the environmental 8 impacts associated with all stages of a product/service's life cycle, and through this 9 assessment it provides useful insights into improving the whole process from an 10 environmental perspective. Therefore, the LCA of MSW landfilling is important in 11 supporting decision-making in integrated MSW management. The impacts of generating and treating landfill gas (LFG) and leachate have been the primary 12 13 concerns of researchers as the major environmental issues with regards to MSW landfilling (El-Fadel et al., 1997; Kirkeby et al., 2007; Niskanen et al., 2009). 14 15 Nevertheless, approaching landfill sites as products, their construction and operation 16 (C&O) consume certain amounts of materials and energy, and the manufacturing and utilization of these materials could lead to environmental burdens. Frischknecht et al. 17 18 (2007) investigated the contributions of capital goods in the LCA of a large number of 19 product/service systems. It was argued that the lower the pollutant content of the 20 assessed waste, the higher the environmental burden contribution from capital goods. 21 Their study also demonstrated that the burden from capital goods was important for 22 landfilling, but not as significant for other waste treatment technologies such as waste 23 incineration, especially when considering climate change, acidification, and 24 eutrophication.

The majority of published works on the LCA of MSW landfilling employ an energy consumption amount (e.g. as megajoules of energy or liters of diesel) to represent the environmental impacts of the landfill C&O process (Damgaard et al., 2011; Khoo et al., 2012; Manfredi et al., 2009). Although Manfredi et al. (2010) and

4/34

29 Niskanen et al. (2009) considered the C&O process during the LCA of landfilling, 30 they did not include the original data in their papers, which limited the applicability of 31 these data for further research. Of studies that did cover C&O in detail, Ecobalance 32 Inc. (Camobreco et al., 1999; Ecobalance Inc., 1999) collected and summarized the consumption of materials and energy for more than 20 landfill sites in the United 33 34 States as a life cycle inventory (LCI) report. Menard et al. (2004) demonstrated that 35 differences in materials and energy inputs between an engineered landfill and a 36 bioreactor landfill were due to different waste density. A detailed quantification of the 37 capital goods used for constructing a typical hill-type landfill (Brogaard et al., 2013) 38 indicated that gravel and clay were used in the greatest amounts. In addition, an 39 environmental impact assessment by Brogaard et al. (2013) revealed that the potential 40 impacts of capital goods consumption were low-to-insignificant compared to the 41 overall impacts of landfill processes (direct and indirect emissions), except for the 42 impact category of resource depletion. In China, researchers usually refer to energy 43 consumption figures published in developed countries during LCA of waste treatment 44 processes (Hu, 2009; Xu, 2003). The only published paper possessing original data, to 45 the authors' knowledge, was by Wei et al. (2009), who reported the usage of water, 46 soil, pesticide, diesel, and electricity in a landfill located in the city of Suzhou.

47 In China, a representative developing country, the national industrial standard for 48 MSW sanitary landfill management is still under development and has been updated 49 twice in the last two decades (Ministry of Construction of the People's Republic of 50 China, 2001, 2004). This could make landfill C&O in China different from that in 51 developed countries. If a study refers to the literature data reported in developed 52 countries directly, it may thus lead to wrong assessment results. In addition, from a 53 spatial aspect, China is a large country with diverse geographic and economic 54 conditions, which could induce lots of different choices regarding landfill C&O 55 approaches. When researchers conduct a LCA of waste landfilling, they would be 56 more precise in the assessment if they considered the aforementioned differences as

57 much as possible.

The present study will provide a comprehensive LCI of materials and energy consumption and evaluate environmental impacts through a LCA for the C&O process in a typical landfill site in China. The other purposes of this study are to estimate whether the diverse approaches to landfill C&O affect the studied environmental impacts significantly and to identify relatively better approaches with the intention of mitigating environmental burdens in a Chinese context.

64

2. Approach and Method

65 In this study, the C&O process in a typical sanitary landfill site was taken as the 66 object for a LCA. The functional unit was one tonne of waste disposed of in the landfill site. According to the "Chinese Technical Code for Municipal Solid Waste 67 68 Sanitary Landfill" (CJJ17-2004) (Ministry of Construction of the People's Republic of 69 China, 2004), in combination with engineering experience, the bulk density of waste buried in the landfill site was assumed to be 1.0 t \cdot m⁻³ and the overall height of the 70 landfill body, including the liner and cover system, was assumed to be 30 m. The 71 72 system boundary in this study is shown in **Figure 1**, which consists of four stages: 1) 73 Site preparation (SP), for example, excavation and backfilling of soil and stone; 2) 74 Construction of the main parts of the landfill body (CM), including groundwater 75 drainage, barrier layer, bottom liner, leachate and LFG collection, and top cover 76 systems; 3) Construction of other facilities in the landfill site (COF), such as 77 monitoring wells, onsite roads, and official buildings; and 4) Operation of the landfill 78 (OL), for example, the placement and compaction of waste and intermediate soil 79 covers. The treatment facilities for leachate and LFG were not considered in this paper, 80 as they are closely associated with the pollution control features and treatment 81 efficiencies of leachate and LFG. The C&O for leachate and LFG facilities will be 82 analyzed together with the leachate and LFG associated emissions, in future works.

83 **2.1 Life cycle inventory of landfill construction and operation**

84 The environmental burdens associated with the C&O process were attributed wholly to the usage of materials and energy. However, the problems associated with 85 86 waste degradation (e.g. the odour compounds released during waste placement) were 87 not taken into account in this study. The LCI of C&O firstly quantified the materials 88 and energy used, and then associated emissions from the manufacturing and 89 consumption of these materials were aggregated to a total. The manufacturing of 90 mineral materials (e.g. sand) is related to the excavation of the materials. In this study, 91 a typical sanitary landfill body with a double liner system was investigated as the 92 baseline. The original data on materials and energy consumption were obtained 93 mainly from China's national industrial standards and design reports. Emission 94 figures for the manufacturing and consumption of materials and energy were obtained 95 from existing LCI database (Ecoinvent, 2010).

96 2.1.1 Quantification of materials and energy

97 As shown in Figure 1, materials are used in three processes during landfill C&O 98 (i.e. CM, COF and OL), while energy is used for all the on-site processes as well as 99 transportation of materials. In accordance with the usage places, the consumption 100 amounts of materials and energy are classified into five types with their specified 101 calculation methods.

