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Assoc. Prof. Erkay Savaş ..............................................
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ABSTRACT

Privacy Preserving Data Collection Framework For User

Centric Network Applications

Advances in mobile and ubiquitous computing increased the number of user

centric applications that comes into all aspects of our lives. This situation has

started to threaten our privacy and created a huge demand for development of

privacy-aware applications. Comprehensive privacy protection mechanisms have

to take all phases of data processing into considerations including data collection

from users, storage of data in central servers, and sharing them with third parties.

However, privacy studies in the literature generally bring solutions for sharing of

collected information with third parties.

In this thesis, a privacy preserving data collection framework is proposed for

user centric network applications. Framework provides privacy of data en route to

data collector(s). We propose a generic bottom-up clustering method that utilizes

k-anonymity or l-diversity concepts during anonymization. Entropy based metrics

for information loss and anonymity level are defined and used in performance eval-

uations. Framework is adapted for networks having different data collector parties

with different privacy levels.

Our framework is applied for two types of data collection applications: (i) privacy

preserving data collection in wireless sensor networks, (ii) preservation of organiza-

tional privacy during collection of intrusion detection logs from different organiza-

tions.

Traditional data utility vs. privacy trade-off has one more dimension in wireless

sensor networks. This dimension is minimization of bandwidth or energy consump-

tion due to the limitations of tiny sensor nodes. Our analyses show that the pro-



posed framework presents a suitable trade-off mechanism among energy consump-

tion minimization, data utility and privacy preservation in wireless sensor network

applications with one or multiple sinks.

It is also demonstrated that our framework brings effective solution for preserving

organizational privacy during sharing of intrusion detection logs among organiza-

tions and central security monitoring entity.
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Özet

Günümüz Kullanıcı Eksenli Ağ Uygulamaları için Kişisel

Gizliliği Sağlayan Bilgi Toplama Anaçatısı

Mobil ve yaygın bilişimdeki ilerlemeler, hayatımızın her alanına giren kullanıcı

bazlı uygulamaların sayısını artırmıştır. Bu durum kişisel gizliliğimizi tehdit etmekte

ve kişisel gizliliğe duyarlı uygulamaların geliştirilmesi konusunda büyük bir talep

oluşturmaktadır. Kapsayıcı kişisel gizliliği koruyucu mekanizmaların data işlemenin

tüm fazlarını kullanıcılardan datanın toplanması, datanın merkezi sunucularda ko-

runması ve üçüncül şahıslarla paylaşılmasını da kapsayacak şekilde göz önüne alması

gerekmektedir. Bununla birlikte literatürdeki kişisel gizlilik çalışmaları çoğunlukla

toplanmış bilginin üçüncül şahıslarla paylaşılması konusunda çözümler getirmiştir.

Bu tezde, kişisel gizliliği sağlanmış bir data toplama anaçatısı önerilmiştir. Önerilen

anaçatı, kişisel gizliliği data toplayıcıya giderken sağlamaktadır. Anonimleştirme

sırasında k-anonimlik ve l-farklılık konseptlerini kullanan genel bir aşağıdan yukarıya

kümele metodu önerilmiştir. Performans değerlendirmelerinde, entropi bazlı bilgi

kaybı ve anonimlik seviyesi belirleme metrikleri kullanılmıştır. Anaçatımız, birden

fazla her biri farklı kişisel gizlilik seviyelerine sahip olan data toplayıcılarına sahip

ağlar için de uyarlanmıştır.

Anaçatımız, iki çeşit data toplama uygulamasında denenmiştir: (i) kablosuz

sensör ağlarında kişisel gizliliği sağlanmış data toplanması, (ii) farklı organizasy-

onlardan saldırı tespit kayıtlarının toplanması sırasında organizasyonel gizliliğin

sağlanması.

Kablosuz sensör ağlarında geleneksel kişisel gizlilik & data yararlılığı ikilemine

ek olarak bir boyut daha vardır. Bu boyut, küçük sensör düğümlerinin sınırlamaları

nedeniyle band genişliği ve enerjinin minimize edilmesi gerekliliğidir. Analizlerimiz



göstermektedir ki önerilen anaçatı, bir ya da birden çok data toplama merkezi içeren

kablosuz sensör ağlarında enerji tüketiminin minimize edilmesi, data yararlılığı ve

kişisel gizliliğin sağlanması arasında uygun bir denge mekanizması oluşturmaktadır.

Anaçatımızın, organizasyonlarla merkezi güvenlik izleme birimi arasında organi-

zasyonel gizliliği sağlayacak şekilde saldırı tespit kayıtlarının paylaşılması için etkin

bir mekanizma oluşturduğu da gösterilmiştir.
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Chapter 1

Introduction

We are living in a data-centric world due to enormous improvement in information

system technologies. Personal data is created, transmitted, processed and stored

very easily. Our daily lives get easier and more safer because of this dynamic nature

of data, thanks to developed information systems. We can watch our homes by

using cameras and Internet even we are very far away from our homes. Patients

can be tracked by health monitoring systems while they are outside of the hospital.

Public and private watchdog agencies implementing many security surveillance ap-

plications in order to prevent or detect malicious activities in living areas. We can

get information from traffic monitoring applications for choosing most convenient

route in crowded cities. Smart grid applications collect details of electricity con-

sumptions of homes in order to minimize energy consumption and lower the cost of

electricity distribution infrastructure. The list of all these applications can be easily

extended.

Rapid proliferation of mobile computing devices such as PDAs, and smartphones

have made huge contributions to data-centric world in terms of data access. Im-

provements in sensor technology facilitated data collection enormously. Data com-

munications have been facilitated with the advent of wireless technologies, like WiFi,

ad hoc or mesh networks. Database system gets more scalable and robust. Data

storage and data processing capabilities have been efficiently improved. All these

technological improvements enable us to deal with huge amount of data mostly over

the environment which is generally un-controlled.
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These benefits of advancements in information technologies lead to a very major

problem: violation of privacy. Privacy is described as ability of an individual or

group to decide which information about themselves would seclude or which infor-

mation would revealed to whom. However, in such a data-centric world, information

owners, in most of the time, cannot control flow of their personal data. Control-

ling requires putting some restrictions on data during creation, transmission and

storage stages of data life-cycle. These restrictions are applied by privacy preserva-

tion mechanisms embedded in information systems. Preservation mechanisms are

generally motivated and required by laws or other regulations like HIPAA (Health

Insurance Portability and Accountability Act) [1]. Since individuals cannot protect

their privacy by themselves, governments try to help individuals by regulations.

Many countries promote and protect individual privacy by different acts.

Technically, privacy preservation mechanisms have to solve critical problems.

First problem is privacy needs of individuals have to be determined according to well

defined privacy criteria. These criteria have to be quantified by measurable privacy

metrics. Second problem is that privacy preservation mechanisms have to solve

trade-off between data utility and privacy. Privacy preservation imposes restrictions

on data itself or mechanisms restrict creation, transmitting and storage of personal

data, which means data utility is degraded to some extent. Preservation methods

have to discriminate personal data from other data, fulfill all privacy requirements

and, at the same time, they have to maximize data utility.

First responsibility of a privacy preservation mechanism is to collect data from

individuals according to required privacy criteria. The second responsibility is to

protect personal data against security threats of environment. This responsibility

may include using appropriate encryption and access control mechanisms, perform-

ing procedural security countermeasures, providing physical security of environment,

hardening information systems against remote and local hacking activities. In this

thesis, we concentrate on privacy preserving data collection mechanisms.

2



Privacy Preserving Data Collection Models:

Studies on privacy problem mostly concentrated on achieving collection and

sharing of data under the required privacy constraints in order to make efficient

knowledge-based decisions. Data collection refers to conveying of user data from

data owners to a central data collector. In some situations, data collector may share

this data with other third parties. Data collection is modelled according to the trust

level between data owner and data collector party. These models are categorized

into two categories, trusted data collection model [2] and un-trusted data collection

model [3].

In trusted data collection model, [2] as shown in Figure 1.1, data is collected from

data owners by data collector party named as data publisher. Data publisher shares

data with data recipient who will actually use it for performing a required data

analysis task. Here, data collection and data sharing are separate operations. A

generic example is the application where hospitals share medical records with medi-

cal research institutions. In this example, data owners are patients, data publishers

are hospitals and data recipients are medical research institutions. Data publishers

collect all the details of records of data owners (R1, R2, · · ·Rn) but they are required

to share privacy preserved data with data recipients. Data owners do not trust

data recipient parties; however, they are required to fully trust data publishers in

completing privacy preserving operations. Also data owners have to be sure that

their data is not maliciously or unintentionally used for illegal duties by staff of data

publishers.

An intrinsic assumption of this model is that data publisher does not know the

details of analysis or data mining tasks which will be performed by data recipient.

This may be due to situation that data publisher has lack of technical expertise in

the corresponding analysis methods or data publisher does not even know what type

of analysis will be done on shared data in data recipient part. According to this

model, without detailed considerations about data analysis methods, data publisher

shares information with data recipient as much as possible. However, criteria which

3



Figure 1.1: Trusted Data Collection Model

will fulfill the privacy needs of data owners have to be devised and they have to be

obeyed during data sharing.

In un-trusted data collection model as shown in Figure 1.2, data owners send

their records to data collector but they do not trust it. Data collection and data

sharing do not occur separately as in trusted model. Privacy preservation has to be

done at the data owner side and privacy preserved data (R
′
1, R

′
2, · · ·R′

n) are collected

by data collectors. Data is perturbed so that data collector cannot deduce records

of individuals but the same data analysis results are reached by data collector. In

this model, queries or data analysis methods those are used by data collector have

to be known in advance. Therefore, these solutions are required to fix and restrict

the type of analysis or mining tasks at the data collector side which may not be

possible in most of the time.

Privacy Preservation Techniques

As a privacy preserving operation, data collector can mainly use two main tech-

niques: (i) privacy preserved data publishing [2], (ii) privacy preserved data mining

4



Figure 1.2: Un-trusted Data Collection Model

techniques [4]. Privacy preserved data mining techniques perturb the original data so

that application of these techniques to perturbed data will result the same accurate

mining results. However, data collector have no possibility to obtain original data

which may violate the privacy of data owners. Some attributes of data records may

be modified with false data, the attribute values of may be swapped among different

records or totally new artificially created records can be inserted to original data

sets at the data owner side. Un-trusted data collection model uses privacy preserved

data mining techniques. Also in trusted data collection model, data publishers can

benefit from these techniques before sharing the data with data recipients. However

in practice data publishers do not know the details of data analysis tasks which

will be performed by data recipients. For example, Californian hospitals have to

publish patient records on the Web due to regulations [5] without exactly knowing

the analysis types.

Privacy preserved data publishing techniques do not change the truthfulness of

data at record level and try to collect information as much as possible. These tech-

niques assert privacy criteria which can be applied to a collection of records. There-

5



fore, they need to collect a set of records at a trusted party for privacy preservation

operations. Trusted data collection model applies these techniques. k-Anonymity

is introduced as a basic privacy method in privacy preserved data publishing [6].

This method is based on the fact that privacy problem cannot easily be solved

by just stripping of identity information (name, surname, social security number

etc) from the record of data owner. Some other data fields called quasi-identifiers

may be used to identify a person by using external information sources. This at-

tack technique is called“Re-identification attac” [6] or “record linkage attack” [2].

For example in a hospital database, address, sex or other attributes can identify

exactly a person. k-Anonymity generalizes or suppresses quasi-identifiers of data

records so that any individual cannot be differentiated between other records of

k − 1 individuals by using those quasi-identifiers. k-anonymity solutions solve the

prevention of “record linkage attack” which is actually finding the owner of a record

through quasi-identifier attributes. However, it is shown that without finding the

exact owner of a record, if sensitive attribute exists in a record (like health status

of a patient), it may be possible to identify sensitive attribute of an individual in

some circumstances by an attack called “attribute linkage attack” [2]. k-Anonymity

is extended by l -diversity, p-sensitivity and t-closeness notions in order to prevent

attribute linkage attack [7–9].

1.1 Motivation

Existing studies approach to the privacy problem in the context of the discussed

trusted and un-trusted models. There is an intrinsic mapping between privacy

models and privacy methods so that trusted model uses privacy preserved data

publishing methods whereas un-trusted model uses privacy preserved data mining

methods.

In network applications, which collect data from users, determination of analysis

and mining tasks in the network design stage may limit the capability of this data

collection system. Also, the requirements of analysis tasks may change with time.

6



Therefore, in most of the time privacy preserved data publishing methods are more

useful in data collection applications. However, data owners may not fully trust

data publisher or data collector party. Any person with malicious intent in the data

collector site may have possibility to reach all the private data. Another possibility

may be that due to inefficiency of security countermeasures at the data collector

site or security problems during data collection operations, attackers can obtain

private data. Data owners generally may want data to be privacy preserved before

reaching these un-trusted parties. Therefore, a new model has to be devised so

that privacy preserved data publishing methods can be applied for un-trusted data

collectors. This thesis provides a model for application of publishing methods in the

environments having these types of data collectors.

It seems that direct solution is performing privacy preserving operations directly

at owner side by stripping off the identity information. However, record linkage or

attribute linkage attacks threaten the privacy of data owners. Privacy preserved data

publishing methods, k-anonymity, l -diversity, etc., prevent against these attacks but

they can be applied where many data of users are collected. They can take place

at somewhere between owner side and data collection party. This place has to be

trusted by the data owners. If this place is chosen as close as possible to user and

privacy preservation is done by automatic applications where any involvement of

a person is not possible, users will be more satisfied about the privacy preserving

mechanism. This criterion also leads system designers to set-up distributed trusted

parties, which means if one trusted party is compromised by attackers, only some

part of the data owners will be affected by this compromise. “Single point of failure”

property of traditional trusted model will change the notion of distributed trusted

parties. A required model for privacy preserved data collection is shown in Figure

1.3. In this model, data owners send their data to local trusted parties. Appropriate

privacy preserving operations are done at these local ones and privacy preserved

data is sent to the data collector, which is un-trusted for users. For example, if

the data collection environment is mobile phone infrastructure, privacy preserving

mechanisms can take place at the local base stations instead of performing them at

7



Figure 1.3: Distributed Trusted Data Collection Model

the central data collection point. Sometimes, designer of collection systems can also

have options to find trusted parties between data owners and data collection centers.

Suppose that a research center collects intrusion logs of organizations over Internet

in order to do intrusion detection research but organizational privacy have to be also

preserved during this collection. Organizations mostly do confidentiality agreements

with their Internet Service Providers (ISPs), therefore ISPs may be trusted parties

for organizations.

Privacy models assume that there is only one collection party in a data collection

application. However, in the existing network applications, applications themselves

may send information to two different collection parties at the same time. For exam-

ple, health-care monitoring applications may send health status of an individual to

hospital or to a relative of that individual at the same time. On the other side, due

to nature of application, information can be captured by third parties such that an

eavesdropper can gather wireless packets in a wireless sensor network (WSN) appli-

8



cation. Different data collectors may have different trust levels. A patient can have

a more trust his relative than hospital or eavesdropper is totally an un-trusted party

in a WSN application. Privacy preserving model and methods have to take all the

receiving parties and their different trust levels into consideration. The framework

proposed in this thesis provides a privacy model with one or more data receiving

parties having different levels of privacy.

1.2 Challenges

Privacy preserving operations have to solve a trade-off between data utility and

privacy level of data. Privacy preservation operations remove or modify portions

of data in order to fit to privacy criteria. Privacy preserving methods have to

cause data loss not more than the requirement of criteria but this is not an easy

task. For k-anonymity, Meyerson and Williams [10] showed that k-anonymization

with minimum number of suppressions is NP-hard. Aggarwal et al. showed that

the problem of k-anonymization is NP-hard even when the attribute values are

ternary [11]. Also decisions for the required privacy level have to be done according

to the possible loss in the data utility and tolerance level of application to this

amount of loss.

Requirement of privacy levels may not be fixed during the life-cycle of personal

data. For example, applications like patient monitoring outside hospitals, continu-

ously track spatio-temporal information of patients with their health statuses. In

non-emergency times, users may not want to give full details of time and location

knowledge to hospitals; however, in urgent times, users prefer to maximize the data

utility so that immediate actions are performed by hospitals. Therefore, privacy

levels imposed by applications have to be managed easily.

Most of the network applications have resource constraints so that privacy preser-

vation operations have to take them into account. For example, wireless sensor

network applications have to minimize energy consumption or wireless mesh net-

works have to reduce network bandwith usage at mesh routers and decrease energy
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consumption at client side.

Privacy preserving data publishing methods need trusted parties. Although these

methods cannot avoid the requirement of trusted party existence, additional privacy

and security mechanisms may be developed for the transmission of data from users

to trusted parties and storage of data at trusted party.

1.3 Design Objectives of the Proposed Framework

Proposed privacy preserved data collection framework bases on the property that

data collection party collects as much information as possible in order to have wider

coverage of analysis types. Therefore, our framework brings solution for privacy

preserving data publishing methods like k-anonymity or l -diversity which are aiming

to prevent record linkage or attribute linkage attacks.

Our framework assumes that data collector is not fully trusted party for users.

Also it is designed so that more than one party having different levels of privacy

can collect data at the same time. Privacy model has to be adopted so that privacy

preserving publishing methods will work under these assumptions.

Minimization of energy or minimization of bandwith usage has to be considered

as a major design criteria according to the type of network. Privacy preservation

causes data loss. If preservation operations are done at closer places to users, this

lost data does not need to be transferred unnecessarily in the network which may

increase the resource consumptions. Representation of collected data has to be

chosen such that size of collected data is minimized.

Privacy preservation methods have to maximize the data utility under the re-

quired privacy criteria. Generalization or suppression operations have to be cleverly

done so that data collector party can reach more accurate analysis results. These

operations have to be well adapted to the chosen representation types for collected

data.
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1.4 Contribution

In this thesis, a privacy preserving framework is proposed for applications in which

data is collected from users. A privacy model for data collection is adapted so that

there is no a central trusted data collector party; all privacy preserving operations

are done in distributed trusted parties which are located closer to users. Moreover,

our model assumes that there exists more than one data collector party having

different privacy levels.

Bottom-up clustering idea is adopted as an anonymization method in order to

have multiple privacy levels. Traditionally, suppression and generalization opera-

tions are used for anonymization. Proposed framework uses encryption instead of

suppression for achieving multiple levels of privacy in one anonymous output for

different data collectors. Encrypted data portions can be recovered by the parties

having corresponding keys. Parties having lack of appropriate keys consider these

data portions as suppressed data.

Proposed framework minimizes the data loss of generalization operations by in-

troducing the dynamic taxonomy tree concept. If two different values are generalized

according to static taxonomy trees, attributes are replaced with an attribute in the

common ancestors of these two values. Instead, dynamic taxonomy tree method

sends a set of attribute values instead of more generalized value in order to create

more quality data. However, this may increase the data length in some situations.

Analysis of information loss versus resource consumption trade-off is done in related

parts.

Proposed privacy model and framework are deeply investigated in two differ-

ent network applications. Firstly, they are adopted for wireless sensor networks

(WSNs). For different types of WSN topologies, energy consumption, information

loss and multiple levels of privacy issues are explored under the proposed model and

framework. Secondly, adaptation performed for providing of organizational privacy

in an application that collects intrusion logs from organizations over the Internet in

order to perform collaborative intrusion detection research.
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1.5 Thesis Outline

Outline of this thesis is organized as follows: Chapter 2 gives background informa-

tion about privacy preservation concepts and presents related work in the literature.

Chapter 3 introduces the proposed anonymization method, k-Anonymization Clus-

tering Method. Chapter 4 proposes a k-anonymity based framework for privacy

preserving data collection in WSNs. In Chapter 5, privacy framework is proposed

for preserving organizational privacy in log sharing applications. Chapter 7 con-

cludes the thesis.
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Chapter 2

Background Information and Related Work

Privacy has been studied under the name of “anonymity” for a long time. Anonymity

is defined as subject being not identifiable within a set of subjects [12]. Therefore,

hiding of a subject among other subjects may be a well-defined privacy criteria.

Privacy and anonymity terms are generally used instead of each other. However,

privacy has a more comprehensive meaning.

Privacy or anonymity has been studied in two different information technology

fields, database and network. General road map of related studies differ in both

areas. In network studies, anonymity problem is mostly referred to hiding sender

and/or receiver identities of network messages. On the other side, database commu-

nity has a data-centric approach which targets to hide the owner of a data record or

hide the disclosure of sensitive attributes of a record owner. Database community

started with the notion of k-Anonymity and later has extended it.

