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Abstract

In this paper, we analyze a repair shop serving several fleets of machines that fail

from time to time. To reduce downtime costs, a continuous-review spare machine

inventory is kept for each fleet. A spare machine, if available on stock, is installed

instantaneously in place of a broken machine. When a repaired machine is returned

from the repair shop, it is placed in inventory for future use if the fleet has the required

number of machines operating. Since the repair shop is shared by different fleets,

choosing which type of broken machine to repair is crucial to minimize downtime and

holding costs. The optimal policy of this problem is difficult to characterize, and,

therefore, is only formulated as a Markov Decision Process to numerically compute the

optimal cost and base-stock level for each spare machine inventory. As an alternative,

we propose the dynamic Myopic(R) policy, which is easy to implement, yielding costs

very close to the optimal. Most of the time it outperforms the static first-come-first-

served, and preemptive-resume priority policies. Additionally, via our numerical study,

we demonstrate that repair shop pooling is better than reserving a repair shop for each

fleet.
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queueing systems; static and dynamic repair scheduling; repair shop pooling
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1 Introduction

In manufacturing plants, fleets of different types of machines carry out production which

involves several stages. These machines fail from time to time or need to undergo mainte-

nance which may obstruct the flow of semi-finished goods on the shop floor on time, and

may decrease targeted production levels (e.g., Wong, Chan, and Chung, 2012, Chung,

Chan, and Chan, 2009). The role that each fleet plays in production affects its size, its

downtime costs, as well as the times to failure characteristics the machines experience. For

instance, a small fleet may be used for producing a specific and profitable end product, and

if some of the machines are down, the company might suffer from significant profit losses.

To decrease the fluctuation in production, the repair and maintenance department should

not only be agile in its response to failures, but also have a structure – such as keeping spare

machines, or pooling repair resources to handle all types of broken machines –, and a repair

scheduling policy to protect the company from downtime related costs.

In this paper, we study a system of multiple fleets of machines, and assume that each

machine is subject to failures from time to time. Different fleets have different machine types,

and machines in the same fleet are assumed to have identical characteristics (i.e., they are

of the same type). Therefore, in queueing theory terminology, each fleet is a finite-calling

population. The system aims to have a finite number of machines, which is the fleet size, to

be in use at all times. When a machine breaks down, it is sent to a repair shop to be fixed. If

there are fewer machines in use than the fleet size, the system incurs a fleet specific downtime

cost per unit time for each functional machine that the fleet lacks. To decrease downtime

costs, at the expense of incurring holding costs, a continuous-review spare machine inventory

is kept for each fleet. This idea is similar to shortening lead times for delivering

products in supply chains, as recommended by Kumar et al., 2006. When a failure

occurs, if there is available stock in the inventory, a spare machine is installed without any

delay so that downtime cost is not incurred. If there are no available spares in the inventory,

upon each failure, the fleet has one less operating (one more down) machine until the repair
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shop fixes and sends a repaired machine back to the fleet. During this time, the system

incurs downtime cost for each down machine. When a repaired machine is received, if there

are no down machines of that type, then the repaired machine is put in the spare machine

inventory for future use.

Given this framework, by developing queueing based solutions, we address the following

questions: (i) Should there be a separate repair shop for each fleet or should a centralized

repair shop (CRS) with a higher capacity serve all the fleets? (ii) Given a shared high

capacity CRS, which repair scheduling policy can be practically implemented so that the

expected downtime and holding costs under that policy remain close to the optimal cost? In

addressing these questions, for all alternatives, we model the repair shop as a single server

queueing system where broken machines are deemed to be the customers. Since the goal

is decreasing downtime and holding costs, the answers to these questions from our research

are important to the repair and maintenance departments of large production facilities or

mining sites. Our contribution is designing a dynamic myopic policy, namely the Myopic(R)

policy, which we show to perform close to the optimal repair scheduling policy.

Our problem is an example of a Markovian queueing system with multiple finite call-

ing populations (see Sztrik, 2001, for a comprehensive bibliography on systems with finite

populations, and Basten et al., 2012 and Zorna, Deckroa, and Lehmkuhlb, 1999

for systems assuming infinite calling populations). If a separate repair shop is al-

located for each fleet, the optimal number of spares to be kept can be easily determined

using a birth-and-death model, e.g., Taylor and Jackson (1954). However, analyzing the

CRS system presents difficulties. The earlier work in the literature on machine interference

(or machine repairperson) problems (MIP) (see Haque and Armstrong, 2007, for a recent

literature survey) studies the CRS system without any spare machine inventories. Chandra

(1986) employs mean value analysis for the first-come-firs-served (FCFS) repair policy for

several fleets of machines in a CRS system with no spare machine inventories. Static priori-

ties are also considered among fleets: Chandra (1986) analyzes the non-preemptive priority

policy for multiple fleets, and Miller (1981) studies preemptive and non-preemptive policies
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for two fleets. For the preemptive-resume priority policy between two fleets, one can also

employ the methods of Veran (1984), Jaiswal (1968, p. 71,79), and Bitran and Caldentey

(2002). When preemption is not allowed, Iravani, Krishnamurthy, and Chao (2007) show

that the optimal repair scheduling policy is a simple static non-preemptive priority policy,

and provide the sufficient conditions to prioritize the classes correctly. When preemption

is allowed, the optimal policy is partially characterized by Iravani and Kolfal (2005), who

show, under certain conditions, a static preemptive-resume priority policy is optimal.