102 1) Materials used for the construction of the main parts of the landfill body (CM) 103 include sand, clay, gravel, geosynthetic clay liners (GCL), geomembranes, geonets 104 and geotextiles used for groundwater drainage, barrier laver, bottom liner, leachate 105 and LFG collection, and top cover systems. The vertical profile of the CM material 106 utilization is shown in Table 1 which is in accordance with the technical standards 107 issued by Ministry of Construction of the People's Republic of China (2004, 2007a, b). 108 The consumptions of mineral materials (i.e. sand, clay and gravel), except for those used in LFC and leachate collection system, were calculated by their typical 109

110 thicknesses of individual layer using **Equation 1**.

$$M_i = \sum_j (h_{ij} \times A \times \rho_i)$$
(1)

112 where M_i represents the consumption amount of mineral material *i* used in the 113 construction of the landfill body, (kg·t-waste⁻¹); h_{ij} represents the thickness of material 114 *i* used in the *j*th layer (m) (**Table 1**); *A*, the projected area for one tonne of disposed 115 waste in the landfill, (m²); and ρ_i represents the density of material *i* (kg·m⁻³) (**Table** 116 **2**).The consumption amounts of GCL, geomembrane, geotextiles and geonets, except 117 for those used for LFG and leachate collection systems, were calculated based on their 118 quality requirements by **Equation 2**.

119
$$M_i = n \times A \times \rho'_i \tag{2}$$

120 where *n* is the numbers of layers for material *i*, which could be GCL, 121 geomembrane, geotextiles, or geonets; ρ'_i is the quality of material *i*, representing the 122 weight per square meter (kg·m⁻²) (**Table 2**).

123 With regards to LFG and leachate collection systems, the material consumption124 amounts could be calculated by Equation 3.

$$M_{:} = L \times \rho^{*}. \tag{3}$$

126 where, ρ''_i represents the weight of material *i* used for per meter of collection 127 system (kg·m⁻¹), which could be calculated by the material density (**Table 2**) and 128 collection system diameters (**Table 1**). The length of LFG collection wells 129 corresponding to one tonne of landfilled waste were calculated according to the 130 distance demands by **Equation 4**. In case of the leachate collection system, a 131 modified Equation is used (**Equation 5**).

$$L = \frac{H}{D^2} \times A \tag{4}$$

 $L = \frac{A}{D} \tag{5}$

where, *L* represents the length of collection systems for per tonne of waste ($m \cdot t$ -waste⁻¹); *H* is the height of LFG collection wells in the landfill body (m), which is considered the same as the landfill height; *D* is the distance requirement for collection pipes (m).

138

133

- 139
- 140

Table 1 is here

Table 2 is here

141

142 Through personal communication with design engineers working for a landfill 143 design company (Fu, 2012), combined with searching the existing literature (Cong, 144 2012), seven design reports for landfill sites located at Jimo, Hexian, Songyuan, 145 Shaoyang, Yulin, Jiuquan and Leshan were collected. These landfills have daily 146 receiving capacities of 150-300 tonnes and a designed height of 10 to 30 m. By 147 comparison, material consumptions during the CM of the typical landfill calculated in 148 this paper were within the ranges found in the design reports (Table 3), which 149 demonstrates that the generalized calculation method above is reliable. It has to be 150 noted that the sand amounts obtained from the design reports are the ones purchased 151 at specific landfill sites rather than the actual used values (including also the sands 152 obtained from site preparation which are already at the sites), which induced 153 significantly lower values compared to those estimated by this study.

154

155

Table 3 is here

157 2) Materials used for the construction of other facilities in the landfill site (COF) 158 represent concrete used for roads, storm drainage and storage systems, monitoring 159 wells, asphalt used for the road, gravel or stone used as hard core for the road, 160 embankment and flood control channels, and steel used for fencing and drainage pipes. 161 The average consumption amounts summarized from the aforementioned seven 162 design reports were 3.10 kg of concrete (with the range of 0.7–6.8 kg, n=7), 0.930 kg 163 of asphalt (n=1), 6.79 kg of gravel (with the range of 2.5–13 kg, n=7) and 0.051 kg of steel (with the range of 0.012–0.15 kg, n=4) for every one tonne of waste disposed. 164

3) Materials used for operation of the landfill (OL) include sand and clay used for daily cover and intermediate cover, respectively, as well as water used for truck washing. The diesel required for OL is calculated in the next paragraph. The consumption of sand and clay can be calculated by **Equation 1** based on the thicknesses of cover layers (**Table 1**). Water usage for every one tonne of waste was reported at 47 L (Wei et al., 2009).

171 4) Energy used for on-site landfill C&O means diesel and electricity. The 172 consumption of diesel can be calculated by **Equation 6**, and the original values for 173 calculations are displayed in Table 4. The machine types considered in this paper are 174 in accordance with practical experience of landfill engineers in China, whilst diesel consumption for each machine refers to existing literature in developed countries 175 (Caterpillar Inc., 2009; Ecoinvent, 2005; Stripple, 2001), as the machine 176 177 manufacturers are international. The amounts of materials handled by each machine 178 were calculated in the three subsections above. Electricity consumption at a practical landfill site located in Suzhou was reported as 0.173 kWh·t-waste⁻¹ (Wei et al., 2009). 179

$$M_{Dieselonsite} = \sum_{j} (CF_{j} \times \sum_{i} M_{ij})$$
(6)

181 where $M_{Dieselonsite}$ represents the consumption amounts of diesel used for on-site 182 landfill C&O (kg·t-waste⁻¹); CF_j is the diesel consumption factor to handle per cubic 183 meters of materials by machine j (kg·m⁻³); and M_{ij} is the amount of material i handled

184 by machine *j* corresponding to landfilling of one tonne of waste, $(m^3 \cdot t \cdot waste^{-1})$.

