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Abstract 21 

This paper aims to provide an enhanced understanding of the parameter sensitivities 22 

of the Soil and Water Assessment Tool (SWAT) using a variance-based global 23 

sensitivity analysis, i.e., Sobol′’s method. The Yichun River Basin, China, is used as a 24 

case study, and the sensitivity of the SWAT parameters is analyzed under typical dry, 25 

normal and wet years, respectively. To reduce the number of model parameters, some 26 

spatial model parameters are grouped in terms of data availability and multipliers are 27 

then applied to parameter groups, reflecting spatial variation in the distributed SWAT 28 

model. The SWAT model performance is represented using two statistical metrics - 29 

Root Mean Square Error (RMSE) and Nash-Sutcliffe Efficiency (NSE) and two 30 

hydrological metrics – RunOff Coefficient Error (ROCE) and Slope of the Flow 31 

Duration Curve Error (SFDCE). The analysis reveals the individual effects of each 32 

parameter and its interactions with other parameters. Parameter interactions contribute 33 

to a significant portion of the variation in all metrics considered under moderate and 34 

wet years. In particular, the variation in the two hydrological metrics is dominated by 35 

the interactions, illustrating the necessity of choosing a global sensitivity analysis 36 

method that is able to consider interactions in the SWAT model identification process. 37 

In the dry year, however, the individual effects control the variation in the other three 38 

metrics except SFDCE. Further, the two statistical metrics fail to identify the SWAT 39 

parameters that control the flashiness (i.e., variability of mid-flows) and overall water 40 

balance. Overall, the results obtained from the global sensitivity analysis provide an 41 

in-depth understanding of the underlying hydrological processes under different 42 

metrics and climatic conditions in the case study catchment. 43 
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1. Introduction 47 

Distributed hydrological models have gained increasing attention in recent years due 48 

to the increasing availability of spatially distributed data and advances in computing 49 

power (Beven and Kirkby, 1979; Abbott et al., 1986; Boyle et al., 2001; Panday and 50 

Huyakorn, 2004; Duffy, 2004). These models have been applied to advance scientific 51 

understanding of underlying hydrological processes, analyse the potential impacts of 52 

land use and climate change, and develop water quantity and quality management 53 

options for informed decision making (e.g., Beven and Binley, 1992; Tang et al., 54 

2007a). 55 

The Soil and Water Assessment Tool (SWAT) is a particular example of complex, 56 

spatially distributed hydrological models (Arnold et al., 1993). To determine the most 57 

influential parameters of a SWAT model, the Latin Hypercube-One factor At a Time 58 

(LH-OAT) algorithm is often applied, as this method is incorporated in SWAT (van 59 

Griensven et al., 2006). The LH-OAT method provides an estimation of the 60 

parameters’ ranking according to their influence on the model output. However, it 61 

does not provide an estimation of the proportion of the total influence that one 62 

parameter has on the output, nor its interactions with other parameters. Therefore, this 63 

method might not be able to identify some influential parameters, whose effects are 64 

mainly from interactions with other parameters. 65 

Sobol′’s method is a global sensitivity analysis method and is able to provide the 66 

impacts of each parameter and its interactions with other parameters on the model 67 

output (Sobol′, 1993). Recently Sobol′’s method has become increasingly popular in 68 

hydrological modeling due to its ability to incorporate parameter interactions and the 69 

relatively straightforward interpretation of its indices (e.g., Pappenberger et al., 2008; 70 

van Werkhoven et al., 2008; Yang, 2011; Fu et al., 2012). Tang et al. (2007b) 71 



  

comprehensively compared Sobol′’s method with three other sensitivity analysis tools 72 

including the Parameter Estimation Software (PEST) (Doherty, 2004), Regional 73 

Sensitivity Analysis (RSA) (Young, 1978; Hornberger and Spear, 1981), and Analysis 74 

of Variance (ANOVA) (Neter et al., 1996; Mokhtari and Frey, 2005). They found that 75 

Sobol′’s method is the most effective approach to globally characterize single- and 76 

multi-parameter interactive sensitivities for lumped watershed models. Build on this 77 

prior study, Tang et al. (2007a) used Sobol′’s method to a distributed hydrological 78 

watershed model termed as the Hydrology Laboratory Research Distributed 79 

Hydrologic Model (HL-RDHM), and the sensitivity analysis results obtained 80 

demonstrated that the method provides robust sensitivity rankings and that these 81 

rankings could be used to significantly reduce the number of parameters when 82 

calibrating the HL-RDHM. Further, Wagener et al. (2009) highlighted the importance 83 

of using multiple performance metrics to analyse the sensitivities of a distributed 84 

hydrological model using the Sobol′’s method. 85 

More recently the Sobol′’s sensitivity analysis method has been applied to SWAT 86 

(e.g., Cibin et al., 2009; Nossent et al., 2011). Cibin et al. (2009) used Sobol′’s method 87 

to analyse the sensitivities of SWAT models for two watersheds with different climatic 88 

settings and flow regimes, by considering each parameter’s individual contribution 89 

(first order index) and the total contribution (total order index) to the model output in 90 

terms of two commonly used statistical metrics, i.e., Root Mean Square Error (RMSE) 91 

and Nash-Sutcliffe Efficiency (NSE). The results indicated that modeled stream flows 92 

show varying sensitivity to parameters in different climatic settings and flow regimes. 93 

Nossent et al. (2011) presented a Sobol′’s sensitivity analysis for a SWAT model of the 94 

