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Abstract The influence of organic and conventional farming
practices on the content of single nutrients in plants is disputed
in the scientific literature. Here, large-scale untargeted LC-
MS-based metabolomics was used to compare the composi-
tion of white cabbage from organic and conventional agricul-
ture, measuring 1,600 compounds. Cabbage was sampled in
2 years from one conventional and two organic farming sys-
tems in a rigidly controlled long-term field trial in Denmark.
Using Orthogonal Projection to Latent Structures–Discrimi-
nant Analysis (OPLS-DA), we found that the production sys-
tem leaves a significant (p=0.013) imprint in the white cab-
bage metabolome that is retained between production years.
We externally validated this finding by predicting the produc-
tion system of samples from one year using a classification
model built on samples from the other year, with a correct

classification in 83 % of cases. Thus, it was concluded that the
investigated conventional and organic management practices
have a systematic impact on the metabolome of white cabbage.
This emphasizes the potential of untargeted metabolomics for
authenticity testing of organic plant products.

Keywords Conventional agriculture . Long-term field trial .

Metabolomics . Organic agriculture .White cabbage

Introduction

Organic agriculture, in contrast to its conventional counter-
part, does by regulation not make use of synthetically pro-
duced fertilizers and pesticides. Instead, organic farming
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employs different crop rotations and use of moderate amounts
of animal and green manures for nutrient supply and disease-
resistant varieties, among other approaches, for pest control.

While it is evident that on average, organic products con-
tain less pesticide residues, it is disputed to which extent
different farming practices lead to systematic differences in
the endogenous chemical composition of a crop. Numerous
studies have compared the nutrient content of crops from
organic and conventional agriculture. Recent reviews
attempting a formal meta-analysis [1, 2] have come to differ-
ent conclusions as to whether or not the production system has
a substantial impact on crop nutrient content or quality. These
reviews are largely based on the same original studies, and it
appears to be a matter of the applied statistics, whether many
[1] or few [2] significant (micro)nutrient differences are de-
tected between organic and conventional crops.

As an exception to this inconsistency, recent reviews have
consistently found significantly higher phosphorous contents
of organic crops [2–4]. One review [3] also reported total
nitrogen levels and found higher levels in conventional crops.
These findings per se are not nutritionally relevant for
humans. However, phosphorus and nitrogen have key roles
in many aspects of plant metabolism. One can therefore hy-
pothesize substantial changes in various plant metabolic path-
ways, and an impact of the production system on the metab-
olome, as a consequence of differential phosphorus and nitro-
gen uptake by the plant. While phosphorus is a component of
nucleic acids, a key regulator of enzyme activities, a bio-
membrane component, and is essential for energy transfer in
plants, nitrogen is an integral constituent of proteins, nucleic
acids, chlorophyll, co-enzymes, and secondary metabolites
and is a regulator of phytohormone activity in plants [5]. Thus,
we should expect to find effects on the plant metabolome as a
consequence of organic vs conventional agricultural manage-
ment practices.

One drawback of targeted nutrient analysis is the fact that
major differences of plant composition may remain undetect-
ed, bearing in mind that plants contain thousands of metabo-
lites. Furthermore, there is a growing awareness that in order
to adequately describe the nutritive value of a foodstuff,
nutrients should not be considered separately, but as embed-
ded in their food matrix [6, 7]. Therefore, changes in the food
matrix as a function of agricultural production system may be
as interesting as changes of the nutrient profile itself. Also,
conclusions on the biological reasons for observed nutrient
differences in plant foods, such as the up- or downregulation
of specific metabolic pathways in response to the agricultural
production regime, are difficult to draw if only small numbers
of nutrients are measured.

Metabolomic data of organically produced plants may be
valuable for several purposes. From a market perspective,
differences in metabolite patterns of food from different pro-
duction systems are of interest in assuring the authenticity of

food products marketed as organic [8]. In a plant science
perspective, key factors controlling plant chemical composi-
tion and thereby plant quality may be identified by metabolo-
mics, enabling targeted optimization of agricultural manage-
ment practices aimed at generating high-quality crops. The
detection of differences in food composition as a function of
agricultural production system is also of interest with respect
to health research. Some animal studies have found an impact
of the production system of the feed on certain animal health
parameters [9]. In a longer perspective, it may be possible to
use detailed information on differences in food composition as
a starting point for investigations into the mechanism of
differential health effects.

There are only a few studies that make use of large-scale
non-targeted analysis techniques in analyzing differences of
organic and conventional crops. One study compares protein
profiles in potato tubers in one growing season [10]. Of the
1,100 proteins detected, 160 (15 %) were differentially
expressed in potatoes grown under organic and conventional
conditions, with the fertilization regime being the main source
of difference. In contrast, another study comparing the prote-
ome of organic and conventional white cabbage and carrots
found only approximately 5 % of the proteins being differen-
tially expressed as a function of farming methods [11]. An-
other study investigated the impact of the amount and type of
nitrogen fertilization (ammonium nitrate and farmyard cattle
manure) on the grain endosperm transcriptome in winter
wheat [12]. This study found that “gene expression is signif-
icantly influenced by the amount and form of nitrogenous
fertilizer.” Findings from two of these three studies indeed
show that there are differences in the plant developmental
biology as a function of production system, which are relevant
in the context of agricultural practices. These differences are
expected to manifest themselves also as differences in the
metabolome of the crop, i.e., as measurable differences in
nutrient (or non-nutrient or anti-nutrient) content, as a function
of the production system.

