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Chapter 1     General Introduction 
 
1.1    Research Background 
 
1.1.1    Climate change and carbon cycle
 
The global surface temperature has risen over the past century, both on land and over 
the oceans. The growth rate of land surface temperature (LST) is larger than that of sea 
surface temperature (SST), particular after 1979 when LST increased about twice as fast 
as the surface temperature of the ocean (Trenberth et al., 2007). Greenhouse gases are 
generally considered as the main cause of the observed global warming through 
increased radiative forcing.  
 
Several studies have demonstrated that climate may be very sensitive to the 
atmospheric CO2 concentration, both in the past and at present (Pagani et al., 2010; 
Schneider and Schneider, 2010). The atmospheric carbon dioxide (CO2) concentration 
was around 260-280 ppm (parts per million by volume) from the end of the last ice age 
about 10,000 years ago until the beginning of the industrial revolution (Indermuhle et al., 
1999). It has increased to about 400 ppm nowadays (Dlugokencky and Tans, 2013). 
Based on ice core records, current atmospheric CO2 concentrations are at their highest 
level since at least the 800 kyr (Luthi et al.,2008; Sigman et al., 2010). Over that period, 
the atmospheric CO2 concentration typically varied within a range between 180 and 
280ppm with a well-known periodicity associated with the Pleistocene glacial cycles. 
 
The concentration of atmospheric CO2 reflects the balance between carbon emissions 
(sources) and carbon sinks. It is clear that the growth of atmospheric CO2 during the 
industrial Era is caused by human activities, primarily from fossil fuel burning and land 
use change (LUC). Between 1751 and 2009, human activities have emitted about 360 Pg 
C (petagram of carbon) into atmosphere from fossil fuel combustion (Boden et al., 2012). 
Although the CO2 emissions from fossil fuel increased monotonously at decadal time 
scales, recent estimates (Friedlingstein et al., 2010) suggest lower CO2 emissions from 
LUC during the last decade (1.1±0.7 Pg C yr-1) than during the 1990s (1.5±0.7 Pg C yr-1). 
 
Almost half of the anthropogenic carbon has been taken up by ocean and land sinks (Le 
Quéré et al., 2009), maintaining on average a stable airborne fraction (the percentage of 
carbon from the anthropogenic emissions that remains in the atmosphere) of about 45%. 
However, using 11 C4MIP models, Friedlingstein et al. (2006) predicted a decline of 
carbon uptake by carbon sinks in the future. The behaviour of the airborne fraction is still 
subject to controversy. Both Canadell et al. (2007) and Le Quéré et al. (2009) suggest 
that the airborne fraction has increased during the past 50 years, indicating a potential 
saturation of the carbon sinks. However, Knorr (2009) and Ballantyne et al. (2012) find 
that global carbon sinks have not significantly decreased their sink ability. 
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Due to the uptake of anthropogenic CO2 from the atmosphere, the pH value of the ocean 
has decreased significantly (Caldeira and Wickett, 2003), known as ocean acidification. 
The rate of ocean CO2 absorption is mainly determined by the CO2 partial pressure (pCO2) 
difference between the atmosphere and the sea surface and the wind speed. A faster 
pCO2 increase in the ocean than in the atmosphere will slow the CO2 flux into the ocean 
(Lenton et al., 2009; Takahashi et al., 2009). Several studies have demonstrated weaker 
ocean sinks compared with carbon emissions (Le Quéré et al., 2013; McKinley et al., 
2011; Schuster and Watson, 2007). 
 
Sinks on land probably exhibit a larger potential to keep moderating the growth rate of 
atmospheric CO2 concentration (Le Quéré et al., 2013; Sarmiento et al., 2010). For 
instance, Northern forests are suggested to be a large carbon sink (Myneni et al., 2001). 
A recent study demonstrated a large and persistent carbon sink of 2.4±0.4 Pg C yr-1 in the 
global forests during 1990-2007 (Pan et al.,2011). Land carbon sinks also tend to exhibit 
much more interannual variation than ocean sinks (Le Quéré et al., 2013; Sarmiento et 
al., 2010). 
 
1.1.2    Terrestrial NPP and GPP estimates 
 
Gross primary production (GPP) is the production of organic compounds, mainly through 
photosynthesis, directly fixing atmospheric CO2 into ecosystems. GPP is the largest flux in 
the terrestrial biological carbon cycle. Net primary production (NPP) equals GPP minus 
autotrophic respiration (Ra). Both GPP and NPP are key input variables required to obtain 
any other flux in the terrestrial carbon cycle. Therefore, improving GPP and NPP 
estimates is very important to advance the understanding of all components of the 
terrestrial carbon cycle. 
 
Although the knowledge of photosynthetic processes at the levels of plant cell, leaf and 
canopy have been well established, the estimates of large-scale GPP or NPP still have 
substantial uncertainties. Due to spatial diversity of global ecosystems, there are no 
direct global measurements of GPP and NPP data available. Recently, Beer et al. (2010) 
provided an observationally constrained estimate of global GPP of 123±8 Pg C yr-1 using 
eddy covariance flux data and diagnostic models, which is considered somewhat as a 
standard value (e.g. Bonan et al., 2011; Chen et al., 2012). However, this value was 
questioned by Welp et al. (2011) who suggested a much larger 150-175 Pg C yr-1 of 
global GPP based on the isotope ratios of oxygen (18O/16O) of atmospheric CO2. 
Therefore, there are still large uncertainties in GPP and NPP estimates. It should be 
noted that the isotope method of Welp et al. (2011) could only be used to calculate 
global average values. And due to the limitations of the number of flux towers and their 
data record length, high-resolution estimates and long term observational data are still 
unavailable. 
 
Traditionally, there are two widely used approaches to estimate GPP and NPP from site 
level to global scale. The light use efficiency (LUE) approach is an empirical method, 
originally developed by Monteith (Monteith,1972; Monteith and Moss, 1977). The LUE 
approach assumes that the growth in plant biomass is directly proportional to the 
amount of absorbed solar radiation. Another method is a physically based way to 



 

estimate the carboxylation rate in the reactions of photosynthesis, i.e. the plants absorb 
CO2 in the atmosphere by combining CO2 with a five-carbon sugar (RuBP) or with the 
three-carbon molecule phosphoenolpyruvate (PEP; Collatz et al., 1991; Collatz et al., 
1992). 
 
In practice, the LUE approach is easier to apply, especially when using remotely sensed 
vegetation indices as input in the satellite era. During the early stages, the LUE method 
was applied in field studies to evaluate the relationship between radiation and changes 
in dry matter (Cannell et al., 1987) which could be linked to NPP. Numerous field studies 
have been applied by measuring above ground dry matter or total dry matter (including 
roots) and canopy intercepted (or absorbed) solar radiation. Then the light use efficiency 
was calculated as the linear ratio between light energy and dry matter. The light use 
efficiency has been investigated across various plant types but with a strong focus on 
crops (e.g. Sinclair and Horie, 1989; Kiniry et al., 1989).  
 
In-situ spectrometer data demonstrated the connection between vegetation indices and 
vegetation build-up (Tucker, 1979). NDVI (Normalized Difference Vegetation Index) was 
found to be related to photosynthesis when plants are not subject to environmental 
stress (Sellers, 1985). The relationship between vegetation index and plant absorbed 
photosynthetically active radiation (PAR) was well demonstrated by Asrar et al., (1984). 
Therefore, combined with the work of Monteith (1972) and Monteith and Moss (1977), 
the connections among biomass, PAR and vegetation index were established. As a logical 
follow-up, models combining remotely sensed vegetation index and the LUE method 
were created to estimate large scale NPP estimates (Field et al., 1995; Knorr and 
Heimann, 1995; Potter et al., 1993; Ruimy et al., 1994). Model performance could be 
evaluated by comparing modelled NPP and that based on measurements (Potter et al., 
2003). Later, the LUE approach was extended to estimate GPP, the direct outcome of 
plant photosynthesis using sunlight because the LUE method is more likely to be 
fundamentally related to GPP (Landsberg et al., 1997; Prince and Goward, 1995; Ruimy 
et al., 1996; Running et al., 2000). Roughly, half of the GPP is used for plant maintenance 
processes, generally referred to as autotrophic respiration (Ra), and the remainder is 
available for plant growth as NPP. Therefore, using the LUE method to estimate NPP has 
a default assumption that Ra is proportional to GPP. The LUE method is still under 
development but is one of the most efficient methods to estimate GPP and NPP from 
site level to large scales and is used in several modelling frameworks (Goerner et al., 
2011; van der Werf et al., 2010; Xiao et al., 2005; Yuan et al., 2010; Zhao and Running, 
2010). 
 
The LUE method is an empirical approach, and therefore, models based on LUE require a 
number of biome or ecosystem specific parameters to specify the diversity of the global 
ecosystems as detailed as possible. For this, a look-up table is created with required 
parameters. The key parameter of the LUE approach, maximum light use efficiency ( *), 
is widely evaluated to improve model performance. For example, Zhao and Running 
(2010) modified the * look-up table of MODIS GPP products compared to a previous 
version (Heinsch et al., 2003). The data sets used to constrain * are increasing in 
number and length, mostly from flux towers using eddy covariance methods (Baldocchi 
et al., 2001; Reichstein et al., 2005), and several studies have provided updated 
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constraints (Zhang et al., 2008; Connolly et al., 2009). On the other hand, once the 
vegetation index is updated or changed, * also has to be re-evaluated to fit field 
measurements. For example, Potter et al., (2007) used enhanced vegetation index (EVI) 
in the CASA model instead of fraction of photosynthetically active radiation (fPAR) to 
estimate NPP estimations, changing * from 0.39 g C MJ-1 with fPAR to 0.55 g C MJ-1 with 
MODIS EVI.  
 
One particular issue in LUE model development is the difference between * as used in 
models and that constrained by field measurements (e.g. Lobell et al., 2002). Usually, * 
values based on field measurements in croplands are much higher than those used in 
models, sometimes more than 2-4 times. In the early stage, many  (actual light use 
efficiency involving environmental stresses) values were estimated by measuring plant 
dry matter at site level. More and more data have become available, especially from flux 
towers using eddy covariance methods which offer reliable GPP records with known 
uncertainties (Baldocchi et al., 2001; Reichstein et al., 2005). Hence, efforts are needed 
to re-evaluate * using these new records to improve the LUE model performance. 
 
1.1.3    The impact of water availability on the terrestrial carbon cycle
 
The response of vegetation to climate change is crucial in understanding ecosystem 
dynamics and in quantifying terrestrial carbon cycle behaviour. Water availability, solar 
radiation and temperature are the three main constraints that determine the spatial 
distribution of ecosystems and plant growth (Churkina and Running, 1998; Heimann and 
Reichstein, 2008; Nemani et al., 2003). Due to the lengthening of the growing season, 
plant growth has already been observed to increase in high latitudes (Myneni et al., 
1997). Based on flux tower measurements in Canada, Chen et al. (2006) found that 
boreal ecosystems absorbed more carbon in warmer years. Warmer springs will tend to 
lead to more CO2 uptake by the northern hemisphere ecosystems but this enhancement 
could be cancelled by drier summers (Angert et al., 2005). In addition, autumn warming 
could also lead to net CO2 losses in northern ecosystems (Piao et al., 2008; Parmentier et 
al., 2011). Both from theoretical and observational points of view, increased diffuse 
radiation such as arising from atmospheric aerosols will increase CO2 uptake in forest 
and croplands (Niyogi et al. 2004). Mercado et al. (2009) found that the fertilization 
effects of enhanced diffuse radiation on vegetation had the potential to increase the 
global land carbon sink significantly. 
 
Water availability is a primary constraint compared to radiation and temperature 
(Churkina and Running, 1998; Heimann and Reichstein, 2008; Nemani et al., 2003). The 
availability of water influences more than half of the primary productivity of global 
terrestrial ecosystems according to Heimann and Reichstein (2008). During the last 
decades, several studies have demonstrated that extreme droughts may impact 
terrestrial productivity in a significant way and reduce the sink strength at (sub) 
continental scale (Ciais et al., 2005; Reichstein et al., 2007a, 2013; van der Molen et al., 
2011). Several recent droughts, such as those in Australia (2002-2009), Europe (2003) 
and Amazonia (2005, 2010) had measurable impacts on plant production (Gobron et al., 
2010; Zhao and Running, 2010). Moreover, droughts can also increase deforestation and 
associated fire activities (van der Werf et al., 2004). Therefore, drought may have caused 



 

considerable decreases in the carbon uptake globally (Dolman et al., 2010), which is 
further emphasized by Reichstein et al. (2013). Climate extremes, especially water 
dynamics related to drought and floods, could reduce ecosystem carbon stocks and 
cancel the expected enhancements of terrestrial ecosystem carbon. 
 
Soil moisture is the key parameter for plant productivity and is directly related to soil 
water dynamics. Unfortunately, the precise effects of water availability on the terrestrial 
carbon cycle are still not well understood. Moreover, the results of drought events 
mentioned above were often obtained without adequate observations of soil moisture. 
Model based soil moisture and several drought indices that are in different ways related 
to actual soil moisture are often used as proxies (Hirschi et al., 2011; Lotsch et al., 2003; 
Nicholson et al., 1990). Observed soil moisture is arguably the best representation of the 
actual amount of water contained in the soil, and is key to understanding the 
climate-soil-vegetation system both spatially and temporally (Porporato and 
Rodriguez-Iturbe, 2002; Rodriguez-Iturbe, 2000). Therefore, precipitation and drought 
indices are still the main tools to evaluate water availability constraints. This in spite of 
the fact that remotely sensed soil moistures are now being developed offering 
large-scale and continuous observational records of the water status of the land surface 
globally (de Jeu et al., 2008; Dolman and de Jeu, 2010; Liu et al., 2011, 2012). Therefore, 
studies to improve the knowledge of water-related vegetation dynamics are applied 
using remote sensed soil moisture data. 
 
1.2    Objectives and outline of this thesis 
 
1.2.1    Cropland GPP and NPP estimations 
 
As mentioned previously, existing studies of global GPP and NPP still show large 
disagreements (Beer et al., 2010; Koffi et al., 2012; Ryu et al., 2011; Zhao and Running, 
2010), especially over croplands. For instance, Beer et al. (2010) reported a global 
cropland GPP of 14.8 Pg C yr-1 using flux tower records and several diagnostic models. In 
contrast, Saugier et al. (2001) estimated this number to be 8.2 Pg C yr-1. 
 
To improve GPP and NPP estimates using LUE methods requires both well evaluated 
plant type specific look-up tables of * and more sophisticated model structures. 
Chapters 2-3 mainly focus on estimating GPP and NPP of global croplands using the LUE 
approach. * values of crop types vary over a larger range compared with other 
vegetation classes. There were many field-based results available across different crop 
types because plant dry matter and solar radiation are relatively easy to measure in 
agricultural fields. Observation techniques are continuously improving, which bring more 
and more new observational records. At field level, flux towers offer net ecosystem 
exchange (NEE) data from hourly to annual time scales (Baldocchi et al., 2001), which can 
be separated into GPP and the respiration component using techniques developed for 
instance by Lasslop et al. (2010) and Reichstein et al. (2005). In chapter 2 we aim to 
improve the prediction of the maximum light efficiency ( *NPP) using eddy flux 
measurements in North America and Europe and compare the *NPP estimates with 
previously reported values. 
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Based on observational records, * varies widely across crop types. However, the * 
used in LUE models is generally applicable for one major vegetation class only (Goerner 
et al., 2011; Potter et al., 1993; Xiao et al., 2005; Yuan et al., 2010; Zhao and Running, 
2010). As a result, usually the same * is used for all types of croplands. Previous studies 
have also highlighted that *GPP or *NPP based on site measurements are much higher 
than that used in models for croplands. The causalities behind this discrepancy are 
unresolved. Because LUE is an empirical approach, using crop type specific data rather 
than one uniform value in the model may improve current estimates. Based on this 
hypothesis, in chapter 3, we used *GPP estimates based on field measurements directly 
in our improved LUE model, separating global croplands into 26 different types. We 
made two innovations in our model to improve these estimates of global cropland GPP. 
The cropland area distribution data that we used could define the cropland types by 
month and distinguish the growing periods. We also assigned different *GPP values to 
the 26 crop types. However, this requires a much more complex look-up table of *GPP. A 
combination of direct estimates of *GPP using flux tower measurements and converted 

*GPP from previous studies was conducted. The objective of this chapter is to provide a 
more realistic estimate of global cropland GPP than previous studies. 
 
1.2.2    Soil moisture constraints on vegetation 
 
Previous studies have illustrated a clear impact of drought events on plant production 
(Gobron et al., 2010; Zhao and Running, 2010). Drought occurrence and severity are 
likely to increase in the future (Dai, 2013, but see also Sheffield et al., 2012). However, 
the regional details of these increases and their impacts are still not very clear. In 
existing analyses, drought indices are often used as a proxy to study the relationship 
between vegetation dynamics and water availability (Hirschi et al., 2011; Lotsch et al., 
2003; Nicholson et al., 1990). Over ten different drought indices have been developed 
during the twentieth-century (Heim 2002). These drought indices are the most widely 
used proxies to indicate drought intensity and are still being refined. 
 
The study in chapter 4 investigates the relationships between a newly created drought 
index, the standardized precipitation-evapotranspiration index (SPEI, Vicente-Serrano et 
al., 2010), and NDVI. SPEI was designed to combine the advantages of PDSI (Palmer 
Drought Severity Index; Palmer, 1965) and SPI (standardized precipitation index; McKee 
et al., 1993), the two most widely used drought indices. PDSI is more physical by 
considering both precipitation and temperature to model soil water conditions. SPI is 
easy to calculate and could represent integrated effects of precipitation on multiple time 
scales. SPEI is calculated in a similar manner as SPI but also considers temperature 
effects by involving potential evapotranspiration. Our objective of this chapter is to find 
a way to categorize the spatial pattern of the relationships between drought and 
vegetation with a much stronger regional focus compared to earlier global studies. 
 
In-situ observed soil moisture still is arguably the best representation of the actual 
amount of water contained in the soil. However, field measurements of soil moisture 
cannot offer large-scale records efficiently. Remotely sensed soil moisture provides in 
principle long-term and continuous data with global coverage. Considerable effort has 
been put into developing soil moisture based on satellite measurements. Soil moisture in 



 

the surface layer detected from space borne passive and active microwave instruments 
has been shown to provide effective estimates at regional and global scales (de Jeu et al., 
2008; Gao et al., 2006; McCabe et al., 2005; Njoku et al., 2002; Owe et al., 2008; Wagner 
et al., 2003; Wen et al., 2003). There are however some limitations in the application of 
remote sensing based data. For instance, the uncertainties in high-density vegetation 
areas are very large (Parinussa et al., 2011). In contrast, in semi-arid regions data quality 
is much higher. In chapter 5, we analyze the relationships between soil moisture and 
NDVI using three different statistical methods to more comprehensively characterize 
their relationships, offering an observational benchmark for coupled vegetation climate 
models. We chose mainland Australia as target region because the soil moisture data 
there have been well evaluated with ground based measurements (Draper et al., 2009). 
Our objective is to understand and describe the spatial and temporal pattern of these 
soil moisture vegetation relationships in such a typical water-limited region. The 
methods in this paper are useful to extend this kind of study to global scale to achieve 
more general conclusions in the future.  
 