Kleine Nete River watershed, Belgium, by analyzing the first order, second order and 95 

total sensitivity effects of model parameters on one single model performance metric - 96 



  

NSE. The results indicated that the curve number factor is the most important 97 

parameter of the model and that no more than 9 parameters (out of 26) are needed to 98 

have an adequate representation of the model variability. It is also shown that there are 99 

significant interactions between three pairs of variables, which otherwise cannot be 100 

revealed by other methods only analyzing the impacts of individual parameters. The 101 

prior researches have demonstrated the benefits of Sobol′’s method in identification of 102 

SWAT models, but are limited in analyzing multiple model performance metrics (such 103 

as hydrological metrics) and discussing the detailed interactions between model 104 

parameters. 105 

In this paper, Sobol′’s method is used to perform a detailed sensitivity analysis 106 

for a SWAT model of Yichun River Basin, China, by analyzing the individual effects 107 

of each parameter and its interactions with other parameters on the model output 108 

regarding four different metrics: RMSE, NSE, runoff coefficient error (ROCE) and 109 

slope of the flow duration curve error (SFDCE). Further, the model parameter 110 

sensitivities are evaluated for wet, moderate, and dry years with the intent of 111 

identifying the key parameters and parameter interactions under different climate 112 

conditions. The results from this study provide an in-depth understanding of the 113 

sensitivity of the SWAT parameters and highlight the significance of the interactions 114 

between model parameters. In addition, this paper also shows the effectiveness of the 115 

variance-based Sobol′’s method in sensitivity analysis of SWAT models. 116 

 117 

2. Methodology 118 

2.1 Overview of SWAT Model 119 

The SWAT model is a catchment-scale distributed hydrological model developed by 120 

the Agricultural Research Service of the United States Department of Agriculture 121 



  

(Arnold et al., 1998). The model is based on physical processes and is capable of 122 

continuous simulation over long time periods. SWAT was developed with an aim to 123 

predict the impact of land management practices on water, sediment and agriculture 124 

chemical yields in large complex watersheds with varying soils, land use and 125 

management conditions over long periods of time. The model is a catchment-scale 126 

dynamic simulation model and thus can use the spatial information provided by 127 

Geographic Information System and Remote Sensing to simulate a number of 128 

hydrological response units. SWAT was designed as a long-term yield model. 129 

Although the model can be run at a daily time step when the Soil Conservation 130 

Service (SCS) curve number method is used to calculate surface runoff, the simulation 131 

results can be reported on a daily, monthly or yearly basis. It is not designed to 132 

accurately simulate detailed, single-event flood routing (Neitsch et al., 2001). 133 

The SWAT model has been widely used to evaluate the impact of climate, land 134 

use, and land management decisions on stream flow and water quality, and gained 135 

international recognition as is evidenced by a large number of applications of this 136 

model (Arnold et al., 1998; Arnold and Fohrer, 2005; Confesor and Whittaker, 2007; 137 

Zhang et al., 2008; Anand et al., 2007; Gassman et al., 2007). Take China as a 138 

particular example, the SWAT applications include the Heihe Basin (Huang and 139 

Zhang, 2004; Wang et al., 2003), the Luohe Watershed (Zhang et al., 2003a and b), the 140 

Yuzhou Reservoir Basin (Zhang et al., 2004), the Luxi Watershed (Hu et al., 2003), 141 

the Huai River Basin (Wang and Xia, 2010), the Biliu River Basin (Chu et al., 2012; 142 

Zhang et al., 2012), and the Huifa River Basin (Zhang et al., 2012). However, none of 143 

the above applications includes a global sensitivity analysis to advance the 144 

understanding of the effects of model parameters on the model performance in terms 145 

of traditional model evaluation metrics (statistical error) and additional hydrological 146 



  

metrics. 147 

2.2 Sobol′’s Method 148 

Sobol′’s method (Sobol′, 1993) is a global sensitivity analysis approach based on 149 

variance decomposition. Non-linear and non-monotonic models could be represented 150 

in the following functional form: 151 

( ) ( )pXXfXfY ,,1 …==                      (1) 152 

where Y  is the goodness-of-fit metric of model output, and ( )pXXX ,,1 …=  is the 153 

parameter set. In Sobol′’s method, the total variance of function f , ( )yD , is 154 

decomposed into component variances from individual parameters and their 155 

interactions: 156 
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where iD  is the amount of variance due to the i th parameter iX , and ijD  is the 158 

amount of variance due to the interaction between parameter iX  and jX . The 159 

sensitivity of single parameter or parameter interaction, i.e. Sobol′’s sensitivity indices 160 

of different orders, is then assessed based on their percentage contribution to the total 161 

variance D : 162 

First-order index 
D
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where ~iD  is the amount of variance due to all of the parameters except for iX , iS  166 

measures the sensitivity from the main effect of iX , ijS  measures the sensitivity 167 



  

from the interactions between iX  and jX , and TiS  measures the main effect of 168 

iX  and its interactions with all the other parameters. 169 

The variances in Eq. (2) can be evaluated using approximate Monte Carlo 170 

numerical integrations, particularly when the model is highly nonlinear and complex. 171 

The Monte Carlo approximations for D , iD , ijD , and ~iD  are defined as 172 

presented in the following prior studies (Sobol′, 1993, 2001; Hall et al., 2005): 173 
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where n  is the sample size, sX  is the sampled individual in the scaled unit 180 

hypercube, and superscripts ( )a  and ( )b  represent two different samples. All of the 181 

parameters take their values from sample ( )a  are represented by ( )a
sX . The variables 182 