185

186

Table 4 is here

187

188 5) Fuels used for the transportation of materials external to the site, depending on the quantities of materials and travel distances. The quantities of materials required 189 190 for transportation from offsite locations were calculated in the previous subsections. 191 However, one assumption regarding soil usage has to be mentioned here. Based on the 192 aforementioned landfill design reports, the average quantities of soils for excavation and backfilling during site preparation (SP) were 372 and 136 kg·t-waste⁻¹, 193 194 respectively. It was assumed that the remaining soils after SP could provide the sandy 195 soils used for CM, which means that the manufacturing (or excavation) and 196 transportation of the remaining soils were not considered in this paper. In the case of 197 transport distances, the return distances between the places of supply for specific 198 individual materials and the place of consumption (or the landfill site in this paper) 199 were taken into account and assumed to be 30 km for mineral materials (i.e. gravel, 200 clay, and sand), 50 km for plastics (i.e. HDPE geomembranes, HDPE pipes, geonets, 201 and geotextiles) and GCL, and 100 km for other materials (i.e. concrete, asphalt, and 202 diesel). It was hypothesized that 5-30 t-lorries were used for transportation, with diesel consumption amounting to 0.008-0.016 kg·t⁻¹·km⁻¹ (Ecoinvent, 2010). The 203 average value of diesel consumption, at $0.012 \text{ kg} \cdot \text{t}^{-1} \cdot \text{km}^{-1}$, was used for computation. 204

205 2.1.2 Combination of LCI data

The LCI data for C&O were calculated by **Equation 7**.

$$LCI_{C\&O} = \sum_{i} LCI_{i} \times M_{i}$$
(7)

where $LCI_{C\&O}$, represents the LCI data during C&O, namely a row vector of environmental emission quantities $[Q_1, Q_2,...]$; LCI_i is the LCI data for the manufacturing and consumption of materials or energy *i*, which were obtained from the Ecoinvent database (Ecoinvent, 2010), see **Table 2** for details.

According to the data quality indicators suggested by Weidema and Wesnaes (1996), the LCI data for materials and energy used in this paper (**Table 2**) are of good quality in terms of reliability and completeness. Nevertheless, their relevance to this study is not good because most of the processes are based on European data, due to their availability. However, this does not influence the results critically because the manufacturing technologies for many goods, especially plastics, are similar all over the world.

219 **2.2 Life cycle impact assessment of landfill construction and operation**

220 The life cycle impact assessment (LCIA) is the evaluation of potential 221 environmental impacts associated with emissions identified during the LCI. Generally, 222 LCIA comprises three main elements, namely characterization, normalization, and 223 weighting. In this study, characterization, which is considered mandatory by ISO 224 14044 (International Standardization Organization, 2006), and normalization were 225 conducted by means of EASETECH (Clavreul et al., 2013), while weighting was not 226 performed as it depended on government policies. EASETECH, the new update to 227 EASEWASTE (Kirkeby et al., 2007; Kirkeby et al., 2006) developed by the Technical 228 University of Denmark, is a professional tool used for life cycle assessment in the 229 fields of solid waste treatment and energy production.

The LCIA was based mainly on the Environmental Development of Industrial Products (EDIP) 2003 method (Hauschild and Potting, 2004). The impact categories considered included five non-toxic categories (i.e. global warming (GW), stratospheric ozone depletion (SOD), acidification (AC), nutrient enrichment (NE), and photochemical ozone formation (POF)) and five toxic categories (i.e. human 235 toxicity via air (HTa), via water (HTw) and via soil (HTs), eco-toxicity in 236 water-chronic (ETwc), and eco-toxicity in soil (ETs)). To compare the environmental 237 burdens among these impact categories, all the characterized impact potentials were 238 divided by their individual normalization references (Table 5) to achieve a unified unit, milli Person Equivalent (mPE) t-waste⁻¹ (Stranddorf, et al. 2005). The 239 normalized unit "mPE·t-waste⁻¹" means the environmental burdens caused by one 240 241 tonne of waste equal to how much environmental burdens caused by one milli Person. The normalization references in EU-15, instead of those found in China or elsewhere 242 243 worldwide, were utilized in this study in order to be able to compare the results to 244 other studies using the same normalization references. Normalization reference data 245 from 1994 were used for the same reason. It should be noted that a great deal of 246 uncertainty still existed in some impact categories, especially in the toxic categories 247 (Moberg et al., 2005).

248

249

Table 5 is here

250

251 **3. Results and Discussion**

252 **3.1** Materials and energy used for the construction and operation of a landfill site

The consumption of materials and energy during C&O is presented in Table 6, 253 254 where the 12 kinds of materials and energy used are allocated into the four stages 255 mentioned above, namely SP, CM, COF, and OL. From the perspective of weight, 256 mineral materials (i.e. sand, clay, and gravel), which were predominantly consumed, 257 were for the most part used for the construction of liner and cover systems. In the case 258 of energy, diesel was used mainly for the operation of onsite equipment, accounting 259 for 88% of the overall consumption of diesel, where 77% for OL, 8% for SP and 3% 260 for CM. During offsite transportation, diesel was used primarily for carrying mineral 261 materials. Therefore, the amounts of mineral materials and diesel used were crucial
262 parameters in evaluating the environmental impacts of landfill C&O.

263 By comparing the values in the present study with those reported in studies concentrating on developed countries (Brogaard et al., 2013; Cherubini et al., 2009; 264 Ecobalance Inc., 1999; Menard et al., 2004) (Table 6), it was found that the quantities 265 266 of concrete and asphalt used in Chinese landfills were more than three times higher 267 than those in developed countries. Concrete is mainly used to construct the monitor 268 wells, leachate tanks, roads and buildings in a landfill site. However, in the study done by Ecobalance Inc. (1999), building constructions were not taken into account. 269 270 Brogaard, et al. (2013) did not count the concrete consumption for building 271 construction. In the case of asphalt, it is often used for road construction. Ecobalance 272 Inc. (1999) summarized the values from 6 landfill sites with the reliable range from 0.06 to 0.25 kg·t-waste⁻¹. The Chinese data in this study was obtained from one 273 274 specific design report, which may induce high uncertainty. Diesel consumption in this 275 study was comparable to the values reported by Ecobalance Inc. (1999), which seem 276 higher than those in Menard et al. (2004) and Brogaard et al. (2013) because the latter 277 two studies did not take into account the landfilling operation. Although Menard et al. 278 (2004) stated that daily operations fell within its system boundary, it only included the 279 installation of horizontal trench and vertical gas collection systems, which are 280 considered construction activities in this study. Hence, the research scope has to be 281 identified clearly when researchers plan to obtain from the literature data on the consumption of materials. In the case of this study, misapplication of the data would 282 283 underestimate diesel consumption by 60 to 80%.