There are fewer studies that consider spare part inventories for each fleet. The most

relevant one to our work is by Sahba, Balcıog̃lu and Banjevic (2012) who assume identical

repair rates for all fleets. As explained in Section 3.1, their recursive formulation for the

FCFS policy, which they refer to as the RIF (reserved inventory-FCFS) policy, can be used

for our problem so long as the repair rates are identical. For non-identical fleet-specific

repair rates, the FCFS policy appears to be computationally difficult except for small size

problems, as analyzed by Gross and Ince (1981). For the multi-fleet case repaired under the

preemptive-resume policy, the extension of the two-fleet model due to Bitran and Caldentey

(2002) to multiple fleets by Sahba, Balcıog̃lu and Banjevic (2012) can be employed, as we do

in Section 3.2. The optimal repair scheduling policy is also unknown and can only be studied

with numerical techniques. We formulate the problem as a Markov Decision Process (MDP)

in Section 3.3 and apply the value iteration technique for numerical examples in Section 4.

Another stream of research that is relevant to our work is on production scheduling in

a flexible manufacturing plant/inventory setting (for the application of policies such

as shortest processing time policy etc., for which the duration of each job is

known, see, e.g. Chan and Chan, 2004, Kumar et al., 2008). In this area, single-

server make-to-stock queues are used as modeling tools to determine optimal base-stock

levels of continuous-review finished goods inventories under a given scheduling policy. The

fundamental difference of such studies from ours is that customer arrival rates are not state-

dependent, but constant. These policies can be static, such as the FCFS or the preemptive-

resume priority policies, or can be dynamic, such as the longest-queue policy which is shown
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to be more cost effective than the FCFS policy by Zheng and Zipkin (1990) and Zipkin

(1995). Under dynamic policies, each time a product has to be scheduled for production,

the number of pending production orders for each product type is taken into consideration.

This can make a dynamic policy more difficult to implement but at the same time more cost

saving than a static policy. Index policies are especially popular in determining dynamic

scheduling rules in production/inventory problems. Wein (1992) proposes using the bµ/hµ

rule: when different products are backordered, produce (give priority to) the one that has

the largest value of the index bkµk, where µk is the service rate and bk is the backordering

cost rate of product k. In case there are no backorders but some inventory levels are below

their base-stock levels, give priority to the one that has the lowest value of the index hkµk,

where hk is the holding cost rate of product k. For other variants of bµ-based index policies,

we refer the reader to Ha (1997) and Niño-Mora (2006).

Among the dynamic scheduling policies studied in systems with constant arrival rates,

we are motivated from the myopic policies which were first studied by Veatch and Wein

(1996) and Peña Perez and Zipkin (1997). Given that there are pending production orders

for different types of products (customers), a myopic policy computes the cost rate difference

the system would have at the end of a possibly random interval (look-ahead time) for each

customer class if the next order to produce were from that class. Multiplying each cost

rate difference by the corresponding service rate gives an index for each class of customers

with pending production orders. Finally, the myopic policy identifies the type of order

with the smallest index as the next order to be produced. In the M/M/1 make-to-stock

queue, Veatch and Wein (1996) propose service times to be the look-ahead time in their

Myopic(S) policy. Peña Perez and Zipkin (1997) show that their Myopic(T) policy, that

uses the sojourn time of a class of customers in the M/M/1 queue in the absence of other

classes of customers, outperforms the Myopic(S) policy. Although the optimal scheduling

policy is unknown in this setting, de Véricourt, Karaesmen, and Dallery (2000) provide the

conditions under which the Myopic(T) policy becomes optimal in the M/M/1 queue. Both

Myopic(S) and Myopic(T) policies were initially tested ignoring preemption. In the M/G/1
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queue, Sanajian, Abouee-Mehrizi, and Balcıog̃lu (2010) observe that not allowing preemption

can increase costs. As a remedy, they propose employing the preemptive-Myopic(T) policy

which yielded costs very close to the optimal in their numerical examples.

In this paper, we propose the preemptive-Myopic(R) policy in choosing the next machine

type to repair. Since preemption is incorporated, each time a new broken machine arrives

at the repair shop, or the repair of a machine is completed, the Myopic(R) policy computes

an index, as Myopic(S) and Myopic(T) policies do, for each fleet with broken machines. It

uses the repair time as the look-ahead time. It differs from the Myopic(S) policy because

it is preemptive, but more importantly the underlying analysis changes radically due to

state-dependent customer arrival rates at the repair shop. The state-dependent arrivals, as

explained in Section 3.4, prohibits us from considering sojourn time of the Myopic(T) policy

as the look-ahead time. Even with this limitation, our extensive numerical study presented

in Section 4 shows that the Myopic(R) outperforms the FCFS and the static preemptive

bµ-policy most of the time.