( )a
isX  and ( )b

isX  denote that parameter isX  uses the sampled values in sample ( )a  183 

and ( )b , respectively. The symbols ( )
( )a

siX ~  and ( )
( )b

siX ~   represent cases when all of the 184 

parameters except for isX   use the sampled values in sample ( )a  and ( )b , 185 

respectively. The symbol ( )
( )a

sjiX ,  represents parameters isX  and jsX  with sampled 186 



  

values in sample ( )a . Finally, ( )
( )b

sjiX ~,~  represents the case when all of the 187 

parameters except for isX  and jsX  utilize sampled values from sample ( )b . 188 

Although Sobol′’s method has intensive computational requirements, its 189 

sensitivity indices have been shown to be more effective than other approaches in 190 

capturing the interactions between a large number of variables for highly nonlinear 191 

models (Tang et al., 2007a and b). Building on the recommendations of Tang et al. 192 

(2007a), the Latin Hypercube sampling method (McKay et al., 1979) was used for 193 

implementing Sobol'’s method. Overall computing the first-order, second-order and 194 

total-order sensitivity indices requires ( )2+× mn   model evaluations where n  is 195 

the number of Latin Hypercube samples and m  is the number of parameters being 196 

analyzed. 197 

2.3 Latin Hypercube Sampling 198 

Monte Carlo sampling is in general robust, but may require a high number of samples 199 

and consequently a large amount of computational resources (time and disk memory). 200 

The concept of the Latin Hypercube Sampling (LHS) (McKay et al., 1979; McKay, 201 

1988) is based on the Monte Carlo Simulation but uses a stratified sampling approach 202 

that allows efficient estimation of the output statistics. LHS divides the distribution of 203 

each parameter into N  ranges, each with a probability of occurrence equal to N1 . 204 

Random values of the parameters are generated such that each range is sampled only 205 

once, that is, N  samples are generated for each parameter. The process can be 206 

repeated p  times for all the variables so that a sample of total size pN ×  is created 207 

with random sample combinations of different variables. The LHS method was 208 

chosen in this paper due to its popularity and effectiveness in hydrological and water 209 

quality modeling (Tang et al., 2007a and b; Fu et al., 2009; Fu et al., 2011). 210 



  

2.4 Bootstrap method 211 

The bootstrap method (Efron and Tibshirani, 1993) was used to provide confidence 212 

intervals for the parameter sensitivity rankings for the Sobol′’s method. Essentially, 213 

the samples generated by LHS were resampled n  times when calculating the 214 

sensitivity indices for each parameter, resulting in a distribution of the indices. The 215 

percentile method and the moment method were used for attaining the bootstrap 216 

confidence intervals. The moment method is based on large sample theory and 217 

requires a sufficiently large resampling dimension to yield symmetric 95% confidence 218 

intervals. The percentile method is very simple, but a higher number of resamples are 219 

necessary for the moment method to achieve a reliable estimate of the percentiles. The 220 

moment method can result in a poorly estimated confidence interval if the bootstrap 221 

distribution is skewed (Archer et al., 1997). 222 

 223 

3. Case Study 224 

3.1 Yichun River Basin Description 225 

The SWAT model is used to simulate the case study catchment, Yichun River Basin, 226 

China, with a daily time step. The basin boundary and the associated SWAT model 227 

sub-watershed boundaries are presented in Error! Reference source not found.. 228 

Yichun River Basin has a drainage area of 2405.7km2, and is a major tributary to the 229 

Tang-Wang River. Yichun River Basin is dominated by dark brown soils (>71%) and 230 

forest land use (>74%). There are 10 sub-watersheds defined in Yichun River Basin, 231 

where 7 rain gauges and 1 streamflow gauge are located. The Tang-Wang River is the 232 

first level tributary of the left bank of the Song-Hua River. The total length of the 233 

Tang-Wang River is approximately 509km. Its basin drains an area of 20383km2. The 234 

climate of the Tang-Wang River basin, located in the middle and high latitudes, is 235 



  

continental monsoon of cold temperate zone. The seasonal change of the Tang-Wang 236 

River basin is obvious, and the mean annual precipitation and evaporation is about 237 

617.4mm and 541mm respectively. 238 

3.2 Data Set 239 

The data requirement for SWAT modeling primarily includes: the Digital Elevation 240 

Model (DEM), the digital river network, the land use and soil data, the 241 

hydrometeorological data (precipitation, temperature, solar radiation, weed speed, 242 

relative humidity and stream flow). 243 

(1) DEM data (raster resolution: 90m×90m) were obtained from the International 244 

Scientific Data Service Platform of the Computer Network Information Center, 245 

Chinese Academy of Sciences (http://srtm.csi.cgiar.org). 246 

(2) Soil data (scale = 1:106) and land use data (scale = 1:105) for the 1980s were 247 

collected from Data Center for Resources and Environmental Sciences Chinese 248 

Academy of Sciences (RESDC, http://www.resdc.cn/). 249 

(3) Digital river network data (scale = 1:2.5×105) were obtained from 1:4M-scale 250 

Topographic Database of the National Fundamental Geographic Information System 251 

of China. 252 

(4) Daily Meteorological data (temperature, solar radiation, weed speed, relative 253 

humidity) were obtained from China Meteorological Data Sharing Service System 254 