In this section, first two subsections, 2.1 and 2.2, give background information

and literature review about sender/receiver anonymity and k-Anonymity, respec-

tively. Subsection 2.3 gives some information about entropy notion as a privacy and

information loss metric. Subsection 2.4 specifically concentrates on privacy studies

about wireless sensor networks. Subsection 2.5 reviews the studies about the privacy

of intrusion and security logs.

13



2.1 Sender/Receiver Anonymity

Subjects of anonymity problem are generally chosen as the identities of communi-

cated nodes in various types of networks. Possible sender or receiver nodes consti-

tute the anonymity set. In anonymous system, an outsider could not discriminate

the communicated parties among the members of anonymity set. Therefore, larger

anonymity sets mean more anonymous systems.

An adversary who monitors and/or captures certain parts of the communica-

tion system may want to know the receiver of a message, the sender of a message

or matching pair of sender and receiver in critical communications [12]. Receiver

anonymity prevents the identification of message receiver, sender anonymity pre-

vents finding of message sender and relationship anonymity prohibits the deter-

mination of relationship between sender-receiver pairs. Hiding the relationship is

termed as un-linkability of sender and receiver [13].

In normal network communications, source and destination of messages are em-

bedded in packet headers. Although elimination of this information can be somehow

achieved, various traffic analysis methods [14] can be applied by attackers in order

to obtain discriminative communication patterns and using them for the identifica-

tion of communicating partners. Patterns can be deduced from time and duration

of communication or the length of exchanged data. Providing confidentiality or in-

tegrity for exchanged data cannot prevent the traffic analysis. Real anonymity can

be achieved by providing unobservability property. Unobservability is described as

the state of communication message being indistinguishable from any other messages

at all [13]. This property ensures hiding of all communication patterns.

Sender/receiver anonymity problem in the literature are mainly based on two

theoretic studies; DC-Nets and mixes.

The basic idea of DC-Nets [15] is anonymously broadcasting a message for provid-

ing receiver anonymity. If the message is intended to send to a specific destination,

it is encrypted by the destination’s public key. In addition to public keys, each node

shares a secret key with other participants and use them in anonymously sharing
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data. DC-Nets suffer from many important drawbacks. First of all, it brings so-

lution for only recipient anonymity; sender anonymity is not considered. Second,

performing secret key and public key distribution could be difficult in large net-

works. Third, if two participants send messages at the same time, two messages will

be added at each participant where any participant including actual receiver cannot

receive the message. Therefore, sending one message at a time must be guaranteed

by the system. This drawback can lead to a very effective DoS attack such that

malicious users constantly send messages in order to deliberately spoil the content

of the actual delivered message.

Mixes have got higher attraction among the researchers so that many papers are

published and practical applications are created by using the various versions of the

mix idea. Mixes [16] is an important idea for providing sender-recipient anonymity

and resisting to traffic analysis. Let’s say a sender sends a message to a recipient

through the forwarding nodes f1, f2, f3, ..., fD and all of these nodes are known by the

sender. Firstly sender encrypts the message with the public key of fD, and then con-

sequently with the keys of fD−1, fD−2, ..., f2, f1. Suppose that public key encryption

is denoted by Efx(M) where M is the plain text and fx is the public key. So sequen-

tial encryption yields the following structure: EfD
(EfD−1

(EfD−2
(..., Ef2(Ef1(M))))))

Each node on the message path, gets the message, decrypts it with its private

key and sends to the next hop. The first node of the path knows the actual sender

and the last node knows the actual receiver. Therefore, the remaining nodes only

have information that they received a message from the previous node and relayed

it to the next hop. Any eavesdropping activity cannot deduce the destination and

source information from the content of the message; however, traffic analysis may

yield valuable information. In order to prevent these attacks, each intermediate

node does not immediately deliver the messages to the next hops and stores until a

predetermined number of other messages are arrived to this node. Then, the node

delivers the messages in random order so that any eavesdroppers cannot correlate

the incoming and outgoing messages and trace the full path. This schema does

not only supply resistance to passive eavesdropping attacks but also it can prevent
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active attacks. Since each forwarding node knows only the previous and the next

hop, attacker does not have the ability of tracing the message unless he captures all

nodes of the path.

Although this schema promises higher security assurance level for passive and

active attacks, it suffers from various practicality issues. First of all, it introduces ad-

ditional latency in each forwarding node. There are different approaches for message

delivery methods which try to balance the trade-off between latency and resistance

to traffic analysis [17, 18]. However, latency remains as an important problem in

acceptably secure systems.

Anonymity problem must be handled in different network types ranging from

the Internet to ad hoc networks. There are various motivations of this problem in

different networks which are described below.

In the Internet, users may not want to reveal their surfing habits like the sites

those they visit, time intervals or duration of their site visitings. Another possibility

is that companies sharing information over Internet may not want to reveal whether

or not any sharing operation has been done with each other.

Web proxies are used in contemporary systems for accelerating the web access

to the Internet. They also provide sender anonymity property to a limited extent.

All users in the internal network constitute the sender anonymity set. Firewalls and

routers also provide similar functionality by network address translation (NAT) tech-

nology. Anonymizer [19] uses a similar proxy model but it is created for providing

anonymity, not for accelerating the web access.

Other than using one proxy, systems called Onion Routing [20] use a series of

proxies which cooperate for sending the web requests. This system is based on the

idea of mixes so that the source chooses the path and the message is multiplicatively

encrypted. Each forwarding node decrypts one layer, gets the next hop information

and relays it. Because of the real time requirements of the applications, onion routers

differ from mix-nets in delaying and reordering the traffic at each node. However,

onion routers can send different types of traffic to each other over a single channel;

therefore, traffic analysis cannot practically be helpful to the attackers in busy onion
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networks.

Crowds [21] is another practical anonymization system. The users of the system

form Crowds users group and the connection request to a web server outside of

this group is directed to a random user inside the group. The new node has two

possibilities: (i) either passing the request to the web server, or (ii) passing it to

another randomly chosen node of crowds group. The request travels within the

group until one of them chooses to send it to the destination web server. Each

transmission is encrypted with the destination’s shared key. Local eavesdroppers,

who can observe all local transmissions in the group, cannot determine the receiver

unless they capture any node along the path or use any traffic analysis methods.

On the other side, the sender of the request is not the actual sender. Thus sender

anonymity is only provided for the eavesdroppers, who can monitor from the outside

of group. This system does not solve the global eavesdropper problems and it does

not take traffic analysis issues into account. Another study, named Hordes [22],

uses the same idea with Crowds except it additionally uses multicast service to

anonymously forward the replies to the sender.

In highly mobile ad hoc networks, new problems may arise like the need for

hinderance of location information and motion patterns of the nodes from malicious

users. Especially in critical military applications, obtaining motion patterns and

locations of mobile clients may be very important for the enemies [23]. In such

a network, motion pattern inference is very easy because of the excessive routing

messages. These messages reveal the location information since node determines

the next hop from its RF coverage area and finding the path of a message makes an

adversary predict the relative distances between each hop. By combining the path

information with the location knowledge of the eavesdropping nodes, near-exact

node positions are found out. Enemy can infer the motion patterns by periodic

examinations of the node locations. Deducing the message path is not a very big

deal in mobile ad hoc networks because of their high routing properties. There

are not any dedicated hosts for routing operation; routing messages are routed by

every host that exists on the message path. In the most common ad hoc routing
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protocols, routing messages are sent in clear text format so that any malicious node

can listen and deduce the full message path. In Dynamic Source Routing (DSR) [24]

protocol, all path information is stored in the message. Source, destination and all

other forwarding nodes can be deduced from a single intercepted message. In Ad hoc

On-Demand Distance Vector Routing Protocol (AODV) [25], routing information is

stored in routing tables and it is exchanged whenever needed. Although finding out

of the trace is not trivial as in DSR, this routing method does not totally solve the

problem, because collaborative eavesdroppers can trace the message from source to

destination and learns the message path. Therefore on demand protocols like AODV

fail to achieve location and motion privacy under the assumption that enemy has

unbounded eavesdropping capabilities.

Mobile ad hoc networks can benefit from anonymity solutions in providing mo-

bile privacy. Since every node behaves as a router in these networks, exchange of

routing information occupies considerably important amount of the legitimate traf-

fic. Malicious users can use routing messages for their eavesdropping aims and they

can easily violate mobile privacy and anonymity of the system. First of all, anony-

mous routing protocols must be developed. Then the messages must be sent in this

routing structure anonymously.

ANODR (anonymous on demand routing) [23] protocol is proposed for anony-

mous routing. Tracing an on-demand routing protocol is more complicated than

tracing other ones, but collaborative eavesdroppers can easily track a communica-

tion. ANODR anonymously discovers the route by using the notion of broadcasting

with trapdoor information, which is based on onion routing idea of Mix-net. In

onion routing system, source encrypts the message sequentially by all of the public

keys of nodes on the path starting from the actual destination node to the first node

of path. It is important to note that full onion message is created in the source node

and it is assumed that the source knows the full path. In starting phase of ANODR

protocol, since it is on demand protocol, source does not know the path, protocol

tries to find it by route discovery process. First, source broadcasts route discovery

message to the nodes in its coverage area with a trapdoor function embedded in the
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message. Each node that takes the broadcast message determines if the message

is destined to itself by using this trapdoor function. If a node understands that

the destination is not itself, it encrypts the entire message with its public key and

broadcasts again. Each broadcast operation adds one layer to onion at each node

until the message reaches to the destination. Destination reverses the onion to the

sender after determining that it is destined to itself. After that each hop decrypts

the message by its private key, puts appropriate route pseudonyms and relays the

message to the next hop. After all route pseudonyms are constructed for full path,

route discovery phase is completed and the actual message is ready for sending op-

eration. Receiver anonymity is provided by broadcasting and content correlation is

prevented by onion structure and route pseudonyms.

Privacy studies of network community generally focus on hiding sender or re-

ceiver entities in network communications. However, in data collection applications,

sender or receiver entities are known by all parties. Privacy threat models of data

collection applications concentrate on privacy of collected data rather than hiding

the communicated entities. In this thesis, collected data is considered as the subject

of privacy.

2.2 Basics of k-Anonymity

At first glance, it may be assumed that privacy problem can be easily solved by strip-

ping off the attributes which identify individuals like name, social security number

etc. However, the problem of privacy poses extra challenges that cannot be easily

solved by simple “stripping off” mechanisms. Some other data fields and sources

may be jointly used to deduce some private information. Suppose some organiza-

tions need to share their electronic information, such as public health or demographic

data, with other organizations. However, they want to provide the privacy of their

consumers or personnel during this information sharing operation. Simply strip-

ping off the name or social security number information from the data set does not

solve the privacy problem. It is possible to identify the owner of a record by using
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attributes like birth date, address, sex, ZIP code etc. Government or public orga-

nizations release data in the form of voter lists, telephone or address books, local

census data. Collecting data from these resources and linking them to targeted

released data may enable to identify the individuals. Also some people can collect

data directly observing specific individuals and use their observations and released

data in order to obtain private information of individuals.

Attack method called ‘re-identification attack’ [6] or ‘record linkage attack’ [2]

directly uses these methods. In order to prevent these type of attacks, Samarati

and Sweeney proposed k-anonymity [6]. Basically, k-anonymity brings a specific

restriction to anonymity problem so that it targets to hide one subject among some

other k − 1 subjects. In other words, the attributes those may help to identify

a subject are modified, via k-anonymization, in such a way that each subject has

an anonymity set having a size of at least k − 1. Generally in privacy problems,

owner of the record or individual having the attributes in the record is assumed to

be the subject of anonymity. k-anonymization of data is performed by suppression

or generalization of some parts. Generalization and suppression operations cause

information loss. Thus, it is important to minimize the amount of loss by minimizing

the number of suppression and generalization operations while keeping the data

k-anonymous. It is shown that achieving optimal k-anonymization by minimum

number of suppressions is NP-hard even when the alphabet size of attributes equal

to three [10].

2.2.1 k-Anonymity Definitions

Some basic definitions used used in k-anonymity are explained below:

Quasi-identifier Attribute: Attribute that is not able to identify a subject by

using per se but it may help to identify subject with the combination of similar

attributes. The set of all quasi-identifier attributes of table T is Q.

k-anonymity: Suppose that T (Q) refers to the new table produced by keeping the

quasi-identifier attributes and removing the others in table T . T has k-anonymity

property if and only if each record is indistinguishable from other k − 1 records in
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T (Q). Generalization and suppression are more common techniques to make the

data k-anonymous.

Anonymity Set: If a subject cannot be discriminated from a set of other subjects,

this set is called anonymity set of that subject. In k-anonymity, each subject has

an anonymity set having at least k-1 elements.

Generalization: Generalization operation replaces a quasi-identifier attribute value

by more general value. For example, birth date like ‘04.05.1977’ can be replaced by

‘1977’ in a generalization operation. Numerical attribute values may be generalized

to numeric intervals.

Suppression: Deletion of a quasi-identifier attribute of a record or removing the

entire record.

2.2.2 Taxonomy Trees

Taxonomy tree is a tree structure that is created for each categorical quasi-identifier

attribute to replace existing attribute value with more general one in k-anonymization

process [26–28]. Actually, this replacement is a generalization operation. Leaves of

the tree contain the distinct values of attributes. Nodes in the higher levels of tree

contain more general attribute values. During the anonymization, replacement is

done with the values in the higher levels of the tree. There is a root of the tax-

onomy tree. If the attribute value is generalized up to this point, that means the

attribute value has no information. Suppression is considered as another operation

for anonymization in literature [27], but it is actually a generalization operation

where the attribute value is generalized to the root of attribute’s taxonomy tree.

Let us think that a sensor network collects location information as an address.

A possible taxonomy tree for this location attribute can be constructed as in Figure

2.1. Suppose that k is chosen as 2 and location attribute is the quasi-identifier.

If there are two records having location information for ‘Buket Street’ and ‘Selvi

Street’, and if they are decided to be anonymized to a common value, location

attribute value is generalized to common ancestor in the tree which is actually

‘Istasyon Avenue’. Location attribute values of two records are replaced with this
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Figure 2.1: Static Taxonomy Tree for Location Information

Table 2.1: Attributes of Sample Data

Attribute Name Attribute Type Values of Attribute
Vehicle Type categorical train, truck, bus, pickup, vans, car

Time numerical Values between 00:00 and 24:00
Location categorical Serin Str., Buket Str., Selvi Str.,

Mimoza Str., Durmaz Str.

more general attribute value. Thus, no one can discriminate these two records from

each other by using location information.

2.2.3 k−Anonymity Example

For example, assume that a wireless sensor network is constructed for traffic mon-

itoring. This application collects information about the vehicles passing through

some locations of a city. Attributes of sample data is given in Table 2.1. A sample

set of data is given in Table 2.2. k is chosen as two and data in Table 2.2 is made

2-anonymous. A sample 2-anonymized version of the data by only generalization

operations is shown in Table 2.3. Anonymization operations are completed by using

taxonomy trees for location information and vehicle type which are given in Figure

2.1 and Figure 2.2 respectively.
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Table 2.2: A Sample Data For a Traffic Monitoring Application

Vehicle Type Time Location
car 12:05 Buket Street

train 13:00 Selvi Street
bus 12:50 Serin Street

pickup 11:30 Serin Street
bus 12:30 Durmaz Street

truck 12:20 Selvi Street

Table 2.3: Anonymized Version of the Sample Data

Vehicle Type Time Location
normal sized vehicle 11:30-12:05 Istasyon Avenue
high sized vehicle 12:20-13:00 Selvi Street

bus 12:30-12:50 Tuzla
normal sized vehicle 11:30-12:05 Istasyon Avenue

bus 12:30-12:50 Tuzla
high sized vehicle 12:20-13:00 Selvi Street

Figure 2.2: Static Taxonomy Tree for Vehicle Type
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Table 2.4: A Sample Data Which Requires Prevention of Attribute Linkage

Age Zip Code Disease
18 06100 Viral Infection
55 06330 Cancer
60 06350 Cancer
20 06400 Viral Infection
35 06500 Heart Disease
50 06300 Cancer

2.2.4 k-Anonymity Studies

In [29] and [30], k-anonymity is presented as a formal protection model. Sweeney,

provides a formal presentation of combining generalization and suppression to achieve

k-anonymity in [27]. This study uses generalization hierarchies during the gener-

alization and suppression operations. Domain generalization hierarchies are intro-

duced for categorical attributes and value generalization hierarchies for numeric at-

tributes. Meyerson and Williams [10] showed that k-anonymization with minimum

number of suppressions is NP-hard. Aggarwal et al. [11] showed that the problem

of k-anonymization is NP-hard even when the attribute values are ternary. Some

approximation algorithms are proposed for this problem in [31] and [10]. Greedy

heuristic algorithms are introduced in [26] and [28] in order to produce k-anonymous

data while preserving the property of building decision tree classifiers. Therefore,

privacy of data is guaranteed and it can be used for classification purposes.

2.2.5 Attribute Linkage vs Record Linkage

k-anonymity solutions solve the prevention of “record linkage attack” which is ac-

tually finding the owner of a record through quasi-identifier attributes. However,

it is shown that without finding the exact owner of a record, if sensitive attribute

exists in a record , it may be possible to identify sensitive attribute of an individual

in some circumstances by an attack called “attribute linkage attack” [2].

In Table 2.4, a sample data collected by a hospital is shown. In this data, age
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Table 2.5: 3-Anonymized Version of Sample Data

Age Zip Code Disease
18-35 06*** Viral Infection
18-35 06*** Viral Infection
18-35 06*** Heart Disease
50-60 063** Cancer
50-60 063** Cancer
50-60 063** Cancer

Table 2.6: Anonymization of Sample Data with 2-Diversity

Age Zip Code Disease
18-50 06*** Viral Infection
18-50 06*** Viral Infection
18-50 06*** Cancer
35-60 06*** Heart Disease
35-60 06*** Cancer
35-60 06*** Cancer

and zip code are considered as quasi-identifiers and disease is chosen as a sensitive

attribute. Main aim of privacy preservation is hiding disease information of an

individual. Table 2.5 gives a possible 3-Anonymized version of this data. All the

last three records of this table has sensitive attribute value, ‘cancer’. Therefore,

prevention of record linkage through k -anonymization does not solve the privacy

problem. Sensitive attributes of these records are easily identified in this case. In

order to address this problem l -diversity notion is introduced [7]. l -diversity requires

that sensitive attribute value of a record owner is hidden among l − 1 sensitive

attributes. Table 2.6 shows anonymized data which has 2-diversity property. This

property guarantees that each anonymity set has at least two different sensitive

values.s

In order to prevent attribute linkage, in addition to l -diversity notion, p-sensitivity

and t-closeness notions are proposed [8, 9].
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2.3 Entropy Notion For Quantifying Privacy and

Calculation of Information Loss

In information theory, entropy measures the uncertainty of a random variable.

Quantity introduced by entropy measures the content of an information in terms of

bits. Entropy notion of Shannon [32] is the theoretic formulation of entropy which

is widely used in information theory literature.

Practically, Shannon entropy estimates the average number of bits for encoding

strings composed of symbols with different frequency. It introduces lower bounds

for compressing and storing communicated data.

Shannon’s entropy is used in quantifying privacy for a privacy protection system

developed for context aware services [33]. This entropy notion determines the level of

abstraction in location and personal preferences reports collected by context aware

service servers. Shannon entropy is used in improving l -diversity in order to prevent

probabilistic inference attacks [7]. Original l -diversity method guarantees existence

of l distinct sensitive attributes in each anonymity set. However, if frequency of some

sensitive attributes is higher, attacker can conclude that individual has the sensitive

attribute with more frequency. l-diversity notion extended by entropy gives higher

value for evenly distributed sensitive attributes.

A top-down refinement algorithm is proposed in order to perform privacy preserv-

ing data publishing for cluster analysis [34]. Entropy notion is used for measurement

of information loss and anonymity calculation in each refinement stage.

Entropy based anonymity measurement model is proposed for measuring the

privacy level of systems protecting sender anonymity [35]. Measurement model is

applied for mix based e-mail applications, Crowds and Onion Routing.

There exists clustering algorithms which uses information theoretic distance

functions based on Shannon entropy [36] [37] [38].
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2.4 Privacy in Wireless Sensor Networks

Anonymity is being not identifiable of a subject within a set of “subjects”. In

networks like Internet and Ad hoc networks, identities of communicated parties are

considered as subjects. Therefore, anonymity studies concentrate on hiding sender

and/or receiver identity information. However, in sensor networks subject is mostly

event information. Event information is sensed and sent to sinks or other central

storage node. Anonymity problem of event information can be dealt in sensing

and sending stages. In the literature, for sensing stage, data aggregation is used

for creating anonymous event data. For communication stage, variations of known

anonymity techniques are applied.