A few studies have applied non-targeted metabolomics to
organic and conventional crops [13–15]. These studies report
a systematic effect of the production system on the metabo-
lome of pepper, tomatoes, ketchup, and maize kernels based
on farm pairings or market-basket samplings. Another meta-
bolomics study [16] reports a separation of conventional and
organic red grapefruit samples from a well-designed field
study using a large number of samples from 2 years, using a
descriptive (“ANOVA-PCA”) rather than a predictive analyt-
ical approach. Thus, previous studies have shown that the
metabolome of organic and conventional crops may be differ-
ent; however, based on the limited number of studies avail-
able, it remains impossible to draw general conclusions.

The objective of this study was to explore the effect of
organic and conventional growing conditions on the overall
chemical composition of a crop using non-targeted
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metabolomics. White cabbage was used as a model crop due
to the high nitrogen demand of plant species from the Brassi-
caceae family [17]. To our knowledge, this is the first study
that investigates the influence of organic vs conventional
agricultural management practices on a crop’s metabolome
based on a rigidly controlled long-term field trial and predic-
tive statistics.

Material and methods

Samples

Cabbage samples (Brassica oleracea L. convar. capitata (L)
Alef. Var. alba DC ‘Impala’) were obtained from the Danish
field trial study “VegQure” in two consecutive years (2007
and 2008) [18]. In VegQure, a traditional conventional growth
strategy (C) relying on use of synthetically produced nitrogen
fertilizers and pesticides were compared to several organic
strategies (O1 and O2) in an 8-year crop rotation conducted
on a sandy loam on one field site (Aarslev, 10° 27′ E, 55° 18′
N). The organic systems were managed in compliance with
the European Union guidelines for organic farming [19, 20].
The O1 system relied on import of animal manure while the
O2 system received nutrients via green manures and catch
crops as well as a small amount of animalmanure to satisfy the
high-nitrogen demand of cabbage. Total N/P/K fertilization
rates in kilogram per hectare were for cabbage on average
across 2 years: 310/45/145 (C), 225/20/85 (O1), and 135/10/
50 (O2). All field plots were treated with the biological
insecticide Bacillus thuringiensis. The C plots were treated
with the synthetic insecticides pirimicarb and alpha-
cypermethrin and the synthetic fungicide azoxystrobin
(2008). All plants were irrigated during a dry and warm period
of 2008 to avoid drought stress-related yield reductions and to
reduce seasonal variations. All field plots used for the organic
systems (O1 and O2) were managed organically for a decade
prior to the experiment, and the conventional (C) plots were
established in 2005. The three systems were conducted in
triplicate, thereby yielding a total of 18 independent cabbage
samples (3 systems×3 replicate plots×2 years). Further details
regarding field trial characteristics such as soil type, soil
fertility, crop rotation, sowing and harvest dates, fertilizer
rates, pesticide applications, climate data, etc. can be found
in [18] and in the supporting material of [21].

At maturity, cabbages from all three systems were harvest-
ed at the same day. One sample consisting of four cabbage
heads was taken per plot. In addition, duplicate sampling was
conducted for every third plot in order to test the representa-
tiveness of the sampling strategy (“sampling duplicates”). All
cabbage heads were stored at 1 °C and 100 % humidity until
sample preparation (<6 weeks). All samples from each year
were prepared on the same day. Each cabbage head was

washed in milli-Q-water, cut into eight pieces with a ceramic
knife, and half of the pieces were pooled with four pieces from
three other cabbages, thereby representing one sample. The
whole sample was cut into 0.5-cm wide slices, washed in
milli-Q water, and was frozen at −20 °C followed by freeze-
drying for 48 h. Afterwards, the samples were crushed and
homogenized in a plastic bag and stored at −20 °C in an inert
nitrogen atmosphere until sample extraction in spring 2010
(1.5 or 2.5 years). Sample preparation was conducted in a fully
randomized way in all steps from harvest to homogenization.

Elemental analysis

The content of P, K, Mg, and S was measured by inductively
coupled plasma–optical emission spectroscopy (ICP-OES,
Optima 5300DV, PerkinElmer, MA, USA) and the content
of C and N using IRMS (ANCA-SL elemental analyzer
coupled to a 20–20 Tracermass mass spectrometer, Sercon
Ltd., Crewe, UK.) as previously described in detail by Laursen
et al. [22].

Reagents and chemicals

Extraction solvents: water was supplied by aMillipore (Solna,
Sweden) system. Methanol (Chromasolv for gradient elution)
and acetone (Chromasolv for HPLC) were purchased from
Sigma-Aldrich (Stockholm, Sweden).

Chromatography solvents: Water was supplied by a
Millipore system. Acetonitrile (ACN) (LC-MS Chromasolv
grade), ammonium formate (for LC-MS), and formic acid (for
LC-MS) were obtained from Sigma-Aldrich (Stockholm,
Sweden).

Sample extraction

Samples were extracted and analyzed in randomized order in
duplicate (technical replicates). Approximately 100 mg of
freeze-dried cabbage were transferred into 15-mL centrifugal
tubes made of polypropylene (Sarstedt, Helsingborg, Sweden)
in a glove bag containing a dry nitrogen atmosphere. Samples
were extracted in two batches. Six replicate extraction quality
control (extraction QC) samples were included per batch, one
extraction QC after every fourth sample, in order to account
for batch-to-batch variation in extraction efficiency and to
measure overall method precision (see Electronic Supplemen-
tary Material Table S2). These extraction QC samples were
pooled cabbage samples. After every 10 samples, one extrac-
tion blank was included.