(http://cdc.cma.gov.cn/) and presented in Table 1. 255 

(5) Daily precipitation data and stream flow data were obtained from 256 

Hydrological Administration of Heilongjiang Province and presented in Table 1. 257 

3.3 Model Setup and Parameterization 258 

To evaluate SWAT model parameter sensitivities for wet, moderate, and dry years 259 

with the intent of identifying the key parameters impacting different years (wet, 260 



  

moderate, and dry years), three scenarios are constructed: (1) daily sensitivity analysis 261 

using a wet year of observations, (2) daily sensitivity analysis using a moderate year 262 

of observations, and (3) daily sensitivity analysis using a dry year of observations. Fig. 263 

2a shows the annual precipitation time series of Yichun River Basin between 1979 264 

and 2001. Fig. 2b shows the exceedance probabilities of annual precipitation for 265 

Yichun River Basin. It can be seen that years 1982-1985 are a typical representation 266 

of the catchment climate from wet to dry, that is, year 1982 is dry, years 1983 and 267 

1984 are moderate, and year 1985 is wet. The time series of the four years’ 268 

precipitation and observed streamflow are presented in Fig. 3. 269 

The flow-related parameters of the SWAT and their ranges are listed in Table 2. 270 

These 28 model parameters impact snowmelt, surface runoff, groundwater, lateral 271 

flow and evapotranspiration predictions. The parameter ranges were based mainly on 272 

the default ranges in the SWAT2000 model documentation. 273 

Note that some SWAT model parameters in this case study are not regarded as a 274 

spatial variable but instead a constant value across all model spatial units, for example, 275 

those parameters related to snowmelt. Many other parameters such as SCS curve 276 

numbers and soil properties are spatially varied and therefore can be assigned 277 

different values for different spatial units. If all parameters of different spatial units 278 

are considered for model calibration, the total number of parameters increases to more 279 

than 100. This could significantly increase the complexity and computational 280 

requirement of a sensitivity analysis. Since the analysis in this paper is based on one 281 

monitoring location only due to data availability, thus spatially varying model 282 

parameters were not analyzed for each spatial unit. Instead, a single factor was used to 283 

represent spatial variation, by increasing or decreasing spatially varying parameter 284 

values from their base or default values. For each parameter, this approach maintains 285 



  

the relative differences in the base or default parameter values assigned to different 286 

spatial units. 287 

For each scenario, the first two months (January and February) are used as a 288 

warm up period for model simulation. And the rest of time periods in each scenario 289 

are used to assess the model’s performance in the sensitivity analysis process. 290 

3.4 Goodness-of-fit metrics 291 

The sensitivity analyses for SWAT model with Sobol′’s method consider four 292 

goodness-of-fit metrics: two statistical metrics and two hydrological metrics. This 293 

allows for a more accurate capture of model performance from different aspects. 294 

Statistical metrics focus on the hydrograph (i.e., errors and trends), while hydrological 295 

metrics focus on different functional behaviors of the basin (e.g., peakedness and flow 296 

duration curve). 297 

The two statistical metrics - root mean squared error (RMSE) and Nash-Sutcliffe 298 

Efficiency (NSE) - are used to address flow prediction errors and trends, respectively. 299 

The RMSE and NSE metrics are computed using equations (12) and (13), 300 

respectively, 301 
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=

−=
n

i
tipi QQ

n
RMSE

1

21                     (12) 302 

( )

( )∑

∑

=

=

−

−
−= n

i
tti

n

i
tipi

QQ

QQ
NSE

1

2
1

2

1                      (13) 303 

where piQ  and tiQ  are the simulated and measured flows on day i , n  is the total 304 

number of days and tQ  is the mean daily measured flows in the analyzed period. 305 

The runoff coefficient error (ROCE) and slope of the flow duration curve error 306 

(SFDCE) metrics are used to evaluate the model’s accuracy in simulating a basin’s 307 



  

water balance and flashiness (i.e., variability of mid-flows), respectively. The ROCE 308 

metric is computed as the absolute difference between the simulated and observed 309 

average annual runoff coefficient: 310 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

P
Q

P
Q

absROCE tp                      (14) 311 

where pQ   represents the simulated average annual flow and tQ   is the observed 312 

average annual flow. Both flows are normalized by the observed average annual 313 

precipitation P . 314 

The SFDCE metric is computed as the absolute error in the slope of the flow 315 

duration curve between the 30th and 70th percentiles of predicted and observed flows 316 

to measure the error of the model generated distribution of mid-range flows: 317 

⎟⎟⎠

⎞
⎜⎜⎝

⎛ −
−

−
=

4040
30,70,30,70, ttpp QQQQ

absSFDCE              (15) 318 

where 30,pQ  and 70,pQ  are the simulated 30th and 70th percentile flows within the 319 

simulated flow duration curve and 30,tQ   and 70,tQ  are the observed 30th and 70th 320 

percentile flows within the simulated flow duration curve. 321 

3.5 Sensitivity Analysis Implementation 322 

Statistical sample size is a key parameter for Sobol′’s method. Tang et al. (2007b) 323 

used a sample size of 8192 for Sobol′ analysis when considering 18 model parameters, 324 

and suggested that this number is extremely conservative. Fu et al. (2012) used a set 325 

of 2000 LHS samples for 21 parameters in a hydraulic analysis of water distribution 326 

network. Tang et al. (2007a) used a sample size of 2000 for 403 variables in a 327 

distributed hydrologic model and this number was proved sufficient to maintain the 328 

accuracy and repeatability of Sobol′ analysis. On the basis of these prior studies, a 329 