In Gruteser and Grunwald’s study [39], an anonymity solution is proposed for

providing high degree of privacy in location based services. They assert that adver-

sary can get the location information of an individual by different types of attacks

like eavesdropping of whole traffic or compromising the server provider’s system.

They claim that adversary can identify a specific individual by linking the event lo-

cation information with a priori knowledge about the event. If location information

is disseminated continuously for tracking purpose in applications like traffic moni-

toring, fleet management and ‘pay as you drive’ insurance, adversary can track all

movements of an individual. Location and time information of events are cloaked

so that an outsider cannot differentiate any individual among the other k different

individuals. Event messages are sent to anonymity server in which any identifiers

like network addresses are removed, data perturbation is performed and reordering

of the incoming messages from different nodes is accomplished. This study omits

the threat that adversary who captures the traffic between nodes and anonymity

server can do deeper traffic analysis.

Data cloaking and a communication anonymity solution is used together to have

an anonymous system in [40]. Proposed sensor network acts as an in-building occu-

pant movement tracking system in which the main purpose is finding the popularity

level and usage amount of different parts of a large building. The main aim is pro-
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viding privacy through anonymity. Sensor network has a hierarchical structure and

do data cloaking operations on sensed data or sensor node ID information. Data

cloaking is done at the nodes of upper hierarchies. With less spatial accuracy or

data perturbation, they tried to have an anonymous system. In order to prevent

eavesdropping and other active attacks, node communications are encrypted and

authenticated by SPINS like protocols [41]. Prevention of traffic analysis is tried

to be accomplished by periodic message sending independent from sensor readings.

This study presents a solution for data perturbation tolerant applications. How-

ever data perturbation may not be tolerable in many critical applications. On the

other side, adversary can understand whether cloaking of sensor node ID informa-

tion is done and he can find the actual sensor node ID by following the traffic in

hop by hop basis. Therefore, it is not a good solution in environments where global

eavesdropping threat exists.

Data aggregation is also studied by Przydatek, Song and Perrig [42]. In this

study some nodes are chosen as aggregators and they collect data from sensor nodes.

Aggregator node does aggregation operation and proves that the aggregation result

is consistent by random sampling and interactive proof mechanisms. Aggregation is

done for securely finding minimum, maximum and average sensing values.

Ozturk et al. [43] proposed phantom routing method for hiding location infor-

mation of originator sensor node. This routing method is alternative for flooding

type routing algorithms. Threat model bases on the existence of only one adversary

node in the sensor environment. Sensor network tracks moving objects and send

appropriate event information to the sink. Adversary eavesdrops the traffic on this

node and can determine the previous hop of routing messages. Adversary tries to

reach a moving target object. After detecting the previous hop of routing message,

he goes to near of that hop and get closer to the target. He continues this operation

until the target is caught. Proposed routing algorithm aims to make this catch-

ing operation difficult by hiding the location of sensor node. Although the study

presents a good solution to the problem, threat model consists of weak assumptions

that there exists only one adversary node in the system. It does not assume the
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existence of global eavesdropper threat.

Wadaa et al. [44] studied on providing anonymity of coordinate system, cluster

and routing structures during the network setup phase of a wireless sensor network.

The study is lack of formal methods those prove the provided anonymity level and

there is no experimental results showing the effectiveness of the proposed system.

Also the proposed solution is restricted to the network setup phase.

Castelluccia et al. [45] proposed homomorphic encryption method that securely

aggregates sensor findings in an energy efficient way. This work deals with the aggre-

gation functions, which compute average or variance of sensor findings. Protection

of location privacy is guaranteed by k-anonymity in location based services those

are given on mobile networks [46]. In this work, each mobile client specifies a mini-

mum level of anonymity and maximum temporal and spatial tolerances. Proposed

methods try to provide the needed anonymity level within these quality of service

parameters.

2.5 Privacy in Sharing of Security Logs

Some organizations implement intrusion log collection systems for determination

of general security level of the Internet. They aim to provide early warning sys-

tems about security threats. Deepsight Threat Management System [47], which

is managed by Symantec, gives information to its customers about the emerging

threats, vulnerabilities, risks, workarounds and other references. This system col-

lects logs from intrusion detection systems, virus scanners and firewalls. System

does not use any anonymization method during data collection. Data is not shared

with the research community; it is used for commercial purposes. Internet storm

center, which is implemented by SANS [48], is volunteered and non-commercial

version of DeepSight. It collects intrusion detection system and firewall logs from

volunteer organizations and produces general analysis results for public and cre-

ates customized warning information for organizations. Internet storm center uses

Dshield distributed detection system for data collection and analysis. The imple-
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menters state that they remove the identifying parts of intrusion data by masking

destination IP of logs. However, this anonymization cannot guarantee to prevent

the attack types those are similar to re-identification attacks proposed in privacy

preserving data publishing area [6].

There exist studies about anonymizing IP address of network logs. Actual IP ad-

dresses are replaced by a randomly selected IP addresses according to a permutation

function. New random IP addresses do not contain even the sub-net information.

Entity who captures randomized IP addresses can only deduce that the logs having

the same IP addresses are actually originated from the same host.

Truncation is another anonymization method that converts fixed number of least

significant bits of IP address to zero. This means, the remaining information can

show only subnet or network class information of IP addresses. From anonymized

data, anyone can deduce the subnet information but cannot determine whether logs

belonging to a particular subnet are originated from the same host or from many

hosts.

In prefix-preserving pseudonymization, which is adapted in TCPdriv [49], IP

addresses are mapped to pseudorandom anonymized IP addresses by an anonymiza-

tion function that uses common tables. If first k-bits of original IP addresses are

common, function produces anonymized outputs which are also common in terms of

first k-bits. Xu. et al. [50] proposed a prefix-preserving pseudonymization method,

Crypto-PAn that works consistently in multiple traces by using a shared key. This

study also includes the security evaluation of prefix-preserving pseudonymization

schema. Slagell et al. [51] re-implemented Crypto-PAn in Java for anonymization

of Netflow logs. Netflow logs are logs of network traffic generated by routers. These

logs have a standard log format. Slagell et al. also embedded their own key generator

to their implementation.

Zhang et al. [52] studied on the anonymization of all fields of Netflow and syslog

data for sharing them with managed security service providers. Syslog is s standard

log format used by Unix or Linux based systems. This study gives brief information

about the known anonymization techniques, which can be used for anonymization of
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IP addresses, time information and port numbers. Time information is anonymized

by random time shift method . In this shifting method, the time of log is changed

with random number, but the relative time intervals between related logs are pre-

served. Common public port numbers remain in the logs, however sensitive ports

of sensitive hosts are anonymized.

Studies about privacy preserved security logging generally focus on changing

the truthfulness of log attributes by pseudonymization or by other anonymization

techniques at record level. These techniques may help to do some basic searching

activities or may help to perform some limited types of analysis on privacy preserved

logs. However, the idea of privacy preserving data publishing has not been adapted

to this field. Intrusion log collection systems like DeepSight or Internet Storm

Center need logs with higher data utility. Chapter 5 of this thesis adapts privacy

preserving data publishing techniques to intrusion log collection systems. Proposed

method collects data, which have higher data utility, while preserving privacy of log

owners.
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Chapter 3

Proposed k-Anonymization Clustering Method(k-ACM)

Solving the k-anonymity problem is proved as an NP-Hard [10,11], therefore various

heuristic methods have been developed to minimize data loss as much as possible [6,

28]. In this thesis, we proposed a framework based on the k-anonymization method,

k-ACM, that solves the k-anonymity problem by a bottom-up hierarchical clustering

algorithm. The basic clustering notion is derived from UPGMA (Unweighted Pair

Group Method with Arithmetic Mean) [53].

UPGMA is based on the idea of iteratively joining two closest clusters until one

cluster is left. A suitable distance definition has to be done to measure the distance

between any two clusters. All the distances between each pair of clusters, which are

computed according to the distance definition, are stored in a distance matrix at each

iteration. At the beginning each input vector considered as an individual cluster.

Closest two clusters are found and combined into one common cluster. Distances of

newly formed cluster to the other clusters are recalculated and distance matrix is

updated. The same work continues until one cluster is formed.

k-ACM is applied to the data portion containing only the quasi-identifier at-

tributes. The basic idea is to partition the data vectors into clusters where each

cluster has at least k vectors. After the clustering, vectors in one cluster are

anonymized to a common vector, named representative vector which is actually the

k-anonymization output of all vectors in that cluster. All quasi-identifier attributes

of the input data is replaced by the corresponding attributes of the representative

vector. The clustering process ensures that similar vectors are grouped in clusters
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so that their anonymization does not cause a significant data loss.

Running time of k-ACM is found as O(n2log(n)) where n is the number of event

records. The details about the derivation of running time is given in Section 3.8.

In the later chapters of thesis, it is shown that k-ACM presents an efficient

baseline in anonymizing data for multiple receivers having different privacy levels.

Distance function of clustering process has to be formed in order to reach to

efficient adaptation of clustering idea to the problem. In k-ACM, cluster decisions

are made according to the amount of information loss occurred during cluster com-

binations. Distance function used in k-ACM calculates information loss by using

entropy notion.

In order to choose the appropriate value of parameter k, information loss and

the anonymity level of data have to be quantified. By appropriate quantification

methods, trade-off analysis between data utility and privacy level can be made

efficiently. In this thesis, entropy based quantification methods are proposed for

these two metrics.

In this chapter, first four sections cover the baselines of k -ACM. Section 3.1 ex-

plains the proposed dynamic taxonomy tree idea for generalization methods. Section

3.2 introduces the information loss metric that is used in evaluating k-ACM results.

Section 3.3 presents the distance function used in the proposed method. Section

3.4 proposes entropy based anonymity measurement method. Section 3.5 gives the

proposed algorithm k-ACM. Complexity analysis of k -ACM is given in Section 3.8.

The notation used in this chapter is given in Table 3.1.

3.1 Generalization Method With Dynamic Tax-

onomy Tree

In privacy preserved data collection, the main aim is to share as much as possible

with the related parties under the required privacy criterion. Data collection meth-

ods generally use static taxonomy trees. Over-generalization is a potential problem
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Table 3.1: Notation Table For k-ACM

Notation Explanation Notation
Iteration Number h
Input data T
ith record of input data, T Ti

Array of clusters at the hth iteration Lh

sth cluster in Lh where {s : 0 < s < Lh} Lh
s

Total number of clusters at the hth iteration |Lh|
The array of input vectors belonging to cluster Lh

s V h
s

kth bit string of jth input vector of array V h
s V h

s [j][k]
Number of input vectors of cluster (size of cluster),Lh

s |V h
s |

Representative vector of cluster Lh
s in bit string Rh

s

ith bit string of representative vector, Rh
s Rh

s [i]
Number of true bits of bit string, x F (x)
Bit string generation function which gets two bit strings,
x and y and produces the generalization of these strings G(x, y)
Distance matrix at the hth iteration Dh

Distance value between sth and tth cluster at the hth iteration Dh[s][t]
Information loss occurred during the formation of cluster, Lh

u

(Suppose that sth and tth clusters are combined, form the cluster u) Ih
u (Ih

u = Dh[s][t])
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Table 3.2: Anonymized Version of the Sample Data

Vehicle Type Time Location
car-pickup 11:30-12:05 Buket Street - Serin Street
train-truck 12:20-13:00 Selvi Street

bus 12:30-12:50 Serin Street - Durmaz Street
car-pickup 11:30-12:05 Buket Street - Serin Street

bus 12:30-12:50 Serin Street - Durmaz Street
train-truck 12:20-13:00 Selvi Street

of using static taxonomy tree in generalization of categorical attributes. For exam-

ple, in the static taxonomy tree given in Figure 2.1, generalization of ‘Buket Street’

and ‘Selvi street’ values yields to ‘Istasyon Avenue’ value. However, this causes in-

formation loss since records having Istasyon Avenue may also include ‘Serin Street’.

In order to solve this over-generalization problem as much as possible, we propose

to use dynamic taxonomy tree instead of static one. In the proposed dynamic tax-

onomy tree model, the tree is dynamically updated by creating new internal nodes

(i.e. attribute values) during generalization and in on-demand manner depending

on the nature of data and the required generalization. In this method, a new node

is generated when the existing parent node has child(ren) other than the generalized

nodes. The newly generated node covers the attribute values of the generalized ones

only. In this way, generalization is performed with minimum information loss. Let

us continue with the previous example. As shown in Figure 3.1, in our dynamic

approach generalization of ‘Buket Street’ and ‘Selvi Street’ causes a new categorical

value with name ‘Buket Street- Selvi Street’ to be generated instead of generalizing

to existing ‘Istasyon Avenue’. This new value means the attribute is either ‘Buket

Street’ or ‘Selvi Street’, but not ‘Serin Street’.

For example, if we applied dynamic taxonomy tree method to the sample data

given in Table 2.2, 2-anonymized output in Table 3.2 is obtained. From this

anonymized data, the number of vehicles in each street and the number of total

vehicles in each type can be calculated accurately. These calculations cannot be

accurately done from the anonymized data in Table 2.3.
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Figure 3.1: A Sample Node Addition in Dynamic Taxonomy Tree

In order to perform generalization among any of the attribute values using the

proposed dynamic taxonomy tree concept, a flexible data structure should be em-

ployed to represent the attribute values. In our method, a bit string is employed as

this data structure. If an attribute is categorical, the size of the bit string is equal

to the total number of elements in the set of attribute values. In this structure, each

bit corresponds to a distinct attribute value. In order to specify which value that

attribute has, the corresponding bit of the attribute value is set to one, while the

other bits are zero. Bit strings of original data (i.e. data before generalization) has

a single ‘1’ bit.

In this data structure, generalizations are implemented by setting the corre-

sponding bits of the attribute values that will be generalized to ‘1’. Therefore, the

total number of bits having value ‘1’ increases as generalizations occur. Bit string

having many bits having value ‘1’ actually represents an internal node.

For a numerical attribute, range of the attribute can be divided into intervals

where each interval has suitable equal range size. The size of numerical attribute’s

bit string is set to number of intervals. Each interval corresponds to a distinct bit

and if an attributes belongs to an interval, corresponding bit of the interval is set

to one in the bit string. The number of intervals can be determined according to

36



the accuracy need for that attribute. More accuracy need means more number of

intervals. Increase in the number of intervals enlarges the sizes of messages, so the

needed transmission energy. Therefore a balance between energy and accuracy must

be constructed in choosing the number of intervals.

Suppose input data is a table T having m attributes, n records. Tij, represents

the j’th attribute of the i’th record where, {i : 1 ≤ i ≤ n} and {j : 1 ≤ j ≤ m} .

Table T is represented by a set of bit strings B, where Bij is bit string representation

of j’th attribute of i’th record. k’th bit of Bij is shown as Bij(k). Suppose that

j’th attribute of table is categorical and there are dj distinct values. These values

are indexed by k and shown as Vj(k)where {k : 1 ≤ k ≤ dj}. Bit string of this

categorical attribute has a size of dj and formed as follows:

If Tij = Vj(k) then Bij(k) = 1 else Bij(k) = 0 as ∀k : 0 ≤ k ≤ dj,

If attribute is numerical, the range of attribute is divided into equal-sized inter-

vals. Assume that j’th attribute is numeric and attribute range is divided into ej

number of intervals. Each interval is indexed by k. Bit string representation of this

numeric attribute has a size of ej and formed as follows:

If Tij intersects with k′th interval, then Bij(k) = 1 else Bij(k) = 0 as ∀k :

0 ≤ k ≤ ej

In our proposed model, anonymizing entries convert quasi-identifier attributes of

data to bit strings and k-ACM makes them k-anonymous. Through the k-anonymization

process of an attribute, k-ACM uses the notion of dynamic taxonomy tree. During

the formation of dynamic taxonomy tree, bit string of the newly created internal

node of a dynamic taxonomy tree is found by the logical OR operation of bit strings

of all child nodes.
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Table 3.3: A Sample Bit String Representation Set

Records Bi1 Bi2 Bi3

T1 00010 01000 10000
T2 01100 11100 01111

Table 3.4: A Sample Normalized Version of Bit String Representation Set

Records Bi1 Bi2 Bi3

T1 00010 01000 10000
T2 01

2
1
2
00 1

3
1
3

1
3
00 01

4
1
4

1
4

1
4

3.2 Information Loss Metric

Calculating the data loss of k-anonymous data is needed to predict the performance

of our proposed method under different k-anonymity parameters. In our study, we

use the entropy concept of information theory to measure the information loss [37].

The difference of entropies between the k-anonymous data and the original data

constitutes the information loss. Suppose that T is the input data set having n

records and m attributes, B is the bit string representation of this data set as

discussed in Section 3.1 and C is the random variable that gets the probability

value of an attribute value in a k-anonymous data entry being the actual attribute

value in the original data. Assume that all the entries of B is normalized according

to the number of bits having value ‘1’ in that entry (from now on we refer “true

bit” to a bit having value ‘1’) and normalized version forms data set B. A sample

data set is shown in Table 3.3. Here, there are two records; each record has three

attributes; each attribute is categorical and each has five distinct attribute values.

Table 3.4 shows the normalized version of data. During normalization, each entry

is divided by the number of true bits in the corresponding bit string entry.

Information loss of a data table T , IL(T ), is equal to the conditional entropy,

H(C | B). Here, conditional entropy gives the uncertainty about the prediction of

the original attribute values of a record when we have the knowledge of corresponding
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k-anonymous bit strings of that record. Original data has only one true bit in

each bit string because each original data entry corresponds to one attribute value.

However, in k-anonymous data, each entry may have more than one attribute value

and each attribute value is represented by an additional bit. Therefore, if an entry

has only one true bit, that entry does not have information loss. In this situation,

we have no doubt that this true bit is the true bit that comes from the original

data. As the number of true bits increases, disorder of the data increases because

it is harder to predict which one of them is the original true bit. Prediction gets

harder because information is lost due to the increase in the number of true bits.

Conditional entropy, which is used in order to calculate the disorder of the data, is

a well measurement tool for the information loss. Conditional entropy H(C | B),

which is equal to information loss of table T , IL(T ), can be found as follows:

IL(T ) = H(C | B) =
∑

Bij∈B

p(Bij)H(C | B = Bij). (3.1)

IL(T ) = −
∑

Bij∈B

p(Bij)
∑

k∈{1..z}
p(C = k | Bij) log p(C = k | Bij). (3.2)

In Equation 3.2, it is assumed that each attribute is converted to bit strings

having size z. This means all categorical attributes have z distinct attribute values

and all numerical attributes have z number of interval ranges. Also, it is assumed

that all k’s, where the equalities of p(C = k | Bij) = 0 are true, are excluded from

the summation. C random variable can take values from the set {1..z}. Actually,

B is calculated for finding the value of this random variable.

p(C = k | B = Bij) = Bij(k) for each k : 1 ≤ k ≤ z. (3.3)

In Equation 3.2, it is assumed that each record has equal probability to be chosen and
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each attribute of record has the same probability, therefore probability mass function

of j’th attribute of i’th record, p(Bij), is calculated as p(Bij) = 1
m.n

. Equation 3.2

can be rewritten as follows:

IL(T ) = H(C | B) = −
∑

Bij∈B

1

m.n

∑

k∈1..z

Bij(k). log Bij(k). (3.4)

Suppose that F is the array that contains the number of true bits of the bit string

array B. Total number of true bits in Bij is Fij. Total number of elements in Bij(k)

that has the value of 1
Fij

is equal to Fij, and the rest is zero. Therefore, the second

sum operation of Equation 3.4 yields the value, log 1
Fij

. The simplest equation for

the information loss of data table T , IL(T ), can be calculated as follows :

IL(T ) = H(C | B) = −
∑

Fij∈F

1

m.n
log

1

Fij

=
1

m.n

∑
Fij∈F

log Fij. (3.5)

3.3 Distance Calculation

The aim of our method is minimizing the information loss while providing the re-

quired level of k-anonymity. At each iteration of k -ACM, two clusters are combined.

Each cluster combination leads to some generalization operations and therefore to

information loss. k-ACM has to choose the most suitable cluster pair, which creates

minimum information loss when they are combined. To do so, a suitable distance

calculation method is needed. In Section 3.2, conditional entropy notion is used

in calculating the overall information loss of k-anonymized data. This notion is

adapted in calculating the distance between any two clusters such that distance

between any two clusters is the entropy loss caused by merging them.

At the hth iteration the distance between sth and tth clusters is defined as Dh[s][t].

