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Abstract

Background Data collected for medical, filing and

administrative purposes in electronic patient records

(EPRs) represent a rich source of individualised clinical

data, which has great potential for improved detection of

patients experiencing adverse drug reactions (ADRs),

across all approved drugs and across all indication areas.

Objectives The aim of this study was to take advantage of

techniques for temporal data mining of EPRs in order to

detect ADRs in a patient- and dose-specific manner.

Methods We used a psychiatric hospital’s EPR system

to investigate undesired drug effects. Within one work-

flow the method identified patient-specific adverse events

(AEs) and links these to specific drugs and dosages in a

temporal manner, based on integration of text mining

results and structured data. The structured data contained

precise information on drug identity, dosage and

strength.

Results When applying the method to the 3,394

patients in the cohort, we identified AEs linked with a

drug in 2,402 patients (70.8 %). Of the 43,528 patient-

specific drug substances prescribed, 14,736 (33.9 %)

were linked with AEs. From these links we identified

multiple ADRs (p \ 0.05) and found them to occur at

similar frequencies, as stated by the manufacturer and in

the literature. We showed that drugs displaying similar

ADR profiles share targets, and we compared submitted

spontaneous AE reports with our findings. For nine of

the ten most prescribed antipsychotics in the patient

population, larger doses were prescribed to sedated

patients than non-sedated patients; five patients exhibited

a significant difference (p \ 0.05). Finally, we present

Key Points

Temporal data mining of patient-specific notes

stored in electronic patient record (EPR) systems can

be used for pharmacovigilance in a clinical, multi-

diseased and polypharmacy population.

Structured and unstructured data accumulated in the

EPRs permits dose-specific monitoring of adverse

drug reactions (ADRs) and observations of patients

affected by ADRs in the actual clinical setting.

High throughput analysis of the data already

collected in EPRs by healthcare providers can be

used to verify suspected correlations, as well as

suggest novel likely correlations between drugs and

adverse events.
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two cases (p \ 0.05) identified by the workflow. The

method identified the potentially fatal AE QT prolonga-

tion caused by methadone, and a non-described likely

ADR between levomepromazine and nightmares found

among the hundreds of identified novel links between

drugs and AEs (p \ 0.05).

Conclusions The developed method can be used to

extract dose-dependent ADR information from already

collected EPR data. Large-scale AE extraction from

EPRs may complement or even replace current drug

safety monitoring methods in the future, reducing or

eliminating manual reporting and enabling much faster

ADR detection.

1 Introduction

Despite increasing knowledge and prevention methods,

adverse drug reactions (ADRs) continue to impact a large

part of the patient population [1, 2], leading to hospitali-

sations and substantial healthcare expenses [3, 4]. Several

of these noxious and unintended responses, occurring at

normal doses [5], have been identified after approved drugs

were introduced on the market, in some cases resulting in

serious harm and ultimately in drugs being withdrawn [6].

This highlights that drug safety cannot be fully assessed

solely through the preclinical [7] and clinical stages [8].

Clinical trials only expose a limited number of subjects in

selected groups, are often underpowered to identify all

ADRs, and the limited time window often prevents iden-

tification of ADRs with late onset [8]. Thus post-approval

surveillance is an essential part of every drug’s lifecycle.

Additionally, observational data, where co-morbidities and

concomitant drug use are present, has been suggested to

represent a better measurement of harms experienced by

actual patients in comparison to data collected from clini-

cal trials [9].

For the past 40 years, medical product agencies have

relied heavily on spontaneous reporting systems for post-

approval drug safety surveillance [10–12]. Adverse events

(AEs) occurring during treatment are collected and ana-

lysed in databases such as the US FDA Adverse Event

Reporting System (FAERS) and the WHO VigiBase [13].

The aim of these analyses is to generate hypotheses of

causal relationships between drugs and AEs, referred to as

signal detection [14]. However, there are several recogni-

sed shortcomings with this scheme. The main issues are the

widespread underreporting and reporting bias largely

caused by submitters prioritising other tasks, selectively

reporting severe less-known AEs, and data quality issues

such as report duplication [8, 11, 15]. This is despite efforts

to improve reporting in several countries through tightened

legislation making suspected AE reporting mandatory [10].