  

LHS sample size of 2000 was used in this study for all three scenarios resulting in 330 

2000×(28 + 2) = 60,000 model runs for each scenario. A comparison of results with 331 

smaller sample sizes show this sample size is sufficient and the sensitivity indices are 332 

reliable. 333 

 334 

4. Results and Discussion 335 

The first- and total-order sensitivity indices of 28 parameters are shown in Fig.4. In 336 

Fig.4, each column of panels represents one of the three scenarios: dry year (1982), 337 

moderate year (1983-1984) and wet year (1985), and each row represents one of the 338 

four metrics. In each panel, the x-axis represents parameter numbers, and y-axis 339 

represents first- and total- order sensitivity indices. The first order indices are 340 

represented by black bars, which measure individual parameter contributions to the 341 

variance of the four goodness-of-fit metrics. The total-order indices are presented by 342 

the total height of bars measuring individual and interactive parameter contributions 343 

to the variance of the four goodness-of-fit metrics. It should be noted that the grey 344 

bars measure the total interactive contribution of one parameter with all the other 345 

parameters. Fig.5 provides a detailed description of the second-order indices, i.e., the 346 

contributions of the interactions between two parameters to the variance of the four 347 

goodness-of-fit metrics in the three scenarios. Sensitive parameters are defined with a 348 

10% threshold of total order index in Fig.4, and similarly significant second-order 349 

interactions are defined with a 1% threshold in Fig.5. These thresholds are subjective 350 

and their ease-of-satisfaction decreases with increasing numbers of parameters or 351 

parameter interactions (Tang et al., 2007a and b). The main findings are analysed for 352 

each metric below. 353 



  

4.1 Statistical metrics: RMSE and NSE 354 

For the RMSE metric, there are three sensitive parameters (total order index>10%) for 355 

the 1982 dry year scenario, i.e., the lateral flow travel time (LAT_TTIME), base flow 356 

alpha factor (ALPHA_BF), and maximum canopy storage (CANMX). However, in 357 

the 1983-1984 year scenario, the metric variance is attributed to more parameters, that 358 

is, there are a total of seven parameters with a total-order index greater than 10%, 359 

including deep aquifer percolation fraction (RCHRG_DP), runoff curve number 360 

multiplicative factor (CN2), groundwater delay time (GW_DELAY), and threshold 361 

groundwater depth for return flow (GWQMN) in addition to the three parameters 362 

LAT_TTIME, ALPHA_BF, and CANMX in the dry year scenario. Similarly, in the 363 

wet year scenario, five parameters are highly sensitive with a total-order index bigger 364 

than 10%. Amongst these sensitive parameters, LAT_TTIME is the most sensitive 365 

parameter, accounting for 59%, 27%, and 36% of the total variance in the dry, 366 

moderate, and wet scenarios, respectively. The above results confirm the finding by 367 

Nossent et al. (2011) that only a small number of parameters are highly sensitive in 368 

SWAT. 369 

The amount of lateral flow discharged to the main channel on any given day is 370 

controlled by LAT_TTIME. The sensitivity of daily runoff simulations to 371 

LAT_TTIME in Yichun River Basin was expected due to lesser mean annual 372 

precipitation in the basin. The moderate and wet scenarios have smaller total-order 373 

sensitivity indices of LAT_TTIME than the dry scenario due to more precipitation. 374 

Furthermore, it should be noted that the parameters related to groundwater flow, i.e., 375 

GW_DELAY, ALPHA_BF, GWQMN, and RCHRG_DP have a more significant 376 

interactions with other parameters from a dry year 1982 through transition years 377 

1983-1984 to a wet year 1985. This is because the interactions between regional 378 



  

surface water and groundwater become more and more frequent with the increase of 379 

precipitation and water in soil profile and shallow aquifer in a wetter year. These 380 

interactions could not be revealed by using other methods such as LH-OAT. 381 

Additionally, it should be noted that first-order indices of parameters account for 382 

most proportion of their total-order indices for the 1982 dry year scenario in Yichun 383 

River Basin due to few interactions between parameters, especially the few 384 

interactions between regional surface water and groundwater, in the situations where 385 

little precipitation occurs and stream flow is generated. From dry year through 386 

moderate year to wet year, the proportions of the effects of parameter interactions on 387 

the model output to their total-order indices increase gradually, especially the 388 

parameters related to groundwater flow and having substantial interactions with 389 

surface water, e.g., ALPHA_BF and GWQMN. However, some parameters related to 390 

groundwater flow, such as GW_DELAY and RCHRG_DP, having a highly interactive 391 

effect on the model output for the 1983-1984 year scenario, have less interactive 392 

effects on the model output for the 1985 wet year scenario. The reason is that the soil 393 

and shallow aquifer have been saturated in a wetter year, and the changes of these 394 

parameter values tend to have less influence on other parameters. 395 

It is interesting to note the similarity of the sensitivity results for the two 396 

statistical metrics (RMSE and NSE) for every scenario analyzed due to their focus on 397 

addressing flow prediction errors and trends with the simulated and measured flows. 398 

4.2 Hydrological metrics: ROCE and SFDCE 399 

For the ROCE metric, there are three sensitive parameters (total order index>10%) for 400 

the 1982 dry year scenario, i.e., LAT_TTIME, CANMX, and GWQMN. In the 401 

1983-1984 year scenario, three parameters, i.e., GWQMN, RCHRG_DP, and 402 

CANMX, are highly sensitive. In the wet year scenario, three parameters, i.e., 403 



