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Abstract

This thesis argues that investigation of goal recognition and deception in the much studied

and well-understood context of path-planning reveals nuances to both problems that have

previously gone unnoticed. Contemporary goal recognition systems rely on examination

of multiple observations to calculate a probability distribution across goals. The first part

of this thesis demonstrates that a distribution with identical rankings to current state-

of-the-art can be achieved without any observations apart from a known starting point

(such as a door or gate) and where the agent is now. It also presents a closed formula

to calculate a radius around any goal of interest within which that goal is guaranteed

to be the most probable, without having to calculate any actual probability values. In

terms of deception, traditionally there are two strategies: dissimulation (hiding the true)

and simulation (showing the false). The second part of this thesis shows that current

state-of-the-art goal recognition systems do not cope well with dissimulation that does

its work by ‘dazzling’ (i.e., obfuscating with hugely suboptimal plans). It presents an

alternative, self-modulating formula that modifies its output when it encounters subop-

timality, seeming to ‘know that it does not know’ instead of ‘keep changing its mind’.

Deception is often regarded as a ‘yes, no’ proposition (either the target is deceived or

they are not). Furthermore, intuitively, deceptive path-planning involves suboptimality

and must, therefore, be expensive. This thesis, however, presents a model of deception for

path-planning domains within which it is possible (a) to rank paths by their potential to

deceive and (b) to generate deceptive paths that are ‘optimally deceptive’ (i.e., deceptive

to the maximum extent at the lowest cost).





CHAPTER 1

Introduction

“The road up and the road down are one and the

same.”
–Heraclitus

Goal recognition and deception are two sides of the same coin: the yin and yang of observ-

able behaviour. Surveillance, privacy; exposure, protection; curiosity, concealment. These

are problems whose solutions are useful, important and inextricably linked. Goal recogni-

tion involves determining an agent’s intent by observing her behaviour; deception involves

the observed agent in executing behaviour that conceals her intent. The relationship is

symbiotic. Consider a crime-writer, working on a new plot. Why bother coming up with

new twists and turns, why bother to throw in all those red herrings, if not for a reader

continually trying to work out what will happen next? Consider an athlete feinting left

before she moves right. Why feint at all, if not for an opponent observing the behaviour

and attempting to recognise which way she will run?

This thesis studies the problems of goal recognition and deception in the context

of path-planning. Given the initial location of an agent, a set of possible goals and

an incomplete sequence of places where the agent has already been, goal recognition is

the problem of determining which of those goals is the agent’s most likely destination.

Conversely, deceptive path-planning takes an initial location, a destination and a set of

possible goals and finds a path such that a goal recognition system (i.e., an interested

observer) is unable to determine the destination of an agent travelling along that path.

These are simplified versions of equivalent problems studied in the setting of general

task-planning. At a technical level, we adapt Ramirez and Geffner’s seminal framework

for goal recognition (2009, 2010) to the more restrictive path-planning environment within

which we develop specialised solutions that minimise computational effort. We analyse

and improve on the probability distribution formulas used in support of two contemporary

cost-based goal recognition frameworks (Ramirez & Geffner, 2010; Vered, Kaminka, & Bi-
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CHAPTER 1: INTRODUCTION

ham, 2016) to better deal with agents whose behaviour is—or appears to be—suboptimal.

Finally, we invert our probabilistic goal recognition solution as a basis for a deceptive path-

planning model, which also incorporates concepts from the general theory of deception

developed by Bell and Whaley (Bell, 2003; Bowyer, 1982; Whaley, 1982).

Our specific contributions are the provision of faster approaches to computing an

agent’s most likely goal, both online and offline, and a theory of deception that facilitates

a principled approach to understanding and using deceptive path-planning. This work may

be used not only in obvious contexts such as surveillance, privacy-protection and warfare

(“I want to know where your tanks are going but I don’t want you to know where my

tanks are going!”) but also for applications such as games programming, intelligent trans-

port systems and human-machine interaction (so-called ‘human-in-the-loop’ processing),

whether that involves cooperative teamwork or adversarial reasoning (or both).

Essentially, we seek answers to the following questions.

1. What gains can be made, computationally, when adapting state-of-the-art plan

recognition techniques to the special case of goal recognition in path-planning?

2. How can we improve on the response of goal recognition systems when the observed

agent’s behaviour is (apparently) irrational?

3. How can we define and generate measurably deceptive paths?

1.1 Our Approach

The dominant approach to goal recognition involves observing an agent’s behaviour, then

matching her actions against a sequence of similar actions stored as a plan in a plan library;

the ‘goal’ of the plan is assumed to be the goal of the agent (Demolombe & Hamon, 2002).

Development and maintenance of a plan library is time-consuming (plans must usually

be hand-crafted by a domain expert or converted from one format to another to facilitate

comparison) and the libraries are domain-specific (Sukthankar, Geib, Bui, Pynadath, &

Goldman, 2014). To overcome some of these problems, a recent trend has emerged, thanks

largely to the innovative work of Ramirez and Geffner (2009; 2010), whereby, instead of

creating and storing plans in advance, they are generated for comparison on-the-fly using

automated planning. Ramirez and Geffner’s model builds on the insight, independently

arrived at by others (Baker, Saxe, & Tenenbaum, 2009; Pattison & Long, 2010), that an

agent’s most likely goal can be determined by reference to the principle of rational action,

that is, by considering how closely the agent’s observed behaviour conforms to an optimal

plan for each possible goal.

Operationally, Ramirez and Geffner’s approach (2010) involves computing the cost of

the best plan that differs from observed behaviour. The calculation is cumbersome and

several authors (e.g., Escudero-Martin, Rodriguez-Moreno, & Smith, 2015; Vered et al.,

4



SECTION 1.1: OUR APPROACH

2016) have substituted a more economical alternative but without proof of its equivalence.

We supply this proof; we also define (and demonstrate the impact of) the corner case where

it does not apply (pp.50, 53, 80).

Many other modifications and extensions have been considered in relation to Ramirez

and Geffner’s original framework, often using navigational domains as part of a simplifying

assumption to assist explanations (Escudero-Martin et al., 2015; Keren, Gal, & Karpas,

2014; Sohrabi, Riabov, & Udrea, 2016; Vered et al., 2016, etc.). In our work, we focus on

those domains as an end in themselves, exploring how we can build on existing scholarship

under the particular constraints of path-planning to generate new, efficient solutions.

In most cases, goal recognition solutions are geared to handling observations in either

an ‘online’ or an ‘offline’ process. The offline process considers a full set or sequence

of observations in one batch, whereas the online process handles them incrementally,

often in real-time as they occur. The solutions we present in Part I—‘single-observation

recognition’ (p.42) and the ‘radius of maximum probability’ (p.61)—do not depend on the

observation sequence so manage to achieve the advantages of an online solution without

the computational cost of accumulating and incrementally processing observations.

Traditionally, goal recognition can be categorised into three types: ‘keyhole’ recogni-

tion, whereby the observed agent behaves just as if she were not being watched; ‘intended’

recognition, in which she actively attempts to reveal her goal; and ‘deceptive’ or adver-

sarial recognition, where the agent deliberately misleads or obfuscates. Until recently,

adversarial recognition has been somewhat neglected in the literature (Carberry, 2001).

The work that has been done has tended to focus either on domain-specific deceptivity or

anomaly detection (Kott & McEneaney, 2007). This omission is exacerbated by the fact

that goal recognition systems (particularly cost-based systems of the type outlined above)

are typically predicated on an assumption of rationality, which carries with it an in-built

assumption of honesty (since there is little difference, computationally, between an agent

that is irrational and one that is rational but deceptive).

Importantly, a goal recognition system rarely knows in advance which type of recogni-

tion it is dealing with. This means that a system which assumes it is dealing with keyhole

or intended recognition may actually be dealing, unknowingly, with a deceptive agent. In

this thesis, we present analysis (p.104) of probability distribution formulas used in support

of two state-of-the-art goal recognition frameworks (that of Ramirez and Geffner (2010)

and Vered et al. (2016), both of which assume rationality and keyhole recognition) and

find that, faced with suboptimality, both formulas return anomalous solutions. Neverthe-

less, our work builds on the insights underlying those formulas to arrive at an alternative

model capable of handling suboptimality in a principled way (p.110).

The literature relating to deception largely focuses on its prevention. This is prob-

ably partly due to the ethical considerations which often arise at the mere mention of

“deception” (Carson, 2010). Concerns have lately become increasingly pronounced with
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anxieties about privacy (Keren, Gal, & Karpas, 2016), debate about how and when it is

‘OK’ for robotic carers to deceive their vulnerable human charges (Arkin, Ulam, & Wag-

ner, 2012), and so on. We are also now seeing the emergence of adversarial elements, not

only in predictable spheres such as network security but, more surprisingly, on the roads in

our (perhaps imminent) driverless cars (McClean, Stull, Farrar, & Mascareñas, 2013) and

even in the context of machine learning where facial recognition systems can be deceived

into thinking that a photograph of one person is a photograph of somebody else entirely

(Sharif, Bhagavatula, Reiter, & Bauer, 2016). Elsewhere, game-theoretic accounts domi-

nate (Kott & McEneaney, 2007), in which, as warned by Castelfranchi (2000), deception

arises almost incidentally as a preferred strategy for maximising value (e.g., Hespanha,

Ateskan, Kizilocak, et al., 2000).

Notwithstanding the body of work on deception, we have been unable to identify a

systematic computational approach that is generally applicable to core navigational do-

mains. In Part II of this thesis, we present a model for deceptive path-planning which

tackles deception as an active pursuit (p.116). In doing so, we have reached outside com-

puter science to the work of military strategists, Bell and Whaley, who under a pseudonym

produced a general theory of deception or “Cheating” (Bowyer, 1982). From them we take

our terminology and basic strategies—in particular ‘simulation’ (showing the false) and

‘dissimulation’ (hiding the real)—which we reinterpret in a path-planning framework.

Practically, we treat deception as an inversion of probabilistic goal recognition, used

as a black box to stand in for the observer that we want to deceive. Thus, our model

is agnostic with respect to any particular goal recognition system. In general, however,

recognising that ambiguity is a problem for goal recognition, we implicitly acknowledge

how useful it is as a tool for deception. Furthermore, the use of probabilities is, in itself,

significant. In goal recognition, a probability distribution allows solutions to be ranked.

Clearly, if goals can be ranked for likelihood, they can similarly be ranked for unlikelihood;

if we know how unlikely the observer believes each goal to be, we know how unlikely

they believe the real goal to be. Thus, probabilistic goal recognition provides us with a

principled mechanism for measuring not only how likely a goal is, based on the observed

plan, but also that observed plan’s potential to deceive.

Goal recognition and deception are mirror images of one another. They are chal-

lenging topics, no doubt, acknowledged markers in the development of intelligent human

behaviour (e.g., Alloway, McCallum, Alloway, & Hoicka, 2015). By considering them in

the context of path-planning—one of the longest-studied and best-understood problems

in computer science (Russell & Norvig, 2013, p.109)—this thesis aims not only to develop

specialised solutions but also to advance our understanding of the topics themselves.
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1.2 General Assumptions and Recurring Themes

This thesis returns to certain issues repeatedly and makes general assumptions in the

following key areas.

1.2.1 Theory of Mind

Our work involves reasoning about an agent’s intent; necessarily, it makes the strong

preliminary assumption that she has one. Here, we depend on the ‘theory’ (because how

can we know?) that similar processing is going on in other people’s minds to that which

seems to be going on inside our own; that is, that they too are forming intentions, making

plans, arriving at beliefs including, quite possibly, false beliefs.

It is an assumption made by people every day: so-called ‘folk’ or ‘common sense’

psychology which suggests our actions are the result of logical reasoning and rational

thought. It little matters that behavioural economists have argued long—and lately pop-

ularly (Kahneman, 2011)—that this is only a partial explanation for how people make

decisions. The notion has the great advantage of being efficiently computable. It is at the

root of the belief-desire-intent (BDI) model of agent programming, built on the work of

Dennett (1987), Bratman, Israel, and Pollack (1988) and Rao and Georgeff (1991) and,

as computer scientists, we persist with it pragmatically because it works.1 Furthermore,

the approach promises to become increasingly accurate over time: BDI is a dominant

paradigm for AI agents; more and more agents are incorporated into human-AI teams;

goal recognition systems observe team behaviour—and increasingly that behaviour is be-

ing decided (thanks to the growing number of agents in the team) on a BDI model.

The assumption of intentionality is important: it provides a ‘goal-recogniser’ with

something to measure against and a deceiver with something to disguise: “How closely is

the agent following the plan for this goal? Very closely? Then she is likely going there!

Not very closely? Then we can forget about that goal and consider something else.”

1.2.2 Rationality

If an agent has knowledge that one of its actions will lead to one of its goals,

then the agent will select that action. (Newell, 1982, p.102)

Under Newell’s definition, path-planning is a clear expression of rational action. It is an

assumption on which contemporary cost-based goal recognition relies; though also one

that can make it vulnerable to deception.

1Electricians take a similarly pragmatic approach to electrical circuits. Electricity does not flow clock-
wise but it is convenient to ‘believe’ that it does because the assumption enables us to calculate (correctly)
how much current will end up at each node. Similarly, the assumption that people reason about their
intentions as a prelude to taking action, helps us to predict (often correctly) what they are likely to do.
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The implication is that a rational agent will take the most direct approach and,

since in path-planning accessibility is measured by cost, rationality can be taken as just

another way of saying ‘cost-sensitivity’. This is not to suggest that an agent might not

prefer paths that are aesthetically pleasing or routed, for example, via service stations, nor

that the agent might not have altruistic reasons for taking one path instead of another;

but, if necessary, these considerations can all be incorporated into an agent-specific—or

agent-type-specific—cost model. Certainly, if the agent in question (whether doing the

observing or being observed) is computerised (as opposed to human), the assumption that

it is acting with reference to some sort of cost model is not unreasonable.

Although we are aware of alternative approaches that better match the sort of

bounded rationality found in resource-constrained agents such as humans (e.g., Halpern,

1998), we have not attempted to incorporate that reasoning into our account. We assume

that agent behaviour may be slightly suboptimal but that a rational agent’s intention is

to behave more or less optimally. Thus, except where otherwise noted, we use the term

‘rationality’ synonymously with ‘cost-sensitivity’ and when we say that a path is ‘fully

rational’ we mean that it is optimal in terms of cost.

An agent’s behaviour

may be both rational

and suboptimal, as ex-

plored in Part II.

That said, it may sometimes appear that rationality and

optimality are at odds. This is because there is more than

one reason for an agent to engage in suboptimal behaviour:

she (or it) may actually be irrational (e.g., drunk or broken),

in which case there is no discrepancy; but it may also be

that she is operating under a different cost model from the one we expected (i.e., if we

knew the correct cost model, we would see that she is behaving cost-efficiently after all);

or her behaviour may be deliberately deceptive (a deceptive agent may rationally choose

an apparently suboptimal course of action precisely because the more cost-efficient route

would lead to detection: behaviour that is simultaneously suboptimal and cost-sensitive,

the situation we explore in Part II of this thesis).

1.2.3 About the Domain

By path-planning, we do not mean ‘motion-planning’. Except where otherwise stated,

this thesis focuses on core navigational domains of the type used for route-planning, such

as graphs (in the discrete domain) or Euclidean space (in the continuous domain), which

define only location and cost (often synonymous with distance). That is, our domain of

interest supplies the minimum amount of information necessary for us to be able to solve

a shortest path (or cheapest path) problem, which, in turn—as discussed in Section 1.2.2

above—is a minimum requirement for the assessment of rationality on which we depend.

Space in the real world is unlike any other dimension. We experience it directly and,

as a result, we understand it well. It has very particular constraints. For example, the

only available actions are movements; and movement can only occur between neighbouring
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locations. Actions are deterministic (if I move to A, I am sure to be at A, and would be

very surprised to find myself, instead, at B) and observations are complete in that they

capture the full state (if you know that I am at A, there is nothing more to know). This

is different even from other domains that might be used for motion-planning or trajectory

prediction. It is a ‘bare bones’ or ‘core’ account; it excludes richer notions such as pose

or heading, velocity, acceleration, clearances, fuel reserves, localisation and so on.

It may, of course, be the case that other areas of planning, or other particular planning

problems, share the above constraints. Indeed, we discuss the relationship between our

goal recognition model for path-planning and adaptations that would make it suitable for

general task-planning in Section 3.4.2 (p.84). However, we take the view: (a) that core

navigational domains in themselves present an abundance of worthwhile applications for

goal recognition and deception; and (b) that reducing the problem to its simplest form

allows us to focus on the main issues first, which leads to improved understanding of the

key issues and subtleties. We leave elaborations on the core problem to be studied as

future work.

In any event, the domain is not necessarily as restrictive as it at first appears.

The spatial domain [is] particularly suitable as a medium for conveying knowl-

edge, since its properties are universal to different cognitive systems. Thus, the

spatial domain can be used particularly well as the source domain for metaphors

with a non-perceivable or abstract target domain. In this way, the properties

of physical space can be used as a vehicle for conveying non-spatial concepts.

(Freska, 1991, p.362)

One objective of this thesis is to use path-planning to explore the concepts of goal recog-

nition and deception in precisely this way.

1.3 Outline of Contributions

Our main contributions are as follows.

1. Single-observation goal recognition for path-planning domains. Assuming

that the agent’s starting point is known (because all entry points are monitored or

because it is the only entry point into the domain), we adapt cost-based probabilistic

techniques designed for task-planning and demonstrate an alternative formula for use

in the path-planning domain which is observation-independent. That is, it enables

an observer to determine where an agent is going without knowing where she has

been (p.55). Previous best practice in this space would require the observed agent’s

prior path to be monitored as comprehensively as possible. This solution not only

saves time and computational effort; it makes feasible the pre-computation of a sort

of ‘heatmap’ of probabilities for each starting point in a given domain (p.57) from
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which, given just one observation—her current location—the agent’s most likely

destination can be retrieved in constant time.

2. Radius of Maximum Probability. Based on the single-observation formula, we

demonstrate calculation of a cost-radius within which any particular goal is the most

probable without actually calculating any probabilities; all that is needed are the

optimal costs from the starting location to each goal and between goals (p.61). In

practical terms, calculation of the radius of maximum probability contributes to the

emerging field of goal recognition design (i.e., the problem of designing an environ-

ment in which goal recognition is easy to perform) in that it can be used to identify

optimal surveillance points: an agent observed within the radius of maximum prob-

ability for a protected goal is most likely heading for that goal. Alternatively, being

quick to calculate, it can also be used on-the-fly for spot checks or in dynamic do-

mains (e.g., Raffe, Zambetta, & Li, 2012), where precalculation cannot be employed.

3. A self-modulating probability distribution formula for goal recognition.

Contemporary cost-based goal recognition models make an assumption of rationality.

Our analysis of two state-of-the-art systems (Ramirez & Geffner, 2010; Vered et al.,

2016) faced with behaviour that appears to be irrational (but which may occur when

an agent’s behaviour is fully rational but deceptively suboptimal) exposes anomalies

and potential vulnerabilities (p.104). We develop a self-modulating formula which

lifts the rationality assumption (p.110). It recognises the appearance of irrationality

and reduces its level of confidence accordingly, returning meaningful results whether

the agent is rational, irrational or deceptively suboptimal.

4. A model of deception as path-planning. We present a model that defines decep-

tive path-planning in terms of deceptive magnitude, density and extent (p.116) and

introduces the notion of a ‘last deceptive point’ (p.121), which can be used to develop

economical strategies for solving the deceptive path-planning problem. Drawing on

insights from goal recognition, game theory and disciplines outside computer science

such as military strategy and psychology, this model concretises deception—a noto-

riously elusive, abstract concept—in the context of path-planning: one of the best

understood and most widely studied topics in AI.

5. Proof of equivalence between Ramirez and Geffner’s cost difference for-

mula and a more economical alternative. Ramirez and Geffner’s probabilistic

seminal framework (2010) for goal recognition in task-planning involves computing

the cost of the best plan that ‘differs from observed behaviour’. Several authors

have suggested that it can be simplified by substituting instead the cost of the best

plan per se (e.g., Escudero-Martin et al., 2015; Kaminka, Vered, & Agmon, 2018;

Sohrabi et al., 2016; Vered et al., 2016). We provide a sound theoretical basis for
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this substitution by demonstrating the precise cases where the simplified formula

and Ramirez and Geffner’s original formula return identical results (p.50), where

they differ (p.53) and the potential impact of those differences (p.80).

1.4 Thesis Outline

The rest of the thesis is organised as follows.

• In Chapter Two, we provide a literature review which sets out the background to

this thesis. First, we review the landscape with respect to goal recognition and

deception in path-planning; we then focus on those works which are central to our

approach.

• The thesis then divides into two parts.

– Part I (Chapter Three) deals with goal recognition in the context of path-

planning. Here, we demonstrate the computational gains that can be made

when applying cost-based goal recognition in path-planning domains using our

novel techniques of single-observation recognition and the radius of maximum

probability.

– Part II (Chapter Four) deals with deception. It looks at improvements that can

be made when dealing with apparently irrational (potentially deceptive) agents

and at ways to actively develop measurably deceptive paths. In this chapter,

we present our self-modulating probability distribution formula and describe a

model of deception for path-planning.

• In Chapter Five, we present our conclusions. We acknowledge the limitations of the

work presented in this thesis and propose avenues for future research.
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CHAPTER 2

Literature Review

“The ability to observe, and the ability to see the little

things that seem trivial at first, may become amazingly

important and meaningful. Out of little observations

huge ideas may grow; and if a mind, made receptive by

training in the use of the senses, can store away a

mass of observations, the time will come when the

whole collection can be unrolled, connected together as

a great novel is planned, in a compelling pattern that

tells us something new.”

–Harold Gatty

This thesis stands at the intersection of goal recognition, deception and path-planning,

topics with long histories both within and outside computer science. This chapter does

not (and could not) aim to provide a full survey of all these fields. Rather, it lays out

the general landscape then focuses on those works which we believe best contextualise the

models of goal recognition and deception that we propose in Chapters 3 and 4.