While the main contribution is designing the efficient Myopic(R) policy and compare the

relative performances of other policies, we additionally assess the value of repair shop pooling

as an alternative to dedicating a separate repair shop for each fleet. This question was also

addressed by Sahba and Balcıog̃lu (2011) assuming identical repair rates in a CRS system

operating under the FCFS policy. Sahba, Balcıog̃lu and Banjevic (2012) also assess the

benefit of a CRS system assuming that fleets served use the same type of critical component

and can share inventories. Both studies show that the CRS system is more cost effective than

a system reserving repair resources for each fleet. In our problem, since machine types are

different, fleets cannot share inventories and repair rates can be fleet specific. Our examples

agree with their results, and attest to the benefit of repair shop pooling. This finding

is in accordance with the view of the importance of information sharing and

joint decision making in supply chains as exemplified in Wadhwa, Bibhushan,

and Chan (2009), Arora, Chan, and Tiwari (2010), Chan and Prakash. (2012),

Gumasta, Chan, and Tiwari (2012).
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The rest of the paper is organized as follows. In Section 2, we define our problem. The

static and dynamic scheduling policies along with the formulation of the optimal dynamic

repair schedule as an MDP are discussed in Section 3. In Section 4, we present our numerical

study, which demonstrates that the dynamic preemptive- Myopic(R) policy yields costs close

to the optimal solution.

2 Preliminaries

In this paper, we consider r fleets of machines, indexed by i, (i = 1, 2, . . . , r) sharing the

resources of a single repair shop. The goal is to have Ni machines (referred to as type i

machines) to be functional at all times for each fleet i. However, each machine is subject to

failures from time to time. Upon failure, the failed machine is sent to a repair shop to be

fixed. For a type i machine, times to failure follow an exponential distribution with rate λi.

To increase the probability of having all Ni machines functional, for each fleet i, a separate

continuous-review spare machine inventory is kept, which is operated according to a base-

stock policy with a base-stock level Si. If there is available stock when a failure occurs, a

spare type i machine is installed in the fleet without any delay. Therefore, downtime costs

are not incurred. If there are no available spares in the inventory, upon each failure, the

fleet has one less operating (one more down) machine until the repair shop can fix and send

a repaired machine back to the fleet.

Letting 0 ≤ Wi(t) ≤ Ni and 0 ≤ Ii(t) ≤ Si denote the number of machines in fleet i and

spares in its inventory at time t, respectively, we define Ai(t) = Wi(t)+Ii(t), which gives the

number of functional machines (in use or stock) at time t. When Ai(t) < Ni, the fleet has

Ni − Ai(t) down machines, and the system incurs a downtime penalty cost of bi per down

machine per unit time. Similar to Louit et al. (2011), we assume that the total inventory

holding cost to be paid is hi × Si per unit time, since this is the capital cost tied up for

keeping Si additional units of type i machines. One can consider the warehousing cost for

the items kept in inventories as well, but as indicated by Waters (2003, p. 257), the capital
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cost dominates the warehousing costs, and thus, we ignore the latter.

We consider two alternatives regarding the repair shop, which is modeled as a single server

queueing system with exponential repair times. In the first, each fleet has its own repair

shop. Following Sahba, Balcıog̃lu and Banjevic (2012), we refer to this system as the base

case (BC) system. In the BC system, the repair shop for fleet i is a single server queueing

system where the server has a repair rate of µBC
i . In the second, there is a centralized repair

shop (CRS) – again modeled as a single server – that serves all fleets. The CRS has a

higher capacity than individual repair shops of the BC system and fixes type i machines at

a repair rate of µi. In CRS systems, it is assumed that there is no set-up time/cost when the

repair shop switches from one type of machine to another. In both systems, if Ai(t) < Ni, a

repaired type i machine is installed in its fleet right away, raising Wi(t) by 1; otherwise, it is

placed in the respective spares inventory raising Ii(t) by 1.

Given this, if one obtains the steady-state probabilities pi(n) = P (Ai = n), the optimal

objective value C∗
BC of the BC system cost can be expressed as follows:

C∗
BC =

r∑
i=1

Ci(S
∗
i ), (1)

where

Ci(S
∗
i ) = min

S
{Ci(S) = hi × S + bi

Ni∑
n=0

(Ni − n)pi(n)}. (2)

Note that in a BC system, fleets and their inventories are independent of each other because

they have their own repair shops. This makes pi(n) also independent of other fleets and their

spare part inventories. Given Si for fleet i, these probabilities can be derived by a simple

birth-and-death process (e.g., Gross and Harris, 1998, p. 82-83). Therefore, for each fleet, S∗
i

is found by searching over different Si values in Eq. (2). Finally, Eq. (1) gives the optimal

BC system cost.

In the CRS system, pi(n) not only depends on the scheduling policy considered, but

also on the characteristics of other fleets due to the shared repair shop. Letting S =

(S1, S2, . . . , Sr), under a given scheduling policy H, the optimal objective value C∗
H of the
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CRS system cost can be expressed as follows:

C∗
H = min

S
{

r∑
i=1

Ci(S)}, (3)

where

Ci(S) = hi × Si + bi

Ni∑
n=0

(Ni − n)pi(n). (4)

Therefore, using Eq. (4) in Eq. (3), pi(n) values and C∗
H can be found by searching over

different S vectors.

3 Scheduling Policies

In CRS systems where different types of broken machines (jobs) compete for sharing the

same repair resource, scheduling policies are needed to determine which machine to fix next.

