
nutrients

Article

A Boost in Mitochondrial Activity Underpins the
Cholesterol-Lowering Effect of Annurca Apple
Polyphenols on Hepatic Cells

Eduardo Sommella 1,†, Nadia Badolati 2,† , Gennaro Riccio 2, Emanuela Salviati 1,3,
Sara Bottone 2 , Monica Dentice 4, Pietro Campiglia 1 , Gian Carlo Tenore 2 ,
Mariano Stornaiuolo 2,* and Ettore Novellino 2,*

1 Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II 132,
I-84084 Fisciano, SA, Italy; esommella@unisa.it (E.S.); esalviati@unisa.it (E.S.); pcampiglia@unisa.it (P.C.)

2 Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy;
badolatin@gmail.com (N.B.); genriccio@gmail.com (G.R.); sara.bottone@unina.it (S.B.);
giancarlo.tenore@unina.it (G.C.T.)

3 PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132,
I-84084 Fisciano, SA, Italy

4 Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80149 Naples,
Italy; monica.dentice@unina.it

* Correspondence: mariano.stornaiuolo@unina.it (M.S.); ettore.novellino@unina.it (E.N.);
Tel.: +39-081-678-117 (M.S.)

† Equally contributing.

Received: 24 November 2018; Accepted: 11 January 2019; Published: 14 January 2019
����������
�������

Abstract: Reduction in cholesterol blood levels represents one of the therapeutic goals to achieve
in order to reduce the occurrence of cardiovascular diseases. Commonly, this goal is attempted
by promoting healthy lifestyle behaviors and low-fat diets. Recently, several nutraceuticals have
been shown to possess cholesterol-lowering properties and are becoming common over the counter
products. Among others, apple polyphenols efficiently lower total cholesterol levels in humans and
impact overall lipid metabolism. Malus Pumila Miller cv Annurca is an apple native to Southern Italy
presenting one of the highest content of procyanidin B2, a dimeric procyanidin. Tested in clinical
trials, the oral consumption of an Annurca polyphenolic extract (AAE) exerted a cholesterol-lowering
effect similar to the statins Atorvastatin and Simvastatin. Despite AAE activity, the analysis of the
molecular mechanism behind its cholesterol-lowering effect is unclear. Using isotope labeling and
high-resolution mass spectrometry approaches we here performed a metabolic profiling of in vitro
cultured human hepatocytes treated with AAE to reveal its mechanism of action. The results show
that AAE acts differently than statins. The extract reprograms hepatic cell metabolism and promotes
mitochondrial respiration, lipolysis and fatty acid β-oxidation. Citrate and acetyl-CoA, both necessary
for the production of cholesterol, are diverted to the Krebs Cycle by AAE, that, ultimately, lowers
cholesterogenesis and fatty acid synthesis.
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1. Introduction

Cardiovascular diseases (CVDs) kill more than 4 million people in the world each year accounting
for approximately 27% and 32% of all deaths among males and females, respectively [1,2]. Despite
improvements in the outcome of these diseases, CVDs risk factors, especially diabetes and obesity,
are increasing and CVDs remain leading causes of morbidity and mortality. Prevention of CVDs is
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undisputed and is being attempted by promoting healthy lifestyle behaviors (e.g., low-fat diet, physical
activity, smoking cessation) and by controlling lipids blood levels in individuals at moderate or at high
risk of CVDs [1,3,4]. In the last decades, more than half of the reduction in CVD mortality has been
attributed to reduction in cholesterol and blood pressure levels.

Statins are the most common drugs recommended for primary prevention of CVD and
are widely prescribed in the treatment of hypercholesterolemia [5]. They competitively inhibit
Hydroxymethyl Glutaryl Coenzyme A (HMG-CoA) Reductase, a key enzyme in cholesterol
biosynthesis. Statins effectively lower serum cholesterol levels and increase Low-Density Lipoprotein
Receptors (LDL-Rs) cell surface expression. By uptaking low density lipoprotein cholesterol (LDL-C)
from the blood, LDL-Rs decrease plasmatic concentration of cholesterol, apoB-containing lipoproteins
and TG-rich particles.

While statins are widely prescribed, not all the patients respond to them. Moreover, while they
are generally well tolerated, several side effects (mostly myopathy and more rarely rhabdomyolysis)
are associated with their consumption [6]. Side effects mainly regard new generation statins that,
in virtue of their increased lipophilicity and half-lives, deplete from cholesterol tissues other than liver
(especially muscles cells), affecting myocytes plasma membrane and the surrounding sarcolemma [7].
Statin discontinuation induces as well severe side effects and often results in worse cardiovascular
outcomes [8].