2.1 Path-Planning

Path-planning is a sub-problem of general task-planning: that branch of artificial intel-

ligence, central to decision-making, which involves “devising a plan of action to achieve

one’s goals” (Russell & Norvig, 2013, p.366). In planning, goals are conceived as states,

that is, combinations of atoms or ‘fluents’, capable of representing the many possible sit-

uations (appropriate to the problem domain) in which an agent might find herself. A

planning problem asks: if I am in this situation and would rather be in that situation,

what sequence of actions can I take to make it so?

Path-planning, by contrast, is the problem of finding a path from a starting point

to a goal through the map or model of a domain. In path-planning, states are reduced
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Figure 2.1: Gridworlds from (Tovey & Koenig, 2000) and (Ramirez & Geffner, 2010).†
†Externally-sourced images in this chapter are used in accordance with fair dealing for criticism and review.
Copyright remains with the owners.

to locations, actions to movements, and plans to routes from one location to another. In

classical path-planning, the map or model—whether it represents the real-world, a game

world or other kind of search space—is typically abstracted into a graph or grid (Harabor

& Grastien, 2012; Hart, Nilsson, & Raphael, 1968; LaValle, 2006). The question now

becomes, what path should I follow to reach my destination?

Path-planning represents a significant simplification of the task-planning problem

and—in much the way that people commonly reach for pen and paper to illuminate

problems by quickly sketching a flow-chart or a brain-tree—solutions to general task-

planning problems are very often evaluated first as toy problems in a ‘gridworld’ domain

(e.g., Tovey & Koenig, 2000). This two-dimensional grid (similar to those shown at Figure

2.1), which may be as small as six- or eight-by-eight cells and in which costs are equated

with distance, exemplifies the KISS (Keep It Simple, Stupid) approach to problem-solving.

By eliminating potentially confounding variables and extraneous noise, the decision points

in a computational process are thrown into relief, errors or inconsistencies become visible

and the whole process is made more transparent.

The Shortest Path Problem

In a graph-based domain, 〈N,E〉, whereN is a set of nodes and E ⊆ N×N is a set of edges,

the general approach to path-planning is to begin from a nominated start node n ∈ N ,

expand it (that is, obtain a set of all its neighbouring nodes) and then proceed to expand

the newly discovered nodes in some systematic way, repeating the process until a goal is

reached. A ‘best-first’ search algorithm is one that applies an evaluation function to the

discovered nodes to decide which of them should be expanded next. Edges between nodes

are frequently weighted (according to cost or distance) and, instead of finding any path,

the problem becomes one of finding an optimal (i.e., minimum weight, cost or distance)

path to goal (Russell & Norvig, 2013).

The shortest path problem has a long history. A comprehensive review of algorith-

mic solutions appears in (Cherkassky, Goldberg, & Radzik, 1996). Djikstra’s algorithm

(Dijkstra, 1959), which evaluates nodes based on their minimum cost so far, is still widely
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Listing 2.1: A* algorithm.

1 Require: starting node, s; goal

2 Returns: path or failure

3

4 openlist← 〈s, f(s), null〉
5 while openlist is non-empty

6 n← node on openlist with lowest f(node)
7 if n is the goal then

8 constructpath(n,parent)

9 return path

10 else

11 closedlist← n
12 neighbours← getNeighbours(n)
13 for neighbour in neighbours
14 if neighbour not on closedlist then

15 openlist← 〈neighbour, f(neighbour), n〉
16 else

17 if f(neighbour) < f(neighbour − on− closedlist)
18 remove neighbour from closedlist
19 openlist← f(neighbour)
20 return failure

used as the basis for route-planning algorithms across road networks (e.g., Bast et al.,

2015). Even in continuous domains, Djikstra and its variants are commonly used because,

in practical applications, the space must usually be discretised to a grid or a graph to

make the problem tractable (LaValle, 2006).

The A* algorithm with which path-finding in games is said to be “synonymous”

(Millington & Funge, 2009, pg.215) is one of Djikstra’s variants (see Listing 2.1). A*

considers not only the cost so far, but also an heuristic, which estimates the cost from the

current node to the goal, enabling a more directed search using the well-known function

f(n) = g(n)+h(n), where n ∈ N is the node being evaluated, g(n) is the minimum known

cost from the start node to n, and h(n) the estimated optimal cost from n to a goal (Hart

et al., 1968). Provided that the heuristic h(n) is consistent1 and not an over-estimate, A*

is guaranteed to find an optimal path.

Jump Point Search (Harabor & Grastien, 2012) is also guaranteed to be optimal. It

has recently become a dominant extension to A* for searching uniform-cost grids, where

the symmetry of that particular environment can be exploited to massively reduce the

number of nodes that need to be evaluated.

No matter how the search is conducted, the conventional path-planning problem

is typically constrained by a requirement to return not just any path but one that is

shortest, cheapest, fastest, or otherwise maximises some value or minimises some cost. To

our knowledge, however, it has not previously been used to maximise deceptivity.

1A consistent heuristic is one that accommodates triangle inequality, that is, the sum of any two sides
of a triangle must always be greater than or equal to the length of the third side or, put another way: the
shortest path between two points is a straight line; breaking that line cannot make the path shorter.
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Figure 2.2: A traditional plan, as expressed by Kautz and Allen (1986, p.34).

2.2 Goal Recognition

Goal recognition is the problem of determining an agent’s intent by observing her be-

haviour. It falls within the scope of plan, activity and intent recognition (PAIR) and

concerns that aspect of the PAIR problem which is interested in the final or ‘top level’

goal, rather than the plan or subgoals that must be negotiated on the way to achieving it

(Blaylock & Allen, 2006).

PAIR has a long history in computer science (Carberry, 2001) and its growing num-

ber of navigational and motion-related applications range from adversarial reasoning for

games and the military (Kott & McEneaney, 2007) to the monitoring of residents in smart

homes for the cognitively impaired (Roy, Bouzouane, Giroux, & Bouchard, 2011). With

the advent of autonomous robotic vehicles, such uses have become increasingly important

as an adjunct to trajectory prediction (e.g., Wiest, Höffken, Kreßel, & Dietmayer, 2012),

to recognise driving goals such as lane-changing (Firl & Tran, 2011; Graf, Deusch, Seeliger,

Fritzsche, & Dietmayer, 2014) and more broadly to predict the behaviour of detected ob-

jects, such as other vehicles, cyclists and pedestrians (Kooij, Schneider, Flohr, & Gavrila,

2014).

The first formal articulation of the plan recognition problem is widely attributed to

16



SECTION 2.2: GOAL RECOGNITION

Kautz and Allen (1986), whose approach is illustrated in Figure 2.2, where up-arrows

indicate task-specialisation and down-arrows indicate task-decomposition. Their solution,

using minimum set cover over a task network representation, did not accommodate uncer-

tainty and the desirability of a probabilistic solution quickly gave rise to alternative models

based on Dempster-Schaffer theory (Bauer, 1995; Carberry, 1990) and Bayesian Theory

(Charniak & Goldman, 1991). Numerous other probabilistic solutions have followed, rang-

ing from probabilistic grammers (Geib & Goldman, 2009) to POMDPs (Baker, Saxe, &

Tenenbaum, 2011; Pynadath & Marsella, 2005; Ramırez & Geffner, 2011), amongst others

(e.g., Bui, 2003; Mirsky & Gal, 2016). Sukthankar et al. (2014) provide a recent survey of

contemporary approaches.

The traditional—and still prevalent—technique involves matching a sequence of ob-

servations to a sequence of actions stored as a plan in a plan library (Sukthankar et al.,

2014). The winning plan is the one that best matches the observations and, given that

each plan sets out to achieve some goal, having identified the plan, the observer has im-

plicitly identified the goal (Demolombe & Hamon, 2002). However, the difficulty of having

to either acquire or hand-code the plans makes it desirable to perform plan recognition

without them (Hong, 2001), particularly in real-world navigational domains such as a sea

or a city, where the number of plans whereby an agent might move from point A to point

B is potentially infinite (Pattison & Long, 2013).

2.2.1 Plan Recognition as Planning

Rather than endure the overhead of generating, storing and searching through numerous

plans that might turn out to be redundant, Ramirez and Geffner (2009) proposed the use

of a classical planner to generate plans, as needed, relative to a ‘domain theory’ (i.e., a

planning domain). This innovation makes it possible for plan recognition to leverage

advances made by the planning community. It relies on a key insight that the probability

of a plan can be linked to its cost. Appealing to the principle of rational action, an agent

is assumed to be taking the optimal (for which read minimum cost/maximum utility) or

least sub-optimal (Ramirez & Geffner, 2010) path to goal. Ramirez and Geffner’s 2009

and 2010 papers are central to this thesis and we discuss them more fully in Section 2.5.

While Ramirez and Geffner were among the first to recognise the potential of making

plan recognition a planning problem, they were not alone. Cognitive scientists Baker et

al. (2009) independently arrived at a similar conclusion. They characterise their method-

ology as ‘Bayesian inverse planning’ and equate it with theory of mind. They are inter-

ested in modelling human cognition and their experiments compare calculated predictions

(again based on the principle of rational action) with human inference as expressed by

participants in their studies. Their findings show that, initially, predictive calculations ac-

curately model the human inference process. However, once a goal has been identified as

the most probable, human observers are reluctant to relinquish it. That is, they continue
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to subscribe to an initially assumed intention even in the face of subsequent contradic-

tory observations and seem to seek any plausible reason to justify anomalous behaviour

(Baker et al., 2011).2 This implies that, once a human observer has been persuaded of

a false goal, there may be a period of grace in which to pursue the real goal while that

observer ‘readjusts her thinking’. In devising deceptive paths, a strategy that aims to be

as deceptive as possible for as long as possible implicitly seeks to benefit from this effect.

2.2.2 Extensions and Alternatives

In most applications, goal recognition tasks must be performed ‘online’ (Blaylock & Allen,

2006). That is, the objective is to identify an agent’s goal while the plan is being carried

out (certainly before it terminates and anyway as quickly as possible), working from

observations that are delivered incrementally. It is a purpose not explicitly considered by

Ramirez and Geffner (2010) and one for which more efficient models have been sought.

Concurrently with work undertaken preparatory to this thesis, Vered and Kaminka

have developed a body of work, geared particularly towards online recognition in a field

closely related to ours: that of motion-planning in continuous domains (Vered & Kaminka,

2017; Vered et al., 2016; Vered, Pereira, Magnaguagno, Kaminka, & Meneguzzi, 2018).

Vered et al.’s 2016 formulation of cost-based goal recognition solves the potential prob-

lem of identifying continuous observations—which may consist of points (for a stationary

agent) or trajectories (for an agent in motion) by defining both (or either) as a function

of the time during which each observation is made. Candidate paths are conceived as

similarly time-segmented subpaths concatenated together, effectively discretised, which

allows for direct comparison between the path segments and the observations.

Kaminka et al. (2018) present a somewhat different model, which extends to task-

planning and is unified to cover both discrete and continuous environments. They achieve

this by treating continuous paths as a sequence of continuous subpaths between waypoints.

Whereas transitions in a discrete task-planning environment are effected by applying an

action a in a particular state s (and so reaching some new state s′), here instead the

equivalent action is conceived as resulting in a continuous transformation from s to s′. The

granularity of these transformations, captured as a sequence of indices I = {1, . . . ,m},
is assumed to be determined at runtime and, although I is potentially infinite in the

continuous case, it is easy to see that in the special case where it is binary (i.e., where

I = {0, 1}), the model applies equally to discrete transitions. The authors point out

that the continuous environment has demonstrable advantages when dealing with goal

recognition that corresponds to real-world path-planning. This is because, although a

continuous environment can always be discretised to an appropriate level of granularity

2Famously, in the case of the D-Day landings, the German high command was convinced that the
allied landings would occur in Calais. Even after troops had been observed actually landing in Normandy,
the German 15th army remained stationed at Calais: commanders were seemingly unable to relinquish the
assumed intention of a Calais landing, preferring to explain the conflicting evidence as a decoy operation.

18



SECTION 2.2: GOAL RECOGNITION

to accommodate known locations, once the discretisation has been decided, newly added

locations may become indistinguishable. For example, in an environment discretised as

a grid, observations at two different locations can end up inside the same cell so that,

computationally, they appear to be at the same location.

Vered and Kaminka consider goal recognition in relation to types of motion-planning

beyond route-planning, such as drawing analysis. They characterise goal recognition as

‘goal mirroring’ (that is, the empathetic human response to observations, whereby we

imagine ourselves in the observed situation and assume the observed agent is behaving as

we would) and have an interest in uncovering the ‘heuristic’ (i.e., probability distribution)

that best corresponds to human reasoning. Thus, although they build on the formula at

the centre of Ramirez and Geffner’s non-probabilistic model (2009)—which (effectively)

subtracts the optimal cost of reaching a goal from the optimal cost of reaching that same

goal given the observations that have already been made—the formula they use to derive

a probability distribution takes, instead, the ratio of those two terms: an heuristic known

to be a good match with human goal reasoning (Bonchek-Dokow & Kaminka, 2014).

In focusing on the mechanics of online goal recognition, Vered and Kaminka (2017)

save time by re-using the calculated cost of the ‘path prefix’ (that is, the observed path so

far) rather than repeatedly calculating its entire cost.3 The authors propose two further

mechanisms to help reduce computational costs. In online goal recognition, observations

are processed incrementally and Vered and Kaminka’s model synthesises the path prefix

with the path suffix at every step. On receiving a new observation, the system first checks

whether the agent appears still to be approaching the same goal that was previously

deemed ‘most probable’. If so, recalculation is skipped. If not, the system checks the

agent’s trajectory (i.e., angle of movement) since the previous observation. If the agent

appears to have ‘turned away’ from a goal by an angle greater than some given threshold,

that goal is pruned from the candidate set making future probability calculations (across

one less goal with each pruning) faster and faster. The claims relate to task-planning

(albeit in a continuous domain) but the examples relate to motion-planning and it is

unclear how the agent’s ‘trajectory’ would be assessed in alternative domains.

Vered et al. (2018) combine goal mirroring with the use of landmarks. Classical plan-

ning can be computationally expensive in itself and Pereira, Oren, and Meneguzzi (2017)

have extended Hoffmann, Porteous, and Sebastia (2004)’s work on landmarks (i.e., actions

that must occur for a goal to be achieved) so avoiding both the cost of planning and the

expense of a plan library. Pereira et al.’s model treats landmarks as facts that must be

satisfied (rather than actions that must occur). Briefly, an ordered list of landmarks for

each goal is first extracted from the domain; then, by comparing observations with this

set, impossible goals can be pruned so that only the achievable goals remain. Vered et

3In fact, using Ramirez and Geffner’s probability distribution formula instead of Vered and Kaminka’s
ratio-based alternative, it is unnecessary to calculate the cost of the path-prefix at all (see Section 3.1,
p.42).
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al. (2018) extend this approach to provide an online solution for discrete and continu-

ous domains that generates a probability distribution by taking the ratio of ‘landmarks

achieved’ against ‘total landmarks’ for each goal. In order to apply the notion of land-

marks in a continuous domain, the authors characterise them as regions around a goal,

some part of which must be traversed in order to reach that goal. They denote these

regions as (rectagonal) bounding boxes based on visibility (i.e., absence of obstacles) be-

tween enclosed points and the goal. Although a ‘blocks world’ example is discussed in this

work, experimental evaluation is confined to navigational domains.

Escudero-Martin et al. (2015) also avoid the expense of planning, in their case by

generating plan graphs based on the domain; and they save time by estimating costs

rather than calculating them precisely. As discussed more extensively in the final section

of this literature review (p.35), Ramirez and Geffner (2010) introduce the notion of ‘cost

difference’, a formula that compares the optimal cost of a plan that incorporates observed

actions with the optimal cost of one that does not. Escudero-Martin et al.’s probabilistic

solution to goal recognition involves first deriving a plan graph from the problem domain,

from which to generate cost estimates for each goal. The graph is then pruned based on

observed actions and a second set of cost estimates is generated so arriving at an estimated

cost difference, which can be plugged into Ramirez and Geffner’s probability distribution

formula directly. The resulting distribution can be used as-is or as an intermediate step

after which only the ‘most likely’ goals are considered further under some other process.

Ramirez and Geffner’s solution (2010) does not natively accommodate ‘unreliable’

observations and Sohrabi et al. (2016) extend their work by introducing weights to allow

for the possibility that observations may be noisy or missing. They demonstrate that, by

taking the average of multiple results from a top-k planner (i.e., one that generates multiple

high quality plans), it is possible to produce a more reliable result more efficiently than

can be achieved by other means. In this paper, the authors also point out that, although

a plan in classical task-planning is given as a sequence of actions, in practice, the actions

themselves are rarely visible. They suggest, therefore, that observations may be better

understood as the effects of actions. This approach, whereby observations are treated as

‘observable fluents’ (in their case, mapped into states in a plan’s execution trace rather

than to actions in the plan itself) is a good fit with discrete path-planning domains where

it is convenient to define a path as a sequence of locations (e.g., the nodes in a graph

rather than the edges that connect them).

Freedman and Zilberstein (2017) extend Ramirez and Geffner’s framework into the

realm of human machine interaction (HMI). Their work uses the solution from a plan

recognition problem (“what is that agent trying to achieve?”) as the goal (or partial goal)

input into a planning problem. Effectively this provides an agent with seeming ‘foresight’

as to the intentions of the observed agent, which can then be used either to help or

hinder. Whether assisting a colleague or blocking an adversary, it is useful to identify an
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optimum point for intervention. In a subsequent paper, Freedman, Fung, Ganchin, and

Zilberstein (2018) save time with a solution that ranks multiple goals at once, rather than

carrying out a computation for each goal separately. As the authors point out, the many

extensions to Ramirez and Geffner’s framework share a common objective in attempting

to achieve goal recognition more quickly.

2.2.3 Goal Recognition in a Navigational Context

We conclude this section by noting that goal recognition is already used with great effect in

explicitly navigational scenarios, particularly in the emerging area of ubiquitous comput-

ing. Typically, such scenarios involve additional features, beyond the core path-planning

domain which is the focus of our work.

For example, in their work on elastic pathing, Gao et al. (2014) show that speed

alone (monitored telematically) can be used to identify an agent’s path, and thereby her

goal. The only constraints are that the agent should be operating in a domain (such as

the road network) where additional available information includes her likely start location

(e.g., her home address), maximum legal speeds along each path segment and the location

of intersections (where it may be necessary to stop or slow down).

Tastan and Sukthankar (2011) tackle the problem of predicting human movement

through an indoor environment, where the presence of obstacles and a human tendency

to take different routes to and from a goal make behaviour difficult to assess on the basis

of cost. Their model assumes instead a human trajectory based on heading, mediated by

a preference for moving in straight lines, attraction towards goal and object avoidance. In

tests (both online and in a crowded real-world office environment) the subtleties achieved

using this kind of vision-based steering were found to be far superior to those obtained

using traditional ‘shortcut’ (i.e., cost-based) prediction.

In the realm of ubiquitous computing, the GPS function in mobile phones has been

used to predict an agent’s future location by identifying changes in her mode of transport

(Patterson, Liao, Fox, & Kautz, 2003). Meanwhile, recent innovations include dissemi-

nation of the so-called “Sentry” app for mobile phones, whereby civilians in Syria share

observations about aircraft travelling overhead (specifically time, location and direction

of travel) to assist in the prediction of impending bomb targets (Dadouch, 2018). More

mundane but useful nevertheless, an agent’s plans can be predicted, even before she acts,

from browsing habits (i.e., without monitoring any of the usual physical considerations,

such as speed and direction). Indeed, researchers have demonstrated that they can map

an agent’s information needs in a virtual network to her purchasing needs in a real-world

shopping centre (Ren et al., 2017).

Goal recognition for the core path-planning domain does not need to be seen as an

alternative to these approaches but as orthogonal to them; together they can provide a

richer model.
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2.3 Adversarial Recognition

In her comprehensive survey of the field, Carberry (2001) categorised plan recognition into

three types, based on the attitude of the agent being observed: keyhole recognition, which

involves fly-on-the-wall observations to which the agent is indifferent or unaware; intended

recognition, where the agent is supportive and may interactively give clues or answer

questions; and adversarial recognition, which entertains the possibility that observations

may somehow be fabricated by the agent deliberately in order to deceive.

Of these, adversarial recognition has, in the past, been something of the poor relation.

As Carberry (2001, p.32) states, “. . . little published research has examined situations

where deception must be taken into account.”4

Geib and Goldman (2001) represent an early contribution to this field. Previous work

on goal recognition (they say) assumed full observability. This work, however, allows for

the possibility that, in recording observations, some actions may have gone undetected

and it provides a means of inferring them. This is achieved by assuming actions that

must have occurred based on those that are subsequently seen. The Geib and Goldman

model assumes that there is a known upper bound of unobserved actions and also that

observations that are made occurred in the order that they were recorded. One key

limitation, however, is a dependence on deceptive plans being explicitly added to the

plan library. In effect, this places deception-detection on a par with traditional goal

recognition: if ‘adversarial’ plans are loaded into the plan library, observations can be

matched against them in the usual way. Reliance on plan libraries is thus a problem for

adversarial recognition, just as it is for keyhole recognition. Typically, plans are domain-

specific and, even within a given domain, it is impossible to cater for every eventuality. So,

plans must be hand-coded (or labelled) based on the input of domain-experts or extracted

somehow from other sources.

With an increased focus on HMI and anxieties about potentially hostile AI,5 the land-

scape is slowly changing. Nevertheless, recent approaches to deception-detection continue

to be domain-specific, relying either on deceptive plans (Geib, 2006) or anomaly detection,

for example, as a ‘decision aid’ referring cases on to a trained operative (Elsaesser & Stech,

2007). Avrahami-Zilberbrand and Kaminka (2014) provides a recent survey of the field.

The framework presented by Avrahami-Zilberbrand and Kaminka (2014), following

their survey, references an adversarial plan library but also identifies as anomalous any

plan that fails to make a match. The authors combine this approach with a ‘worst

case assumption’. This tactic, whereby the agent is assumed to be pursuing whichever

4There may be some justification for the lack of attention deception has received from the PAIR
community. Timothy Levine, editor of the Encylopedia of Deception (Levine, 2014a), asserts that people
are right to believe one another because usually they do tell the truth (Levine, 2014b).