284

285

Table 6 is here

287 **3.2** Contributions to individual impact categories

288 The contributions of the four stages as well as the 12 kinds of materials and 289 energy used in the overall C&O processes are presented in Figure 2. It was found that 290 the impact potentials of C&O could be attributed primarily to OL, which accounted for 46 to 70% and 40 to 60% of the non-toxic and toxic impact categories. 291 292 respectively. It is clear that the consumption of diesel for handling waste and daily 293 and intermediate soil cover is the predominant factor. The contributions of CM to the 294 overall impact potentials ranged from 18 to 38%, where the contributions in toxic 295 impact categories were relatively higher than those in non-toxic ones, due to the usage 296 of mineral materials and GCL. The impact potentials caused by the COF were lower 297 than those as a result of CM except for the impact category GW, where the 298 contribution of COF to the overall potential was 28% owing to the usage of concrete, 299 asphalt, and steel. Moreover, the proportions of impact potentials due to SP to overall 300 potentials were less than 6%. This could change if there was no temporary on-site 301 storage space for excavated soil, which would mean greater use of diesel for soil 302 transportation in the SP stage.

303

304

305

306 3.3 Normalized impact potentials

Figure 3 shows the normalized impact potentials for landfill C&O compared with 'total landfill processes', a term which herein represents three (out of nine) landfilling scenarios with different leachate and LFG treatment technologies, obtained from a study by Damgaard et al. (2011). In the case of landfill C&O, HTs was the predominant impact category, followed by ETwc, with impact potentials of 8.7 and $7.1 \text{ mPE-t-waste}^{-1}$, respectively. The impact potentials of GW, AC, NE, and HTa were

Figure 2 is here

between 1 and 2 mPE·t-waste⁻¹, and those of SOD, POF, and ETs were less than 0.2 313 314 mPE t-waste⁻¹. In terms of total landfill processes, energy recovery from LFG and carbon sequestration reduced environmental impacts effectively, sometimes even with 315 316 negative values. When comparing the absolute ratios of landfill C&O impact potentials to total landfilling technologies, the ratios were between 0.2 and 1.0 for AC, 317 318 NE, HTw, HTs, ETwc, and ETs. The ratios were as high as 15 to 60 for HTa. This 319 highlights clearly that the C&O process contributes significantly to the environmental impacts of landfilling technology. 320

- 321
- 322

Figure 3 is here

323

324 **3.4 Scenario uncertainty**

325 The "Construction Standard for Municipal Solid Waste Sanitary Landfill 326 (CJJ124-2009)" (Ministry of Housing and Urban-Rural Development of the People's 327 Republic of China, 2009) suggests that landfill managers utilize suitable technologies 328 and materials according to the practical economic and geographic conditions set out 329 under current national technical codes (Ministry of Construction of the People's 330 Republic of China, 2004, 2007a, b). To test the influences of different technical and material usages on the results of LCIA, six alternative approaches to C&O were 331 investigated based on the approach discussed above (named "Baseline"). Al 332 333 represents a scenario where geomembranes are used, instead of soils, as the daily cover and intermediate cover with the layer label of "L11" and "L12" (based on label 334 335 numbering in Table 1 - all further labels refer to the same table). As the cover 336 geomembranes can be reused several times, the consumption of geomembranes is 337 considered insignificant and is not taken into account in this scenario. A2 represents a scenario where geonets are used as drainage layers instead of the gravel used in the 338

339 Baseline scenario. The upper gravel layer in the top cover system (L2), the two gravel 340 layers in leachate collection system (L15 and L18) and one layer in the groundwater 341 drainage system (L22) are thus replaced with geonets. A3 represents a scenario in 342 which single clay layers are used below the geomembranes as the protective layers. 343 This scenario may occur in places with abundant soil resources but with the problem 344 of fund shortage. The combinations of GCL and clay layers in top cover system (L5 345 and L6) and double liner system (L25 and L26) in the Baseline scenario are replaced 346 with 0.25-m and 0.75-m clay layers, respectively. A4 is a scenario in which single 347 natural component liners are used as the bottom liner system, which may be used in 348 places with extremely low groundwater levels. The composite liners in the top cover 349 system (from L3 to L6) and bottom liner system (from L19 to L26) in the Baseline 350 scenario are replaced by 0.3-m and 2-m clay layers, respectively. A5 is a scenario 351 using a single composite liner system. The layers from L21 to L24 in the Baseline 352 scenario are omitted. A6 represents a scenario without LFG collection system (from 353 L8 to L10 in the Baseline scenario), which could be considered in small landfill sites.

354 A LCA was conducted for the six alternative approaches, and the differences 355 between each one and the Baseline were calculated and shown in Figure 4. Most of 356 the alternative approaches would decrease the environmental impact potentials of 357 C&O; however, A3 and A4, both of which use more clay than the other options, 358 increased impact potentials in several categories—A3 on NE, POF, and ETwc, and A4 359 on SOD, AC, NE, HTw, and ETwc. The replacement of mineral materials with 360 synthetic materials (A1 and A2) was the most effective method for mitigating 361 environmental burdens, with a reduction efficiency of 2 to 28%. The saved 362 consumptions of mineral materials when using synthetic materials are important on 363 burden reduction from both material manufacturing and transportation (i.e. diesel 364 consumption). From **Figure 4** it is clear that A1 is more effective than A2, while the 365 mitigation efficiencies are more significant on toxic impacts than on non-toxic ones. 366 Comparatively, switching to a single composite liner system (A5) would only decrease

367 impact potentials by less than 5%, and the absence of LFG collection system (A6)368 would make no difference from Baseline. On the other hand, reducing the functional 369 systems (A5 and A6) would induce the higher probability of leachate and LFG release 370 than using alternative synthetic materials (A1 and A2), which, according to Damgaard et al. (2011), is critical for the performance of integrated landfilling technology. If 371 372 landfill managers plan to minimize the environmental impacts of C&O, they could 373 use synthetic materials to replace mineral materials, but one should always be cautious about reducing a functional system. 374

375

376

Figure 4 is here

It should be kept in mind that this study does not consider the economic costs of materials and energy. If economic costs were a decision parameter, this could change the recommendations from the uncertainty assessment, especially if the additional costs of synthetic materials were higher than the savings made by using conventional materials.