In the past decades, an increasing number of reports have proved that nutraceuticals may
be effective for CVD prevention [4,9–12] and have a significant effect in reducing population
mortality [13,14]. Many dietary products have all shown a certain capability to reduce CVD risk.
More importantly, some natural micronutrients and non-nutrient components in these foods, such as
polyphenols, have been reported to affect cholesterol metabolism [15–21]. Among these, procyanidin
B2, a dimeric procyanidin, exerts favorable biochemical effects against metabolic disorders and
atherosclerosis, two leading causes of CVDs [22–24].

Malus Pumila cv Annurca, an apple native to Southern Italy, contains one of the highest content
of procyanidin B2 [25]. Recently, we have published the results of three clinical trials. In the
first [26], the daily administration of two Annurca apples led to a reduction of total and LDL-C
levels by 8.3% and 14.5%, respectively, and an increase in high density lipoprotein (HDL) levels by
15.2% in healthy subjects. In a second study, 800 mg/day of Annurca apple polyphenolic extract
(AAE) substantially impacted both LDL-C and HDL-C (about, −37.6% and +49.3%, respectively),
decreasing total cholesterol by about 24.9%. The LDL-C-lowering exerted by AAE was equivalent to
the consumption of 10 mg of Atorvastatin or 40 mg of Simvastatin, two widely prescribed statins [27].
In the third one, AAE was shown to increase fecal cholesterol excretion, further confirming their
eligibility as a novel complementary safe remedy for CVDs prevention [28].

The safety profile of apple polyphenols has been largely studied on both mice and humans,
and, below the 1000 mg/day, no significant hematological, clinical, chemical, histopathological,
or urinary effect has been found (Commission Regulation (EC) No. 258/1997). These have made apple
containing nutraceuticals popular anti-cholesterol over the counter products. However, despite the
many meta-analyses describing their positive effects, data concerning their molecular mechanism of
action are far from being complete. Cholesterol lowering activity of polyphenols have been explained (i)
by a statin-like mechanism, via inhibition of either HMG-CoA reductase, or squalene synthase (another
key enzyme in cholesterol biosynthesis) or (ii) by a β-cyclodextrin-like mechanism via sequestering of
lipids and avoidance of their intestinal uptake [28–30].

Identifying the molecular mechanism of nutraceuticals is notoriously difficult. The polyphenolic
fraction of Annurca, for example, is a mixture of hundreds of different metabolites [31,32]. The attempt
to identify the molecular mechanism of AAE by testing, individually, each of its components can
be misleading, since these components, used as pure molecules, usually show a reduced or even
opposite activity compared to the entire phytocomplex. The activity of AAE seems to be more likely
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the result of a synergism between its components, all influencing each other chemistry, biology and
pharmacology [33–35].

Here, we make use of Deuterium labeling [36,37], gas chromatography-mass spectrometry
(GC/MS) and Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR) to highlight
primary metabolic reactions influenced by AAE in in vitro cultured human hepatocytes. The scenario
depicted by our results enlightens unprecedented aspects of AAE cholesterol-lowering activity. AAE
acts differently from statins. By promoting mitochondrial OXPHOS, AAE reprograms fatty acid (FA)
metabolism in hepatocytes, inhibiting lipogenesis and cholesterogenesis. AAE thus spares acetyl-CoA
from becoming HMG-CoA and, instead, diverts it to the Krebs cycle to produce ATP and energy for
the cell.

2. Materials and Methods

2.1. Reagents

Chemicals and reagents used for metabolite extraction were all HPLC grade. Water was treated
in a Milli-Q water purification system (Millipore, Bedford, MA, USA) before use. The standards used
for the identification of intracellular metabolites were from Sigma Chemical Co. (St. Louis, MO, USA).
MitoTracker Red CMXRos (M7512, Invitrogen, Carlsbad, CA, USA) used for staining of mitochondria
was reconstituted in DMSO and 1mM stock aliquots were stored at −20 ◦C before use. AAE is a
non-standardized industrial procyanidinic extract of Annurca apple PGI ((Protected Geographical
Indication) (Malus Pumila Miller cv Annurca) produced by MB-Med (Turin, Italy)) [33]. Polyphenols
contained in AAE (expressed as µg/mg of dried weight ± s.d.): chlorogenic acid 0.04 ± 0.001;
(+) catechin 0.3 ± 0.02; (−) epicatechin 0.3 ± 0.02; procyanidin B1 0.2 ± 0.01; procyanidin trimer
0.3 ± 0.01; procyanidin B2 0.04 ± 0.001; procyanidin trimer (isomer) 0.2 ± 0.02; rutin 0.06 ± 0.002;
phloretin-2-O-xyloglucoside 0.06 ± 0.003; phloridzin 0.06 ± 0.002.