  

GWQMN, RCHRG_DP, and GW_DELAY, are highly sensitive. Amongst these 404 

sensitive parameters, LAT_TTIME is the most sensitive parameter in the dry scenario, 405 

accounting for 34% of the total variance, and GWQMN is the most sensitive 406 

parameter in the moderate and wet scenarios, accounting for 53% and 59% of the total 407 

variance, respectively. 408 

The overall parameter sensitivity for the long-term water balance metric (ROCE) 409 

is distinctly different from those statistical metrics. Rather than addressing flow 410 

prediction errors and trends with the simulated and measured flows, the model 411 

performance in terms of ROCE is controlled by parameters that affect the volume of 412 

ET losses across all watersheds, i.e., LAT_TTIME, CANMX, GWQMN, RCHRG_DP, 413 

and GW_DELAY. This result reflects the fact that these parameters largely control the 414 

volume (rather than the shape in the case of statistical metrics) of the hydrograph, 415 

which impacts the long-term water balance. In the SWAT model, ET losses occur 416 

primarily from stream flow, water intercepted by the plant canopy, water in soil 417 

profile and shallow aquifer. The amount of losses from each of the above processes 418 

depends on the demand (potential ET for that time of year) and the supply (water 419 

content of the storage). The parameters that are sensitive to the long-term water 420 

balance are those affecting not only the size of these storages (i.e., the potential 421 

volume of losses) but also the amount of water that goes into these storages. The 422 

amount of lateral flow discharged to the main channel on any given day is controlled 423 

by LAT_TTIME. The values of LAT_TTIME and CANMX are more influential on 424 

the model output as compared to the other parameters for the 1982 dry year scenario 425 

in the Yinchun River Basin because the stream flow and water intercepted by the plant 426 

canopy are effectively available for ET losses for the dry year scenario. In the 427 

moderate and wet years, the water that goes into soil profile and shallow aquifer are 428 



  

more effectively available for ET losses. Therefore, it is reasonable that GWQMN is 429 

more sensitive than other parameters, and the parameters related to groundwater flow 430 

have significant interactions with other parameters affecting stream flow for the 431 

1983-1984 year and the wet year scenarios in Yichun River Basin. Some parameters 432 

related to lateral flow and groundwater flow, such as LAT_TTIME and RCHRG_DP, 433 

have many interactive effects on the model output for the 1983-1984 year scenario 434 

similarly, however, have less interactive effects on the model output for the 1985 wet 435 

year scenario because the soil and shallow aquifer have been saturated in a wetter year, 436 

and the changes of these parameter values tend to have less influence on ET losses. 437 

For the SFDCE metric, there are six sensitive parameters (total order index>10%) 438 

for the 1982 dry year scenario, i.e., CANMX, GWQMN, GW_DELAY, LAT_TTIME, 439 

ALPHA_BF, and RCHRG_DP. In the 1983-1984 year scenario, five parameters, i.e., 440 

GWQMN, CANMX, LAT_TTIME, RCHRG_DP, and GW_DELAY, are highly 441 

sensitive. In the wet year scenario, three parameters, i.e., GWQMN, RCHRG_DP, and 442 

GW_DELAY are highly sensitive. Amongst these sensitive parameters, CANMX is 443 

the most sensitive parameter in the dry scenario, accounting for 49% of the total 444 

variance, and GWQMN is the most sensitive parameter in the moderate and wet 445 

scenarios, accounting for 37% and 76% of the total variance, respectively. 446 

It is interesting to note the similarity and difference of the sensitivity results for 447 

the two hydrological metrics (ROCE and SFDCE) for every scenario analyzed. The 448 

similarity of the sensitivity results for the two hydrological metrics is due to their 449 

common characteristics of hydrological metrics. The difference of the sensitivity 450 

results for the two hydrological metrics is due to their focuses on different functional 451 

behaviors of the basin. The metric, SFDCE, evaluates the error in the slope of the 452 

flow duration curve between the 30 and 70 percentile flow magnitudes. It thus 453 



  

captures the parameter impacts on the variability in flow magnitudes (rather than their 454 

impact on long-term runoff volume as for ROCE). Comparing sensitivities across the 455 

basin for this metric, it is seen that the ET controlling parameters (CANMX and 456 

GWQMN) again become sensitive for SFDCE as they do for ROCE. However, the 457 

number of sensitive parameters for SFDCE is larger than that for ROCE and more 458 

interactions between parameters in the 1982 dry year scenario, e.g., the interactive 459 

effects of GWQMN with great influences on the interactions between groundwater 460 

flow and stream flow, and the number of sensitive parameters for SFDCE is less with 461 

the increase of precipitation for the 1983-1984 year and the 1985 wet year scenarios 462 

because the SFDCE metric is computed to capture the parameter sensitivities for the 463 

30-70 percentile range of flows, i.e., the sensitivities of the parameters more 464 

frequently ‘activated’ over the 30-70 percentile range of flows. Wagener et al. (2009) 465 

found that the sensitivities of hydrological metrics are more evenly distributed to 466 

model parameters compared to the two statistical metrics under a single rainfall event. 467 