Obviously, the FCFS policy appears as the most straightforward to implement and fair

repair shop scheduling policy. However, certain fleets can be more important for a company

if they are used to manufacture products with a higher profit (see Sundarraj, 2006, that

explores how customer classes can be prioritized by considering contract and

customer type features). In order to operate these fleets as much as possible with all

its machines functional, priority can be given to these types of machines. Under priority

policies (preemptive-resume priority policy, in specific, which we consider in this paper), if

the inventory level of a higher priority fleet is below its base-stock level, even when a lower

priority fleet has some or all machines down, the next machine to fix is from the higher

priority fleet.

Irrespective of how many repair jobs there are in the repair shop, the scheduling rule does

not change under the FCFS or preemptive-resume priority policies. Dynamic scheduling

policies, on the other hand, consider how many jobs are present from each fleet at a given

time. The optimal policy, which minimizes the total average cost per unit time, for this

problem is unknown, yet, it can be formulated as an MDP as presented in Section 3.3. In

this paper, we propose the dynamic Myopic(R) policy in Section 3.4, which we demonstrate
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via numerical examples, to outperform the FCFS and preemptive-resume priority policies

most of the time, and to result in costs close to the optimal.

3.1 The First-Come-First-Served Policy

Under the FCFS policy, jobs are repaired based on the order of their arrival at the repair

shop. Unlike the FCFS multi-class M/M/1 queue, where job arrival rate for each class of

customers is constant, as also pointed out by Kelly (1975), the exact analysis of the FCFS

multi-class Mn/M/1 queue with state-dependent arrival rates is difficult. In the Mn/M/1

queue with class-specific service rates, as in our case, for state description, not only do we

have to know how many jobs there are from each class, but also their ordering in the queue.

This makes an analysis based on a continuous-time Markov chain (CTMC) intractable when

the problem size increases. Exact solution for two fleets – ignoring spares inventories – is

provided by Gross and Ince (1981) for small size fleets. They also propose approximations for

larger fleet sizes which turned out to be inaccurate for our examples, thus, are not considered

in this study. This leaves us to consider identical repair rates for all fleets for which the exact

solution is obtained by Sahba, Balcıog̃lu, and Banjevic (2012). In this model, which they

refer to as the RIF policy, they show that the ordering of jobs is unimportant and the

vector of jobs present in the repair shop is sufficient to recursively obtain pi(n). Therefore,

using their RIF model, the performance of the FCFS policy is assessed in Section 4 only for

identical repair rates.

3.2 The Preemptive-Resume Priority Policy

We consider a preemptive-resume priority rule according to which a high-priority job does

not have to wait for the completion of the repair of a lower priority job that it sees under

repair upon its arrival at the repair shop. If there are no high-priority jobs left in the system,

the preempted job resumes its repair from the point of interruption. Within each priority

class, the order of service follows the FCFS rule.
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Under the preemptive-resume priority policy, pi(n) can be obtained using models from

the literature. Bitran and Caldentey (2002) propose a matrix-geometric form solution to

obtain pi(n) for a queueing system with two classes of customers whose arrival rates are

state dependent. For more than two fleets, Sahba, Balcıog̃lu, and Banjevic (2012) extend

the method of Bitran and Caldentey (2002). In numerical examples in Section 4, therefore,

we exploit these two papers for the preemptive-resume priority policy.

3.3 Markov Decision Process Formulation

We formulate the optimal dynamic repair schedule as an MDP similar to Iravani and Kolfal

(2005) who analyze the problem without spares inventories, when preemption is allowed.

The MDP is formulated as follows:

• State Space: State space S consists of r-dimensional row vectors n = (n1, . . . , nr) where

0 ≤ ni ≤ Ni+Si represents the number of functional type i machines (in use or stock)

in the system.

• Decision Epochs: Decision epochs are failure instants of a machine from any fleet (i.e.,

an arrival of a job at the repair shop) and repair completions.

• Action Set: For any n ∈ S, the set of allowable actions An consists of Idling and

Repairing type i machine if ni < Ni + Si, i = 1, . . . , r. Therefore, the action set is

A = ∪n∈SAn.

We define Ii{a} as follows

Ii{a} =


ei if a is true,

0 otherwise,

where 0 is an r -dimensional zero vector, and ei is an r -dimensional row vector with 1 on

its ith entry and 0 elsewhere. Furthermore, let Jn denote the set of machine types of which

ni < Ni + Si, i.e., the machine types from which there are broken machines in the repair
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shop. With (x)+ := max{0, x}, (Ni − ni)
+ gives the number of down machines. Then, the

optimality equation for the MDP problem is expressed as follows:

g

Λ
+ V (n) =

1

Λ
{

r∑
i=1

(
hiSi + bi(Ni − ni)

+
)
+

r∑
i=1

min{Ni, ni}λiV (n− Ii{ni>0})

+
r∑

i=1

(Ni − ni)
+λiV (n) + f(n)}, (5)

where V (n) is the value function for the vector n, Λ =
∑r

i=1(Niλi + µi), and

f(n) = min


∑r

i=1 µiV (n) Idling,

minj∈Jn

{
µjV (n+ ei) +

∑r
i=1,i̸=j µiV (n)

}
Repair,

where g is the total average cost per unit time.