2.2. Cell Culture and D2O Labeling

HuH7, human hepatoma cells 7 clone 5 (passage 49), were obtained from Ceinge (Naples, Italy)
These cells have shown to posses phenotypical stability and can be kept in culture for long-time
without accumulating epigenetic changes or losing their differentiated state and function (production
of plasma proteins). Cells were cultured (till passage 80) in Dulbecco Modified Eagle Medium (DMEM)
(41965-039, GIBCO, Thermo Fisher Scientific, Waltham, MA, USA) supplemented with 10% FBS (10270,
GIBCO), glutamine (35050-061, GIBCO), penicillin and streptomycin (15070-063, GIBCO) and sodium
selenite (10 µM) in a cell culture incubator at 37 ◦C and with 5% CO2. For D2O labeling [36,37], 2 × 106

HuH7 cells were cultivated in a medium supplemented with 5% D2O (Sigma Aldrich(St. Louis, MO,
USA).When indicated, AAE 400 mg/L, Atorvastatin 10 µM or Simvastatin 10 µM were added to the
cultures for 72 h. For in vitro staining of mitochondria with MitoTracker CMX-Ros, a staining solution
was prepared by diluting the probe in DMEM to yield a final concentration of 200 nM [38]. Cells were
incubated in the presence of the probe for 40 min in a cell incubator at 37 ◦C and 5% CO2. At the end
of the incubation, cells were rinsed three times in DMEM, fixed in 4% formaldehyde and visualized
under a fluorescent microscope as already described [39].

2.3. GC-MS

For GC-MS analyses, 2 × 106 HuH7 cells were scraped in ice-cold water and centrifuged at 10,000×
g for 5 min at 4 ◦C Membrane pellets were dried and dissolved in 1 mL of ice-cold dichloromethane.
Insoluble material was removed by centrifugation at high speed for 10 min at 4◦ C. The supernatants
were dried and resuspended in acetonitrile. Sample was solubilized in pyridine (50µL) and derivatized
with 25 µL of N,O-Bis(trimethylsilyl(TMS)trifluoroacetamide (BSTFA) with a reaction time of 90 min.
One µL was injected, split ratio 1:10. GC-MS analyses were carried out on a Shimadzu GCMS 2010plus
(Kyoto, Japan) with the following parameters. Injection temperature 280 ◦C, Ramp 0–1.00 min 100 ◦C,
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1.00–6.00 min 100–320 ◦C, hold for 2.33 min. Column flow 1.10 mL/min Linear velocity 39 cm/s.
Helium gas was used. Ion source Temp. 200 ◦C, Interface 320 ◦C, Solvent cut 5.9 min, Scan 35–600
m/z. Detector voltage 0.1 kV. Separation was performed on an Agilent (Santa Clara, CA, U.S.A.) SIL-8,
30 m × 0.25 mm, 0.25 µm.

2.4. Mass Spectrometry-Based Metabolomic, Statistics, and Analysis.

Upon treatment with AAE, 2 × 10 6 HuH7 cells were rinsed three times in PBS to be then
homogenized in 1 mL of pre-chilled methanol/water 1:1 solution containing 10 nmol of internal
standard and centrifuged at 10,000× g for 10 min at 4 ◦C [40]. The resulting supernatants were
collected and transferred into new Eppendorf tubes and stored at –80 ◦C. Analyses were performed in
direct infusion following a previous protocol [41] employing a Hamilton syringe (250 µL) at a flow
rate of 2 µL/min. Data were acquired on a SolariX XR 7T (Bruker Daltonics, Bremen, Germany).
The instrument was tuned with a standard solution of sodium trifluoracetate. Mass Spectra were
recorded in broadband mode in the range 100–1500 m/z, with an ion accumulation of 20 ms,
with 32 scans using 2 million data points (2M). Nebulizing (N2) and drying gases (air) were set
at 1 and 4 mL/min, respectively, with a drying temperature of 200 ◦C. Both positive and negative ESI
ionizations were employed. Five replicates of each injection were carried out. The instrument was
controlled by Bruker FTMS Control, MS spectra were elaborated with Compass Data Analysis version
4.2 (Bruker), identification of compounds based on accurate MS measurements was performed by
Compound Crawler version 3.0 and Metaboscape 3.0 (Bruker). Metabolites signals were normalized
using internal standards. Comparisons and differences were analyzed for statistical significance by
two-way Anova test and Bonferroni post tests analysis. All graphs, bars or lines indicate mean and
error bars indicate standard error of the mean (SEM).

2.5. Immunofluorescence

HuH7 cells were seeded on glass coverslips into 24-well cell culture dish at a density of
15,000 cell/well. After twenty-four hours, they were treated for 72 h in the presence of AAE (400 mg/L)
or the corresponding volume of vehicle (DMSO). Cells were fixed in 3.7% formaldehyde/PBS (pH 7.4)
for 30 min. Formaldehyde was quenched by incubating the cells for 30 min in 0.1 M glycine in PBS. Cells
were then permeabilized in 0.1% Triton/PBS, pH 7.4 for 8 min at room temperature (RT) and incubated
with a rabbit monoclonal anti LC3B (D11) XP antibody (3868, Cell Signaling Technology, Beverly, MA,
USA) diluted 1:200 in PBS and detected with a goat anti-rabbit IgG (H&L), DyLight 594 conjugate,
(ImmunoReagents, Raleigh, NC, USA) diluted 1:1000 in PBS, for 2 h and 45 min at RT, respectively.
Cell nuclei were stained with DAPI (Sigma) and observed under a fluorescence microscope.