Samples were sequentially extracted four times. Extraction
solvents for the four sequential extractions were the following:
first and second extractions, 1 mL MeOH/H2O 50/50 v/v;
third and fourth extractions, 1 mL acetone/H2O 70/30 v/v.
After solvent addition, samples were vortexed. Samples were
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then placed in an ultrasonic bath at 20 °C for 30 min. Samples
were centrifuged at 4,000×g for 5 min at 20 °C in a Sigma
4K15 centrifuge (Sigma Laborzentrifugen, Osterode amHarz,
Germany). Supernatants were decanted; sequential extracts
were pooled for each sample and stored during the remaining
extraction process on a water/ice bath at 0 °C. Extracts were
filtered through 0.45-μm syringe filters (Millex-LCR, PTFE,
13 mm, non-sterile, Millipore, Solna, Sweden). Filtered ex-
tracts were stored in aliquots at −80 °C until analysis.

Sample analysis

Prior to analysis, 300 μL of sample extract were evaporated in
a Speedvac evaporator and reconstituted in 60 μL
MeOH/H2O 50/50 v/v containing 5-mM ammonium formate
buffer, pH 3.75. One microliter of reconstituted extracts were
analyzed by LC-MS on an Agilent Infinity 1290 UHPLC
system coupled to an Agilent 6540 Q-TOF mass spectrometer
(Agilent Technologies, Kista, Sweden).

Samples were handled by an Agilent 1290 autosampler,
and separation was achieved using an Ascentis Express C18
precolumn and column kept at 40 °C (length 15 cm, diameter
2.1 mm, particle size 2.7 μm, pore size 90 Å, Sigma-Aldrich,
Stockholm, Sweden). The LC systemwas coupled to the mass
spectrometer via a “Jet Stream” electrospray interface. Mobile
phase A was water/ACN 95/5 % v/v with 5-mM ammonium
formate buffer pH 3.75. Mobile phase B was water/ACN
5/95 % v/v with 5-mM ammonium formate buffer pH 3.75.
The mobile phase flow rate was 0.4 mL/min and the gradient
was 0–1 min 0 % B, 1–10 min 0–100 % B, 10–15 min 100 %
B. Injection needle washing was done by dipping the needle
consecutively into three 2-mL glass vials, containing 100 %
B, 100 % A, and again 100 % A. Samples were separately
analyzed in both positive and negative modes. Electrospray
ionization voltages were +4 kV (positive mode) and −4 kV
(negative mode) with nozzle voltages of +1 and −1 kV, re-
spectively. Nitrogen was introduced as a sheath gas at 9 L/min
at 350 °C and as countercurrent dry gas at 8 L/min and 300 °C.
The rough vacuum was approximately 3 mbar and the quad-
rupole vacuum was approximately 5×10−5 mbar. The
fragmentor was set to ±100 V. The acquisition range was
50–1,700 m/z with a scan rate of 6 Hz and a sampling rate
of 4 GHz. The mass accuracy was <1 ppm, and the mass
resolution was >20,000 according to the tuning that was
performed before the experiments. Reference ions were used
for on the fly mass correction. LC-MS data were recorded as
profile and centroid data in Agilent .d format using Agilent
MassHunter Workstation version B.04.00 acquisition soft-
ware (Agilent Technologies, Kista, Sweden). Every 10th sam-
ple injection was done with an injection QC sample, which
consisted of a pool of extracts from over 20 samples. This
injection QCwas used for monitoring the overall performance

of the LC-MS system and for establishing the precision of the
analytical method, but not for correction of intensities.

Data pre-treatment

Data files were converted to mzXML format using the soft-
ware tool Trapper (Aebersold Lab, Seattle Proteome Center,
USA) version 4.3.1, extracting only centroid data. Peak inte-
gration and peak alignment were performed using the soft-
ware XCMS [23] version 1.30.3 run in R [24] version 2.14.1.
Peaks were detected and integrated using centWave algorithm
(parameters: ppm=10, snthr=5, peakwidth=c(5.15), mzdiff=
−0.01, prefilter=c(6,100), fitgauss=TRUE) and aligned using
Obiwarp (parameters: distFunc="cor", profStep=1, grouping
parameters: bw=1, mzwid=0.005, minfrac=0.5). In a few
cases, e.g., for some molecular features with high fold change
and high significance, integration and alignment were manu-
ally confirmed and were in good agreement with XCMS
results. The peak lists for positive and negative electrospray
data contained 7,027 and 3,096 peaks for each sample, re-
spectively. These peak lists were cleaned from some noise: the
mass spectrometer produces a “tail” of peaks for high-
intensity ions (also known as “ringing”), giving rise to up to
seven observed additional signals on the higherm/z side of the
actual peak at typical distances of +0.01 to +0.2 amu from the
actual peak and at typical intensities of 10 % or less of the
actual peak. Therefore, all peaks having a retention time
within 0.5 s and a m/z shift below +0.3 amu and less than
20 % intensity as another peak were removed. Also, peaks
with a ratio of median intensity of all samples and median
intensity of extraction blanks less than five were removed as
blank signals. Furthermore, peaks with a retention time less
than 1 min were removed (eluted from the column in the void
volume). These cleaning steps decreased the positive and
negative peak lists to 3,981 and 1,910 peaks, respectively,
resulting in one combined peak list containing 5,891 molecu-
lar features for each of 48 samples. This corresponds to
approximately 1,600 compounds, as estimated using the Mo-
lecular Feature Extractor of theMassHunter software. Data for
one positive mode sample and one negative mode sample
were missing.

In order to account for sample-to-sample variation of the
sensitivity of the mass spectrometer, peak intensities within
samples were median-centered to a common value (sample-
wise normalization). In order to account for batch-to-batch
variation in the sample extraction, peak intensities of samples
from extraction batch 2 were scaled using extraction QC
samples. The ratio of median values of batch 2/batch 1 of
those extraction QC samples was used as a scaling factor for
each variable (variable-wise correction). Finally, all technical
and sampling replicates were averaged, resulting in data for 18
samples and 5,891 molecular features for the data analyses.

2888 A. Mie et al.



Univariate data analysis

The influence of the agricultural production system on the
concentration of individual compounds was investigated
using two-way ANOVAwith the production system and year
as factors. Fold changes (ratios of relative concentrations)
were reported as averaged over years. Due to the high number
of tested hypotheses (number of molecular features, 5,891),
the multiple testing problemwas addressed. Probabilities were
summarily presented as unadjusted p values and as adjusted
Benjamini–Hochberg false discovery rates (FDR), using an
adaptive variant that takes into account the estimated number
of true null hypotheses by means of quantile plots [25].
Univariate data analysis was performed using the software R
[24] version 2.14.1.

Identification of compounds

The databases Metlin [26, 27], KnaPSacK [28], MassBank
[29], KEGG [30], and PlantCyc [31] were used for matching
of observed molecular features by molecular mass or formula.
Chemical formulas were generated, and identification was
attempted by making use of exact mass (<1 ppm), isotopic
patterns, the Molecular Feature Extractor and the formula
calculator in the MassHunter software, and intensity correla-
tion coefficients over samples in order to identify fragments
and adducts.

Multivariate data analysis

All variables (molecular features) were scaled to unit variance.
Principal component analysis (PCA) [32, 33] was initially
used for unsupervised multivariate analysis. Subsequently,
Orthogonal Projection to Latent Structures–Discriminant
Analysis (OPLS-DA) [34] was used for supervised multivar-
iate analysis. PCA and OPLS analysis were performed using
the software Simca-P+ version 12.0.1 (Umetrics, Umeå,
Sweden).

In OPLS, a sevenfold internal cross-validation (CV) was
used, where 1/7th of the samples were predicted using a model
based on the remaining 6/7th of the samples. This was repeat-
ed seven times so that all samples were predicted once using a
model not based on themselves. All OPLS-DA models are
presented with the number of components suggested by the
Simca-P+ software based on the predictive performance from
the internal cross-validation of the model unless specified
differently. Statistical significance was assumed at p<0.05.

Receiver-operating characteristic (ROC) [35] curves were
used to visualize the tradeoff between sensitivity (the fraction
of true positives) and specificity (fraction of true negatives) for
different cutoff values for discriminating between two groups.
The area under the ROC curve (AUC) defines the overall
ability of the test. A useless test (not better than random

classification) has an AUC of 0.5. A perfect test has an
AUC of 1.00. ROC curves were obtained using the R [24]
package “verification” [36].

Results and discussion

Field observations, sample characterization, and elemental
analysis

The production of white cabbage samples was managed ac-
cording to the best practice within organic or conventional
plant production and, in the case of the O1 and O2 samples, in
full compliance with the European Union guidelines for or-
ganic farming [20, 19]. This was reflected in the harvest yields
which represented normal yields according to Danish stan-
dards. The yields from the conventional system (C) were on
average, across 2007 and 2008, 16 % higher than from the
animal manure-based O1 system (Table 1). However, the
harvest yields from the O2 system, which was based on
moderate amounts of animal and green manures, were not
significantly different from the two other systems. The cab-
bage heads from the conventional systemwere visually bigger
throughout the whole growing season. This observation was
confirmed by the unit weight determination after harvest,
which showed that conventionally produced cabbages were
significantly bigger. A significant effect of harvest year was
observed across systems for the unit weight which was also
reflected in the harvest yields. This is suggested to be due to
the weather differences between 2007 and 2008. The year
effect observed for harvest yield and unit weight was nega-
tively correlated with the concentration of N, P, K, and Mg.
This indicates a dilution of these due to the high biomass
production in 2008; however, all nutrient concentrations ex-
cept N were within the normal range [17]. The N concentra-
tions from 2008 indicated that plants were marginally N
deficient. No systematic and significant differences were
found between systems for the percentage of dry matter or
the concentration of N, P, K, S, and Mg. This is in correspon-
dence with previous studies comparing the elemental compo-
sition of organic and conventional crops [22]. Thus, the initial
characterization of the produced cabbages indicated that the
elemental composition was primarily affected by harvest year
and not the agricultural production system. Thus, other ana-
lytical methods were required to discriminate between organic
and conventional cabbages.

The metabolome of cabbage is dominated by growth year

Themain objective of this workwas to investigate the effect of
the agricultural production system on the metabolome of the
crop. Below, univariate and multivariate statistical analyses of
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the production system on 5,891 molecular features detected in
the white cabbage sample are presented.

Univariate analysis

As a first step, the effect of the production system and the
production year on each of the 5,891 variables (molecular
features) was investigated by two-way ANOVA. This analysis
is summarized in Table 2. We found that C and O2 were the
systems with the largest differences. O1 and O2 samples
appeared indistinguishable, with this low number of samples.
Statistical power was therefore gained by pooling O1 and O2
samples due to increased sample size. Of the 5,891 molecular

features, 110 were present in different concentrations in C
compared to O1/O2 samples with FDR <0.05. Fold changes
between C and O1/O2 systems among these 110 compounds
ranged from 1.14 to 2.53 (median, 1.54). For a comparison of
the magnitude of the effect of production system and produc-
tion year, fold changes between 2007 and 2008 year samples
among the 110 most significant compounds out of the 2,359
compounds with FDR <0.05 ranged from 1.18 to 6.45 (me-
dian, 2.05). In Electronic Supplementary Material Fig. S1, we
present Venn diagrams showing that the overlap of molecular
features that are influenced by the production system and by
the production year (for FDR <0.05 and FDR <0.10) is close
to what would be expected by chance.

Table 1 Harvest yield, unit weight, percentage of dry matter, and plant
nutrient concentrations presented as average±standard deviation (n=3
plots per system and year). p(system) and p(year) are p values of the two-
way ANOVA with system (C, O1, O2) and year (2007 and 2008) as

factors (n=6 per system or n=9 per year). Where p(system) <0.05,
systems not sharing a common superscript row-wise are significantly
different (Student’s t test, n=3 per system) for that year

Year System p(system) p(year)

C O1 O2

Yield (1,000 kg FW/ha) 2007 87.2±7.6a 67.6±8.3b 72.5±9.3ab 0.0023 1.3×10−5

2008 105.3±1.2a 92.0±2.5b 93.5±9.7ab

Unit weight (g FW) 2007 3213±325a 2755±147b 2783±225b 0.00077 5.2×10−7

2008 3969±104a 3614±28b 3409±152b

DM (%) 2007 9.61±0.38 9.42±0.26 9.79±0.14 NS NS
2008 9.56±0.17 9.76±0.39 9.73±0.24

N (%) 2007 1.97±0.06 1.97±0.03 2.04±0.07 NS 3.8×10−7

2008 1.76±0.06 1.65±0.11 1.62±0.01

P (%) 2007 0.29±0.02 0.28±0.01 0.29±0.02 NS 0.0031
2008 0.27±0.01 0.26±0.01 0.25±0.03

K (%) 2007 2.60±0.12 2.49±0.19 2.62±0.17 NS 0.0072
2008 2.35±0.08 2.26±0.11 2.05±0.49

S (%) 2007 0.63±0.02 0.63±0.03 0.60±0.03 NS NS
2008 0.62±0.03 0.60±0.03 0.56±0.04

Mg (%) 2007 0.12±0.00 0.12±0.01 0.12±0.01 NS 0.00014
2008 0.11±0.00 0.10±0.01 0.10±0.00

Nutrient concentrations are presented as weight−% (g/100 g DM). Some of these data have partially been presented earlier: Yield data have been
published in the supporting material of [21] as averaged over two instead of three field plots and in [18] as averages over 3 years. DM (%), N (%), and S
(%) have been presented in [18] as averages over 3 years

NS not significant, FW fresh weight, DM dry matter

Table 2 Summary of two-way
ANOVAwith production system
and year as factors based on 5,891
variables (molecular features).
Presented is the number of sig-
nificantly different variables
using various criteria for statisti-
cal significance in various com-
parisons of systems

C vs O1/O2 C vs O1 C vs O2 O1 vs O2 C vs O1
vs O2

2007 vs
2008

n (number of samples) 6+12 6+6 6+6 6+6 6+6+6 9+9

ANOVA p<0.001 74 3 27 1 21 778

ANOVA p<0.05 1,223 470 1,380 240 820 2,438

FDR <0.05 110 0 0 0 0 2,359

FDR <0.10 605 0 1,173 0 0 3,070

Estimated number of false null
hypotheses (true differences)

2,489 1,741 2,951 0 2,449 3,346
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Compound identification

The 110 molecular features with FDR <0.05 in the compari-
son of C vs O1/O2 samples from Table 2 originated from 46
compounds. In Electronic Supplementary Material Table S1,
we present observed ions, proposed formulae and identities,
relative concentrations in conventional vs organic samples
and level of identification of the 20 compounds with highest
statistical significance. Analytical precision data for these
compounds are presented in Electronic Supplementary Mate-
rial Table S2. The median overall precision (extraction and
LC-MS analysis) of the 20 compounds with highest statistical
significance was 12.7 %. The median overall precision of all
5,891molecular features was 18.3%RSD. To our knowledge,
no authoritative guidelines or reference values are available
for the analytical precision of compounds in untargeted meta-
bolomics. For comparison, one metabolomics study based on
solvent extraction and direct infusion–Fourier transform ion
cyclotron resonance-MS reported a comparable median over-
all RSD of 18.0 % for 2,488 molecular features at a compa-
rable stage of data processing (“XTIC+batch” in Electronic
Supplementary Material Table S1 of [37]) [37].

For 13 of the 20 compounds with highest statistical signif-
icance, we suggest a molecular formula; for six compounds,
we annotate a sub-structure, and for one compound, we pres-
ent a putative identity. The absence of comprehensive mass
spectral databases for plant metabolites complicated com-
pound identification. Notably, sulfur-rich compounds, which
are prominently present on our list and whose molecular
formulae can be established with relatively high confidence
due to the distinct isotopic pattern of sulfur, appear to have
weak coverage in the searched databases. Of the 13 com-
pounds with a proposed molecular formula, only two had
matches in the databases.

Tandem mass spectrometry could lead to further insights
into substructures, but in the absence of database coverage, it
cannot lead to identification. The next step in the identification
process would therefore be the chemical isolation and de novo
structure elucidation. Although several combinations of tools
are available for this purpose, elucidation of unknown struc-
tures remains a challenging task in plant metabolomics [38].
As the main objective of this work was the investigation of
metabolome-wide differences rather than the isolation of in-
dividual biomarkers, we did not focus on providing further
compound identification at this point. Instead, we provide
information about the level of identification that actually was
reached in accordance with proposed guidelines of the Meta-
bolomics Standard Initiative (MSI) [39]. However, in future
studies, the identification of a number of metabolites might
increase the understanding of which metabolic pathways are
up- or downregulated as a consequence of the production
system. Also, in a longer perspective, an improved mechanis-
tic understanding of how biomarkers with potential positive

health effects are influenced by different cultivation systems
could be gained.

Principal component analysis discriminates growth years

A principal component analysis (PCA) of metabolomics data
of all samples revealed that the first and second principal
components (PCs) clearly separated samples by production
year (Fig. 1). The same principal components also largely
separated samples of production systems C and O2, with O1
samples overlapping with the other systems (Fig. 1). The first
two PCs described 42.8 % of the variation between samples.
Classification boundaries in this plot between samples from
different years and between samples from C and O2 samples
were approximately orthogonal. Accordingly, there were in-
dependent effects of the production year and of the production
system on the cabbage metabolome.

Classification analysis

PCA allows for an analysis of which factors are responsible
for the largest part of the variation of the data. In contrast,
supervised models can be used to understand whether samples
can be separated using a specific factor. Therefore, based on
the same dataset, supervised OPLS-DA models were built to
distinguish between production systems (Table 3).

Figures of merit of the internal cross-validation are shown
in Table 3. C and O2 as well as C and O1 samples could be
distinguished by OPLS models (i.e., the Simca software sug-
gested an OPLS model based on a positive Q2(cum) value),
but not with statistical significance. O1 and O2 samples were
too similar, so no OPLS model was suggested by Simca. In
order to gain statistical power, we therefore pooled O1 and O2
samples and compared these samples from different organic

Fig. 1 Scores plot of PCA of all 18 samples and 5,891 variables.
Displayed are scores of PC1 and PC2. Production year, open symbols:
2007; filled symbols: 2008. Ellipse: Hotelling’s T2 (0.95)
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production systems to the conventional system C. The
resulting model could not significantly distinguish between
organic and conventional cabbage (p=0.064) (Fig. 2, Table 3
model 4). A highly significant (p=2.2×10−5) OPLS model
could be built for the classification of samples by production
year (model 8).

Supervised classification models generally carry a risk of
over-fitting and need to be carefully validated. Initially, we
chose an internal cross-validation of the models. Further be-
low, an external validation of a refined dataset is presented.

The agricultural production system is reflected
in the metabolome of cabbage

Of the 5,891 variables in the dataset, a large number likely
consists of noise with respect to a classification into different
production systems. It was desirable to reduce this noise in
order to isolate the information that carries classification pow-
er important for the distinction between production systems

and in order to provide a reliable means of sample classifica-
tion. If, however, variables were removed from the dataset
simply based on a non-significant contribution to a model
distinguishing between production systems (here, e.g., model
4 in Table 3), a risk of over-fitting would be introduced
because variables with a false-positive contribution to the
model would be enriched in the remaining dataset.

Instead, we chose to focus on removing the large contribu-
tion of the production year on the metabolome (Figs. 1 and 2
and Table 3, model 8), thereby avoiding the risk of enriching
variables with a false-positive contribution with respect to a
distinction between production systems. In Fig. 2, it is appar-
ent that samples that are separated by production system along
a predictive (horizontal axis) component also separate in an
unsupervised way by production year along the first orthogo-
nal component (vertical axis). This confirms an influence of
the production year on the sample metabolome that is orthog-
onal to the influence of the production system, which is
consistent with the observation made earlier using PCA

Table 3 Summary of OPLS-DA models for the distinction of samples from different classes

Model number Class 1 Class 2 Class 3 Number of
components

R2Y(cum) Q2(cum) p(Cross-validation-
ANOVA)

Correct classification rate
in internal cross-validation

Models based on 5,891 variables (full dataset)

1 C O1 – 1+7+0 1 0.499 0.99 12/12=100 %

2 C O2 – 1+1+0 0.887 0.500 0.24 10/12=83 %

3 O1 O2 – 0+0+0 – – – –

4 C O1/ O2 – 1+0+0 0.595 0.307 0.064 14/18=78 %

5 C/O1 O2 – 1+0+0 0.528 0.0636 0.61 10/18=56 %

6 C/O2 O1 – 0+0+0 – – – –

7 C O1 O2 1+1+0 0.306 0.140 0.34 –

8 2007 2008 – 1+1+0 0.960 0.856 2.2×10−5 18/18=100 %

Models based on 2,796 variables (refined dataset)

9 C O1 – 1+1+0 0.950 0.333 0.52 10/12=83 %

10 C O2 – 1+0+0 0.781 0.589 0.018 11/12=92 %

11 O1 O2 – 0+0+0 – – – –

12 C O1/ O2 – 1+0+0 0.668 0.442 0.013 15/18=83 %

13 C/O1 O2 – 1+0+0 0.565 0.207 0.18 13/18=72 %

14 C/O2 O1 – 0+0+0 – – – –

15 C O1 O2 1+0+0 0.340 0.220 0.12 –

16 2007 2008 – 0+0+0 – – – –

External validation based on 2,796 variables (refined dataset)

Validation
samples

Correct classification rate in external validation

17 C
(2007)

O1/O2 (2007) 2008 1+0+0 0.724 0.293 7/9=78 %

18 C
(2008)

O1/O2 (2008) 2007 1+5+0 1.00 0.825 8/9=89 %

Mean of 17 and 18 C O1/O2 – – – – 83 %

The slash “/” symbol indicates that samples from several classes that have been pooled; model performance: R2 Y(cumulative) (perfect model:
R2Y(cum)=1) is a measure of the descriptive performance of the model; Q2 (cumulative) (perfect model: Q2 (cum)=1), p(cross validation-ANOVA)
(perfect model: p=0), and the correct classification rate (perfect model: 100 %) are measures of the predictive performance of the model; p is the
probability that the model may be the result of just chance based on internal cross-validation
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(Fig. 1). Model 8 in Table 3 classified very successfully (p=
2.2×10−5) the samples from the two production years. In
model 8, 3,095 variables had a significant contribution to the
classification based on the variable importance in the projec-
tion (VIP). These variables were removed from the dataset,
and PCA and OPLS models distinguishing samples from
different production systems were built on a dataset contain-
ing the remaining 2,796 variables (Fig. 3, Table 3).

Figure 3 shows the first two components of a PCA of all
samples on the reduced dataset containing 2,796 variables.
PC1 (R

2X1=0.215) largely separates samples from C and O2,
with O1 samples overlapping with samples from the other two
systems. After removal of variables describing the variation
between years, the production system is now the most impor-
tant source of variation between samples.

A comparison of results in Table 3 [models based on 5,891
variables (full dataset) and models based on 2,796 variables
(refined dataset)] reveals that all p values and correct classifi-
cation rates improved using a reduced data set with fewer
variables. Hereby, the distinctions between C and O2 samples
(p=0.018) and between C and pooled O1/O2 samples (p=
0.013) became statistically significant.

After removing the variation due to the production year, we
also attempted a prediction of the production system of sam-
ples from 2008 using an OPLS model built on samples from
2007 and vice versa (Table 3). This must be regarded as an
extensive external validation, although it should be noted that
the refinement of the dataset, i.e., the removal of variables that

are important in the distinction between production years, was
done using samples from both years. We chose to pool the
samples from the two organic growing systems for this pur-
pose because these samples have been indistinguishable in all
previous models.

Table 3 shows results of the external validation of OPLS
models classifying samples into C and O1/O2 samples. The
figure of merit of this external validation is the correct classi-
fication rate. On average, 83% of samples have been correctly
classified into being of conventional or organic origin using
OPLS models built on samples from one year and predicting
samples from the other year. It should be noted that this
validation is still based on the 2,796 variables, many of which
likely constitute noise with respect to a classification of
samples into production systems. A further refinement of
these models by the selection of variables will probably
result in a better predictive performance. However, such
refinement appears only meaningful if further samples for
external validation were available. If metabolomics was to
be used for food authentication purposes, such a refine-
ment, based on a much larger set of samples would be
warranted.

ROC curves can be used for selecting a suitable tradeoff
between sensitivity and specificity in a classification. For
example, in a food authentication setting, as many conven-
tional samples as possible should be identified among samples
labeled as organic (sensitivity or true positive rate), but it is
very important that samples of organic origin are actually
classified as organic (specificity or true negative rate) and
not falsely as conventional. One would therefore choose a
specificity close to one and could read from the ROC curve
the achievable sensitivity based on the underlying classifica-
tion model.

Fig. 2 Scores plot of OPLS of model 4, discriminating C and O1/O2
samples. n=18; 5,891 variables. The first predictive component (t1) and
the first orthogonal component (to1) are shown here. Production year,
open symbols: 2007; filled symbols: 2008. Ellipse: Hotelling’s T2 (0.95).
R2X1=0.143, R

2XXside comp 1=0.231

Fig. 3 Scores plot of PCA of refined dataset: 18 samples and 2,796
variables. Displayed are scores of PC1 and PC2. Production year, open
symbols: 2007; filled symbols: 2008. Ellipse: Hotelling’s T2 (0.95)
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The ROC curves of the external validation, based on pre-
dicted scores, are shown in Electronic Supplementary Mate-
rial Fig. S2. The ROC curve for model 17 had an AUC of
0.889 (p=0.048), and the ROC curve of model 18 had an
AUC of 1 (p=0.012). These ROC curves could be regarded as
indicative of the potential performance of classification
models based on metabolomics and OPLS for food authenti-
cation purposes provided that other factors (geographical,
crop cultivar, etc.) could successfully be included in such
models.

In summary, we were able to distinguish between samples
from conventional and organic production using samples from
a rigidly controlled field trial and a multivariate analysis
approach aimed at avoiding over-fitting. We can conclude that
the production system has a measureable impact on the me-
tabolome of the samples from this specific study. This is
confirmed by a successful external validation, which is a
demanding way of validating classifiers.

Multiple comparisons

A well-known statistical problem is the treatment of multiple
comparisons. If many hypotheses are tested, inevitably some
null hypotheses will be rejected just by chance (e.g., 5 % of
null hypotheses if the chosen level of significance for individ-
ual hypotheses is p<0.05). The most appropriate way of
treating this problem may be different in different contexts.
If the emphasis is on the estimation of effects (e.g., in a
systematic review with several reported clinical outcomes of
a treatment), adjustments for multiple testing may not be
warranted [40] due to the associated loss of statistical power.
If the focus is on a rigorous test of individual hypotheses (e.g.,
in the discovery of individual biomarkers), conservative
family-wise error correction methods are warranted, such as
the Bonferroni correction. In between, the control of the false
discovery rate (FDR) is a less conservative adjustment. An
alternative is the definition of one or very few primary
hypotheses.

For the univariate part of the analysis, we chose to sum-
marily present p values for pair-wise comparisons of classes as
unadjusted and using FDR (Table 2). A more conservative
approach appears unnecessary here because our aim was not
the discovery of individual biomarkers for organic or conven-
tional production. We did not adjust for multiple comparisons
of sample classes (six such comparisons in Table 2): we
consider the primary comparison to be C vs O1/O2 samples,
i.e., samples from organic vs conventional agriculture. Ac-
cordingly, models 4 and 12 (refined) are the primary compar-
isons in the multivariate part, and p values in Table 3 are not
adjusted.

So far, the multiple testing problem has only rarely been
addressed in the context of the composition of foods from
organic and conventional agriculture. Notably, recent reviews

come to different conclusions whether many [1] or few [2]
significant (micro)nutrient differences are detected between
organic and conventional crops, apparently due to the appli-
cation [2] or non-application [1] of family-wise error correc-
tion in the meta-analysis of several reported outcomes (nutri-
ent concentrations). In any case, even if statistically signifi-
cant, differences in nutrient levels were rather small and
variation between studies was large [1].

The biological interpretation of the observed effects

Ideally, samples from the various production systems should
be harvested at the same physiological age (ripeness). In case
the physiological age is influenced by the production system,
harvesting at the same time, rather than at the same physio-
logical age, would yield results where the effects of produc-
tion system and degree of ripeness on the crop’s composition
are confounded. In the present case of autumn-harvestedwhite
cabbage, in the late autumn, physiological age is primarily
affected by acclimation to the comingwinter conditions due to
low temperature and short day lengths. Accordingly, this
study’s cabbage samples likely represent a valid comparison
of the effect of the production system that is not confounded
by a different degree of ripeness.

The main rationale for observed differences in the prote-
ome and transcriptome studies lies in the availability of plant
nutrients. In conventional (intensive and high input) agricul-
ture, mineral fertilizers, often in combination with animal
manures, are the predominant source of plant nutrients. Most
mineral fertilizers are soluble in the soil solution and readily
available to plants. In organic agriculture, mineral fertilizers
are prohibited. Instead, essential plant nutrients such as nitro-
gen, phosphorous, and potassium are supplied via green and/
or animal manures, which are often composted prior to appli-
cation. Most plant nutrients are here initially, to a large extent,
bound to organic matter and are not immediately available for
plants until liberated during mineralization. Furthermore, by
practice and regulations, the amount of annually supplied
plant nutrients per hectare is generally considerably higher
in conventional agriculture (see “Material and Methods”).
Also, a different depth distribution can be expected. Systems
employing green manures, like the O2 system, tend to retain
plant available N closer to the soil surface than other systems.

Conventional and organic agriculture can therefore poten-
tially be distinguished by differences in the source, amount
and biological availability of essential plant nutrients, and
resultant changes in the chemical composition of crops.

Under conditions of ample plant nutrient availability, the
primary plant metabolism, responsible for growth processes,
is generally emphasized. Under conditions of limited nutrient
availability, metabolic processes of the secondary plant me-
tabolism are upregulated. These are responsible for stress
tolerance and for the diversification of plant functions such
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as biotic defense and ripening. Accordingly, in an agricultural
context, due to lower plant nutrient provision and availability
in organic compared to conventional agriculture, shifts in the
balance between primary and secondary metabolism towards
a stronger emphasis on secondary metabolism in organic
crops are expected. On the other hand, plant producers in both
organic and conventional systems strive for optimum plant
growth conditions, and it could be argued that within the
actual range of plant nutrient abundance and availability,
plants are homeostatic, i.e., plants are able to maintain an
identical metabolic state of optimum growth.

It is now being recognized that plants may alter their leaf
metabolome in a direct response to an altered soil microbiome
[41]. The use of pesticides in conventional agriculture is likely
to impact the community of soil microorganisms [42]. Hypo-
thetically, this represents another way of how the agricultural
production system may influence the crop’s metabolome.

Based on our results, we conclude that plant homeostasis is
not strong enough to keep the plant metabolome constant
within the range of the production factors studied. However,
changes of concentrations of single compounds between pro-
duction systems were generally modest, and we did not ob-
serve drastic effects, like entire pathways switched off in
certain production systems.

The metabolome differences between C and O1/O2 cabbage
and the inability to distinguish between O1 and O2 samples are
paralleled by the markedly higher crop yields of C compared to
O1 samples, while O1 and O2 had a similar crop yield.

In contrast to many other studies and to the conclusions of
reviews in this area of research [2–4], we did not observe
differences in nitrogen and phosphorus concentrations of the
crop as a function of production system. Yet, we did observe
changes in the metabolome between organic and conventional
crops across production years.

Overall, the influence of the production year on the metab-
olome was greater than the influence of the production sys-
tem. This is apparent from the PCA of Fig. 1 and from the
large number of significant differences in Table 2. Also, fold
changes were larger in the comparison of years than in the
comparison of production systems. However, the estimated
number of differences in the comparison of production sys-
tems is almost as high in the comparison of production years.
Also, the overlap of molecular features that are influenced by
year and by production system is close to what would be
expected by chance (see Electronic Supplementary Material
Fig. S1). We interpret this as year and production system
having substantial independent influences on the metabolome
as a whole, influencing a similar number of metabolites, but
the magnitude of the influence (as fold change) of the produc-
tion year is generally larger than the influence of the produc-
tion system within our experimental domain.

Despite the observed differences, we cannot draw any
conclusions on which production system yields the healthier

crop. Some animal studies have previously observed differen-
tial health effects of organic vs conventional feed [9, 43]. We
do find differences in the crop’s metabolomics composition
that may grant plausibility to observed health effects in other
studies. Further studies specifically aimed at deciphering pos-
sible health effects of organic plant production are required to
clarify this.

Metabolomics has also been proposed as one of
several approaches for organic food authentication [8,
14]. In that context, it should be emphasized that apart
from the production year (as in the present work),
several other factors such as crop cultivar [44], geo-
graphical growing location [44, 45] comprising climatic
conditions and soil mineralogy, post-harvest handling
[46], and the range of farming methods within produc-
tion systems, among others, may influence the crop’s
metabolome and subsequently blur the ability to classify
samples according to the agricultural production system.

A combination of metabolomics-derived biomarkers and
data from other analytical techniques, such as elemental fin-
gerprint analysis [22] or stable isotope analysis [47], could
probably enhance the reliability of organic food
authentications.

Conclusions

We conclude that the chemical composition at the metab-
olome level of white cabbage grown in a controlled long-
term field trial is influenced by organic vs conventional
farming practices in a manner that is retained between
production years. This adds to the growing number of
reports on effects of organic vs conventional production
systems on the chemical composition of crops. By mea-
suring approximately 1,600 compounds by untargeted
metabolomics, we found a systematic influence of the
production system on the crop’s chemical composition.
This suggests that metabolomics (or metabolomics-
derived biomarkers) could potentially be suitable for au-
thenticating the agricultural origin of organic products,
possibly as a complement to other analytical techniques.
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