Suppose that resulting cluster after merging of clusters s and t is represented as

cluster u in iteration h + 1. Cluster u has |V h
s + V h

t | number of elements. Merging
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operation means that |V h
s | number of input vectors having value Rh

s and |V h
t | number

of input vectors having value Rh
t is converted to |V h

s +V h
t | number of vectors having

value Rh+1
u . Conditional entropy value before merging operation is represented as

Eh
st and computed by the help of Equation 3.5 as follows:

Eh
st =

1

m.(|V h
s |+ |V h

t |)
|V h

s |
∑

i∈{1..m}
log(F (Rh

s [i])) + |V h
t |

∑

i∈{1..m}
log(F (Rh

t [i])). (3.6)

Eh+1
u is the conditional entropy value after merging operation and calculated as

follows:

Eh+1
u =

1

m.(|V h
s |+ |V h

t |)
(|V h

s |+ |V h
t |)

∑

i∈{1..m}
log(F (Rh+1

u [i])). (3.7)

Eh+1
u =

1

m

∑

i∈{1..m}
log(F (Rh+1

u [i])). (3.8)

Distance between cluster s and t at iteration h, Dh[s][t], is calculated as follows:

Dh[s][t] = Eh+1
u − Eh

st. (3.9)

3.4 Anonymity Measurement

k-anonymity guarantees a certain level of anonymity because it ensures that each

subject cannot be differentiated at least among other k − 1 subjects. In this part,

we calculate the amount of anonymity provided by k-ACM.

Suppose that A and B are the sets of records in original data and k-anonymous

data respectively. Conditional entropy, H(A | B), is used as anonymity measure-

ment method. H(A | B) gives the uncertainty level of prediction of the record in A

when the corresponding anonymous version of the record in B is known. Here, more
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uncertainty means high anonymity level. The amount of anonymity, Q, is calculated

as follows:

Q = H(A | B) =
∑

b∈B

p(b).H(A | B = b) = −
∑

b∈B

p(b).
∑
a∈A

p(a | b). log p(a | b).

(3.10)

where, p(b) is the probability mass function of B and p(a | b) is the conditional

probability of a value of A, a, given a value of B, b. The lower bound for Q

corresponds to the case where data is exactly k-Anonymous. In other words, suppose

that anonymous data has n records and each record has exactly the same quasi-

identifier record set as some other k − 1 subjects. In this situation, for each record

b, p(b) is 1/n. p(a | b) is 1/k for k records and 0 for the other n − k ones. By

evaluating Equation 4.13 with these values, we calculate the minimum anonymity

level of a k-Anonymous data, which is denoted as Qmin, as follows:

Qmin = log(k). (3.11)

On the other hand, the purpose of k-ACM is not to form clusters having exactly k

elements; it is to increase the quality of data as much as possible under the criterion

that each cluster must have at least k elements. Therefore, the number of clusters

produced by k-ACM is generally less than n/k and the number of elements of each

cluster is greater than or equal to k. Suppose that CF is the final set of clusters,

Ci
F is the ith cluster and s(Ci

F )represents the number of elements in cluster Ci
F . Q

is computed as follows:

Q = −
∑

Ci
F∈CF

1

s(Ci
F )

. log
1

s(Ci
F )

. (3.12)

Uncertainty gets the lowest value when each cluster has exactly k elements. However,

uncertainty increases when clusters have different number of elements and number
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Figure 3.2: General Flowchart of k-ACM

of clusters gets lower. Therefore, the inequality, Q ≥ Qmin, holds for every possible

output of k-ACM.

3.5 k-Anonymous Clustering Method (k-ACM)

Our method, k-ACM, starts with the initialization phase where a new cluster is

created for each input vector. After the initialization, clustering operation starts

and clustering is performed. The general flowchart of the method is shown in Figure

3.2 and algorithm of k-ACM is given in Algorithm 3.2.

In the k-anonymization stage, k-ACM forms the clusters in a bottom-up fashion
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Algorithm 3.1 Function Cluster Combination

Input: parameter, k, distance matrix, Dh

Output: New cluster, Lh
u, updated distance matrix, Dh+1

1: Find clusters, Lh
s , Lh

t , having minimum distance in distance matrix Dh

2: create a new cluster Lh+1
u

3: V h+1
u ← V h

s

⋃
V h

t

4: |V h+1
u | = |V h

s |+ |V h
t |

5: for each ith bit string of representative vector do
6: Rh+1

u [i] ← Rh
s [i] or Rh

t [i]
7: end for
8: Remove clusters, Lh

s , Lh
t

9: Find the distance of Lh+1
u to other clusters, update Dh+1

Algorithm 3.2 Main Function of k-ACM

Input: Table, T , number of records, n, number of attributes, m, anonymization
parameter k

Output: k-anonymized table, k-ACM(T )
{Initialization}

1: h = 1
2: for all i where {i : 0 < i < n} do
3: Create cluster array, {L1

i }
4: Add record, Ti to V 1

i

5: Set initial size of cluster, |V 1
i | = 1

6: Initialize the representative vector, R1
i ← Ti

7: Initialize the distance matrix D1 by using Equation 3.9
8: end for
{k-anonymization}

9: while not for each cluster |V h
i | ≥ k do

10: Call Function ClusterCombination (k, Dh) given in Algorithm 3.1.
11: h=h+1
12: end while

{Form the output of k-ACM}
13: k-ACM(T )← ∅
14: for each c̄luster, Lh

s in Lh where {s : 0 < s < |Lh|} do
15: Append Rh

s and |V h
s | to k-ACM(T )

16: end for
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Figure 3.3: A sample tree structure of clusters obtained at the end of k-anonymization

like UPGMA until each cluster represented has at least k records. A sample tree

structure of clusters obtained at the end of the k-anonymization stage is shown in

Figure 3.3. Here, h1 is defined as the iteration number needed to complete the

k-anonymization stage. In this tree structure, each tree node represents a cluster

and cluster size is the number of records that belong to the corresponding cluster.

This tree has c1 root nodes, identified as Lh1
1 ..Lh1

c1 , and their sizes are at least k.

In each cluster combination operation, the closest clusters are found and a new

cluster, which contains all the vectors belonging to the chosen closest clusters, is

formed. Distance calculations are done according to Equation 3.9. Representative

vector of the new cluster is bitwise OR of representative vectors of child nodes.

Here, OR operation acts as a generalization operation and the clusters in higher

tree levels have more generalized representative vectors. A sample case for cluster

combination operation is shown in Figure 3.4. Suppose that the closest clusters
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Figure 3.4: A sample case for forming new cluster by combination of two closest cluster

in the hx iteration are Lhx
1 , Lhx

2 and their representative vectors are Rhx
1 , Rhx

2 .

Assume that representative vectors have three bit strings each having a length of

four bits. This means there are three quasi-identifiers in the data set, all of them

are categorical and each categorical attribute may have four distinct values. The

new cluster is labelled by Lhx+1
1 . Its representative vector, Rhx+1

1 , is obtained by

ORing Rhx
1 and Rhx

2 . Each cluster combination results in information loss due to

the increase in the number of true bits. Sizes of clusters, Lhx
1 , Lhx

2 are represented

as |V hx
1 | and |V hx

2 | respectively. The size of new cluster, |V hx+1
1 |, is the summation

of the sizes of child nodes, |V hx
1 | and |V hx

2 |. The distance between Lhx
1 and Lhx

2 is

stored in the variable, Ihx+1
1 .

3.6 Termination Proof of k-ACM

Assume that at iteration h, the set of clusters is labelled as Lh, the total number of

clusters is |Lh| and ith cluster is represented as Lh
i . The number of records is n. k

is the anonymity variable where k < n. Representative vector of cluster, Lh
i , is Rh

i .

The number of elements is denoted as |V h
i |.
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Lemma 1: If clusters, Lh1
i for all i ∈ {1..|Lh1|} at iteration h1 of k-ACM, have

at least k items, h1 is the last iteration of k-ACM and the output of k-ACM has

k-anonymity property.

Proof:

k-ACM sends the representative vectors, Rh1
i for all i ∈ {1..|Lh1|} with |V h1

i |.
Since k-ACM guarantees the holding of inequality |V h1

i | ≥ k for all i ∈ {1..|Lh1|},
each cluster forms an anonymity set having size k.Q.E.D.

Lemma 2:Maximum number of clusters at the end of k-ACM is (n/k). This

situation can be reached when all clusters have exactly k records (For simplicity,

assume that n is divisible by k).

Proof:

Assume that at iteration h1, k-ACM is terminated. Also assume that the Equa-

tion 3.13 is hold.

|Lh1| > (n/k). (3.13)

From Lemma 1, it is known that each cluster has at least k items. For total

number of records in all clusters, n, it can be stated that n ≥ k.|Lh1|. By using

Equation 3.13 we can conclude that n ≥ k.|Lh1| > n but a contradiction is reached.

We conclude that assumption about Equation 3.13 is wrong.

For the second part of Lemma 2, assume that for ith cluster, |V h1
i | > k. Since all

other clusters has at least k records, the following inequality is hold: n − |V h1
i | ≥

((n/k)−1)k. By adding each side of both inequalities we conclude that n > n which

is contradiction. Therefore, assumption is wrong. Q.E.D.

Theorem 1: k-ACM terminates after at most n− 1 iterations.

Proof:

In each iteration of k-ACM, two closest clusters are chosen and merged. It

is guaranteed that in each iteration h, the number of clusters is equal to |Lh| =
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|Lh−1| − 1

Initially, for clusters L1
i where for all i ∈ {1..|L1|}, |V h

i | = 1 and |L1| = n.

Bottom-up clustering can continue until one cluster left. Suppose that at iteration

s, there is only one cluster Ls
1. For the size of cluster, following equality holds:

|V s
1 | = n. Since n > k, and by using Lemma 1, we can conclude that the output of

k-ACM has k-anonymity property. Since in each iteration, the number of clusters

is decreased by one, total number of iterations is n− 1. Q.E.D.

Theorem 2: k-ACM terminates after at least n−(n/k) iterations (for simplicity,

it is assumed that n is divisible by k).

Proof:

Initially number of clusters, |L1| is equal to n. In each iteration number of

clusters is decreased by one. According Lemma 2, the number of clusters produced

by k-ACM is maximum when each cluster has exactly k items. Therefore, maximum

number of clusters is equal to n/k. We can conclude that the minimum number of

iterations for decreasing n clusters to n/k clusters is n− (n/k). Q.E.D.

3.7 Worst Case Information Loss Analysis of k-

ACM

Assume that k is the anonymization parameter and also assume that data has n

records and m attributes where each attribute i has pi different attribute values. T

is the input data set for anonymization. IL(T ) is the information loss value of data

set T .

Lemma 3: k-ACM generates clusters having at most 2k − 1 records.

Proof:

In k -ACM, if any sth cluster of (h)th iteration, Lh
s , has a size |V h

s | > k then cluster

Lh
s does not involve in any combination operation in later steps. If a cluster, Lh+1

u ,
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is a result of combinations of two clusters, Lh
s and Lh

t , we can say that |V h
s | ≤ k

and |V h
t | ≤ k. If both clusters have exactly k records they are not combined.

Therefore, this requirement can be revised so that |V h
s | ≤ k and |V h

t | < k. Since,

|V h+1
u | = |V h

s | + |V h
t | then we can conclude that |V h+1

u | < 2.k. Maximum value for

the number of records belonging to one cluster is 2k − 1. Q.E.D.

Theorem 3: If for each pi where i ∈ {1..m}, pi = p and p < k, information loss

is log(p) in worst case.

Proof:

According to Equation 3.5, information is average of log of true bits in each

data entry. Representative vector of sth cluster in hth iteration is represented as

Rh
s and ith entry is Representative vector of sth cluster in hth iteration Rh

s . Rh
s [i]

represents widest range when at least one record exists with each possible attribute

value. Since in output of k -ACM a cluster has at least k records, where p < k, it

is possible to have p distinct attributes in each cluster. In this situation, length of

ith bit string, Rh
s [i], for each i where where i ∈ {1..m}, is p and each bit is actually

true bit. Therefore, information loss is log(p) in worst case. Q.E.D.

Theorem 4: If for each pi where i ∈ {1..m}, pi = p, h1 is the final iteration

and p ≥ 2k − 1, information loss is log(2k − 1) in worst case.

Proof:

From lemma 3, a cluster, Lh
s has size |V h

s | where |V h
s | ≤ 2.k−1. Since p ≥ 2k−1,

widest value range of ith bit string of Rh1
s , for each i where where i ∈ {1..m}, can be

set when each record in the cluster has different attribute value. In this situation,

each ith bit string of representative Rh1
s [i] has a length of p and at most 2k − 1 of

them are true bits. According to Equation 3.5, information loss is log(2k − 1) in

worst case when p ≥ 2k − 1. Q.E.D.

Theorem 5: If for each pi where i ∈ {1..m}, pi = p, h1 is the final iteration

and k ≤ p ≤ 2k − 1, then information loss is found as follows:
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IL(T ) ≤ 1/n.
∑

s∈Lh1

|V h1
s |.log(min (|V h1

s |, p)) (3.14)

Proof:

In each cluster, Lh1
s , any ith bit string Rh1

s [i] has a length of p. Maximum infor-

mation loss occurs when each record has different attribute value. Since |V h1
s | < p,

|V h1
s | of p bits can be true bits at most. If |V h1

s | > p, maximum information

loss occurs when all attribute values are covered by the records of cluster. All

bits of p bits are true bits in this situation. If we combine these two condi-

tions, we can conclude that number of true bits are determined by min(|V h1
s |, p)

in each bit string of representative vectors. Therefore maximum information loss is

calculated as log(min(|V h1
s |, p)). Total maximum amount of information loss of

a cluster, V h1
s , is m.|V h1

s |.log(min(|V h1
s |, p)). Calculation of maximum informa-

tion loss belonging to all clusters is
∑

s∈Lh1 m.|V h1
s |.log(min(|V h1

s |, p)). informa-

tion loss of table T IL(T ), is calculated by the average information loss per data

entry according to Equation 3.5. Therefore, upper bound for IL(T ) is IL(T ) ≤
1/n.

∑
s∈Lh1 |V h1

s |.log(min (|V h1
s |, p)). Q.E.D.

3.8 Complexity Analysis of k-ACM

Suppose that k-ACM works on an input consisting of n event records and each record

has m attributes. All of the m attributes are quasi-identifier and each attribute has

distinct V different attribute value. Initialization phase mainly calculates the initial

distance matrix and the running time of this part is O(n2.m.V ). Initially there

are n clusters and at the end of k-anonymization phase, the minimum number of

clusters is n/k. Therefore, n − n/k cluster combination operation occurs. Cluster

combination consists of finding the minimum distance in the distance matrix and

matrix reorganizing so that the distance values of new cluster are added and distance
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values of previous clusters are removed. If binary heap structure is used for finding

minimum distance, formation of initial min heap structure with n2 elements is O(n2).

In a heap, finding the minimum operation is O(1). However, removing distances of

merged clusters from heap and adding the distances of new cluster to the heap

need 2n deletion and n addition operations which cost O(n log(n)). Reorganization

of distance matrix can be done in O(n.m.V ) time sequentially with maintaining

the heap. As a result, cost of each cluster combination operation is O(nlogn +

nmV ). Recall that maximum number of cluster combination operations is n− n/k,

the algorithm reaches to the end of k-anonymization phase in O(n2logn + n2mV ).

Output enlargement for partial encryption and formation of k-ACM output takes

O(n) time. Totally, k-ACM takes O(n2logn + n2.2mV ). m and V generally have

lower values so they can be assumed as a constant factor. The running time can be

fine-tuned to O(n2logn).
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Chapter 4

k-Anonymity based Framework for Privacy Preserving Data

Collection in Wireless Sensor Networks

Results of advances in sensor and wireless technology, wireless sensor networks

(WSNs) emerged as an important information gathering system from wide areas.

They are widely used for observing many physical phenomenons of world like tem-

perature, humidity etc. As wireless sensor technology takes progress, missions of

WSNs get complicated so that they are used in human, enemy, habitat, structure

or traffic monitoring applications. With the advent of wireless body are networks,

applications for health monitoring of patients outside the hospitals or home-caring

of elderly people have designed and implemented widely.

In recent sensor network applications, especially in object monitoring applica-

tions, the collected information is not an aggregated value like average temperature

or humidity value of a region; it may be about specific individuals or specific events

so that the privacy of each event information gets important. Moreover, the data

gathered in these and other sensor network applications may contain several at-

tributes for an entity. For example, traffic monitoring applications collect velocity,

direction and size information of a vehicle in addition to spatio-temporal informa-

tion. Collection of these attributes enables to launch re-identification attacks even

in the case where the identities are withheld.

In some sensor network applications, sensor nodes may deployed over grounds
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which are not physically protected; they exchange data without a fixed routing

structure; they try to gather various type of information from uncontrolled areas

and transfer them to the sinks in controlled or semi-controlled areas. Eavesdropping

and compromising of sink are major threats in such an un-controlled environment.

In addition to these threats, sink itself may not be considered as a fully trusted

party.

As the complexity of wireless sensor applications increase, structure of WSNs

have evolved in order to meet the new application requirements. WSNs generally

have many-to-one structure so that sensors collect event information from the area

and send to a unique sink. Some recent sensor applications have begun to use many-

to-many structure, which actually means there exist multiple sinks in the deployed

environment. WSN applications may need to send the same event information to

different sinks rather than a unique sink. For example, in a home-caring application

for elderly people, information about the elderly person can be sent to a family

member and to a nurse at the same time.

As information collection capability of WSNs are enhanced, privacy preserving

is getting one of the major problems in these networks. Huge amount of informa-

tion about an individual is collected and distributed. On the other side, individuals

generally need to restrict the details of personal information for privacy preserva-

tion. Therefore, countermeasures for privacy threats have to cover the both needs,

enabling data collection and restricting the storage of some private parts. Coun-

termeasures have to be designed so that they present protection for the threats of

WSN environment and take many-to-many WSN structures into consideration.

On the other side, in most of the WSNs, minimization of energy consumption

is one of the primary criteria due to limited battery capacity or unavailability of

battery replacements. All other security countermeasures as well as the privacy

preserving solutions have to perform their works with minimum energy.
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In this chapter, proposed privacy framework is adapted to WSN applications for

two different threat models. First threat model consists of un-trusted eavesdropper

and semi-trusted sink. Here, semi-trusted notion is used for stating the level of pri-

vacy requirement. Semi-trusted sink means users are reluctant or required to share

their data with sink but they do not totally trust to this data collector point. Level

of privacy requirement of sink is lower than requirement of un-trusted eavesdropper.

The second threat model states that there exists multiple sinks each having dif-

ferent privacy levels. k-ACM is modified for each threat model. The modifications

and performance analyses of each solutions are presented in Sections 4.1 and 4.2,

respectively. In both sections, k-ACM is modified so that the same data guaran-

tees the different privacy requirements of all threats. Proposed privacy solutions

aim to minimize energy consumption of WSN. They successfully create a trade-off

mechanism between information loss and energy consumption.

4.1 Semi-trusted Sink and Un-trusted Eavesdrop-

per

One of the major threats in wireless medium is eavesdropper threat. During the

transmission of gathered data to sink or central server, adversary having eavesdrop-

ping capability can sniff the network and get the event information. Since sensed

area is uncontrolled, adversary can use his own systems to collect extra information

from the area, join his knowledge with the sniffed event information and determine

the attributes of specific events, such as location and time. In WSN applications

of enemy tracing, habitat monitoring, traffic monitoring and human tracking [54],

eavesdropping threat have to be dealt with so that the privacy of data during the

transmission has to be provided.

The privacy problem is not limited to the threat of eavesdropper. In some
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situations, the data shared with sink or central server has to fulfill some privacy

requirements. There may be a threat of sink capture in some WSN environments

where physical security is not guaranteed. Physical capture of sink effects the whole

system since it stores all event information.

In some other applications, sink itself may not be considered as a fully trustable

entity by the WSN users. For example, consider a wireless body area network

system where the patient’s health status are centrally tracked by a central server

(i.e. the sink) in the hospital. Users may not want central server to know their

exact spatio-temporal information in non-urgent times. Therefore, it is needed to

provide privacy of personal information shared with the sink. People using WSN

applications like caring systems for elderly people or smart home monitoring systems

may need protection of their privacy from the parties where they share their personal

information.

Trusted data collection model used in privacy preserved data publishing methods

[2] does not fit directly to WSN environment since the data shared entity, sink, may

not be fully trusted and there may be other un-trusted parties like eavesdroppers.