3. Results

3.1. AAE Inhibits Cholesterogenesis in HuH7 Cells

Our previously published studies have already shown that AAE reduces total cholesterol
levels both in vitro, in hepatic cultured cells, as well as in vivo, in humans affected by mild
hypercholesterolemia [29,42]. Our results confirm those published by other groups and presenting
similar effects exerted by other polyphenolic extracts [16,17,43–47]. However, whether the cholesterol
lowering effect of AAE is due to i) reduced cholesterogenesis, ii) increased cholesterol excretion or
iii) increased conversion of cholesterol into bile acids remains elusive. The mechanism of action
hypothesized for other polyphenolic extracts cannot be simply extended to AAE, since the mechanism
of action of each extract seems to strongly depend on the nature and the amount of polyphenols
contained in it.

In order to monitor cholesterogenesis in AAE treated cells we performed D2O labeling of in vitro
cultured hepatoma cells [36,37]. Briefly, HuH7 cells were grown in a medium supplemented with
D2O for 72 h, a time sufficient to allow incorporation of Deuterium atoms into de-novo synthesized
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sterols and fatty acids (FAs). After labeling, lipids were extracted and derivitized with TMS (see
methods section for details) to be easily visualized and quantitated by GC-MS. Chemical species
endowed with molecular masses heavier (mainly ∆m/z of 2–4 Da) than those naturally occurring
were found co-eluting with cholesterol and cholesterol fragments (Figure 1a). The presence of these
heavier species proves the incorporation of Deuterium in newly synthesized cholesterol and thus that
cholesterogenesis was occurring in HuH7 cells.

When HuH7 cell were cultured in the presence 10 µM Simvastatin or 10 µM Atorvastatin, total
intracellular cholesterol levels were reduced (Atorvatatin 0.55 ± 0.09 fold induction compared to
vehicle mean ± SEM (standard error of mean), p < 0.001; Simvastatin 0.52 ± 0.06, p < 0.001) (Figure 1c).
Moreover, the intensity of peaks corresponding to deuterated cholesterol molecules were all decreased,
confirming, as expected, their molecular mechanism of action resulting in inhibition of de-novo
cholesterol synthesis (Figure 1a,b). AAE treatment (400 mg/L) resulted in a reduction of total
cholesterol levels (0.48 ± 0.05 fold, p < 0.001) with a potency similar to that exerted by the two
statins (Figure 1c). AAE reduced as well cholesterol deuterated peaks, proving that its cholesterol
lowering activity involves inhibition of de novo cholesterogenesis (Figure 1a,b).

3.2. AAE Induces Intracellular Accumulation of FAs

While the effect exerted by Atoravastatin, Simvastatin and AAE on total and newly synthesized
cholesterol was similar (Figure 1c,d), some GC peaks were significantly increased in cells treated with
AAE (Figure 1c and Figure S1). Among them, we identified the FA palmitic acid (1.78 ± 0.22; p < 0.001),
palmitoleic acid (2.45 ± 0.20; p < 0.001), oleic acid (2.34 ± 0.14; p < 0.001), stearic acid (1.17 ± 0.08;
p < 0.05), and myristic acid (1.73 ± 0.22; p < 0.001). In all the other samples (untreated, vehicle and
statin treated cells) the intracellular concentrations of the abovementioned FAs were comparable
(Figure 1d). MS analysis revealed the presence of deuterated FA species in untreated cells as well as
in vehicle treated cells (Figures S2 and S3), indicating that HuH7 cells were engaged in lipogenesis.
Differently, no deuterium incorporation could be measured in any of the FAs over-represented in AAE
treated cells (Figures S2 and S3), suggesting that the apple polyphenols were not stimulating de novo
FA synthesis but, on the contrary, their release from intracellular lipid stores, probably TGs and plasma
membrane lipids.

3.3. AAE Reprograms FA Metabolism and Diverts Acetyl-CoA to Krebs Cycle

The effect exerted by AAE on intracellular cholesterol and FA levels (summarized in Figure 2a),
prompted us to further extend the metabolic profiling of AAE treated HuH7 cells looking for other
metabolites altered by the treatment with the polyphenolic extract (Table 1 and Table S1). Metabolic
profiling was performed by Direct Infusion FT-ICR mass spectrometry (DI-FT-ICR-MS), which is
characterized by unmatched ultra-high mass accuracy and resolution, that make it highly suitable in
metabolite profiling [41]. Metabolomic approaches are extremely useful tools for probing any change
in metabolism accompanying drug treatments and provide invaluable insights in the mechanism of
action of complex mixtures and phytocomplexes [48].