5An open letter calling for a ban on autonomous weapons, presented at the International Joint Confer-
ence on Artificial Intelligence (IJCAI) 2015, garnered over 22,000 signatures (The Future of Life Institute,
2015).
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ambiguous plan is least good for the observer, provides a mechanism to protect against

suspicious behaviour even if it is (ostensibly) unlikely to occur. Avrahami-Zilberbrand

and Kaminka’s work is of particular interest because the domain is path-planning-related

and, although dependent on a plan library, accumulation of plans is built into the model.

The context is one of surveillance. Agents are observed by cameras and the trajectories

included in the plan library are assembled using supervised machine learning over observed

paths.

Ambiguity, tackled by Avrahami-Zilberbrand and Kaminka (2014) using the worst

case assumption, is a major problem for goal recognition, whether matching against plans

or against optimal plan costs, and one standard approach to deception involves deliberately

engineering observations to be as ambiguous as possible (e.g., Keren et al., 2014; Kulkarni,

Klenk, Rane, & Soroush, 2018). When this occurs, a goal recognition system is effectively

placed on an adversarial footing. It can either make a random selection, ‘wait and see’

or attempt some other means of disambiguation. Cost can be used for this purpose.

Sukthankar and Sycara (2005) disambiguate in favour of whichever goal can be accessed

at least expense to the observed agent while Mao and Gratch (2004) calculate the estimated

expected utility of competing hypotheses and, assuming rationality, if two goals are equally

probable, assess that the most likely goal is the one that maximises the observed agent’s

expected value. An alternative approach is to make a ‘worst case assumption’ (as discussed

above) whereby, rather than taking the observed agent’s preferences into account, selection

is made based on whichever possibility risks maximising the observer’s expected costs

(Avrahami-Zilberbrand & Kaminka, 2007; Tambe & Rosenbloom, 1996). If the situation

is dynamic and interactive, Tambe and Rosenbloom (1996) suggest a further strategy:

that of ‘active ambiguity resolution’, whereby the observer tries to provoke the observed

agent into an action capable of ‘flushing out’ its true intent.

2.3.1 Goal Recognition Design

Ambiguity is one of the key problems tackled in the emerging field of goal recognition

design, introduced by Keren et al. (2014). This innovative contribution to offline goal

recognition also builds on the Ramirez and Geffner model. Goal recognition design involves

modifying a domain’s layout in order to achieve goal recognition more easily. The first step

in the process is analysis of the problem domain to determine ‘worst case distinctiveness’,

that is, the maximum number of steps in (or length of) an optimal plan before its goal

can be uniquely identified. Briefly, a shared optimal path prefix is identified using a

compilation whereby two agents, operating within the same model, aim at different goals

but receive a discount for acting together.

The method of calculation is ingenious but dependent on classical planning tech-

nology and potentially cumbersome in a path-planning context. It is also based on an

assumption that each agent’s behaviour is fully rational. In a subsequent paper, how-
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ever, Keren, Gal, and Karpas (2015) extend their model to consider suboptimal plans. To

handle this situation, they employ two concepts: ‘bounded non-optimality’, whereby they

assume the agent’s behaviour is naively suboptimal; and ‘bounded deception’, whereby

the agent’s behaviour is deliberately suboptimal with the intention to deceive. In either

case, the idea is to cap the number of permissible steps (or permissible distance travelled)

within a fixed budget. The underlying problem here is not explicitly addressed: namely

that, without introducing a budget, a suboptimal path’s ‘worst case distinctiveness’ is

potentially infinite. However, alternative methods of identifying distance travelled along

a suboptimal path are not considered.

Keren et al. (2016) extend the notion of worst case distinctiveness into partially

observable environments based on the idea that a deceptive agent may be able to control

which actions ‘emit’ observations (e.g., because the agent’s location is betrayed by a mobile

phone signal and the mobile phone can be turned on or off at will). Under this assumption,

it is possible to maintain an ambiguous path for a greater distance. Again, the distance is

calculated from the initial state using optimal (or ‘bounded optimal’) paths. Meanwhile,

we note that this strategy, which is essentially one of deliberate deception, is characterised

as ‘privacy protection’.

2.4 Deception

Deception is more difficult to define than goal recognition and more challenging to quantify.

Its nature has been debated by philosophers since Plato’s Phaedrus (Murray, 1988). The

Stanford Encyclopedia of Philosophy (Mahon, 2008) suggests five different definitions then

finds at least two objections to each of them. Shim and Arkin (2013), seeking a system of

classification suited to robotics, cite taxonomies from disciplines as diverse as psychology

and cyberspace and, although not every aspect of the topic is central to this thesis, many

have useful and interesting implications for future work.

With regard to ethics, (Carson, 2010) has said that the very word “deception” im-

plies wrong-doing. Bowyer (1982), on the other hand, (whose theory we consider more

extensively in Section 2.4.2, below) discusses many benign applications, such as sport and

magic. As Bowyer points out, even when applied to military strategy—for example, in

the retreat from Gallipoli—deception is the technique that saves lives; it is the failure to

deceive that leads to carnage. Also, of course, when we rename deception as “surprise”

or “privacy”, the ethical dilemma tends to disappear. Indeed, as noted above, when ad-

vocating deception, the literature prefers to characterise it as ‘privacy protection’ (Keren

et al., 2016).

Interestingly, deception is closely linked to theory of mind, which we have already

identified as a key aspect of goal recognition (Baker et al., 2011).

The lie is. . . a normal phenomenon of what Heidegger calls the ‘Mit-sein’. It

24



SECTION 2.4: DECEPTION

presupposes my existence, the existence of the Other, my existence for the

Other, and the existence of the Other for me.

(Sartre, 1956, cited by Chisholm & Feehan, 1977, p.151)

Sartre’s intuition seems confirmed by Short, Hart, Vu, and Scassellati (2010). In their

experiment, a humanoid robot cheated at a game of rock-paper-scissors, either by saying

it had won when it had not or by changing its response after noticing that it had lost.

The authors found that the act of cheating was in itself sufficient for children to attribute

the presence of a mental state to a machine. However, an interesting ‘circular logic’ was

also in play: when the robot cheated by lying—that is, by making a false statement about

the game’s outcome—the children were inclined to regard it as a malfunction rather than

a deception. Why? Because a ‘malfunction’ is something that happens to a machine; and

a machine has no mental capacity so it cannot cheat! One implication for a path-planner

engaged in the deception of humans is this: the more robotic a path appears to be, the

less likely it is that an observer will anticipate that they are about to be deceived.

Deception obviously involves false belief. Therefore, we briefly note the problems

presented by false belief in relation to knowledge representation. Mathematical logic,

upon which computer systems are based, is monotonic: the addition of new information

can only add knowledge; it cannot decrease the set of propositions previously known to be

true (Russell & Norvig, 2013). That is, if A ` q and A ⊂ B, then B ` q (McCarthy, 1980,

pg.28). Deception presents a problem: by definition, it induces false belief; an intelligent

system that maintains a model of the deceived must be capable of modelling false belief;

and a model capable of admitting false belief is inherently non-monotonic. Such a system

requires an alternative logic capable of belief revision, such as the dynamic epistemic logic

of van Ditmarsch, van der Hoek, and Kooi (2007). The impact for us is in terms of

motivation. A machine based on standard logic is incapable of revising its beliefs; but

the richer the logic, the more processing it requires. If we can trick a computer system

into accepting a falsehood, its correction process may be anything from time-consuming

to impossible.

Chisholm and Feehan (1977) present a catalogue of further philosophical considera-

tions: degrees of intentionality, the distinction between believing a proposition and not

disbelieving it, the difference between deceptions achieved by commission or omission,

those that result in the target adding to their stock of beliefs or ceasing to believe some-

thing they previously held true, and those where a target is deceived into continuing an

existing false belief versus those where the deception has forced a change. Although, for

path-planning, we can largely ignore these aspects, this work is interesting in that, by

grading and classifying on each of these different dimensions, it is one of few that at-

tempts to rank deceptions in order. These rankings, however, do not represent how likely

it is that a deception will succeed but rather how relatively immoral it is.
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2.4.1 Deception and Artificial Intelligence

Arguably, AI began with deception. The thinking machine in Turing’s imitation game

(1950) was essentially a deceiving machine. Notwithstanding subsequent reworkings, the

original Turing Test required the machine to be substituted for a man, who was engaged

in deceiving his interrogator into believing that he was actually a woman (and that the

woman, also under interrogation, was actually a man). If the machine succeeded in de-

ceiving its interrogator as often as the real man had managed to do then it would be

reasonable to conclude, according to Turing, that machines can think.

In his paper, “Artificial liars: Why computers will (necessarily) deceive us and each

other”, Castelfranchi (2000) argues that the agent-oriented paradigm—within which au-

tonomous agents interact with the environment and each other to further their own self-

interest—must inevitably lead to deceptive practices, whether the agent is strategic (cal-

culating each situation’s utility) or purely reactive. Anyone who thinks Castelfranchi

may be exaggerating has not witnessed the demonstration of Google Duplex, recorded at

Google’s I/O conference, in which a robotic personal assistant masquerades as a human

for no more important purpose than to book a hair-dressing appointment (Google, 2018).

In computer science, much of the work on active deception (as distinct from its de-

tection) has involved game theory. Unlike Google’s personal assistant, the focus here is

on deceptive acts that occur spontaneously (rather than being crafted) as the inevitable

consequence of agents pursuing self-interested goals, unchecked by social or moral con-

straints. This is particularly true of agents operating within a game theoretic paradigm

with its emphasis on strategic and, typically, selfish motivations (Castelfranchi, 2000).

In a partial information game, for example, Player A may be able to gain an advantage

by taking an action which suggests the game state is other than it actually is. Player B

is then deceived into responding with the action that, given the implied (but false) game

state, appears to offer the best pay-off when, in fact, it offers the worst (Hespanha et al.,

2000). Even in full information games, deceptions can spontaneously occur if one player

has more computational power than the other (Hespanha, 2007). In such cases, the more

powerful player can act to prompt a response that appears advantageous to a less powerful

opponent looking ahead to the extent of its preview horizon at, say, n steps, knowing that

this response will lead it to disaster at step n + 1. Limited computational power can

also be exploited by using diversionary tactics whereby a player may be tempted into

exploring the wrong locations, leaving it with insufficient resources to explore the right

ones: a strategy applicable not only to machines exploring the branches of a search tree

but also to humans, unable to look in two places at once.

In “A Theory of Deception” Ettinger and Jehiel (2010) offer a more sophisticated ap-

proach with their game theoretic account of ‘fundamental attribution error’6. The sophis-

6Fundamental attribution error is a concept from social science which describes the tendency to at-
tribute behaviours to an actor’s personality rather than taking external factors into account.
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tication, however, is primarily in connection with the target or ‘mark’ (i.e., the deceived

player), not the deceiver. Their definition of deception (p.2) sums up their approach:

“the process by which actions are chosen to manipulate beliefs so as to take advantage of

the erroneous inferences.” Their framework is a two-player multi-stage game with partial

information in which players have different stereotypes and also different cognitive types.

Cognitive types vary on two dimensions: ‘analogy’ (how far the player has stereotyped

its opponent) and ‘sophistication’ (how far the player recognises qualitative differences

between behaviours). Players assess each move based on their analogy assumptions and

belief about the other player’s type, updating their beliefs during the course of the game.

By endowing the mark with the capacity to update its beliefs, it is made deceivable. The

paper goes on to show that it may be useful for the deceiver to ‘prime’ the mark (e.g., with

a demonstration of trustworthiness) before performing the deception; and that the ideal

mark is neither fully rational (because it must be capable of false belief) nor fully irrational

(because it must be able to make inferences based on observations).

Social roboticists Arkin et al. (2012) set out a 13-step algorithm which attempts to

position deception within a more ethical framework. They adopt a definition from biology

which, being inclusive of plants and animals, is broad enough also to encompass robots,

software agents, and computer systems: “a false communication that tends to benefit the

communicator” (Bond & Robinson, 1988, p.295). In this framework, the target’s mental

state is modelled as a feature set, an action model and a utility function. Game play is

represented in a standard grid but, in addition to representing the payoffs available to

each player based on their actions, it also tracks ‘interdependence’ (the extent to which

one individual’s action is influenced by the other) and ‘correspondence’ (the extent to

which the players’ interests coincide). By reference to these extra dimensions the system

is able to determine (a) whether, in the current situation, deception is a useful strategy

and (b) whether or not it is likely to be believed.

Like Ettinger and Jehiel (2010), Arkin et al. are concerned not with how one might

craft a deception but with how likely it is that a pre-conceived deceptive strategy will

achieve the desired outcome, given the nature of the target.

Though less overtly concerned with deception than the above, Tambe (2015) discusses

a stable of projects—which include ARMOR, a patrol scheduling system developed for Los

Angeles International Airport (Pita et al., 2008) and the PROTECT patrolling system,

successfully deployed by the US Coast Guard (Shieh et al., 2012)—all of which deal with

a similar problem: how to deploy limited resources so as to maximise the protection

they afford. The general approach is to model each security situation as a Stackelberg

game (i.e., leader/follower) in which the leader (protector) adopts a mixed strategy and

the follower (attacker) is assumed to have performed surveillance and responds with a

pure strategy. The implemented systems output patrolling schedules that are ‘optimally

randomized’ and maximise expected utility for the defender based on the number of people
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Table 2.1: Six strategies.

Dissimulation Simulation

Masking: hide the real by making it in-
visible (e.g., camouflage, palming a card).

Mimicking: show the false by having one
thing imitate another (e.g., use a double,
make the sound of coins clinking when the
real coins are elsewhere).

Repackaging: hide the real by disguis-
ing (e.g., disguise a warship as a freighter,
exchange costumes with an assistant).

Inventing: show the false by displaying
another reality (e.g., create rubber tanks
or wooden guns, make forgeries for mind-
reading acts).

Dazzling: hide the real by creating con-
fusion (e.g., use a cipher, use equivoque to
force a ‘choice’).

Decoying: show the false by diverting
attention (e.g., feint left but turn right,
sleight of hand).

(i.e., potential lives saved) at each target location.

PROTECT originally modelled its patrol targets as nodes on a graph with paths

(edges) between them but this path-planning solution was ultimately rejected on three

grounds: the travel times between nodes could not be known with certainty; it failed to

exploit the local knowledge of boat crews; and it was perceived as micro-managing by

users (Shieh et al., 2012). Nevertheless, these security games are worthy of attention for

several reasons: (a) they are closely related to deception; (b) they are closely related to

path-planning; (c) they reduce the mind of the attacker to a probability; and (d) although

a path-planning solution may seem prescriptive to human crews now it could become a

welcome resource for autonomous robotic patrols of the future.

2.4.2 A General Theory of Deception

We now consider the work of J. Bowyer Bell and Barton Whaley. Writing in the 1980s,

they presented what they declared to be the first (and to our knowledge still the only)

general theory of deception (Bell, 2003; Whaley, 1982)7. Drawing examples from magic,

the military and elsewhere, they define deception as the deliberate distortion of a target’s

perception in pursuit of advantage or, more succinctly, the ‘distortion of perceived reality’.

Bell and Whaley found that all deception involves some combination of ‘hiding the

real’ (dissimulation) or ‘showing the false’ (simulation). They articulated three distinct

strategies in each case (see Table 2.1 and Figure 2.3) though the strategies may be used

in combination with one another. They note too that every deception (including each of

the three simulation strategies) involves dissimulation to some degree (Whaley, 1982).

This thesis accepts Bell and Whaley’s definition. It adopts their terminology and

their perspective on deception: that it is usually beneficial (it is the course of action

that, in warfare, saves lives where an ‘honest’ show of force cannot), is often enjoyable

7The theory was first published jointly under a pseudonym (Bowyer, 1982).
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Figure 2.3: Hiding the real, showing the false.

Figure 2.3 shows a slide of Bell & Whaley’s six strategies from ‘The Art of Deception’, presented by the
Human Science Operations Cell at MI5’s Joint Threat Research Intelligence Group, leaked to the public
via edwardsnowden.com (GCHQ, 2014).

(our sporting heroes thrill us when they duck and weave) and is anyway an undeniably

pervasive human trait. Although they could not know it at time of writing, as we move

towards an expectation of collaborative human-machine relations, this final point is an

important consideration in the development of AI. In terms of applicability, their theory

has the great benefit that it is unencumbered by the ethical considerations which—as

already discussed—have dogged this topic. They unashamedly discuss their craft in terms

of deception (and ‘cheating’).

According to Bell and Whaley, there are six kinds of deception, three that involve

dissimulation (masking, repackaging and dazzling) and three that involve simulation (mim-

icking, inventing and decoying) but there is only one way to cheat.

Operationally, in order to deceive someone (or something), we must change the

characteristics—or ‘charcs’—detected by the target’s senses. A ‘charc’ may be any feature

that is available for manipulation and can be employed to achieve the desired effect. For

example, a hat on a stick is a charc that could be used to achieve the effect (from behind

a rock, say) of a soldier. In the context of path-planning, our charcs are limited to loca-

tion and cost but it is easy to see how the opportunities for deception (and the potential

complexity of the task) increase exponentially with every additional charc, such as speed,

heading or acceleration.

Having chosen the category and identified the available charcs, the deceiver must

decide on a particular ruse. Bell and Whaley enumerate five types of ruse, named according
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Figure 2.4: The deception planning loop.

The deception itself consists of crafting and presenting an illusion. It begins with a strategic goal. From
this, the deception planner constructs a ruse from a range of possible charcs and projects it across some
channel of communication. The illusion is now in play. (Bowyer, 1982, p.71)

to the effect or impact they aim to achieve: unnoticed, benign, desirable, unappealing or

dangerous. The purpose of the ruse is to create some kind of ‘cover’ or effect, which

operates over a ‘channel’ or medium (such as the air, radio waves or, potentially perhaps,

a mobile signal). If the effect is achieved, the illusion is complete.

Of course, completing the illusion does not guarantee deception. To achieve deception,

the target (or observer) must accept the illusion. Thus, if developing a deceptive path, it

can only be assessed on the basis of its potential to deceive, for example as a probability.

How unlikely does the observer believe the agent’s real goal to be?

Note. An illusion does not need to last forever. A temporary deception may be

enough to achieve the desired result. In path-planning with full observability, the

illusion is always temporary: it can only last until the agent is seen to arrive at

a (hopefully) unexpected destination. As Bell (2003) warns, however, the target’s

response may not always be as the planner hopes or expects.
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Figure 2.5: Hand-drawn deceptive trajectories (Jian et al., 2006, p.1564).

Bell and Whaley present a comprehensive theory, from which this thesis borrows only

part. We adopt the notions of simulation and dissimulation and make particular use of

‘dissimulation by dazzling’. This is a strategy typically brought into play when other

attempts at hiding have failed or are unavailable. It is useful in path-planning because

it applies in situations where the observer knows you are there: that is, it enables a

path-planner—who does not know when or where she may be observed—to hide in plain

sight. In Section 4.4.1, we consider how other of Bell and Whaley’s strategies might be

implemented in the context of path-planning.

Their complete ‘deception loop’, which illustrates the process from conceiving the

strategic goal to its operational conclusion, is reproduced at Figure 2.4.

2.4.3 Deception in a Navigational Context

Jian et al. (2006) conducted a pencil and paper study to find out if deceptivity could be

detected from a path-plan. The study is of special interest, although related to cognitive

science rather than computer science, because: (a) it concerns both deception and goal

recognition; (b) it places both topics squarely in the context of path-planning; (c) it

demonstrates that truthful paths tend to be optimal paths (in line with the intuition of

cost-based goal recognition).

Using four different layouts, each showing a start point and three possible goals
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(i.e., one ‘true’ goal and two decoys), subjects were asked to assume that they were under

surveillance whilst drawing a path, from start to goal, without giving away their des-

tination. While the control group, who were drawing a ‘normal’ path, under no such

constraints, predictably drew the shortest, most direct path, the experimental group pro-

duced a convoluted assortment which adopted 38 recognisably deceptive strategies such as

“overshoot passing target”, “straight towards decoy”, “concentric circles around starting

point”. Participants tended to overcompensate in order to obscure their intent and in

over 75% of cases made their initial move away from the real goal and towards a bogus

goal. Thus, the study found that it might indeed be possible to detect deceptive behaviour

simply by observing the presence of one of the recognised strategies.

Knowing that a path is deceptive does not necessarily help an observer to determine

the true target, however. In his game-theoretical account, Hespanha (2007) suggests that,

if an agent is able to control all the information available to the observer, the use of

deception can render all observations meaningless: when the observer does not know

what to believe, she must make her decision as if she had made no observations at all.

(Hespanha, 2007). This is precisely the objective of a dissimulation strategy and one

successfully exploited in an experiment by Root, De Mot, and Feron (2005) in which

drones conduct reconnaissance while under surveillance. The experiment is presented as

a non-cooperative zero sum game which runs as follows. The invader, in control of the

drones, selects a ground path from a set of all feasible paths and deploys a team of drones

to reconnoitre it—which involves flying over every edge and pausing over every node of the

selected path. The defender observes the drones and decides whether to set an ambush

and at what location. If the defender sets an ambush anywhere on the selected path, the

defender wins; if not, the invader wins.

In a domain modelled as a graph, the system (acting as invader) first selects its

ground path, then constructs a set of flight plans that involve overflying not only that path

but every edge capable of supporting military traffic. To take advantage of Hespanha’s

insight, ideally the invader traverses every such edge in the graph. It is a strategy which

emphatically hides the real. The defender (observer) is left to select between multiple

possible routes, all of which—assuming equal prior probabilities—are equally probable.

A different approach, inspired by the food hoarding behaviour of squirrels, demon-

strates a clear application of showing the false. Squirrels, according to Shim and Arkin

(2012), have two hoarding behaviours: ‘caching’, which involves stashing their food in

multiple dispersed locations, and ‘protection’, which involves patrolling the caches. The

usual patrolling behaviour is simply to go from cache to cache and check on the food but

if a squirrel becomes aware of a competitor nearby (i.e., an observer), it also visits empty

locations, apparently with the intention of confusing the competitor about the location of

the food.