Trusted entities where anonymization would be done have to be distributed so that

compromising of a trusted entity does not lead to loosing all data of system. A new

data collection model for a WSN environment has to be adopted.

The threat model is based on the threat due to untrusted eavesdropper and

threat due to semi-trusted sink. Therefore, model has two privacy criteria, k1-

anonymity for the data received by the semi-trusted sink and k2-anonymity for the

data transmitted in the network that can be captured by the untrusted eavesdropper,

where k2 ≥ k1.

Designers of privacy preserved data collection system for WSN have to concen-

trate on reducing the energy cost. Studies show that [55], energy consumption is

heavily dependent on transmission/reception of data packets. Therefore, shortening
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the size of event information plays a crucial role in energy reduction. In proposed

method, shortening of message sizes are accomplished by sending the common quasi-

identifier attributes of events only once to sink instead of sending the same data

iteratively for each event.

Encryption is introduced as an anonymity operation in addition to generaliza-

tion. Encryption enables to provide different privacy levels for eavesdropper and

sink. Appropriate encryption keys are shared between sink and sensor nodes where

anonymization takes place.

Proposed method first k1-anonymizes the data to a base level for semi-trusted

sink via generalization. Next step is to further anonymize the data against eaves-

droppers until the data becomes k2-anonymous with encryption and generalization

operations. For second step, trivial solution seems to be totally encrypting the

k1-anonymized data. If k2-anonymity is enough as a privacy requirement for the

eavesdroppers and some amount of data loss can be tolerated by the sink, instead of

fully encryption of k1-anonymous data, this data is k2-anonymized with encryption

and generalization operations. In the study, it is shown that this partial encryption

method considerably decreases the energy consumption by shortening the lengths

of messages.

4.1.1 Network and Threat Model

Wireless sensor networks generally deployed in open areas. Third parties can deter-

mine some attributes of detected events by using their own sensors or by directly

observing events. They can perform record linkage attack in order to identify the

event owner. Our threat model bases on providing privacy by preventing “record

linkage attack” during data collection.

The privacy threats are both due to the eavesdroppers and the sink. That is why

our threat model should address the privacy requirements of these two threat types.
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In our model, the privacy requirement levels of the system against the sink and

against the eavesdropper are not the same. Thus, we employ a privacy mechanism in

which there are two privacy levels associated with eavesdroppers and sink: untrusted

eavesdroppers and semi-trusted sink.

Untrusted eavesdroppers are assumed to be capable of capturing data, but the

system should ensure that the privacy of the captured data has to be protected to

some extent. In this way, the eavesdroppers can only learn limited information out

of the captured data.

On the other hand, semi-trusted sink is allowed to legally obtain data, but this

data should also have a specific privacy property. However, the privacy protection

level of the data that the sink obtains is lower than that of the eavesdroppers. In this

way, the sink can learn more detailed information as compared to the eavesdroppers,

but the information detail is still limited to some extent.

In our network model, there is one sink and a number of sensor nodes. Some

sensor nodes serve as aggregation nodes where all anonymization operations on the

data takes place. Therefore, our model protects the event data between aggregation

nodes and the sink.

In order to prevent “record linkage attack”, k-anonymity can be provided by

fusing different events. Therefore, trusted entities where anonymizations take place

have to be determined. Due to threats of WSN environment, these fuse points

have to be distributed so that capturing of one point do not lead to compromis-

ing of whole network data. Also it is convenient to choose points as much close as

possible to sensors. Therefore, aggregation nodes act as locally trusted parties for

the corresponding local sensors. Our anonymization framework solves the privacy

problem for the data travelling from aggregation nodes to sink. In Figure 4.1, the

basics of the network and threat models are shown. The links between sensor nodes

and aggregation nodes are assumed to be secure. Here, in order to provide confi-
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Figure 4.1: Visualization of Network and Threat Models

dentiality of the traffic between sensor nodes and aggregation node, an appropriate

key management mechanism [56, 57] could be employed. On the other hand, the

links between aggregation nodes and semi-trusted sink are assumed to be insecure.

Actually, we address the privacy issues of that part of the network in this chapter.

We assume that our WSN uses widely accepted data-centric routing protocols

like SPIN [58] or directed diffusion [59] for finding appropriate routes from sensors

to sink.

In our model, it is assumed that one individual generates one event in the

anonymization period. In other words, aggregation points process independent

events. In this way, we remove the possibility of having correlation among the

records that we anonymize.

4.1.2 Two Level Of Privacy with mk-ACM Method

In this section, modification of k-ACM Method that was described in Chapter 3

is given in order to fulfill the requirements of two different levels of anonymity.

New version of k -ACM is named as modified k-Anonymization Clustering Method

(mk-ACM).

mk-ACM starts with the initialization phase where a new cluster is created
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for each input vector as in k-ACM. After the initialization, clustering operation

starts and clustering is performed in two distinct stages, k1-anonymization and k2-

anonymization stages. mk-ACM is given in Algorithm 4.2. The notation table given

Table 3.1 is also used in this section.

Algorithm 4.1 Function Cluster Combination

Input: parameter, k, distance matrix, Dh

Output: New cluster, Lh
u, updated distance matrix, Dh+1

1: Find clusters, Lh
s , Lh

t , having minimum distance in distance matrix Dh

2: create a new cluster Lh+1
u

3: V h+1
u ← V h

s

⋃
V h

t

4: |V h+1
u | = |V h

s |+ |V h
t |

5: for each ith bit string of representative vector do
6: Rh+1

u [i] ← Rh
s [i] or Rh

t [i]
7: end for
8: Remove clusters, Lh

s , Lh
t

9: Find the distance of Lh+1
u to other clusters, update Dh+1

In the k1-anonymization stage (9-12. items in Algorithm 4.2), mk-ACM forms

the clusters in a bottom-up fashion until each cluster represented has at least

k1 records. A sample tree structure of clusters obtained at the end of the k1-

anonymization stage is shown in Figure 4.2. Here, h1 is defined as the iteration

number needed to complete the k1-anonymization stage. This tree has c1 root

nodes, identified as Lh1
1 ..Lh1

c1 , and their sizes are at least k1.

In the k2-anonymization stage (14-17. item in Algorithm 4.2, bottom-up clus-

tering starts with the clusters represented by the root nodes of k1-anonymization

tree and continues until all the root nodes of tree have sizes of at least k2, where

k2 ≥ k1. A tree structure obtained at the end of k2-anonymization stage is shown in

Figure 4.3. Here, h2 is defined as the iteration number after which all the root nodes

have at least k2 items and bottom-up clustering is completed. This tree structure

has c1 leave nodes, Lh1
1 ..Lh1

c1 and c2 root nodes, Lh2
1 ..Lh2

c2 .
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Algorithm 4.2 Main Function of mk-ACM

Input: Table, T , number of records, n, number of attributes, m, anonymization
parameters k1, k2 (k2 ≥ k1), output enlargement factor, M

Output: Anonymized table, mk-ACM(T )
1: h = 1 {Initialization}
2: for all i where {i : 0 < i < n} do
3: Create cluster array, {L1

i }
4: Add record, Ti to V 1

i

5: Set initial size of cluster, |V 1
i | = 1

6: Initialize the representative vector, R1
i ← Ti

7: Initialize the distance matrix D1 by using Equation 3.9
8: end for
{k1-anonymization}

9: while not for each cluster |V h
i | ≥ k1 do

10: Call Function ClusterCombination (k1, Dh)
11: h = h + 1
12: end while
13: c1 = |Lh|, h1 = h

{k2-anonymization}
14: while not for each cluster |V h

i | ≥ k2 do
15: Call Function ClusterCombination (k2, Dh) given in Algorithm 4.1
16: h = h + 1
17: end while
18: c2 = |Lh|, h2 = h
19: Initialize the set of vectors to be sent to sink, S, by clusters Lh2

1 , ..., Lh2
c2 (|S| = c2)

20: ϕ = c2 + M.(c1 − c2) (ϕ is max. number of representative vector allowed for
sending)
{Output enlargement for partial encryption}

21: while not |S| = ϕ do
22: Select the node, f , with the maximum information loss in S
23: Find the child nodes, g and h, of node f
24: Modify S by replacement of node f with nodes g and h
25: end while
26: mk-ACM(T )← ∅

{(Form the output of mk-ACM)}
27: for each cluster, C, in S do
28: if |C| ≥ k2 then
29: Append representative vector of C and |C| to mk-ACM(T )
30: else
31: Append |C| and encrypted version of C to mk-ACM(T )
32: end if
33: end for
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Figure 4.2: A sample tree structure of clusters obtained at the end of k1-anonymization
stage

Figure 4.3: A sample tree structure of clusters obtained at the end of k2-anonymization
stage
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Before explaining 21-25. items of mk-ACM method in Algorithm 4.2, the motiva-

tion behind output enlargement and partial encryption is given below. As discussed

before, information loss is an important design criterion in mk-ACM. Another im-

portant criterion is energy saving. Sensor nodes are scattered in an area where there

is no power supply other than a simple battery. Therefore, increasing the lifetime of

battery is desired in almost all WSN applications. A sensor node consumes energy

for different processes like event sensing, CPU processing, or transmitting/receiving

data packets. Although encryption process needs a considerable amount of CPU

processing, recent studies [55] show that energy consumption rates for transmis-

sion/reception is over three orders of magnitude greater than the energy consump-

tion rates for encryption. Since each sensor node acts as a router for the messages of

other nodes and one message goes over many hops in the network, energy saving for

transmission/reception operations becomes a crucial design criterion. These facts

direct the wireless sensor network (WSN) designers to shorten the length of the

packets.

Actually, there is a tradeoff between information loss and energy consumption.

We analyze this tradeoff in two extreme cases of mk-ACM method.

1. Make the data k2-anonymous via generalization operations at aggregation

points and send it to the semi-trusted sink. This case corresponds to the case

where the data computed at the end of 14-17. items of Algorithm 4.2 are sent

to the sink.

2. Make the data k1-anonymous with generalization operations, encrypt all this

anonymous data by a shared key with the semi-trusted sink and send it to the

sink. This case corresponds to the case where the data obtained at the end of

12. item of Algorithm 4.2 are entirely encrypted.

Both cases fulfill the requirements of our threat model. In the first case, at which
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only generalization is performed, the length of the data is minimized and the number

of encryptions is zeroed. In this way, energy consumption is also minimized. How-

ever, due to the generalization operations, information loss is maximized in this case.

In the second extreme case, since only encryption is performed, the length of the

data transmitted is maximized. This yields maximized energy consumption. How-

ever, since encrypted data will be decrypted at sink, there is no extra information

loss here.

In order to cope with the trade-off between energy consumption and information

loss more efficiently, we introduced an intelligent partial encryption alternative in

mk-ACM. In mk-ACM, there is an allowance for encryption operations in the k2-

anonymization stage. Basically, mk-ACM uses this allowance for the data portions

that have high potential for information loss when generalization was applied.

mk-ACM can effectively find the appropriate data entries for encryption oper-

ations (21-25. items of mk-ACM method in Algorithm 4.2) as described below. It

firstly k2-anonymizes the data (14-17. items of mk-ACM algorithm) as depicted as

a tree structure in Figure 4.3. Let us define the set S as the set of all representative

vectors to be sent to the sink. Initially the set S contains c2 nodes, which are root

nodes of the tree, Lh2
1 ..Lh2

c2 . All of these nodes are k2-anonymized. If no encryptions

are allowed, this initial content of S is sent to sink that causes maximum informa-

tion loss as discussed above. To reduce information loss, the encrypted versions of

representative vectors with k-anonymization levels less than k2 can be sent to sink.

This process requires moving down the tree in Figure 4.3. In other words, some

nodes in S are replaced by their children. This is done in an iterative manner until

a certain limit. At each iteration, mk-ACM chooses the element of S with highest

information loss and this element is replaced by its child nodes. This replacement

increases the size of data sent to sink by one vector, but the quality of data is also

increased since we now discarded some generalization operations by moving down
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Figure 4.4: Selection of data entries for encryption

the tree.

An example is depicted in Figure 4.4. Assume that node, Lh2
a , has the maximum

information loss and nodes, Lh2−1
cx , Lh2−1

cy are its child nodes. Lh2
a is replaced by its

child nodes and the set S is now composed of nodes, Lh2
1 ..Lh2−1

cx , Lh2−1
cy ..Lh2

c2 . By this

replacement, we can cancel the information loss that have had occurred after the

merging of nodes, Lh2−1
cx , Lh2−1

cy . Therefore, the quality of data represented by the

new set S is greater than the previous one. However, the length of S is increased

by one, Lh2−1
cx and Lh2−1

cy must be encrypted since they are not k2-anonymized.

In 21-25. items of mk-ACM given in Algorithm 4.2, the number of replacements

is adjusted by a predetermined threshold value, output enlargement factor, M , where

0 ≤ M ≤ 1. This value determines the maximum size of S, which is c2+M(c1− c2)

vectors. The replacement continues until the size of S reaches this value.

After the end of replacement process, vectors of nodes in S are transmitted to the

sink together with the node sizes (27-33. items of mk-ACM). Before transmission,

representative vectors of nodes having anonymity levels less than k2 are encrypted in

order to make the data k2-anonymous for eavesdroppers. The other vectors, which
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are actually k2-anonymous, are sent in clear-text.

In mk-ACM, M determines the tradeoff between information loss and energy

saving. If M is zero, then c2 k2-anonymized data entries are sent to sink and

none of them are encrypted. This corresponds to the first extreme case explained

above. However, if M is one, then the output includes c1 vectors and all of them

are encrypted. This corresponds to the second extreme case discussed above. In

general, large M values mean greater output size and more quality data at the cost

of higher energy consumption for both communication and encryption. Small M

values mean smaller output size and less quality data at the benefit of less energy

consumption. The analysis for this tradeoff is given in Section 4.1.4.

Network-wide Operation of mk-ACM

In our network model, there are many aggregation nodes that obtain local event data

from regular sensor nodes and forward toward the sink after applying mk-ACM to

the data. Therefore, mk-ACM algorithm runs in each aggregation node in parallel.

The pseudo-code which shows the network-wide operation of mk-ACM in a par-

allel manner is shown in Algorithm 4.3.

Algorithm 4.3 Network-wide operation of mk-ACM algorithm in a parallel manner

1: for each aggregation node in parallel do
2: while while time period is not exceeded or buffer of node is not full do
3: Collect and accumulate local event information from sensors
4: end while
5: Run mk-ACM
6: Send the output of mk-ACM to the sink
7: end for
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4.1.3 k-Anonymization Output Size and Energy Saving

In our study, k-anonymization is considered as a privacy mechanism; however, k-

anonymization shortens the length of the event messages as well. In this way, energy

consumption is reduced. Basically, k-anonymization makes the quasi-identifier fields

of k or more records identical. It is not needed to resend these identical parts again

and again. These parts can be sent to the sink only once along with the number

of occurrences. By this reduction technique, the data is shortened as well although

information about the individual events is conserved.

In section 4.1.2, it is described that actually the mk-ACM output is composed

of representative vectors of clusters and their sizes. The number of representative

vectors is determined by the value of c2+M(c1−c2) in which M is the predetermined

threshold value, called output enlargement factor. This variable can take values from

zero to one. As a result the range for number of vectors is [c2, c1]. Assume that

in the data, there are n records, m categorical attributes and each attribute has p

distinct attribute value. k1, k2 are the parameters of the k-anonymization. The size

of clusters cannot exceed 2k2, therefore cluster size can be represented in the output

with at most log(2k2)bits. Total length of all representative vectors of clusters and

their cluster sizes can be at most (c2 + M(c1 − c2)).(mp + log(2k2)). Originally, the

size of data is mn log p. Decrease ratio, D, is described as the ratio of difference

of input and output size to the input size in a k-anonymization operation. D is

computed for overall k-ACM output as follows:

D =
mn log(p)− (c2 + M(c1− c2)).(mp + log(2k2))

mn log(p)
. (4.1)

Decrease ratio directly affects the energy consumption by saving certain amount

of energy due to reduced length of data transferred towards the sink. The energy

saving metric, CG, is defined as the ratio of saved amount of energy due to k-
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anonymization. By using the decrease ratio, D, energy saving, CG, is calculated as

follows:

CG = 1− 2.5hsregion + 2.5(1−D)hregion + 8.58 10−4β

2.5(hsregion + hregion)
. (4.2)

where, hsregion is the expected number of hops an event message travels from a

sensor node to the aggregation node; hregion is the expected number of hops from

aggregation points to the sink; D is the decrease ratio and β is the number of

encrypted entries where it is actually M(c1 − c2). Derivations for hsregion, hregion

and CG are given as follows:

Suppose the WSN field has the size of Xregion.Yregion. Aggregation nodes are

uniformly deployed in this area. Sink is located at the middle of the region, so

the coordinates of the sink is (Xregion/2, Yregion/2). Assume that aggregation nodes

divide the entire region into sub-regions each having sizes of (Xsregion, Ysregion). Each

aggregation node is located in the middle of the corresponding sub-region. The

sensor nodes are also uniformly distributed in each sub-region. Expected distance

value of a sensor node to an aggregation node, dsregion, in a sub-region is calculated

as follows:

dsregion =

∫ Xsregion

x=0

∫ Ysregion

y=0

√
(x− (Xsregion/2))2 + (y − (Ysregion/2))2f(x)f(y)dxdy.

(4.3)

Here, f(x) and f(y) are the probability distribution functions of sensor coordinates.

Since sensor nodes are uniformly distributed in the sub-region, they are chosen as

f(x) = 1/Xsregion and f(y) = 1/Ysregion. The expected number of hops an event

message travels from a sensor node to the aggregation node is:

hsregion = dsregion/R. (4.4)

From sensor node to the aggregation node, an event message travels hsregion hops
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which is calculated as follows:

dsregion =

∫ Xsregion

x=0

∫ Ysregion

y=0

√
(x− (Xsregion/2))2 + (y − (Ysregion/2))2

XsregionYsregionR
dxdy. (4.5)

The number of hops between aggregation node and sink, hregion, is calculated as in

the following:

dregion =

∫ Xregion

x=0

∫ Yregion

y=0

√
(x− (Xregion/2))2 + (y − (Yregion/2))2

XregionYregionR
dxdy. (4.6)

In WSNs, event information flows from sensor node to aggregation node, then to the

sink. k-anonymization operations take place at aggregation nodes so the shortening

effect helps to consume less energy while transferring event data from aggrega-

tion node to the sink. These operations consume additional energy for encryption

and decryption operations, but the energy spent for encryption and decryption is

quite small as compared to energy spent for transmission and reception. Energy

consumption parameters are determined according to the experimental results pre-

sented in [55]. We assume that the data is processed in Sensoria’s WINS NG RF

subsystem with MIPS R400 processor where encryption algorithm is AES. The

transmission/reception, transmission/encryption and encryption/decryption energy

consumption ratios for the same length of data are shown in Table 10. The trans-

mission and reception rate is taken as 10 Kbps and power is 10mW. In all energy

calculations, only event data processes are taken into consideration. Energy con-

sumed for exchanging routing information or energy that is exhausted during idle

times of sensors are excluded from calculations in order to accurately calculate the

energy consumption of the proposed method. Suppose that WSN generates event

messages which are e bytes long and we assume that transmission energy TT is 1.5

units (the actual unit is not so important since we eventually calculate energy saving

as a ratio), reception energy TR is 1 unit, encryption and decryption energy, TE and
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Table 4.1: Energy Consumption Ratios

Energy Consumption Ratios Ratio Value
Transmission/Reception 1.5
Transmission/Encryption 2333.34
Encryption/Decryption 1

TD, are 4.29e-4 units.

Total consumed energy without k-anonymization is denoted as CN . In this case,

all event messages are sent to aggregation node, but aggregation node just relays

them to the sink without any performing k-anonymization operation. At each hop,

each event packet is transmitted and received once so consumed energy in one hop

is (TT + TR)e which is actually 2.5e units. The number of hops that each event

message is transmitted is hregion + hsregion. The energy consumption, CN , can now

be calculated as follows:

CN = (hregion + hsregion)(TT + TR)e = (hregion + hsregion)2.5e. (4.7)

Total consumed energy in the case where k-anonymization is used is denoted

by CK . The length of an event message, which is transferred from a sensor node

to an aggregation node, is assumed to be e bytes. However, this length is re-

duced to (1 − D)e after the aggregation node due to the shortening affect of the

k-anonymization. Here, D is the decrease ratio of the k-anonymization operation.

Suppose that Moreover, in this case, β bytes of the event message are encrypted.