We started our metabolic profiling looking at metabolites that represent energy source for the
cell (Figure 2b and Table 1). In virtue of the high rate of their anabolic processes (lipogenesis,
cholesterogenesis and protein synthesis) hepatocytes are highly demanding in terms of energy, and use
of glucose, amino acids and FAs as energy sources. Intracellular levels of glucose were not altered
by AAE (1.02 ± 0.08 fold, p > 0.05) while glucose-6-P/fructose 6-P levels (isobaric compounds,
1.81 ± 0.20 fold, p < 0.001) were increased by the treatment. Maltose, a by-product of glycogenolysis,
was increased by AAE (1.54 ± 0.13 fold, p < 0.001) (Figure 2a) pointing toward AAE stimulating
conversion of glycogen into glycolysis intermediates. Intracellular levels of lactic acid, the product of
pyruvate reduction by Lactate Dehydrogenase, were diminished by AAE (0.22 ± 0.10 fold, p < 0.001)
(Figure 2c), suggesting that pyruvate in AAE treated cells is mostly transported into mitochondria.
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Figure 1. AAE inhibits cholesterogenesis in HuH7 cells. HuH7 cells were grown in the presence of
D2O and treated for 72 h in the presence of Atorvastatin (Orange dots and lines), Simvastatin (Red),
Annurca polyphenolic extract (AAE (green) or the corresponding volume of vehicle (DMSO, black)
or water (untreated, dark gray). HuH7 were as well grown in the absence of D2O (undeuterated,
light gray) or left untreated for comparison. (a,b) MS analysis of GC peaks eluting at 37.5 min and
containing undeuterated TMS derivatized cholesterol (m/z 458 M-H20), a cholesterol fragment (m/z
329 M-H20 -C8H16) and their corresponding deuterated forms (arrows labeled with the letter D). (c,d)
Comparison of gas chromatography-mass spectrometry (GC/MS) spectra (intensity versus retention
time) of samples extracted from HuH7 cells treated with AAE (c, red profile), vehicle (c,d, blue profile)
or Atorvastatin (d, red profile). Arrows indicate cholesterol and fatty acid (FA) over-represented in
AAE treated samples. (Representative of at least three experiments).

Pentose phosphate pathway (PPP) is an alternative route toward the glycolysis intermediate
glyceraldehyde-3-P and its activity is necessary for reduced glutathione (GSH) and nucleotide
production. The intracellular levels of PPP intermediates ribose 5-P (2.04 ± 0.26 fold, p < 0.001),
sedoheptulose (1.24 ± 0.12 fold, p < 0.05), and sedoheptulose 7-P ( 1.93 ± 0.20 fold, p < 0.001)
were all augmented upon treatment with AAE (Figure 2b). Their accumulation is compatible with
an increased rate of PPP activity. Intracellular levels of the nucleotide cytidine (1.33 ± 0.07 fold,
p < 0.01), guanosine (1.21 ± 0.09 fold, p < 0.05), and of inosine (1.34 ± 0.07 fold, p < 0.01) were
increased by AAE, while adenosine intracellular levels resulted to be not statistically altered by AAE
(0.96 ± 0.07 fold, p > 0.05) (Figure 2b). Interestingly, GSH levels were reduced upon treatment with
AAE (0.57 ± 0.06 fold, p < 0.001).

The first set of results so far described suggests that AAE stimulates glycolysis, PPP (both oxidative
and non-oxidative branches of PPP) but not GSH and lactate production. In the absence of lactic
fermentation, pyruvate is usually transported into mitochondria and converted in acetyl-CoA and
citrate to be used into the Krebs cycle. In our metabolic profiling, citrate levels resulted to be increased
in cells treated with AAE (1.86 ± 0.06 fold, p < 0.001) (Figure 2c), supporting the hypothesis of an
increased transport of pyruvate into mitochondria. In cells like hepatocytes, where lipogenesis and
cholesterogenesis occur, citrate is rapidly exported out of the mitochondria and used as substrate
to produce malonyl-CoA, necessary for biosynthesis of palmitate and other FAs. Malonyl-CoA is
also the precursor of HMG-CoA. Despite the increase in citrate, both FT-ICR and GC-MS profiling
(Figures 1 and 2a, Table 1) clearly indicate that cholesterogenesis and lipogenesis are decreased upon
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treatments with AAE. Moreover the intracellular levels of the bile acid chenodesoxycholic acid (CDCA),
that for its synthesis requires cholesterol, is decreased upon treatment with AAE (0.50 ± 0.05 fold,
p < 0.001) (Figure 2c). This further confirms: i) AAE ability to halt anabolic reactions involved in
cholesterogenesis and ii) excludes stimulation of cholesterol conversion into bile acids as a likely
mechanism underpinning AAE cholesterol-lowering activity.