However in this case study the same finding is revealed for the dry year only and is 468 

not shown for the moderate and wet years. This highlights the importance of 469 

considering different climate conditions in analyzing the sensitivities of model 470 

parameters. 471 

The Sobol′'s sensitivity indices can have a high degree of uncertainty due to the 472 

difficulty in numerical approximation (Tang et al., 2007a & b). In this study, we used 473 

statistical bootstrapping to provide 95% confidence intervals for Sobol′'s method. 474 

Figure 4 provides the confidence intervals for the total-order indices computed for 475 

different metrics in the three climate scenarios. It can be seen from Figure 4 that 476 

similar to the findings from Tang et al. (2007a & b) the intervals are rather large, 477 

which cannot be reduced even when a larger number of samples are used. However, 478 



  

with the presence of the confidence intervals, the uncertainty of the sensitivity indices 479 

could be revealed, informing the selection of sensitive model parameters. 480 

4.3 Interactive effects 481 

The pairwise interactions that are revealed by the Sobol′’s method elucidate some 482 

important model processes and in particular how one process influences another. 483 

Recall from Fig.4 that RCHRG_DP has a lot of interactive effects on all the four 484 

metrics in the case of 1983-1984 year scenario. In Fig.5, it can be seen that this 485 

parameter interacts with LAT_TTIME and CANMX only, particularly LAT_TTIME, 486 

for the two statistical metrics. The above interactions could be expected, as these 487 

parameters have a large influence on the interactions between groundwater flow and 488 

stream flow, particularly the interactions between lateral flow and water flow in 489 

shallow aquifer, and the definition on the stream flow response of the system. The 490 

more water is diverted to stream flow from plant canopy and lateral flow, the less 491 

water is diverted from groundwater. This also leads to a trade-off between the 492 

parameter values. GWQMN also has a lot of interactive effects on all the four metrics 493 

for 1983-1984 year scenario in Fig.4, but Fig.5 shows that GWQMN has few 494 

interactions with other parameters for the two statistical metrics. That means that the 495 

interactive effect of GWQMN do not come from second-order interactions, so it might 496 

come from higher order interactions (3-order, 4-order ….). For the two hydrological 497 

metrics in the case of 1983-1984 year scenario, the RCHRG_DP vs. GWQMN 498 

interaction has a significant influence on the model output variability and system ET 499 

losses. The relation between RCHRG_DP and GWQMN gives more insight on how 500 

the groundwater flow is regulated in the SWAT model and how both parameters 501 

contribute to the simulated outflow and storage in shallow aquifer. RCHRG_DP 502 

defines the fraction of the recharge that goes to the deep aquifer, and the remaining 503 



  

goes to the shallow aquifer and partly determines the amount of water in this storage. 504 

If this amount of water is higher than the GWQMN value, return value occurs and 505 

contributes to the total outflow. In this way, RCHRG_DP and GWQMN have an 506 

interactive influence on the simulated flow, as RCHRG_DP has an impact on the 507 

storage in the shallow aquifer and thus on GWQMN. 508 

Similarly, Fig.4 shows that GWQMN and ALPHA_BF have a lot of interactive 509 

effects on two statistical metrics in the case of the 1985 wet year scenario. In Fig.5, 510 

these interactions can be further revealed and mainly come from five pairwise 511 

interactions: GWQMN vs. GW_DELAY, GWQMN vs. RCHRG_DP, GWQMN vs. 512 

LAT_TTIME, ALPHA_BF vs. LAT_TTIME, and ALPHA_BF vs. CN2. These 513 

parameters have a large influence on the interactions between groundwater flow and 514 

stream flow, and the definition on the stream flow response of the system. This also 515 

leads to a trade-off between the parameter values. Additionally, Fig.4 shows that 516 

GW_DELAY, GWQMN and RCHRG_DP have a lot of interactive effects on two 517 

hydrological metrics in the case of the 1985 wet year scenario. In Fig.5, these 518 

interactions can be further revealed and mainly come from three pairwise interactions: 519 

GW_DELAY vs. GWQMN, GW_DELAY vs. RCHRG_DP, and GWQMN vs. 520 

RCHRG_DP. These interactions have a significant influence on the groundwater flow 521 

and storage in the shallow aquifer, and determine the amount of water in the shallow 522 

aquifer and system ET losses. 523 

The results from this study indicate that the sensitivity of the SWAT parameters 524 

varies significantly in the dry, normal and wet years simulated, and suggest that a 525 

single set of parameter values may not appropriately represent hydrologic processes 526 

during various flow regimes. Dynamic updating of parameters during the simulation 527 

may be viable in such situations, however, further studies are needed to evaluate if 528 



  

such approaches could improve the SWAT performance. 529 

The results from this study also indicate that the use of the two commonly used 530 

statistical metrics RMSE and TRMSE fails to identify the SWAT model’s parameters 531 

that control the flashiness (measured by SFDCE) and water balance (measured by 532 

ROCE) of Yichun River Basin. This confirms the finding by Wagener et al. (2009) 533 

that the choice of performance metrics has a significant impact on the parameter 534 

sensitivities of a distributed hydrological model. Further study is currently in progress 535 

to investigate how the results obtained from this study can be used to improve the 536 

optimization efficiency in the model calibration process. 537 

 538 

5. Conclusions 539 

This paper provides a variance-based sensitivity analysis for a SWAT model of Yichun 540 

River Basin, China. The analysis reveals the individual effects of each parameter and 541 

its interactions with other parameters on the model performance regarding two 542 

statistical metrics - RMSE and NSE and two hydrological metrics - ROCE and 543 

SFDCE. Model parameter sensitivities are analysed under three difference climate 544 

conditions: wet, moderate, and dry years. The main findings from the results obtained 545 

are summarized below. 546 

(1) The results obtained in this paper confirm that only a small number of model 547 

parameters are highly sensitive for all the four metrics considered in SWAT. This is 548 

also true when different climatic conditions are considered. 549 

(2) The sensitivity of the SWAT parameters varies significantly in the dry, 550 

normal and wet years simulated. For example, the lateral flow travel time is very 551 

sensitive in most cases, but has little impact on SFDCE in the dry year. Further, the 552 

curve number factor, identified as the most important parameter in prior study, is not 553 



  

sensitive in most cases considered in this study when parameter interactions are 554 

considered. 555 

(3) Parameter interactions contribute to a significant portion of the variation in 556 

all metrics considered under moderate and wet years. In particular, the variation in the 557 

two hydrological metrics is mainly dominated by the interactions. Sensitive 558 

parameters could not be identified if the interactions are discounted. However, in the 559 

dry year, the individual effects control the variation in the other three metrics except 560 

SFDCE. 561 

(4) The two statistical metrics (RMSE and NSE) have a very similar 562 

performance in terms of sensitive parameters identified. This is because both of them 563 

measure flow prediction errors and trends with the simulated and measured flows. 564 

However, the two statistical metrics fail to identify the SWAT parameters that control 565 

the flashiness and water balance, illustrating the importance of considering the two 566 

hydrologic metrics, i.e., SFDCE and ROCE, in the model identification process. 567 
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List of Figure Captions 717 

Fig. 1  Yichun river catchment. 718 

Fig. 2  Distinction of annual rainfall for Yichun River Basin between different years. 719 

Fig. 2a shows annual rainfall for Yichun River Basin from year 1979 to 2001, Fig. 2b 720 

shows the exceedance probability plot of annual rainfall for Yichun River Basin. 721 

Fig. 3  Hydrographs for Yichun River Basin from year 1982 to 1985. 722 

Fig. 4  First-order indices, total-order indices and their confidence intervals 723 

computed using different measures for the 28 parameters in the three scenarios. The 724 

parameter numbers in the x-axis are shown in Table 2. 725 

Fig. 5  Second-order indices computed using the four goodness-of-fit metrics in the 726 

three scenarios. The parameter numbers in the x-axis are shown in Table 2. 727 



  

 728 

Table 1  Hydrometeorological data for Yichun river basin 729 

Time Scale 

Hydrological/meteorological 

element 

Station Period 

Precipitation 
7 gauges, such 

as Kaiyuan 
1979~2001 

Streamflow Yichun 1979~2001 Daily 

Temperature, relative humidity, 

weed speed and solar radiation 
Yichun 1979~2001 

 730 



  

 731 

Table 2  Parameter list 732 

No. Name Brief Description (units) Minimum Maximum 

1 SFTMP snow fall temperature (oC) -5 5 

2 SMTMP snowmelt temperature threshold (oC) -5 5 

3 SMFMX 
melt factor for snow on June 21 

(mm/oC) 
1.5 8 

4 SMFMN 
melt factor for snow on December 21 

(mm/oC) 
0 10 

5 TIMP snowpack temperature lag factor 0.01 1 

6 ESCO soil evaporation compensation factor 0.001 1 

7 EPCO plant uptake compensation factor 0 1 

8 SURLAG surface runoff lag coefficient 1 24 

9 GW_DELAY groundwater delay time (days) 0.001 500 

10 ALPHA_BF base flow alpha factor 0.001 1 

11 GWQMN 
threshold groundwater depth for 

return flow (mm) 
0.001 500 

12 GW_REVAP groundwater “revap” coefficient 0.02 0.2 

13 REVAPMN 

threshold depth of water in the shollow 

aquifer for “revap” or percolation to 

the deep aquifer to occur (mm) 

0 500 

14 RCHRG_DP deep aquifer percolation fraction 0 1 

15 SLSUBBSNa average slope length multiplicative factor 0.75 1.25 

16 SLOPEa average slope steepness multiplicative factor 0.75 1.25 

17 LAT_TTIME lateral flow traveltime (days) 0.001 180 

18 CANMX maximum canopy storage (mm) 0 100 

19 BIOMIX biological mixing efficiency 0 1 

20 CN2a runoff curve number multiplicative factor 0.75 1.25 

21 BLAIa maximum potential leaf area index 0.75 1.25 

22 CH_N2 manning’s “n” value for the main channel -0.01 0.3 

23 CH_K2 
effective hydraulic conductivity in main 

channel alluvium (mm/hr) 
-0.01 500 

24 SOL_Za soil profile total depth multiplicative factor 0.75 1.25 

25 SOL_AWCa available water capacity multiplicative factor 0.75 1.25 

26 SOL_Ka saturated hydraulic conductivity 

multiplicative factor 
0.75 1.25 

27 SOL_Alba moist soil albedo multiplicative factor 0.75 1.25 



  

28 TLAPS temperature lapse rate (oC/km) 0 50 

aParameters are multiplicative factors used to adjust the spatial variation across all model units. 733 
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Fig. 5
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 734 

We analysed the effects of key parameters and their interactions on four metrics. 735 

The parameter sensitivities vary significantly in different climate conditions. 736 

Increasing precipitation can lead to more interactive effects between parameters. 737 

Statistical metrics fail to identify the parameters related to hydrological metrics. 738 

Sobol′’s method advances our understanding of the underlying hydrological 739 

processes. 740 

 741 