The energy consumption, CK , can now be calculated as follows:

CK = hsregione(TT + TR) + hregion(1−D)e(TT + TR) + β(TE + TD). (4.8)

Total energy saving CG is calculated as follows:
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CG = 1− CK

CN

= 1− 2.5hsregione + 2.5hregion(1−D)e + 8.58 10−4β

(hregion + hsregion)2.5e
. (4.9)

In order to calculate the energy saving just after k1-anonymization stage of k-

ACM algorithm, decrease ratio at this stage, Dk1−anonymization, have to be calculated.

For this calculation Equation 4.1 is needed to be revised. The number of represen-

tative vectors at this stage is c1 and a cluster size occupies log(2k1) bit length.

Dk1−anonymization is found as follows:

Dk1−anonymization =
mn log(p)− c1.(mp + log(2k1))

mn log(p)
. (4.10)

If the value of D in Equation 4.2 is replaced with Dk1−anonymization, then the en-

ergy saving that is guaranteed at the end of k1-anonymization stage is calculated.

Decrease ratio in k2-anonymization stage is calculated as follows:

Dk2−anonymization =
c1.(mp + log(2k1))− (c2 + m(c1− c2)).(mp + log(2k2))

c1.(mp + log(2k1))
.

(4.11)

Energy saving in this stage can be calculated by Equation 4.2 where D is actually

Dk2−anonymization.

Compression is a good additional mechanism to reduce energy by decreasing

message lengths during data transmission and reception. It can be applied to both

anonymized and non-anonymized data. In order to show relative benefit on energy

consumption of our k-anonymity framework, we do not applied compression. How-

ever, WSN owners may also use compression for the outputs of our framework to

further reduce energy consumption.
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4.1.4 Performance Evaluation of mk-ACM

In this part, trade-off between information loss and energy saving is investigated by

applying mk-ACM to synthetic data under different k1 and k2 values. A data record

has five categorical attributes. Each attribute is considered as a quasi-identifier and

has four distinct values. Synthetic data is generated randomly by using uniform

distribution.

In the first subsection, the performance of k1-anonymization stage is evaluated.

Especially, information loss in the data shared with the semi-trusted sink is an

important evaluation criterion in this stage. The second subsection evaluates the

performance of dynamic taxonomy trees. The third subsection focuses on the per-

formance of mk-ACM in the k2-anonymization stage.

Performance Evaluation of k1-anonymization Stage

We analyze the performance of k1-anonymization stage using the information loss,

anonymity level and energy saving metrics. In this way, the performance of bottom-

up clustering method as a general k-anonymity solution is investigated. Table 4.2

gives the performance values for a data set with 500 records. The column named ‘Re-

quired Anonymity Level’ gives the minimum anonymity score of the k1-anonymous

data according to Equation 3.11. This anonymity score is obtained if all clusters

have exactly k1 elements at the end of mk-ACM. However, the primary focus of

our algorithm is making data at least k1-anonymous with minimum information

loss. Therefore, the number of elements in the clusters may exceed k1. Due to this

fact, the actual anonymity level of each case, which is shown in the column labelled

‘Anonymity Level’, is generally greater than the corresponding ‘required anonymity

level’ value. ‘Information Loss’ column gives the information loss of k1-anonymity

operation by using the conditional entropy of Equation 3.5. The last column of Ta-

ble 4.2, ‘Energy Saving’, gives the energy saving of mk-ACM in k1-anonymization
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Table 4.2: Experimental results of data set with 500 records for the k1-anonymous stage

k1 value Required Anonymity Anonymity Information Loss Energy Saving
Level Level (bits) (%)

Value Range:[0.0 2.0]
3 1.58 2.11 0.54 27
4 2 2.25 0.47 34
5 2.32 2.82 0.77 52
8 3 3.41 0.93 65

stage within the whole energy consumption of WSN due to the reformatting oper-

ation proposed in algorithm. In this reformatting operation, the iterated parts in

the k-anonymous data is sent once together with the number of occurrences of these

iterated parts in the data. In this way, the length of messages decreases. Energy

saving at the end of k1-anonymization stage is calculated using Equation 4.2 and

Equation 4.10. In our analysis, we take the size of WSN field as 500m x 500m,

size of each sub-region as 50m x 50m and the transmission range, R, as 10m. As

expected, the information loss increases as the anonymity level increases. Informa-

tion loss of 3-anonymous data is 0.54 and the whole system energy saving ratio is

0.27. 5-anonymous data provide an optimal solution such that the information loss

value, 0.77, is tolerable and energy saving, 0.52, is quite high. For 8-anonymous

data, energy saving is very high (0.65), however, information loss is also high (0.93)

that makes the data low quality.

In Figure 4.5, the effect of change in the number of records to the information loss

is analyzed for various k1 values. For a given k1 value, information loss has a general

decreasing pattern as the number of records increases. The main reason behind

this decrease in information loss is that while the number of records increase, data

naturally becomes k1-anonymous and fewer generalizations are performed. However,

in a few cases (e.g. transition from 500 to 600 records for k1 = 8), information loss

increases as opposed to general decreasing pattern. These exceptions are due to the

nature of the clustering mechanism. The clustering mechanism may occasionally
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Figure 4.5: Information loss versus record number for different k1 values

cause a higher average number of data records per cluster as the number of records

increase. This may cause a slight increase in information loss in some cases.

In above experiments, we use data which are generated randomly by using uni-

form distribution We also performed experiments by using data which are generated

by some non-uniform irregular distributions. In terms of information loss, the re-

sults of data with non-uniform distributions are better than the ones with uniform

distribution in these experiments. If the data is produced by non-uniform distribu-

tions, some input vectors are closer to each other. Information loss of those vectors

are lower at the end of the anonymization. In other words, by using uniformly

distributed data, we presented the worst case performance of our method in Ta-

ble 4.2 and Figure 4.5. For the sake of simplicity and clarity, we do not give the

experimental results obtained by using non-uniformly distributed data.
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Performance Analysis of Dynamic vs Static Taxonomy Trees

Notion of dynamic taxonomy tree is proposed in k-ACM and mk-ACM in order to

minimize information loss. However, the length of anonymized data produced by

using this type of tree is much more than the data generated by static taxonomy

tree. A categorical attribute having p distinct attribute values can be represented

by p bits according to dynamic taxonomy tree method. If static tree having t total

nodes (including leaves and internal nodes) is chosen, the length of data would be

log(t). The value of t can have the maximum value, 2p− 1, when the tree is binary

and can have the minimum value, p+1, when all leave nodes are directly connected

to a root node. Therefore, range of data length is between [log(p + 1), log(2p− 1)].

For all p ≥ 2, static tree data representation is shorter and the length difference gets

enormously bigger as p increases.

As stated before, energy consumption of WSN is mostly determined by the length

of messages transferred in the network. Actually, there is a trade-off between data

utility and energy consumption in choosing the dynamic taxonomy tree method as

a data representation method. In this section of chapter, this trade-off is analyzed

by experiments.

In the experiments, the number of input records is chosen as 500. Input records

have five categorical attributes where each of them is determined as quasi-identifier.

Each categorical attribute has six distinct attribute values. It is assumed that

the tree given in Figure 4.6 is the static taxonomy tree used for representation of

attributes. The tree consists of one root node, two internal nodes and six leave nodes.

The length of each attribute is represented by 6 bits in dynamic tree whereas it is

represented by dlog(9)e = 4 bits in static taxonomy tree. Generalization is actually

replacing the attributes with their common ancestor in static tree. In order to

be consistent with the other experimental results, information loss metric given in

Section 3.2 of Chapter 3 is used. Final information loss is calculated by converting
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Figure 4.6: A Static Taxonomy Tree Sample

Table 4.3: Experimental results of data set with 500 records for Comparison of Static and
Dynamic Taxonomy Trees

k value Info. Loss of Energy Gain of Info. Loss of Energy Gain of
Static Taxonomy Static Taxonomy Dynamic Taxonomy Dynamic Taxonomy

Tree (bits) Tree (%) Tree (bits) Tree (%)
Value Range: [0.0 2.58] Value Range: [0.0 2.58]

4 1.39 65 0.87 36
5 1.48 69 1.06 48
8 1.95 80 1.48 66
10 1.96 81 1.61 70

categorical attributes of static taxonomy tree into equivalent bit strings at the end.

If attribute is generalized into an internal node, all bits corresponding to the children

of that node is converted to ‘1’.

The results of experiments are shown in Table 4.3. Each row corresponds to

results of information loss and energy saving values of using static or dynamic tax-

onomy tree methods for each given k value. Tree given in Figure 4.6 is chosen as a

static taxonomy tree. As expected, the information loss caused by dynamic tree is

considerable smaller than the loss generated by static tree. For example, in experi-

ment where k is chosen as 5, information loss of dynamic tree is 1.48 bits. However,

this value is 1.95 bits in static tree. On the other side, energy saving of static tree

method is higher due to the smaller lengths of data representations.

The ratio of energy saving (ES) to the information loss, ES/IL, is determined
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for better analysis of trade-off between data utility and energy consumption. The

number of input records is 500 each having 5 categorical attributes. Experiments

are repeated for different static taxonomy tree structures given in Figure 4.1.4. The

numbers of distinct attribute values are 4, 6 and 9 respectively. Ratios, ES/IL,

are calculated in each experiment using dynamic and static taxonomy trees as given

in Figure 4.8. As a general, in terms of ES/IL, there is no any major difference

between dynamic and taxonomy tree methods. Dynamic one maximizes data utility

by paying higher costs for energy. If WSN has limited resources for energy and if

owners of WSN can tolerate information loss, dynamic taxonomy tree method can

be considered as best alternative.

(a) Tree with 4 distinct attribute values (b) Tree with 6 distinct attribute values

(c) Tree with 9 distinct attribute values

Figure 4.7: Static taxonomy trees for different number of attribute values
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Figure 4.8: Comparison of Static and Dynamic Taxonomy Trees

Performance Evaluation of k2-anonymization Stage

k2-anonymization stage starts with the k1-anonymous data obtained from the pre-

vious stage. Output enlargement factor, M , adjusts the length of output that is

obtained at the end of the k2-anonymization stage. As M increases, the size of

the output and consequently the number of encrypted data entries increases as de-

scribed in Section 4.1.2. Increase in the number of encrypted data entries creates

more accurate output and decreases information loss.

Table 4.4, gives the experimental results for a data set having 500 records where

k1 = 4 and k2 = 16. First column gives the value of output enlargement factor, M ,

that is pre-determined for the corresponding experiment. The second column shows

the anonymity level that the output provides and it is computed according to Equa-

tion 3.12. This anonymity level is obtained after the encrypted parts are decrypted at

the sink. Third column gives the information loss occurred only in k2-anonymization
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stage.It is actually the difference between information loss occurred at the end of

k2-anonymization stage and information loss at the end of k1-anonymization stage.

Since information loss of 4-anonymous data is 0.47 and information loss can be at

most 2.0, information loss that can occur during k2-anonymization can be found as

at most 1.53.

Equation 3.5 is used for computations of information losses. Energy saving values

in k2-anonymization stage are given in the fourth column. Decrease ratio of this

stage is calculated by Equation 4.11 and energy saving is found by Equation 4.2.

Energy saving values indicate the energy savings as compared to the extreme case

where the entire k1-anonymous data is encrypted. Last row actually shows this

extreme case. Here, M = 1, which means output length is maximum and all the

data is encrypted. Therefore, information loss and energy saving are zero. The

first row shows the other extreme case where the data is k2-anonymized using only

generalizations without any encryption. The anonymity level of 4.88 indicates that

the data received at the sink are already 16-anonymous, which is more than enough.

In this case, the quality of data is very low but energy saving has a maximum value

of 0.76. When M is increased to 0.25, some of the data entries are encrypted. The

anonymity level of decrypted data at the sink decreases to 3.72 and the energy

saving decreases to 0.54.

Information loss and energy saving trade-off can easily observed in Table 4.4; as

the information loss decreases energy saving also decreases. The designer of WSN

can decide on the value of M according to the experimental results about information

loss and energy saving, and using its system parameters and requirements. If the

system can tolerate more information loss, it is possible to save considerable amount

of energy. If energy consumption is not an important issue in the WSN, the quality

of data can be easily increased.

The information loss at the k2-anonymization stage is analyzed in Figure 4.9 by
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Table 4.4: Experimental results of data set with 500 records for k2-anonymization part

Output Enlargement Anonymity Level Information Loss Energy Saving
Ratio (bits)

Value Range:[0.0 1.53]
0.0 4.88 0.95 0.76
0.25 3.72 0.54 0.57
0.50 3.07 0.29 0.38
0.75 2.67 0.13 0.19
1.00 2.25 0.00 0.00

using different M values and different k1, k2 pairs where number of records is 500.

As expected, increase in M decreases data loss. Again as expected, high k2 values

cause higher information loss as compared to low k2 values. However, this difference

becomes marginal as M increases. Moreover Figure 4.9 also shows that, especially

for high k2 values, k-ACM reduces the information loss quickly for small M values.

Figure 4.10 shows the change of energy saving with respect to output enlargement

factor for various (k1, k2) pairs. As expected, higher M values result in lower energy

saving. As in the information loss case shown in Figure 4.9, high k2 values cause

more energy saving, but this advantage becomes marginal as M increases. However,

differently from the information loss decrease shown in Figure 4.9, the decrease in

energy saving is linear.

The purpose of mk-ACM is maximization of energy saving and minimization of

information loss. This tradeoff is managed via M . In order to do a better analysis

of this tradeoff in k2-anonymization stage, we analyze the ratio of energy saving to

the information loss (ES/IL) for networks with different k1 and k2 values. These

results are depicted in Figure 4.11. Higher ES/IL ratio shows the effectiveness of

output enlargement factor at this stage. It is observed that ES/IL ratio constantly

increases as M increases. This fact constitutes another proof for the effectiveness

of mk-ACM algorithm. Although ES/IL has a constant increasing pattern, this
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Figure 4.9: Output enlargement factor vs. Information Loss at the k2-Anonymization
Stage

Figure 4.10: Output enlargement factor vs. Energy Saving at the k2-Anonymization Stage
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Figure 4.11: Energy Saving/Information Loss for Different M values at the k2-
Anonymization Stage

does not mean that the highest (i.e. 1.0) M value must be chosen all the time

since such a high M does not help to save considerable energy as shown in Figure

4.10. Actually, the network administrators should choose the largest M value that

gives the required information loss and/or energy saving values. In this way, the

tradeoff between information loss and energy saving can be dynamically managed

by playing with M . For example, consider a network with k1 = 4 and k2 = 10. If

the maximum information loss that this network can tolerate is 0.40, then Figure

4.9 suggests to use the M = 0.3. In this situation, the network provides the required

anonymity levels by saving 47% energy as shown in Figure 4.10. On the other hand

for the same network, if the limitation is to save at least 60% of energy, then M is

chosen as 0.10. In this case, information loss becomes 0.59 for the same anonymity

levels.
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4.2 Multiple Sinks

In this section, k-ACM method is adapted as a privacy framework for WSN applica-

tions having multiple sinks. Collected event information is iteratively k-anonymized

for all sinks each having different privacy levels. Encryption operation with ap-

propriate key management schema is used in addition to generalization in order to

meet the different requirements in one k-anonymized output. Achieving all privacy

requirements in one output considerably decreases the energy consumption so that

this output can be multicasted to multiple sinks instead of sending different outputs

for each sink. Bottom-up clustering idea is used during k-anonymization process.

4.2.1 Network and Threat Model

Our threat model bases on the requirement that the individuals do not want sinks

to identify their records among other records of k individuals within a specified

time-frame through the quasi-identifier fields of records.

The required privacy levels of each sink differs so that suppose that there are

n sinks, each ith sink has a privacy level pi where each level requires to share ki-

anonymous data with ith sink and inequality of k1 < k2 < ... < kn is valid.

Sensors are clustered in separate sensor groups according to sensor localizations

where each group has a group head sensor. In our method, each sensor conveys

its readings to group heads, they k-anonymizes data and multicast the anonymized

output to all sinks when multicasting has advantage in terms of energy saving.

Network model is shown in Figure 4.12.

In our model, it is assumed that one individual generates one event in the

anonymization period. In other words, group head sensors process independent

events. In this way, we remove the possibility of having correlation among the

records that we anonymize.
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Figure 4.12: Network Model

4.2.2 Iterative k-ACM (Ik-ACM)

In the WSN, there are n sinks and n − 1 symmetric encryption keys which are

labelled as e1, e2, ..., en−1. ith sink contains list of the keys as ei, ei+1, ..., en−1. Each

group head sensors store all the n−1 keys. In the proposed method, anonymization

is completed in n iterative steps as shown Figure 4.13. In the first step, by using

only generalization operation, input data is k1-anonymized. In the second step,

k1-anonymized data is k2-anonymized by encrypting the chosen data parts with e1.

For each ith step to nth step, anonymization is done by encryption using key, ei−1.

The output after nth step is multicasted to all sinks.

After the arrival of anonymous data to sink, each sink decrypts the data with

their keys. The resulting data after decryption actually has the level of privacy

required for that sink. ith sink can only decrypt the data which is encrypted after

the ith iterations; because it has the corresponding keys. Data parts encrypted by
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Figure 4.13: Steps of Iterative Anonymization
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the keys, e1, e2, ..., ei−2, cannot be decrypted, therefore they can be considered as

suppression operations for that sink. 1st sink, which has to get data with lowest

privacy criteria, can decrypt all the encrypted parts and the result data is actually

k1-anonymized. On the other hand, nth sink has not any key and gathers data as

kn-anonymized.

Encryption is used as an anonymity operation in all anonymization steps ex-

cept k1-anonymization. Assume that two clusters, Ls
h, Lt

h are chosen as the closest

cluster pair at hth iteration of Ik-ACM and this iteration corresponds to (i + 1)th-

anonymization step. The newly created cluster is labelled as Lst
h and Eei

(x) rep-

resents the encrypted output of input x with key ei. Formation of representative

vector for newly created cluster, Rst
h , is given in Algorithm 4.4.

Algorithm 4.4 Forming Representative Vector in Ik-ACM

Input: Representative vectors, Rt
h, Rt

h

Output: Representative vector of new cluster, Rst
h

1: for each attribute m do
2: if Rs

h[m] = Rt
h[m] then

3: Rst
h [m] = Rt

h[m]
4: else
5: Rst

h [m] = Eei
(Rs

h[m]||Rt
h[m])

6: end if
7: end for

A sample cluster combination by encryption operation is shown in Figure 4.14.

Assume that represented vectors of two closest clusters, Lh
t and Lh

s are ‘0011 0010

1000’ and ‘0100 0010 1000’, respectively. The values of vectors indicate that data

records have three attributes each having four distinct attribute values. First bit

strings of vectors, ‘0011’ and ‘0100’ are compared. Since they are not identical,

concatination of values are encrypted. This encryption result forms the first bit

string of representative vector of newly created cluster, Lh+1
ts . Second bit strings of
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Figure 4.14: A sample case for cluster combination with encryption operations

clusters, ‘0010’ and ‘0100’, are identical. Therefore, second bit string of new cluster

is also ‘0100’. By using the same method, third bit string is found as ‘1000’.

4.2.3 Multicasting and Energy Gain

Main aim of k-Anonymity solutions is providing the required privacy level with min-

imum information loss. However another factor, minimization of energy consump-

tion, is an important criteria in WSNs. A sensor node consumes energy for different

processes like event sensing, CPU processing, or transmitting/receiving data pack-

ets. Among these processes, transmission/reception operations consumes much of

the energy. Table 4.1 shows energy consumption rates for transmission/reception

which are published in technical report written by Carman et al. [55]. It is stated

that energy consumption ratio of transmission/reception to energy consumption of

encryption is 2333.34. Since each sensor node acts as a router for the messages of

other nodes and one message goes over many hops in the network, energy saving for

transmission/reception operations becomes a crucial design criterion. Shortening

the length of messages and decreasing the number of travelled hops would help to
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Figure 4.15: Routes when multiple k-anonymized outputs are generated

reduce energy enormously.

In a WSN topology where there are multiple sinks and each sink has differ-

ent privacy criteria, the basic solution of anonymization is that group head sensor

anonymizes the data, produces different outputs for each requirement of sink and

sends each output to related sink in different paths as shown in Figure 4.15 (in this

figure, there are two sinks in WSN). This sending method is called as multipath.

However, Ik-ACM produces unique output which is ready for multicasting. One

anonymized output that guarantees all the privacy requirements, is sent to a multi-

cast point. After reaching to multicast point, one copy of data is sent to sink1 and

the other copy is sent to sink2 as presented in Figure 4.16. Multicasting schema

decreases the number of travelled hops for some group head nodes.

Assume that there are two sinks named Sink1, Sink2. Sink1 requires k1-

anonymized data and Sink2 requires k2-anonymized data. The lengths of anonymized
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Figure 4.16: Routes when IKA anonymized output is multicasted to sinks

outputs are lk1 and lk2, which are obtained by applying directly k-ACM for k1-

anonymization and k2-anonymization, respectively. Data length of anonymous data

generated by Ik-ACM is labelled as lIKA. The number of hops in the shortest route

from group head sensor, G, to Sink1 and Sink2 is represented as hG,Sink1, hG,Sink2

respectively. Also assume that the hop distance between G and multicast point, M ,

is hG,M , distances from M to Sink1 and Sink2 are hM,Sink1 and hM,Sink2, respec-

tively. Unique anonymized data is sent to, M , if an appropriate node exists in the

network which holds the Inequality 4.12. Among the possible node candidates, the

one which minimizes the value of hG,M + hM,Sink1 + hM,Sink2 is chosen.

(hG,Sink1.lk1) + (hG,Sink2.lk2) > (hG,M + hM,Sink1 + hM,Sink2).lIKA. (4.12)

If there is no appropriate M point, group head nodes prepare output for each

sink and send them in different paths to sinks. Location of sinks and location of
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group head sensor effect the selection among multicasting and multipathing.

Inequality 4.12 determines the level of energy consumption of multicasting and

multipathing methods since it includes number of hops and the length of messages.

It is assumed that the location of sinks are known by group head nodes and they are

able to calculate the above inequalities with the routing information they have. Also

they form the outputs for multicasting and multipathing, calculate the lengths of

outputs, determine and use the best one in terms of energy saving. The first step of

Ik-ACM is actually uses k-ACM for k1-anonymization. Therefore, extra processing

load for calculating the inequality is second k2-anonymization step of IkACM for

nodes which use multipathing. Nodes in which Multicasting is more appropriate do

extra processing for k2-anonymization with k-ACM. Since, energy consumption of

WSN is mostly determined by message lengths, these extra works do not effect the

overall consumption.

4.2.4 Performance Evaluation of Ik-ACM

In this part, information loss and energy gain trade-off is deeply investigated. Since

effectiveness of multicasting depends on the locations of sinks and distribution of

sensor nodes, different experiments with different WSN topologies are performed.

First experiment investigates the effect of sink locations. The size of WSN field

is set to 500m × 500m. Distance of each hop, R, is taken as 10m. There are two

sinks in the field, sink1 and sink2. It is assumed that each sensor is uniformly

distributed through the region. In every region having size of 50m × 50m, there is

one group head sensor node. All the sensors convey their readings to their group

head nodes. Then, they anonymize data and relays it to the sinks. Each group head

node calculates the cost of multipathing and multicasting for a given set of data,

chooses the best method for data sending.

The number of hops from sensor node to group head node and from group head
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node to sinks are calculated and they are taken into consideration in calculation

of energy consumption. Energy consumption does not only depend on the number

of hops; length of the messages are also important for the final results. Message

lengths are taken into account during energy calculations.

Assume that energy consumption of method named as “multipath method” is

denoted as Emultipath. Energy consumption of method that uses multicasting when

appropriate is represented as Ehybrid. Energy gain ratio, EG, is computed as follows:

EG = 1− Ehybrid

Emultipath

. (4.13)

Values of k1, k2 are chosen as 3 and 6 respectively. If all group head nodes use

multipath method, information loss for the data sent to sink1 is found as 0.44 and

data loss for sink2 is 0.88. If multicasting with Ik-ACM is used when appropriate,

information loss for sink1 also does not change since the first step of Ik-ACM is

a normal k1-anonymization step. However, information loss of sink2 and energy

gain ratios change. Table 4.5 gives the results obtained for different sink locations.

Five different locations as given in the first column are chosen. Second column

presents information loss for sink2. The number of nodes using multicasting and

multipathing methods are shown in third and fourth columns. Last column gives

the result of energy gain according to the case when all nodes are using multipathing

method.

As the sinks get closer to each other, it is observed that the number of group head

nodes using multicasting increase due to finding optimum multicast points. In the

case where the sinks are located in coordinates of (0,0) and (500,500), sinks have the

maximum distance between each other. 716 group head nodes, out of 2500 nodes,

choose multicasting as the best alternative. Information loss increases to 1.03 bits

but energy gain is very limited, 3%. In this topology, the number of multicasting

nodes is lower and energy consumptions of multicasting and multipathing methods
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Table 4.5: Results of using Multicasting and Multipathing together with different sink
locations

Location of Sinks Info. Loss No. of Group No. of Group EG
(coordinates) For Sink2 Head Nodes Head Nodes (%)

(bits) Using Using
Value Range: Multicasting Multipathing

[0.0 2.0] Method Method
(0,0),(500,500) 1.03 716 1784 3
(0,0),(500,0) 1.14 1287 1213 6

(100,0),(400,0) 1.24 1813 687 14
(150,0),(350,0) 1.31 2137 363 22
(200,0),(300,0) 1.36 2406 94 32

do not differ. If sinks are located in coordinates (200,0) and (300,0), 2406 nodes

choose multicasting. In this case, energy gain increases to 32% and information

loss increases to 1.36. Actually, there is a trade-off between data utility and energy

consumption. If there is a need for energy minimization and sink2 can tolerate

additional data losses, using multicasting method in some network topologies may

be an efficient solution.

Other than the location of sinks, another parameter that may effect the effi-

ciency of multicasting method is the total size of WSN field. Figure 4.17 shows

the overall performance results of WSN fields having different sizes and different

sink locations. As the size of sensor field increases, multicasting method makes the

network consume less energy. For example, when the sink coordinates are (0,0) and

(0,500), energy gain is 0.22 for WSN size, 500m×500m, however gain rises to 0.35

for mode wider size, 1000m×1000m. Since, the distance between each sink is not

different in both situations, ratio of group head nodes which choose multicasting

increases in wider WSN fields. In field size 500m×500m, 1287 of 2500 group head

nodes choose multicasting. On the other side, in field having sizes 1000m×1000m,

8787 of 10000 group head nodes select multicasting option. The cost of increasing

the energy gain is the lower data utility since information loss increases to 1.32 from

1.14 in 1000m×1000m sized field. In experiments having sink locations like (0,0),
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Figure 4.17: Performance Comparison of Topologies with Different WSN area sizes

(0,500) and (0,0), (500,500), energy gains are nearly 3-6% in 500m×500m sized fields

which seem that multicasting does not create any promising results. However, in

wider sized area like 1000m×1000m, multicasting method yields good results so that

energy gain is above than 20%,
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Chapter 5

l-Diversity based Framework for Preserving Organizational

Privacy in Intrusion Log Sharing Applications

It is known that black-hat hackers share information with each others to choose and

attack victims. In underground communities, zero day vulnerability information,

target victim information, stolen credit card numbers, bots, spam mail lists, attack

tools, etc. are shared or sold easily. On the other hand, system managers, who try

to defend their systems against black-hat hackers, need to share related materials

about defensive tools, methods and information. In this defensive context, one of

the important source of information is logs of intrusion detection systems. Defensive

experience of an organization can be easily transferred to others by sharing these

logs.

It is common that most of the organizations somehow use intrusion detection sys-

tems to detect attacks to their systems. These systems do not always produce useful

outputs. Especially the elimination of false positive alarms needs a labor intensive

work. An information security expert has to choose correct set of attack signatures

which are appropriate for his system and eliminate false positive alarms. However,

most of the organizations cannot reserve man power for this task due to lack of

specialized technical person or due to lack of budget. Under these circumstances,

outsourcing of intrusion log analysis could be a good alternative.

Nowadays, National Computer Emergency Response Teams (NCERT) are try-
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ing to find ways for performing proactive nationwide or sectorwide security coun-

termeasures in order to detect and prevent cyber attacks to the national critical

information infrastructures. These infrastructures generally belong to different or-

ganizations. NCERTs try to find ways to probe them centrally. Probing aims to

deduce the overall threat state of each organization and determine the overall threat

level of country. For this aim, a distributed intrusion detection system has to be

setup and managed. Moreover, collected intrusion logs has to be centrally stored

and analyzed.

In both cases, outsourcing of intrusion log analysis of an organization or probing

of critical information infrastructures by NCERTs, there is a need to a central

intrusion log management office (CILMO) which stores logs of different organizations

centrally, analyzes them, detects attacks, send alarms to organizations and generates

statistics for determination of organizationwide or nationwide threat levels.

Main obstacle for forming a CILMO is privacy concerns of organizations. Intru-

sion logs contain valuable information about organizations, like detailed knowledge

of targeted information assets, attack times, types of attacks, results of attacks,

etc. Organizations are reluctant to share intrusion logs because of two main rea-

sons. First one is that they do not fully trust the personnel of CILMO, because

administrators of CILMO may intentionally misuse their attack information. The

second reason may be the lack of appropriate security and privacy countermeasures

which have to be applied to the intrusion logs during their transmittion, processing

and storage. Without solving these security and privacy problems, organizations

generally do not want to send their intrusion logs to a CILMO although it may be

set up by a NCERT team.

Organizations confront with a dilemma between privacy risks and benefits of

sharing intrusion logs. Actually, privacy problem can be solved by hiding private

parts of information. In a practical solution, hiding and sharing, which is contra-
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dictory in nature to each other, have to be performed at the same time. As the

privacy criterion of an organization increases, information loss of sharing operation

increases at the same time. Therefore the solution of this problem has to deal with

the trade-off between privacy and information loss and this trade-off have to be

adjusted according to the needs of organizations.

In this chapter, a privacy preserving framework is presented for intrusion log

sharing. This framework is based on l-diversity notion. This notion guarantees

that anyone cannot identify the exact sensitive attribute value of an individual

among other l − 1 sensitive attribute values. In our case, sensitive attribute is

classification type of an intrusion log. Therefore, l-diversity provides the privacy

of intrusion logs shared with CILMO so that any administrator cannot identify

the exact classification type of an intrusion belonging to information assets of a

specific organization among l − 1 different sensitive attribute values. Also privacy

schema enables us to hide the originator organization of intrusion log among l − 1

organizations.

By collection of privacy preserved intrusion logs, this framework enables CILMOs

to perform detailed security analysis of organizations, draw conclusion about the

general security status of organization categories and prepare a warning mechanism.

5.1 Threat and Network Model

In our study, organizations send their intrusion logs to a trusted party. In a realistic

scenario, trusted party may be an internet service provider (ISP) or a proxy applica-

tion, which is served by people trusted by organizations. A sample system topology

for proposed privacy framework is given in Figure 5.1. Trusted party anonymizes

intrusion logs, strips off the destination IP information of log and appends a desti-

nation tag instead of destination IP that represents only the originator organization.
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Figure 5.1: System Topology For Privacy Framework

Attributes of intrusion log are classified as shown in Table 5.1. According to this

attribute classification, our anonymization method provides prevention of record

and attribute disclosure. Therefore, it is needed to provide l -diversity property of

intrusion logs.

It is assumed that in each log coming from organizations, pre-exploitation, ex-

ploitation and post-exploitation activities are correlated and one log entry is created

for each attack. If one attack targets many servers of an organization, only one log

entry is produced by IDS. According to these assumptions nobody can bypass the

anonymization schema.
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Table 5.1: Classification of Intrusion Log Attributes

Attribute Classification
Target Organization Identifier

Target Service Quasi-identifier
Source Quasi-identifier

DetectTime Quasi-identifier
Classification Sensitive

5.2 l-ACM for Intrusion Logs

k-ACM method proposed in Chapter 3 is modified for anonymization of intrusion

logs in order to have l -diversity property. Proposed method is named as l -Diversity

Anonymous Clustering Method (l -ACM).

The stopping criteria for clustering iterations is the major modification issue.

k-ACM continues to clustering iterations until all cluster has at least k records.

However, l -ACM keeps on iterations up to the point where each cluster contains a

record set having distinct l sensitive attribute values.

Numerical attributes are converted to categorical attributes by dividing numeric

range of attribute into intervals and representing each interval by a categorical

attribute value in k-ACM.

Destination port, source IP and time attributes are also numerical attributes.

Converting them to numeric intervals does not yield valuable information for security

analysis tasks performed at CILMO side. Exact destination ports or source IP

addresses are needed in order to have statistics of port usage or to list the IP

addresses of top attackers, respectively. Also exact time information may be used for

better security analysis. Since minimization of energy consumption and shortening

anonymous output is not a requirement in an intrusion log sharing application, l -

ACM does not convert numerical attributes to intervals and it does not represent

attributes as bit string. It sends them to CILMO as a set of numerical attribute

97



values. By using this method, l -ACM does not change the original data. It only

disturbs the mappings between different attributes which actually belong to the

same record.

Target organization can be considered as identifier of an intrusion log. Normally,

privacy preserved data publishing techniques strips off identification information and

anonymizes the quasi-identifiers. However, in our case, CILMO needs the names of

the target organizations in order to perform the required security analysis tasks.

Names of the target organizations are transferred to CILMO in such a way that

nobody can deduce the name of exact organization of an intrusion log among l − 1

organizations.

The same organization may send many intrusion logs to CILMO. If one anonymity

set produced by l -ACM has many intrusion logs of the same organization, this situa-

tion may violate l -diversity property. Therefore, l -ACM guarantees that each record

in each cluster has to belong different organization.

Suppose that, ith cluster gathered at the end of l -ACM has a representative

vector, Ri which is actually the anonymous output vector of all quasi-identifier

attributes. If the number of quasi-identifier attributes is assumed to be p, vector Ri

has the size value of p. Since each quasi-identifier attribute is converted to a set of

attribute values, each item consists a set of attribute values.

Suppose that n is the number of records. Set of all target organizations is

represented as {O1, O2, ..., On}. Assume that all records has m different sensitive

attribute values where m > l and these attributes values are {S1, S2, ..., Sm}. The

data sent to CILMO can be shown as {O1, O2...On}, Ri, {S1, S2...Sm}.
A running example of l -ACM is shown in Table 5.2 and Table 5.3. Assume

that trusted party knows the IP range of each organization and each destination

IP belongs to a different organization. Destination IP of intrusion log is replaced

with the name of organization during anonymization. Trusted party gathers the
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Table 5.2: An Example About Anonymization of Intrusion Logs - Original Data

Dst IP Src IP Time Dst Srv Classification
201.2.1.10 195.100.4.4 11:00 53 DNS Zone Transfer
223.23.5.4 195.100.4.4 11:30 8080 WEB IIS ISAPI

212.125.12.12 198.166.3.3 11:40 3372 DoS MSDTC
222.19.1.103 190.67.30.3 11:45 1543 NETBIOS SMB
208.234.3.105 199.201.45.56 11:55 80 WEB-COLDFUSION
200.188.5.17 191.34.32.1 12:05 1548 DOS IGMP

Table 5.3: An Example About Anonymization of Intrusion Logs - 2-Diverse Data

Destination Source IP Time Destination Classification
Organization Service
{O1, O2} {195.100.4.4} {11:00,11:30} {8080, 53} {DNS Zone Transfer, WEB IIS ISAPI}
{O3, O4} {198.166.3.3, 190.67.30.3} {11:40, 11:45} {1543, 3372} {DoS MSDTC, NETBIOS SMB}
{O5, O6} {199.201.45.56, 191.34.32.1} {11:55, 12:05} {80, 1548} {WEB-COLDFUSION, DOS IGMP}

original data shown in Table 5.2, produces three clusters each having two elements

and makes the data 2-diverse. Each row in this table represents one cluster. All the

attributes are converted to sets of distinct attribute values. l -ACM guarantees that

in destination organization attribute, two distinct organization names exist and

classification attribute consists of a set having two different classification values.

Since source IP, time and destination port attributes are chosen quasi-identifiers,

l -ACM tries to minimize the number of distinct attribute values of these attributes

in anonymized output.

5.3 Warning Mechanism

CILMO may need to warn organizations about a very critical intrusion. Generally,

organizations set up intrusion detection systems (IDS) for monitoring of intrusions.

However, due to lack of appropriate technical expertise on evaluating IDS logs, these

systems are not used properly. CILMO can help organizations by providing technical

expertise in analyzing intrusion logs centrally.
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On the other side, if the proposed anonymization method is used in intrusion log

sharing, CILMO does not know the exact intrusion classification for exact originator.

It only knows that a set of organization corresponds to a set of intrusion classification

values. CILMO may be interested in one intrusion classification among these values.

If it is assumed that trusted party does not store any information including the

mappings of original data with anonymous data, the warning can be performed by

only distributing it to each IDS management server of all candidate organizations.

IDS management server stores all the IDS logs of corresponding organization in a

database.

Details of warning mechanism is described with an example in Figure 5.2. Each

organization sends their logs which are labelled as r1, r2, ..., r6 to trusted party (TP),

in step 1. TP anonymizes the data according to 2-diversity criteria and sends the

anonymous outputs a1, a2, a3 to CILMO in step 2. Assume that CILMO decided to

warn the organizations about the DNS Zone Transfer attack because of its critical-

ity. CILMO chooses the record among the anonymous records which has this attack

type in the set of classification attributes. CILMO creates w1 from a1 by stripping

off all organization attributes and all classification information except “DNS Zone

Transfer” and sends w1 to IDS management servers of organization 1 (O1) and or-

ganization 2 (O2) in steps 3 and 4. In step 5, O1 and O2 query whether an intrusion

log exist about the profile given in w1 and deduce that whether the corresponding

warning is related with their organization.

A drawback of this mechanism is that the organization O2, which decides the

warning does not belong to itself in the above example, also gets the profile infor-

mation of intrusion occurred for O1. O2 learns that a DNS Zone Transfer attack is

performed at 11:00 by 194.100.4.4 to an organization; but it cannot learn that the

targeted organization is O1.

If trusted party is allowed to store mapping information between original data
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Figure 5.2: Warning Mechanism with the requirement that trusted party does not store
any information
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Figure 5.3: Warning Mechanism with the requirement that trusted party can store infor-
mation

and anonymous output, after deciding the warning message, CILMO sends w1 to

TP. TP finds the exact matching record r1 with the DNS Zone Transfer attack and

relays r1 to O1 as shown in Figure 5.3. In this method, an organization does not

learn anything about the intrusion logs of other organizations.

5.4 Performance Evaluation of l-ACM

In this part, the performance of l -ACM is evaluated in terms of information loss and

average response time of intrusion log records. Average response time, Tavg shows

102



the average of the amount of times between generation of log at owner organization

and arriving corresponding warning to that organization from CILMO.

In our experiments, each organization generates intrusion log in a such a way

that all attributes of logs are formed using uniform distribution. The log generation

time for ith log record is represented as tig. Log generation rate, lgr, which is the

number of produced logs per minute, is a predetermined parameter that adjusts the

speed of log generation. It is assumed that each organization uses the same log

generation rate. All log records generated in one minute is collected at organization

site and they are sent to CILMO at the end of that minute. Therefore, ith log record

waits 60− tig seconds at organization site before sending to CILMO.

After CILMO receives logs, anonymization operations take place by using l -

ACM. Anonymization is completed in several steps. In each step, data set which

includes only one record from each organization is chosen among the received logs

and they are anonymized. Otherwise, if we include more than one record from each

organization, an anonymity set may contain more than one record belonging to same

organization which violates l -diversity property. Restriction of one record from the

same organization actually means that number of steps needed for completion of

anonymization is numerically equal to log generation rate. The duration of mth

anonymization step is represented as tma

In l -ACM, we use a record selection method for preparing input data of each

anonymization step. Our method chooses an initial record from the first organiza-

tion. For each other organization, logs of an organization are compared with the

record of first organization and the one having most similarity is chosen as an input

record in that step.

Anonymized outputs are analyzed by CILMO. If analysis results require to send a

warning to appropriate organization, warnings are sent by using one of the methods

given in Section 5.3. In performance calculations, parameter called log analysis time,
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tl, is used for log analysis of one log record at CILMO. Warnings are sent after this

analysis time has passed.

Transmission time needed for transferring one log record from organization to

CILMO and time for transferring one warning to organization is represented as tr.

In average response time calculations, we assume that for each log record, CILMO

sends a warning message.

Average response time for a log record is calculated as given in Equation 5.1.

We assume that total number of input record is n.

Tavg = (60− tig) +
s=m∑
s=1

tma + tl + 2.tr. (5.1)

The effects of changes in parameter l and lgr with respect to information loss and

response time performances of l -ACM are investigated via simulations. Experiments

are performed in a laptop having 1.20 GHz CPU and 2GB RAM. Intrusion data is

synthetically generated. A java implementation is developed for data generation,

application of l -ACM and evaluating the results.

k -ACM calculates the information loss according to Equation 3.5. In this for-

mula, Fij is the total number of bits having value ‘1’ for the ith record of jth attribute.