Increased levels of citrate can also lead to an increased mitochondrial respiration. In line with this
hypothesis, the Krebs cycle intermediate fumarate is also increased by AAE (1.32 ± 0.12 fold, p < 0.05).
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Figure 2. AAE diverts HuH7 metabolism from lactic fermentation toward mitochondrial respiration.
Metabolomic profiling of HuH7 cells grown for 72 h in the presence of AAE (400 mg/L). Each bar
represents the fold change (AAE versus vehicle) in the intracellular concentration of the indicated
metabolites (n = 5 measurements, Shown is mean ± SEM Two way ANOVA and Bonferroni post test
analysis were performed; *** p < 0.001; ** p < 0.01; * p < 0.05; n.s. non statistically different). Colors
are used to highlight increased (green), reduced (red) and unaltered (gray) intracellular metabolites.
(CDCA, chenodeoxycholic acid; alpha-GPC, glyceryl phosphoryl choline)).

To prove that the treatment with Annurca polyphenols was indeed increasing mitochondrial
activity, we used the mitochondrial probe Mito Tracker CMX-ROS. The fluorescence emitted by this
dye correlates with the membrane potential of the mitochondrial inter-membrane space. The latter,
depending on the amount of protons transported by the electron transport chain, is a direct
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measurement of mitochondrial activity. Analysed by fluorimetry, HuH7 cells treated with AAE
showed an increased mitochondrial activity compared to cells treated with vehicle (1.22 ± 0.02 fold,
p < 0.01, Figure S4) confirming that AAE ignites mitochondrial respiration. Differently, AAE did not
induce autophagy in HuH7 cells, as shown by the intracellular staining of the autophagy marker LC3B.
The number and the size of LC3B positive punctated structures appeared, actually, decreased in AAE
treated cells compared to vehicle treated cells (Figure S5).

Pyruvate produced by glycolysis is not the only fuel for mitochondrial activity. Several
intracellular metabolites can be involved in metabolic pathway igniting mitochondrial respiratory
activity. Glutamine can be converted into glutamate and enter the Krebs cycle as alpha-ketoglutarate.
Glutamine levels were reduced by AAE suggesting that glutamine can be indeed one of the sources
of increased mitochondrial activity (0.62 ± 0.04 fold, p < 0.01). The use of glutamine for catabolic
reactions rather than for anabolism would be also indirectly confirmed by its anabolic products GSH,
as already shown, reduced by AAE.

Differently, the intracellular levels of other amino acids (both ketogenic and glucogenic ones) are
either unaltered or increased by AAE excluding them as possible energy source for mitochondrial
activity. Lysine (0.97 ± 0.12 fold, p > 0.05), histidine (1.08 ± 0.11 fold, p value > 0.05), or aspartate
(1.08 ± 0.06 fold, p > 0.05) are unaltered by AAE while, on the contrary leucine (1.54 ± 0.08 fold,
p < 0.001), phenylalanine (1.41 ± 0.02 fold, p < 0.001), tyrosine (1.24 ± 0.12 fold, p < 0.05), tryptophan
(1.19 ± 0.07 fold, p < 0.05), glutamate (1.91 ± 0.05, p < 0.001), cysteine (1.52 ± 0.11, p < 0.01), threonine
(1.71 ± 0.07 fold, p < 0.001) and proline (1.54 ± 0.01 fold, p < 0.001) were all increased by treatment
with AAE.

Probably spared from being used as substrate for mitochondrial activity amino acids are likely
stored intracellularly for other metabolic reactions (like protein production). In support of this
hypothesis, taurine (1.52 ± 0.16 fold, p < 0.01) (a derivative of cysteine) and creatine, a derivative of
arginine (1.60 ± 0.09 fold, p < 0.01), are both increase by AAE.

Mitochondrial and peroxisomal β-oxidation both represent an alternative fuel for hepatic
mitochondria. In AAE treated HuH7 cells, we measured a significant decrease in the intracellular
level of short chain acyl-carnitines (scfa-carnitines), suggestive of their utilization in the Krebs Cycle.
These are produced by peroxisomes via β-oxidation of long chain FA and coupled to carnitine in order
to be transported into the mitochondrial matrix and enter the TCA cycle. AAE treatment decreases the
intracellular levels of butyril-carnitine (0.56 ± 0.02 fold, p < 0.001), propionyl-carnitine (0.54 ± 0.05
fold, p < 0.001) and valeryl-carnitine (0.50 ± 0.03 fold, p < 0.001) (Figure 2c) all terminal products of
peroxisomal FAs catabolism and precursor of TCA cycle intermediate succinate.