Alternatively, AE relationships can be tracked in health

registries. The FDA Sentinel Initiative [12], the EU-ADR

project [16] and the Observational Medical Outcomes

Partnership [17] aim at large-scale aggregation and inte-

gration of data captured in databases. However, far from all

AE evidence is reported or captured in coded formats. It is

thus desirable to monitor AEs from the detailed clinical

observations already recorded by healthcare providers in

electronic patient records (EPRs), in particular the clinical

narratives. This is in contrast to the data stored in an

electronic health record (EHR), which consist of computer-

readable data represented according to relevant controlled

vocabularies [18].

In this study we use temporal data mining of an EPR

system to link AEs to drugs, in a multi-diseased and poly-

pharmacy population.

2 Methods

2.1 Study Population

We gained full access to the EPR system of a tertiary

Danish psychiatric hospital with free text and structured

data from 3,394 patients prescribed at least one drug

between 1998 and 2010. The patient population (electronic

supplementary material [ESM] 1) ranged from 17 to

86 years of age, mean age was 43.6 years (standard devi-

ation 12.5 years) at the midpoint of treatment, counting all

admissions for each patient as one single period. The

male:female ratio was 2:1. The average total clinical nar-

rative was 66,000 words and 1,400 notes per patient; this

high number is related to the nature of this patient popu-

lation. Communication plays an even more vital role in

diagnosis and treatment planning within psychiatry com-

pared with other medical specialties.

2.2 Temporal Data Mining

The overall strategy of our approach is to combine struc-

tured prescription data with AEs extracted from clinical

notes to identify AEs occurring between drug introduction

and discontinuation (Fig. 1). The approach is enabled by

the time-stamped arrangement of both the structured and

unstructured data. All AEs were passed through filters to

discard AEs within text passages with words suggesting

that the mentioned AE did not happen, affected someone

else or happened in the past [19]. To eliminate pre-existing

conditions, we filtered out all AEs present prior to drug

introduction or coincided with indications of the drug. Only

AEs retained after filtering were used for the subsequent

analyses.
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2.3 Drug Prescriptions

The structured prescription-data contains all orders made in

the hospital, meaning that all prescriptions are stored in the

electronic records. We extracted the drug identity, the total

daily dose, as well as the times of introduction and dis-

continuation for each prescription, including premature

discontinuation of a prescribed drug not necessarily being

the same as the last treatment day on the original pre-

scription. The total daily dose was calculated for each

treatment day, including all prescriptions and allowing

changes in dosing to be accounted for. Depot formulations

were considered continuously over the whole dosing

period.

2.4 Adverse Event (AE) and Drug Name Identification

It has previously been shown that investigation of clinical

narratives can give an up to fourfold boost in the number of

unique diagnoses associated with each patient [20], when

comparing to assigned International Classification of Dis-

eases (ICD) 10 codes. Considering that only a subset of the

data is available in coded formats and that many code

formats are not designed for AE investigation, it is desir-

able to detect AE in clinical narratives.

We have previously developed a method for identifica-

tion of possible AEs in unstructured clinical narrative text

[19]. The method is based on a named entity recognition

(NER) tagger, which identifies matches in the clinical text

to a dictionary of drug-related AEs. It takes into account

alternative spelling, synonyms and inflectional variants,

which are merged and treated as the same AE. Moreover,

anatomical structures are linked, so that cell types and

tissues are merged to larger anatomical structures, e.g.

hepatocellular damage and liver damage. Together these

features allow for appropriate grouping of effects. The

current version has been improved to handle more than

4 9 1012 different ways of writing descriptions of drug

related AEs. A negation and other negatives filtering step

removes disqualified concepts. This includes negations or

mentions of other subjects. Furthermore, information about

undesirable effects given from the prescriber or AE

descriptions from the past that are disqualified for temporal

reasons as these occurred at some other time point were

filtered in a similar manner.