The experiment tested the strategy using computerised robotic squirrels, each mod-
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elled as a finite state automaton (FSA) with six states: ‘caching’, ‘true patrolling’, ‘false

patrolling’, ‘enough food cached’, ‘select true place’, and ‘select false place’. The robotic

squirrel randomly selects which cache to visit by calculating transition probabilities based

on the number of food items in each cache. The competitor, meanwhile, is also modelled

as an FSA. It wanders the map and, when it finds a squirrel, decides whether it is at a

cache based on the length of time that the squirrel remains stationary. Once it identifies

what it thinks is a cache, the competitor steals whatever food it finds.

Notwithstanding the simplicity of the implementation, the experiment clearly demon-

strated the effectiveness of the strategy: deceptive squirrel robots retained their food

significantly longer than non-deceptive squirrel robots.

The general problem of deception (or privacy) and location tracking arises in many

other settings which we mention here only briefly: amongst the robotics community,

for example, in consideration of the panda tracker problem (O’Kane, 2009) in numerous

ambush, pursuit-evasion and patrolling games (Shieh et al., 2012). Furthermore, in a

real-world setting (as mentioned in Section 2.3.1 p.23), Keren et al. (2016) suggest the

possibility of an agent concealing her location by deliberately shutting down electronic

means of surveillance (e.g., by turning off her smartphone): a very literal application of

dissimulation (hiding the real).

2.4.4 Emerging Trends

As AI applications spill out into the public domain, there has been an intensification of in-

terest in human-machine interaction, bringing with it an increased emphasis on approaches

(to AI in general) that are guided by an awareness of human intentionality.

Notably, Kulkarni, Srivastava, and Kambhampati (2018) propose a planning frame-

work that supports both adversarial and cooperative environments. This work is one of

few, within planning, that tackles deception as an active, intentional endeavour. The con-

tribution revolves around the idea that an agent operating in the real world (e.g., working

in a team with people or other AI) should be capable of concealing its intentions from ad-

versaries while revealing them to associates. The key insight is that, whether the desired

plan is adversarial or cooperative, it can be built in relation to the same observational

model, aiming either to maximise or minimise ambiguity from that observer’s point of

view. The problem is therefore presented as one of ‘controlled observability’. The authors

avoid the issue of whether observations should be regarded as actions or states (considered

by Sohrabi et al., 2016) by regarding them instead as a combination of the two: the output

of some sort of ‘sensor’, whereby each observation corresponds to an action-state (i.e., an

action and the state that results from that action). Each observation induces a belief-state

in the observer and the objective of the agent is to ensure that the last belief state in the

sequence is one consistent with some particular number of goals. An adversarial agent

aims for a final belief state that is “k-ambiguous” (i.e., consistent with at least k goals);
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a cooperative agent aims for a final belief state that is “j-legible” (i.e., consistent with at

most j goals).

In a subsequent paper (Kulkarni, Klenk, et al., 2018), the authors apply insights from

the world of cryptography and security over the same framework to achieve ambiguous

plans that are also secure, in that the plan is the same no matter which goal is being tar-

geted. This clever application of a fundamental cryptographic principle means that even

if the observer knows which algorithm the planner is using, they cannot determine her

real goal. It is unclear, however, how the planner should proceed when fully ambiguous

solutions are unavailable (e.g., in a navigational scenario where obstacles prevent the agent

from tracking equidistantly from multiple goals). Kulkarni, Srivastava, and Kambham-

pati’s model can be extended to cover the case where an observer is aware of the goal (but

not the plan that will be used to achieve it). The authors observe that, in this emerging

area of human-aware (or ‘human-in-the-loop’) research, goal recognition in general (and

intended recognition in particular) begin to overlap with another emerging field: that of

explainable AI.

Sreedharan, Chakraborti, and Kambhampati explore this topic explicitly. Their ap-

proach combines intended recognition or ‘explicable’ AI (i.e., the generation of ‘legible’

plans that a human can readily understand) with ‘explainable’ AI (i.e., the generation of

textual explanations for agent or robotic behaviour that might otherwise be difficult for

a human to understand). Their algorithm depends on multi-model planning—similar to

that usually required for deceptive planning—whereby the agent maintains not only its

own model of the task at hand but an additional model, which represents the (human)

observer’s view of that task. The objective is to find the ‘sweet-spot’ between executing

an optimal plan, which (typically) requires explanation, or a suboptimal plan, which is in

line with human expectation and therefore requires no (or minimal) explanation. Their

algorithm handles the trade-off between optimality and explanation generation using a

control variable, set by a system designer. The authors suggest, however, that in future

work the setting could instead be learned from any particular human’s preferences over

time.

We mention also the work of Pozanco, Yolanda, Fernández, and Borrajo (2018) on

domain-independent counterplanning. Although this differs from deception, it involves

goal recognition in the context of adversarial reasoning and clearly offers scope to in-

corporate deceptive planning in future work. The counterplanning problem involves two

agents, one attempting to reach a goal (the seeking agent) and another (the preventing

agent) whose objective is to prevent that goal from being reached. The setting is not dy-

namic. The seeking agent generates a plan from an initial state to the real goal and part

of that plan (up to some time-step before its completion) is provided to the preventing

agent for counterplanning to begin. The authors’ approach involves the use of landmarks

(Hoffmann et al., 2004). The preventing agent first uses goal recognition to obtain a proba-
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bility distribution over the set of candidate goals, then extracts a set comprising whichever

landmarks are most common amongst the most probable goals. One of the landmarks is

now selected (the first, by time-step, that is reachable given the seeking agent’s ‘current’

location) and it becomes the preventing agent’s goal to negate that landmark.

The above frameworks suggest a trend towards ‘multi-model’ planning, which ac-

knowledges goal recognition as a core feature of human-machine interaction and confirms

the impression that deception and goal recognition are complementary aspects of a single

problem. Thus, we have seen work that combines goal recognition with planning (Freed-

man & Zilberstein, 2017) and, as above, deception with cooperation (Kulkarni, Srivastava,

& Kambhampati, 2018) and goal recognition with counterplanning (Pozanco et al., 2018).

As a final note, the emerging field of rebel agents (Coman & Aha, 2018) is tangentially

related. These are agents, autonomous to the degree that they may refuse to perform cer-

tain actions, even though they seem to be indicated by the plan that they are supposedly

following or the one expected by humans (or other agents) in their team. Combined with

a capacity to ‘nudge’ associates towards adopting preferred courses of action (Borenstein

& Arkin, 2016), it remains to be seen whether ethical rebel agents represent a promise or

a threat; whether they will be able to protect us from the dystopian future that Castel-

franchi’s “artificial liars” (2000) seemed to predict or whether they will be instrumental

in bringing it about.

2.5 Foundation to Our Approach

We conclude this literature review by now offering a more detailed account of the work

that we rely on most closely: two seminal papers from Ramirez and Geffner on ‘plan

recognition as planning’. As discussed, these papers have been extended and adapted by

many previous authors. They form the foundation of our approach to goal recognition

in Part I of this thesis. Furthermore, the probability distribution formula used in their

2010 paper is one (the other being from Vered and Kaminka’s work on goal mirroring,

discussed p.18) that we analyse and build upon in Part II, Section 4.1.

Ramirez and Geffner (2009) define the goal recognition problem for task-planning as

one of “planning in reverse” (p.1778). Their framework takes a classical STRIPS-style

domain 〈F,A〉, where F is a set of fluents and A is a set of actions a, each of which has a

precondition, add and delete list Pre(a), Add(a) and Del(a), all subsets of F . An action

a can occur in state s if Pre(a) ⊆ s. The initial state is assumed to be fully observable

and the domain is deterministic; that is, if a occurs in s, a new state s′ results such that

s′ = (s ∪ Add(a)) \ Del(a). A plan is a sequence of actions π = a1, . . . , ak that maps a

specified initial state I ⊆ F to a goal G ⊆ F . Typically, each action has a cost c(a) and

the cost of a plan is the cost of all the actions in the plan, cost(π) =
∑|π|

i=1 c(ai).
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In this context, Ramirez and Geffner (2009) articulate the goal recognition problem

for task-planning as a tuple 〈〈F,A〉,G, I, O〉 where: G ⊆ 2F is a set of possible goal states;

I ⊆ F is the initial state; and O = o1, . . . , ok is a sequence of observed actions, that is,

oi ∈ A for all i ∈ {1, . . . , k}. The solution to the problem is a set of goals, the optimal plans

for which satisfy the observation sequence. This is achieved, the authors say, if a plan

π = a1, . . . , an embeds the observations o1, . . . , om in such a way that the order of actions

is preserved; that is, there must be a monotonic function f that maps the observation

indices into the action indices such that af(j) = oj for all j ∈ {1, . . . ,m}. Any goal for

which there is an optimal plan that meets this criterion is part of the solution set.

The framework performs well online or offline. Ostensibly, it is necessary to make

two calls to the planner for every goal—first to obtain an optimal plan, then to obtain

the optimal plan that complies with observations—and to repeat this, in an online envi-

ronment, with every new observation. In practice, however, the optimal path costs need

only be calculated once for each goal and can then be reused (Vered et al., 2016). More-

over, since the model is only interested in optimal solutions, optimal costs can also be

used as upper bounds, meaning that all subsequent calls to the planner to plot “optimal

paths that comply with observations” can be heavily pruned. A major drawback with this

framework, of course, is that it only identifies a goal if observations conform to an optimal

plan whereas, realistically, agents behave suboptimally. Arguably, this is especially true in

navigational domains, which tend to be less structured than those encountered in general

task-planning; as Pattison and Long (2013) point out, the number of possible routes a

person might take through a typical city, even with a fixed starting point, is intractable.

Thus, rational behaviour should be assumed as a guiding principle only.

In their 2010 paper, Ramirez and Geffner present an alternative probabilistic frame-

work which uses classical planners off-the-shelf to identify, not a set of goals, but a posterior

probability distribution which prefers those goals whose plans ‘best’ satisfy observations.

The probabilistic problem definition 〈〈F,A〉,G, I, O,Prob〉 adds a prior probability distri-

bution Prob and its solution is a posterior probability distribution which prefers those goals

whose plans best satisfy the observations, as determined by the principle of rationality.

The authors derive their solution from Bayes’ Rule making two assumptions: that the

probability of a plan is inversely proportional to its cost; and that probabilities of multiple

plans for the same goal are dominated by the highest of those probabilities. The first

assumption is essential to the model and is encapsulated in the notion of ‘cost difference’

between the cheapest plan for a goal, given the observed actions already taken, and the

cheapest plan that could have reached the goal had the observed actions not occurred

(i.e., had the agent’s actions differed from those observed by even the smallest degree).

Denoting the costs of these optimal plans as cost(G,O) and cost(G,O), respectively, the
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cost difference amounts to a function, costdif : 2F ×A∗ 7→ R, defined as follows:8

costdif(G,O) = cost(G,O)− cost(G,O).

By comparing cost differences for allG ∈ G, the authors propose generation of a probability

distribution across G with the following important property: the lower the cost difference

for a particular goal, the higher its probability. Concretely, they propose the application

of a Boltzmann distribution, which yields:

P (G | O) = α
e−β costdif(G,O)

1 + e−β costdif(G,O)
,

where α is a normalising constant and β a positive constant which can be used as a rate

parameter to ‘modulate’ the assumption that the observed agent is pursuing plans sensitive

to the same cost function used by the observer: as β approaches zero, the distribution

flattens out (Ramirez, 2012, p.63).9

These two seminal papers moved the focus in goal recognition from plan libraries to

declarative goals (and a model of the environment or ‘domain theory’). The key is that

optimal path costs, including both terms in their cost difference formula (i.e., optimal

cost via the observations and optimal cost not via the observations), can be computed

using classical planning technology, despite the fact that planners do not natively handle

requirements about observations. Ramirez and Geffner proved that such requirements

could be encoded back into the planning task.

Notwithstanding the scholarship of Ramirez and Geffner’s probabilistic model (2010),

unlike their 2009 framework, it is computationally expensive. To calculate cost difference,

an agent reasoning about another agent’s intent must always perform (and complete) two

planning tasks for each potential goal. Although plans are still generated on-the-fly, they

cannot be reused and there is no obvious basis on which they can be pruned. Furthermore,

the planning tasks themselves are arguably more complex than merely planning for each

goal as they not only embed the behaviour observed so far but also reason negatively

about it (to obtain the cost of an optimal path that does not comply with observations).

Our approach takes advantage of the economies that can be achieved under the 2009

model in the context of the 2010 framework, then extrapolates an even more economical

solution. The concept of ‘cost difference’ is central to our work. As you will see (in Sec-

tion 3.1), we simplify both terms in the equation to arrive at an alternative formulation

(which can be used in navigational domains interchangeably with the original) in which

all references to the observation sequence are eliminated. This is important because, as

Vered et al. (2016) point out, generation of an optimal plan under Ramirez and Geffner’s

8This and the following formula are presented again later in this thesis in the context of our goal
recognition framework for path-planning. See Equations (RG1) and (RG2), pp.47 - 48.

9We use several variations of Ramirez and Geffner’s probability distribution formula in this thesis.
This is the formulation that appears in the codebase referenced from Ramirez and Geffner’s 2010 paper.
For further details, see Appendix A.
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definition of not complying with observations (i.e., such that it avoids at least one ob-

servation but may go through none, one, some or all of the others) is computationally

demanding. As they explain, although it is achievable using Ramirez and Geffner’s ap-

proach in a STRIPS-like environment, it cannot be done natively by motion planners in

a continuous domain. In fact, Kaminka et al. (2018, p.6203) suggest that “the require-

ment is meaningless in continuous domains” since it is almost always possible to create a

plan that does not comply with observations at an arbitrary (and immeasurably small)

distance from an optimal plan that does comply with them. Meanwhile, in the context of

discrete path-planning, it is straightforward to modify a path-planning domain to accom-

modate ‘avoidpoints’ (locations that must not be traversed) by marking them impassable,

as if they were obstacles and it is common to include ‘waypoints’ (locations that must be

traversed) by subgoaling; but to find an optimal path that manages to avoid at least one

location, even though it may go through one or more of the rest, is not a native function

for standard path-planning algorithms.

The simplest way to avoid this negative reasoning is to substitute the more straight-

forward 2009 formulation based on the cost of an optimal path. We note that Ramirez and

Geffner explicitly reject this simpler formulation (2010, p.1123) because it fails to recognise

the possibility of negative cost difference (which can arise if the optimal plan that does

not comply with observations involves a detour, making it more costly than the optimal

plan itself). Notwithstanding this objection, it is the approach taken by Escudero-Martin

et al. (2015), discussed previously (p.20).

Escudero-Martin et al. (2015) justify substitution of the simpler cost difference for-

mula by arguing, though without proof, that both terms return the same result in the

majority of situations. Furthermore, although they identify it as “somewhat counterin-

tuitive” (p.762), they do not formally define the special case where results returned are

different, nor do they discuss the implications when that occurs. Their experimentation,

however (which replicates Ramirez and Geffner’s experiments in the discrete domain),

confirms that “for most problems there are multiple distinct optimal plans for each goal”.

This implies that “for most problems” the special case cannot arise.

In the next chapter—as a first step towards our examination of goal recognition

as path-planning—we prove the precise cases where the simpler cost difference that we

have just discussed, used previously but without formal justification by authors such

as Escudero-Martin et al. (2015) and Vered et al. (2016), is equivalent to Ramirez and

Geffner’s more complex cost difference formula. We demonstrate the special case where

the formulas return different results and fully explore the implications of that difference

(see Sections 3.1.2, p.48 and 3.4.1, p.80).
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CHAPTER 3

Goal Recognition as Path-Planning†

“Jumping to conclusions is efficient if the conclusions

are likely to be correct and the costs of an occasional

mistake acceptable, and if the jump saves much time

and effort.”

–Daniel Kahneman

Goal recognition (GR) is not an exact science. It is a problem of jumping to correct

conclusions: jumping because we hope to do it quickly; and correct, hopefully much of

the time. It is the problem that underlies this entire thesis. “How, from my limited

observations, can I correctly conclude your destination? How can I prevent you from

correctly concluding mine?”

Consider an airport surveillance system. An agent of interest enters the terminal.

The problem is to assess whether she is making for some particular boarding gate; if she

is, the system will raise a flag to trigger her interception. Now, using state-of-the-art GR,

the accepted solution would be to track the agent’s movements throughout the airport

accumulating as many observations as possible (which might include watching her criss-

cross the terminal many times as she buys a paper, uses the bathroom, gets coffee and so

on) repeatedly calculating and recalculating the probabilities of each gate she might be

making for until the target gate becomes the most probable (or exceeds the probability of

all other gates by some given margin).

In this chapter, however, we develop solutions such that, provided we know an agent’s

starting point, we need only discover her current location to generate a probability distri-

bution which ranks goals in the same order as if we had tracked her all over the airport.

Our model, single-observation recognition, can be used by a human operator to make

spot-checks (e.g., on an agent acting suspiciously) or to pre-calculate a probability distri-

bution across goals (e.g., boarding gates) at any point in the domain even before the agent

†Some of the work in this chapter has been published previously (Masters & Sardina, 2017a, 2019a).
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has entered the terminal. Alternatively—without generating any actual probabilities—we

show how to calculate a radius within which the target gate is guaranteed to have become

the most probable. Using this radius of maximum probability (RMP), instead of tracking

an agent all over the airport, surveillance operatives can focus resources strictly on those

locations where, should the agent appear, the target gate is already known to be the most

likely gate: if she is spotted there, the flag should be raised.

Our approach to GR is to take a state-of-the-art model developed for task-planning

and reduce it to the special case of path-planning. As discussed in Chapter 2, the innova-

tive and principled model on which we build was presented in two seminal papers (Ramirez

& Geffner, 2009, 2010), which introduced the ‘plan recognition as planning’ approach to

GR (reviewed at Section 2.5, p.35). Recall that this is a cost-based model, which uses

classical planning technology to generate plans as-needed over a model of the domain.

Their 2009 solution identifies a subset of ‘optimal’ goals (that is, the observed behaviour

is consistent with an optimal plan for each goal in the subset). Ramirez and Geffner’s

2010 model, on the other hand, is more flexible: it generates a probability distribution

across the set of possible goals, based on the cost difference between the cheapest plan

that can be achieved, given the behaviour already observed, and the cheapest alternative

plan (that is, the best plan compatible with any slight deviation from the actions already

seen). One drawback of the probabilistic account is that it is computationally expensive,

in that it requires two plans to be generated per goal, the second of which (to find the ‘al-

ternative’ plan) is a complex task. In this chapter, however, we show that, in the context

of path-planning, the 2009 and 2010 approaches can be combined to derive solutions that

are much more economical.

The rest of this chapter is organised as follows. In Section 3.1, we show how Ramirez

and Geffner’s cost difference formula can be deconstructed to arrive at single-observation

recognition, so-called because unlike competing models, given the initial configuration

(which we take to include the agent’s starting point and possible goals), it requires only

one observation to generate a probability distribution across goals. Section 3.2 shows how

our insight with respect to single-observation recognition (i.e., the relationship between an

agent’s current location and the probability of each goal) can be exploited to determine

a goal’s RMP, that is, the distance from a goal within which it is guaranteed to be more

probable than any other goal in the domain. Section 3.3 demonstrates that experimental

evaluation confirms our theoretical results; and in Section 3.4, we discuss key issues raised

in the course of the chapter.

3.1 Single-Observation Recognition

Ramirez and Geffner’s probabilistic GR for task-planning is highly principled but com-

putationally expensive. We now show, however, that in the context of path-planning, the
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Figure 3.1: The intuition behind single-observation recognition.

Ramirez and Geffner’s cost difference formula (2010) takes the cost of an optimal path through the ob-
servations and deducts the cost of an optimal path that avoids at least one of them. In a path-planning
domain, the formula can be reworked to remove reference to the observation history from both terms,
making it much simpler and faster to calculate.

cost difference formula that underlies their framework can be reformulated to make the

solution very much simpler and faster to calculate. Single-observation recognition derives

directly from Ramirez and Geffner’s model. It generates a probability distribution that

ranks goals in the same order as their model in all cases bar one but without negative

reasoning, without even referencing the observation history of the agent whose goal is of

interest and in less than half the time.

Single-observation recognition depends on two intuitions, illustrated in Figure 3.1.

The first is as true for task-planning as it is for path-planning. The second is always true

for path-planning but applies to task-planning only in certain circumstances (discussed at

Section 3.4.2).

1. As others have observed (e.g., Escudero-Martin et al., 2015), since most observed

paths are suboptimal, the best (i.e., optimal) path that differs from the observed

path is usually an optimal path.

2. When comparing optimal paths that run from a starting point, through a sequence

of observations, to each of multiple goals, the segment of path from the starting

point to the most recent observation is shared and (in a fully observable domain)

can be safely ignored.

Used online, single-observation recognition is quick and convenient: it is a one-off op-

eration that returns a probability distribution as needed, so requires no incremental pro-

cessing of observations. These properties are advantageous in numerous settings. They

can benefit the gaming community working on real-time strategy games, for example,

where every speed gain is welcome. Moreover, in any real-world application, the fewer the
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observations, the less infrastructure required to retrieve and process them. Additionally,

being independent of an agent’s observation history—and provided possible entry points

(e.g., doors to the building) and destinations of interest (e.g., locations to monitor and

protect) are known in advance—single-observation recognition makes it possible for prob-

ability distributions to be pre-computed offline to generate a sort of ‘goal probabilities

heatmap’, from which they can be retrieved, as needed, in constant time.

Our overarching objective is to illuminate the core problem of GR by placing it in the

well-understood context of path-planning: the problem of finding a path from an initial

location to a final destination in some map or model of the world. Since Ramirez and

Geffner’s model was designed for task-plan recognition, we begin by importing it into a

path-planning context.

3.1.1 Technical Framework: GR as Path-Planning (discrete)

Ramirez and Geffner’s 2010 probabilistic framework for GR (for convenience, hereafter

referred to as R&G) operates in a STRIPS domain of fluents and actions. For path-

planning in the discrete domain, we express the underlying model (or ‘domain theory’) as

a graph or, in the special case, a grid. Instead of states, comprising multiple fluents, we

have atomic nodes or cells; instead of costed actions by which one state may be transformed

into another, we have costed edges that enable traversal from node to node.1

Definition 1. A discrete path-planning domain is a triple Dd = 〈N,E, c〉 where:

• N is a non-empty countable set of nodes (or locations);

• E ⊆ N ×N is a set of edges between location nodes; and

• c : E 7→ R+
0 is a function that returns the non-negative cost of traversing each edge.