The final chapter provides a synthesis of this thesis, integrating the findings of the work 
in this thesis and other related studies. It also provides recommendations for further 
research. 
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Chapter 2    Evaluation of cropland maximum light use efficiency 

using eddy flux measurements in North America and Europe1

Abstract 

Croplands cover 12% of the ice-free land surface and play an important role in the global 
carbon cycle. Light use efficiency (LUE) models have often been employed to estimate 
the exchange of CO2 between croplands and the atmosphere. A key parameter in these 
models is the maximum light use efficiency ( *NPP), but estimates of *NPP vary by at least 
a factor 2. Here we used 12 agricultural eddy-flux measurement sites in North America 
and Europe to constrain LUE models in general and *NPP in particular. We found that 
LUE models could explain on average about 70% of the variability in net ecosystem 
exchange (NEE) when we increased the *NPP from 0.5 to 0.65-2.0g C per MJ 
Photosynthetic Active Radiation (PAR). Our results imply that croplands are more 
important in the global carbon budget than often thought. In addition, inverse modelling 
approaches that utilize LUE model outputs as a-priori input may have to be revisited in 
areas where croplands are an important contributor to regional carbon fluxes. 
 
2.1    Introduction 

Globally, crop ecosystems cover about 12% of the ice-free land surface. Regionally, this 
fraction can increase to 33% in Europe and 20% in the United States (Ramankutty et al., 
2008). Schulze et al. (2009) suggested that croplands are a net source of greenhouse 
gasses to the atmosphere in Europe. In contrast, croplands were identified as a sink in 
the United States (West et al., 2010). Smith et al. (2008) proposed that croplands could 
have a large potential in greenhouse gas mitigation through specific GHG-management 
practices, and different local management practices may be one of the reasons why 
croplands sometimes appear as a source and sometimes as a sink in different regions of 
the world. 
 
Designed as a core infrastructure of the global terrestrial monitoring network (Running 
et al., 1999), the eddy covariance technique is a widely used method to observe carbon 
fluxes between the land surface and the atmosphere (Baldocchi et al., 2001). The data is 
particularly useful to study terrestrial ecosystem carbon cycle processes on time scales 
from hourly to yearly. Flux towers measurements using eddy covariance methods are 
widely used across a variety of terrestrial ecosystems, including croplands. Flux towers 
measure the net flux of carbon dioxide (net ecosystem exchange (NEE)), which can be 

                                                            
1 This chapter is based on Chen, T, van der Werf, G. R., Dolman, A. J., and Groenendijk, 
M.: Evaluation of cropland maximum light use efficiency using eddy flux measurements 
in North America and Europe, Geophys Res Lett, 38, L14707, DOI: 10.1029/2011gl047533, 
2011. 
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separated into an assimilation component (gross primary production (GPP)), and the 
respiration component (total ecosystem respiration (Re)) using techniques developed for 
instance by Reichstein et al. (2005). In addition to flux measurements, additional 
observations are usually made including photosynthetic available radiation (PAR). This 
data stream offers an opportunity to study the light use efficiency of croplands. 
 
Light use efficiency (LUE) models are widely used to diagnose terrestrial ecosystem 
productivity such as gross primary productivity (GPP) and net primary productivity (NPP, 
GPP minus autotrophic respiration) (Field et al., 1998; Running et al., 2004). NPP and 
GPP can be expressed as a product of absorbed photosynthetically active radiation (PAR) 
and a light use efficiency coefficient;  (Monteith, 1972; Monteith and Moss, 1977). 
While the LUE approach has become widely accepted, the exact determination of the 
core parameter *, the potential maximum  that may be reached when temperature 
and moisture are not limiting plant carbon uptake, is still problematical. Zhang et al., 
(2008) suggested to increase the cropland * in the algorithm used to derive GPP and 
NPP from the Moderate Resolution Imaging Spectroradiometer (MODIS) MOD17 product 
after calibration with flux data from a site with double-cropped winter wheat and 
summer maize in China. Besides the MOD17 product, remote sensing data from the 
MODIS instruments include the fraction of photosynthetically active radiation (fPAR) at 1 
km2 (Running et al., 1999). We evaluated *NPP of croplands using flux tower 
measurements and MODIS derived fPAR data together with the Carnegie-Ames-Stanford 
Approach (CASA) biogeochemical model across North America and Europe to determine 
whether the default value of *NPP is representative and if not, what it should be to 
capture the carbon dynamics observed by flux towers over croplands. 
 
2.2    Methods 
 
2.2.1    Site description 
 
There are around thirty cropland sites in the FLUXNET database (www.fluxdata.org). 
Twelve of these sites had at least 2 years of data and contained also meteorological 
parameters such as PAR, temperature, and precipitation. We chose these twelve sites for 
our analysis, evenly spread over North America and Europe (Table 2.1). 
 
2.2.2    fPAR from MODIS land products subsets 
 
MODIS land products subsets are provided at 1km resolution for a 7*7 km box centered 
on the flux towers through the Oak Ridge National Laboratory Distributed Active Archive 
Center (Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC), 
2010). These subsets are specifically designed for validation of models and remote 
sensing products, or for characterization of field sites 
(http://daac.ornl.gov/cgi-bin/MODIS/GR_col5_1/mod_viz.html). Following previous 
studies (Connolly et al., 2009; Zhang et al., 2007), we only used data from the center 
pixel where the tower was located. 



 

Table 2.1. Eddy covariance site information for croplands. 
Site 
code 

Site name Country Latitude Longitude Data 
period 

Reference 

BE-Lon Lonzee Belgium 50.5522 4.74494 2004-2006 Aubinet et al., 
2009 

DE-Geb Gebesee Germany 51.1001 10.9143 2004-2006 Werner L. 
Kutsch 

DE-Kli Klingenberg Germany 50.8929 13.5225 2005-2006 Christian 
Bernhofer 

DK-Ris Risbyholm Denmark 55.5303 12.0972 2004-2005 Soegaard et 
al., 2003 

ES-ES2 El salerSueca Spain 39.2755 -0.31522 2004-2006 Maria-Jose 
Sanz 

FR-Gri Grignon France 48.844 1.95243 2005-2006 Pierre Cellier 
US-ARM OK ARM 

Southern Great 
Plains site – 
Lamont 

USA 36.6058 -97.4888 2003-2004 Fischer et al., 
2007 

US-Bo1 Bondville, IL USA 40.0062 -88.2904 2000-2007 Meyers et al., 
2006 

US-IB1 IL Fermi National 
Accelerator 
Laboratory- 
Batavia 

USA 41.8593 -88.2227 2006-2007 Roser 
Matamala 

US-Ne1 NE - Mead - 
irrigated 
continuous 
maize site 

USA 41.1651 -96.4766 2001-2004 Verma et al., 
2005 

US-Ne2 NE - Mead - 
irrigated 
maize-soybean 
rotation site 

USA 41.1649 -96.4701 2001-2004 Verma et al., 
2005 

US-Ne3 NE - Mead - rain 
fed 
maize-soybean 
rotation site 

USA 41.1797 -96.4397 2001-2004 Verma et al., 
2005 

 
2.2.3    Model and optimized method 
 
The CASA biogeochemical model that is used here (Potter et al., 1993) is based on the 
LUE approach and operates with a monthly time step. The general equation of LUE 
models is: 
 

           (2.1) 
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Where f( ) accounts for the effects of environment stress including water stress and 
temperature effects. Empirical studies suggested that * for NPP calculations (here 
denoted as *NPP) varies between 1.1 and 1.4 g C MJ-1 for croplands (Russell et al., 1989). 
In the CASA version used here (van der Werf et al., 2010), *NPP was set to 0.5 g C MJ-1 
globally to match global NPP values of 60 Pg C year-1 (Beer et al., 2010). The Q10 value 
which governs the temperature response of heterotrophic respiration was set to 1.5 in 
the soil sub-model and CASA was spun up with the average input data for 250 years, 
when assimilation was equal to respiration on an annual scale. We ran CASA with 
meteorological data (PAR, temperature, precipitation) measured by the flux towers. We 
first ran CASA with the default *NPP (0.5 g C MJ-1), and then increased *NPP with steps of 
0.05, keeping the other input datasets - which are better constrained than *NPP - 
constant. The *NPP value corresponding to the lowest root mean square difference 
between FLUXNET observed NEE and simulated NEE from CASA was then considered 
optimal: 
 

         (2.2) 

  
2.3    Results 
 
2.3.1    NPP comparisons 
 
Most LUE-based models use the same equation to estimate GPP and NPP, the difference 
often lies in a different *. Therefore the ratio between GPP and NPP is constant in most 
LUE approaches, allowing us to compare the variability in CASA-derived NPP with flux 
towers-derived GPP. Correlation coefficients between NPP and GPP varied between 0.58 
and 0.96 with an average of 0.87 (Table 2.2). 
 
2.3.2    NEE comparisons
 
Modelling NEE with the default *NPP of 0.5 g C MJ-1, and with optimized *NPP were both 
compared with flux towers measured NEE. We used Taylor diagrams (Taylor, 2001) to 
quantitatively depict the comparison. Since the measurement values vary between sites, 
the data was normalized first to plot all sites in one single diagram. 
 
Figure 2.1 shows the Taylor diagrams (Taylor, 2001), and a time series for one site is 
given as an example in Figure 2.2. For the Taylor diagrams, we divided the model results 
and flux towers measurements by the standard deviation of the corresponding flux 
towers measurements. Therefore, there is only one reference point indicating the 
measured NEE which is located on the x-axis at unity. Thus, flux towers measurements 
have the same standard deviation (normalized to 1) in the Taylor diagram. We found 
that correlation coefficients between predicted and observed fluxes varied between 0.54 
and 0.98. These values were identical for original and optimized *NPP because a change 
in *NPP operates linearly. Original modelled NEE with default *NPP compared poorly 



 

with flux towers observations, showing a uniform underestimation of the standard 
deviation which only explained between 2% and 34% of the flux towers NEE variance, 
with an average of 13%. A significant improvement in the amplitude of NEE variations 
was made with our optimized *NPP where NEE from CASA explained flux towers NEE 
variance of about 29% to 94%, with an average value of 68%. 

 

 
Figure 2.1. CASA modelled NEE compared with flux towers measurements in normalized 
pattern statistics. Site codes are described in Table 2.2. Original modelling results with 

*NPP = 0.5 g C MJ-1 for NEE are plotted at the tail of the arrows, and the rows point refer 
to revised modelled NEE with optimized *NPP. Ref point indicates flux towers measured 
NEE. a) 12 sites used in this study; b) only those sites with plant rotation information 
(plant type information in Table 2.2). 

2.3.3    *NPP 

 
Our optimized *NPP values for the 12 cropland sites varied between 0.65 and 2.0 g C 
MJ-1 (Table 2.2). Importantly, *NPP changed with crop type; the lowest values were 
found for wheat (0.85 g C MJ-1 at one site) and soybean (0.65-0.90 g C MJ-1 at 4 sites), 
while rice (1.15 g C MJ-1 at one sites) and maize (1.30-1.95 g C MJ-1 at 5 sites) had higher 
values. These values fall within the range compiled by Lobell et al. (2002). 
 
2.3.4    *GPP MOD17 GPP comparison with flux towers 
 
The MODIS GPP product MOD17 is also based on the LUE approach, with an *GPP of 0.68 
g C MJ-1 for croplands (Heinsch et al., 2003). Here we simply calculated observed light 
use efficiency GPP as the ratio between measured GPP and incident photosynthetically 
active radiation (PAR) at flux towers, i.e. GPP = fPAR×f ( ) × *GPP. This approach neglects 
potential limitations that could lower  from its maximum value, but this effect is likely 
minimal in well-watered crops in the growing season when fPAR is close to unity. Crops 
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have in general a more pronounced growth cycle than natural ecosystems due to set 
planting and harvesting dates. We defined the growing season from May to August 
based the observed seasonality in the flux towers. We then chose the largest GPP over 
these 4 months, denoted as  (L). We found that  (L) ranged between 1.31 and 2.91 g C 
MJ-1, with one outlier; an  (L) of 0.37 g C MJ-1 (Table 2.2). 

 
Figure 2.2. An example of time series of monthly carbon flux information, site BO 
Bondville, IL USA. a) CASA modelled NEE with optimized *NPP (cyan) and default *NPP = 
0.5 g C MJ-1 (black) compare with flux towers NEE (red), rotations considered. b) Red line 
is flux towers measured GPP compare with MOD17 GPP (black). Cyan line indicates 
photosynthetically active radiation (PAR, Unit is million joules per square meter per 
month). 
 
2.4    Discussion and conclusions 
 
The LUE approach is commonly used to estimate the efficiency of radiation conversion to 
plant production, both for GPP (Zhao and Running, 2010) and for NPP (Field et al., 1995). 
By including respiration and other carbon loss processes, a biogeochemical model such 
as CASA could further calculate NEE, representing the net carbon flux between 
ecosystems and the atmosphere. NEE is also measured directly using the 
eddy-covariance method, allowing for a direct model – measurement comparison. When 
using the ‘standard’ *NPP value of 0.5 g C MJ-1, CASA captured 2%-34% (range) of the 
temporal variability in NEE in the 12 cropland sites we investigated. 
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To capture the NEE magnitude, the model required a substantial increase in *NPP for all 
12 cropland sites. On average, we found that an *NPP of 1.25 g C MJ-1 yielded the lowest 
RMSE when assessing the performance of all sites, with individual sites ranging from 0.65 
to 2.0 g C MJ-1. Although most models use a constant *NPP value for different crop types, 
our findings indicate that different crop types may have different *NPP values, although 
a larger number of sites for each individual crop type is required to gain more confidence 
in the exact values. For example, while we included both irrigated and non-irrigated sites 
in our study, we could not systematically assess the impact of irrigation on *NPP due to 
the limited number of station. Our finding of an underestimation of *NPP also applied to 
the MODIS MOD17 GPP product over crop sites. 
 
Table 2.2. Statistics information between modelling and flux towers observation a. 

Site 
code 

NPP ( *0.5), GPP (FLUX 
TOWERS) 

Plant 
type 

* 
(optimized)

NEE ( *opt), NEE 
(FLUX TOWERS) 

 (L) 

r  var rate r  var rate

BE-Lon 0.76 0.03  1.55 0.64 0.39 1.96 
DE-Geb 0.7 0.06  0.9 0.57 0.32 1.86 
DE-Kli 0.95 0.05  1.25 0.83 0.71 1.61 
DK-Ris 0.91 0.01  2 0.9 0.29 2.91 
ES-ES2 0.95 0.04 rice 1.15 0.86 0.74 1.55 
FR-Gri 0.58 0.05  0.9 0.54 0.3 1.92 
US-ARM 0.92 0.2 wheat 0.85 0.85 0.76 0.37 
US-Bo1 0.9 0.05   0.84 0.69  
US-Bo1a 0.88 0.06 soybean 0.85 0.83 0.67 2.16 
US-Bo1b 0.94 0.05 maize 1.3 0.86 0.74 1.87 
US-IB1 0.89 0.05   0.93 0.81  
US-IB1a 0.94 0.04 maize 1.45 0.98 0.94 1.96 
US-IB1b 0.83 0.07 soybean 0.9 0.86 0.7 1.31 
US-Ne1 0.95 0.03 maize 1.7 0.93 0.84 2.26 
US-Ne2 0.89 0.03   0.93 0.88  
US-Ne2a 0.96 0.02 maize 1.9 0.95 0.93 2.22 
US-Ne2b 0.87 0.07 soybean 0.65 0.77 0.57 1.66 
US-Ne3 0.85 0.04   0.91 0.81  
US-Ne3a 0.92 0.02 maize 1.95 0.93 0.87 1.99 
US-Ne3b 0.87 0.07 soybean 0.7 0.76 0.6 1.39 
a Correlation and variance rate between NPP (CASA with default *NPP = 0 5 g C MJ-1) and 
GPP (flux towers measurement), and between NEE (CASA with optimized *NPP) and NEE 
from flux towers measurement.  (L) see Part 2.3.4 
 
 
Our results are somewhat sensitive to the parameterization of respiration in CASA, 
because lower respiration fluxes could in principle explain part of the mismatch we 
found between modelled and measured NEE. Figure 2.3 shows that this is unlikely to 
explain a substantial part of the mismatch because with lower respiration fluxes 
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(autotrophic and / or heterotrophic) and consequently lower NPP values the NPP during 
the growing season would be lower than NEE, which is physically not plausible. Moors et 
al. (2010) suggested the ratio of NPP to NEE to be about 1.6 for croplands during the 
growing season. With optimized *NPP, our results indicated a ratio of 1.7 on average 
(Figure 2.3). In addition, the sensitivity of our results to changes in heterotrophic 
respiration is modest; by changing the Q10 value to a range between 1 and 2 (Table 2.3) 
we found that the average optimized * ranged between 0.98 and 1.43, instead of the 
value of 1.25 we derived with the standard Q10 value of 1.5. 
 
Besides the limited number of cropland sites available, uncertainties exist due to the 
scaling of the 1 km2 pixel located on the flux tower which may not be fully representative 
of the flux tower footprint. Tower measurements in general represent a horizontal range 
of about 500 m around the tower (Running et al., 1999), although the actual fetch will 
vary with wind (speed and direction) and surface roughness and other meteorological 
conditions (Schmid, 2002). 
 
Table 2.3. Optimized maximum light use efficiency ( *NPP) values for the studied sites for 
different Q10 values. Rotation information was considered, denoted as “a” or “b” in the 
last letter of site code. 
site code Q10 
 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 
BE-Lon 1.25 1.3 1.35 1.45 1.5 1.55 1.65 1.7 1.75 1.8 1.8 
DE-Geb 0.7 0.75 0.8 0.85 0.85 0.9 0.95 1 1 1.05 1.1 
DE-Kli 0.95 1 1.05 1.1 1.2 1.25 1.3 1.35 1.4 1.45 1.45 
DK-Ris 2 2 2 2 2 2 2 2 2 2 2 
ES-ES2 1.05 1.05 1.1 1.1 1.15 1.15 1.2 1.2 1.2 1.25 1.25 
FR-Gri 0.7 0.7 0.75 0.8 0.85 0.9 0.95 0.95 1 1.05 1.05 
US-ARM 0.7 0.75 0.8 0.8 0.85 0.85 0.85 0.85 0.8 0.8 0.8 
US-Bo1a 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 
US-Bo1b 1 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 
US-IB1a 1.1 1.15 1.25 1.3 1.4 1.45 1.55 1.6 1.7 1.75 1.8 
US-IB1b 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 
US-Ne1 1.25 1.35 1.45 1.55 1.65 1.7 1.8 1.9 1.95 2 2 
US-Ne2a 1.4 1.5 1.6 1.7 1.8 1.9 1.95 2 2 2 2 
US-Ne2b 0.5 0.5 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 
US-Ne3a 1.4 1.5 1.6 1.75 1.85 1.95 2 2 2 2 2 
US-Ne3b 0.5 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.85 0.9 
average 0.98 1.03 1.09 1.14 1.2 1.25 1.3 1.34 1.37 1.41 1.43 
 
 
 
 
 
 



 

In addition to the MODIS data, we also used the JRC-fPAR product (Gobron et al., 2010). 
The comparison showed a reasonable level of agreement between the two products 
with no overall bias (Figure 2.4). Using the JRC-fPAR product would therefore not change 
our main conclusions. We did not include site-specific details on management regimes 
and stage in the crop rotation cycle, which may impact carbon fluxes. By including as 
many sites as possible (n=12) some of these factors will average out, but care should be 
taken with interpreting the results for individual sites.  
 