For the MIP in which Si = 0, i = 1, . . . , r, that is, no spares are kept for any fleet, Iravani

and Kolfal (2005) define the following two conditions, C1 or C2, for type j and k machines:

Condition C1: bjµj ≥ bkµk,

Condition C2: bjµj < bkµk, λj < λk, and bjµj ≥ bkµk (1− (λk − λj)/Λ).

In their Theorem 1, they prove that if either Condition C1 or C2 holds at a state n for type

j and k(̸= j) machines (j, k ∈ Jn), then it is optimal to repair type j machine instead of

type k machine if

bjµj

λj

≥ bkµk

λk

. (6)

If Conditions C1 and C2 are not satisfied in the MIP (with Si = 0, i = 1, . . . , r) the

optimal policy is not known. This is also true in our problem where Si ≥ 0. However, the

optimal average total cost of the model presented in Eq. (5) can be found numerically as we

do in Section 4 while computing the optimal system costs.

3.4 The Myopic(R) Policy

The idea of a dynamic myopic policy is to look at the end of a possibly random interval

(look-ahead time) in the future and compute the cost rate difference the system would have
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at that instant if we were to decide repairing a type i machine now, instead of not repairing

it, for i = 1, ..., r. Since the holding cost rate is constant according to Eq. (4), the machine

type that has the largest cost reduction (if the number of down machines is decreasing) is

scheduled for repairing next. We consider the look-ahead time to be the repair time, and

refer to this policy as the Myopic(R) policy. In the production-inventory setting, where

customer arrival rates are assumed to be constant, analogous to the Myopic(R) policy is the

Myopic(S) policy for which the look-ahead time is a service time. The Myopic(S) policy in

a non-preemptive fashion was first studied by Veatch and Wein (1996). Longer look-ahead

times such as the sojourn time of a job in a single-product single server queue are also

considered, as in the Myopic(T) policy by Peña Perez and Zipkin (1997). In the repair shop

setting, considering sojourn time as the look-ahead time is technically quite difficult as will

be explained later. Additionally, as the numerical examples in Section 4 demonstrate, the

Myopic(R) policy already yields costs close to the optimal. Thus, we do not consider longer

look-ahead times than the repair time.

Since our aim is to design the Myopic(R) policy to perform as closely as possible to the

optimal policy, the decision epochs are the same as those considered in Section 3.3: failure

instants of a machine from any fleet (i.e., an arrival of a job at the repair shop) and repair

completions. This implies that the Myopic(R) policy may choose to preempt an ongoing

repair of a job in favor of another one. The preempted job resumes its repair from the moment

of interruption later on when the the Myopic(R) policy determines that its type of machine

should be repaired next. The better performance of preemptive-resume myopic policies over

non-preemptive ones was first discussed by Sanajian, Abouee-Mehrizi, and Balcıog̃lu (2010)

around the Myopic(T) policy in a production/inventory system. This also supports our idea

of allowing preemption for the Myopic(R) policy in our problem.

Now that the decision epochs are determined, the next step is to compute the cost rate

difference at the end of the look-ahead time, which enables us to make the repair scheduling

decision. Denoting the inventory position before making the decision by xi, when xi > 0,
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one computes the difference between expected cost-rates for type i machines as

∆cRi (xi) = cRi (xi + 1)− cRi (xi),

where cRi (xi) = hiSi+ bi
∑xi+Ni

m=xi+1(n−xi)p
R
i (m). Here, pRi (m) is the probability of having m

type i machine failures over the look-ahead time. Observe that whether we decide to repair

or not, the number of type i machines that can fail over the look-ahead time cannot exceed

xi +Ni, i.e., 0 ≤ m ≤ xi +Ni. Then, we have

∆cRi (xi) = hiSi + bi

xi+Ni∑
m=xi+2

(m− xi − 1)pRi (m)− hiSi − bi

xi+Ni∑
m=xi+1

(m− xi)p
R
i (m),

= −bi

Ni+xi∑
m=xi+1

pRi (m). (7)

If we have to make the repair scheduling decision at time t and xi = 0, either Ni or

fewer machines might be working, i.e., Wi(t) ≤ Ni. If we choose not to repair a type i

machine, the number of down type i machines will increase by m at the end of the look-

ahead time, if 0 < m ≤ Wi(t) more machines fail. If we choose to repair, the number of

down machines will increase only by m − 1. Therefore, we find ∆cRi (0) = −bi. This agrees

with ∆cSi (0) = ∆cTi (0) = −bi of the Myopic(S) and Myopic(T) policies, respectively, in

production/inventory systems.

According to the Myopic(S)/Myopic(T) policies, not only the amount of ∆cSi (xi) /∆cTi (xi)

but also how quickly the server processes a job is an important consideration. Therefore, for

each customer class i, the index µi∆cSi (xi)/µi∆cTi (xi) is computed and the product with the

lowest index is scheduled next for production.