On the other side, l -ACM produces anonymized output with attribute value sets

instead of bit strings. Therefore, l -ACM uses the size of attribute value set (which

means the number of distinct elements in the set) instead of Fij.

There are 100 distinct attackers in the network. The number of distinct values

for intrusion classification is 15 and the number of slots for time value is 100. There

are distinct 10 destination service in the data set. According to these parameters,

maximum information loss is calculated as 5.54 via the help of Equation 3.5. If

anonymized outputs contain data entries consisting of all possible data values, it

has the maximum information loss. For example, including all distinct attackers in

the output generates an information loss of log (100). Overall information loss is
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Figure 5.4: Effects of lgr and l on Information Loss

actually the average of maximum information loss caused by each attribute.

Effects of lgr and l values on information loss results is given in Figure 5.4. In

these experiments, number of organizations which send their logs to CILMO is fixed

to 500. As shown in Figure 5.4, increase in lgr does not effect information loss

values for each l value.

Effects of lgr and l values on average response time are given in Figure 5.5. In

this experiment, number of organizations is also fixed to 500. It is observed that

average response time increases as lgr increases for each l values. There is a linear

relationship between average response time and lgr values. Since lgr also determines

the number of anonymization steps performed at CILMO, increase in the number

of steps increases the time for anonymization operations. For the same lgr, we get

higher average response time values for higher l values due to need for much more

processing in hierarchical clusterings.
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Figure 5.5: Effects of lgr and l on Average Response Time

Effects of the changes in number of organizations are analyzed. Figure 5.6 shows

the effects of organization number to information loss. Figure 5.7 analyzes average

response time results of l-ACM with different number of organizations. In these

experiments, l and lgr values are fixed to 5 and 8 respectively.

From Figure 5.6, it is deduced that information loss value exponentially decreases

as the number of organization increases. Since anonymization is performed among

bigger sets of log records in higher organization numbers, l -ACM has the possibility

to find more similar records during hierarchical clustering.

Figure 5.7 shows that higher number of organizations causes higher response

times. There exists an exponential increase in response times. Increase in organiza-

tion number means in each anonymization step, higher number records are given as

an input to l-ACM. Running time of k-ACM is given as O(n2logn) in 3.8 of Chapter

3. Here n represents the number of input records inserted to k-ACM. Since l-ACM
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Figure 5.6: Effects of Organization Number on Information Loss

bases on k-ACM, an exponential increase in the average response time is expected

as shown in Figure 5.7.
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Chapter 6

Conclusions

Network and database communities approach to privacy problem from different

aspects. In one side, network community mostly thinks that hiding sender and/or

receiver in network communications is the prominent privacy problem. Privacy

threat models presented by this community are based on concealing communication

profiles against traffic analysis attacks. These attacks focus on external threats like

global or local eavesdropping. On the other side, database community uses “data”

per se as the subject of privacy. They bring solutions for privacy preserved storage

and sharing of data. However, privacy models are not suitable for the actual needs

of network applications, where data is gathered from users and relayed to data

collectors. There are some models that fully trust data collection parties which are

not very realistic in most of the cases. There are some other models that consider

data collector as an un-trusted entity. However, in such models, privacy preservation

is provided by sending perturbed data to the data collector, which limits the types

of analysis that can be performed by data collector.

In general, privacy models developed by database community do not map to

user-centric network applications. Network community deals with sender-receiver

anonymity, which may not be the real threat in most of data collection applications.

In this thesis, we propose a privacy preservation framework for user centric data

collection applications. Our framework encompasses all stages of data collection,
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including collection of data from users and sending to the data collection points. It

proposes solutions for applications that may have more than one data collector points

with different level of privacy requirements. Proposed framework brings solutions

for possible requirements of bandwidth limitation and energy consumption.

We proposed a method, k-ACM (k-Anonymization Clustering Method) which

makes data k-anonymized. k -ACM is based on UPGMA (Unweighted Pair Group

Method with Arithmetic Mean), a well-known bottom-up hierarchical clustering

mechanism. Conditional entropy notion of information theory is adapted to be

used as the distance function, which calculates the information loss during each

clustering process. The same notion is also used for calculating the anonymity level

of k-anonymized data and for evaluating the results of experiments in terms of

information loss. Additionally, this thesis introduces dynamic taxonomy tree idea

for the generalization operation in order to decrease the data utility of collected

data.

Our framework is applied for two types of data collection applications: (i) privacy

preserved data collection in wireless sensor networks (WSNs), (ii) preservation of

organizational privacy during collection of intrusion detection logs from different

organizations.

Minimization of energy is an important criteria in WSNs. Therefore, privacy

preserved data collection applications in these networks also has to deal with this

issue. Proposed framework is adapted for energy minimization. Our framework is

applied to two different WSN network models. First model preserves privacy against

semi-trusted sink and eavesdropper. Second model consists of multiple sinks which

require different levels of privacy.

First network model implies two levels of k-anonymity: 1) against the semi-

trusted sink; 2) against eavesdroppers. This network model assumes the sink as a

semi-trusted entity, so that data received by sink must be at least k1-anonymous.
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To protect the data against eavesdroppers, data transmitted in the network must be

at least k2-anonymous. Since the minimum protection against eavesdroppers must

be greater than the minimum protection against the semi-trusted sink, k2 is greater

than k1. WSN designers can decide on the values of k1 and k2 by considering the

security threats of environment and application requirements. For example, if the

possibility of eavesdropper threat is high and security of sink is provided, then the

WSN designers can choose higher k2 and lower k1 values.

There is a tradeoff between data quality (in terms of information loss) received

at the sink and energy consumption. Quality of data reduces with generalizations

since data is irreversibly perturbed via generalizations and this causes information

loss.

The mechanism that we use in this model is Proposed method, mk -ACM (Modi-

fied k -Anonymization Clustering Method) which uses the idea of k -ACM iteratively

two times. It firstly makes the data k1-anonymous by generalization operations and

continues to k2-anonymization by generalization and encryption operations. The

output size of k2-anonymization stage can be adjusted by a pre-determined thresh-

old value, output enlargement factor. As this ratio increases, the size of output gets

larger and more encryption operations are performed. During this enlargement, mk-

ACM selects the most suitable data portions for encryption in order to minimize the

information loss as much as possible. Increase of output enlargement factor causes

an increase in the energy consumption in the WSN. On the other hand, the quality

of data received at the sink becomes higher since data is not perturbed widely. If

the ratio decreases, quality of data becomes lower but the system consumes consid-

erably small amount of energy. In fact, mk-ACM provides a mechanism for WSN

designers to balance between information loss and energy cost by using the output

enlargement factor. Our analyses show that energy saving per information loss value

constantly increases as the output enlargement factor increases. This implies that
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WSN designers should pick the maximum output enlargement factor that informa-

tion loss and/or energy saving restrictions of the WSN dictate. For example, our

analysis shows that given the sink is to receive 4-anonymous data (i.e. k1 = 4)

and 12-anonymous data is required against eavesdroppers (i.e. k2 = 12), and if the

network can tolerate an information loss of entropy value, 0.37, then WSN design-

ers can pick output enlargement factor as 0.4 that causes to save 43% energy while

providing the required anonymity levels.

The second network model considered in WSNs states that there exists multiple

sinks and each sink has different level of privacy requirements. For this model, we

propose a method called Ik -ACM (Iterative k-Anonymization Clustering Method)

which is also built-on our k-ACM method. Proposed Ik-ACM reduces energy con-

sumption while fulfilling the required different privacy levels of sinks. Ik-ACM

Method uses encryption operations with generalization operations in order to have

one common anonymized output. This common output enables us to multicast

the same message to all sinks. Multicasting of this output enables WSN to reduce

amount of energy consumed for transmitting it to the sinks. In WSN, each local

region has one group head node. They gather event data from sensors of their local

region, anonymize it and send it to the all sinks. According to the positions of group

head nodes and their distances to sinks, multicasting can be better alternative for

some of the group head nodes. Each group head node decides whether multicast-

ing is appropriate for itself or not. If it decreases energy consumption, group head

node uses it. Multicasting method degrades the quality of data gathered by some

sinks. Here, there is a trade-off between data loss and energy consumption. WSN

designers has to decide about the trade-off between energy saving and information

loss. We analyze this trade-off for different sized WSN topologies and for different

sink locations. Our analyses show that, in a WSN having two sinks, it is possible

to save 32% of energy however the loss of data utility received by one of the sink
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increases to 1.36 from 0.88 in some topologies.

In the scope of this thesis, we also apply the proposed framework for an appli-

cation in which intrusion logs are collected from different organizations by a central

intrusion log management office. This office is tasked for determination of overall

security posture of whole organization ecosystem, designation of security status of

monitored organizations, and give feedbacks or warnings about critical intrusions

to organizations. Privacy threat model states that the collected log has to have

l -diversity property. This means, any administrator of central office cannot deduce

the exact classification type of intrusion log among l classification types. A modified

version of k -ACM, l -ACM (l-Diversity Anonymous Clustering Method), is proposed

for this purpose. Different warning mechanisms are presented according to the se-

curity requirement whether trusted parties are allowed to temporarily store network

traffic.

113



Bibliography

[1] “Health insurance portability and accountability act.”

http://www.gpo.gov/fdsys/pkg/PLAW-104publ191/pdf/PLAW-

104publ191.pdf.

[2] B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu, “Privacy-preserving data

publishing: A survey on recent developments,” ACM Computing Surveys , 2009.

[3] A. Gkoulalas-Divanis and V. S. Verykiosc, “An overview of privacy preserving

data mining,” Crossroads 15(4), 2009.

[4] C. C. Aggarwal and P. S. Yu, Privacy Preserving Data Mining: Models and

Algorithms, ch. A General Survey of Privacy Preserving Data Mining Models

and Algorithms.

[5] D. M. Carlisle, M. L. Rodrian, and C. L. Diamond, “California inpatient data

reporting manual, medical information reporting for california,” tech. rep., Of-

fice of Statewide Health Planning and Development, July 2007. 5th Edition.

[6] P. Samarati and L. Sweeney, “Generalizing data to provide anonymity when dis-

closing information,” in Proceedings of 17th ACM SIGMOD-SIGACT-SIGART

Symposium on the Principles of Database Systems, p. 188, 1998.

[7] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam, “l -

diversity: Privacy beyond k-anonymity,” in Proceedings of 22nd International.

114



Conference on Data Engineering, p. 24, ICDE, 2006.

[8] M. T. Truta and V. Bindu, “Privacy protection: p-sensitive k-anonymity prop-

erty,” in Proceedings of the Workshop on Privacy Data Management, p. 94,

Workshop on Privacy Data Management, In Conjunction with 22th IEEE In-

ternational Conference of Data Engineering (ICDE), (Atlanta, Georgia), 2006.

[9] N. Li, T. Li, and S. Venkatasubramanian, “t-closeness: Privacy beyond k-

anonymity and l -diversity,” CERIAS Tech. Report 2007-78, Purdue University,

2007.

[10] A. Meyerson and R. Williams, “On the complexity of optimal k-anonymity,” in

Proc. of the 23rd ACM SIGMOD-SIGACT-SIGART Symposium on the Prin-

ciples of Database Systems, pp. 223–228, June 2004.

[11] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Panigraphy, D. Thomas,

and A. Zhu, “k-anonymity: Algorithms and hardness,” technical report, Stan-

ford University, 2004.

[12] A. Pfitzmann and M. Khntopp, “Anonymity, unobservability, and

pseudonymity- a proposal for terminology,” pp. 1–9, International Workshop

on Designing Privacy Enhancing Technologies: Design Issues in Anonymity and

Unobservability, 2001.

[13] A. Pfitzmann and B. Pfitzmann, “Networks without user observability-design

options,” Eurocrypt, Springer-Verlag, (Berlin), 1986.

[14] J. F. Raymond, “Traffic analysis: Protocols, attacks, design issues and open

problems,” in Proc. Workshop on Design Issues in Anonymity and Unobserv-

ability, pp. 10–29, 2001.

[15] D. Chaum, “The dining cryptographers problem: Unconditional sender and

115



receipent untraceability,” Journal of Cryptology 1(1), pp. 65–75, 1998.

[16] D. Chaum, “Untraceable electronic mail, return addresses, and digital

pseudonyms,” Communications of the Associations for Computing Machin-

ery 24(2), pp. 84–88, 1981.

[17] D. Kesdogan, J. Egner, and R. Busckhes, “Stop-and-go mixes providing proba-

bilistic security in an open system,” in Proceedings of the Second International

Workshop on Information Hiding, pp. 83–98, 1998.

[18] A. Back, U. Mller, and A. Stiglic, “Traffic analysis attacks and trade-offs in

anonymity providing systems,” in Proceedings of the 4th International Work-

shop on Information Hiding, pp. 245–257, 2001.

[19] “Anonymizer.” http://www.anonymizer.com.

[20] M. G. Reed, P. Syverson, and D. Goldschlag, “Anonymous connections and

onion routing,” IEEE Journal on Selected Areas in Communications 16(4),

pp. 482–494, 1998.

[21] M. K. Reiter and R. A.D., “Anonymous web transactions with crowds,” Com-

munications of the ACM 42(2), pp. 32–48, 1999.

[22] C. Shields and B. Levine, “A protocol for anonymous communication over the

internet,” in Proceedings of the 7th ACM Conference on Computer and Com-

munications Security, pp. 33–42, 200.

[23] J. Kong, X. Hong, and M. Gerla, “A new set of passive routing attacks in mobile

ad hoc networks,” 2, pp. 796–801, Military Communications Conference, IEEE

Milcom, 2003.

[24] D. B. John and D. Maltz, “Dynamic source routing in ad hoc wireless networks,”

116



Mobile Computing 353, pp. 153–181, 1996.

[25] C. E. Perkins and E. Royer, “Ad hoc on-demand distance vector routing,”

pp. 90–100, IEEE WMCSA ’99, 1999.

[26] B. C. M. Fung, K. Wang, and P. S. Yu, “Top-down specialization for information

and privacy preservation,” in Proc. of the 21st Int’l Conf. on Data Engineering,

pp. 205–216, April 2005.

[27] L. Sweeney, “Achieving k-anonymity privacy protection using generalization

and suppression,” Int. J. Uncertain. Fuzziness Knowledge-Based Systems ,

2002.

[28] K. Wang, P. Yu, and S. Chakraborty, “Bottom-up generalization: A data min-

ing solution to privacy protection,” in Proc. of the 4th IEEE International

Conference on Data Mining, pp. 249–256, November 2004.

[29] P. Samarati, “Protecting respondent’s privacy in microdata release,” IEEE

Transactions on Knowledge and Data Engineering 13(6), pp. 1010–1027, 2001.

[30] L. Sweeney, “k-anonymity: A model for protecting privacy,” Int’l Journal on

Uncertainty, Fuziness, and Knowledge-based Systems 10(5), pp. 557–570, 2002.

[31] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Panigraphy, D. Thomas,

and A. Zhu, “Anonymizing tables,” in Proc. of the 10th Int’l Conference on

Database Theory, 2005.

[32] C. E. Shannon, “A mathematical theory of communication,” Bell System Tech-

nical Journal 27, pp. 379–423, 623–656, 1948.

[33] A. S. Voulodimos and C. Z. Patrikakis, “Quantifying privacy in terms of entropy

for context aware services,” Journal of Identity in the Information Society ,

117



2009.

[34] B. C. M. Fung, K. Wang, L. Wang, and P. C. K. Hung, “Privacy-preserving

data publishing for cluster analysis,” Data & Knowledge Engineering 68(6),

pp. 552–575, 2009.

[35] C. Diaz, S. Seys, J. Claessens, and B. Preneel, “Towards measuring anonymity,”

Workshop on Privacy Enhancing Technologies, 2002.

[36] I. Kojadinovic, “Agglomerative hierarchical clustering of continous variables

based on mutual information,” Computational Statistics & Data Analysis 46,

pp. 269–294, 2004.

[37] P. Andritsos and V. Tzerpos, “Software clustering based on information loss

minimization,” in Proceedings of 10th Working Conference on Reverse Engi-

neering, p. 334, WCRE 03, 2003.

[38] A. Kraskow and P. Grassberger, “Mic: Mutual information based hierarchical

clustering,” Information Theory and Statistical Learning , pp. 101–123, 2009.

[39] M. Gruteser and D. Grunwald, “Anonymous usage of location-based services

through spatial and temporal cloaking,” pp. 31–42, First International Confer-

ence On Mobile Systems, Applications, Services (MobiSYS), 2003.

[40] M. Gruteser, G. Schelle, A. Jain, A. Han, and D. Grunwald, “Privacy-aware

location sensor networks,” in Proceedings 9th USENIX Workshop on Hot Topics

in Operating Systems (HotOS), 9, p. 28, 2003.

[41] A. Perrig, R. Szewczyk, V. Wen, W. Culler, D. Culler, and J. D. Tygar, “Spins:

Security protocols for sensor networks,” in Proceedings of The Seventh An-

nual International Conference On Mobile Computing and Networking, 189-199,

2001.

118



[42] B. Przydatek, D. Song, and A. Perrig, “Sia: Secure information aggregation

in sensor networks,” in Proceedings of the First International Conference On

Embedded Networked Sensor Systems, 2003.

[43] C. Ozturk, Y. Zhang, and W. Trappe, “Source-location privacy in energy-

constrained sensor network routing,” in Proceedings of the 2004 ACM Workshop

on Security of Ad Hoc and Sensor Networks, pp. 88–93, 2004.

[44] A. Wadaa, S. Olariu, L. Wilson, M. Eltoweissy, and K. Jones, “On providing

anonymity in wireless sensor networks,” in Proceedings of the Tenth Interna-

tional Conference on Parallel and Distributed Systems, (411), ICPADS 04, 2004.

[45] C. Castelluccia, E. Mykletun, and G. Tsudik, “Efficient aggregation of en-

crypted data in wireless sensor networks,” pp. 109–117, The Second Annual

International Conference on Mobile and Ubiquitous Systems: Networking and

Services, 2005.

[46] B. Gedik and L. Liu, “Protecting location privacy with personalized k-

anonymity: Architecture and algorithms,” IEEE Transactions on Mobile Com-

puting 7(1), 2008.

[47] “Deepsight threat management system.” https://tms.symantec.com/Default.aspx.

[48] “Internet storm center.” http://isc.sans.org/.

[49] G. Minshall, “Tcpdriv command manual,” 1996.

[50] J. Xu, J. Fan, M. H. Ammar, and S. B. Moon, “Prefix-preserving ip

address anonymization: Measurment-based security evaluation and a new

crypthography-based scheme,” IEEE International Conference on Network Pro-

tocols, 2002.

119



[51] A. Slagell, Y. Li, and K. Luo, “Sharing network logs for computer forensics: A

new tool for the anonymization of netflow records,” Computer Network Foren-

sics Research Workshop, held in conjuction with IEEE SecureComm, 2005.

[52] J. Zhang, N. Borisov, and W. Yurcik, “Outsourcing security analysis with

anonymized logs,” 2nd IEEE Intl. Workshop on the Value of Security through

Collab., 2006.

[53] C. D. Michener and R. R. Sokal, “A quantitative approach to a problem in

classification,” Evolution 11, pp. 130–162, 1957.

[54] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,” Com-

puter Networks 52(12), pp. 2292–2330, 2008.

[55] D. W. Carman, P. S. Kruus, and B. J. Matt, “Constraints and approaches

for distributed sensor network security,” Tech. Rep. 00-010, NAI Laboratories,

2000.

[56] H. Chan, A. Perrig, and D. Song, “Random key predistribution schemes for

sensor networks,” in Proceedings of 2003 Symposium on Security and Privacy,

p. 197, 2003.

[57] W. Du, J. Deng, Y. S. Han, P. K. Varshney, J. Katz, and A. Khalili, “A pairwise

key predistribution scheme for wireless sensor networks,” ACM Transactions on

Information and System Security (TISSEC) 8(2), pp. 228–258, 2005.

[58] W. Heinzelman, J. Kulik, and H. Balakrishnan, “Adaptive protocols for infor-

mation dissemination in wireless sensor networks,” in Proceedings of the 5th

Annual ACM/IEEE International Conference on Mobile Computing and Net-

working (MobiCom’99), 1999.

[59] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion: A scalable

120



and robust communication paradigm for sensor networks,” in Proceedings of the

6th Annual ACM/IEEE International Conference on Mobile Computing and

Networking (MobiCom’00), 2000.

121