Overall our metabolite profiling revealed that, in HuH7 cells, AAE stimulates glycolysis and
β-oxidation, ultimately increasing mitochondrial respiration (Figure 3 and Table 1). The substrate of
β-oxidation seems to be represented by FAs either taken up from the extracellular medium or released
by lipolysis from internal stores. Stimulation of membrane lipids hydrolysis by AAE seems to be
further confirmed by the increased levels of alpha glyceryl phosphoryl choline (α-GPC; 1.45 ± 0.04
fold, p value < 0.01) a byproduct of phospholipase activity. On the contrary, several anabolic reactions
occuring in the cytosol (glycogenolysis, lactic fermentation, GSH synthesis) as well as anabolic reactions
occurring in the Endoplasmic Reticulum (FA synthesis and cholesterogenesis) were all diminished
in vitro by the treatment with AAE.

Compared to statins, inhibition of de-novo synthesis of cholesterol by AAE is the result of
a different mechanism. Statins block selectively HMG-CoA reductase, inhibiting conversion of
HMG-CoA into mevalonate, while AAE, on the contrary, modulates the entire metabolic choices
of HuH7 halting the usage of citrate for lipogenesis and cholesterogenesis.
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Table 1. Fold induction for the indicated metabolites measured upon treatment of HuH7 with AAE.

Metabolic Pathway Metabolite Fold change 1 Metabolic Pathway Metabolite Fold Change 1

Glycolysis PPP

Glucose 1.02 ± 0.08 Ribose 5-P 2.04 ± 0.26
Glucose 6-P 1.81 ± 0.2 Sedoheptulose 1.24 ± 0.12

Lactate 0.22 ± 0.10 Sedoheptulose-7P 1.93 ± 0.20

Glycogenolysis Nucleotides

Maltose 1.56 ± 0.13 Xanthine 0.84 ± 0.01
Amino acids Adenosine 0,96 ± 0.07

Proline 1.54 ± 0.04 Cytidine 1.33 ± 0.07
Threonine 1.71 ± 0.07 Guanosine 1.21 ± 0.09
Glutamine 0.62 ± 0.04 Inosine 1.34 ± 0.07

Lysine 0.97 ± 0.12 Deoxy-inosine 0.65 ± 0.04
Histidine 1.08 ± 0.11 GSH 0.57 ± 0.02
Cysteine 1.52 ± 0.11 β-oxidation

Tryptophan 1.19 ± 0.07 Propionyl-carn 0.54 ± 0.05
Taurine 1.52 ± 0.16 Butyryl-carn 0.56 ± 0.02
Creatine 1.60 ± 0.09 Valeryl-carn 0.50 ± 0.03

Glutamic Acid 1.91 ± 0.05
Leucine 1.54 ± 0.08 Krebs cycle
Tyrosine 1.24 ± 0.12 Citrate 1.86 ± 0.06

Phenylalanine 1.41 ± 0.02 Fumarate 1.32 ± 0.12
Aspartic Acid 1.08 ± 0.06 Malate 1.06 ± 0.05

Lipids Bile acids

Cholesterol 0.48 ± 0.08 CDCA 0.50 ± 0.05
Palmitic Acid 1.78 ± 0.22

Palmitoleic Acid 2.45 ± 0.20
Stearic Acid 1.17 ± 0.22
Oleic Acid 2.34 ± 0.14

Myristic acid 1.73± 0.14
α - GPC 1.44 ± 0.04

1 (n = 5. Shown is mean ± SEM). Annurca polyphenolic extract (AAE). PPP: pentose phosphate pathway; GSH:
glutathione; CDCA: chenodesoxycholic acid.
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Figure 3. AAE influence on HuH7 metabolome. Schematic cartoon depicting some of the metabolic
reactions positively (green boxes) or negatively (red boxes) affected by AAE in HuH7 cells. Red and
green arrowheads indicate reactions halted or stimulated by AAE, respectively. Orange and green
dots indicate metabolites whose intracellular levels resulted to be decreased or increased by treatment
with AAE, respectively. (PPP, phosphate pentose pathway; CDCA, chenodeoxycholic acid; FA, fatty
acids; PM lipids; plasma membrane lipids; GSH, reduced glutathione; Leu, leucine; Trp, tryptophan;
Thr, threonine; Cys, cysteine; Gly, glycine; Lys, lysine; His, histidine; Pro, proline; alpha-GPC, glyceryl
phosphoryl choline).
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4. Discussion

While epidemiological evidences suggest that consumption of polyphenols reduces cholesterol
levels [4,12], the molecular mechanism behind their cholesterol lowering activity is still under debate.
Statins, used for the prevention and treatment of hypercholesterolemia, improves cholesterol levels via
inhibition of HMG-CoA reductase a rate-limiting enzyme involved in cholesterol biosynthesis. Several
scientific evidences have already suggested that polyphenols may work using a different mechanism.
Due to HMG-CoA reductase inactivity, statins upregulate the transcription of HMG-CoA-R gene,
likely, to counterbalance the overall decreased productivity of its linked pathways [8]. This may
also be the reason behind the rapid increase in blood total cholesterol levels measured in patients
suddenly interrupting the consumption of statins. None of the reports so far presented have
shown that polyphenols induce HMG-CoA Reductase expression, indirectly suggesting a mechanism
underpinning their physiological effect different than that used by statins [2].