In production/inventory systems, the bµ rule (the static preemptive-resume policy prior-

itizing the class with the highest bµ index) is optimal when the inventory levels are 0. Since

µi∆cSi (0) = µi∆cTi (0) = −µibi, the Myopic(S) and Myopic(T) policies turn out to make the

optimal scheduling decision when customers are backordered. In a similar vein, we propose

using µi∆cRi (xi)/λi as the index so that the machine type with the lowest µi∆cRi (xi)/λi value

should be repaired next. Note that when xi = 0, this index equals −µibi/λi and if Conditions
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C1 or C2 determined by Iravani and Kolfal (2005) holds, the Myopic(R) policy also makes

the optimal repair decision as outlined in Eq. (6).

We now proceed with obtaining pRi (m) to compute Eq. (7), which is provided in the

following Proposition.

Proposition 1 The probability of having m failures in fleet i during the look-ahead time

depends on xi, and

• if 0 ≤ m ≤ xi, then

pRi (m) =

(
λiNi

λiNi + µi

)m(
1− λiNi

λiNi + µi

)
, (8)

• if 0 ≤ xi ≤ m, then

pRi (m) =

Ni!
(Ni−m+xi)!

µi

λi

(Niλi)
xi

(Niλi+µi)
xi∏m−xi

j=0 (Ni +
µi

λi
− j)

. (9)

Proof. If 0 ≤ m ≤ xi, then we have enough spares to replace failed machines and times

between replacements are exponentially distributed with rate λiNi. Given that the repair

time is Ri = r, the number of failures follows Poisson distribution with rate λiNir. Removing

the condition on r gives pRi (m) as

pRi (m) =

∫ ∞

0

(λiNir)
m

m!
e−λiNirµie

−µirdr =
µi (λiNi)

m

m!

∫ ∞

0

rme−r(λN+µ)dr

=
µi (λiNi)

m

m!

m!

(λiNi + µi)
m+1 ,

from which Eq. (8) is obtained.

If 0 ≤ xi ≤ m, given that the repair time is Ri = r, the first xi failures should happen by

time y < r, which follows an xi-stage Erlang distribution in which each exponential phase

has a rate of λiNi. After y, in the remaining r − y time units, m − xi out of Ni machines

should fail and others survive, in order to have a total of n machine failures during r. Then,

removing the condition on r, we have

pRi (m) =
(

Ni
m−xi

) ∫ ∞

0

∫ r

0

(
1− e−λi(r−y)

)m−xi
(
e−λi(r−y)(Ni−m+xi)

) (Niλi)
xi yxi−1e−λiNiy

(xi − 1)!
dyµie

−µirdr,

=
(

Ni
m−xi

) ∫ ∞

0

(Niλi)
xi yxi−1e−(λiNi+µi)yµi

(xi − 1)!

(∫ ∞

0

(
1− e−λiν

)m−xi
e
−λiν(Ni−m+xi+

µi
λi

)
dν

)
dy,

(10)
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where ν = r − y. Letting t = e−λiv, dt = −λie
−λivdv, dv = −dt/λit,∫ ∞

0

(
1− e−λiν

)m−xi
e
−λiν(Ni−m+xi+

µi
λi

)
dν =

1

λi

∫ 1

0

(1− t)m−xit
Ni−m+xi+

µi
λi

−1
dt.

Since B (α, β) =
∫ 1

0
(1− t)α−1tβ−1dt = Γ (α) Γ(β)/Γ(α + β),∫ ∞

0

(
1− e−λiν

)m−xi
e
−λiν(Ni−m+xi+

µi
λi

)
dν =

1

λi

Γ (m− xi + 1)Γ(Ni −m+ xi +
µi

λi
)

Γ(Ni + 1 + µi

λi
)

=
1

λi

(m− xi)!

(Ni +
µi

λi
)(Ni +

µi

λi
− 1) · · · (Ni −m+ xi +

µi

λi
)
.

Substituting this in Eq. (10) gives,

pRi (m) =
µi

λi

(
Ni

m−xi

)
(m− xi)!∏m−xi

j=0 (Ni +
µi

λi
− j)

(Niλi)
xi

(xi − 1)!

∫ ∞

0

yxi−1e−(λiNi+µi)ydy

=
µi

λi

(
Ni

m−xi

)
(m− xi)!∏m−xi

j=0 (Ni +
µi

λi
− j)

(Niλi)
xi

(xi − 1)!

(xi − 1)!

(Niλi + µi)
xi
,

from which Eq. (9) is obtained.

With Proposition 1 and Eq. (7), at decision epochs, we are now able to compute

µi∆cRi (xi)/λi for each fleet i. If we were to consider the sojourn time as the look-ahead

time in parallel to the Myopic(T) policy, Eq. (10) could be evaluated only by some numer-

ical approximation technique. Additionally, the density function of the sojourn time would

change for each base-stock level to consider due to state-dependent arrival rates depending

on the base-stock level as well. This would make the search on the optimal base-stock levels

extremely long, rendering the policy unpractical.