A path π in a domain Dd is a sequence of node locations (not actions, and not edges)

π = n0, n1, . . . , nk such that (ni, ni+1) ∈ E, for each i ∈ {0, 1, . . . , k − 1}. We use πi to

denote the i-th node ni in π, and |π| to denote the length of π, being the total number

of edges (k) in π. So, the last location in a path can be referred to as π|π|. Furthermore,

we use π(i, j) = πi, πi+1, . . . πj to denote the subpath of π from πi to πj (inclusive). The

cost of a path is the cost of traversing all edges in π, that is, cost(π) =
∑k−1

i=0 c(π
i, πi+1).

The set of all paths in Dd is denoted by Π(Dd) or simply Π, and the set of all paths π

starting at π0 = n1 and ending at π|π| = n2 is denoted by Π(n1, n2).

Note. Our model of single-observation GR is geared to path-planning and depends

on some fundamental distinctions between this and the classical planning model that

we are importing. A task-plan is obtained by concatenating actions and an action may

1In grids, the contiguity of traversible cells implies an edge between them.
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be applicable from many different states: any state where the necessary preconditions

pertain. This means that, unless the task-planning domain is fully observable, in

order to determine an agent’s current state, one needs to have tracked each successive

action from a known starting point. In a path-planning situation, on the other hand,

given a path obtained by concatenating nodes, the final node is the agent’s current

state. No further information or investigation is required.

A path-planning problem adds a start location and a goal to the underlying domain.

Definition 2. A discrete path-planning problem is a tuple Pd = 〈Dd, ns, ng〉 where:

• Dd = 〈N,E, c〉 is the path-planning domain;

• ns ∈ N is the start location; and

• ng ∈ N is the goal location.

As one would expect, the solution to a path-planning problem is a path in its domain

Dd from start location ns to goal ng. Technically, a solution path π is any path π such

that π0 = ns and π|π| = ng. A path-planning problem is often framed as a search for the

shortest path or an optimal path , that is, a solution path with the lowest cost among all

solution paths; and we use Π∗(ns, ng) to denote the set of all optimal solution paths.

Note. In classical task-planning, the starting point is a state (some combination of

fluents) quite different from the actions that make up a plan. Here, the start location

is a node, just like the nodes at each step in a path. We discuss these distinctions

further, and their implications, later in this chapter (see Section 3.4.2, p.84).

In what follows, it will be convenient to specify waypoints: nodes that must be

visited. Waypoints are commonly encountered in path-planning and precisely correspond

to our proposed treatment of observations. They represent a sequence of observed loca-

tions that must be visited in the order given, just as a plan in R&G embeds observations

(see p.35).2 Thus, given a path π and a sequence of waypoints ~w = (w0, w1, . . . , wk), where

wi ∈ N , we say that π proceeds via waypoints ~w if there exists a monotonic function

f : {0, . . . , k} 7→ {0, . . . , |π|} mapping waypoint indices into path indices in such a way

that πf(i) = wi. The optimal cost via waypoints of a path from ni to nj via ~w—that

is, the lowest cost of any path from ni to nj via ~w—is denoted by optc(ni, ~w , nj). When

~w = ∅ (i.e., no waypoints),3 we just write optc(ni, nj), and when π0 = w0 and π|π| = wk,

2Waypoints are also the mechanism used for interpolation, whereby paths in continuous or grid-based
domains may be discretised (e.g., Ferguson & Stentz, 2006).

3Though we recognise the abuse of notation, we use ∅ to represent an empty sequence.
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we write optc(~w ), that is, the optimal cost through the waypoints themselves. We gener-

alise sets Π(ns, ng) and Π∗(ns, ng) to those embedding waypoints ~w as Π(ns, ~w , ng) and

Π∗(ns, ~w , ng), respectively, since Π(ns, ng) = Π(ns, ∅, ng) and Π∗(ns, ng) = Π∗(ns, ∅, ng).
With the basic framework in place, we now formulate the GR problem itself. Whereas

in task-planning, the problem is to determine an agent’s goal or intent by observing one

or more of her actions, in path-planning, we seek to determine the agent’s destination by

reference to one or more of the locations she has already visited.

Definition 3. A GR problem for path-planning in the discrete domain is a tuple

Rd = 〈Dd, G, ns, ~o ,Prob〉, where:

• Dd = 〈N,E, c〉 is a discrete path-planning domain;

• G ⊆ N is the set of possible goal locations;

• ns ∈ N is the start location;

• ~o = o1, . . . , ok, k ≥ 1 and oi ∈ N for all i ∈ {1, . . . , k}, is a sequence of observations

that is feasible, that is, optc((ns, o1, . . . , ok)) 6=∞, and such that o1 6= ns; and

• Prob represents a prior probability distribution across the goals G.

Effectively, the observation sequence ~o is a partial, discontinuous path from which

we generate (or at least cost) a connected path to determine how closely it matches an

optimal path towards one of the goals ng ∈ G. In common with R&G, we assume that

the GR problem environment is static and deterministic, that the observation sequence ~o

is partial (i.e., that it never extends all the way from start to goal and that it may or may

not represent a continuous, connected path) and that it may be noisy (i.e., may conform

to an optimal or suboptimal path towards the actual goal).

Note. Since observations are nodes (just like a path or the start location in Dd),

we could omit specification of ns and, instead, use the first observation o1. Indeed,

other authors have taken this approach (e.g., Vered et al., 2016). Our design decision,

however, has been to treat ns as part of the problem domain. While this is consistent

with usage in R&G (where the initial state must be specified because it is a state,

qualitatively different from each observed action) our primary objective is to give the

start location a similar status to the possible goals in that, like goals, it is a location

likely to be known in advance. For example, it might be a door or a gate or perhaps

the location of some CCTV device under which every entrant to the domain must

pass.

Our inclusion of ns as part of the problem definition means, of course, that where
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ns

ng1

ng2

• o1

• o2

• o3

optimal path not via the observations

optimal path via the observations

(optc(ns, ~o , ng2)− optc¬(ns, ~o , ng2))

< (optc(ns, ~o , ng1)− optc¬(ns, ~o , ng1))

Figure 3.2: Probabilities under the Ramirez and Geffner framework.

Ramirez and Geffner’s cost difference formula (2010) takes the cost of an optimal path through the ob-
servations and deducts the cost of an optimal path that avoids at least one of them. Their probability
distribution formula prefers the goal with the lowest cost difference.

a domain has multiple possible start locations (door1, door2, etc.), use of a different

door implies construction of a different problem.

Now, the solution to a GR problem Rd is a posterior probability distribution P (G |
~o ) which prefers those goals the optimal paths to which best satisfy the observations,

as determined by the principle of rationality. As a baseline, we obtain the probability

distribution using the R&G framework by comparing, for each goal, the difference between

the optimal cost of a solution path that embeds the observations ~o (i.e., by treating them

as waypoints that must be visited) with the optimal cost of a solution path that does not

embed them (i.e., because it avoids one or more of them or attains them out of order).

The concept is illustrated at Figure 3.2. Formally, the baseline cost difference is the

formula costdifRG : N ×N ×N∗ 7→ R:4

costdifRG(ns, ng, ~o ) = optc(ns, ~o , ng)− optc¬(ns, ~o , ng), (RG1)

where optc¬(ns, ~o , ng) denotes the optimal cost of navigating from location ns to ng with-

out embedding all the observations ~o , that is:

optc¬(ns, ~o , ng) = min
π∈Π(ns,ng)\Π(ns,~o ,ng)

cost(π).5

4Formulas (RG1) and (RG2) were informally introduced in the Literature Review (p.37). We have
modified the notation to improve legibility. Instead of cost(G,O) to denote the optimal cost of a plan that
embeds O, we use optc(G,O) and instead of cost(G,O) to denote the optimal cost without observing O,
we use optc¬(G,O) as, technically, it is not the same function applied to different arguments, but rather
a different function to the same arguments.

5An unintentional consequence of this construction is that, if it should happen that every path from ns
to ng embeds the observations ~o (as might happen if every observation were made in a narrow corridor or—
as we discuss later—if the only observation occurred at the unavoidable start location), then Π(ns, ng) \
Π(ns, ~o , ng) = ∅ (i.e., excluding all such paths leaves an empty set). In this case, optc¬(ns, ~o , ng) = ∞
(infinity being the cost of a path that does not exist), which leaves costdifRG(ns, ng, ~o ) undefined.
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We generate the probability distribution itself—the solution to an Rd problem—by

plugging the cost difference formula into the following template.

Pf (ng | ~o ) = α
1

1 + eβ costdiff
, (RG2)

where f identifies the particular cost difference formula in use, α is a normalising constant

so probabilities sum to 1 and β is a positive constant.6 So, in words, substituting RG for

f in (RG2), PRG(ng | ~o ) uses costdifRG(ns, ng, ~o ) to determine the probability that the

observed agent is travelling to goal ng ∈ G, relative to an Rd problem, when the start

location is ns and the observation sequence is ~o .

The lower a goal’s cost

difference, the higher

its probability.

We discuss formula (RG2) in detail in Part II, where

we consider its effectiveness in evaluating irrational (and po-

tentially deceptive) paths. For now, simply note that it is

provably equivalent to the formulas used for R&G but refor-

mulated in such a way as to make its core property more apparent, that is: the lower the

cost difference for a goal, the higher its probability.7

For the remainder of this section, we focus on the cost difference formula, assuming

an Rd problem of the form 〈Dd, G, ns, ~o ,Prob〉, as given by Definition 3. To this end,

consider an observational agent using probability distribution PRG(·) to reason about

another agent’s travel. Using baseline cost difference (RG1), the observational agent must

perform two planning tasks for each goal: one to extract optc(ns, ~o , ng) and another to

extract optc¬(ns, ~o , ng). Both terms demand a full history of observed locations and

the second term requires negative reasoning. Furthermore, in a typical application, such

as during a real-time strategy game or while conducting surveillance, the computational

expense is not incurred once only: the calculations must be repeated (and the time-hit

sustained) for every potential goal, every time a new observation is obtained.

To demonstrate our re-working of the solution to improve its efficiency in the path-

planning domain, we first eliminate the need for negative reasoning.

3.1.2 GR without Negative Reasoning

As we have seen, path-planners can readily accommodate observation requirements, in

a way that task-planners cannot, because observed locations can simply be treated as

waypoints: nodes that must be visited. Having a less expressive representation, however,

it is not possible to encode negative requirements back into the input of the problem (as

done by Ramirez and Geffner (2010) for a STRIPS-like task-planning domain) and still

6Though omitted for legibility, values may be multiplied by priors before normalisation. For technical
convenience, we abuse notation and take 1/∞ = 0, whenever costdiff =∞.

7For proof of equivalence and further discussion, see Appendix A.
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resolve the problem using a standard path-planner.8 It is possible to achieve the desired

result by calling a path-planner multiple times (making ‘avoidpoints’ out of first this,

then that observation) or by modifying the path-planner (the approach we have taken for

experimentation, p.76). However, either method makes the negative reasoning required

to calculate optimal cost—whilst simultaneously excluding one or more observations—

cumbersome and computationally expensive.

To address this, we adopt an alternative formulation (essentially that used—though

not explicitly—by Ramirez and Geffner (2009) to arrive at a non-probabilistic solution)

whereby, instead of calculating and deducting optimal cost from the start location to

each goal ‘avoiding at least one of the observations’, we simply deduct the more readily

available optimal path cost from the start location to each goal. As discussed by Escudero-

Martin et al. (2015), this coincides with the intuition that, in the great majority of cases,

an optimal path which does not pass through all observed locations is an optimal path

per se (see Figure 3.3, p.50). Formally, this simpler cost difference is the formula

costdif1 : N ×N ×N∗ 7→ R+
0 :

costdif1(ns, ng, ~o ) = optc(ns, ~o , ng)− optc(ns, ng). (3.1)

Note. The second term in this formula deducts optimal cost from ns to ng rather

than than the cost of avoiding one or more observed waypoints and therefore never

returns a value below zero (hence R+
0 ). This is not the case for the baseline cost

difference formula (RG1), as we discuss shortly.

Formula (3.1) is not only conceptually simpler than (RG1), it is also computationally

less demanding, in that there is no need to reason negatively about the observations for

the second term. Furthermore, since the cost of an optimal path to each potential goal

ng ∈ G is not dependent on observations (which typically accumulate), the second term in

the formula need only be computed once for each goal. Better still, if the potential start

node and all candidate goal locations are known for the path-planning domain itself, as

they are in the case of an airport terminal, for example, which has a fixed, finite number of

entrances and boarding gates, then all optc(ns, ng) terms can be pre-computed and stored

for retrieval as needed in constant time.

Interestingly, Ramirez and Geffner explicitly reject this simpler formulation (Ramirez

& Geffner, 2010, p.1123) for general task-plan recognition by reference to a particular

example (which we review in Section 3.4). For now though, we just want to understand the

differences between Equations (RG1) and (3.1) and the likely impact of those differences.

8It would be possible (though inefficient) to encode the entire path-planning problem as STRIPS but
our objective is to use one of the numerous algorithms (such as Dijkstra’s algorithm (Dijkstra, 1959), A*
(Hart et al., 1968) and their derivatives) that are optimised for this specialised task.
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Figure 3.3: Suboptimality. The best path via observations (blue) is suboptimal, so the
best path that avoids the observations is an optimal (red) path.

In doing so, we demonstrate not only that the simpler formula produces an identical result

to the baseline formula in all cases bar one; but that, even then, the difference has minimal

impact on the overall probability distribution across potential goals. Furthermore, in one

corner-case, (3.1) actually enables calculation of the posterior probability distribution

where the more complex, baseline cost difference (RG1) may not.

Note that all of the cases (1-4) set out below in the context of path-planning are

equally applicable in the STRIPS-style task-planning domain described by Ramirez and

Geffner (2010).

Case 1: Suboptimal paths. We first consider the situation illustrated in Figure 3.3,

where observations conform to a suboptimal path, that is, to the observation of an agent

whose behaviour is not completely rational (i.e., optimal). In this case, the cheapest

available path from ns to a potential goal ng ∈ G, given the steps already observed, will

inevitably be suboptimal.

Note. The need to accommodate suboptimality in observations was the primary mo-

tivation behind the development of the probabilistic R&G framework, as compared

to Ramirez and Geffner’s previous non-probabilistic model (2009). We argue, in fact,

that accommodating observations from agents whose behaviour is not completely opti-

mal is fundamental: in most real-world settings, intelligent agents (including humans)

are indeed rational but only to some degree.

Our first result relates to this case. It states that, when the best path possible given

the observed behaviour is suboptimal, the simpler formula (3.1) yields exactly the same

value as the baseline formula (RG1). Recall that the only difference between the two

formulas is that, in (3.1), we substitute optc(ns, ng) for the second term, optc¬(ns, ~o , ng).
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ns

ng

•o1

•o2

•o3 •

•

•

optimal path via observations

optimal path not via observations

impassable terrain

Figure 3.4: Non-exclusive optimality. The path via observations (blue) is optimal; and
the best path that avoids the observations (red) is also optimal.

Theorem 1. Let ~o be an observation sequence such that optc(ns, ~o , ng) > optc(ns, ng)

(i.e., the observed path is suboptimal). Then, costdifRG(ns, ng, ~o ) = costdif1(ns, ng, ~o ).

Proof. Let π∗ be an optimal solution path, that is, π∗ ∈ Π∗(ns, ng). Then, by definition,

cost(π∗) = optc(ns, ng). We conclude that path π∗ does not embed ~o , otherwise, we would

have optc(ns, ~o , ng) = optc(ns, ng). Hence, since π∗ does not embed ~o and is optimal

among all solution paths, we get optc¬(ns, ~o , ng) = cost(π∗) = optc(ns, ng). Thus, since

optc¬(ns, ~o , ng) = optc(ns, ng), costdifRG(ns, ng, ~o ) = costdif1(ns, ng, ~o ) follows.

Case 2: Optimal paths (non-exclusive). Let us now consider the case depicted in

Figure 3.4 in which observations do conform to an optimal path, but they are not the only

way to behave optimally.

Note. In path-planning, it is unusual to encounter a solution path, optimal or sub-

optimal, whose cost is unique. This is particularly true in a gridworld environment,

where there may be thousands of optimal solution paths due to symmetries (Harabor

& Grastien, 2012).

When the observed behaviour is optimal but there are multiple optimal paths, not

all of which pass through the observations, we have the following result.

Theorem 2. Let ~o be an observation sequence such that optc(ns, ~o , ng) = optc(ns, ng)

(i.e., the observed path is optimal). If it is the case that Π∗(ns, ng) \ Π∗(ns, ~o , ng) 6= ∅,
then costdifRG(ns, ng, ~o ) = costdif1(ns, ng, ~o ).

Proof. Take π′ ∈ Π∗(ns, ng) \ Π∗(ns, ~o , ng), that is, path π′ is an optimal solution path

that does not embed ~o . Because π′ is optimal, cost(π′) = optc(ns, ng), and since it does

not embed ~o we can conclude that optc¬(ns, ~o , ng) = cost(π′). Thus, optc¬(ns, ~o , ng) =

optc(ns, ng), and costdifRG(ns, ng, ~o ) = costdif1(ns, ng, ~o ) follows.
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Figure 3.5: Exclusive optimality. The path via observations (blue) is the only optimal
path. The best path that avoids the observations (red) is suboptimal.

So, even if the observed behaviour is fully rational, provided that there are other ways

of behaving rationally, then the simpler formula (3.1) is, once again, exactly equivalent to

the baseline formula (RG1).

Case 3a: Optimal paths (exclusive). We now turn to the situation shown in Fig-

ure 3.5, which is the only situation in which cost difference Equations (RG1) and (3.1)

return different results, that is, when observations are not only sufficient for optimal be-

haviour, but necessary. In this case, we say the observations are exclusively optimal : the

only way of behaving fully rationally involves taking a path that embeds the observations.

Theorem 3. Let ~o be an observation sequence and ng ∈ G. Now, costdifRG(ns, ng, ~o ) 6=
costdif1(ns, ng, ~o ) iff Π∗(ns, ~o , ng) = Π∗(ns, ng) (i.e., iff all optimal solution paths embed

the observations).

Proof. The (only-if) follows directly from Theorem 2 and the fact that Π∗(ns, ~o , ng) ⊆
Π∗(ns, ng). For the (if) direction, suppose that Π∗(ns, ~o , ng) = Π∗(ns, ng), that is, all

optimal solution paths embed the observations. Take any path π ∈ Π(ns, ng) that does

not embed ~o , that is, π is a solution path and π 6∈ Π(ns, ~o , ng). Then, π 6∈ Π∗(ns, ~o , ng)

and since Π∗(ns, ~o , ng) = Π∗(ns, ng), π 6∈ Π∗(ns, ng) follows. Given that π ∈ Π(ns, ng),

we get that cost(π) > optc(ns, ng). As path π was arbitrarily chosen, optc¬(ns, ~o , ng) >

optc(ns, ng), and costdifRG(ns, ng, ~o ) 6= costdif1(ns, ng, ~o ) follows.

Now, exclusive optimality—the only case where formulas (RG1) and (3.1) return

different results—is a corner case and, arguably, less relevant than the expected suboptimal

behaviour that the probabilistic GR framework was designed to handle; but regardless of

how relevant or interesting it may be, let us further investigate its implications.

Recall that we are not interested in the result of the cost difference calculation for

its own sake, but in order to generate a probability distribution across the set of possible
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Figure 3.6: Exclusive optimality: rankings unchanged.

The path via observations (blue) is optimal for ng1 but suboptimal for ng2. The best path that avoids
the observations (red) is suboptimal for ng1 but optimal for ng2. Cost difference for ng1 is negative using
the baseline formula (optimal subtracts suboptimal) but zero using the simple formula (optimal subtracts
optimal). Cost difference for goal ng2 (for which the best path via the observations is suboptimal) has the
same positive value using either formula. Either a negative or zero cost difference for ng1 is less than any
positive value, so, using either formula, ng1 is the most likely goal. That is, rankings are preserved.

goals. Often, we do not need to know exactly how probable each goal is, only their relative

order or, more particularly, which goal is most probable.

Case 3b: Optimal paths (exclusive) with rankings unchanged. With this in mind,

consider the example depicted in Figure 3.6 which shows (as we prove in Theorem 4) that,

in practice, even if an agent is observed taking an exclusively optimal path to goal (i.e., all

optimal paths to that goal embed the observations), unless observations conform to an

optimal path for some other goal, the relative ranking of goals by probability is unaffected

by use of the simpler cost difference formula, which still results in successful identification

of the most probable goal.

To begin, we make the following auxiliary observation, which formally restates the

intuition that the lower the cost difference, the more probable the goal. This follows from

the fact that (RG2) shows the relationship between cost difference and probability and is

provably equivalent to the account given by Ramirez (2012) (as set out in Appendix A).

Observation 1. Let costdiff be some (cost difference) function and let Pf be the template

probability distribution defined in (RG2). If costdiff (ns, ng1, ~o ) < costdiff (ns, ng2, ~o ) then

Pf (ng1 | ~o ) > Pf (ng2 | ~o ).

Theorem 4. Let ~o be an observation sequence such that Π∗(ns, ~o , ng) = Π∗(ns, ng) for

some ng ∈ G, that is, the observations are exclusively optimal for potential goal ng (i.e., the

case of Theorem 3). Suppose further that optc(ns, ~o , ng′) > optc(ns, ng′), for every ng′ ∈
G \ {ng}, that is, observations would result in suboptimal paths to all the other possible

goals. Then, for all distinct goals ng1, ng2 ∈ G, it is the case that P1(ng1 | ~o ) > P1(ng2 | ~o )

if and only if PRG(ng1 | ~o ) > PRG(ng2 | ~o ).
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Figure 3.7: Exclusive optimality: rankings changed.

The path via observations (blue) is optimal for both goals; and the best path that avoids the observations
(green for ng1, red for ng2) is suboptimal for both goals: it has to go via n′. Complex cost difference is
negative for both goals but results in a lower cost difference (higher probability) for ng1.