 
Figure 2.3. Monthly average NEE and NPP during the growing season (May to 
September). Black dots indicate modelled NPP with the optimized *NPP (Table 2.2), red 
plus signs indicate NPP with the "standard" *NPP of 0.5 g C MJ-1 PAR. Linear regression 
lines are included and the blue line indicates the 1:1 line. Since NPP cannot be smaller 
than NEE, boosting *NPP is a more plausible mechanism to explain the observed 
mismatch than, for example, seeking the causes of the mismatch in lower respiration 
fluxes. 
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Figure 2.4. FPAR from MODIS (blue) and JRC (red) for our study sites and periods. 9 sites 
were chosen based on JRC data availability (two years of data at least). y indicates 
MODIS FPAR, x is JRC FPAR. 
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Chapter 3    Global cropland monthly Gross Primary Production 

in the year 20002 
 
Abstract 

Croplands cover about 12% of the ice-free terrestrial land surface. Compared with 
natural ecosystems, croplands have distinct characteristics due to anthropogenic 
in uences. Their global gross primary production (GPP) is not well constrained and 
estimates vary between 8.2 and 14.2 Pg C yr 1. We quanti ed global cropland GPP using 
a light use e ciency (LUE) model, employing satellite observations and survey data of 
crop types and distribution. A novel step in our analysis was to assign a maximum light 
use efficiency estimate ( *GPP) to each of the 26 different crop types, instead of taking a 
uniform value as done in the past. These *GPP values were based on flux tower CO2 
exchange measurements and a literature survey of field studies, and ranged from 1.21 g 
C MJ-1 to 2.96 g C MJ-1. Global cropland GPP was estimated to be 11.05 Pg C yr-1 in the 
year 2000. Maize contributed most to this (1.55 Pg C yr-1), and the continent of Asia 
contributed most with 38.9% of global cropland GPP. In the continental United States, 
annual cropland GPP (1.28 Pg C yr-1) was close to values reported previously (1.24 Pg C 
yr-1) constrained by harvest records, but our estimates of *GPP values were much higher. 
Our results are sensitive to satellite information and survey data on crop type and extent, 
but provide a consistent and data-driven approach to generate a look-up table of *GPP 
for the 26 crop types for potential use in other vegetation models. 

3.1    Introduction 
 
The terrestrial biosphere assimilates an estimated 120-150 Pg C yr-1 (Beer et al., 2010; 
Welp et al., 2011) as Gross Primary Production (GPP). Roughly, half of the GPP is used for 
plant maintenance processes and is generally referred to as autotrophic respiration (Ra). 
The remainder is available for plant growth as Net Primary Production (NPP), which is 
subsequently consumed mostly by heterotrophs (Rh) and fire.  
 
Biochemical processes of photosynthesis at cell or leaf level are relatively well known, 
but accurate estimates of GPP at larger scales (regions or the globe) are still uncertain. 
Direct measurements of net ecosystem exchange (NEE: GPP – Rh – Ra), such as eddy 
covariance measurements, suffer from the large spatial heterogeneity in the exchange 
between plants and the atmosphere which makes upscaling difficult. Therefore, current 
global GPP estimates still mainly rely on model results. However, considerable 
differences exist between various studies (Zhao et al., 2005; Ryu et al., 2011; Koffi et al., 

                                                            
2 This chapter is based on  Chen, T., van der Werf, G. R., Gobron, N., Moors, E. J., and 
Dolman, A. J.: Global cropland monthly Gross Primary Production in the year 2000, 
Biogeosciences Discuss., 11, 3465-3488, DOI:10.5194/bgd-11-3465-2014, 2014 
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2012; Beer et al., 2010), in particular for croplands. For example, Beer et al. (2010) 
reported global cropland GPP of 14.8 Pg C yr-1 using flux tower measurements based on 
eddy covariance methods and several diagnostic models. In contrast, Saugier et al. (2001) 
estimated this number to be 8.2 PgCyr-1. 
 
Croplands cover about 12% of the ice-free land surface globally (Ramankutty et al., 2008), 
contributing considerably to the global carbon cycle (Hicke et al., 2004). Additionally, the 
area occupied by croplands changes over time with consequences for global carbon 
stocks. For example, a large carbon sink was found in the abandoned croplands of the 
Soviet Union (Vuichard et al., 2008). Vice versa, deforestation is often related to the 
expansion of cropland (Morton et al., 2006) which leads to a decrease in above ground 
biomass. However, croplands may also have a large capacity for carbon sequestration 
(Parr and Sullivan, 2011).  
 
The light use efficiency (LUE) approach has been widely used to estimate GPP. Monteith 
(1972) developed this approach assuming that the growth in plant biomass is directly 
proportional to absorbed solar radiation. During the early period, mostly field 
measurements of plant dry matter and solar radiation were applied to evaluate the LUE 
approach. The LUE approach was also applied to estimate net primary production (NPP) 
in large-scale models (Field et al., 1995; Knorr and Heimann, 1995; Potter et al., 1993; 
Ruimy et al., 1994, 1999). The LUE application was later extended to estimate GPP 
largely because LUE is more likely to be fundamentally related to GPP, the direct 
outcome of photosynthesis (Prince and Goward, 1995; Ruimy et al., 1996; Running et al., 
2000; Landsberg et al., 1997). 
 
In the LUE approach, NPP or GPP is assumed proportional to the absorbed 
photosynthetically active radiation (PAR) at an efficiency rate, . Because  is affected by 
environmental factors, the maximum light use efficiency ( *, Haxeltine and Prentice, 
1996; Potter et al., 1993), defined as an environmentally optimized , is widely used in 
models. Numerous studies have estimated  or * at site level (Table 3.1). In the 
parameterizations of models, * is more often used than  because * tends to be more 
stable between various plant types. Besides, subsequent environmental restrictions can 
be calculated using local environmental inputs. The LUE approach is thus widely used to 
estimate GPP or NPP from site level to large scales by combining satellite-based 
vegetation index measurements (Goerner et al., 2011; Potter et al., 1993; Xiao et al., 
2005; Yuan et al., 2010; Zhao and Running, 2010; Field et al., 1995; Knorr and Heimann, 
1995; Ruimy et al., 1994, 1996, 1999; Prince and Goward, 1995). Although all these 
models use the LUE concept, they are often use different vegetation indices, * values, 
and may calculate environmental stresses in a different way. 
 
Observational studies have illustrated that  varies widely between crops even when 
corrected for environmental stresses and nutrient limitation (Table 3.1). The LUE method 
is an empirical approach, requiring look-up table of the key parameter to quantify the 
diversified ecosystems. However, in practice, the * in LUE models is identical globally 



 

for all plant types or for major vegetation classes, such as croplands or grasslands 
(Goerner et al., 2011; Potter et al., 1993; Xiao et al., 2005; Yuan et al., 2010; Zhao and 
Running, 2010). Usually croplands have only one * value in models to represent the 
average condition, which introduce inevitable biases at local scales. This situation is 
largely due to two main constraints, suggesting also a strategy for improvement of the 
estimates. One is the paucity of land surface cover data, most of which did not offer 
sufficient detail to separate plant or crop types. The other is the adequate use of the 
large number of studies that have aimed to parameterize * using site level 
measurements. 
 
This study aims to estimate global cropland GPP using recently developed global 
cropland distribution data for the year 2000 to partition global croplands into 26 crop 
types. To improve the parameterization of the *GPP model, both eddy covariance flux 
measurements and a survey of previous reported *GPP values are used to generate a 
look-up table of *GPP for these 26 crop types. 
 

3.2    Methods and datasets 
 
3.2.1    Introduction 
 
We used a biogeochemical model based on the LUE approach, the 
Carnegie-Ames-Stanford -Approach (CASA, Potter et al., 1993; van der Werf et al., 2010). 
Croplands were separated into 26 crop types as described in 3.2.2. We estimated *GPP 

using 16 eddy covariance flux tower sites (FLUXNET) following Chen et al. (2011) and 
conducted a literature survey on previously reported * values. A combination of these 
two * resources yielded the look-up table of *GPP for the 26 crop types. These steps are 
explained in more detail below. 
 
3.2.2    LUE model and cropland data 
 
The CASA biogeochemical model with the version described in van der Werf et al. (2010) 
was used in this study. GPP was calculated by multiplying absorbed photosynthetically 
active radiation (PAR) and a light use efficiency coefficient,  (Monteith, 1972; Monteith 
and Moss, 1977): 
 

        (3.1) 
 
Where fPAR (also known as fAPAR) is the fraction of PAR absorbed by vegetation. 
Environmental stresses related to temperature and water are indicated by T ( ) and W ( ) 
respectively. More details about the model structure can be found in Potter et al. (1993). 
 
The monthly distribution of cropland growing data of MIRCA2000 (monthly irrigated and 
rainfed crop areas, Portmann et al., 2010) was used as the map of global croplands at a 5 
arc min spatial resolution. 26 crop types were separated in MIRCA2000. Correspondingly, 
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5 arc min monthly fPAR data from the Joint Research Centre (JRC) were prepared based 
on original finer grid records (Gobron et al., 2010) which is further described in Sect. 
3.2.3. *GPP was set crop specific, using the values estimated as described in Sect. 3.2.3. 
International Satellite Cloud Climatology Project (ISCCP) solar radiation data from the 
Goddard Institute for Space Studies (GISS) (Zhang et al., 2004) were used to generate 
PAR. Precipitation of the Global Precipitation Climatology Project (GPCP) version 1.1 
(Huffman et al., 2001) and temperature of the GISS surface temperature analysis 
(Hansen et al., 1999) were employed to force environmental stress functions as 
described in Potter et al. (1993). 
 
3.2.3    The maximum light use efficiency, *GPP 

 
To fulfill the model requirements for the crop types, we needed to estimate and assign 

*GPP to the 26 crop types of the MIRCA2000 map. *GPP based on direct field 
measurements are ideal to ensure the parameters in our model are consistent with 
regard to the vegetation index and environmental factors. Therefore, we applied a 
similar procedure as in our previous work (Chen et al., 2011) by constraining CASA 
modelled GPP with field GPP measurements from FLUXNET. 
 
Eddy covariance instrumentation directly measures ecosystem net exchange (NEE), 
which can then be partitioned into GPP and respiration using various approaches 
(Reichstein et al., 2005; Lasslop et al., 2010). Combining satellite and eddy covariance 
tower measurements, *GPP can be directly estimated. FLUXNET offers a high level of 
global consistency between individual flux tower measurements (see www.fluxdata.org). 
The FLUXNET dataset contains about 30 cropland sites. To accomplish our purpose of 
LUE evaluation, we included only those sites where PAR, temperature and precipitation 
records were available. Besides that, we also collected the rotation histories with details 
of growing periods and plant types from individual FLUXNET PI’s. The information of the 
sites used in this study is listed in Table 3.2. 
 
Satellite-based fPAR was used to indicate vegetation activity in our study, using JRC 
collected fPAR products over the FLUXNET sites, available on 
http://fapar.jrc.ec.europa.eu/Home.php. JRC-fPAR data are generated based on the data 
collections of SeaWiFS (Sea-viewing Wide Field-of-view Sensor) sensor on the SeaStar 
satellite and the MERIS (Medium Resolution Imaging Spectrometer) sensor on the 
Envisat (Environmental Satellite) platform of the European Space Agency. These 
collections have a 10 day temporal scale and cover 3 by 3 pixels, about 6 × 6 km, around 
the central pixel where the FLUXNET sites are located. These data are specifically 
designed for validation of remote sensing products and models or for characterization of 
field sites. Because usually there are not sufficient fPAR observations on the ground, 
fPAR from the center pixel is assumed to represent the fPAR influencing the footprint of 
the tower. 
 



 

To optimize *GPP, we iteratively changed its value with steps of 0.05 g C MJ-1 and choose 
the *GPP with the lowers RMSE (root mean square error) between CASA and FLUXNET 
GPP: 
 

       (3.2) 

 
This approach yielded direct estimates of *GPP for 8 crop types out of 26 crops due to 
the distribution of the FLUXNET sites. To fill in the gaps we conducted a survey of 
previous studies that reported  across a wide variety of crop types. However, these 
previous studies were quite different in their methodology. For example, solar radiation, 
intercepted PAR and absorbed PAR were interchangeably used to indicate radiation. 
Direct measurements of dry matter were often used to calculate production while we 
focused on GPP here. For consistency, we therefore used a conversion equation: 
 

         (3.3) 

 
where RCB is the carbon content per unit of dry biomass, RNG is the ratio between NPP 
and GPP and RES indicates environmental stresses. RCB was found to be quite stable 
within a 45-50% range (Schlesinger, 1991), and Magnussen and Reed (2004) suggested a 
conversion rate of 0.475 which was used here (RCB = 0.475). NPP is usually treated as half 
the value of GPP in most analyses (Beer et al., 2010). Therefore, we used RNG = 0.5 in this 
paper. 
 
Most of biomass measurements usually only consider above ground dry matter (ADM). 
To calculate total dry matter (TDM) we used an ADM/TDM ratio of 0.8 (Gallagher and 
Biscoe, 1978; Steingrobe et al., 2001) when  values reported were based on ADM 
measurements only. The maximum light use efficiency concept assumes no 
environmental stresses, therefore, only the well-watered sites and those without 
diseases or drought were included in this study (RES  1). As a results, 89 *GPP values 
using eq. 3.3 were converted based on literature, covering 21 crop types (Table 3.1). 
 
Table 3.1. Experimental light use efficiency values for various crops. 

*GPP (g 
C MJ-1) 

crop 
ID 

crop type References comments 

2.46 1 wheat (spring 
wheat) 

Caviglia and Sadras (2001)   

2.53 1 wheat Muurinen and Peltonen-Sainio 
(2006) 

  

2.55 1 wheat Koizumi et al. (1990)   
2.61 1 wheat Jamieson et al. (1991)   
2.85 1 wheat barley Gallagher and Biscoe (1978) extract from 

Cannell et al. 
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(1987) 
2.93 1 wheat Foulkes et al. (2007)   
3.21 1 wheat (spring 

wheat) 
Abbate et al. (1997)   

3.33 1 wheat Kiniry et al. (1989)   
3.80 1 wheat Kemanian et al. (2004)   
3.23 2 maize Sinclair and Horie (1989)   
4.16 2 maize Kiniry et al. (1989)   
4.37 2 maize (dentcorn) Koizumi et al. (1990)   
4.51 2 maize Lindquist et al. (2005)   
2.57 3 rice Koizumi et al. (1990)   
2.61 3 rice Kiniry et al. (1989)   
2.66 3 rice Sinclair and Horie (1989)   
2.88 3 rice Katsura et al. (2007)   
3.25 3 rice Zhang et al. (2009)   
2.43 4 barley Whitman et al. (1985)   
2.60 4 barley Muurinen and Peltonen-Sainio 

(2006) 
  

2.61 4 barley (spring 
barley) 

Legg et al. (1979) Extract from 
Cannell et al. 
(1987) 

2.77 4 barley Jamieson et al. (1995)   
2.85 4 barley Koizumi et al. (1990)   
3.12 4 barley Bingham et al. (2007)   
3.80 4 barley (spring 

barley) 
Kemanian et al. (2004)   

3.09 6 millet Azam-Ali et al. (1984)   
3.44 6 millet Begue et al. (1991)   
4.04 6 millet Mcintyre et al. (1993)   
3.33 7 sorghum Kiniry et al. (1989)   
3.98 7 sorghum (sweet 

sorghum) 
Varlet-Grancher et al. (1992) extracted from 

Dercas and 
Liakatas (2007) 

4.03 7 sorghum (grain 
sorghum) 

Mastrorilli et al. (1995)   

4.11 7 sorghum (grain 
sorghum) 

Rosenthal et al. (1993)   

4.22 7 sorghum (sweet 
sorghum) 

Dercas and Liakatas (2007)   

4.39 7 sorghum (sweet 
sorghum) 

Mastrorilli et al. (1995)   

2.04 8 soybean Mastrorilli et al. (1995)   
2.09 8 soybean Muchow et al. (1993)   
2.28 8 soybean Sinclair and Horie (1989)   



 

3.04 8 soybean Unsworth et al. (1984)   
1.98 9 sunflower Trapani et al. (1992)   
2.61 9 sunflower Kiniry et al. (1989)   
2.97 9 sunflower Mastrorilli et al. (1995)   
2.26 10 potato Shah et al. (2004)  
2.46 10 potato Haverkort and Harris (1987)   
2.47 10 potato Kooman et al. (1996)  
2.57 10 potato Opoku-Ameyaw and Harris 

(2001) 
 

3.42 10 potato Allen and Scott (1980) extract from 
Cannell et al. 
(1987) 

4.20 11 cassava Leepipatpaiboon et al. (2009)   
2.99 12 sugarcane Muchow et al. (1997) Kunia, H73-6110 
3.18 12 sugarcane Muchow et al. (1997) Kunia, H78-7234 
3.61 12 sugarcane Muchow et al. (1997) Macknade, Q117 
3.71 12 sugarcane Muchow et al. (1997) Macknade, Q138 
4.09 12 sugarcane Muchow et al. (1997) Ayr, Q96 
4.28 12 sugarcane Muchow et al. (1997) Ayr, Q117 
2.19 13 sugar beet Martin (1986a)   
2.47 13 sugar beet Martin (1986b)   
2.70 13 sugar beet Clover et al. (2001)   
3.23 13 sugar beet Scott and Jaggard (1993) extract from 

Clover et al. 
(2001) 

3.42 13 sugar beet Biscoe and Gallagher (1977) extract from 
Cannell et al. 
(1987) 

1.90 14 oil palm Hand et al. (1985) extract from 
Cannell et al. 
(1987) 

2.14 14 oil palm Squire (1990) chapter 11 
3.35 15 Summer Rape Morrison and Stewart (1995)   
2.28 15 oilseed rape Mendham et al. (1981) Justes et al. 

(2000) 
2.22 15 oilseed rape Justes et al. (2000)   
2.07 16 peanuts Koizumi et al. (1990)   
2.61 16 peanuts Bell et al. (1987)   
1.82 17 pigeon pea Nam et al. (1998)   
2.23 17 mungbean Muchow et al. (1993)   
2.49 17 cow pea Muchow et al. (1993)   
2.92 17 pigeon pea Hughes and Keatinge (1983)   
4.87 17 field beans Fasheun and Dennett (1982)   
1.48 21 cotton Pinter et al. (1994)   
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1.56 21 cotton 
‘TamcotCD3H’ 

Rosenthal and Gerik (1991)   

1.73 21 cotton ‘Deltapine 
50’ 

Rosenthal and Gerik (1991)   

1.87 21 cotton Pinter et al. (1994)   
1.90 21 cotton ‘Acala SJ-2’ Rosenthal and Gerik (1991)   
2.14 22 cocoa Squire (1990)  
1.60 24 olive Mariscal et al. (2000)   
2.61 25 forage and grain 

legumes 
Charles-Edwards (1982) extract from 

Cannell et al. 
(1987) 

3.04 25 lucerne Brown et al. (2006)   
3.90 25 Italian ryegrass Koizumi et al. (1990)   
1.52 26 bell pepper Vieira et al. (2009)   
1.73 26 sweet pepper del Amor and Gomez-Lopez 

(2009) 
  

2.26 26 fibre hemp Meijer et al. (1995)   
2.38 26 Garlic Rizzalli et al. (2002)   
2.54 26 Oat Muurinen and Peltonen-Sainio 

(2006) 
  

3.18 26 Quinoas Ruiz and Bertero (2008)  
3.44 26 Garlic Rizzalli et al. (2002)   
4.16 26 Lettuce Hand et al. (1985) extract from 

Cannell et al. 
(1987) 

2.09 26 Chrysanthemum Charles-Edwards (1982) extract from 
Cannell et al. 
(1987) 

 

Table 3.2. Rotation history of the eddy covariance flux sites used in our study. 
site ID Country latitude longitude crop type period (yy-mm) PI / references 

BE_Lon Belgium 50.5522 4.74494 sugar beet 2004-04, 2004-09 Aubinet et al. 
(2009); Moors et 
al. (2010) 
 

winter 
wheat 

2004-10, 2005-09
2006-10, 2006-12

potato 2005-10, 2006-04
CN_Du1 
 

China 42.0456 
 

116.671 
 

wheat 2005-05, 2005-09 Chen et al. (2009) 

DE_Geb Germany 51.1001 10.9143 rapeseed 2003-08, 2004-08 Kutsch et al. 
(2010); Moors et 
al. (2010) 

winter 
barley 

2004-09, 2005-07

sugar beet 2005-11, 2006-09
DE_Kli Germany 50.8929 13.5225 rapeseed 2004-09, 2005-08 Christian 

Bernhofer winter 
wheat 

2005-10, 2006-09



 

DK_Ris Denmark 55.5303 12.0972 winter 
wheat 

2004-01, 2005-12 Henrik Soegaard; 
Ceschia et al. 
(2010); Moors et 
al. (2010) 

ES_ES2 Spain 39.2755 -0.31522 rice 2004-05, 2004-09
2005-05, 2005-09
2006-05, 2006-09

Maria Jose Sanz;  
Moors et al. 
(2010); Kutsch et 
al. (2010); Ceschia 
et al. (2010) 

FR_Gri France 48.844 1.95243 wheat 2005-11, 2006-07 Pierre Cellier 
IE_Ca1 Ireland 52.8588 -6.91814 spring 

barley 
2004-03, 2004-07
2005-03, 2005-07
2006-03, 2006-07

Mike Jones;  
Ceschia et al. 
(2010); Moors et 
al. (2010) 

JP_Mas Japan 36.05397 140.0269 rice 2002-05, 2002-09
2003-05, 2003-09

Akira Miyata 

NL_Lan Netherla
nds 

51.9536 4.9029 maize 2005-06, 2005-10 Eddy Moors; 
Moors et al. 
(2010);  

US_ARM 
 

USA 36.6058 -97.4888 wheat 2003-01, 2003-07
2003-09, 2004-06

Marc Fischer 
Fischer et al. 
(2007) 

US_Bo1 USA 40.0062 -88.2904 maize 2001-05, 2001-10
2003-05, 2003-10
2005-05, 2005-10

Meyers and 
Hollinger, (2004); 
Meyers et al. 
(2006) soybean 2000-05, 2000-10

2002-05, 2002-10
2004-05, 2004-10
2006-05, 2006-10

US_Bo2 USA 40.009 -88.29 maize 2004-05, 2004-10
2006-05, 2006-10

Carl Bernacchi 
 

soybean 2005-05, 2005-10
US_Ne1 USA 41.1651 

 
-96.4766
 

maize 2001-06, 2001-10
2002-06, 2002-09
2003-06, 2003-10
2004-06, 2004-10

Shashi Verma;  
Verma et al. 
(2005) 
 

US_Ne2 USA 41.1649 
 

-96.4701
 

maize 2001-05, 2001-10
2003-05, 2003-10

Shashi Verma;  
Verma et al. 
(2005) soybean 2002-06, 2002-10

2004-06, 2004-10
US_Ne3 USA 41.1797 -96.4397 maize 2001-05, 2001-10

2003-05, 2003-10
Shashi Verma;  
Verma et al. 
(2005) soybean 2002-06, 2002-10

2004-06, 2004-10
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3.3    Results 
 
3.3.1    Light use efficiency *GPP 

 
The direct estimates of *GPP using FLUXNET crop sites are listed in Table 3.3. At these 
sites, the ratios between modelled and observed GPP varied between 0.86 and 1.23 and 
were on average 1.04±0.08 (standard deviation). The corresponding correlation 
coefficients of monthly modelled and observed GPP over each site were on average 
0.85±0.14 (standard deviation). We summarized these measured *GPP and the ones 
derived from the literature for the 26 crop types in MIRCA2000 in Table 3.4. 8 of 26 crop 
types were directly calculated in this paper, covering 55% of the global cropland areas 
(Portmann et al., 2010). FLUXNET-based *GPP varied between crop types with potato 
having the lowest value (1.5 g C MJ-1) and maize having the highest (2.84 g C MJ-1). Our 
estimates and those of previous studies (Lobell et al., 2002; Chen et al., 2011; Table 3.1) 
thus confirm a higher LUE value for maize than most other crops. On average our *GPP 
values are higher than those used in Zhao and Running (2010) (i.e. 1.044 g C MJ-1) and 
the default values in CASA model (i.e. 1 g C MJ-1), but are still within the range of values 
reported based on site measurements previously (e.g. Lobell et al., 2002; Table 3.1). 
 

As shown in Fig. 3.1a, our direct estimates are generally lower than the literature based 
values. We prefer to use our directly estimates based on FLUXNET measurements 
because this enables us to upscale our site level results to large domains using identical 
JRC fPAR data. To harmonize our *GPP values, a linear regression was calculated when 
both FLUXNET and literature based *GPP were available (Fig. 3.1b). The linear relation 
was applied to generate the *GPP for the crop types that were not included in FLUXNET 
based *GPP as: 
 

       (3.4) 
 
Because *GPP should be always larger than zero, we kept the physically unrealistic offset 
(i.e. 0.1252) to best preserve the relation within the range of estimates. For 5 crop types 
we had neither FLUXNET nor literature values available. For rye the same *GPP of wheat 
was assigned because rye is a member of wheat tribe. The other 4 types (citrus, date 
palm, grapes and coffee) were all assigned 1.2 g C MJ-1. This value is close to the lowest 
value of our estimates for other perennial crops (1.21 g C MJ-1) and to the values used by 
Zhao and Running (2010). 
 

 

 

 

 

 

 



 

Table 3.3. Statistics of GPPCASA to GPPFLUXNET relation and *GPP estimates at FLUXNET 
sites. 
site 
code 

crop types  correlation 
coefficient 

standard 
deviation1

centered 
RMSE1 

GPPCASA/ 
GPPFLUXNET 

*GPP (g C 
MJ-1) 

BE_Lon Sugarbeet 0.47 0.46 0.88 1.00 2.90 

 Winterwheat 0.72 0.75 0.69 0.95 2.40 

 Potato 0.98 0.39 0.61 1.12 1.50 

CN_Du1 Wheat 0.83 0.56 0.62 1.10 1.65 

DE_Geb Rapeseed 0.94 0.89 0.36 1.04 2.30 

 Winter Barley 0.72 0.79 0.70 0.86 1.55 

 Sugarbeet 0.90 0.84 0.43 1.23 1.00 

DE_Kli Rapeseed 0.81 0.87 0.59 0.94 1.80 

 Winter Wheat 0.95 0.83 0.33 1.20 2.45 

DK_Ris Winter Wheat 0.92 0.98 0.41 0.95 2.25 

ES_ES2 Rice 0.94 0.94 0.33 1.01 2.90 

FR_Gri Winter Wheat 0.92 0.93 0.40 0.96 2.80 

IE_Ca1 Spring Barley 0.83 0.66 0.58 1.09 1.90 

JP_Mas Rice 0.90 0.53 0.57 1.07 2.60 

NL_Lan Maize 0.47 0.52 0.88 1.00 2.35 

US_AR Wheat 0.96 1.02 0.30 0.94 1.25 

US_Bo1 Soybean 0.87 0.75 0.51 1.12 1.55 

 Maize 0.96 0.85 0.31 1.06 2.00 

US_Bo2 Maize 0.99 0.87 0.16 1.09 2.90 

 Soybean 0.96 0.85 0.29 1.07 1.45 

US_Ne1 Maize 0.90 0.61 0.53 1.11 2.95 

US_Ne2 Maize 0.92 0.71 0.45 1.10 3.45 

 Soybean 0.79 0.63 0.63 1.07 1.75 

US_Ne3 Maize 0.84 0.65 0.58 1.10 3.40 

 Soybean 0.74 0.64 0.68 1.03 1.80 
1 both modelled standard deviation and centered RMSE were nondimensionalized by 
dividing the standard deviation of the corresponding observation. More details are in 
section 3.2 of Taylor (2001) 
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Table 3.4. *GPP used in our study and global cropland GPP estimates for various crop 
types.
ID crop types *GPP_FLUXNET

±std 
*GPP_literature

±std 
*GPP_regress *GPP_model GPP (Pg C yr-1) 

1 Wheat 2.13±0.57 2.92±0.45 2.10 2.13 1.384 
2 Maize 2.84±0.57 4.07±0.58 2.87 2.84 1.545 
3 Rice 2.75±0.21 2.79±0.28 2.01 2.75 1.514 
4 Barley 1.73±0.25 2.88±0.46 2.07 1.73 0.260 
5 Rye    2.13 0.109 
6 Millet  3.52±0.48 2.51 2.51 0.134 
7 Sorghum  4.01±0.66 2.83 2.83 0.272 
8 Soybeans 1.64±0.17 2.36±0.46 1.72 1.64 0.491 
9 Sunflower  2.52±0.50 1.83 1.83 0.112 
10 Potatoes 1.50 2.63±0.45 1.91 1.50 0.091 
11 Cassava  4.20 2.96 2.96 0.612 
12 Sugar cane  3.64±0.50 2.59 2.59 0.494 
13 Sugar beet 1.95±1.34 2.80±0.52 2.02 1.95 0.040 
14 Oil palm  2.02±0.17 1.49 1.49 0.210 
15 Rape seed 2.05±0.35 2.62±0.64 1.89 2.05 0.115 
16 Groundnut

s  
 2.34±0.38 1.71 1.71 0.105 

17 Pulses  2.87±1.19 2.06 2.06 0.353 
18 Citrus    1.2 0.064 
19 Date palm    1.2 0.001 
20 Grapes     1.2 0.041 
21 Cotton  1.71±0.19 1.28 1.28 0.123 
22 Cocoa  2.14 1.57 1.57 0.132 
23 Coffee    1.2 0.158 
24 Others 

perennial 
 1.60 1.21 1.21 0.795 

25 Fodder 
grasses 

 3.18±0.65 2.28 2.28 1.389 

26 Others 
annual. 

 2.59±0.85 1.87 1.87 0.508 

 global     11.050 
 

  



 

3.3.2    Global cropland monthly GPP in the year 2000 
 
We calculated monthly GPP for these 26 crop types at 5 arc min resolution for the year 
2000, the only year for which the cropland distribution was available (Portmann et al., 
2010). Global annual GPP amounts for each crop type as well as for all cropland 
combined are listed in Table 3.4. The annual global cropland GPP was 11.05 Pg C yr-1 in 
the year 2000. This estimate was in between the 8.2 Pg C yr-1 and 14.8 Pg C yr-1 reported 
previous by Beer et al. (2010) and Saugier et al. (2001), respectively. Maize, rice and 
wheat had the 3 highest GPP values for grains, contributing 40% of the global cropland 
GPP. Fodder grasses are the most important crop type that is not grain and ranked third 
in all crops. The 8 crop types where GPP was calculated using *GPP based on FLUXNET 
sites contributed 49% of the global cropland GPP. 
 

 
Figure 3.1. Maximum light use efficiency ( *GPP in g C MJ-1) for a) different crop types 
based on FLUXNET and literature with error bars representing two standard deviations of 

*GPP. Crop type ID value refers Table 3.4. b) Linear relation between FLUXNET based and 
literature based *GPP estimations for 8 crop types listed in Table 3.4. 
 
Figure 3.2 illustrates the global spatial distribution of annual global cropland GPP. High 
GPP regions extend mostly in the warm humid or semi-humid plains of the northern 
hemisphere, such as the central and eastern part of United States, Europe, the eastern 
plain of China and the Ganges plain of South Asia. Per unit area, tropical regions had the 
highest GPP, such as in the lower reaches of the Ganges River over the contiguous areas 
of India and Bangladesh, and the lower reaches of the Niger River in Nigeria. 
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a much more sophisticated parameters of the LUE empirical models than previous 
studies. 
 

Table 3.5. Annual GPP (Tg C yr-1) for different regions in the year 2000. 
Crop types North 

America1 
South 
America 

Europe2 Asia Africa Oceania 

Wheat 196.4  87.5  481.6  525.4 35.4  58.2  
Maize 504.2  277.2  204.6  342.6 215.5 1.0  
Rice 22.0  78.1  3.6  1336.3 73.2  0.9  
Barley 24.5  5.5  149.4  55.0  9.9  16.2  
Rye 1.7  0.7  98.4  7.2  0.4  0.2  
Millet 0.9  0.3  3.6  62.7  65.9  0.2  
Sorghum 54.1  28.3  1.4  70.4  112.0 5.6  
Soybeans 215.1  198.2  5.5  65.8  5.9  0.2  
Sunflower 9.3  24.4  53.7  19.2  4.5  0.5  
Potatoes 3.9  5.1  49.3  28.6  3.8  0.3  
Cassava 9.9  103.9  0.0  143.6 354.4 0.8  
Sugar cane 85.2  180.8  0.0  186.8 30.4  11.0  
Sugar beet 3.0  0.3  32.0  3.8  0.4  0.0  
Oil palm 2.6  6.9  0.0  138.0 60.8  2.1  
Rape seed  16.2  0.4  36.6  56.4  0.1  5.4  
Groundnuts  6.5  3.8  0.1  55.4  39.4  0.2  
Pulses 29.8  54.4  25.7  143.8 92.5  6.6  
Citrus 12.3  18.8  3.3  18.9  10.2  0.3  
Date palm 0.0  0.0  0.0  0.6  0.8  0.0  
Grapes  2.5  3.4  27.2  6.0  1.2  1.0  
Cotton 31.6  11.9  1.5  54.2  21.3  2.2  
Cocoa 6.2  28.7  0.0  14.2  80.3  2.9  
Coffee 33.2  56.2  0.0  36.0  30.7  1.6  
Others 
perennial 

34.2  64.7  55.9  505.1 121.1 14.3  

Fodder grasses 494.5  135.6  504.2  205.3 26.0  24.2  
Others annual. 31.9  37.2  117.7  215.6 95.8  9.5  
Total 1831.7  1412.1  1855.4 4297.0 1492.0 165.5  
Percent (%) 16.6  12.8  16.8  38.9  13.5  1.5  

1North America includes Central America. 2Europe does not contain Russia east of the Ural.  
 
Global cropland GPP was estimated to be 11.05 Pg C yr-1, which is within the range of 
previous studies (Beer et al., 2010; Saugier et al., 2001). Several model studies found 
that *GPP or *NPP values based on site measurements could not be used in models 
directly because this would lead to excessively high cropland GPP values (Lobell et al., 
2002; Potter et al., 1993). For example, a value of 0.5 g C MJ-1 for *NPP was initially used 
in CASA (Potter et al., 1993). Because if *NPP was set 1.25 g C MJ-1 as Heimann and 
Keeling (1989) did, annual NPP would be an unrealistic 185 Pg C yr-1 (Potter et al., 1993). 
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Even if we double 0.5 g C MJ-1 number to account for the GPP/NPP ratio of about 2, the 
value is much below the *NPP values in our study. 
 
The difference between in-situ measurements of *GPP and the values used in models 
may reflect model structural biases which have to be compensated for by adjusting 
parameters. Therefore, we echo the findings of Lobell et al. (2002) who used both CASA 
and harvest records. Cropland NPP for continental United States (excluding Alaska and 
Hawaii) was estimated to be 0.62 Pg C yr-1, or 1.24 Pg C yr-1 GPP by doubling NPP (Lobell 
et al., 2002). *NPP in Lobell et al. (2002) was estimated by constraining the model results 
with harvest data based NPP across each county. In our estimations, GPP in United 
States was 1.28 Pg C yr-1 which is very close to the value obtained in Lobell et al. (2002). 
However, the *GPP values in Lobell et al. (2002) by doubling *NPP are still much smaller 
than the values we used here. There is therefore no conflict between field based *GPP 
and the direct parameterization application in our model. The main distinction between 
the current and previous studies are the two main innovations of our study: 1) we use 
cropland areas distribution data to define the cropland types by month in order to 
distinguish the growing and fallow periods; 2) we assigned the 26 crops each a different 

*GPP value. 
 
Compared with natural ecosystems, usually croplands have three important distinct 
features which influence their carbon exchange. First, the plant types are much more 
homogeneous than natural ecosystems due to management practice of farmers. Second, 
the plant types change much faster than natural ecosystems due to crop rotation 
schemes used, which means the land cover type does not uniquely determine plant 
types as in more natural ecosystems. Third, planting, ploughing and harvesting activities 
change the ecosystems in croplands abruptly and leave land fallow for long periods, 
sometimes even in the growing season. Therefore, croplands distributions from survey 
data are the only option to separate crop rotation and planting times fully at present. 
However, the spatial resolution of this data is still larger than a single field, implying that 
one cell still contains several crop yields and types. These crops have different light use 
efficiencies in reality but are treated in models with the same vegetation index and 
environmental factors. 
 
3.4.2    Uncertainties
 
Current global scale estimates of gross primary production (GPP) are still subject to large 
uncertainties (Beer et al., 2010; Koffi et al., 2012), although GPP is the largest flux of the  
terrestrial carbon cycle. Usually, model structure and input data are the main sources of 
these uncertainties (Jung et al., 2007). Previous studies have also demonstrated that it is 
difficult to quantify these uncertainties accurately, but that they rather quantify the 
sensitivity of model results to various sources (June et al., 2007; Zhao et al., 2006). In this 
section, the current state of global GPP estimates and the uncertainties of the datasets 
created in this thesis will be addressed.  
 



 

Due to the large variability of plant species and growth, existing direct observational data 
are still far from sufficient to generate an accurate GPP estimate alone. Therefore, 
although photosynthesis processes at leaf level have been well known, current global 
GPP estimates rely very much on model and observation-model fusion methods or other 
proxy datasets (Field et al., 1995; Knorr and Heimann, 1995; Potter et al., 1993; Ruimy et 
al., 1994; Zhao et al., 2005; Ryu et al., 2011; Koffi et al., 2012; Beer et al., 2010; 
Suntharalingam et al., 2008; Welp et al., 2011). 
 
Several independent methods have been developed to estimate global GPP. GPP can be 
roughly estimated by doubling NPP because autotrophic respiration (Ra) is suggested to 
usually take up about half of GPP (Waring et al., 1998), but with large changes across 
plant types and sites (Litton et al., 2007; DeLucia et al., 2007; Luyssaert et al., 2007). NPP 
can be estimated by measuring above ground dry matter or total dry matter in field. 
Particularly for croplands, harvested data are also found to be well linked to NPP (Haberl 
et al., 2007; Monfreda et al., 2008; Lobell et al., 2002). Therefore, doubling NPP acts as 
an indirect way to infer GPP. The biochemical processes of photosynthesis will change 
some isotope concentrations in the atmosphere, modifying the atmospheric 18O and 16O 
ratios (18O/16O) in a measureable way. Several studies have demonstrated the usage of 
18O/16O in these GPP estimations (Ciais et al., 1997; Farquhar et al., 1993 nature; Welp et 
al., 2011). GPP calculated from on 18O/16O ranges from 150-175 Pg C yr-1 based on the 
latest results (Welp et al., 2011). Carbonyl sulphide (OCS) is also absorbed by plants 
during the photosynthesis processes when CO2 is being taken up by ecosystems, which 
could be further used to constraint terrestrial GPP (Suntharalingam et al., 2008; Asaf et 
al., 2013). 
 
Flux towers based eddy covariance methods offer directly field measurements of the CO2 
flux between atmosphere and terrestrial ecosystems, which can then be further 
converted to GPP and ecosystem respiration (Lasslop et al., 2010; Reichstein et al., 2005). 
After decades of developments, more than one thousand flux towers have been 
established worldwide. From these and using additional, primarily satellite data sources, 
Beer et al., 2010 estimated global GPP 123±8 Pg C yr-1 by combining FLUXNET 
measurements and several models. Although this number was questioned by Welp et al. 
(2011) as mentioned above, 123 Pg C yr-1 is still treated as a benchmark in several studies 
(Bonan et al., 2011; Chen et al., 2012). 
 
Importantly, most of the studies listed above only can be used to estimate annual mean 
of global GPP, which is still subject to large uncertainties. Temporal continuously and 
spatially specified GPP is usually the first step in terrestrial carbon cycle calculated in 
models. The LUE method used here (Monteith, 1972; Monteith and Moss, 1977) is an 
empirical approach. Therefore, besides input data and model structure, the look-up 
table of the key parameter (i.e. *GPP) also contributes considerably to the uncertainties. 
As shown in equation 3.1, PAR, fPAR, temperature and precipitation are the main forcing 
datasets. PAR, temperature and precipitation are meteorological variables, describing 
the environmental stresses in the equation. GPP is very sensitive to PAR in a linear way. 
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Temperature and precipitation is the main meteorological drivers, which were found 
impact models results significantly, especially interannual variations of GPP (Jung et al., 
2007). For example, using MOD17 algorithm which is also based on LUE method, Zhao et 
al. (2006) found that different reanalysis data sets could infer over 20 Pg C yr-1 bias of 
global GPP. Only the relative importance could be evaluated and it is hard to reduce 
biases from meteorological inputs. Therefore, choosing widely used and well evaluated 
meteorological data sets is ultimately important.  
 
Besides meteorological variables, vegetation monitoring data sets exhibited large biases 
across different data sets. A large difference was demonstrated after comparing four 
well-known fPAR data sets (McCallum et al., 2010). Only croplands were analyzed in this 
thesis, and fortunately, which exhibit the highest agreement across fPAR data sets 
(McCallum et al., 2010). As discussed above, in this study *GPP values were calculated 
first using same fPAR data at site level. Therefore, fPAR data set and *GPP values are 
closely related, which means the bias using different fPAR data sets were partly reduced 
by *GPP evaluations. In other words, fPAR should be coherent at site level for *GPP 
parameter calculations and at large scale for GPP modelling. This strategy is similar to 
previous studies, such as when *NPP was reset from 0.39 g C MJ-1 PAR using fPAR to 0.55 
g C MJ-1 PAR using EVI (enhanced vegetation index) in a variant of CASA (Potter et al., 
2007). 
 
LUE is an empirical method, requiring well evaluated look-up table of *GPP. Current 
look-up table of *GPP for these 26 crop types are still far from accurate. At site level, 
biases in *GPP calculations were constrained by data quality of tower measurements, the 
overlap of remote sensed fPAR pixel and tower footprint. At current, *GPP only 
represents the annual mean of the linear relationship between the terms in equation 3.1. 
This implies that monthly biases integrated are much larger than those at annual 
timescales. *GPP values based on flux tower measurements were treated as the 
reference here to convert literature based *GPP to generate the final look-up table. 
Unfortunately, previous studies lacked uniformity in field measurements. A conversion 
equation was thus created (equation 3.4), which of course implicitly relies on a set of 
assumptions. 
 
The use of 26 different *GPP for these crop types is the innovative aspect of this study 
compared with previous studies. Measurements constrained *GPP of each crop type 
have a range as shown in Table 3.4. Thus only the mean values were chosen to drive the 
model, generating uncertainties in two ways. Biases of regional GPP estimates would be 
relative larger than that of global. The mean value of *GPP used in the model may also 
different with the theoretical accurate value. Usually enlarging the number of evaluation 
sites leads to more accurate estimates. Compared to previous studies, it is assured that 
the use of 26 *GPP will reduce the biases in spatial distribution of croplands GPP because 
more plant specified information is considered. For example, as a C4 plant, *GPP of maize 
is much larger than most other crops. If only one value of *GPP was assigned for all crops, 
the crop GPP in the region where maize is the dominating plant will be under-estimated. 



 

Therefore, although large uncertainties are still involved in global crop land GPP data set 
from vary sources, improvements were obtained in spatial details and plant specified 
contributions.  
 
3.5    Conclusions 
 
In this paper, we estimated global cropland GPP using a LUE model with improved input 
data and parameterization of *GPP. 26 crop types were separated in our model with 
different *GPP values compared to the previously default parameterization with a 
constant *GPP for all crop types. To meet the parameterization requirements, we 
evaluated *GPP based on FLUXNET data for 8 crop types. We also performed a literature 
survey and gathered 89 *GPP values that met our requirements necessary to harmonize 
these values. Our FLUXNET based *GPP values are within the range of previous studies 
but are higher than those usually used in LUE models. Finally, a look-up table of *GPP for 
the 26 crop types was created based on measurements. 
 

*GPP (assumed equal to 2 times *NPP) based on field measurements and the values used 
in vegetation models differ widely, as discussed by Potter et al. (1993), Ruimy et al. (1994) 
and Lobell et al. (2002). Our previous work (Chen et al., 2011) also highlighted the need 
to improve the LUE parameterization in vegetation models. In this study, we estimated 
global cropland annual GPP at 11.05 Pg C yr-1 using field based *GPP. This in the middle 
of previous studies indicated 14.2 Pg C yr-1 by Beer et al. (2010) and 8.2 Pg C yr-1 by 
Saugier et al (2001). GPP in United State was estimated to be 1.28 Pg C yr-1, close to the 
1.24 Pg C yr-1 reported by Lobell et al. (2002). Our results demonstrate a successful usage 
of directly estimated *GPP in a LUE approach based vegetation model. Our 
improvements, separating croplands which are generally treated as one biome in global 
models into different plant types with corresponding spatial distribution and using more 
specific *GPP values for each types, may lead to more realistic cropland GPP estimates. 
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Chapter 4    A global analysis of the impact of drought on net 

primary productivity3 
 
Abstract 
 
We investigated the impact of drought on interannual variability of net primary 
productivity (NPP) from 1997 to 2009 using the standardized precipitation 
evapotranspiration index (SPEI) drought index and satellite-derived vegetation greenness 
converted to NPP. SPEI is positive for wet conditions and negative for dry conditions. We 
found that SPEI and NPP were coupled and showed in-phase behaviour on a global scale. 
We then used the Köppen climate classification to study the SPEI-NPP relations 
regionally and found that while NPP and SPEI were positively related (high SPEI, high NPP) 
in arid and in seasonal dry regions, the opposite occurs in most boreal regions (high SPEI, 
low NPP). High intensity drought events, such as the 2003 drought in Europe were picked 
up by our analysis. Our findings suggest that the strong positive relation between global 
average moisture availability and NPP consists of a composite of the positive relation 
across dry regions and the coherent NPP decline during and after intensive drought 
events in humid regions. Importantly, we also found that there are many areas on the 
globe that show no strong correlation between drought and NPP. 
 
4.1    Introduction 
 
Terrestrial ecosystems constitute a substantial CO2 sink, currently in the order of a 
quarter of emissions from fossil fuels and deforestation (Le Quéré et al., 2009). They 
exhibit considerable interannual variability, which is to a large extent reflected in the 
variability of the mean global atmospheric CO2 growth rate (Knorr et al., 2007; Le Quéré 
et al., 2009; Zhao and Running, 2010). Zhao and Running (2010) suggested a strong 
correlation between the occurrence of global drought and NPP (Net Primary Production) 
using the Moderate Resolution Imaging Spectroradiometer (MODIS) NPP algorithm and 
the Palmer Drought Severity Index (PDSI) as a proxy for soil moisture. 
 
Extreme droughts can impact the terrestrial productivity in a significant way and reduce 
the sink strength at (sub) continental scale (Ciais et al., 2005; Reichstein et al., 2007a; 
van der Molen et al., 2011). Several recent droughts, such as those in Australia 
(2002-2009), Europe (2003), and Amazonia (2005, 2010) have had a clear detectable 
impact on plant productivity (Gobron et al., 2010; Zhao and Running, 2010). Since the 
occurrence and severity of droughts is likely to increase in the near future as a result of 
global warming (Dai, 2013, but see also Sheffield et al., 2012), there is a clear need to 

                                                            
3 This chapter is based on Chen, T., van der Werf, G. R., de Jeu, R. A. M., Wang, G., and 
Dolman, A. J.: A global analysis of the impact of drought on net primary productivity, 
Hydrol. Earth Syst. Sci., 17, 3885-3894, DOI: 10.5194/hess-17-3885-2013, 2013. 
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understand whether the global average results found by Zhao and Running (2010) also 
apply at smaller spatial scales, and perhaps arguably more important, whether at the 
level and scale of biomes and climate zones different relationships occur. 
 
Droughts have traditionally been described based on their intensity, duration and spatial 
extent, or a mixture of this. Precipitation anomalies are often used as a proxy because 
precipitation is the main water source to the soils. However, the local water balance also 
depends on evaporation, soil moisture storage, and runoff. Compared with precipitation, 
drought indices have the advantage that they quantitatively describe both the character 
of drought events and long term variations in the mean dry and wet conditions. 
Furthermore, drought indices have significant advantages over precipitation in analytical 
applications, as they address the potential impacts much more explicitly, for instance by 
taking into account the duration and cumulative severity. However Sheffield et al. (2012) 
also point out that care has to be exercised when extrapolating drought indices that are 
not based on a full physical description of the relevant processes. While recently 
remotely sensed soil moisture data have become available for 30 years (Dorigo et al., 
2012; Liu et al., 2012), these data unfortunately suffer sometimes from gaps in the time 
series and refer in principle only to the first few, variable centimetres of the soil, making 
their global application in drought studies not yet straight forward. 
 
The previously mentioned drought-vegetation studies generally suggest that at the 
global scale relationships exist that hide the underlying composite of several regional 
responses at smaller spatial scales. Importantly then, not only meteorological variability 
plays a role, but also the general sensitivity or adaptation of the vegetation to drought 
stresses. Savannah vegetation for instance is likely to be more adapted to periodic 
drought than a temperate forest that experiences a drought only once in a few years. 
This calls for the inclusion of biome or vegetation information in the drought-carbon 
impact analysis. We use here a combination of the Köppen climate classification 
together with a CASA (Carnegie-Ames-Stanford-Approach; Potter et al., 1993; van der 
Werf et al., 2010) derived NPP and the SPEI (standardized precipitation 
evapotranspiration index; Vicente-Serrano et al., 2010) drought index to investigate this 
variability. By doing so, we aim to improve the understanding of the relation of drought 
with vegetation and also detect whether our hypothesis of regionally varying responses 
is correct. 
 
By using the SPEI index, we believe to have made the appropriate choice to study 
drought in a more meaningful way than with for instance the PDSI, or other static 
drought indices. As demonstrated by Heim (2002), over 10 different drought indices 
have been developed during the twentieth century, of which SPI (standardized 
precipitation index; McKee et al., 1993) and PDSI are the most widely used (Ji and Peters, 
2003; Lotsch et al., 2003; Rhee et al., 2010). PDSI is more physical based but SPI is easy 
to calculate and has different time scales. This time scale characteristic of SPI is very 
important to represent different kinds of droughts (McKee et al., 1993). The World 
Meteorological Organization (WMO) has recommended SPI as the standard drought 



 

index. Recently, the SPEI was generated, which relies on a similar algorithm as SPI but 
including temperature to calculate potential evapotranspiration. Therefore, SPEI 
combines the advantages of SPI (different time scales) and PDSI (both precipitation and 
temperature play a role), and is considered to provide a more meaningful parameter to 
detect the impact of drought on vegetation (Vicente-Serrano et al., 2013) in 
consequence. However, following Sheffield et al. (2012) who showed the importance of 
using a physically based estimate of evaporation in calculating droughts, we use here the 
SPEI calculated from Penman-Monteith derived estimates of evaporation. 
 
The objective of this study is thus to investigate how anomalous moisture conditions, as 
estimated by the SPEI, are related to annual changes in NPP on multiple time and space 
scales across the globe. We choose NPP as an indicator of carbon sensitivity, so as not 
having to separate several ecosystem level responses of heterotrophic respiration, R 
versus Gross Primary Production (GPP). We appreciate that respiration is also sensitive 
to drought and soil moisture, but this field is only just evolving and we did not wish to 
further complicate matters. We also note that these components are usually calculated 
in models from NPP. Therefore NPP tends to be more useful for our study than either R 
or NEE and more directly related to ecosystem carbon use than GPP. We use the CASA 
biogeochemical model (Potter et al., 1993; van der Werf et al., 2010) to estimate NPP. 
We specifically aimed to provide more spatial detail than Zhao and Running (2010), as it 
is to be expected that soil moisture-NPP relations are strongest in arid areas and those 
with a pronounced dry season. In contrast, in cold and humid regions we do not expect a 
clear relation. We suspect that the global relations as found by Zhao and Running (2010) 
may hide this regional detail that could be important for the future behaviour of the 
carbon cycle. Note, that it is also important to identify those regions where no clear 
drought NPP relation exist, as this indicates robustness of the carbon cycle to changes in 
precipitation and soil moisture in these regions. 
 
4.2    Methods 
 
We used the Carnegie-Ames-Stanford-Approach (CASA) biogeochemical model (Potter et 
al., 1993; van der Werf et al., 2010) on a 0.5° grid with a monthly time step. NPP was 
calculated by the light use efficiency approach multiplying absorbed photosynthetically 
active radiation (PAR) and a light use efficiency coefficient,  (Monteith, 1972; Monteith 
and Moss, 1977): 
 

           (4.1) 
 
Where fPAR is the fraction of PAR absorbed by vegetation, f ( ) accounts for 
environmental stress governed by temperature and moisture. CASA employs a 
sub-model to calculate the soil moisture balance. The model keeps a running water 
balance where the main impact of soil moisture on GPP is given by water stress factor 
(W ) which is calculated as W  = 0.5 + 0.5*P/PET, where PET is the potential 
evapotranspiration and P is the precipitation. This equation, though arguably simple, 
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contains the primary responses of NPP to soil moisture. The factor 0.5 is chosen to 
incorporate the effect that in the fPAR data used in CASA, a soil moisture effect would 
also be visible, because fPAR will decrease when the wilting occurs due to the shortage 
of soil moisture. More details of f ( ) can be found in Potter et al. (1993). * was set to 
0.5 g C MJ-1 PAR globally to match global NPP values of 60 Pg C year-1 (Beer et al., 2010). 
International Satellite Cloud Climatology Project (ISCCP) solar radiation data (Zhang et al., 
2004) were used here to generate PAR. fPAR data were calculated based on Normalized 
Difference Vegetation Index (NDVI) from the Advanced Very High Resolution Radiometer 
(AVHRR, Tucker et al., 2005) and Moderate Resolution Imaging Spectroradiometer 
(MODIS) products (Myneni et al., 2002). Precipitation from the Global Precipitation 
Climatology Project (GPCP) version 1.1 (Huffman et al., 2001) and temperature of the 
Goddard Institute for Space Sciences (GISS) surface temperature analysis (Hansen et al., 
1999) were employed to quantify environmental drivers. Further details are provided by 
van der Werf et al., (2010). 
 
We use the latest SPEI v2.2 data (available from 
https://digital.csic.es/handle/10261/72264) in this study. SPEI v2.2 involves CRU TS3.2 
monthly gridded temperature and PET. The FAO (Food and Agricultural Organization) 
grass reference method, a variant of the Penman-Monteith method, is using in the PET 
calculation. More details of PET calculation and application limitations across vegetation 
types can be found in Ekström et al. (2007) and Allen et al. (1994). The difference 
between precipitation (PPT) and PET, as a simplified water balance, was calculated as 
 

               (4.2) 
 
D was calculated for each grid cell and month following 
 

          (4.3) 

 
Where k is time scale, in months. A three-parameter log-logistic distribution was used to 
model these D series, with the function given by 
 

             (4.4) 

 
where , , and  indicate scale, shape and origin parameters, respectively. This function 
was chosen as the best distribution function by L-moment ratio diagrams to fit D series 
(Vicente-Serrano et al., 2010). Finally, SPEI data were calculated by standardizing F(x). 
More details are provided in Vicente-Serrano et al. (2010). 
 
 
 
 



 

Table 4.1. List of regions referred to this paper. Abbreviations consist of the first two 
letters of Köppen climate classification (indicating climate) and two letters to identify the 
continent or region. For example, AFAF is first group (A, equatorial) humid (F) in Africa 
(AF). 
Abbreviation Köppen climate classification continent or region 
AFAF equatorial climates, humid and monsoon (Af, 

Am) 
Africa 

AFEA equatorial climates, humid and monsoon (Af, 
Am) 

Eurasia and north Oceania 

AFSA equatorial climates, humid and monsoon (Af, 
Am) 

Central and South 
America 

AWAF equatorial climates with winter dry (Aw) Africa 
AWEA equatorial climates with winter dry (Aw) Eurasia and north Oceania 
AWSA equatorial climates with winter dry (Aw) Central and South 

America 
BBAF arid climates (BWk, BWh, BSk, BSh) Africa 
BBEA arid climates (BWk, BWh, BSk, BSh) Eurasia 
BBNA arid climates (BWk, BWh, BSk, BSh) North America 
BBOC arid climates (BWk, BWh, BSk, BSh) Oceania 
BBSA arid climates (BWk, BWh, BSk, BSh) Central and South 

America 
CFAS temperate climates, humid (Cfa, Cfb, Cfc) Asian 
CFEU temperate climates, humid (Cfa, Cfb, Cfc) Europe 
CFNA temperate climates, humid (Cfa, Cfb, Cfc) North America  
CFOC temperate climates, humid (Cfa, Cfb, Cfc) Oceania 
CFSA temperate climates, humid (Cfa, Cfb, Cfc) Central and South 

America 
CSEA temperate climates with summer dry (Csa, Csb, 

Csc) 
Mediterranean Sea 

CWAF temperate climates with winter dry (Cwa, Cwb, 
Cwc) 

Africa 

CWEA temperate climates with winter dry (Cwa, Cwb, 
Cwc) 

Eurasia 

DFEA cold climates, humid (Dfa, Dfb, Dfc, Dfd) Eurasia 
DFNA cold climates, humid (Dfa, Dfb, Dfc, Dfd) North America 
DWEA cold climates with winter dry (Dwa, Dwb, Dwc, 

Dwd) 
Eurasia 

ETAT polar tundra (ET) Arctic 
ETQT polar tundra (ET) Eurasia 
 
The response of hydrological systems to moisture deficits varies over time scales. On 
short time scales surface runoff and soil moisture are of concern while at longer 
timescales stream flow and ground water levels are important (Changnon and Easterling, 
1989). Mathematically, SPEI can be calculated on any time scale, but typical scales used 
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are 1-, 3-, 6-, 12-, and 24-months. 3-, 5- and 6-month SPI have been used to indicate soil 
moisture conditions (Hirschi et al., 2011; Ji and Peters, 2003; Lotsch et al., 2003) and 2-3 
months SPI may indicate agricultural drought best (Mishra and Desai, 2005). We focused 
our analysis on 1-, 3-, and 6-month SPEI values to capture variability in soil moisture 
conditions from surface to deeper rooting depths. 
 
Annual SPEI data were calculated from original monthly SPEI using all months in the year. 
Pearson correlation coefficients were calculated for the annual NPP vs. 1-, 3-, and 
6-month SPEI values. We removed the linear trends from annual NPP and SPEI time 
series during correlation calculation. To aid the interpretation of our analyses, we 
divided the global land surface into 24 climate regions across continents based on both 
geographical location and the Köppen climate classification (Kottek et al., 2006, Fig. 4.1, 
Table 4.1). We did not combine all regions with an identical climate type across 
continents to maintain variability due to region-specific meteorological conditions. In the 
Köppen climate classification, first letters are used to indicate the main climate groups, 
i.e. group A concerns equatorial climate; group B arid climates; group C temperate 
climates; group D continental cold climates and group E consists of polar climates. 
Within the Köppen climate classification, we separated arid, humid and seasonal 
(summer or winter) dry types besides the five main groups. Only those classes that 
occupy at least 1% of the global land surface were included in our study with the 
exception of temperate humid Oceania (CFOC), which is the second largest climate type 
there. 
 
4.3    Results 
 
Global CASA calculated NPP showed a decreasing trend for the period of 1997-2009, 
similar to that found by Zhao and Running (2010), but also displayed substantial 
interannual variation (Fig. 4.2). The global SPEI series exhibited almost the same trend, 
and showed a similar pattern that appeared well in phase with NPP. On a global scale, 
for example, dry conditions happened in 2002-2003, 2005 and 2009 with lower NPP and 
SPEI values. 2004 was a wet year and NPP and SPEI were above average compared to 
other years. SPEI values changed somewhat when calculated over different time scales, 
with the maximum range between 1 and 6 month SPEI occurring in 2006. The annual 
variance of SPEI was increasing from 1 month to 6 months time scales as shown in Fig. 
4.2. However, the interannual pattern was robust and the calculated correlation 
coefficients between NPP and SPEI were 0.55 (p < 0.1), 0.51 (p< 0.1) and 0.43 for 1-, 3- 
and 6-month SPEI respectively (Table 4.2). There was a slight declining trend in both SPEI 
and CASA derived NPP, similar to Zhao and Running (2010), despite adding the years 
1997-1999 to the analysis. 
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coefficients in several regions exhibit much more change with different SPEI time scales, 
such as the range of 0.57 in cold humid Eurasia (DFEA) (Table 4.2). This implies that the 
impact of drought on the ecosystems in this area varies with different SPEI time scales, 
and that NPP is sensitive only to droughts specified by a narrow range of time scales. 
Significant values occurred at 1 to 3-month scales and the absolute values are much 
higher than using the 6-month scale, which we suspect is caused by the very short 
growing period during summer in this region. In contrast, in several other regions, arid 
South America (BBSA) for example, we observed little change in response when using 
different time scales (Table 4.2) suggesting that in these cases the vegetation is less 
sensitive to the precise time scale of the drought. 
 
Complementing Table 4.2, Figure 4.4 shows time series of annual 3-month SPEI and NPP 
anomalies between 1997 and 2009 for these 24 regions. As expected, NPP and SPEI have 
similar temporal patterns in arid regions (climate group B, Fig. 4.4g-k), showing 
significant positive correlation coefficients for the arid regions of North America (BBNA), 
Eurasian (BBEA), Africa (BBAF) Australia (BBOC) and Central and South America (BBSA). 
In contrast, NPP and SPEI exhibited out of phase correlations during the whole period in 
boreal Northern Hemisphere with cold climate (climate group D), i.e. cold-humid North 
America and North Eurasian (DFNA, DFEA) and cold climates with winter dry North 
Eurasian (DWEA) as shown in Fig. 4.4t-v. 
 

Table 4.2. Correlation coefficients (R) between annual anomalies of NPP and SPEI for the 
global and for the 24 regions explained in Table 4.1. Significant values (p<0.1) are 
indicated by *. 
SPEI global AFAF AFEA AFSA AWAF AWEA AWSA BBAF BBEA 

1 0.55*  0.20  -0.31  0.36  0.91* 0.30  0.79* 0.55* 0.29  
2 0.51*  0.34  -0.22  0.30  0.87* 0.56* 0.85* 0.40  0.60*  
3 0.43  0.44  0.12  0.34  0.66* 0.67* 0.87* 0.37  0.72*  

 BBNA BBOC BBSA CFAS CFEU CFNA CFOC CFSA CSEA 

1 0.81*  0.74* 0.45  -0.11  0.44  -0.26  0.65* -0.39  0.30  
2 0.86*  0.84* 0.50* -0.31  0.25  -0.16  0.62* -0.26  0.41  
3 0.93*  0.87* 0.48* -0.34  0.39  -0.01  0.52* -0.12  0.58*  
 CWAF CWEA DFEA DFNA DWEA ETAR ETQT   
1 0.55*  0.29  -0.68* -0.46  -0.63* -0.20  -0.22    
2 0.57*  0.14  -0.53* -0.48* -0.63* -0.26  -0.21    
3 0.45  0.21  -0.11  -0.54* -0.56* -0.17  -0.17    
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Figure 4.4. Regional average of SPEI and NPP anomalies for the 24 regions listed in Table 
4.1. 
 
As shown above, the relationships between NPP and SPEI vary with the regions of the 
Köppen climate classification. Generally however, different climate zones exist because 
of the variability of energy and water input with latitude. Therefore, we also show the 
correlations against latitude and calculated the contribution to global NPP to identify in 
which areas the sensitivity to global NPP is most pronounced (Fig. 4.5). Figure 4.5 clearly 
shows the tropics as dominant contributor to global NPP, but with generally low 
sensitivity to drought. Between 20 and 40 S, and between roughly 20 and 50 N we 
observe strong positive correlations, as indeed in Zhao and Running (2010) but these 
areas contribute less to global NPP. 
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Figure 4.5. Correlation coefficients of latitudinal zone averaged NPP and SPEI (back line) 
and NPP contributions as a percentage of global NPP (black dash-dot line). 5-degree 
moving averages were applied to all 0.5-degree steps along latitude. 
 
4.4    Discussion and conclusions 
 
The response of NPP to drought is one of the key dynamic processes of the global carbon 
cycle. We found a statistically significant relation between global NPP and the drought 
index SPEI, similar to Zhao and Running (2010) who studied this for a shorter time frame. 
Although a substantial part of the land surface exhibited opposing patterns, this global 
relation was for a large part driven by the larger areas of the globe where more soil 
moisture leads to increased NPP. This was especially obvious in the response that was 
dominated by the land masses in the Southern hemisphere similar to the soil moisture 
driven decline in evaporation (Jung et al., 2010) and most probably related to the 
variability in rainfall caused by the El Niño-La Niña cycle. Although NPP decreased slightly 
during this period, we prefer to emphasize here its variation rather than the trend 
because the variations are generally more reliable. Furthermore, our results differ also 
slightly from the values reported previously due to the use of different models and 
different time frame. For example, in 2005 the NPP anomaly in the current paper is -0.5 
Pg C but Zhao and Running (2010) reported an anomaly of -1.5 Pg C NPP. 
 
Global NPP is one of the prime factors determining the rate of atmospheric CO2 growth 
rate (Zhao and Running 2010) and the El Niño/La Niña-Southern Oscillation (ENSO) is 
known to be correlated strongly to the interannual variability of the growth rate. The 
mechanism for this is generally attributed to the variation of tropical terrestrial 
ecosystem NPP driven by variability in precipitation (Zeng et al., 2005) and/or increased 
fire and deforestation activity during drought years (van der Werf et al., 2004). We have 
shown how for the tropical landmass with a dry period SPEI shows a clear relation with 
NPP (Fig. 4.4d-f), which suggests drought impacts are indeed part of this mechanism. 
However, negative NPP anomalies at northern mid-latitudes caused by drought events, 
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may also contribute significantly to a lower NPP and the atmospheric CO2 growth during 
a moderate El Niño, for example during 2002-2003 (Knorr et al., 2007). 
 
Both regional averages and our grid scale correlation analysis showed spatial variations 
in the relation between NPP and SPEI. The contrast in response occurred largely 
between arid regions in the mid-latitudes and the cold humid regions boreal in northern 
latitudes where NPP and SPEI were correlated positively or negatively respectively. 
 
Global terrestrial ecosystem growth is mainly controlled by radiation, temperature and 
water availability (Nemani et al., 2003). The arid regions suffer more strongly from water 
deficits while in those areas radiation and temperature are generally not important 
limiting factors. For instance, in the western United States, where long-term aridity 
changes significantly with a warmer climate (Cook et al., 2004), SPEI and NPP exhibited 
significant correlations (Fig. 4.4i). In contrast, in boreal regions, temperature plays a 
more important role in explaining NPP variability (Reichstein et al., 2007b). It is 
important to note that apart from the arid regions, most of seasonally dry regions also 
show positive relations between NPP and SPEI, particularly if the dry season occurs 
within the growing season, i.e. the winter dry equatorial regions (AWAF, AWEA and 
AWSA) and temperate summer dry regions around the Mediterranean (CSEA). 
 
Two regional droughts are important to test the robustness of our results and serve as 
case studies: the 2003 European heat wave and the 2005 Amazon drought. Vegetation 
growth over most areas of Europe is generally presumed to be limited primarily by 
temperature and radiation (Nemani et al., 2003). However, we did find strong NPP and 
SPEI negative anomalies during 2003 (Fig. 4.4m) that present a substantial change from 
previous years. This implies that the net effect of temperature, radiation, and water 
limitation on NPP depends primarily on the intensity of drought. This highlights the 
sensitivity of the ecosystem carbon cycle in these areas to climate variability, in 
particular extreme drought and rainfall events. It is however difficult from our analysis to 
detect a clear threshold that separates the positive from the negative effects of drought 
on NPP. It is clear that severe droughts, such as those in 2003 in Europe reduce NPP 
significantly. 
 
In contrast, we are not able to detect an intense NPP decline in Amazon rainforest during 
2005 although Phillips et al. (2009) reported substantial tree mortality. Zhao and 
Running (2010) also found a clear relation between a negative anomaly in soil moisture 
and a decline in NPP in tropical forests. In our case (not shown here), negative NPP 
anomalies occur at some regions where a strong decline in biomass is reported by 
Phillips et al. (2009), but do not overlap fully. We note that whether there was a 
significant decline in NPP in 2005 in the Amazon is still subject to controversy (Samanta 
et al., 2011). However, if the CASA model underestimated the Amazon NPP decline in 
2005, global SPEI and NPP would show an even stronger in-phase coupled behaviour. 
Besides these two cases, for the Australian continental drought (2002-2009) we find a 
very strong relationship between SPEI and NPP. 



 

In this study we aimed to provide more regional and biome detail to the global relations 
found in Zhao and Running (2010) by analyzing the relation between moisture conditions 
and NPP at regional to global scales. At a global scale, 1-, 3-, 6-month SPEI and NPP are 
positively and significantly related, confirming the results of Zhao and Running (2010). 
We divided the global land surface into different regions based on the Köppen climate 
classification. SPEI and NPP show significant and positive relations in the arid and 
seasonally dry in temperate and equatorial zones regions. In contrast, SPEI and NPP in 
cold regions in the boreal northern hemisphere exhibit a negative relation. At grid level, 
grids with a significant positive relation occurred more often than those with a negative 
relation. At a global level, consequently, NPP and SPEI are mostly coupled and in phase. 
 
Our study demonstrates that at annual time scale NPP variance is strongly correlated to 
the variability in dry and wet condition as expressed by the drought index SPEI. Using a 
drought index appeared an effective way to estimate the impact of drought on NPP. The 
spatial non-uniform pattern of drought impact on NPP should be taken into account in 
further analysis and may serve as benchmark for global vegetation models (Sitch et al., 
2008). Our results demonstrate that the strong correlation between global NPP and 
drought found by Zhao and Running (2010) is a composite of the inherent positive 
relations in global extend dry regions (arid and seasonal dry) and some extreme drought 
events in humid areas. Further work in comparing the correlation between several 
drought indices and NPP may be able to elucidate more clearly some of the contrasting 
results between previous studies (e.g. Zhao and Running, 2010). 
 
From our analysis we cannot unequivocally set a threshold to define the drought impact 
on ecosystems. However, with global climate change expected to lead to more frequent 
droughts (Dai, 2013; Sheffield et al., 2012), we can expect further large regional declines 
in NPP to occur. How these are counterbalanced by areas with increases in NPP, or 
whether they lead to an overall negative trend in NPP, can only be studied by increased 
monitoring of droughts and NPP, preferably through satellite remote sensing (Dolman 
and de Jeu, 2010). 
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Chapter 5    Using satellite based soil moisture to quantify the 

water driven variability in NDVI: a case study over mainland 

Australia4 

Abstract 
 
Soil moisture is crucial in regulating vegetation productivity and controlling terrestrial 
carbon uptake. This study aims to quantify the impact of soil moisture on vegetation at 
large spatial and long-term temporal scales using independent satellite observations. We 
used a newly developed satellite-derived soil moisture product and the Normalized 
Difference Vegetation Index (NDVI) to investigate the impact of soil moisture on 
vegetation across mainland Australia between 1991 and 2009. Our approach relied on 
multiple statistical methods including: (i) windowed cross correlation; (ii) quantile 
regression; (iii) piecewise linear regression. We found a strong positive relationship 
between soil moisture and NDVI, with NDVI typically lagging behind soil moisture by one 
month. The temporal characteristics of this relation show substantial regional variability. 
Dry regions with low vegetation density are more sensitive to soil moisture for the high 
end of the distribution of NDVI than moist regions, suggesting that soil moisture 
enhances vegetation growth in dry regions and in the early stage in wet regions. Using 
piecewise linear regression, we detected three periods with different soil moisture 
trends over the 19 years. The changes in NDVI trends are significant (p<0.01) with 
turning points of soil moisture in the beginning of 2000 and the end of 2002. Our findings 
illustrate the usefulness of the new soil moisture product by demonstrating the impacts 
of soil moisture on vegetation at various temporal scales. This analysis could be used as a 
benchmark for coupled vegetation climate models. 

5.1    Introduction 
 
Knowledge of the response of vegetation to climate change is crucial in understanding 
ecosystem dynamics. The growth of atmospheric CO2 concentration has caused green 
foliage increased at least during last three decades (Donohue et al., 2013). Water 
availability, solar radiation and temperature are the main climatic constraints that 
determine the spatial distribution of ecosystems and plant growth (Churkina and 
Running, 1998; Nemani et al., 2003; Stephenson, 1990). The impacts of these factors on 
vegetation are relatively well investigated (Lotsch et al., 2003; Mercado et al., 2009; 
Myneni et al., 1997; Piao et al., 2008). For example, an increase in plant growth has been 

                                                            
4 This chapter is based on Chen, T., de Jeu, R. A. M., Liu, Y. Y., van der Werf, G. R., and 
Dolman, A. J.: Using satellite based soilmoisture to quantify thewater driven variability in 
NDVI: A case study over mainland Australia, Remote Sensing of Environment, 140, 
330-338, DOI: 10.1016/j.rse.2013.08.022, 2014. 
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observed in high latitudes, and was ascribed to the lengthening of the growing season 
(Myneni et al., 1997). However, climate-ecosystem interactions are complex and autumn 
warming could also lead to net CO2 losses in northern ecosystems (Piao et al., 2008). 
 
The availability of water influences more than half of the primary productivity of the 
world’s terrestrial ecosystems (Heimann and Reichstein, 2008), highlighting the 
constraints of hydrological processes to vegetation. Unfortunately, this effect is probably 
the lesser understood of the three above-mentioned constraints on plant growth. Water 
limitation reduces the ability of leaves to take up CO2, even under conditions of sufficient 
light, due to a restriction in stomatal conductance and limited root water (van der Molen 
et al., 2011). Thus, over regions where temperature and radiation are expected to be 
non-limiting, water availability is an important factor determining vegetation dynamics. 
Almost classic examples are the 2005 and 2010 droughts in the Amazon basin that 
caused large-scale mortality and associated reductions in living biomass (Lewis et al., 
2011; Phillips et al., 2009). An obvious reduction in GPP was found during 2003 across 
Europe. At the site level, FLUXNET analysis suggests that this reduction was caused by 
water limitation rather than by high temperatures (Ciais et al., 2005). Further support for 
a large impact of water availability on the carbon uptake of terrestrial ecosystem can be 
found in Angert et al. (2005), Phillips et al. (2009) and Reichstein et al. (2007a). 
 
Importantly, these results were often obtained without adequate observations of soil 
moisture. Model based soil moisture and several drought indices that are related to 
actual soil moisture in different ways were often used as a proxy (Hirschi et al., 2011; 
Lotsch et al., 2003; Nicholson et al., 1990) to study the relationship between vegetation 
dynamics and water availability. In addition, other researchers used other components 
of the water balance like precipitation to capture the hydrological impact on vegetation 
(e.g. Donohue et al., 2009; Wang et al., 2003) or used a combination of water and 
temperature in non-linear models to study the leaf phenology (e.g. Williams et at., 1997; 
Choler et al., 2011). These studies provide insights of ecohydrological processes, they 
also had their limitations as they were based on models and/or indirect observations of 
water availability. 
 
Observed soil moisture is arguably the best representation of the actual amount of water 
contained in the soil, and is key to understanding the climate-soil-vegetation system 
both in space and time (Porporato and Rodriguez-Iturbe, 2002; Rodriguez-Iturbe, 2000). 
Soil moisture is more directly associated with dynamics in plant photosynthesis and 
respiration processes than precipitation, of which a variable amount will be lost through 
interception and runoff (e.g., Miralles et al., 2010). Until recently, no long-term global 
scale observed soil moisture product was available. This situation has changed 
dramatically in the last few years. Near-surface soil moisture (several centimetres) from 
space borne passive and active microwave instruments have been shown to provide 
effective observations at regional and global scales (Gao et al., 2006; McCabe et al., 2005; 
Njoku et al., 2002; Owe et al., 2008; Wagner et al., 2003; Wen et al., 2003). The passive 
and active microwave soil moisture products, respectively, give robust estimates over 



 

sparsely and moderately vegetated regions (de Jeu et al., 2008; Dorigo et al., 2010). 
Based on previous studies, further blending passive and active microwave soil moisture 
retrievals from various satellites have led to a long-term improved product with better 
spatial and temporal coverage (Liu et al., 2011, 2012). These satellite soil moisture 
products have shown their value in climate studies (e.g. Jung et al., 2010; Taylor et al., 
2012) and hydrological studies (Brocca et al., 2011) but are currently still not often used 
in biogeochemical studies. 
 
Here, we used a newly derived merged product of soil moisture (Liu et al., 2012; Dorigo 
et al., 2012) to quantify the impact of soil moisture on vegetation dynamics with a range 
of temporal and spatial scales. The Normalized Difference Vegetation Index (NDVI) 
product derived from the Advanced Very High Resolution Radiometer (AVHRR) 
instruments was used to represent vegetation conditions (Tucker et al., 2005). Our 
objectives are twofold. Firstly to determine the usefulness of the satellite derived 
products in estimating short and long term variability in the relation between soil 
moisture and vegetation and secondly to shed light on these relations and trends for 
mainland Australia. We analyzed these relationships with a multi-statistical approach 
including variation coherence, time scale, trends and extremes. We selected Australia as 
a case study because the satellite derived soil moisture has been extensively evaluated 
by ground based soil moisture and rainfall over Australia (Draper et al., 2009) and the 
product has an established high data quality over this area (Parinussa et al., 2011). 
Australia is a water-limited continent (McVicar et al., 2012) where vegetation growth is 
mainly controlled by water conditions (Donohue et al., 2009; Williams et al., 1997). 
Australia also contains a large variety in vegetation types, from desert to tropical 
rainforest. All these components provide an appropriate test bed for this study. Section 2 
describes the soil moisture and NDVI products and the statistical methods applied here. 
Section 3 presents the results, while the last section discusses the results and the 
performance of the soil moisture product in establishing these relationships. 
 
5.2    Data and Methods 
 
5.2.1    Data 
 
5.2.1.1    Soil moisture 

The monthly 0.25 degree spatial resolution soil moisture dataset used (1991 – 2009) was 
extracted from the European Space Agency Climate Change Initiative data portal (ESA, 
see http://www.esa-soilmoisture-cci.org). This product was recently developed by 
merging the active microwave soil moisture products developed by Bartalis et al. (2007) 
and Wagner et al. (1999) with the passive microwave soil moisture products developed 
by the VU University Amsterdam in collaboration with NASA (de Jeu et al., 2008; Owe et 
al., 2008), representing surface soil moisture (not deeper than 10 cm, Liu et al., 2011). A 
short description of this approach is given below and a more thorough description can 
be found in Liu et al. (2011, 2012). The harmonization approach is based on two steps. At 
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first all individual datasets are converted into one soil moisture range (Vol. %) using 
cumulative distribution functions. Then all the datasets are statistically ranked based on 
their quality (as derived from triple collocation analysis) and harmonized into one 
consistent dataset. 
 
This approach primarily addresses three major challenges: i.e., (1) differences in 
instrument specifications resulting in different absolute soil moisture values; (2) the 
global passive and active microwave retrieval methods producing conceptually different 
quantities (expressed in the volumetric soil moisture (m3 m-3) and degree of saturation 
(%), respectively); (3) products varying in their relative performances depending on 
vegetation cover (Dorigo et al., 2010; Scipal et al., 2008). While this approach changes 
the absolute values of soil moisture, it preserves the relative dynamics (e.g., seasonality 
and inter-annual variations) of the original satellite derived retrievals and this makes it 
particularly well suited for our purpose. The long-term changes, as evident in the original 
soil moisture products, are also preserved (Liu et al., 2012). Although the original data 
are daily, there are too many gaps because each scan of the satellites can’t cover the 
whole region. Therefore, we averaged the original daily product into monthly data to 
produce spatially covered maps of mainland Australia. Fig.5.1 gives an overview of the 
general spatial soil moisture conditions over time for this study area with relative wet 
conditions in the south in the winter (JJA) and wet conditions in the summer (DJF) in the 
north. 
 
5.2.1.2    NDVI 

The Normalized Difference Vegetation Index (NDVI) is a normalized ratio calculated from 
reflected radiation in the red and near-infrared spectral regions. In general, productive 
plants use the energy available in the red part of the spectrum for photosynthesis and 
reflect the near infrared. NDVI is calculated as (NIR-VIS) / (NIR+VIS), where NIR and VIS 
indicate the spectral reflectance at the near-infrared and visible (red) spectral band 
range, respectively. NDVI has been widely used to indicate vegetation dynamics or 
growth (Donohue et al., 2009, 2013; Myneni et al., 1997; Nemani et al., 2003; Piao et al., 
2011; Tucker et al., 1986). Here we used the long term time series of NDVI observation 
from the Global Inventory Modelling and Mapping (GIMMS) group derived from NOAA 
AVHRR imagery (Tucker et al., 2005, Beck et al., 2011). NDVI used here is averaged at 
monthly and 0.25 degree resolution for direct comparison with the monthly soil 
moisture maps. In Fig. 5.1, spatial patterns of annual averaged NDVI were shown to 
present the general vegetation conditions. In addition the main ecoregions (Department 
of the Environment, Water, Heritage and the Arts, 2012a) are mapped in Fig. 5.2. 
 
Both soil moisture and NDVI have a strong seasonal cycle, and here we only used the 
monthly anomalies (i.e. the monthly anomaly was calculated by subtracting the monthly 
time series from the monthly climatology based on the 19 year data record). 
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examine the correlation changes over time. This advantage is particular important in this 
study because climatic variables usually have periodic characteristics and the lagged 
relation can be analyzed (i.e. with this method you can analyze the time it takes time 
before vegetation will respond on a change in hydrological conditions). More details on 
this analysis can be found in Boker et al. (2002). 
 
In the WCC method, the window, or length of the time series in each calculation, for the 
analysis is chosen manually, but has two requirements. Firstly, the window has to be 
sufficiently long to contain enough samples to calculate statistically meaningful 
correlation coefficients within the window. Secondly, the length of the data series to 
evaluate the temporal variation of the strength of the relationship has to be long enough 
to encompass the variability. Here we used a 10-year long window with 120 monthly 
points, i.e., N=120. 
 
5.2.2.2    Quantile Regression (QR) 

We explored the behaviour of the relations for the extremes by using a quantile 
regression technique, as it is likely that the effect of soil moisture (shortage) will not 
often be expressed through a decline in the mean, but rather through the extremes. 
Quantile regression (Koenker and Bassett 1978) was developed to investigate the 
conditional quantiles of a response variable distribution. Compared to ordinary least 
square regression, which responds largely to the mean of a distribution, quantile 
regression advantageously responds to both the lower and upper end of the distribution. 
This is particularly relevant in our case, both to assess the probability of NDVI response 
to extreme drought or wetness. This response could vary across wet or dry regions due 
to the change of water-limited strength and other landscape features impacts (e.g. soil 
and vegetation types). Additionally, quantile regression could assess whether the 
satellite soil moisture data-based analysis is sensitive enough to determine these. The 
method has been widely used in biology (Cade and Noon, 2003) and geosciences (Hirschi 
et al., 2011). 
 
The -th sample (   (0, 1)) quantile can be formulated as a simple optimization problem 
of random variable y: 
 

              (5.2) 

 
and 
 

            (5.3) 
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where i is used to indicate each value,  is a real number. In the case of quantile 
regression (Koenker and Bassett, 1978; Koenker and Hallock, 2001) the linear quantile 
function can be obtained by solving for 
 

          (5.4) 

 
where ' denotes the transpose;  is the inner product of vectors  and . For a one 
argument condition, p = 1. 
 
5.2.2.3    Piecewise Linear Regression (PLR) 
 
To investigate the coherence in trends of soil moisture and NDVI we applied piecewise 
linear regression (PLR) approach (Toms and Lesperance 2003), which is also called 
segmented linear regression. To our knowledge, there is unfortunately no optimal way 
to determine the segments number when segments are more than two, other than by 
visual inspection or trial and error. A significance test can then be applied to determine 
the segmentation reasonableness. In our case, three intervals were selected based on 
the time series general shapes, and hence each time series has two turning points. 
Minimizing the residuals of segmented linear fits then determines these turning points. A 
linear regression approach (Toms and Lesperance 2003) was applied to each successive 
two interval segments to test the turning-point significance by a t-test against the null 
hypothesis. The model is given by: 
 

        (5.5) 

 
where X is time and Y is soil moisture or NDVI. As time series are stochastic process, we 
adjusted this model 0 to ' for trend analysis when X> . A t- test was applied to test if 

2 is not equal to zero. Both the soil moisture and NDVI continental average series were 
standardized to achieve parity in the regressions. 

5.3    Results 
 
5.3.1    Time lag and spatial response 

Figure 5.3 illustrates the windowed cross correlation analysis of continental average soil 
moisture and NDVI. Strong positive relations were found, particularly when soil moisture 
precedes NDVI by one month. Fig. 5.3a shows that the correlation coefficients vary 
considerably with different time lags. In general, positive correlation coefficients are 
found more often, in particular where the soil moisture preceded, or is concurrent with 
the NDVI (Fig. 5.3a). This means that soil moisture leads the behaviour of vegetation. The 
highest correlation coefficients are observed when soil moisture precedes NDVI by one 
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element we are interested in. The spatial patterns of slopes of the quantile regression 
vary with quantiles. In the more densely vegetated areas including temperate forests 
and Mediterranean forests in the east, north and southwest corners where persistent 
vegetation cover locates (Lu et al., 2003; Donohue et al., 2009), high slope values seem 
linked to low quantiles of NDVI as shown by Fig. 5.6e and ecoregion TEF in Table 5.1. By 
contrast, in other parts of the continent, such as in semiarid areas with grasslands, the 
highest slope values of NDVI to soil moisture occur within the upper quantiles of NDVI 
(Fig. 5.6f, ecoregion DES and TRG in Table 5.1). However, the smallest slope of ecoregion 
TEF (i.e. 0.87) is still higher than the slopes of other regions, which means persistent 
vegetation also change with water condition or droughts (Pook et al., 1997). The slope 
trends with quantiles of densely (decrease) and low vegetated areas (increase) are 
contrary (Table 5.1). In more densely vegetated areas, this indicates that soil moisture is 
more inclined to constrain early stage of growth. Whereas in low vegetated areas, higher 
precipitation/soil moisture events results in additional growth (boost) once these events 
are sufficient to overcome the lost from canopy interception (Dunkerley 2000, 2008; 
Dunkerley and Booth 1999) or quick evaporation of the soil surface (Dunkerley 2002). In 
addition, in the persistent hummock grasslands or Acacia open woodlands, ephemerals 
or biennial grasses wound response to higher precipitation events obviously (Masters 
1993; Southgate and Masters 1996). However, there is a particular region in the 
southwest corner of Western Australia that shows a different behaviour. This triangular 
region is a winter cereal-cropping zone (Donohue et al., 2009), and clearly shows a 
distinct pattern in both Fig. 5.6e and Fig. 5.6f. Donohue et al. (2009) demonstrated that 
this region shows anomalous vegetation response which is probably due to agricultural 
practices. 

5.3.2    Trends in soils moisture and NDVI 

As shown in Fig. 5.3, the strength of the correlation between NDVI and soil moisture 
increased since approximately 2000. Furthermore, our data show that Australia has 
experienced an overall decline in surface soil moisture during 1991-2009 at the rate of 
-1.0*10-3 m3 m-3 yr-1; as demonstrated by Dorigo et al. (2012), decreases in West and 
Central Australia dominant. 
 
During the same period, NDVI decreased at a rate of -1.1*10-4 yr-1. However, both the 
NDVI and soil moisture trends are very small and do not change monotonically during 
the whole period. We applied a piecewise linear regression to investigate these trends in 
more detail and determine the turning points in these trends. 
 
For the full study period, the trends in both soil moisture and NDVI are best described by 
a three segmented model (Fig. 5.7). The different trends of the adjacent segments are 
separated by turning points (TP) and these all are significant (T-test, p < 0.01). Both soil 
moisture and NDVI show an increase in the early 1990s, a decrease until early 2000s and 
after that increase again (Fig. 5.7a, b). The TP positions for soil moisture and NDVI series 
are however different. Following a previous application of this method (Piao et al., 2011), 
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we further analyze the NDVI series using by the TPs of soil moisture (Fig. 5.7c). In this 
case, the TPs of soil moisture series are also significant (p<0.01) to the NDVI series. 
Besides, Fig. 5.8 demonstrates the spatial patterns of soil moisture and NDVI trends 
using TPs of soil moisture. And these patterns of soil moisture and NDVI are generally 
coherent. This strongly suggests that our results are robust and that the observed trend 
in NDVI can be attributed, to a large extent, at least statistically, to a trend in soil 
moisture. This soil moisture trend is obviously related to rainfall variability, but soil 
moisture here provides the direct relation to vegetation activity as expressed through 
the NDVI series. 

Figure 5.7. Piecewise analysis on the continental averages of soil moisture and NDVI 
anomalies series. Both are normalized. Part a) three-segment trends of NDVI series 
separated by NDVI turning-points; part b) three -segment trend of soil moisture series 
separated by soil moisture turning-points; part c) three-segment trends of NDVI series 
separated by soil moisture turning-points. 
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determining these relationships in Australia, a continent with a strong gradient in rainfall 
rates leading to vegetation types ranging from desert shrubs to tropical rainforest. 
 
We showed that soil moisture and NDVI co-vary both temporally and spatially. In the 
temporal domain, this relation became stronger during the last decade and soil moisture 
generally precedes the NDVI variances with a typical scale of one month during the 
whole period. Both soil moisture and NDVI exhibit coherent trend changes during the 
whole study period. The response of vegetation to changes in soil moisture varied over a 
gradient from arid to moist conditions. The quality of soil moisture data changes with 
time, as more and better satellites became available during the latter period of the 
analysis. However, the typical lag character between soil moisture and NDVI occurs 
during the whole period. Precipitation-induced changes are apparently greater than the 
changes between satellites sensors. Our first objective to detect relations between 
observed soil moisture and the vegetation characteristic NDVI, is thus successful. We 
note that the microwave-derived product is representative of variable, but shallow 
depth of soil moisture. However, the shallow depth observations can be representative 
value for soil moisture dynamics at the root zone layer. This was clearly demonstrated by 
Rebel et al. (2012) where they found high correlations between the satellite product and 
modelled root zone soil moisture using the measurements of 15 eddy flux sites. 
 
The spatial pattern of the slopes that are obtained for the quantile regression changed 
across the continent. For the low-density vegetation areas (Fig. 5.1; Glenn et al., 2011; 
Liu et al., 2007), high values of the slope for the upper distributions of NDVI quantiles, 
0.7 and 0.9, reveal that positive anomalies of soil moisture are more likely to cause 
distinct vegetation growth (see also Table 5.1). Thus, higher soil moisture (low 
probability) causes a rapid vegetation growth, indicated by faster increasing rate of NDVI. 
In contrast, we obtain high values of the slope (the sensitivity) for the low values of NDVI 
in the more densely vegetated areas (Fig. 5.1; Table 5.1; Glenn et al., 2011; Liu et al., 
2007). Slopes of East Australia decline with higher quantiles (Fig. 5.6e-f), because during 
a quite wet condition plants will not be responsive to soil moisture intensely and 
exclusively. 
 
In general, the dynamics and location of available water has a large effect on the 
vegetation distribution. For example, humid areas exhibit much higher vegetation 
densities than semi-arid or desert regions (Glenn et al., 2011). In water-limited areas a 
sudden change in the water regime (e.g. strong precipitation event) results in a rapid 
vegetation change, as the case study shown by Fig. 5.9. 
 
Although Australia is mostly water-limited (McVicar et al., 2012), a wide range of 
vegetation types and ecohydrological conditions exist indicated by National Dynamic 
Land Cover Dataset (Lymburner, et al., 2010) and IBRA7 (Department of the Environment, 
Water, Heritage and the Arts, 2012b, Donohue et al., 2012). In this study, we used the 
terrestrial ecoregions based on IBRA7 in analysis (Fig. 5.2; Table 5.1). As shown in the 
results above, pasture and crops have a shorter response time scale to soil moisture 
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anomalies than shrubs. Plants in humid and dry regions have different sensitive stages to 
soil moisture indicated by the results of quantile regression analysis. This is in agreement 
with the different response mechanisms of vegetation response to drought (van der 
Molen et al., 2011) and shows the usefulness of using spatial information such as soil 
moisture from satellites to detect these relationships. Besides, groundwater dependent 
ecosystems (spring, wetland and some forests) may not respond strongly on land surface 
moisture conditions. The landscapes where the soil moisture conditions are driven by 
lateral flow or ground-water are hard to be remotely sensed. Meanwhile, the adaption 
of plants to arid conditions, including roots exploration and even species alternation, 
may impact the relationships found above. 
 
Soil moisture and NDVI show three periods where the trends change, based on the linear 
piecewise regression analysis. Using the turning points of soil moisture for NDVI 
generated three significant segments. This suggests that during the entire period of 
1991-2009, soil moisture and NDVI trends together demonstrate a strong relationship. 
We emphasize that the statistical methods used here do not determine the “direction” 
or “causality” of the impact. To achieve this, physical and physiological mechanisms 
which can only be studies by models (Lucht et al., 2002; Nemani et al., 2003) need to be 
invoked. However, the fact that switching the TPs yields similar trends suggests that the 
behaviour is independent on the exact location of those, and that the long-term changes 
in NDVI for much of the Australia are indeed strongly linked to changes in soil moisture. 

5.5    Conclusions 

We investigated the impact of soil moisture on vegetation across the Australian 
continent. Soil moisture and NDVI are significantly (p< 0.1) positive related in both 
regional average and most areas at grid level, with a typical time scale of soil moisture 
preceding NDVI by one month. We also showed that the sensitivity of NDVI to soil 
moisture depended on vegetation cover density. Both soil moisture and NDVI exhibit 
coherent trends during our study period. We conclude that soil moisture influences NDVI 
in both the monthly variance and in the longer term trend changes. Because soil 
moisture and NDVI are independently derived remote sensing products, our results show 
that monitoring soil moisture could help to predict vegetation changes. 
 
Previous studies suggested that precipitation is a predictor of NDVI, with a lag of one to 
several months (Richard and Poccard 1998; Wang et al., 2003). Our study illustrates that 
remotely sensed soil moisture data can as well be a good predictor for vegetation 
growth. The relations found here could be used to improve the link between 
hydrological processes and biogeochemical processes in land surface models, as 
suggested by Rebel et al. (2012) who used a similar soil moisture product to evaluate the 
performance of a Dynamic Global Vegetation Model. The relationships found here 
provide useful benchmarks for modelling studies using coupled vegetation climate 
models. Whether the relationship we found also holds for other water-limited or 
‘equitant’ regions (McVicar et al 2012) of the globe requires further study. 



 

Chapter 6    Synthesis 
 
6.1    Introduction 
 
The work presented in this thesis covers two closely related topics in Earth system 
sciences. One is the estimation of global cropland GPP (gross primary production) and 
NPP (net primary production). The other investigates soil moisture constraints on 
terrestrial ecosystems and the carbon cycle. In this synthesis, integration of the findings 
of the work in this thesis and other related studies are presented in section 6.2. After 
that, a discussion of existing limitations and future perspectives is given in section 6.3. 

6.2    Research purposes and main findings 

6.2.1    Cropland GPP and NPP estimations 

In chapter 2 and 3 of this thesis, we focused on cropland GPP and NPP estimates, 
essential components in the terrestrial carbon cycle. The light use efficiency (LUE) 
approach, a well evaluated empirical method developed by Monteith (1972), was used 
here. Usually, empirical methods require look-up tables of key parameters to quantify 
the diversity of ecosystems. Therefore the maximum light use efficiency approach ( *) 
was evaluated and a look-up table was generated for 26 crop types. A new monthly 
global cropland GPP dataset was created based on this look-up table and a more 
sophisticated LUE model.  
 
The objective of this study was to improve GPP estimates. GPP is the largest carbon flux 
in the terrestrial carbon cycle and provides the main carbon input into terrestrial 
ecosystems, ranging from about 120 to 150 Pg C yr-1 (Beer et al., 2010; Welp et al., 2011). 
About half the GPP is used by plants for maintenance (autotrophic respiration, Ra), the 
remainder being available for plant growth as net primary production (NPP). Because 
direct field measurements are far from sufficient to generate global GPP and NPP due to 
large variability in plant species and growth, a sophisticated modelling approach is 
required. Current global GPP and NPP estimates mainly rely on model results, 
observations, model fusion methods and atmospheric isotopes changes (Field et al., 
1995; Knorr and Heimann, 1995; Potter et al., 1993; Ruimy et al., 1994; Zhao et al., 2005; 
Ryu et al., 2011; Koffi et al., 2012; Beer et al., 2010; Welp et al., 2011). However, 
considerable differences exist among various studies. For example, global annual GPP is 
estimated at 123±8 Pg C yr-1 versus 150-175 Pg C yr-1 suggested by Beer et al. (2010) and 
Welp et al. (2011) respectively.  
 
The light use efficiency (LUE) approach (Monteith, 1972; Monteith and Moss, 1977) and 
carboxylation rate calculation (Collatz et al., 1991; Collatz et al., 1992) are the two main 
methods used to estimate GPP and NPP in biogeochemical or land surface models. The 
LUE approach was developed realizing that growth of plant biomass is directly 
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proportional to absorbed solar radiation. These observations suggest that environmental 
variables, such as radiation can be used to estimate plant productivity circumventing the 
complicated calculation of detailed biochemical processes (Field et al., 1995; Knorr and 
Heimann, 1995; Potter et al., 1993; Ruimy et al., 1994, 1996, 1999; Prince and Goward, 
1995). LUE-based models are relatively easy to apply and are still under development 
with more and more proxy data becoming available to drive models (Goerner et al., 2011; 
Jin et al 2013). 
 
The LUE method is an effective empirical approach, therefore, parameter evaluations 
have been widely applied across global different plant types, and this kind of work will 
continue in the future. Currently, using flux tower measurements to evaluate LUE 
models is becoming the standard way of model evaluation. There are several widely 
used LUE models or algorithms, such as Moderate Resolution Imaging 
Spectroradiometer Primary Productivity (MODIS MOD17 product, Zhao and Running, 
2010), Carnegie-Ames-Stanford Approach (CASA, Potter et al., 1993), Vegetation 
Photosynthesis Model (VPM, Xiao et al., 2005). Evaluation using eddy flux towers at site 
level (about 1km2) has been applied across various plant types worldwide although large 
biases were found. Turner et al. (2006) showed that MODIS GPP products had no overall 
bias over 9 sites covering several plant and land use types. However, more evaluation 
work suggests the * of MODIS GPP should be adjusted to better estimate GPP for local 
ecosystems. For instance, after testing MOD17 products with eddy flux tower 
measurements over 12 African sites, Sjöström et al. (2013) suggested * were 
underestimated in 10 savanna or grass land sites. Wang et al. (2012b) validated MOD17 
products at 10 flux sites in northern China, and also found that site based * values were 
larger than that used in MOD17. The work in Chapter 2 and the first part of Chapter 3 
used similar methods to evaluate * of cropland globally based on flux tower records 
and remotely sensed vegetation index.  
 
Although the empirical characteristics of the LUE method requires plant type specific 
parameter values, only less than 20 vegetation type globally were separated (i.e. MODIS 
MOD17 product; Zhao and Running 2010) and many studies even set * constant 
globally (Potter et al., 2007). In addition, cropland usually is treated as one vegetation 
type, using a constant * in consequence in these models. However, among these main 
vegetation types globally, the bias is particular large over croplands (Sjöström et al., 2013; 
Wang et al., 2012b). The results in this thesis demonstrated a clear underestimate of 
model default * values over 8 crop types, which is in consistent with previous results. 
An important improvement presented in this thesis is the large number of crop types 
that were studied independently. *GPP ranged from 1.21 g C MJ-1 (Other perennial) to 
2.96 g C MJ-1 (Cassava). Parallel studies found similar results which led for example to 
modifying the cropland *GPP value of the MOD17 product to 1.044 g C MJ 1 (Zhao and 
Running, 2010) compared with the previously used value of 0.68 g C MJ 1 (Heinsch et al., 
2003). 
 



 

Based on previous studies and the results in this thesis, *GPP in croplands exhibits a very 
large range. The *GPP value used in models usually try to represent the global average 
conditions, making the results at that scale match or look reasonable. An inevitable 
problem is then the bias at local scales or site level. Some efforts have been made to 
separate C3 and C4 plants in the models, for instance in the global production efficiency 
model (GLO-PEM; Prince and Goward, 1995). This is however, still far from an evaluation 
based on site measurements. A key question is to determine how many crop types are 
needed for an overall credible global result. Distinguishing hundreds of crop types in 
global models is unrealistic. Separating some main crops, like maize, wheat, rice and so 
on to cover the most important crop types is suggested in this thesis. Using both 
previous site results and the *GPP values calculated in chapter 3, maize has a larger *GPP 
value than most other crops. It is also suggested that the range of maize *GPP is much 
smaller than that of all crop types. Therefore, it is possible, and effective, to separate 
some widely cultivated plants rather than treat global croplands as a whole.  
 
The creation of a new dataset of global cropland GPP is the direct consequence of the 
parameter valuation executed in this study. There are several widely used LUE models, 
however, only a few of them have publicly released their outputs. MOD17 GPP and NPP 
datasets are evaluated worldwide as illustrated previously in this synthesis. NPP based 
on CASA model is still being updated (Potter et al., 2012), and CASA is also used to 
further calculate fire emissions (van der Werf et al., 2010). As discussed above, to 
improve the dataset using LUE method, separating more plant types is an efficient way.  
 
In addition to separating more crop types, information on the extent of different crop 
types is crucial to create a new cropland GPP map. Portmann et al. (2010) created such a 
crop type map, separating 26 crop types. This dataset was used in Chapter 3 along with a 
newly developed look-up table of *GPP combining several input data sources. The spatial 
resolution is 1/12 degree, which is higher than most of other current models.  
 
A look-up table of *GPP for these 26 crop types is the first main task. Only 8 types could 
be evaluated directly using flux tower measurements as shown in Chapter 2 and 3. 
Fortunately, croplands are the most studied plant category previously and hundreds of  
values are available by measuring dry matter, either only above ground or total dry 
matter. Because these  values cannot be used to build the look-up table directly, a 
conversion method was created in chapter 3 to convert  to *GPP based on the 
assumption that environmental stresses could be ignored for well watered croplands. As 
a result, a global look-up table of 26 crop types was created based observational records.  
 
A dataset of global cropland GPP in the year 2000 was created in Chapter 3 at monthly 
temporal and 1/12 of a degree spatial scales. There are still evaluations needed in the 
future to further validate this dataset. Currently, its performance over North America 
was confirmed by comparing with harvest based estimate (Lobell et al., 2002). 
Importantly, this work may also contribute to resolving an outstanding issue. Usually, * 
values in LUE-based models are much smaller than field-based values (Lobell et al., 2002; 
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Potter et al., 1993; Zhang et al., 2008). This dataset only uses observational *GPP values. 
Global cropland GPP was estimated to be 11.05 Pg C yr-1, falling in the middle of previous 
studies indicating 14.2 Pg C yr-1 by Beer et al. (2010) and 8.2 Pg C yr-1 by Saugier et al 
(2001). This suggests how to merge the difference between field-based *GPP and that in 
models.  
 
The main conclusions of chapter 2 and 3 can be summarized as follows: 
 

The light use efficiency (LUE) approach is very suitable to estimate cropland GPP and 
NPP. 
FLUXNET-based * values are comparable to previous values reported by field 
measurements based on dry matter measurements. 
Cropland * at field level, including FLUXNET-based and literature-based in this 
thesis, are substantially higher than used in most vegetation models. 
A more accurate description of cropland distribution (crop types and growing 
periods) and sophisticated parameterization for individual crop types, will help to 
better use field based *GPP in vegetation models. 
A dataset of global monthly GPP in the year 2000 was developed at a spatial 
resolution of 1/12 degree yielding a global cropland GPP of 11.05 Pg C yr-1. 

6.2.2    Soil moisture constraints on vegetation 
 
In chapter 4 and 5 of this thesis, we focussed on the soil moisture related impacts on 
vegetation, using both a drought index and remotely sensed soil moisture. A global 
analysis of SPEI (standardized precipitation evapotranspiration index) and NPP was 
presented to complement previous studies of spatial patterns of the relationship 
between anomalous dry or wet conditions and NPP. The Köppen climate classification 
was used to classify the spatial pattern into some main categories. Besides, a very prior 
attempt was made in chapter 5 to quantify the relationship between observational soil 
moisture and vegetation. 
 
The objective of this study is to contribute to the knowledge of vegetation response to 
climate change, which is crucial in understanding and predicting future terrestrial carbon 
cycle behaviour. The spatial distribution of ecosystems as well as their growth is mainly 
determined by climatic factors, including water availability, solar radiation and 
temperature (Churkina and Running, 1998; Nemani et al., 2003; Stephenson, 1990). 
Water availability is a primary constraint compared to radiation and temperature 
(Heimann and Reichstein, 2008). Drought events impact terrestrial production and 
reduce the sink strength at (sub) continental scale (Ciais et al., 2005; Reichstein et al., 
2007a, 2013; van der Molen et al., 2011). More importantly, since the occurrence and 
severity of drought are likely to increase or at least continue in the future (Dai, 2013, but 
see also Sheffield et al., 2012), there is a clear need to further evaluate the relationships 
between soil moisture and vegetation.  



 

Reichstein et al. (2013) reviewed the impacts of climate extremes on the terrestrial 
carbon cycle and pointed out that drought and storms have the potential to cancel the 
expected increase of terrestrial carbon stocks. As mentioned above, usually this kind of 
studies focused on some typical extreme cases, such as the 2003 heat wave in Europe 
(Ciais et al., 2005; Reichstein et al., 2007a) and 2005 drought in Amazon (Phillips et al., 
2009). These kinds of case studies have made robust conclusions by comprehensive 
analysis. In addition, some others tried to investigate the globally integrated effects of 
dry/wet conditions on vegetation (Gobron et al., 2010; Zhao and Running, 2010). 
Previous studies found that on a global scale, drought and NPP are strongly related in a 
positive way. It is easy to expect some spatial differences to occur, however, details of 
the spatial patterns of this relation are not clear. Therefore, in chapter 4 of this thesis, 
the spatial patterns of the relationship between SPEI and NPP are presented. Also, the 
rules governing those spatial patterns are key to understand. As a further step, the 
Köppen climate classification was used here to categorize the spatial pattern successfully. 
As a result, this study provides a stronger regional focus than previous work. 
 
Drought indices have their advantages in application because usually precipitation and 
temperature data used to calculate drought indices are relatively well known. Drought 
indices are powerful tools to describe intensity, duration and spatial extent of droughts 
and have been widely used in analytical applications. Additionally, soil moisture data are 
still being developed and remarkable achievements have been reached using satellite 
derived indices (de Jeu et al., 2008; Dolman and de Jeu, 2010; Liu et al., 2011, 2012). 
Therefore, firstly, a drought index was used in chapter 4 to make a global analysis. The 
work in chapter 5 uses remotely sensed soil moisture directly, but on a more regional 
scale.  
 
Soil moisture is an essential component in understanding the climate-soil-vegetation 
system both in space and time, and is directly associated with the dynamics of plant 
photosynthesis and respiration. Remote sensing based data are able to measure 
large-scale surface soil moisture continuously (de Jeu et al., 2008; Owe et al., 2008). In 
the last few years, near-surface soil moisture from space borne passive and active 
microwave instruments provided robust estimates of surface soil moisture at regional 
and global scales. Blending passive and active microwave soil moisture retrievals from 
various satellites has led to a long-term improved product with better spatial and 
temporal coverage than previous data sets (Liu et at., 2011, 2012). These remotely 
sensed soil moisture estimates offer the opportunity to evaluate the relationships 
between water availability and vegetation.  
 
Global scale application is still limited due to data gaps in the time series. Therefore, a 
first attempt was made focusing on mainland Australia because the soil moisture data 
there have been well evaluated with ground-based measurements (Draper et al., 2009). 
Several statistical methods were used to perform a comprehensive analysis between 
remotely sensed soil moisture and vegetation index (i.e. NDVI).  
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The main conclusions of chapter 4 and 5 are summarized here: 
Drought indices, such as SPEI, are an effective and useful way to estimate the impact 
of drought on vegetation. 
The strong positive relation between SPEI and NPP that exists on a global scale is the 
result of a generally positive relation in dry regions and a coherent NPP decline with 
intensive drought event in humid regions, whereas NPP and SPEI were negatively 
related in most boreal regions. 
The spatial patterns of drought impact on NPP could be analysed using the Köppen 
climate classification, which suggests that the adequate prediction of vegetation in 
the different climate zones maybe crucial to the quantification of the behaviour of 
the future terrestrial carbon cycle. 
Remotely sensed soil moisture is positive related with NDVI in mainland Australia. 
NDVI typically lags behind soil moisture by one month and this indicates a typical 
scale of vegetation response to soil moisture shortages. 
Dry regions with low vegetation density are more sensitive to soil moisture for the 
high end of the distribution of NDVI than moist regions, suggesting that soil moisture 
enhances vegetation growth in dry regions and in the early stage in wet regions. 

6.3    Limitations and future perspective 

6.3.1    LUE application in GPP estimation 

As discussed previously, improvements of GPP estimates using the LUE methods depend 
on the parameterization of * and model structure to present vegetation conditions and 
environmental stresses more accurately. Several aspects are included, such as evaluation 
of *, environmental stress description, vegetation index and the model’s spatial and 
temporal resolution. Several vegetation indices and descriptions of environmental 
stresses are used in different models (Goerner et al., 2011, Jin et al 2013; Potter et al., 
1993; Zhao and Running, 2010). Usually water and temperature condition are the two 
main factors. These models generally perform well in evaluation studies while large 
uncertainties still exist. Currently, all these aspects are requiring further work.  
 
In this thesis, the global cropland GPP dataset created in chapter 3 highlights the 
importance of crop type separation and parameterization in dataset environments. Here, 
the limitations of the current work are obvious. For example, the survey data that could 
separate crop types over croplands was only available for the year of 2000 (Portmann et 
al., 2010). Croplands were separated into 26 crop types. However, not all the * values 
were estimated directly using flux tower measurements. Even a combination of 
FLUXNET-based and literature-based * values could not cover all the 26 crops. More 
direct field estimations of * with crop type information are thus needed. Besides, 
irrigated and rainfed croplands should be separated in the future as natural water 
stresses can be larger for the rainfed croplands. 



 

6.3.2    Soil moisture constraints on vegetation 

Both model and field measurement confirmed that drought could reduce vegetation 
production significantly. However, on large scales (regional to global), the relationships 
between drought and NPP are also determined by the accuracy of the modelled NPP and 
the data used to calculate drought index. For example, NPP values in rain forests still 
have great uncertainties, partly related to the low sensitivity of satellite productivity data 
in highly productive areas (Samanta et al., 2011; Zhao and Running 2010). 
 
Besides the calculated drought index, soil moisture observations are in principle a better 
and more robust way to quantify water availability. However, the remote sensing 
approach also has its inherent shortcomings. Passive remote sensed soil moisture data 
have large errors over regions with high vegetation density (Parinussa et al., 2011). 
Therefore, semi-arid or arid regions were chosen where soil moisture data are more 
reliable to evaluate the relationships between soil moisture and NDVI. A further 
complication is that only the surface layer soil moisture content can be obtained by 
satellite observations, not that of the full root zone. Thus, currently, the analysis in this 
thesis could only quantify the surface hydrological cycles and its impact on vegetation. 
However, the shallow depth observations can be representative for soil moisture 
dynamics at the root zone layer. This was clearly demonstrated by Rebel et al. (2012) 
where they found high correlations between the satellite product and modelled root 
zone soil moisture. 
 
In the future, more work on several aspects of this study is needed. The work in this 
thesis only quantifies the relationship between remotely sensed soil moisture and NDVI 
over mainland Australia. It is a typical region and a clear global conclusion in general 
cannot be reached yet. Extending similar work over other regions is needed, but this also 
depends on the data quality. Filling gaps is a precondition over many regions, and is still 
under development (Wang et al., 2012a). In addition, remotely sensed soil moisture 
offers observational records of soil water condition. Both soil moisture-NPP and 
precipitation-NDVI relationships have been established. Further comparison work is 
required to demonstrate whether there are some advantages using soil moisture than 
precipitation under specified conditions. 
 
6.3.3    Integration 
 
The amount of global GPP is not a constant but changes with time, although there are 
still large uncertainties in the estimate of annual average GPP. In a foreseeable future, 
the concentrations of atmospheric CO2 will continue to increase due to anthropogenic 
carbon emission. It is clear that greenhouse gases have caused global warming, based on 
the latest IPCC report AR5 (Stocker et al., 2013). Due to the fertilization effects of 
atmospheric CO2, modelled GPP and NPP would exhibit significant increase in the future 
as shown by Free-Air CO2 Enrichment (FACE) experiments (Piao et al., 2013). Climate 
change will lead to different environmental stresses on plant photosynthesis processes. 



Chapter 6 

 

The proportions of vegetation types will also change due to vegetation adaptability. Land 
surface cover change could be caused by both natural and anthropogenic changes. For 
instance, herbaceous vegetation would replace woody vegetation in some tropical areas 
in the future (Sitch et al., 2008). But importantly, this might also occur due to human 
activities, known as land use or land cover changes, such as deforestations and croplands 
extensions (Houghton et al., 2012). Therefore, due to human activities, croplands will 
contribute more to global terrestrial GPP. To improve the estimate of global croplands 
GPP could become more and more important.  
 
Meanwhile, agricultural activities primarily rely on water availability, particular the case 
for rainfed agriculture. Even irrigated croplands are constrained by vulnerable ground 
water conditions. Therefore, integrating the analysis of global cropland GPP and soil 
moisture constraints on vegetation is a necessary next step. Current estimate of 
croplands GPP only focuses on the one year due to the data limitations. It is possible to 
extend its temporal scales, for example, using history crop areas records during 1700 to 
2007 (Ramankutty and Foley 1999). If these trends continue, the prediction of cropland 
GPP could be also based on some designed scenarios. How well to quantify the 
environmental stresses on GPP needs be based on the knowledge of soil moisture 
constraints on vegetation. Therefore, the two topics in this thesis are closely related and 
will contribute to the future understanding of terrestrial carbon cycle in a combined way.  
 



 

Chapter 7    Samenvatting 
 
Dit proefschrift gaat over twee gerelateerde onderwerpen die van belang zijn bij het 
bestuderen van de planten en gewasgroei op land: 1) het afschatten van de productie en 
dus de CO2 opname van landbouwgewassen, en 2) patronen tussen de hoeveelheid 
bodemvocht enerzijds en de productiviteit van vegetatie op land anderzijds. Een van de 
unieke aspecten van dit werk is dat beide onderwerpen op grote schalen zijn bekeken 
waarbij veelvuldig gebruik is gemaakt van satellietdata. 
 
Landbouwgewassen nemen ongeveer 12% van het ijsvrije landoppervlak in beslag en 
vormen dus een belangrijk en dynamisch deel van de mondiale koolstofcyclus. Helaas is 
niet goed bekend hoeveel koolstof deze gewassen op mondiale schaal vastleggen. Door 
meetgegevens te vergelijken met modelgegevens heb ik allereerst laten zien dat de rol 
van deze gewassen in veel modellen wordt onderschat.  
 
De belangrijkste reden van deze onderschatting is dat veel van de zogenaamde 
lichtgebruiksmodellen geen rekening houden met het feit dat landbouwgewassen 
efficiënter zijn dan de natuurlijke gewassen waar ze van afstammen. Dit heeft vele 
oorzaken en ik heb laten zien dat er grote verschillen in de efficiëntie van verschillende 
gewassen zijn. Door deze afzonderlijk te bepalen voor verschillende gewastypes op basis 
van metingen en literatuur, en daarna deze gegevens te combineren met een nieuwe 
mondiale kaart van gewastypes  heb ik nauwkeurigere schattingen kunnen maken van 
de rol van landbouwgewassen in de mondiale koolstofcyclus. Mijn nieuwe schatting was 
11×1015 gram koolstof per jaar, dit getal ligt ongeveer halverwege de eerdere 
schattingen. 
 
Planten hebben water nodig om te groeien en droogtes beperken dus meestal 
plantengroei maar de exacte relaties tussen gebrek aan water en de invloed daarvan op 
planten is niet goed bekend. Door een nieuwe index die droogtes beter beschrijft te 
combineren met satellietdata van vegetatie productiviteit heb ik laten zien hoe 
verschillende gebieden reageren op droogte. Eerdere studies hebben laten zien dat op 
mondiale schaal droge jaren overeenkomen met jaren waarin de plantenwereld minder 
productief is, maar ik laat zien dat er belangrijke regionale verschillen zijn: in relatief 
droge gebieden neemt productiviteit weliswaar af met droogte maar in koudere streken 
neemt het vaak toe. Dit kan bijvoorbeeld doordat droogtes vaak voorkomen in periodes 
waarin het warm is en er veel zonlicht tot de aarde doordringt.  
 
Ik heb deze relaties verder onderzocht door gedetailleerd Australië te bestuderen, een 
continent waar droogtes een negatieve invloed hebben op planten. Hier bleek dat er 
gemiddeld een maand vertraging zat tussen de periodes van droogte en de reactie van 
de plantenwereld daarop. In extreem droge gebieden reageerde de vegetatie nog sneller. 
Door met een aantal statistische methodes de trends te bekijken kon ik daarnaast 
aantonen hoe Australië in de afgelopen jaren door drie fases van droge en natte 



 

periodes is gegaan. Dit onderzoek kan gebruikt worden om de vegetatieproductiviteit te 
voorspellen op basis van neerslagdata. 
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