For a given vector Si’s, i = 1, . . . , r, we construct an CTMC for the Myopic(R) policy with

the same state space S of the MDP defined in Section 3.3. For each state n = (n1, . . . , nr)

except for the state in which ni = Ni +Si for all i, let µn denote the repair rate for the type

of machine identified by the the Myopic(R) policy to be fixed. Using this and the state-

dependent failure rates, the global balance equations of the CTMC can be obtained, and

pi(n) can be computed. Searching over different S vectors we arrive at the optimal objective

value given in Eq. (3).
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4 Numerical Results

In Section 3, we propose different repair scheduling policies that can be implemented in a

CRS system as alternatives to the BC system discussed in Section 2. However, we did not

address several important questions. (i) Although the benefit of server capacity pooling

is well-known in the literature of production/inventory systems (see Yu, Benjaafar, and

Gerchak, 2009 and the references therein), and repair shop pooling with identical repair rates

(see Sahba, Balcıog̃lu and Banjevic, 2012, Sahba and Balcıog̃lu, 2011) what is the benefit

of repair shop pooling when repair rates for different machines are different? (ii) How do

the FCFS, the static preemptive-resume priority and the Myopic(R) policies perform with

respect to one another and the optimal policy? The answers to these questions are important

for the management of a repair shop. Instead of reserving its repair resources separately for

each fleet, possible benefits from repair shop pooling could be important.

Before presenting our extensive numerical study in detail, we summarize our findings.

In regards to Question (i), the results in Section 4.2 clearly demonstrate the advantage of

pooling the repair shop capacity. All policies studied in Section 3 result in less cost than

the BC system. In regards to Question (ii), the results in Section 4.3 demonstrate that the

Myopic(R) outperforms the FCFS policy in all, and the static preemptive-resume priority

policies in most of the cases, and results in costs very close to the optimal costs.

4.1 Basic Experimental Setup

In order to investigate the questions raised at the beginning of Section 4, we have designed

a series of numerical experiments involving two fleets. For the preemptive-resume priority

policy, the fleet that has a higher biµi/λi index, i = 1, 2, is considered the high-priority class.

Hence, we refer to it as the preemptive-bµ/λ policy. This way, we assess the performance

the preemptive-bµ/λ policy in settings where it is not known to be optimal, namely, when

Si > 0 and Conditions C1 or C2 may not hold. For fleet i with Ni machines having λi

failure rate, we assume µBC
i to be the repair rate in the BC system, and µi = 2µBC

i in the
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CRS system.

We considered the following parameters:

• Setting h1 = 1, we consider the following holding cost rates for fleet 2: h2 ∈ {0.9, 0.7, 0.5}.

• We consider the following downtime cost rate to holding cost rate ratios: b1/h1 =

b2/h2 ∈ {20, 80}.

• The fleet sizes are : (N1, N2) ∈ {(10, 5) , (10, 10) , (10, 15) , (50, 25) , (50, 50) , (100, 50)}.

• When N1 = 10, 100 (N1 = 50), we set µ1 = 2 (µ1 = 1), and we consider µ1/µ2 ∈

{2, 1, 2/3}

• As an approximate measure of the repair shop utilization, we set u = λ1N1/µ1 =

λ2N2/µ2 ∈ {0.45, 0.35, 0.25} corresponding to high, medium, and low levels of repair

shop utilization.

Thus, due to three different holding cost rates for fleet 2, two different downtime cost rate

to holding cost rate ratios, six different pairs of fleet sizes, three different repair rate ratios,

and three different utilizations, we have 3 × 2 × 6 × 3 × 3 = 324 cases. For each problem,

the optimal base-stock levels for the BC system are obtained from Eq. (2) by searching

over different Si values and the optimal cost of the system is computed from Eq. (1). For

each alternative policy in the CRS system, optimal values are are obtained by searching over

different S vectors using Eqs. (3) and (4). However, for the FCFS policy, we only consider

the cases with equal repair rates, i.e., when µ1/µ2 = 1 since exact methods or simulation

take prohibitively long computation times to handle fleet-specific unequal repair rates. This

gives a total of 108 problems for the FCFS policy.

To obtain the optimal costs and base-stock levels as reference values, the value-iteration

algorithm as described by Tijms (2003, p. 285) to evaluate Eq. (5) was implemented in C++

and run using a 64-bit compiler from Microsoft Visual Studio Ultimate on a Windows-based

computer with Intel i7 CPU and 6.0 GB RAM. The value iteration algorithm was terminated
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once five-digit accuracy was obtained. The computation time varied depending on the server

utilization. When the server utilization was low, i.e. u = 0.25, the solution algorithm

converged significantly faster compared to problems with higher server utilization. With

large fleet sizes, (N1, N2) = (100, 50), and high server utilization, u = 0.45, the algorithm

converged approximately in 2 hours for each problem instance, but at low server utilization,

u = 0.25, it took approximately 30 minutes to converge for each problem. Even with two-

fleet problems, the computation time is considerably long. Therefore, we have chosen not

to include problems with more than two flees in our numerical study. In contrast, the

Myopic(R) policy takes the decisions by computing the index for each fleet, and

involves solving for the transition probability matrix of the underlying CTMC to

obtain the required steady-state probabilities as explained in Section 3.4. Thus,

the computation time for any instance was less than a minute.

4.2 Benefits of Repair Shop Pooling

To answer Question (i) in addressing the benefit of repair shop pooling, for each of the 324

examples (108 for the FCFS policy), we denote the optimal costs by C∗
BC for the BC system,

and C∗
F for the FCFS policy, C∗

P for the preemptive-bµ/λ policy, C∗
R for the Myopic(R)

policy in the CRS system. Denoting the optimal cost in the CRS system by C∗, we define

∆F
BC ≡ C∗

BC − C∗
F

C∗
BC

, ∆P
BC ≡ C∗

BC − C∗
P

C∗
BC

, ∆R
BC ≡ C∗

BC − C∗
R

C∗
BC

, ∆O
BC ≡ C∗

BC − C∗

C∗
BC

.

These ratios measure the cost decrease due to repair shop pooling in CRS systems oper-

ating under the policies introduced in Section 3 with respect to the optimal BC system.

Table 1 summarizes the cost reduction as a result of repair shop pooling. We see re-

markable cost savings under each policy in a CRS system. Sahba, Balcıog̃lu, and Banjevic

(2010) conducted a similar analysis by assuming the same repair rate for all fleets in a re-

pair shop/inventory system. Their RIF and RIP systems correspond to the FCFS and the

preemptive-bµ/λ policies we consider in this paper, respectively. Our findings agree with

their observations for these two policies. Results in Table 1 suggest that a CRS system with
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Table 1: The minimum, average, median and maximum values of cost reduction due to repair

shop pooling.

Min(%) Average(%) Median(%) Max(%)

∆F
BC 13.85 38.96 38.95 43.77

∆P
BC 6.18 40.37 40.21 63.70

∆R
BC 38.07 46.66 45.6 64.35

∆O
BC 38.07 47.01 45.84 64.44

higher capacity operating under a dynamic repair shop policy is more cost effective than

allocating separate repair shops for each fleet.

4.3 Relative Performance of Policies

To answer Question (ii) in comparing the relative performance of the policies with one

another and the optimal cost, we define

∆O
F ≡ C∗

F − C∗

C∗
F

, ∆P
F ≡ C∗

F − C∗
P

C∗
F

, ∆R
F ≡ C∗

F − C∗
R

C∗
F

,

and

∆O
P ≡ C∗

P − C∗

C∗
P

, ∆R
P ≡ C∗

P − C∗
R

C∗
P

, ∆O
R ≡ C∗

R − C∗

C∗
R

.

The ratios ∆P
F , ∆

R
F , and ∆R

P measure the relative performances of the non-optimal policies

considered for a CRS system. Table 2 summarizes the cost reduction in pairwise comparison

of non-optimal policies (a negative number indicates a cost increase). We conclude that the

Myopic(R) policy is superior to the FCFS policy in all the examples considered. In general,

it also reduces the system cost considerably when compared to the preemptive-bµ/λ policy,

however, in some cases the latter is more cost effective than the former. We also do not

see that the preemptive-bµ/λ policy is always better than the FCFS policy in reducing the

system cost.
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Table 2: The minimum, average, median and maximum values of cost reduction in pairwise

comparison of non-optimal policies.

Min(%) Average(%) Median(%) Max(%)

∆P
F -15.85 3.38 1.95 33.95

∆R
F 4.39 11.95 10.43 35.1

∆R
P -2.97 9.48 8.19 46.52

The ratios ∆O
F , ∆

O
P , and ∆O

R measure the cost decrease of the optimal policy when com-

pared to the three non-optimal policies.

Table 3: The minimum, average, median and maximum values of cost reduction due to the

optimal policy.

Min(%) Average(%) Median(%) Max(%)

∆O
F 5.85 12.16 10.48 35.1

∆O
P 0.39 10.06 8.32 48.24

∆O
R 0.00 0.66 0.1 7.3

Table 3 summarizes the relative performance of the FCFS, the preemptive-bµ/λ priority

and the Myopic(R) policies when compared to the optimal policy. The results indicate that

the Myopic(R) policy yields costs close to the optimal costs.

5 Conclusion and Future Work

In this paper, we consider a system of fleets of machines and assume that each machine is

subject to failure. To minimize downtime costs, a spare machine inventory is kept for each

fleet. We first address whether these fleets should be served by smaller repair shops dedicated

to them or by a centralized repair shop (CRS) serving all fleets. Our numerical study
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indicates that the CRS system reduces downtime and holding costs significantly. We focus

on the CRS systems to determine a practical scheduling policy to reduce the system costs

even more. We consider the static FCFS, and preemptive-resume policies from the literature,

but more importantly design the new preemptive-Myopic(R) policy as an alternative. These

three policies are compared with the optimal solution found from the MDP formulation

of the problem. Our extensive numerical study demonstrates that the Myopic(R) policy

outperforms the FCFS, and preemptive-resume priority policies in most cases, and yields

costs very close to the optimal.

Our analysis is helpful for OEMs (original equipment manufacturer) that pro-

vide maintenance service to their clients. Instead of reserving separate repair

crews for each client, they can reduce costs by pooling their personnel and allo-

cate the required number of repair-people to a client whenever the need arises.

Additionally, our study demonstrates the benefit of implementing preemptive

policies at flexible repair shops that can fix different types of equipment and ma-

chinery. If the company has determined that having a certain type of machine

functional is more important than another type, our study shows how much cost

reduction can be realized by preempting the repair of a less important machin-

ery in favor of the more important one instead following the FCFS policy. In

this regard, the Myopic(R) policy is proposed which has straightforward deci-

sion rules that can be easily found by even manually computing indices for each

class. Our numerical study shows that this policy gives close to optimal costs

and usually outperforms a static preemptive-resume policy.
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