Proof. Take any ng′ ∈ G \ {ng} (i.e., the suboptimal case). From Theorem 1, we know

that costdifRG(ns, ng′ , ~o ) = costdif1(ns, ng′ , ~o ) and optc¬(ns, ~o , ng′) = optc(ns, ng′). Since

optc(ns, ~o , ng′) > optc(ns, ng′), using Equation (3.1) we conclude that:

costdifRG(ns, ng′ , ~o ) = costdif1(ns, ng′ , ~o ) > 0.

So, for all goals different from ng, cost difference values are the same and greater than

zero, whether using the baseline or the simpler formula.

It remains to verify the ranking of goal ng. Since Π∗(ns, ~o , ng) = Π∗(ns, ng), it

must be that ~o is necessary to travel from ns to ng in any optimal way. Therefore, any

route that does not embed ~o is suboptimal. Formally, optc¬(ns, ~o , ng) > optc(ns, ng) =

optc(ns, ~o , ng). Using this in Equation (RG1) we get that costdifRG(ns, ng, ~o ) < 0. In turn,

from Equation (3.1), we get that costdif1(ns, ng, ~o ) = 0. Thus, for all ng′ ∈ G \ {ng}, we

conclude that: (a) costdif1(ns, ng, ~o ) = 0 < costdif1(ns, ng′ , ~o ); and (b) costdifRG(ns, ng, ~o )

< 0 < costdifRG(ns, ng′ , ~o ).

Putting it all together, both cost difference accounts rank all goals in G equivalently.

For all ng1 6= ng2 ∈ G, costdifRG(ns, ~o , ng1) < costdifRG(ns, ng2, ~o ) iff costdif1(ns, ng1, ~o ) <

costdif1(ns, ng2, ~o ). Thus, using Observation 1, the theorem follows.

Theorem 4 shows that, even in this corner case of exclusive optimality, the simpler

cost difference formula (3.1) lets us determine the same ranking among potential goals as

(RG1) and is therefore sufficient to identify the most probable goal. There is, however,

one variation of exclusive optimality where rankings do differ. We address this next.

Case 3c: Optimal paths (exclusive) where rankings change. The only case of

exclusive optimality for which Theorem 4 does not apply occurs when observations coincide

with the optimal path to multiple goals (rather than one) and is the only optimal path to
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at least one of them. This can arise, for example, if two goals are aligned sequentially, as

shown in Figure 3.7. In this case, the baseline formula (RG1) returns multiple (negative)

cost differences to yield a ranking across the goals, whereas the simpler formula (3.1) ranks

all goals for which observations match their optimal paths equally (the result obtained in

Ramirez and Geffner’s 2009 account and, arguably, the outcome that one would expect).

That said, there are realistic route-planning scenarios where this situation does arise,

which we discuss at Section 3.4. For now, we point out that this is, nevertheless, a

corner case and one that concerns the very set of goals in which the probabilistic account

(Ramirez & Geffner, 2010) is, arguably, least interested (since the 2009 framework already

accommodated cases where observations matched with optimal paths).

Case 4: A single solution path. Finally, in the extreme case, where the only path in

the domain from ns to ng is one that passes through all the observations, the cost of a path

that does not conform to observations is infinite (because no such path exists). In this

case, as Ramirez and Geffner (2010, p.1123) themselves point out—and as flagged as an

unintended consequence of the baseline formula at Footnote 3.1.1 (p.47)—Equation (RG1)

ought to return −∞ giving ng the highest possible probability within the distribution.

However, since −∞ is not a number, the result may be undefined with the flow-on effect

that normalised scores for the rest of the distribution may also be undefined. In any

practical implementation, of course, the problem can easily be rectified by allocating some

minimum value instead of −∞ or treating this case separately. In an identical situation,

however, the simpler cost difference equation (3.1), based on optimal cost from start to

goal (rather than ‘optimal cost given not the observations’) returns zero and the issue

does not arise.

Having eliminated the need for negative reasoning from the cost difference formula,

we next eliminate the need to track a succession of multiple observations.

3.1.3 GR without the Observation Sequence

In this subsection, we prove that, given a known starting point, the ranking among poten-

tial goals, as judged by probability distribution formula P1(·)—already shown to return

the same result as the baseline formula PRG(·) in all cases bar one—can be achieved

without needing to know anything about the agent other than where she is ‘now’.

The claim seems surprising; it implies that we can perform GR without knowing how

the agent behaves over time. Nevertheless—as we show in Theorem 5—under the R&G

model in the context of path-planning, probability rankings at any point in the domain

can be predicted and remain unchanged, regardless of the path taken to get there.

The following single-observation cost difference formula dispenses with both

negative reasoning and the observation history. Formally, costdif2 : N × N × N 7→ R is
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Figure 3.8: single-observation: the optimal cost of a path from ns through ~o is the same
for all goals.

defined as follows:

costdif2(ns, ng, n) = optc(n, ng)− optc(ns, ng). (3.2)

Note. In the single-observation formula, n typically stands for the current or most

recently observed location of the agent whose destination we are trying to determine

(i.e., n = O|O|). So, plugging this formula into the probability function (RG2), it can

be used to answer the question: if an agent were observed at this node (which might

be any traversible node in the domain) what is the likelihood of each goal being her

destination?

Recall that P2(·) denotes the templated probability function (RG2) when used with

the single-observation formula costdif2 above (3.2), while P1(·) uses the simpler cost differ-

ence formula costdif1 (3.1). We now show that, using either formula, the goal rankings are

the same. The intuition behind the theorem is straightforward and is depicted in Figure

3.8: the optimal cost of a path from ns through ~o is the same for all goals and can be

ignored.

Theorem 5. Let ~o be an observation sequence where ~o |~o | = n (i.e., n is the last obser-

vation in ~o ). Then, for all ng1, ng2 ∈ G, it is the case that P1(ng1 | ~o ) > P1(ng2 | ~o ) iff

P2(ng1 | n) > P2(ng2 | n).

Proof. From Observation 1, recall that P1(ng1 | ~o ) > P1(ng2 | ~o ) iff costdif1(ns, ng1, ~o ) <

costdif1(ns, ng2, ~o ), that is, the relative ranking between ng1 and ng2 with respect to

their posterior probabilities can be deduced directly from the relative values of their cost

difference formulas. Recall also, from formula (3.1), that for each i ∈ {1, 2}:

costdif1(ns, ngi, ~o ) = optc(ns, ~o , ngi)− optc(ns, ngi),
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where the first term (the optimal cost from the starting node, through the observations,

to the goal) can be written as:

optc(ns, ~o , ngi) = optc(ns, ~o
0) + optc(~o ) + optc(~o |~o |, ngi).

Comparing cost differences, we get:

costdif1(ns, ng1, ~o )− costdif1(ns, ng2, ~o )

= [optc(ns, ~o
0) + optc(~o ) + optc(~o |~o |, ng1)− optc(ns, ng1)]−

[optc(ns, ~o
0) + optc(~o ) + optc(~o |~o |, ng2)− optc(ns, ng2)]

= [optc(ns, ~o
0) + optc(~o ) + optc(n, ng1)− optc(ns, ng1)]−

[optc(ns, ~o
0) + optc(~o ) + optc(n, ng2)− optc(ns, ng2)]

= optc(ns, ~o
0 + optc(~o )) + optc(n, ng1)− optc(ns, ng1)−

optc(ns, ~o
0)− optc(~o )− optc(n, ng2) + optc(ns, ng2)

= optc(n, ng1 − optc(ns, ng1))− optc(n, ng2) + optc(ns, ng2)

= costdif2(ns, ng1, n)− costdif2(ns, ng2, n).

Thus, costdif1(ns, ng1, ~o ) > costdif1(ns, ng2, ~o ) iff costdif2(ns, ng1, n) > costdif2(ns, ng2, n).

So, applying Observation 1, P1(ng1 | ~o ) > P1(ng2 | ~o ) iff P2(ng1 | n) > P2(ng2 | n).

The finding is useful and unexpected. It tells us that we can achieve the same recog-

nition, at the qualitative level, by considering only the ‘last’ observation (rather than a

complete observation sequence). This is important because it allows us to judge every

location node as if an agent were observed there and calculate the likelihood of each goal

being their destination, regardless of how they arrived at that node. Furthermore, since

we are now dealing with individual nodes, recognition can be achieved by calls to any

standard path-planner: no specialised path-finding system is needed to reason negatively

or, indeed, to reason about observations at all. Finally, if start and all candidate goal loca-

tions are known—as would typically be the case in most path-planning domains—formula

costdif2(ns, ng, n) can be fully pre-computed offline for any node n ∈ N in the domain.

There are significant implications. Not only can we perform online goal recognition

without having to track the agent’s movements (and therefore without incremental rea-

soning) but, as an offline strategy, we can create a probabilistic heatmap of the domain

(see Figure 3.9), showing the probability of each goal at each (or any) location, according

to where the agent entered. Armed with such a heatmap, there are two obvious uses.

1. If we have a particular goal of interest (e.g., a valuable location to monitor and

protect), we can focus our attention fully on locations where that goal is the most

probable. Rather than tracking an agent’s movements all over the terrain, we can

just monitor the high-probability ‘hot-spots’ revealed by the heatmap and only start

tracking if the agent arrives at one of them.
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Figure 3.9: Heatmap. Probabilities depend on location and can be pre-calculated if the
start location (ns) is known. Probability values are shown at selected locations, given first
for ng1, then for ng2.†

†For legibility, only two goals are shown and probabilities are detailed only at selected locations, how-
ever costdif2(·) can be substituted for costdifRG(·) in Equation (RG2) to generate a complete probability
distribution for any number of goals at any location.

2. Having developed the heatmap offline, we can put it to use as a tool online. If we

identify an agent of interest ‘on-the-fly’, we can use the heatmap as a lookup table

to retrieve her most likely destination in constant time.

Note. The above result is not dependent on formula (RG2) itself. Rather, it is

applicable whatever manipulation is used to derive the probability distribution, pro-

vided that the posterior probability function satisfies the property that the lower the

cost difference, the higher the probability and relative cost differences are preserved

(see Observation 1).

Single-observation recognition is a method of GR that avoids negative reasoning and

has no need to reference incremental observations. We conclude this section by considering

the rationale behind the single-observation formula and examining its properties.

3.1.4 The Rationale behind Single-Observation Recognition

We have shown (by Theorems 1 through 5) that, under the R&G model for probabilistic

GR as specialised to path-planning, unless an agent must pass through every observed lo-

cation to remain on an optimal path (i.e., the special case of exclusive optimality excepted

by Theorem 3), provided that we know where she started from, the path she takes has no

effect whatsoever on the probability rankings of her possible destinations.
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Probabilities depend on the

agent’s location relative to the

starting point and the goals.

The observed path is redun-

dant.

Probabilities depend on an agent’s location rel-

ative to the starting point and the possible goals.

The observed path is, effectively, redundant. Even

on reflection, the finding is counter-intuitive: how is

it that we can predict where an agent is going with-

out needing to know where she has been? On careful

consideration, however, the Markovian nature of the

result is not quite so unlikely as it seems. It has three sound bases.

1. Observations, in this domain, are not action sequences (as they are in Ramirez and

Geffner’s account of GR); they are fully observable states encompassing everything

we need to know about the agent’s condition, that being her location (effectively a

contraction of the action go(x)).

2. The agent’s starting location is similarly fully observable and known, supplied as

input to the GR problem. Thus, given an agent’s current location (and given that,

in this environment, location implies full observability), we are implicitly aware of

everything relevant that has changed since the agent entered the domain. Hence,

the optimal path to her current location is also (implicitly) given.

3. Path-segments cannot be arbitrarily reversed or ‘executed simultaneously’ as may

occur in a task-planning environment. In path-planning, observations must have

been traversed in the seen order and this, taken with the above, allows the ‘optimal

cost through the observations’ to be separated into terms that cancel out when

taking relative differences.

The effect of breaking these conditions is discussed further in Section 3.4. Provided they

are met, however (as they always are in the core path-planning domains with which we are

concerned), probability distribution P2(·), which uses the single-observation formula (3.2),

yields exactly the same probability rankings across goals as P1(·), which uses the simpler

cost difference (3.1). We can, therefore, make certain specific claims for single-observation

recognition by comparison with the more complex baseline formulation; and these are set

out in Tables 3.1 and 3.2.

Goal types are defined according to the cases presented in Section 3.1.2. So, referring

to Table 3.1, goals such that observations conform to suboptimal paths have the same

probability values whether probability distribution formula (RG2) is used with the simple

or baseline cost difference formula and the same probability rankings whichever of the

three cost difference formulas is used.

Table 3.2 compares the complexity of the formulas based on the reasoning required

to calculate a probability distribution. We see that P2(·) is the most computationally

advantageous. It does not need to reason negatively about observations; neither does
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Table 3.1: Comparison of probability distributions by goal type.

Goal Type† P1 v PRG P2 v PRG

Suboptimal same same rankings
Non-exclusively optimal same same rankings

Exclusively optimal (1 optimal only) same rankings same rankings
Exclusively optimal (multiple optimal) optimals unranked optimals unranked

†Goal types by case, as defined in Section 3.1.2.

Table 3.2: Comparison of probability distributions by computational complexity.

Computational Expense PRG P1 P2

Reasons about observations Yes Yes No
Reasons negatively Yes No No

Planning calls per goal 2 1†† 1

††Plus subgoaling between waypoints (see commentary, inline).

it need to reason about observations. Assuming optimal path costs from the starting

location to each goal are known or pre-computed, it requires just one optimal path from

point to point per goal compared with PRG(·) which requires two or P1(·) which, again

only requires one (once optc(ns, G) is known) but which must also take observations into

account.

To elaborate more formally, calculation of PRG(·) requires 2|G| calls to the path-

planner, whereas P1(·)—and by extension P2(·)—require only |G| calls. In practice, the

time-saving is more emphatic. Time taken is more than halved using either P1(·) or P2(·)
because the call to the planner that is not now needed is the one that required negative

reasoning (i.e., the more expensive call of the two). Furthermore, in practice, P2(·) is

faster than P1(·) because it does not necessitate finding a path through waypoints. This

means that it can be solved by an even more rudimentary path-planning algorithm than

can be used for P1(·). An algorithm for P1(·) must plan an optimal path that involves

subgoaling from waypoint to waypoint; and that, depending on their distance apart and

the intricacy of the underlying terrain, can take considerably longer than finding a single

optimal path from point to point.9

Note. The above discussion highlights points of comparison between GR using the

single-observation formula (3.2) and the original, more complex formula (RG1). How-

ever, our account also inherits some limitations. In particular, we assume that the

observed agent is rational. Thus, although it could be argued that an agent who

directly advances towards a gate should be assigned a higher probability with respect

9In the worst case, path-planning through |~o | waypoints involves |~o | path-planning tasks, using sub-
goaling.
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to that gate than one that has, for example, zigzagged between many other gates on

the way, P2(·), in common with PRG(·), is unable to achieve this.

We seek to resolve this major limitation arising from the rationality assumption

when we tackle deceptive path-planning in Part II (see p.96).

In this section, we demonstrated a method of GR for path-planning domains that is

substantially less demanding than the previous state-of-the-art. Using this method, we

can generate a probability distribution for any locaton in the domain, based on an agent’s

starting point. In the next section, we take advantage of this capability to develop a

formula for finding the distance from a goal of interest within which that goal becomes

the most probable; and we do this, not only without negative reasoning and independently

of observations, but without even calculating any probabilities.

3.2 The Radius of Maximum Probability

The radius of maximum probability (RMP) is a distance from goal within which that

goal can be guaranteed to be an agent’s most probable destination. In this section, we

demonstrate that it can be calculated from costs typically available in a known domain,

namely the optimal costs between a set of possible goals and the start location.

Observe that this notion complements single-observation goal recognition rather than

being a substitute for it. Whereas the single-observation formula calculates a full prob-

ability distribution for a set of goals at any one location, the RMP (based on a similar

set of parameters) is a single measurement, a radius within which any one particular goal

is the most probable; and that radius might encompass a significant number of nodes or

(in a continuous environment) infinitely many points. So, there is a trade-off between

probability values for many goals at any one point or a determination that one goal is

the most probable at (perhaps) many points. Also, it is important to state right away

that, although the RMP guarantees a goal has maximum probability within the calculated

radius it says nothing about probabilities outside that radius.

Nevertheless, the RMP is a potentially powerful tool. In the real world, it could

be used offline in various ways, for example, as an adjunct to goal recognition design

applications (Keren et al., 2014), to help decide where a security detail should be posi-

tioned, the area it should patrol or ideal locations for surveillance cameras. Alternatively,

since it is quickly calculable, it could be used online to find RMPs in dynamic domains

where calculation of probabilities point by point would take too long, such as games that

automatically generate new (previously unknown) terrains (e.g., Raffe et al., 2012).

The RMP is a real number, best demonstrated in terms of continuous measurement

from point to point. Therefore, we now extend our technical framework to a continuous

setting.
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3.2.1 Technical Framework: GR as Path-Planning (continuous)

Transposing the GR problem from a graph-based domain to a continuous environment

resembling the real world is, on the one hand, more familiar and relateable but, on the

other, it is theoretically more demanding, seeming to grapple with Zeno’s paradox at every

turn.10

We are interested in continuous two-dimensional planes (consistent with traditional

maps or groundplans) and three-dimensional settings (consistent with our real-world ex-

perience of navigation). In both cases, movement from one location to another necessarily

involves traversal through an infinitely divisible sequence of points in between. In place

of a finite number of nodes and edges, there are now an infinite number of points capable

of becoming path-connected whenever reachable from one another through a connected

region of traversable space.

Our continuous account occurs in the context of metric spaces, which are (standard)

topological spaces that define connectedness but also distance (LaValle, 2006).11 Techni-

cally, a metric space (X, d) amounts to a set X (typically points or locations) coupled

with a distance metric d, which conforms to the following axioms: (i) d(x, y) ≥ 0 for

all x, y ∈ X (non-negativity); (ii) d(x, y) = 0 iff x = y (identity of indiscernibles);

(iii) d(x, y) = d(y, x) (symmetry); and (iv) d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).

That in hand, we can restate Definition 1 (the discrete path-planning domain) for the

continuous case.

Definition 4. A continuous path-planning domain is a tuple Dc = 〈X, d,Obst〉 such

that:

• (X, d) is a metric space, where X = Rn (for some n ∈ {2, 3}) and d : X ×X 7→ R+

is a Euclidean metric, that is, the (non-negative) straight-line distance from point to

point (i.e., d(x, y) =
√∑n

i=1 |xi − yi|2; and

• Obst ⊂ X is a set of obstacles in the space (e.g., walls and other barriers).

In order to define a path-planning problem in Dc, we need to know exactly where in

the domain our agent can go. Following LaValle (2006), we adopt the representation of

a moveable, embodied agent A(q) ⊂ X, where q = (x, y) or q = (x, y, z) and A(q) ⊂ X

denotes all those points occupied when A is at q.12 Without loss of generality, we assume

10Zeno is the Greek philosopher (c.490–430 BC) famous for the paradox whereby one is never able to
arrive at one’s destination because, in order to get there, one must always travel half of the way, which
means there is always half way still to go.

11The standard topology on Rn is the topology induced by a Euclidean metric (i.e., Pythagorean
distance) on the set of real numbers. It is referenced as ‘standard’ because it conforms to our understanding
of connectedness and continuity in the real world.

12If the agent were not embodied, either cost difference formula (3.3) loses meaning (as Kaminka et
al., 2018, remark) or the formula collapses to its limit and fails to capture its intended meaning—because
the optimal cost of complying with the observations and not complying could be the same! In any
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that A has only one configuration; therefore, the space it occupies can be identified from

its location q ∈ X (as in the case of a solid vehicle or the circular overhead view of a

pedestrian).13 We define obstacles to movement Xobst as all those points where the

presence of the agent would intersect with an obstacle, that is, Xobst = {q ∈ X|A(q) ∩
Obst 6= ∅}. Intuitively, the remaining traversable space Xfree is the complement of

Xobst but, as we want to calculate shortest paths (and potentially make contact with the

edges of obstacles), we define Xfree as the closure of {X \Xobst} (i.e., {X \Xobst} plus its

boundary points).14

Definition 5. A continuous path-planning problem is a tuple Pc = 〈Dc, A, xs, xg〉,
where Dc is a continuous path-planning domain, A(·) ⊂ X is the agent, xs ∈ Xfree is the

starting point and xg ∈ Xfree is the destination.

Given that the number of points in a continuous path is infinite, it is not possible

to define a path as just an enumerated sequence of points. Whereas a sequence of nodes

in a discrete domain may be regarded as a function such that π(i) or πi denotes the i-th

node in the path, a connected path in the problem domain Pc is a continuous function

π : [0, 1] 7→ Xfree. Intuitively, the domain [0, 1] (of a path function) represents normalised

distance along the path as if it had been straightened out like a piece of string; its image

is the path in space. So π(0) is the path’s starting point and π(1) its endpoint; and every

point in the path can be referenced by π(i) for some i ∈ [0, 1].

Note. The notion of connected space is built into a path’s definition: if π(0) and

π(1) were points in disjoint open subsets of Xfree, then the function π could not be

continuous.

To reference a subpath , given an interval [i, j] in [0, 1], the segment of path π from

π(i) to π(j), denoted π[i,j], is the normalised restriction of π to the interval in question:

π[i,j](k) = π(i+ k · (j − i)), for all k ∈ [0, 1].

Notice that π[i,j] is in itself a path (i.e., its domain is [0, 1]). As before, we use Π(Dc) or

(where the domain is understood) Π, to denote the set of all paths Dc.
To define the length of a path , we see the path as partitioned into equal segments

and sum their lengths as the number of segments approaches infinity. Formally, the length

of a path π with respect to a Euclidean metric d is defined as:

practical application, an agent is embodied and capable of reaching its destination. Therefore, we follow
LaValle (2006) and give her substance.

13The notion of multiple configurations (e.g., to allow for arm movement) has no impact in our domain.
14Closed and open sets are complementary notions: sets, respectively, that do or do not include their

boundary points. ‘Closure’ of an open set is that open set plus its boundary points. Since Obst and A(q)
are closed sets in X, X \Xobst is open. To include the boundary points, we take its closure (LaValle, 2006,
p.128-9).
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L(π) = lim
N→∞

N∑
i=1

d(π
( i
N

)
, π
( i+ 1

N

)
).

A path π is a solution path for Pc if π(0) = xs and π(1) = xg and, similar to

previous notation, we use Π(xs, xg) to denote the set of all solution paths for Pc.
The notion of the path cost and, as a consequence, that of optimal paths, requires

some additional explanation when it comes to continuous domains. In a discrete graph-

based domain, a cost is associated with every edge and path cost simply involves summing

the costs of all traversed edges. In a continuous environment, however, there is no finite set

of edges. In this thesis, we adopt the simple and often applicable model of cost as distance,

that is, we let cost(π) = L(π).15 Thus, given a continuous path-planning problem Pc, an

optimal solution π∗(xs, xg) is a solution path of minimum length, that is:

π∗(xs, xg) ∈ argmin
{π|π∈Π(xs,xg)}

L(π).

Note. Since the agent is embodied and Xfree is closed, the agent can come into

contact with obstacles without intersecting with them. Otherwise, a minimum length

path would not be calculable (LaValle, 2006, p.156).

The final major adjustment with respect to our previous discrete account is in the

treatment of observations. Here, we follow Vered et al. (2016)16 in making each observed

point (or trajectory) a function of the time interval during which it was observed. Formally,

given a total time interval [0, Tm] during which all observations were made, we define an

observation model for a continuous domain Dc as a pair O = 〈To, o〉 where:

1. To ⊆ R+
0 × R

+
0 is a finite set of non-intersecting (closed) time intervals, that is,

(i) if [t1, t2] ∈ To, then t2 ≥ t1 and t2 < Tm; and (ii) if [t1, t2], [t3, t4] ∈ To and

[t1, t2] 6= [t3, t4], then either t3 > t2 or t1 > t4; and

2. o : To 7→ Π(Dc) is an observation function which denotes the path observed during

each observation interval.

In words, To represents a set of all the intervals during which the agent has been observed

and o([t1, t2]) yields a path that represents continuous observation during each of those

15Alternative cost models tend to be either: (i) linear to distance anyway (e.g., the sum of distances
multiplied by the cost of traversal through each particular terrain type such as ground, water, swamp, etc.);
(ii) necessitate discretising the domain back to a graph or grid (e.g., road networks for SatNavs or sampled
spaces for Rapidly-exploring Random Trees). In more sophisticated accounts, such as motion-planning for
articulated robots, optimality is often more to do with optimisation than cost (i.e., to reconcile distance,
angle of movement, number of moving parts, etc.); or the complexity of the problem may be such that any
realisable solution suffices and optimality is not even considered (LaValle, 2006).

16We have modified the notation to more completely express the intervals represented in To.
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intervals, that is, each time period [t1, t2] ∈ To. Since the domain of a continuous path

function is [0, 1], o([t1, t2])(0) denotes the first observed location (observed at time t1),

whereas o([t1, t2])(1) stands for the last observation (observed at time t2).

Using this account, we identify all paths that embed the observations as the set

Π(O) such that π ∈ Π(O) iff there exists a mapping m from the observations into the

path, m : To 7→ [0, 1]× [0, 1] where: (i) o([t1, t2]) = πm([t1,t2]) (i.e., every observed point or

trajectory occurs somewhere in π); and (ii) for all ~t, ~t′ ∈ To, ~t < ~t′ iff m(~t ) < m(~t′ ). In

words, every path in Π(O) includes all subpaths observed during the time interval [0, Tm]

in the same order that they were observed.

With the set Π(O) in hand, we can precisely state the optimal cost from point x1 to

point x2 that embeds the observations O as follows:17

optc(x1,O, x2) = min
{π| π∈Π(O),π(0)=x1,π(1)=x2}

cost(π).

Similarly, the optimal cost not embedding the observations (i.e., because the path avoids

at least one of them or they occur out of order) can be defined as follows:

optc¬(x1,O, x2) = min
{π| π∈Π(Dc)\Π(O),π(0)=x1,π(1)=x2}

cost(π).

With all the technical machinery in place, we now turn our attention to the GR

problem itself and, more importantly, to its solution concept.

Definition 6. A GR problem for path-planning in the continuous domain is a

tuple Rc = 〈Dc, A,Xg, xs, Tm,O,Prob〉, where:

• Dc = 〈X,Obs, d〉 is a continuous path-planning domain;

• A(·) ⊂ X is a mobile, embodied agent;

• Xg ⊂ Xfree is a finite set of points denoting all candidate goal locations;

• xs ∈ Xfree is the starting location;

• Tm ∈ R+
0 is the limit of the total time interval [0, Tm] during which observations

were made;

• O = 〈To, o〉 is the observation model such that t2 ≤ Tm, for every [t1, t2] ∈ To; and

• Prob is a (prior) probability distribution over Xg.

The solution to a continuous GR problem Rc is a probability distribution across

Xg and—given that Ramirez and Geffner’s insight is as relevant in this setting as in

the other—we achieve this probability distribution exactly as before, by evaluating and

17As standard, if there is no path (here, because there can be no connected path between the points),
the minimum path cost is ∞.
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comparing, for each goal, the cost difference between two optimal paths: one that embeds

the observations and one that does not. The baseline cost difference formula (RG1),

our simpler formula (3.1) and the single-observation formula (3.2) can be restated in a

continuous setting as follows (here xg ∈ Xg is a possible goal, and xn ∈ Xfree):

costdifRG(xs, xg,O) = optc(xs,O, xg)− optc¬(xs,O, xg); (3.3)

costdif1(xs, xg,O) = optc(xs,O, xg)− optc(xs, xg); (3.4)

costdif2(xs, xg, xn) = optc(xn, xg)− optc(xs, xg). (3.5)

Finally, we can plug these cost differences into probability distribution (RG2) as before,

without any loss of meaning.

Note. Reformulation of our path-planning framework for the continuous domain has

necessitated significant changes, particularly in the notions of space, paths, cost model

and observations. It turns out, however, that the results presented in sections 3.1.2

and 3.1.3 in relation to the discrete domain, also hold in the continuous setting.

The behaviour of our simpler formula (3.4) is unchanged, as follows.

Theorem 6. Let O be an observation model in the scope of a continuous GR problem Rc,
then Theorems 1, 2, 3 and 4 hold.

Proof. Referring to Theorems 1, 2, 3 and 4, we replace ns, ng ∈ N with xs, xg ∈ Xfree and

the observation sequence ~o with our observation model O. Now optc(ns, ~o , ng) becomes

optc(xs,O, xg), optc¬(ns, ~o , ng) becomes optc¬(xs,O, xg), Π∗(ns, ng) becomes Π∗(xs, xg)

and Π∗(ns, ~o , ng) becomes Π∗(xs,O, xg). These substitutions made, the meaning of all

four formulas is entirely preserved.

In words, as in the discrete domain, costdifRG(xs, xg,O) yields a different result

from costdif1(xs, xg,O) in the continuous setting only in the case of exclusive optimal-

ity (i.e., when the only way to achieve an optimal path is via the observations) and results

in different rankings only if there is a second goal for which the observed path is also

(exclusively or non-exclusively) optimal.

In addition, the analogue of Theorem 5 (which supports the single-observation for-

mula) also holds in the continuous domain.

Theorem 7. Let O be an observation model in the scope of a GR problem Rc. Let xn be

the last observation in O, that is, xn = π∗(1), where π∗ = argminπ∈Π(To) cost(π). Then,

for all xg1 , xg2 ∈ G, P1(xg1 | O) > P1(xg2 | O) iff P2(xg1 | xn) > P2(xg2 | xn).
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Proof. Observe that π∗ is an optimal path that embeds the observations; it extends from

the first observation to the last xn and no further, that is, π∗(0) = o(~t1)(0) and π∗(1) =

xn = o(~t2)(1) where ~t1, ~t2 are the first and last observation, respectively, in To. As in the

discrete case (Theorem 5), the optimal cost of a path that embeds observations can be

considered as the sum of three parts, that is, optc(xs,O, xgi) = optc(xs, π
∗(0))+cost(π∗)+

optc(π∗(1), xgi). Similarly, therefore:

costdif1(xs, xg1 ,O)− costdif1(xs, xg2 ,O)

= [optc(xs, π
∗(0)) + cost(π∗) + optc(π∗(1), xg1)− optc(xs, xg1)]−

[optc(xs, π
∗(0)) + cost(π∗) + optc(π∗(1), xg2)− optc(xs, xg2)]

= [optc(π∗(1), xg1)− optc(xs, xg1)]− [optc(π∗(1), xg2)− optc(xs, xg2)]

= costdif2(xs, xg1 , xn)− costdif2(xs, xg2 , xn).

Since costdif1(xs, xg1 ,O) > costdif1(xs, xg2 ,O) iff costdif2(xs, xg1 , xn) > costdif2(xs, xg2 , xn),

we get P1(xg1 | O) > P1(xg2 | O) iff P2(xg1 | xn) > P2(xg2 | xn).

This concludes reformulation of our GR account from the discrete to the continuous

setting. Recall that our motivation is not merely to demonstrate equivalence of results,

but to set up the ground for calculation of the RMP, which follows next.

3.2.2 Calculation of the Radius of Maximum Probability

Calculation of a distance from goal, within which that goal is guaranteed to be the most

probable, depends on the relationship—implicit in the continuous single-observation for-

mula (3.5)—between a goal’s probability and an agent’s precise location. As we have seen,

a major implication of this relationship is that—provided we use a probability distribu-

tion formula which satisfies the property that the lower the cost difference, the higher

the probability, such as the R&G formula (RG2)—goal rankings (with respect to their

probabilities) at every point in the domain remain constant, regardless of the path taken

to get there.

One way of exploiting this finding, as already discussed in terms of the discrete

domain, is to pre-calculate probabilities node by node to create a probabilistic heatmap

(as at Figure 3.9, p.58). This is an effective way of revealing the complete perimeter

within which a goal becomes most probable. It is, however, computationally demanding,

even in a discrete domain; while in a continuous domain, it would clearly be impossible

to pre-calculate probabilities for infinitely many points!

Building on the single-observation formula (3.5), however—and provided that we

know the relative locations of the starting point and candidate goals (information typically

available in a known domain)—an alternative approach is available, as we now show.

We first precisely define the cost-distance18 that we propose to measure.

18Recall that we have made the simplifying assumption that the cost of a path is equal to its length.
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Figure 3.10: The Radius of Maximum Probability.

Definition 7. Given a probabilistic GR problem for continuous path-planning Rc, the

radius of maximum probability (RMP) for a possible goal xg ∈ Xg, denoted rmpg,

is a distance r ∈ R such that:

1. for all x ∈ Xfree such that optc(x, xg) < r, it is the case that P (xg | x) > P (x′g | x),

for all x′g ∈ Xg \ {xg}; and

2. there exists a point x′ ∈ Xfree such that optc(x′, xg) = r and P (xg | x′) = P (x′g | x′),
for some x′g ∈ Xg \ {xg}.19

Intuitively, rmpg signals a tipping point : a distance at which the probability of xg

becomes equal to the probability of some other goal, that is, a distance from xg where

probabilities ‘flip’ from favouring an alternative goal to the goal in question. At all points

within this distance, the probability of xg dominates; at some point just beyond this

distance, some other goal xg′ becomes more likely.

Since probabilities are based on cost difference, a point x ∈ Xfree at the tipping point

has the property (by Observation 1) that costdif2(xs, xg, x) = costdif2(xs, x
′
g, x). It is this

property that enables us to develop a closed formula for the RMP, as follows.

Consider the simple two-goal domain depicted in Figure 3.10a. We wish to construct

a formula for the distance denoted r (i.e., rmpg). In what follows, take a = optc(xs, xg),

b = optc(xs, xg′), c = optc(xg, xg′), and y = c − r. The tipping point (t) must occur

at some (unknown) point on an optimal path from xg to xg′ , where optc(t, xg) = r and

optc(t, xg′) = y. Using the continuous single-observation cost difference formula (3.5) and

19If point 2 in this definition were omitted, every cost-distance greater than r would qualify as an RMP.
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retaining the abbreviated terms for legibility:

costdif2(xs, xg, t) = costdif2(xs, xg′ , t)

r − a = y − b

y = r + b− a

c = r + (r + b− a) from y = c− r

= 2r + b− a

r =
c+ a− b

2
.

Thus, taking cost-distances between the starting point, the goal of interest and one other

goal, we obtain r, the optimal cost from goal location xg to the point at which the tipping

point t must occur.

Of course, there may be many potential goals. Therefore, to construct a general

formula for rmpg, we take the minimum (recall xs is the starting point and Xg the set of

all candidate goals):

rmpg(xs, Xg) = min
xg′∈Xg\{xg}

optc(xg, xg′) + optc(xs, xg)− optc(xs, xg′)

2
. (3.6)

The RMP formula identifies

the radius within which a goal

is guaranteed most probable,

without having to calculate any

probability distributions.

With respect to complexity, calculation of a sin-

gle RMP (e.g., rmpg as above) requires 2|Xg| − 1

calls to a path-planner. If we wanted to calculate

RMPs for every goal in the domain, it would take
|Xg |2+|Xg |

2 calls. So, for example, in a domain with

five candidate goals, calculation of one RMP re-

quires nine calls to the planner whereas calculation of RMPs for all five goals would

require 15. Compare this with the computational cost of calculating a probability distri-

bution at a single point. This would require |Xg| calls using P2(·) or 2|Xg| calls using the

baseline R&G formula PRG(·): one more call than is necessary to calculate the RMP for

one goal, yet the area that an RMP describes may contain many points of interest. To

determine the most probable goal at all those points without using the RMP, probability

distributions would have to be calculated individually at every one.

The significance of formula (3.6) rests on three factors: it is relatively inexpensive

computationally (as just discussed); it depends on distances between locations that, in a

static domain, are typically known and available; and it frees us from the computational

cost of calculating any probability distributions whatsoever. Moreover, to restate the

formula’s impact, once the calculation has been performed (and it need only be performed

once per goal), we are able to identify a clear boundary—a target area—within which each

goal is guaranteed to be the most probable.

Before proceeding, we clarify two important points:
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1. The measurement represented by the RMP is a cost-distance, not distance per se.

Consider, for example, the continuous terrain depicted in Figure 3.10b. The green

area represents an obstacle (e.g., impenetrable forest): it is not part of Xfree and,

therefore, cannot be occupied by an agent. The cost of reaching xg from a point

inside an obstacle is infinite (i.e., impossible); thus, even though based on distance

the forest’s boundary appears to be within rmpg, based on cost it is not.

Note that Figure 3.10b also depicts a bricked compound. The white area inside the

compound is in Xfree (and could, theoretically, be occupied by an agent deposited

there somehow). The region is inaccessible however and so, despite being in Xfree,

again its cost-distance (from any goal) is infinite. In short, whatever the value of

rmpg, it is always exceeded by the (infinite) cost-distance to xg from any inaccessible

point. (See too that the impossibility of traversing those inaccessible areas means

that other points (unshaded) become more distant from xg and are forced outside

rmpg.)

2. The fact that a point x lies beyond the cost-distance represented by rmpg, does not

imply that the probability of xg at x is less than the probability of some other goal.

Recall that the guarantee concerns only those points within rmpg; it says nothing

about points outside that radius. Indeed, there may be many points beyond rmpg

where xg is still the most probable goal; but probabilities at those points cannot be

guaranteed: if we need to know them, we must calculate them individually, using

some other method (such as single-observation recognition).

Although it depicts a discrete domain, Figure 3.11b conveniently illustrates the case.

Let us say that straight moves cost 1, diagonals
√

2. Now, if we calculate probabilities

for an agent at cell (9,11) marked “A”, her most probable goal is ng1, approximately

10 units away. An agent at (4,5) marked “B”, on the other hand—less than 4 units

from ng1—is most probably heading for goal ng2 (not ng1). The RMP tells us the

minimum distance within which we can guarantee the probability of one goal is

greater than the probability of any other: in this case, rmpg1 < 4 even though ng1

is the most probable goal at other cells 8, 9 and 10 units away.

Although our theorems hold in both path-planning domains, the RMP is a real num-

ber calculated over continuous distance, which presents difficulties when we try to apply

it in a discrete domain, as we consider next.

3.2.3 RMP in the Discrete Domain

The calculation (and definition) of an RMP in the discrete domain is complicated by the

possibility that there may be no node at the precise cost-distance from a goal where the

tipping point between goals ought to occur.
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Figure 3.11: The RMP in discrete domains. The grey shaded areas are within the RMP.

Graph-based representation. Referring to Figure 3.11a, we see that when a discrete

domain is represented as a graph (e.g., a train network or the locations of mobile towers

along a route), there may literally be no node (i.e., no station or no mobile tower) at the

precise tipping point between two candidate goals, even in the presence of no obstacles

(i.e., Xobst = ∅). Thus, in the discrete domain, although the RMP can be calculated in

exactly the same way as before, here, it represents a theoretical minimum distance; in

practice, a no less useful lower bound.

Referring again to Figure 3.11, we see that, if there were a node at t we could say

that P (ng1 | t) = P (ng2 | t) and that at all nodes closer to goal than t (within the shaded

area), the probability of ng1 dominates. In this example, however, the first existing node

where P (ng1) ≤ P (ng2) is the node marked n′, so the shaded area (within which no goal

is more probable than ng1) could be extended up to the radius marked by the dotted line.

Observe that the cost-distance optc(n′, ng1) is in fact greater than the value returned by

Equation (3.6). Thus, in a domain discretised into a graph, the RMP provides a lower

bound for the distance of interest.

Grid representation. When a path-planning space is discretised into a grid, the situa-

tion is slightly different. In a gridworld environment, nodes are represented as cells and

every cell is immediately adjacent to some other cell. Therefore, it can never happen that

the tipping point t occurs at a point where there is no cell at all. Furthermore, since t

is identified as a special point on the optimal path from one goal to another—the path

within which t is located is known to be traversable—there must be a cell ‘containing’ t

that can be reached.

Knowing that, theoretically, some cell nt would contain point t, however, does not

guarantee that the probability of two goals would be equal when measured at that cell: a

cell nt might theoretically contain a tipping point without being a tipping point. Recall
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that, in a gridworld environment, distance (and cost) are only calculable in discrete chunks.

Referring to Figure 3.11b, where cost is 1 for straight moves and
√

2 for diagonal moves,

Equation (3.6) returns a value of 3.53 for rmpg1, but the cost of cell traversal on an

optimal path from ng1 to ng2 jumps from 3.41 at cell (4, 4) to 4.82 at (3, 5) or from 2.4 at

(5, 4) to 3.8 at (4, 5). So, we cannot know whether probabilities at nt favour ng1 or ng2 or

are equal. What we do know is that for all cells n′ such that optc(n′, ng1) < optc(nt, ng1),

it is the case that P (ng1 | n′) > P (ng2 | n′), for all ng2 ∈ G \ {ng1}.

Heatmap example. Before looking in detail at the properties of the RMP, we remind the

reader of the heatmap example discussed in Subsection 3.1.3 (p.55). We explained there

that one could use Equation (3.2) to pre-calculate a complete heatmap of probabilities

(Figure 3.9) from which to identify the perimeter within which goal ng1 or ng2 was the most

probable. Using Equation (3.6), we now have the option of instead instantly calculating

the minimum distance of that perimeter from either goal without having to pre-calculate

any of those probabilities:

rmpg2 =
9 + 8− 11

2
=

6

2
= 3

rmpg1 =
9 + 11− 8

2
=

12

2
= 6

Using this calculation—and nothing else—we can identify a clear target area within which

to focus our attention. If we have a particular interest in monitoring or protecting goal

ng1 or ng2, for example, we can deploy our surveillance effort into access points located

3 (or 6) units of cost-distance away, knowing that any agent who breaches that radius is

most likely heading for our goal of interest.

Note. To clarify: the heatmap is an artefact—a potential application of the single-

observation cost difference formula (3.2)—that can be obtained by repeated use of that

formula for every node in the domain (or every location of interest) at a computational

cost of |G| · k calls to a path-planner, where k is the total number of locations for

which probabilities are required. It can serve as a brute-force method for identifying

the perimeter around a ‘most probable goal’ and, once calculated in an offline process,

can also be used to access a complete probability distribution for every point that has

been evaluated: a resource that can be accessed in constant time to support, for

example, online ‘spot-checks’ of an agent acting suspiciously.

The RMP is a number: a distance from a given goal, which need be calculated

once only at a computational cost comparable to calculation of a single probability

distribution. Similar to the heatmap, it can be a useful tool on the ground (e.g., for

use by a surveillance operative who only needs to know whether an agent is inside

or outside the target zone). It might also be used as a complementary tool in a goal

recognition design process (Keren et al., 2014), where it has similarities to ‘worst case
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Figure 3.12: Properties of RMPs.

distinctiveness’ (see Chapter 2, p.23), or in place of landmarks for GR or goal pruning

(Vered et al., 2018). Furthermore, being quickly calculable (unlike a heatmap), the

RMP can be used in online scenarios, for example where the terrain changes dynam-

ically (Raffe et al., 2012), if candidate goals only become known in real-time or are

agent-specific; that is, where pre-calculation would be impossible.

3.2.4 Properties of the RMP

The RMP identifies a radius around a goal within which that goal is guaranteed to be

the most probable. It is important to realise however that, depending on the particular

terrain and location of goals, there may be no RMP for a particular goal, or rather, the

radius within which its probability dominates that of all other goals may be precisely zero.

Consider the two goals at Figure 3.12a. Here, the goals and starting point are in

a direct line, that is, the optimal path to xg′ goes directly through xg. Calculating the

RMPs for each goal, we get:

rmpg =
c+ a− b

2
= 0

rmpg′ =
c+ b− a

2
=

2c

2
= c

This coincides with the intuition that, if an agent is approaching xg from xs (and is

therefore on the optimal path to both goals) there may never be a point where we can

discount the possibility that xg′ is the agent’s goal; therefore rmpg = 0. On the other

hand, the moment the agent proceeds beyond xg, it is the case that xg′ becomes most

probable; and appropriately rmpg′ = c.

Consider now the two goals at Figure 3.12b. Again, the goals and starting point are

in a direct line but this time the relationship is different in that the optimal path from xg

to xg′ goes directly through the starting point xs. Calculating the RMPs for each goal,
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we obtain:

rmpg =
c+ a− b

2
=
a+ b+ a− b

2
= a

rmpg′ =
c+ b− a

2
=
a+ b+ b− a

2
= b

This again coincides with our intuition: if two goals lie in opposite directions from one

another relative to the starting point, such that the optimal path to one discounts the

optimal path to the other, probabilities ‘flip’ to favour one or the other as soon as the

agent commits to a direction.

Finally, note that with the introduction of priors, the size of an RMP increases (or

decreases) relative to the prior probability of the goal in question. We leave investigation

of this interesting topic for future work except to note that this could have the effect of

placing the starting point xs inside a goal’s RMP: that is, one goal may be ‘most probable’

from the start.

The RMP is almost paradoxical in itself: it reasons about probabilities without calcu-

lating probabilities. It represents a novel approach to GR which is fast, entirely domain-

based and has many potential applications. The RMP formula (3.6) is calculable as a

direct consequence of the relationship between location and probability revealed by our

investigation of single-observation recognition. Before moving on to discussion, we present

our evaluation of the cost difference formulas on which it depends.

3.3 Experimental Evaluation

We have seen that, in the context of path-planning, the R&G model of GR can be re-

formulated to arrive at single-observation recognition and that the single-observation cost

difference formula at the heart of our single-observation account can then be used to

calculate the RMP around a goal in discrete or continuous domains.

In this section, we report on the results of our experimentation. We tested the

performance of GR in path-planning using R&G’s complex cost difference (RG1), the

simpler version (3.1) (that does not reason negatively about observations), and the single-

observation formula (3.2), which we have proposed for online and offline recognition (to

generate a probabilistic heatmap) and as the basis of the RMP formula (3.6). Tests

were conducted using problems adapted from the well-known Moving-AI20 path-planning

benchmarks (Sturtevant, 2012), which discretise the underlying maps and groundplans

to a 512 × 512 grid. We experimented in a discrete environment and have relied on

20http://movingai.com/
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our theoretical conclusions to support the applicability of our formulas in the continuous

domain.21

Our aim was to develop an experimental framework for GR in path-planning to

empirically confirm: (i) that the case of exclusive optimality (as in Theorem 3) is rare

and, otherwise, the simpler formula (3.1) yields identical posterior probability distributions

to (RG1); (ii) that all three accounts return posterior probability distributions that rank

goals the same; and (iii) that use of either formula (3.1) or (3.2) cuts processing time by

more than half.

3.3.1 Experimental setup

We generated over 2500 individual probability distributions from a problem set of 774,

built on 43 scenarios selected at random from two sets of Moving-AI benchmarks (Sturte-

vant, 2012):22 game landscapes from StarCraft; and connected room layouts (chosen for

their similarity to internal locations, such as airport terminals or shopping centres). Since

the scenarios are intended for path-planning, we adapted them for GR as follows. First,

we added two to five additional (reachable) candidate goals at random locations. Second,

to generate the observations, we used Weighted-A* (Pohl, 1970) to build three full contin-

uous paths from the start location to the real goal, differing in quality: one optimal, one

suboptimal, one greedy. We then extracted observation sequences varying two further di-

mensions: ‘observation density’, that is, the proportion of the continuous path used in the

extracted observation sequence (sparse 20%, medium 50%, dense 80%) and ‘observation

strategy’, that is, the method of extracting the observations, which was either random

(taking the required density of observations from random locations anywhere along the

path) or prefix (taking the required density as a consecutive sequence of nodes from the

start location on).

In preliminary tests, we had found that the probability distribution formula (RG2)

was particularly sensitive to any small variation in cost difference. This was especially

noticeable with the large negative values often returned by our single-observation formula

(3.2) for the most probable goal in a distribution (where the optimal cost of a complete

path is subtracted from the much smaller cost of reaching that goal from the more recent

observation).

Note. We initially attributed the sensitivity of R&G’s probability distribution for-

mula (RG2) to the use of exponential values in generating posterior probabilities. Sub-

21Arguably, a grid can be regarded as a middle way between continuous and discrete domains in that
while, algorithmically, it behaves like a graph (i.e., we can use variations of Dijkstra’s algorithm or A* to
find shortest paths), it can equally be used to discretise almost any continuous space, adjusting the size
of the grid to whatever granularity of solution is required.

22Experiments were conducted on an i7 3.4GHz dual core with 10GB RAM in a virtual Linux environ-
ment; preliminary and manual tests were conducted on a similar 1.8GHz machine.
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sequent examination, however—conducted while investigating its performance when

dealing with excessively suboptimal paths, which we report on in Part II—reveals a

‘quirk’ in the formula so that, although it reliably enforces the intuition that lower cost

difference results in higher probability across goals, it does not enforce that intuition

with respect to the probability values for any one goal.

In fact, as we will show (p.105), the higher the cost difference for any one goal, the

higher its individual probability value. Conversely, with our unusually low (negative)

cost differences using the single-observation formula, low cost difference resulted in

low probability values, which exagerated the delta we recorded between the value

returned by single-observation and the value returned using complex cost difference.

To compensate for the unexpected behaviour noted above, in addition to the three

probability distributions derived using formula (RG2) with the original (baseline) formula

(PRG), the simpler formula (P1) and the single-observation formula (P2), we also included

a variation on (P2) obtained by adding a large constant value (which we set at 800) to the

cost difference returned by the single-observation formula (P2
∗). Recall that the β constant

is a rate parameter, which modulates the shape of the distribution (as further discussed in

Part 2, p.111). For the automated tests, we adopted a β value of 0.1 throughout. (With

β = 1, PRG and P1 tended to return 1 for the most probable goal and otherwise 0, while

with β = 0.01, the distribution tended to even out and, with loss of precision on test

equipment, returned for example, 0.33 for each of three goals, 0.25 for each of four, and

so on). We used the usual uniform-cost approach for grids, with horizontal and vertical

moves costed at 1, and diagonal moves at
√

2; and we made the simplifying assumption

that priors were equal.

In addition to the auto-generated problem set, we manually set up individual exper-

iments to trial the various cost difference formulas against completely open landscapes

and ‘single-pixel’ mazes (through which there is typically only one path from any given

starting point to goal). For simplicity and, given that planners are meant to be used

off-the-shelf, optimal costs for paths with, and without, waypoints were calculated using

a standard A* algorithm (Hart et al., 1968)23. To obtain the cost of an optimal path that

did not embed the observations, inspired by the technique used for R&G, we modified A*

so that each search node, in addition to a location indicator, also included an observation

counter. When the counter reached the total number of observations (meaning all obser-

vations had been encountered) the search node representing that last observation—and so

the associated path that embedded all the observations—was pruned.

23We used our own Python-based infrastructure, originally designed as a simulator and testbed for
path-planning algorithms (https://tinyurl.com/p4sim).
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3.3.2 Results

Our theoretical results were confirmed. In hand-crafted problems using maps with open

landscapes, the formulas performed exactly as predicted: formulas (RG1) and (3.1) re-

turned identical results, all four formulas ranked goals identically by probability and (after

the first iteration in a domain with the same start location and goals) formulas (3.1) and

(3.2) returned in half the time of formula (RG1).

In the single-pixel maze, again as predicted, the implementation based on formula

(RG1) was unable to return a probability distribution (because the most probable goal

gave a cost difference of −∞), whereas formulas (3.1) and (3.2) returned in 0.005 and

0.002 seconds, respectively, and successfully identified the real goal.

The corner case of exclusive optimality, in which observations conform to the only

optimal path to goal, did not arise in any of the randomly generated scenarios. This is

perhaps unsurprising, given the symmetries found in a two-dimensional grid. Nevertheless,

we were able to reproduce the condition by exactly replicating the example scenario. That

is, we set up an environment in which diagonal moves were prohibited, there were three

goals, observations were on the optimal path to all of them but one goal lay in a straight line

from the start location. In the resulting probability distributions, formula (RG1) returned

0.329, 0.342, 0.329 (for L, M and N in Figure 3.13, respectively), whereas formulas (3.1)

and (3.2) returned 0.333 for all three goals.

Tables 3.3 and 3.4 summarise the results of our automated tests. Column Obs displays

the percentage of nodes from the full path that were included in the observation sequence.

P indicates that the observations were extracted using the continuous path prefix strategy,

and R that they were extracted using the random strategy, that is, randomly drawn from

the length of the path. Column Time displays the average time-taken per GR problem

in seconds. Column Match shows the percentage of probability distributions where the

probability value for the target goal exactly matched that generated using cost difference

formula (RG1). Where a difference was recorded (only in the cases of P2 and P2
∗), column

∆ displays the average difference. Our main findings were as follows.

• The implementation using cost-difference (RG1) performed even more slowly than

we expected.

– In the room layouts (Table 3.3), it frequently exceeded our three minute time-

out; the longer the paths (i.e., the larger the set of observations) and the more

optimal the path they were extracted from, the longer the algorithm took.

This is explained by the difficulty of identifying an alternative optimal path

(i.e., when we randomly selected problems that timed out and let them run

to completion, cost difference for the target goal ultimately returned zero).

The problem was exacerbated in room layouts, which are significantly more

restrictive than landscapes (doorways are only one-pixel wide).
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Table 3.3: Rooms.

PRG P1 P2, P2
∗ P2 P2

∗

Obs Time Time Time Match ∆ Match ∆

O
p

ti
m

al

20%P 94.538 7.223 3.400 6.7% 0.202 40.0% 0.031
20%R 68.086 3.316 2.918 10.0% 0.340 50.0% 0.041
50%P 180+ 3.075 2.723 0% 0.487 36.7% 0.030
50%R 83.381 3.473 3.068 16.7% 0.313 50.0% 0.040
80%P 180+ 3.360 2.967 3.3% 0.475 50.0% 0.052
80%R 180+ 3.716 2.991 16.7% 0.332 50.0% 0.037

S
u

b
op

ti
m

al

20%P 94.609 7.210 3.457 10.0% 0.190 36.7% 0.023
20%R 61.842 3.456 2.993 13.3% 0.344 56.7% 0.025
50%P 180+ 3.319 2.782 0% 0.417 40.0% 0.021
50%R 74.184 3.593 3.073 16.7% 0.290 60.0% 0.026
80%P 180+ 3.435 2.993 3.3% 0.415 50.0% 0.030
80%R 88.831 3.729 3.100 13.3% 0.332 60.0% 0.022

G
re

ed
y

20%P 92.260 7.193 3.287 10.0% 0.202 56.7% 0.014
20%R 58.117 3.346 2.919 13.3% 0.382 80.0% 0.032
50%P 58.667 3.231 2.634 0% 0.410 66.7% 0.014
50%R 70.057 3.548 2.996 13.3% 0.367 80.0% 0.031
80%P 61.732 3.278 2.655 3.3% 0.448 70.0% 0.024
80%R 91.231 3.675 2.983 10.0% 0.399 83.3% 0.029

540 problems. Average goals: 4.9. Average optimal path cost: 372. Probabilities calculated using formula
(RG2) with β value of 0.1. We obtained P2∗ as P2 but adding a constant (800) to the corresponding cost
difference (see discussion inline). The Match column indicates the percentage of cases where probability
values matched exactly. The ∆ column indicates average difference in non-matching values.

– Observations presented as a path prefix took, in some cases, twice as long

to solve as those presented randomly. This seems to be because the pruning

algorithm backtracks so, if observations are consecutive, it repeatedly reaches

the final observation via multiple different routes.

– Ultimately, the relative slowness may be a symptom of the calculation’s inherent

complexity. We note that the Easy IPC Grid experiments reported by Ramirez

and Geffner (2010) (which include a significant navigational element, though in

the more demanding context of general task-planning)24 also took, on average,

over three minutes to complete problems with observation densities of 50%

using an optimal planner comparable to A*, on problems with average optimal

path lengths of just 17 steps. Ramirez and Geffner improved performance by

using a suboptimal planner. We did try a suboptimal—much faster—algorithm

but, although it returned approximately equivalent probability distributions, it

failed to preserve the corner cases, which were of interest to us.

24Easy IPC Grids have far fewer cells than Moving-AI maps so they are easier to navigate and optimal
paths are shorter. Problems are more complex, however, as they include task-planning elements, e.g., that
keys may be required to access particular cells.
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Table 3.4: Landscapes.

PRG P1 P2, P2
∗ P2 P2

∗

Obs Time Time Time Match ∆ Match ∆

O
p

ti
m

al

20%P 34.385 3.444 1.344 0% 0.140 7.7% 0.043
20%R 19.135 1.749 1.646 7.7% 0.317 69.2% 0.009
50%P 51.433 1.541 1.379 0% 0.247 30.8% 0.034
50%R 37.100 1.907 1.672 15.4% 0.299 69.2% 0.009
80%P 56.109 1.917 1.515 7.7% 0.284 46.2% 0.027
80%R 49.645 2.015 1.687 15.4% 0.344 69.2% 0.009

S
u

b
op

ti
m

al

20%P 35.183 3.300 1.446 15.4% 0.143 38.5% 0.041
20%R 18.939 1.797 1.690 15.4% 0.347 69.2% 0.010
50%P 51.395 1.625 1.450 15.4% 0.227 46.2% 0.028
50%R 35.180 1.898 1.669 15.4% 0.324 69.2% 0.011
80%P 55.780 1.912 1.564 7.7% 0.247 46.2% 0.017
80%R 48.455 1.922 1.731 15.4% 0.335 69.2% 0.011

G
re

ed
y

20%P 35.400 3.342 1.451 15.4% 0.146 38.5% 0.038
20%R 16.678 1.781 1.679 15.4% 0.351 69.2% 0.011
50%P 50.662 1.725 1.421 15.4% 0.250 46.2% 0.013
50%R 33.433 1.827 1.706 15.4% 0.337 69.2% 0.011
80%P 54.790 1.952 1.597 7.7% 0.268 46.2% 0.011
80%R 48.024 2.020 1.729 15.4% 0.345 69.2% 0.011

234 problems. Average goals: 4. Average optimal path cost: 233.04. Probabilities calculated with β of
0.1 and P ∗2 constant of 800, as at Table 3.3. We note that in room layouts, all traversable locations are
accessible from one another whereas in landscapes, automatically generated goal locations were frequently
inaccessible from the start location resulting in fewer usable scenarios.

• Use of formula (3.1) cut processing time even from landscapes (Table 3.4) by more

than an order of magnitude. We should note that, in our experiments, the 20%

density, prefix observations were always the first to be tested in each new problem

set. This meant that it was always when running the 20P test that optimal costs to

each goal were calculated (and stored for future use). This is reflected in the results,

which clearly show the simple formula taking approximately twice the time for that

problem as subsequent problems.

• Although time-savings were on nothing like the same scale, we note that average

timings for the single-observation formula (3.2) were consistently lower than those

for formula (3.1).

• Whereas the probabilities based on cost difference formula (3.1) always exactly

matched those based on cost difference formula (RG1), probabilities generated using

formula (3.2) were usually different.

– This is because the actual values returned by that formula are different; it is

the relative cost differences that are maintained. This is the anomalous effect
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discussed above (see p.75) and in our concluding note below.

– As can be seen, delta values for P2 were sometimes quite high thanks to the

typically large negative cost difference for the most probable goal. For P2
∗,

as discussed, we compensated for this effect by adding a large constant to the

function’s output, which raised it always above zero. This significantly reduced

the delta.

– In any event, observe that, whatever the delta, relative rank is always preserved.

In particular, whether or not the constant is added, in all cases, use of the single-

observation formula successfully identified the same goal as having the highest,

or equal highest, posterior probability as either of the other formulas.

Note. We conclude by noting that the anomaly discussed here with respect to prob-

ability distribution formula (RG2) is resolved by our reformulation of the formula in

Part II (see Equation (4.5), p.110). We predict that use of our revised formula will

return identical probability distributions for each of the three cost differences exam-

ined above without requiring any additional manipulation (i.e., there will be no need

for the addition of an extra constant to bring P2 more or less in line with P1). We

leave experimental confirmation of this prediction for future work.

3.4 Discussion

In the previous three sections of this chapter, we have transposed the R&G model of GR

from task-planning to path-planning and have demonstrated the considerable efficiencies

that can be achieved in this context. This section discusses some of the broader issues that

arise in relation to our work: first, the special case where the single-observation formula

ranks goals differently from Ramirez and Geffner’s original cost difference formula (which

did not arise in testing), then the extent to which our results apply in a general task-

planning domain and, finally, its relationship with plan (as opposed to goal) recognition.

3.4.1 Corner Case: Exclusive Optimality and Negative Reasoning

There is only one corner case where our simpler and single-observation formulas (3.1) and

(3.2) rank goals differently from R&G’s original complex cost difference formula (RG1).

This case arises only when observations conform to the optimal path for multiple goals and

are exclusively optimal for at least one of them. Using our formulas (3.1) or (3.2), all such

goals are ranked equally; using formula (RG1), which depends on negative reasoning,

rankings may differ depending on the length of alternative (non-optimal) paths to the

various goals.
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Figure 3.13: Example 1: exclusive optimality.
Observation o1 is on an optimal path to all three goals but, by formula (RG1), M is the most probable.

Ramirez and Geffner (2010) support the use of negative reasoning by reference to

the following example, where observations are optimal for all three goals but exclusively

optimal for only one.

Example 1. Consider the situation depicted in Figure 3.13. An agent operates in a

discrete gridworld environment where the only legal moves are horizontal or vertical and

all steps cost 1. There are three possible goals, gl, gm, gr ∈ G, labelled L, M and R

respectively. All goals are north of the start location, ns. Observations ~o track directly

north through the marked observation o1 and satisfy an optimal path to all three goals. In

the case of L and R, there are multiple optimal paths to goal so the optimal path that embeds

the observations has the same cost (15) as one that does not: there is no cost difference;

therefore, costdif(ns, gl, ~o ) = 0 and costdif(ns, gr, ~o ) = 0 (see Equation RG1). In the case

of M , however, which lies directly north of ns and o1, there is only one optimal path to

goal: the one that embeds the observations. In order to take a path that does not embed

them, it is necessary to take a longer route. In the example, optc(ns, ~o , gm) = 10, whereas

optc¬(ns, ~o , gm) = 12. Thus, costdif(ns, gm, ~o ) = −2. The lower the cost difference, the

higher the probability, making gm (M) the most probable goal.

Although cited as an “illustration” of the distinction between cost difference formulas

(RG1) and (3.1) (Ramirez & Geffner, 2010, p.1123), this scenario, in fact, represents

the only distinction—a case of exclusive optimality—as proved in Theorem 3. Given

the considerable additional computational work required to achieve formula (RG1), it is

worth noting that this special case is concerned only with that set of goals in which the

probabilistic account is least interested, namely goals for which observations are on the

optimal path; that is, the case already handled in the non-probabilistic account (Ramirez

& Geffner, 2009). Nevertheless, let us consider what is lost (and gained) by substituting

either the simpler or single-observation formula for (RG1).
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Figure 3.14: Example 2: an anomaly.

To arrive at a probability distribution, R&G appeals to Bayes’ Rule, which, using

our notation, can be given as P (G | ~o ) = αP (~o | G) · Prob, where α is a normalising

constant. Assuming that prior probabilities in Prob are given, the challenge is to account

for P (~o | G). The authors assert that it is correct for P (~o | gm) to exceed the probabilities

of either of the other goals because “goal M predicts the observations better than either

L or R” (p.1123). The intuition is that, in order to reach gm optimally, an agent from

ns must pass through the observation o1; whereas, to reach gl or gr optimally, the agent

might (or might not) pass through o1.

This reasoning seems to link probabilities to the number of available paths to goal.

Indeed, Ramirez and Geffner (2010) acknowledge that there are situations where it would

be preferable to count the number of paths but their framework does not support it. Thus,

one might think that, if there had been four optimal paths and the agent had been seen

on one of them, the probability of the goal would be correspondingly lower (because the

goal predicts the observations less well than if there had been only one optimal path); and

that, if there had been 100 optimal paths, it would be lower still. This is not the case,

however. In fact, as soon as there is a second optimal path to goal, the account fails to

follow the intuition, as in the following counter-example.

Example 2. Consider the domain depicted in Figure 3.14. Here we have added a rect-

angular block—the patterned green cells, (2,2) to (5,10)—which is not traversable. Again

there are three goals, labelled L, M and R but the change has now made gl to be very like

gm and very different from gr. There are just two optimal paths to gl, only one more than

to gm. Meanwhile (owing to the notorious symmetry of gridworlds), there are 3003 optimal

paths to gr, as before, and yet Equation (RG1) can no more distinguish between gl and gr

(which are non-exclusively optimal) than can the simpler formula (3.1). In this scenario,

the probability of gl should—based on how well the goal predicts the observations—be very

much greater than gr (only a little less likely than gm) but, for both goals gl and gr, all three
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Figure 3.15: The Circle Line.

Using negative reasoning, an agent who boarded a train at Edgware Road and was observed at Great
Portland Street is more likely to be travelling to Moorgate than Liverpool Street.

cost difference formulas now return zero so in all three cases, by the posterior probability

calculation (RG2), both goals gl and gr appear to be equally likely (unlikely).

The authors explain that this apparent anomaly arises because their distribution

depends on an approximation whereby “probabilities corresponding to different plans for

the same goal are not added up” (Ramirez & Geffner, 2010, p.1124). Our point here is not

that it is unreasonable to assume that both goals are equally likely; rather that it would

have been just as reasonable to assume that all three goals are equally likely.

We offer the following more extreme—and perhaps more commonplace—example of

exclusive optimality, which arises in the context of a transport network, such as a road

network or the London Underground system.25 Exclusive optimality occurs routinely in

this environment because there are frequently situations where the agent (having decided

which line to travel on and in which direction) is frequently on the optimal path towards

multiple goals, namely any stop on the line between the station where they boarded and

the one where they will alight.

The intuition is challenging: what probabilities ought to apply? In this situation,

the single-observation (and simpler) formulas—in common, in fact, with the many other

approaches that similarly avoid negative reasoning (e.g., Kaminka et al., 2018; Ramirez

& Geffner, 2009; Sohrabi et al., 2016; Vered & Kaminka, 2017; Vered et al., 2016)—

rank all potentially optimal goals equally; but the complex formula that involves negative

reasoning distinguishes between them.

25It is an interesting situation. We have an apparently continuous domain (the train moves continuously
through the real world) even though, for practical purposes, the domain is discrete (a passenger can only
exit or change direction at a station).
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Example 3. