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Abstract—Microrobots are promising tools for micromanipu-
lation and minimally invasive interventions. Robust electromag-
netic control of microrobots can be achieved through precisely
modeled magnetic steering systems and accurate localization.
Error-free modeling and position information, however, are not
realistic assumptions, and microrobots need to be controlled
under force and localization uncertainties. In this paper, methods
to account for these types of uncertainties are presented. Initially,
the uncertainties in electromagnetic force generation of a new
class of manipulation systems are quantified. Subsequently, a
drag-force uncertainty model for linear dynamics is proposed.
This model can be employed for microrobots whose fluid dy-
namics are not well understood. A set of performance measures
is introduced in the design of controllers, and a PID and a
robust H∞ controller are synthesized and evaluated through
simulations. To demonstrate the capabilities of the synthesized
controllers under localization and force uncertainties, low update
rates are considered. The H∞ controller can provably respect
the performance measures under higher uncertainties than the
PID controller, and its performance is further quantified through
experiments in a prototype electromagnetic control system.

Note to practitioners: This paper is motivated by the problem
of robust magnetic microrobot control for in vivo medical
applications and micromanipulation. Existing approaches do not
account for navigation system uncertainty, and rely on high
imaging rates that are unrealistic for some applications (e.g.,
involving x-rays). We investigate the uncertainties in magnetic
force generation and fluidic forces for microdevices that move in
viscous fluid, considering state-of-the-art electromagnetic control
systems capable of 5 degree-of-freedom control. These systems
have not been examined before from this perspective. We
demonstrate how to estimate the uncertainty in electromagnetic
force generation due to localization and calibration inaccuracies,
as well as the uncertainty in drag force due to microrobot
shape complexity. Finally, we show that we can robustly control
permanent magnetic microrobots in low viscosity oils, thus
enabling more accurate and less restricted manipulation.

Index Terms—Electromagnetism, control, microrobotics, ro-
bust, servoing, wireless.

I. INTRODUCTION

Microrobots are envisioned as a potential solution to chal-
lenging micromanipulation problems. Their ability to be dex-
terously controlled make them ideal tools for microassembly
[2], protein-crystal handling [3], or cell manipulation [4].
Additionally, microrobots are an emerging tool for minimally
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Fig. 1. The OctoMag electromagnetic control system for navigation of
microrobots in the eye cavity. The microrobots will be inserted through a
scleral incision, and will “swim” through vitreous humor or replacements to
reach the retina [8].

invasive interventions, as their minuscule dimensions allow the
navigation of natural pathways [5]. For example, microrobots
have been proposed for kidney stone removal [6], intravascular
drug delivery [7], intraocular drug delivery [8], and drug
delivery in the brain [9].

A variety of methods, including electrostatic fields [10],
thermal gradients [11], and bacterial propulsion [12], [13],
have been proposed for microrobot actuation. The most com-
mon actuation methods, however, are based on electromagnetic
fields, either by employing permanent magnets [14], magnetic
resonance (MR) [7], or systems comprising arrays of electro-
magnets [2], [15] (see Fig. 1).

Accurate control of microrobots with electromagnetic fields
requires precise localization information as dictated by “Earn-
shaw’s theorem”; even in open-loop position control, magnetic
controllers require knowledge of the position to apply the
necessary fields and gradients [16].

Localization in the case of micromanipulation is achieved
through direct visualization using optical microscopes [2], [3].
In in vivo applications, however, imaging and localization
are complex tasks. While MRI systems allow the use of
a single platform and pulse-sequence interleaving for both
imaging/localization and actuation of magnetic microrobots,
the stabilization of the feedback controller is challenging
[7]. Custom-made electromagnetic control systems allow the
generation of high gradients along relatively large distances
but require coupling to an imaging system [16], [17].

Localization uncertainties result from poor algorithm per-
formance or imaging resolution. Erroneous estimation of a
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microrobot’s position leads to miscalculation of the required
electromagnetic field and gradient and may lead to unstable
control. Similarly, accurate knowledge of the steering sys-
tem’s parameters is not always a realistic assumption due to
modeling errors and manufacturing inaccuracies. Therefore,
controllers need to account for uncertainty in microdevice
location, system parameters, and the environment.

Control of a magnetically levitated microrobot with 3 de-
grees of (translational) freedom (DOF) was examined in [18],
where the authors also present considerations on the design of
an electromagnetic control system. No uncertainties are taken
into consideration in that work. Optimal magnetic control of
a ferromagnetic particle is examined in [19] in 2D and 3D,
however, only 2D experimental results are presented. The work
presented in [20] proposes an adaptive backstepping controller
and optimization methodology that estimates environmental
parameters (such as the dielectric constant of the blood) for
intravascular microrobot steering using MRI. Finally, uncertain
location in control with rotating permanent magnets is studied
in [14].

The current paper introduces methodologies for estimating
the force uncertainties in magnetic microrobot steering, and
for developing stable controllers for 5-DOF manipulation. The
focus is on electromagnetic force uncertainty due to steering
system complexity and low localization rates, and drag force
uncertainty due to microrobot shape complexity. We consider
free floating microrobots that navigate in fluids that do not
exhibit motion, e.g., the cerebrospinal fluid that fills the lateral
brain ventricles, or the vitreous humor of the eye.

The paper is organized in sections based on the proposed
system modeling and controller design workflow:
• Sec. II: Model the steering system and estimate uncer-

tainties in force generation.
• Sec. III: Based on the microrobot’s shape, numerically

find its drag coefficients, linearize the dynamics, and
account for the linearization inaccuracies.

• Sec. IV: Decide on a set of performance measures for
controllers.

• Sec. V: Synthesize controllers (e.g., a PID and an H∞
controller) and investigate their robustness with respect
to uncertainties.

• Sec. VI: Experimentally evaluate the controller that re-
spects the robustness and stability criteria.

The paper concludes in Sec. VII with a summary and
discussion of the main contributions.

II. ACTUATION PRINCIPLES AND SYSTEM DYNAMICS

A. Electromagnetic Manipulation

Recently, Kummer et al. presented 5 DOF micromanipula-
tion of magnetic microrobots using arrays of electromagnets
equipped with soft-magnetic cores [15]. The soft-magnetic
cores enable the projection of fields across long distances
and the generation of high field gradients. The electromagnets
operate in the linear region of the near-ideal core material.

When current passes through each electromagnet, the gener-
ated field and gradient is affected by all the cores. This effect
can be calibrated by measuring the field and gradient generated

by each individual electromagnet in situ. The individual field
contributions are then modeled as a point dipole [15]:

~B(~Γ, ~P ) =
µ0

4π‖~P‖3

(
3(~Γ · ~P )~P

‖~P‖2
− ~Γ

)
(1)

where ~Γ [Am2] is the point dipole, µ0 [TmA ] is the vacuum
permeability, and ~P [m] is the vector connecting the point
where the field is calculated and the point dipole. Since the
soft-magnetic cores operate in their linear region and a system
with negligible hysteresis is assumed, the individual fields and
gradients superimpose:

~B(~P ) =

n∑
e=1

~Be(~P ) =

n∑
e=1

~̃Be(~P )ie = B(~P )I (2)

∂ ~B(~P )

∂�
=

n∑
e=1

∂ ~Be(~P )

∂�
=

n∑
e=1

∂ ~̃Be(~P )

∂�
ie = B�(~P )I (3)

where e = 1, · · · , n denotes the e-th electromagnet, ie is
the current flowing through it, ~̃Be is the unitary-current field,
B(~P ) = [ ~̃B1(~P ) · · · ~̃Bn(~P )] is a 3 × n field matrix, I =
[i1 · · · in]T , and � ∈ {x, y, z} denotes the partial derivative
of ~B in the respective direction.

The electromagnetic field is controlled to generate the
desired torque and force on the magnetic microrobot. A
microrobot moving in low viscosity fluid can align with the
applied field unimpeded. Thus, it is possible to directly control
the field orientation rather than the torque. The force on the
microrobot is controlled through the field gradients:

~F =
[
~Bx ~By ~Bz

]T
~M (4)

where ~M is the microrobot’s magnetic moment.
Combining (2)-(4) leads to:

[
~B
~F

]
=


B(~P )

~MTBx(~P )
~MTBy(~P )
~MTBz(~P )


 i1

...
in

 = AB,F ( ~M, ~P )I (5)

which describes the relationship between the field ~B, the force
~F , and the currents that flow through the electromagnets. The
6×n matrix AB,F is called the force-actuation matrix, and is
a matrix characteristic of the system. It can be viewed as the
“jacobian” matrix of a traditional robotic mechanism. When
the required field and force are known, the target currents can
be calculated as:

I = AB,F ( ~M, ~P )†
[
~Bdes
~Fdes

]
(6)

where AB,F ( ~M, ~P )† is the pseudo-inverse of the force-
actuation matrix.

B. Estimation of Uncertainties

The identification of the parameters involved in system
modelling introduces errors. The range of uncertainty in
the measurements, however, can be estimated based on the
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accuracy/relative tolerance of the measuring instrument, and
the resulting force-generation errors can be accounted for in
a calibration procedure.

The localization estimates that are supplied to the field
controller can be noisy, both due to resolution limitations and
algorithmic errors. Additionally, the discrete time operation of
imaging systems and the unobserved motion of the microrobot
between two successive samples further contribute to localiza-
tion uncertainty. While the algorithmic precision and accuracy
can be calculated in controlled and simulated scenarios, their
implications and the effect of position discrepancy between
successive samplings on electromagnetic force generation has
not been previously studied.

Electromagnetic control is a force-control approach, and
to estimate the force uncertainty that is introduced due to
the unobserved motion of the microrobot and localization
inaccuracies, the force-actuation matrix of (5) can be used.
Then, uncertainty in the microrobot’s position can be related
to uncertainty in the exerted electromagnetic force.

For a given permanent magnetic microrobot, the magnetic
moment ~M has a fixed magnitude and is parallel to the
electromagnetic field ~B. Thus, we examine the matrix:

AF ( ~M, ~P ) =

 ~MTBx(~P )
~MTBy(~P )
~MTBz(~P )

 = AF (I, ~P ) (7)

where ~B has been dropped from (5), as its magnitude and
orientation is directly related to the currents.

By studying the singular values of AF (I, ~P ) for a rep-
resentative set of currents in I (I ∈ I) over a predefined
dense point grid P (~P ∈ P) that is based on a precalculated
localization inaccuracy (refer to Sec. II-D), an estimate of the
force uncertainty is obtained. In effect, we are seeking the
∞-norm of the set of relative changes in singular values:

U =

{
‖λi{AF (~I, ~Pj)} − λi{AF (~I, ~Pk)}‖

‖λi{AF (~I, ~Pj)}‖
1

‖~Pj − ~Pk‖

}
(8)

where λi(AF ), i ∈ {1, 2, 3} are the singular values of AF ,
~Pj ∈ P is the point in the discretized space that is under exam-
ination, and ~Pk ∈ N (~Pj) are the direct horizontal, vertical and
diagonal neighbors of ~Pj in grid P . For each set of currents I ,
the denominator in (8) is the expected “force” amplification at
point ~Pj (the actual microrobot position), while the numerator
is the error in amplification if the microrobot is localized in ~Pk.
Their ratio, normalized by the distance between the two points,
is the amplification error due to localization inaccuracies. The
∞-norm of U is used as the uncertainty in force across the
entire workspace.

C. Electromagnetic Steering System Dynamics
Robust controller design requires the identification and mod-

eling of the dynamic components in the electromagnetic sys-
tem. An electromagnetic array will experience non-negligible
transitional phase due to the inductance of each coil. This can
be modeled as a low-pass filter:

1

1 + τinds
=

1

1 + L
Rs

(9)

where τind [s] is the time constant, L [H] is the self-inductance,
and R [Ω] the resistance of the coil.

The sampling rates need to be considered when operating
at low frame rates. Time delays can be accounted for by using
half of the sampling period as a time delay [21]:

e−τfpss = e−
Tfps
2 s (10)

where Tfps is the image acquisition rate. Complex image
processing for localization could introduce further delays that
would be accounted for as an additional delay block. Most
localization algorithms for robotics, however, are developed
to operate in real-time, and, hence, little effect in the system’s
behavior is expected.

The controller inputs (e.g., the monitoring and setting of
currents, the transmission of the position) are transmitted
and processed with delays lower than 1 ms. Such delays
would insert a phase distortion of 0.06 rad (3.4◦) around the
operational frequency of 10 Hz, which is the frequency of
interest in this work. This phase distortion is very low and
can be neglected.

The time delays can be approximated by first-order Padé
functions [22], i.e., ratios of first-order polynomials:

e−τs '
1− τ

2 s

1 + τ
2 s

(11)

Padé approximants have unit magnitude and are phase shifted.
They allow the consideration of the continuous equivalent of
a discrete system and the synthesis of a continuous controller
that is subsequently discretized.

D. Experimental Force Uncertainties and Dynamics

The OctoMag (see Fig. 1 for setup and coordinate frame),
an array of 8 electromagnets arranged in a hemispherical
configuration, is designed for intraocular interventions with
microrobots. The current version can accommodate a small
animal. The soft-magnetic cores of the electromagnets are of
a CoFe alloy, which can be considered a near-ideal material.
Thus, the electromagnetic fields and gradients generated by
each electromagnet superimpose. The OctoMag allows the
generation of 30 mT field, with a gradient of 1.5 T/m at
the center of the workspace. The manipulation workspace is
10× 10× 10 mm3, which covers the posterior eye segment.

The OctoMag’s dynamic parameter values were obtained
from [15]. Our goal is to steer microrobots with a low
image acquisition rate. Thus, a sampling rate of 7.5 Hz was
chosen, which is lower than the data acquisition rate during
fluoroscopy-based surgeries (20 − 30 fps) and the frame rate
in MRI guidance of microrobots (24 fps in [7], continuous
knowledge of position in [20]). The time constant due to
inductance and the time delay due to the sampling rate are
calculated as:

τind =
L

R
=

94× 10−3

1.3
= 72.3× 10−3 sec (12)

τfps =
1

2× fps
=

1

2× 7.5
= 0.0667 sec (13)

To evaluate the uncertainties in force generation, we assume
a tracking imprecision on the order of 0.5 mm, as calculated
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Fig. 2. Scheme for the uncertain linear system used for controller synthesis
and analysis. Wd shapes the input disturbance, Wn the measurement noise,
and Wc and Wp the performance requirements on control effort, and output
error, respectively. The gradient-colored box denotes calculated uncertainty.
The “actuator” block encapsulates the inductance filtering.

in [16] for intraocular applications. Additionally, [15] and [16]
report a worst-case microrobot drift on the order of 0.5 mm/s in
the absence of accurate localization. During our experimental
work, we achieved several millimeters per second velocities.

Assuming a microrobot speed on the order of 4 mm/s, and
including the tracking inaccuracies and potential drift, the
position discrepancy between each sampling cycle (1/7.5 s)
will be on the order of 1 mm. Thus, the normalizing factor of
distance between points of the grid P used in (8) is chosen to
be 1 mm, which leads to a force uncertainty:

‖U‖∞ = δnorm = 0.5 (50%) (14)

this means that, for a 1 mm error in position, the worst-case
force uncertainty across the entire workspace is 0.5.

The layout for the uncertain linear model corresponding to
the electromagnetic control system is depicted in Fig. 2. The
block ∆ represents a full 3×3 block of uncertainties with∞-
norm bounded by δnorm, which is calculated in (14). In Fig. 2
“reference” denotes the desired position of the microrobot.

III. ORIENTATION-DEPENDENT MICROROBOT DYNAMICS

In MRI actuated systems the electromagnetic field cannot
be used to re-orient magnetic microrobots, and, as a result,
spherical magnetic devices are usually considered [7], [20].
Their drag forces are unaffected by orientation. To manipu-
late arbitrarily shaped microrobots, however, the orientation-
dependent microrobot dynamics need to be examined:

~Fmag + ~Fdrag + ~Fweight = m~a = m~̈P (15)

where ~Fmag [N] is the magnetic force, ~Fdrag [N] is the drag
force, ~Fweight [N] is the force due to the apparent weight of the
microrobot (i.e., includes gravity force and buoyancy force),
and m [kg] and ~a [m/s2] are the mass and the acceleration of
the microrobot, respectively, and ~P [m] is its position.

We are operating at low-Reynolds regimes (on the order of
Re = 10−3 − 10−2) and, thus, the drag is linear:

~Fdrag = −Dw~v (16)

where Dw is a matrix of drag coefficients and ~v is the relative
velocity between the body and the fluid. Dw depends on the
geometrical properties of the body and the coordinate frame
in which the drag force is computed (w denotes the world
coordinate frame).

The intrinsic matrix Db, on the other hand, depends only on
the properties of the microrobot. The matrix can be computa-
tionally estimated using a CAD model of the device, knowl-
edge of the fluid’s parameters, and the method of regularized
Stocklets [23]. Then, for different microrobot orientations:

~Fdrag = −Dw~v = −Rw
b D

bRw
b
T~v = −Rw

b D
b
0R

w
b
Tµf~v (17)

where Rw
b denotes body-frame to world-frame rotation, Db

0

is the intrinsic matrix for unit viscosity and µf [m2/s] the
viscosity of the fluid. The numerical calculation of the drag-
force coefficients for complex microrobot shapes is an open
research problem, and, in the general case, leads to non-linear
orientation/configuration dependent fluid dynamic equations
even at low Reynolds numbers. The methodology we sub-
sequently introduce uses a numerically estimated Db matrix
and force uncertainties to create a linear dynamics system that
additionally accounts for numerical estimation errors.

A. Estimation of Uncertainties

We will examine a 1 mm long, 0.5 mm diameter cylindrical
NdFeB permanent magnetic microrobot. Its drag-matrix Db

0

was estimated using the CAD-based method [23]:

Db
0 =

 6.57 0 0
0 7.03 0
0 0 7.03

× 10−3 (18)

The matrix Db
0 has the drag coefficients of each principal

direction of the cylinder. Contrary to a spherical microrobot,
which would have identical coefficients along the diagonal, the
drag-force acting on the cylinder is not necessarily parallel to
its velocity. Fig. 3 shows the drag coefficient and drag-force
orientation for different orientations of the microrobot.

With the goal of having a linear uncertain system for the
microrobot dynamics, we use a sphere model for the drag force
and account for the inconsistency between the actual drag and
the simplification through an uncertainty margin. Since many
microrobots of interest have complex shapes, the uncertainty
margin can be made large enough to cover uncertainty in the
drag coefficients.

Fig. 3 and matrix Db
0 show that the drag coefficient for

the cylindrical microrobot ranges from 6.57 × 10−3 Ns/m to
7.03× 10−3 Ns/m. An “equivalent” sphere has a diameter:

d =
6.57× 10−3 + 7.03× 10−3

2× 3π
=

6.8

3π
× 10−3 m (19)

which is found by averaging the extreme coefficients of Db
0.

To cover the range of the cylinder’s drag coefficient, i.e.,
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drag force orientation. Figures are for a microrobot moving along the x-axis.

TABLE I
DATA OF THE CYLINDRICAL NDFEB MICROROBOT.

Volume Density Weight Magnetic moment
0.196 mm3 7450 kg/m3 14.4 µN 0.00027 Am2

the discrepancy between the calculated coefficient and the
maximum value of Db

0, a relative uncertainty term is inserted:

δdrag ≥
(7.03− 6.8)× 10−3

6.8× 10−3
' 0.034 (20)

A higher value of δdrag = 0.05 (5%) was chosen to account
for drag-coefficient misestimation due to numerical errors.
Superimposing this relative uncertainty on the drag coefficient
of the “equivalent” sphere covers all possible drag coefficients
and orientations of the cylindrical microrobot. The orientation
uncertainty covers angles on a sphere around the direction of
the motion of the microrobot (Fig. 3).

For the spherical microrobot of diameter d moving in a
fluid with viscosity µf at a velocity ~v, Fdrag = 3πµfd~v. The
state-space model is:

~̇x =

[
03 I3
03 − 1

m3πµfdI3

]
~x+

[
03
1
mI3

]
(Fmag + Fweight)

(21)
where ~x = [~PT , ~̇PT ]T is the state vector. The schematic
of the dynamics is shown in Fig. 2, where ∆ represents
uncertainties for which ‖∆‖∞ = δdrag, triangular blocks
signify multiplications, D = 3πdI3µf is the drag coefficient
matrix, and m is the microrobot mass which is considered
uncertain within ±10% of its nominal 1.46 × 10−6 kg value.
The high uncertainty in the mass stems from inaccuracy in the
measurement of the weight of the microrobot. All microrobot
data are given in Table I. The magnetic moment was estimated
based on the magnetization measured in [20] for a NdFeB
sphere of the same manufacturer.

IV. PERFORMANCE MEASURES

The complete system, including the delay blocks, the mi-
crorobot dynamics block and the uncertainties, is shown in
Fig. 2. Letters above each block denote the input and output
units, with 1 signifying a normalized value. Each grayed
block signifies a shaping function. More specifically, these

blocks cover four discrete aspects of the system: (1) final
controller (position) error, (2) control weight, (3) model noise,
(4) measurement noise. They can be classified as performance
measures for the controller that must be satisfied despite the
uncertainties, and disturbances.

These blocks/functions “shape” the frequency behavior of
their input variable and perform magnitude normalization.
Here, the normalization value was chosen to be 10−3, in order
to represent [mm] in distance, [mN] in force, etc.

A. Performance measures

As a first step to controller synthesis, we established perfor-
mance measures that need to be respected by the controllers
within the uncertainty margins. Blocks Wc and Wp in Fig. 2
represent these performance measures.

Block Wc represents the weight on control effort. Based on
[15], the maximum force that the system can apply on the
microrobot under different configurations is on the order of
100µN. Wc = 10 leads to the desired normalization order
while limiting the control effort:

Wc = 10 (22)

Block Wp is the weight on final position error. The require-
ment is to have a maximum steady state error of 100µm. Thus,
the static gain of Wp is 10. The cut-off frequency is chosen to
be 0.1 rad/s, leading to a small bandwidth. This is necessary
for obtaining an achievable set of requirements:

Wp = 10
1 + 10−1s

1 + 10s
(23)

B. Disturbances model

The known characteristics of the input disturbances are
represented by block Wd in Fig. 2. Such disturbances include
uncertainty in weight or fluid viscosity.

In Fig. 2, block Wd represents known characteristics of the
input disturbances, e.g., uncertainty in weight or fluid viscos-
ity. These were selected to be in the range of [µN], since this is
the order of magnitude of the forces acting on the microrobot.
Wd has a static gain of 0.01 (0.01 × 1 mN = 10µN) as
the weight of an unknown force. The shaping function was
implemented as a low-pass filter with a cut-off frequency of
102 rad/sec:

Wd = 0.01
1 + 10−4s

1 + 10−2s
(24)

Block Wn is the weight for noise on output measure-
ments. It represents localization errors due to tracking and
infrastructure. Based on existing tracking algorithms devel-
oped for intraocular localization [16], the error has a mean
value µ = 300µm and a standard deviation σ = 200µm.
Wn is implemented as a high-pass function with a cut-off
frequency at 102 rad/sec and a high-frequency gain of 0.3,
which accounts for uncertainties on the order of 300µm:

Wn = 0.3
1 + s

102 + s
(25)
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TABLE II
PID CONTROLLER PERFORMANCE

Nominal Simulation
Metric x y z

95% Rise time [s] 0.58 2.05 2.09 3.6
Overshoot [%] 7.2 2 1.5 0

10% Settling time [s] 0.54 1.81 1.84 3.27
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Fig. 4. Step response for the synthesized PID controller at 7.5Hz image rate.
The dashed line corresponds to the reference input, and the ◦ to the sampled
measurements. Since the orientation of the microrobot negligibly affects the
simulation results, we only show the results for the x-orientation.

V. CONTROLLERS

A simple PID and an H∞ controller were synthesized and
evaluated using MatlabTM and SimulinkTM.

A. PID Controller

1) Synthesis: Using a SISO version of the system without
uncertainties (nominal system), i.e., a serial connection of (a) a
delay due to discretization (11), (b) a low-pass filter due to the
actuation (9), and (c) a single-dimensional version of (21), a
PID controller was synthesized. On the nominal SISO system,
a 60◦ phase margin and 3 rad/s bandwidth were achieved.

2) Analysis and Simulation: Fig. 4 shows the simulated
three-dimensional step response for a MIMO version of the
PID controller. The MIMO version consists of a diagonal 3x3
controller, where each non-zero entry corresponds to the SISO
controller synthesized previously. The response characteristics
of the SISO and MIMO systems are shown in Table II.

Using robustness analysis (µ-analysis tool in MatlabTM),
however, the system was shown to be robustly stable up to
δnorm = 0.25. This margin is less than what is required by the
localization and force uncertainties (see Sec. II-B), and, for
this reason, robust H∞ control was explored.

B. H∞ Controller

1) Synthesis: H∞ control is used to suppress the effect
of uncertainties by minimizing the ∞−norm of the system’s
closed-loop transfer function. To avoid the theoretical and
numerical complexity of the optimal solution to the stated
minimization problem, the sub-optimalH∞ problem is solved:

Given γ > 0 find all controllers: ‖Fzw(P,K)‖∞ < γ (26)

where P is the plant, K is the controller, and Fzw(P,K) is
the system’s transfer function represented in Linear Fractional
Transformation (LFT) form [24]. We use w to represent
exogenous inputs that cannot be controlled, e.g. measurement

u y

zw
P

K

Fig. 5. Scheme of the high-level system interconnection, which can be
represented in Linear Fractional Transformation form: w and u are exogenous
and controllable inputs, and z and y are controlled and measured outputs of
the plant P ; K is the controller.

TABLE III
H∞ CONTROLLER PERFORMANCE IN SIMULATIONS

Simulation
Metric x y z

95% Rise time [s] 0.57 0.65 0.53
Overshoot [%] 26.8 24.5 30.6

10% Settling time [s] 2.77 2.77 2.77

noise and disturbances; u to represent controllable inputs;
z to indicate controlled inputs that need to be minimized
and variables used to set performance objectives. Finally, y
represents the measured outputs. A visual representation of
the high-level interconnection can be seen in Fig. 5. The LFT
is the transfer function between w and z, considering a closed
loop around K, which has inputs y and outputs u.

For a system that contains uncertainties and can be repre-
sented in LFT with a matrix ∆, the Robust Stability Theorem
states that a sufficient condition for stability in a “robust to
uncertainty” sense is:

‖∆‖∞ ≤
1

γ
(27)

In this paper, anH∞ controller is synthesized using the DK-
iteration method. A controller K is obtained for the maximum
δnorm such that:

sup
ω∈R

µ∆(F(P,K)) ≤ 1

δnorm
=

1

‖∆‖∞
(28)

where ω represents the frequency, µ is the structured singular
value of F(P,K), and ∆ is the set of the possible perturba-
tions in the system. The controller was synthesized using the
robust control DK-iteration tools.

2) Analysis and Simulation: The controller was analyzed
with µ-analysis tools. A model-order reduction was performed
[24], keeping only the states with Hankel singular values
greater than 1/1000 of the maximum value. The reduced
controller was found robustly stable and exhibited robust
performance for δnorm = 0.5, which was a margin calculated in
Sec. II-B. This value corresponds to one-body-length localiza-
tion uncertainty between two successive image acquisitions.

The response of the system with the implemented control
law for step inputs in three dimensions is shown in Fig. 6. The
characteristics of the response are summarized in Table III.

VI. EXPERIMENTS

Experiments were performed in the OctoMag using a
controller implemented in C++. The image acquisition rate
was 7.5 Hz. Due to the asynchronous communication of our
software system, the controller was selected to operate at 15 Hz
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Fig. 6. Step response for the synthesized H∞ controller. The dashed line
corresponds to the reference input, and the ◦ to the sampled measurements.
The orientation of the microrobot negligibly affects the simulation results,
and, hence, we only show the results for the x-orientation.

TABLE IV
H∞ CONTROLLER PERFORMANCE IN STEP EXPERIMENTS

Step experiment
x align z align

Metric x y z x y z
95% Rise time [s] 1.6 1.09 0.71 0.93 0.8 0.5

Overshoot [%] 79.8 108.5 62 56.2 65 95.2
10% Settling time [s] 6.55 7.64 8.3 3.22 3.09 2.17
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Fig. 7. Experimental results for the NdFeB microrobot moving in 350mm2/s
viscosity oil. (a) Step response for a microdevice aligned along the x-axis,
and (b) Step response for a microdevice aligned along the z-axis.

to satisfy the Nyquist criterion. The permanent magnetic
microrobot moved in a 350 mm2/s viscosity oil with density of
0.97 g/cm3 [Wacker R© AK350], similar to oils which vitreo-
retinal surgeons may use as a vitreous humor replacements.
The microrobot’s position was estimated using a pair of
calibrated orthogonal microscopes. The device was tracked
using background subtraction and morphological filtering, and,
then, its 3D position in the workspace was estimated via
triangulation. Noise was added to match the values used in
the simulations. A position was considered to be “reached”
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Fig. 8. Microrobot moving along a spiral trajectory, while oriented to the
start of the trajectory. (a), (c) Top view, (b), (d) Side view. Images (c) and (d)
are composite images depicting a single microrobot at different time frames.

when the microrobot was within 100µm from it, as was
implemented in the requirements.

The step response for two different orientations was per-
formed. The microrobot was commanded to reach point
(−3.0,−2.0,−1.0) mm [Fig. 7(a), (b)]. It can be seen that the
controller succeeded in steering the microrobot according to
the specified requirements accounting for unobserved motion
due to the low frame rates, localization uncertainties due to
tracking, and uncertainties due to modeling inaccuracies. The
overshoot, rise time and settling time values can be found in
Table IV, and, as can be seen, they are in overall agreement
with the simulations.

To investigate the controller’s behavior in a more complex
navigation example, the microrobot was commanded to move
along a spiral trajectory while orientated towards a fixed
point. This trajectory and the corresponding microrobot path
can be seen in Fig. 8. As before, noise was added to the
localization algorithm. The errors between the trajectory and
the microrobot’s path can be measured from the plotted figures
using functionality provided by MatlabTM. The maximum error
along the x-coordinate is approximately 320µm, along the y-
coordinate 270µm, and along the z-coordinate 490µm. These
errors are on the order of the errors introduced in localization.
This is the first controller to navigate permanent magnetic
microrobots in low viscosity oil and low frame rate using an
electromagnetic system with ferrous cores.

VII. CONCLUSIONS AND DISCUSSION

In this paper, we discussed a methodology to account for
uncertainty in the force generated by a new class of elec-
tromagnetic control systems that allow the generation of high
electromagnetic field gradients to guide magnetic microrobots.
Additionally, we introduced a method to incorporate uncertain
but linear fluid dynamics for complex microrobot shapes.
We synthesized two types of controllers, a traditional PID
controller and an H∞ controller, and compared their behavior
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with respect to uncertainties and established performance
measures. Subsequently, we introduced additional realistic
system disturbances and demonstrated the robust behavior
of the H∞ controller both in simulations and experiments.
The image sampling rate was one of the lowest reported in
electromagnetic microrobot control, and it was shown that
with robust controller synthesis in vivo microrobot navigation
with techniques such as fluoroscopy can be considered while
avoiding damaging radiation doses to the patient.

The methods introduced in this paper constitute one of the
first efforts to estimate force uncertainties in a complex electro-
magnetic control system. The simplification of the microrobot
dynamics is generalizable and can be used for microrobots
whose fluid dynamics are not well understood.

This framework can be further augmented depending on the
application. Even though only free floating microdevices were
considered, adhesion forces between the microrobot and the
physiological surface may be present. Additionally, if fluidic
motion is present, the drag force must be updated. In smaller
scales, electrostatic forces and van der Waals forces may
need consideration [20]. These forces can be incorporated in
the mathematical formulation and can be linearized and tied
to estimated uncertainties following the proposed drag force
approach.

This paper considered microrobots in low Reynolds regimes,
which allowed for a simplification of the fluidic drag forces. To
apply the mathematical methodology for larger magnetically-
guided devices, such as capsule endoscopes, more complex
non-linear modelling that is outside the scope of this paper
is required. The electromagnetic force uncertainty estimation,
however, would be directly applicable.

To navigate microrobots in fluids of lower viscosity, for
example, cerebrospinal fluid, it is important to understand
the trade-offs between sampling rate and viscosity. A higher
viscosity relaxes the necessity for high frame rates, which
are needed to account for unobserved microrobot motions in
fluids with low damping. Thus, the proposed methodologies
for uncertainty estimation can still be applied, but the sampling
rates must be adjusted according to the application.

Finally, even though MRI-based control shares similar
principles with the investigated control methodologies, direct
translation of the proposed method to that domain is not pos-
sible. Such translation would require accounting for the slew
rate of the MRI system and the effect that imaging sequences
have on the actuating microrobots. The proposed drag force
uncertainty estimation, however, is directly applicable.
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