4. Conclusions

The environmental impacts of a typical sanitary landfill site's C&O process were assessed through the LCA of one tonne of disposed waste. Several conclusions were drawn from this study.

386 1) The consumption of materials and energy during landfill C&O in China was387 comparable to that recorded in developed countries.

2) The non-toxic environmental impacts induced by landfill C&O were due mainly to diesel consumption for daily operation, followed by mineral materials used for constructing the main parts of the landfill body, whereas toxic environmental impacts were dominated by the manufacturing of mineral materials. 392 3) When compared with the environmental burdens of integrated landfilling
393 technologies, the contribution of landfill C&O should not be ignored, especially for
394 toxic impacts.

4) Using synthetic materials to replace daily and intermediate soil covers and gravel drainage systems could effectively mitigate environmental burdens resulting from landfill C&O even further. However, withdrawing a liner layer or LFG collection system makes no significant difference. Thus, one should always be cautious to reduce a functional system.

400 The environmental impacts induced by landfill C&O are important compared 401 with integrated landfilling technology and should not be omitted in future LCA 402 studies. The LCI methods presented in this paper could be utilized by readers 403 according to the actual usage of materials in specific landfills. The consumption 404 amounts of materials and energy obtained in this study could be used directly as the 405 LCI data by researchers in other developing countries with similar conditions. To 406 avoid data misapplication, the system boundary has to be declared when people refer 407 to the data from existing literature.

408 Acknowledgements

409 This work was supported partially by the National Basic Research Program of

410 China (No. 2012CB719801) and the Shanghai Subject Chief Scientist Program (No.

411 10XD1404200).

412 **References**

Brogaard, L.K., Stentsøe, S., Willumsen, H.C., Christensen, T.H., 2013.
Quantifying capital goods for waste landfilling. Waste Manage. Res. 31, 55–598.

Camobreco, V., Ham, R., Barlaz, M., Repa, E., Felker, M., Rousseau, C., Rathle,
J., 1999. Life-cycle inventory of a modern municipal solid waste landfill. Waste
Manage. Res. 17, 394–408.

418 Caterpillar Inc., 2009. Caterpillar Performance Handbook, Edition 42, Peroria,419 Illinois, U.S.A.

19/34

420 Cherubini, F., Bargigli, S., Ulgiati, S., 2009. Life cycle assessment (LCA) of 421 waste management strategies: Landfilling, sorting plant and incineration. Energy 34, 422 2116-2123. 423 Clavreul, J., Baumeister, H., Christensen, T.H., Damgaard, A., 2013. 424 EASETECH - an environmental assessment system for environmental technologies. 425 Submitted to Environ. Modell. Softw. 426 Cong, X., 2012. Project design of municipal solid waste landfill site in Songyuan 427 Jiangnan district (in Chinese), College of Environment and Resource. Jilin University, 428 Changchun. 429 Damgaard, A., Manfredi, S., Merrild, H., Stens, S., Christensen, T.H., 2011. LCA 430 and economic evaluation of landfill leachate and gas technologies. Waste Manage. 31, 431 1532-1541. 432 Ecobalance Inc., 1999. Life cycle inventory of a modern municipal solid waste 433 landfill. Environmental Research and Education Foundation, Washington DC. 434 Ecoinvent, 2005. Excavation, hydraulic digger, RER. Swiss Centre for Life 435 Cycle Inventories, St-Gallen, Switzerland. 436 Ecoinvent, 2010. Swiss centre for life cycle inventories, Ecoinvent, V2/2, in: 437 (TSL), c.o.E.T.S.L. (Ed.), Lerchenfeldsrasse 5, 9014 St-Gallen, Switzerland. 438 El-Fadel, M., Findikakis, A.N., Leckie, J.O., 1997. Environmental impacts of 439 solid waste landfilling. J. Environ. Manage. 50, 1-25. 440 Frischknecht, R., Althaus, H.J., Bauer, C., Doka, G., Heck, T., Jungbluth, N., Kellenberger, D., Nemecek, T., 2007. The environmental relevance of capital goods in 441 442 life cycle assessments of products and services. Int. J. Life Cycle Assess. 12, 7–17. 443 Fu, Q., 2012. In discussion with the author, Shanghai municipal engineering 444 design institute Co., LTD., Shanghai, China. 445 Gong, D., Sun, D., Xie, M., Mu, X., Ding, W., 2008. LCA comparison between 446 Incineration and integrated treatment patterns of municipal domestic waste. 447 Environmental Sanitation Engineering (in Chinese) 16, 52–55. 448 Hauschild, M., Potting, J., 2004. Spatial differentiation in life cycle impact 449 assessment - the EDIP2003 methodology, Guidelines from the Danish Environmental 450 Protection Agency, Copenhagen. 451 Hu, G., 2009. Integrated municipal solid waste management and life cycle 3E 452 assessment decision - a case study of Chongqing (in Chinese), College of Resource 453 and Environmental Science of Chongqing. Chongqing University, Chongqing, China, 454 p. 117. International Standardization Organization, 2006. Environmental management -455

456 Life cycle assessment - Requirements and guidelines, ISO 14044: 2006, Geneva,457 Switzerland.

Kirkeby, J.T., Birgisdottir, H., Bhander, G.S., Hauschild, M., Christensen, T.H.,
2007. Modelling of environmental impacts of solid waste landfilling within the
life-cycle analysis program EASEWASTE. Waste Manage. 27, 961–970.

Kirkeby, J.T., Birgisdottir, H., Hansen, T.L., Christensen, T.H., Bhander, G.S.,
Hauschild, M., 2006. Environmental assessment of solid waste systems and
technologies: EASEWASTE. Waste Manage. Res. 24, 3–15.

Khoo, H.H., Tan, L.L.Z., Tan, R.B.H., 2012. Projecting the environmental profile
of Singapore's landfill activities: Comparisons of present and future scenarios based
on LCA. Waste Manage. 32, 890–900.

Manfredi, S., Christensen, T.H., Scharff, H., Jacobs, J., 2010. Environmental
assessment of low-organic waste landfill scenarios by means of life-cycle assessment
modeling (EASEWASTE). Waste Manage. Res. 28, 130–140.

470 Manfredi, S., Tonini, D., Christensen, T.H., Scharff, H., 2009. Landfilling of
471 waste: accounting of greenhouse gases and global warming contributions. Waste
472 Manage. Res. 27, 825–836.

473 Ministry of Construction of the People's Republic of China, 2001. Technical
474 code for municipal solid waste sanitary landfill (CJJ17-2001) (in Chinese), Chinese
475 Industrial Standard. China Architecture & Building Press, Beijing, China.

476 Ministry of Construction of the People's Republic of China, 2004. Technical
477 code for municipal solid waste sanitary landfill (CJJ17-2004) (in Chinese), Chinese
478 Industrial Standard. China Architecture & Building Press, Beijing, China.

479 Ministry of Construction of the People's Republic of China, 2007a. Technical
480 code for liner system of municipal solid waste sanitary landfill (CJJ113-2007) (in
481 Chinese), Chinese Industrial Standard. China Architecture & Building Press, Beijing,
482 China.

483 Ministry of Construction of the People's Republic of China, 2007b. Technical
484 code for municipal solid waste sanitary landfill closure (CJJ112-2007) (in Chinese),
485 Chinese Industrial Standard. China Architecture & Building Press, Beijing, China.

486 Menard, J.F., Lesage, P., Deschenes, L., Samson, R., 2004. Comparative life
487 cycle assessment of two landfill technologies for the treatment of municipal solid
488 waste. Int. J. Life Cycle Assess. 9, 371–378.

489 Ministry of Housing and Urban-Rural Development of the People's Republic of
490 China, 2009. Construction standard for municipal solid waste sanitary landfill
491 (CJJ124-2009) (in Chinese), Chinese Industrial Standard. China Planning Press,
492 Beijing, China.

493 National Bureau of Statistics of China, 2012. China Statistical Yearbook 2012.
494 China statistical press, Beijing, China.

495 Niskanen, A., Manfredi, S., Christensen, T.H., Anderson, R., 2009.
496 Environmental assessment of Ammassuo landfill (Finland) by means of
497 LCA-modeling (EASEWASTE). Waste Manage. Res. 27, 542–550.

498 Stranddorf, H.K., Hoffmann, L., Schmidt, A., 2005. Impact categories,
499 normalization and weighting in LCA-Update on selected EDIP97-data,
500 Environmental news No. 78. Danish Environmental Protection Agency, Copenhagen,
501 Denmark.

502 Stripple, H., 2001. Life Cycle Assessment of Road, A Pilot Study for Inventory
503 Analysis, Second Revised Edition. The Swedish Environmental Research Institute,
504 Gothenburg, Sweden.

Wei, B., Wang, J., Tahara, K., Kobayashi, K., Sagisaka, M., 2009. Life cycle
assessment on disposal methods of municipal solid waste in Suzhou. China
Population, Resources and Environment (in Chinese) 19, 93–97.

508 Weidema, B.P., Wesnaes, M.S., 1996. Data quality management for life cycle 509 inventories - an example of using data quality indicators. J. Cleaner Prod. 4, 167–174.

Xu, G., 2003. Research on applying LCA to municipal solid waste management a case study of Guangzhou (in Chinese), College of Environmental Science and
Engineering. Sun Yat-sen University, Guangzhou, China, p. 94.

513 List of Tables

514 Table 1 Vertical profile of the materials used in a typical landfill body. Assumed thickness based on technical code requirement, if not

515 further specified.

Function	Labels	Materials	Thickness (m)	Quality requirements ^a
	L1	Sand	0.6	Thickness > 60 cm
	L2	Gravel	0.3	Thickness >30 cm
	L3	Nonwoven geotextile	N.A.	Qualification > 600 g·m ⁻²
Top cover system	L4	Geomembrane	N.A.	Thickness $> 1 \text{ mm}$
	L5	$\operatorname{GCL}^{\operatorname{b}}$	N.A.	Thickness $> 5 \text{ mm}$
	L6	Clay	0.2	Thickness > 20 cm ^c
	L7	Gravel	0.3	Thickness > 30 cm
	L8	Geonet	N.A.	Wrapping up the filling gravels
LEC collection system	τo	Gravel	N.A.	Filling around the LFG extraction pipes to form the collection well with the
LFG collection system	L9			diameter of 1.2m ^c
	L10	Perforated HDPE pipe	N.A.	Diameter $> 250 \text{ mm}^{\circ}$, distance between two LFG collection well $< 50 \text{ m}$
Internetiste eenen	т 11	Class	0.0	Set one layer for every 5 m height.
Intermediate cover	LII	Clay	0.9	Thickness of each layer > 30cm
Daily cover	L12	Sand	1.8	Thickness of each layer: 20–25 cm
Waste	L13	Waste	24	Thickness of each layer: 2–4 m
T an all at a sell a stirm	L14	Nonwoven geotextile	N.A.	Qualification > 600 g·m ⁻²
Leachate collection	L15	Gravel	0.3	Thickness > 30 cm
system	L16	Woven geotextile	N.A.	Covering HDPE pipes, qualification > 200 g·m ⁻²

	T 17	Demonstrad LIDDE min a	NT A	Diameter of main pipe > 250 mm, with the distance $< 50 \text{ m}^{\circ}$;		
	L1/	Perforated HDPE pipe	N.A.	Diameter of branch pipe > 200 mm, with the distance < 10 m $^{\circ}$		
	L18	Coarse sand	0.15	Thickness > 15 cm ^c		
	L19	Nonwoven geotextile	N.A.	Qualification > 600 g·m ⁻²		
	L20	Geomembrane	N.A.	Thickness > 1.5 mm		
	L21	Nonwoven geotextile	N.A.	Qualification $>600 \text{ g} \cdot \text{m}^{-2}$		
Double liner system	L22	Gravel	0.3	Thickness > 30 cm		
	L23	Nonwoven geotextile	N.A.	Qualification $>600 \text{ g} \cdot \text{m}^{-2}$		
	L24	Geomembrane	N.A.	Thickness > 1.5 mm		
	L25	$\mathrm{GCL}^{\mathrm{b}}$	N.A.	Thickness > 5 mm		
	L26	Clay	0.5	Thickness > 50 cm ^c		
Barrier layer	L27	Sand	1.0	Thickness > 1 m		
Groundwater drainage	1.20	Craval	0.2	This has 20 and		
system	L28	Graver	0.3	1 nickness > 30 cm		

516 HDPE, high-density polyethylene. GCL, geosynthetic clay liner. LFG, landfill gas. N.A. means that data are not available.

517 ^a Most of the requirements refer to China's national standards for landfill construction (Ministry of Construction of the People's Republic of China, 2004, 2007a, b) if there's no specific statements.

518 ^b In the "Technical Code for Liner System of Municipal Solid Waste Sanitary Landfill (CJJ113-2007)", it is suggested to use the combination of GCL and clay to substitute the single usage of compacted clay as the protection layers

519 underneath the geomembranes, which could both increase landfill capacity and reduce the cost of liner systems. Recently, the usage of GCL is more and more popular in China. Therefore, to reflect the developing trend of landfill

520 construction approaches, the combination of GCL and clay in the liner systems were calculated in this study as the example.

521 ^c Those values are obtained by personal communication with the engineers (Fu, 2012).

Table 2 Densities or qualities of the materials and energy associated with the construction and operation process of a landfill site, as well as the life cycle

Materials	Density/Quality	Unit	Data source of LCI (Ecoinvent, 2010)
Asphalt	1200	$kg \cdot m^{-3}$	Mastic asphalt, at plant, CH
Concrete	2374	$kg \cdot m^{-3}$	Cement, unspecified, at plant, CH
Clay	1842	$kg \cdot m^{-3}$	Clay, at mine, CH
Diesel	0.84	$kg \cdot L^{-1}$	Diesel combustion in industrial equipment, RER
Electricity			Electricity, production mix, CN
HDPE	955	$kg \cdot m^{-3}$	
HDPE geomembrane (1 mm thick)	0.955	kg·m ⁻²	Polyethylene, HDPE, granulate, at plant, RER
HDPE geomembrane (1.5 mm thick)	1.432	kg·m ⁻²	
Geonet	0.55	$kg \cdot m^{-2}$	Polyethylene, HDPE, granulate, at plant, RER
GCL	4.8	$kg \cdot m^{-2}$	Bentonite, at processing, DE
Gravel	2200	$kg \cdot m^{-3}$	Gravel, unspecified, at mine, CH
Nonwoven geotextile	0.6	$kg \cdot m^{-2}$	Polypropylene, granulate, at plant, RER
Sand	1562	$kg \cdot m^{-3}$	Sand at mine, CH
Steel	7880	kg⋅m ⁻³	Chromium steel product manufacturing, average metal working, RER
Woven geotextile	0.2	$kg \cdot m^{-2}$	Polypropylene, granulate, at plant, RER

525 HDPE, high-density polyethylene. GCL, geosynthetic clay liner. CH, CN, DE and RER are the geographical codes of Switzerland, China,

526 Germany and Europe, respectively.

Table 3 Material consumption during construction of the main parts in a landfillsite.

Linit: leg.t. woots ⁻¹	This study b	Landfill	design reports ^c
Unit. kg/t-waste	This study	Average	Range
HDPE ^a	0.204	0.218	0.127-0.368
Geotextile	0.141	0.068	0.040-0.104
GCL	0.400	0.334	0.037-0.595
Gravel	138	77	35.9-156
Sand	114	4.97	0.07-12.9 ^d
Clay	53.7	48.6	48.6 ^e

530 HDPE, high-density polyethylene. GCL, geosynthetic clay liner.

531 ^a Including HDPE geomembranes, HDPE pipes and geonets.

532 ^b As the materials used for final cover were not given in the seven landfill design reports, those data are not shown in this table

533 considering the comparable benefits.

534 ^c The seven landfill sites were located in Jimo (Shandong), Hexian (Anhui), Songyuan (Jilin), Shaoyang (Hunan), Yulin (Shaanxi) and

535 Leshan (Sichuan) with the daily landfill capacity of 150–300 t and the designed height of 10–30 m.

536 ^d The amount of sand were those need to be purchased in specific landfill sites rather than the actual usage.

^e The amount of clay was mentioned only in the design report of the landfill sites located in Jimo (Shandong).

Table 4 Diesel consumption during the construction and operation process of alandfill site.

	Usego	Diesel	Handled materials	
	Usage	$(\text{kg} \cdot \text{m}^{-3})$	$(m^3 \cdot t - waste^{-1})$	
SP				
Excavator	To excavate soils	0.130 ^b	0.238^{f}	
Front loader	To move soils on site	0.102 ^c	0.238^{f}	
Truck	To transport soils on site	0.193°	0.238^{f}	
СМ				
Bulldozer	To handle the mineral materials ^a	0.232 ^d	0.164 ^g	
OL				
Dulldonon	To handle the daily and intermediate soil	o azad	0.125h	
Buildozer	covers	0.232	0.125	
	I	Diesel		
	Usage	$(kg \cdot t - waste^{-1})$		
OL				
Excavator	To handle waste	0.218 ^e		
Bulldozer	To handle waste	0.540 ^e		
Compactor	To compact waste	0.185 ^e		

541 SP, site preparation. CM, construction of the main parts of the landfill body. OL, operation of the landfill. HDPE, high-density

542 polyethylene. GCL, geosynthetic clay liner.

543 ^a The on-site transportation of imported mineral materials was not considered in this study.

544 ^b Ecoinvent (2005).

545 ° Stripple (2001).

^d Caterpillar Inc. (2009).

^e Gong et al. (2008).

548 ^f Volume of sand soils excavated during site preparation.

549 ^g Volume of mineral materials used for landfill construction.

550 ^h The sum of the volume of sand and clay used as daily and intermediate covers.