Here, a metabolite profiling of HuH7 cells allowed us to take a snapshot of some of the metabolic
pathways modulated by AAE, a nutraceutical enriched in procyanidin B2. The picture we obtained is
not yet complete but it is useful to explain some of the cholesterol lowering effects of AAE. Inhibition of
de-novo synthesis of cholesterol by AAE is indeed the result of a different mechanism than statins. AAE
affects the entire metabolic preferences of HuH7 cells halting the usage of intermediate metabolites
for lipogenesis and cholesterogenesis. As a consequence, cells start to obtain FAs from lipid stores,
processing TGs present in intracellular lipid droplets and plasma membrane lipids or taken up from
the extracellular medium.

Our metabolite profiling (Table 1 and Table S1) revealed that AAE significantly changed the levels
of at least 38 key intracellular metabolites in HuH7 cells. The (i) significant elevation of free FAs,
(ii) alpha-GPC, (iii) glucose, (iv) the increase in the intracellular level of the PPP intermediates together
with (v) the reduction of the intracellular level of glutamine and GSH, all suggest that AAE stimulates
glycolysis, lipolysis of membrane lipids, and their β-oxidation. Short chain acyl-carnitines produced
by peroxisomal and mitochondrial β-oxidation enter into the Krebs cycle in the form of succinate
and further increase mitochondrial respiration, ultimately reducing pyruvate conversion into lactate.
By diverting acetyl-CoA and citrate to the Krebs cycle, AAE inhibits anabolic reactions necessary for
FAs synthesis and cholesterogenesis.

Previous reports have explained the cholesterol lowering activity of polyphenols with their
stimulatory effect on pathways converting cholesterol into bile acids [49]. CYP8B1 and CYP7A1
responsible for catalyzing cholesterol 12α-hydroxylation and 7α-hydroxylation, both steps involved
in the conversion of cholesterol into cholic acid (CA) and CDCA [23,24] were both upregulated in
Sprague–Dawley strain rats fed a high-fat diet supplemented with apple polyphenols. In our in vitro
system CDCA synthesis is decreased in the presence of AAE suggesting that AAE does not stimulate
production of primary bile acids.

The effect of Apple polyphenols have already been correlated to beta-oxidation (mainly
peroxisomal) and to regulation of FA metabolism [50]. Mice fed a diet containing apple polyphenols
present increased levels of mRNA coding for PPAR-α and PPAR-γ, two genes involved in lipid
metabolism [51]. Polyphenols have been shown also to stimulate the expression of acyl-CoA oxidase
and dehydrogenase, as well as of Carnitine palmitoyl-transferase and Fatty acyl CoA reductase
1 [52–57]. These enzymes catalyze either reactions involved in FA β-oxidation, FA hydrolysis,
and transport of lipids into mitochondria for production of acetyl-CoA. In line with these transcriptomic
analysis, our results show that AAE increases the intracellular levels of short chain acyl-carnitine
butyryl-carnitine, propionyl-carnitine, and valeryl-carnitine all suggestive of AAE stimulating
β-oxidation and increasing mitochondrial activity. Moreover, tested as pure molecules, both epicatechin
and procyanidin B2, two abundant components of AAE have been shown to possess by themselves
uncoupling effects on oxidative phosphorylation in cardiac mitochondria [58], and stimulating fatty
acid β-oxidation in cardiac cells.
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5. Conclusions

Annurca apples were proved endowed with nutraceutical potential in many human conditions.
The hundreds of different metabolites contained in AAE act in synergism [32] and allow this extract
to be effective in a plethora of different biological contexts: as antioxidant, as modulator of lipid and
cholesterol anabolism, as hair growth promoter [34,35] or against stress and aging [30].

We have recently shown [26–28] that the consumption of AAE is able to lower cholesterol levels
in humans. The metabolic switch induced by 400 mg/L AAE (an amount corresponding to the
daily dosage recommended for consumption in humans) and here described, confirms in vitro the
cholesterol lowering activity and enlightens the molecular mechanism behind it, supporting AAE
eligibility as candidate nutraceutical against hypercholesterolemia and prevention of CVDs.

Supplementary Materials: The following data are available online at http://www.mdpi.com/2072-6643/11/
1/163/s1. Figure S1: GC ion chromatogram of FAs discussed in the manuscript; Figure S2: Mass spectra of
FAs discussed in the manuscript; Figure S3: AAE inhibits lipogenesis in HuH7 cells; Figure S4: AAE increases
mitochondrial membrane potential of HuH7; Figure S5: AAE does not induce autophagy in HuH7 cells. Table S1:
Identification of metabolites in HFs determined by DI- FT-ICR-MS.
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