Understanding the complexity of AE descriptions

requires interpretation of clinical narratives. We therefore

merged terms that are not necessarily synonyms but have the

same medical implication, e.g. kidney failure and elevated

creatinine (ESM 2). We also extended the method with trade

Fig. 1 AE extraction and data integration. AEs were extracted between drug introduction and discontinuation, where we filtered out AEs if the

text in the clinical note suggests it did not happen, affected someone else or happened in the past. Additionally, we filtered all indications of the

drug and ADRs related to additional drugs. Finally, all pre-existing conditions were removed. Remaining AEs were sorted into ADRs and

possible ADRs; the latter was presented for manual review. ADR adverse drug reaction, AE adverse event, EPR electronic patient record, SPC

Summary of Product Characteristics
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names and generic names of all drugs authorised in Den-

mark, including likely spelling variants and misspellings

based on the interchangeable characters, phonetic similarity,

and endings. For all subsequent analyses we considered

drugs with the same active substance as a single drug. We

used the Anatomical Therapeutic Chemical (ATC) classifi-

cation system [21] to group drugs into classes. To assess how

well this method performed, we manually curated 200 ran-

domly selected clinical notes, according to a previously

described method [19]. On this set, the method identified

possible AE words and drugs with a 75 % recall (sensitivity)

and 95 % precision (positive predictive value).

2.5 AE Filtering

When an AE is mentioned in the clinical narrative it does

not necessarily imply that the patient experienced the AE.

Prescribers are required to document that they have

informed patients about the ADRs they may experience.

Also, AEs and indications overlap, meaning that the

mentioned AE may be the very reason why the patient

received the drug.

We used a set of filters to address these and other

complications (Fig. 1). First, we considered only AEs if

they were mentioned at least 1 day after drug introduction.

The only exception was anaphylaxis, which we recorded on

the introduction day. The first day was excluded in order to

reduce errors in AE detection originating from the pre-

scribers’ information about the treatment risks. Second, we

used linguistic filters described elsewhere [19] to disqualify

AEs in text passages with negations, words suggesting that

the mentioned AE did not happen, affected other subjects,

described previously experienced events or information

about ADRs. In this way we were able to filter out AEs

recorded on a particular date, taking into account previ-

ously experienced AEs or AEs that might occur in the

future. We similarly disregarded AEs from sentences that

mentioned two or more drugs as this implied information

was given to the patient from a healthcare provider or

implied a medical history about the patient. Third, we fil-

tered out indications listed in the official product docu-

mentation required within the EU, namely the Summary of

Product Characteristics (SPCs) [22, 23]. We used the SPCs

as of 4 November 2011, combined indications for all drugs

containing the same active substance to eliminate manu-

facturer-specific differences, and manually added certain

off-label uses. Additionally, the filtering was extended to

disqualify contraindications and secondary effects of the

indication to the drug in question. Fourth, we filtered AEs

on the first treatment day of any additional drug introduced

coinciding with its ADRs. Finally, we also filtered out pre-

existing conditions that were not indications of the drug,

but were mentioned within the last 14 days before the drug

was prescribed. Different time intervals between 1 to

4 weeks were analysed.

2.6 Statistical Analyses, Frequencies and Adverse

Drug Reaction (ADR) Characteristics

Next, we used a statistical approach to identify possible

causal links between drugs and AEs, building upon

counting the extracted and merged AEs once per patient

and drug.

Two confidence levels were used for drug–AE pairs.

The lower level included all AEs identified throughout the

entire treatment period. The higher level further requires

within-sentence co-occurrence of the AE and the same

drug as is in the prescription, and was used in all calcu-

lations except for dose–ADR relationship.

All AEs were assigned to a 2 9 2 contingency table

[14], consisting of patients on drug X or not, and patients

experiencing AE Y or not. We tested each drug–AE pair

for statistically significant overrepresentation using one-

sided Fisher’s exact test, and used the Benjamini–Hoch-

berg procedure to control the false discovery rate (FDR)

using a threshold of 5 %. Furthermore, the odds ratio (OR)

and the proportional reporting ratio (PRR) were calculated.

Additionally, a value corrected by matching for gender and

age was calculated for all drug–AE pairs. Each of the

statistically significant drug–AE pairs was compared with

the ADRs listed in the ‘undesirable effects’ section of the

SPC of the drug. In case of multiple drugs with the same

active substances, we included the ADRs from all the

SPCs, thereby eliminating product differences. AEs not

identified as known ADRs, and therefore not known for the

drug in question, were classified as possible ADRs for

further manual review (Fig. 1). Here, comorbidities, con-

comitant drugs and other factors such as biological plau-

sibility can be assessed.

Absolute frequencies, defined as the proportion of

patients treated with a certain drug who are affected by a

specific AE, were calculated from structured drug-pre-

scription data and AEs identified in the clinical narratives.

We also calculated the relative frequencies, defined as the

proportion that a specific AE makes up of all reported AEs

for a drug.

From the statistically significantly overrepresented

ADRs, we calculated the ADR profile similarity for any

two drugs using the Jaccard similarity coefficient. This

resulted in a drug network based on ADR profile similarity

identified in our study population.

To investigate dose–ADR relationships, we included

events in the first continuous steady dosage interval,

between introduction and discontinuation, in patients pre-

scribed the drug for at least 5 and 10 days (also including

patients in the 5-day observation period). Only standing
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oral orders were considered and patients on depot formu-

lations were excluded. The dose distributions prescribed

non-sedated and sedated patients for each interval were

analysed for statistically significant differences using the

two-sided t-test.

3 Results

By integrating text mining results and structured data in a

temporal manner, we were able to identify AEs docu-

mented in the hospital’s EPR system and link these AEs

with the drugs used.

3.1 Drug Fingerprint and AEs Linked to Drugs

The distribution and prescription patterns were examined

and revealed a median usage of 14.5 drug substances over

the study period (Fig. 2a). Only ten drugs were prescribed

to more than 1,000 patients. To give an overview, we

summarise the drug prescriptions as a network that cap-

tures how often drugs from a given class are prescribed and

how often drugs from two different classes are prescribed

to the same patient (Fig. 2b).

Of the 3,394 patients prescribed at least one drug, our

method found AEs in 2,402 patients (70.8 %). In total, of

the 43,528 patient-specific drug substances prescribed in

the study we identified 14,736 (33.9 %) AEs linked to a

drug. Of these, 47 % were linked to antipsychotics (N05A),

13 % to drugs used in addictive disorders (N07B), and 9 %

to antiepileptics (N03A). The classes with the highest

average AEs per prescription were psychostimulants,

agents used for ADHD and nootropics (N06B) [1.13

AEs/prescription], antipsychotics (N05A) [0.88 AEs/pre-

scription] and drugs used in addictive disorders (N07B)

[0.76 AEs/prescription]. In total 2,104 statistically signifi-

cantly overrepresented drug–AE pairs were extracted, and

1,252 corrected drug–AE pairs were significant.

We further analysed the data for sensitive patients. Of

the patients where we found an AE, 26 (1.1 %) patients

experienced the same AE for three or more drugs. In the

analysis we found 48 (2.0 %) patients were associated with

more than ten AEs to a single drug.

3.2 Extracted ADR Frequencies

Based on the extracted ADRs from the clinical texts and

the structured prescription data, we calculated the fre-

quency with which a specific ADR occurred. We compared

the absolute frequencies of the 150 most statistically

overrepresented extracted ADRs prescribed to more than

ten patients with the manufacturer-stated frequencies

(Fig. 3). Only 11 were omitted as they had frequencies

\1/1,000 according to the SPC, but in our data prescribed

to 328 patients or less. Compared with the SPCs, we esti-

mate common ADRs to occur at similar frequencies, very

common ADRs slightly lower, and uncommon ADRs

slightly higher.

We further compared the findings of our method with

suspected AEs that had been reported to the Danish Med-

icines Agency (now the Danish Health and Medicines

Authority) [ESM 3], showing we can extract more AEs

statistically significantly associated with a particular drug

in a single hospital than reports in the database for the same

drug.

In addition to the comparison between AE–drug pairs

identified by our method and ADRs stated in the SPCs used

to identify known correlations, we also compared our

results with unlikely associations [24]. This second com-

parison showed that none of the ‘negative control’ asso-

ciations were identified by our method.

3.3 ADR Profiles

Placing the drugs in a network based on their actual

ADR profiles demonstrated that drugs with similar indi-

cations tend to group together, and have similar ADR

profiles (Fig. 4), which was expected because in many

cases they also have common targets [25]. For example,

this is the case for psycholeptics (N05A) and psychoan-

aleptics (N06A). Drugs with similar active substances but

different indications also group together (e.g. opioids).

Finally, there are examples of drugs that have similar

ADR profiles despite neither having similar indication

nor being chemically similar, e.g. laxatives (A06A) and

antibacterials for systemic use (J01). The contrast being

antiepileptics (N03) displaying diverse profiles, not

unexpected since antiepileptics are known to vary in

terms of ADRs [26].

3.4 Dose–ADR Relationship

To test if events where patients experiencing a certain ADR

were related to drug dosage, we focused on the most fre-

quently identified AE, namely sedation, which was asso-

ciated with 940 patients. As many antipsychotics cause

sedation [27–29], we selected the ten most prescribed an-

tipsychotics in the cohort for investigating dose–ADR

relationships. For the first steady dosage exceeding 5 and

10 days, the dose distribution of non-sedated and sedated

patients were compared (Table 1). For all drugs except

haloperidol, the groups that experienced sedation had a

higher mean dose compared with the groups that did not.

The 5-day period displayed a statistically significant dif-

ference in four drugs, which rose to five drugs in the 10-day

period.
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(a)

(b)

Fig. 2 Patient population. a Distribution of unique recorded drug substance prescriptions per patient and average proportions of first-level ATC

group prescription. The total number of drug substances prescribed to a patient throughout the study (x-axis) and the proportions of drug classes

prescribed to the patients prescribed this number of drug substances (y-axis). Anesthetics (N01) and analgesics (N02) are separated from nervous

system (N), permitting illustration of psychiatric drug prescription. b Within-patient drug prescription between second-level ATC groups. Nodes

represent the second-level ATC, sizes, the amount prescribed and colour of the anatomical main group. Edges show within-patient drug

prescription between second-level ATC groups, while darker edges indicate more frequent co-administration or within-patient prescription. ATC

Anatomical Therapeutic Chemical
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3.5 Cases of Severe and Likely ADRs

The vast majority of the ADRs we identified and quantified

were of a less severe nature, but we also associated drugs

with potentially fatal AEs. We identified three patient cases

(0.8 %) of methadone-associated QT interval prolongation

[30, 31] of the 392 patients in methadone treatment

(p = 0.008; FDR = 0.02), verified by manual chart

review.

The most significant, not documented correlation

(p \ 0.001; FDR \ 0.001) was between levomepromazine

and nightmares, which is not listed as an ADR in the SPC

but still represents a plausible and probable effect of anti-

psychotics [32]. We found nightmares occurring in 4 of

523 patients (0.8 %), verified by manual chart review. In

this analysis, we excluded any nightmares occurring during

concurrent treatment with any known nightmare-inducing

drug. These drugs were extracted from the Danish SPCs.

The existence of such correlation was previously suspected

by some of the hospital’s clinical psychiatry staff. Baseline

patient characteristics are retained from the cohort, which

is essentially heavily treated with psychiatric drugs.

4 Discussion

Through this analysis we were able to identify thousands of

described ADRs, to suggest non-described likely ADR

correlations, and to recapitulate many of the known char-

acteristics of drugs and ADRs in a patient-specific manner.

The described method demonstrates an individualised

model for drug safety monitoring based on the rich data

already collected by healthcare providers. In contrast to

earlier work [33], for the first time we identified ADRs in a

dose-specific manner by integrating prescribed exposure

from structured data and unstructured clinical narrative

text. A key feature that makes this possible is that we

merge terms that have the same anatomical location or

medical implication, even if they are not merely alternative

spelling variants. We demonstrate the potential on a psy-

chiatric cohort, a population with higher frequency of

ADRs than other specialties [34], but our method is not

specific for this domain and therefore also extends into

other medical specialties. In addition, neither is the

approach language-specific as the ADR dictionaries may

be replaced with dictionaries based on other languages.

The links between drugs and AEs are uncovered in a

high-throughput manner from raw clinical information that

requires essentially no extra work for professionals in the

healthcare system and could eventually reduce the burden

of submitting spontaneous reports. Additionally, time and

phenotypic data loss is minimised as no information has to

be rewritten, transferred, transformed or coded into a sep-

arate database [13, 16, 35]. The linking is done by inves-

tigating actual clinical data, which differ many times from

the artificial conditions of a clinical trial, where co-mor-

bidities and concomitant drug treatments are normally

excluded.

Due to the limited number of subjects in the cohort and

the large number of different drugs prescribed, the number

of individuals prescribed each drug only sometimes

reaches the number of participants in a phase III clinical

trial [13]. Despite this, we were able to identify thousands

of statistically significant links between drugs and AEs, and

in many cases even estimate their frequencies close to

those listed in the SPCs. We extracted lower frequencies of

very common ADRs, possibly explained by these being so

common the clinician never records them. On the other

hand, we estimate slightly higher frequencies for the most

significant rare (C1/10,000 to \1/1,000) and very rare

(\1/10,000) ADRs. We cannot conclude if the frequencies

listed in the SPC should be higher because too few patients

were prescribed these drugs to compare them with the

frequencies listed in the SPCs. Furthermore, the observed

difference is possibly explained by the fact that the study

population includes chronic and hospitalised patients,

sometimes with extreme polypharmacy and doses. With

Fig. 3 ADR frequency comparison. Absolute frequency comparison

between the most statistically significant extracted ADRs at least

prescribed to ten patients and the manufacturer listed. ADR adverse

drug reaction, EPR electronic patient record
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that said, our method might show the clinical reality better

and therefore the frequencies differ from the carefully

selected patients included in a clinical trial and presented in

the SPCs.

Our method could also be used for discovering very rare

ADRs, which are notoriously hard to identify in smaller

studies such as most randomised clinical trials [36]. In this

relation, nationwide EPR systems could be of interest,

indisputably providing a larger study population, but still

permit individual drug response observations. Moreover,

the method has no constraints preventing integration into

efforts such as the FDA Sentinel Initiative [12] where

sensitive data is not transferred outside the originating

organisation.

The dose difference between groups unaffected and

affected by a particular ADR could possibly point at dose

limits that should not be exceeded if it is desirable to

prevent a certain ADR, thereby individualising the treat-

ment for each patient. Haloperidol, which has been asso-

ciated with less sedative effects [27], is the only drug

where the non-sedated proportion is given a larger mean

dose. This is possibly explained by the prominent extra-

pyramidal symptoms associated with an increase in halo-

peridol dose, resulting in a reduction in attention to

sedation compared with the other notable effects, as these

increased with dose increments. Comparing our results

with the tolerability of antipsychotics, similar patterns are

revealed [37]. Substances displaying a higher proportion of

sedated patients, such as ziprasidone, also display more

sedation compared with placebo; similarly haloperidol and

aripiprazole show a lower proportion of sedated patients in

our study, as well as less sedation compared with placebo

in the study by Leucht et al. [37] The sedative profile of

chlorprothixene seen in the investigation might be the real

Fig. 4 ADR-profile network. Condensed force-directed ADR-profile network, represented by the 500 largest Jaccard similarity coefficient

values. Nodes depict drug substances, identified by the fifth-level ATC code, sizes indicate the number of ADRs detected. Subgroups of the ATC

group Nervous system (N), are given separate colours, except for grey, which symbolises all other drug substances. Edges display ADR profile

similarity, while darker edge indicates higher similarity. ADR adverse drug reaction, ATC Anatomical Therapeutic Chemical classification

system
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indication for many prescriptions of this drug. The decision

to prescribe chlorprothixene very likely involves its seda-

tive effects, despite it not being stated in the prescription

decision. This is showing another quality of the method.

It is most likely that further fine-tuning of the extraction

of information would present further possibilities of cor-

recting for additional confounding factors to a future ana-

lysis. This also applies to the construction and usage of

EPR systems, which are constantly becoming more

advanced, interconnected and information-rich.

Any drug–AE pair the method identifies as statistically

overrepresented and which is not previously known to be

associated, is presented for manual review. This output

occasionally contains trivial correlations and we recognise

the value of further improvements limiting the output,

potentially by a similar method, as suggested by Tatonetti

et al. [38]. Alternatively, the output could also simply be

analysed in a similar way as spontaneous reports, generating

signals validated in a separate investigation [5, 10, 13].

One aspect we are not investigating is patient self-

administered drugs and drugs used prior to admission, as

we do not have information on this. These drugs can

potentially cause effects that we interpret as AEs and link

to another drug, although they are unlikely to give rise to

statistically significantly overrepresented ADRs. Another

limitation is the non-perfect extraction from the narratives,

where more advanced linguistic techniques would likely

improve the performance of the method. There is also a

risk of AEs never being recorded in the first place, but this

type of error would most likely affect less severe AEs. Due

Table 1 Non-sedated and sedated patients taking antipsychotic drugs

Drug\stable dose period 5 days 10 days

No sedation Sedation p-value No sedation Sedation p-value

Chlorprothixene

Mean dose 92.56 122.67 0.005 94.14 121.14 0.003

n (%) 621 (82) 133 (18) 485 (70) 211 (30)

Olanzapine

Mean dose 14.32 18.33 0.01 14.07 17.28 0.005

n (%) 569 (83) 117 (17) 466 (71) 191 (29)

Clozapine

Mean dose 263.63 354.49 0.04 268.79 377.05 0.003

n (%) 188 (83) 39 (17) 163 (73) 61 (27)

Quetiapine

Mean dose 255.55 325.11 0.03 272.14 332.84 0.02

n (%) 545 (81) 127 (19) 480 (73) 177 (27)

Risperidone

Mean dose 2.68 2.97 0.22 2.80 2.96 0.38

n (%) 329 (82) 74 (18) 275 (72) 106 (28)

Levomepromazine

Mean dose 69.87 98.31 0.14 69.87 88.44 0.25

n (%) 139 (80) 34 (20) 114 (70) 48 (30)

Zuclopenthixol

Mean dose 10.58 13.83 0.16 11.60 12.00 0.82

n (%) 212 (88) 29 (12) 173 (77) 51 (23)

Haloperidol

Mean dose 7.90 4.04 0.007 7.81 6.08 0.31

n (%) 89 (88) 12 (12) 70 (80) 18 (20)

Aripiprazole

Mean dose 12.84 13.95 0.54 13.59 15.02 0.30

n (%) 219 (86) 37 (14) 192 (77) 56 (23)

Ziprasidone

Mean dose 94.17 118.82 0.09 101.28 125.00 0.04

n (%) 127 (79) 34 (21) 109 (73) 40 (27)

Distribution of non-sedated and sedated patients during the first stable dosage interval of 5 and 10 days after drug introduction. The ten most

prescribed antipsychotics in descending number of total prescriptions in the study population
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to the filtering of identified possible AEs, we are not able to

find AEs identical to the indication and are thus not able to

identify deterioration in the original treatment cause. We

are currently filtering sentences containing two or more

drugs, which limits the risk of falsely linking an AE to a

drug. It also reduces the possibility of detecting drug–drug

interactions, which in any case is not our aim with this

study. Furthermore, we do not investigate late effects

appearing after drug discontinuation.

5 Conclusions

Not only do we present a high-throughput method to

identify AE correlations in noisy real clinical data, but we

also display the clinical research potential of the under-

exploited asset EPRs represent. For the first time, temporal

data mining of an EPR system is used to identify ADRs and

enable drug safety monitoring in a dose-specific manner by

integrating structured exposure data and unstructured

clinical narrative text. Our method utilises an individua-

lised model to harness highly detailed phenotypic data

already collected by healthcare providers. This type of

method may limit the critical time before a serious ADR is

identified after market introduction, thereby preventing

morbidity and mortality in the population. The described

method, in combination with future advances of clinical

tools, could provide the prescriber with real-time decision

support, highlighting possible AEs a patient is having or

has experienced.
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