Table 5 Impact ca	ategories used in t	he life cycle impact	assessment.
ruore e impuer et		ne me eyere mpaer	

Impact categories	Acronyms	Physical basis	Normalization references EU-15 Stranddorf et al. (2005)	Units	Reference year
Non-toxic impacts					
Global Warming (100 yrs)	GW	Global	8,700	kg CO ₂ -eq·person ^{-1} ·yr ^{-1}	1994
Stratospheric Ozone Depletion	SOD	Global	0.103	kg CFC-11-eq·person ⁻¹ ·yr ⁻¹	1994
Acidification	AC	Regional	74	kg SO ₂ -eq·person ⁻¹ ·yr ⁻¹	1994
Nutrient Enrichment	NE	Regional	119	kg NO ₃ -eq·person ⁻¹ ·yr ⁻¹	1994
Photochemical Ozone Formation	POF	Regional	25	kg C ₂ H ₄ -eq·person ⁻¹ ·yr ⁻¹	1994
Toxic impacts					
Human Toxicity via air	НТа	Regional	2.09×10 ⁹	$m^3 air \cdot person^{-1} \cdot yr^{-1}$	1994
Human Toxicity via water	HTw	Regional	1.79×10 ⁵	m^3 water·person ⁻¹ ·yr ⁻¹	1994
Human Toxicity via soil	HTs	Regional	1.57×10^{2}	m^3 soil·person ⁻¹ ·yr ⁻¹	1994
Eco-Toxicity in water-chronic	ETwc	Regional	3.52×10 ⁵	m^3 water·person ⁻¹ ·yr ⁻¹	1994
Eco-Toxicity in soil	ETs	Regional	9.64×10 ⁵	m^3 soil·person ⁻¹ ·yr ⁻¹	1994

			This study				Literatur	e	
Unit: kg·t-waste ⁻¹	CD	CN (COF	01	C&O	Ecobalance Inc.	Cherubini et al.	Menard et al.	Brogaard et al.
	SP	СМ	COF	OL	(Total)	(1999)	(2009)	(2004)	(2013)
Materials									
HDPE	0	0.211 ^a	0	0	0.204 ^a	0.090 ^b	0.186	1.40 ^b	0.241 ^b
Geotextile	0	0.145	0	0	0.141	0.017	N.A.	0.048	N.A.
GCL	0	0.413	0	0	0.400	N.A.	N.A.	0.455 °	N.A.
Sand	-372+136 ^d	114 ^e	0	117	231	257	N.A.	130 ^f	169 ^f
Clay	0	53.7	0	82.3	146	66	44.7	N.A.	82.3
Gravel	0	138	6.79	0	145	N.A	N.A.	105	180
Concrete	0	0	3.10	0	3.10	0.090	N.A.	N.A.	1.01
Steel	0	0	0.051	0	0.051	0.047	0.0004	N.A.	0.141 ^g
Water ^h	0	0	0	47.0	47.0	N.A	N.A.	N.A.	N.A.
Asphalt	0	0	0.930	0	0.930	0.085	N.A.	N.A.	0.12
Energy									
Diesel (on-site)	0.101	0.038	0	0.972	1.11	1.17	0.624	0.522	0.105
Diesel (transportation)	0	0.069	0.007	0.075	0.152	0.085	0.024	N.A.	0.096
Electricity ⁱ	0	0	0	0.173	0.173	N.A.	0.963	N.A.	N.A.

Table 6 Consumption of materials and energy during the construction and operation of a landfill site and comparison with published data.

554 SP, site preparation. CM, construction of the main parts. COF, construction of other facilities. OL, the operation stage of the landfill. C&O, the construction and operation process of a landfill site. HDPE, high-density polyethylene. GCL, geosynthetic clay

liner. N.A. means data are not available.

^a Including HDPE geomembranes, HDPE pipes, geonets.

557 ^b The sum of HDPE and PVC.

^c The sum of GCL and bentonite.

 d The amounts of excavated and backfilled sand soil were 372 and 136 kg·t-waste⁻¹, respectively.

^eSands used in CM is considered to be provided by SP rather than from off site, so the manufacturing and transportation of those sands are not taken into account in this study.

^fThe sum of sand and soil.

^g The sum of steel, stainless steel, copper, cable (most weight is attributed to copper) and aluminum.

563 ^hUnit: L·t-waste⁻¹.

564 ⁱ Unit: kWh·t-waste⁻¹.

565 Figure captions

566 Figure 1 System boundary for the construction and operation process of a landfill site.

567 Figure 2 Contributions of the four stages (a) and 12 materials and energy (b) to

- 568 individual environmental impact categories during the construction and operation of a
- 569 landfill site. (SP, site preparation; CM, construction of the main parts of the landfill
- 570 body; COF, construction of other facilities in the landfill site; OL, operation of the
- 571 landfill; HDPE, high-density polyethylene; GCL, geosynthetic clay liner)
- 572 Figure 3 Comparison of normalized impact potentials between landfill construction
- and operation (C&O, grey column) and the total landfilling technologies (the scatters
- 574 represent three scenarios in Damgaard et al. (2011), all of which have leachate
- 575 collection and treatment. In the case of landfill gas, L2G2 does not collect landfill gas;
- 576 L2G3B collects landfill gas and flares it; L2G4EC utilizes collected landfill gas to
- 577 produce electricity, substituting electricity generated from coal combustion).
- 578 Figure 4 Difference in normalized impact potentials between Baseline and the six
- alternative approaches for the construction and operation of a landfill site.

580 Figures

582 Figure 1 System boundary for the construction and operation process of a landfill site.

Figure 2 Contributions of the four stages (a) and 12 materials and energy (b) to
individual environmental impact categories during the construction and operation of a
landfill site. (SP, site preparation; CM, construction of the main parts of the landfill
body; COF, construction of other facilities in the landfill site; OL, operation of the
landfill; HDPE, high-density polyethylene; GCL, geosynthetic clay liner)

Figure 3 Comparison of normalized impact potentials between landfill construction
and operation (C&O, grey column) and the total landfilling technologies (the scatters
represent three scenarios in Damgaard et al. (2011), all of which have leachate
collection and treatment. In the case of landfill gas, L2G2 does not collect landfill gas;
L2G3B collects landfill gas and flares it; L2G4EC utilizes collected landfill gas to
produce electricity, substituting electricity generated from coal combustion).

600 Figure 4 Difference in normalized impact potentials between Baseline and the six

alternative approaches for the construction and operation of a landfill site.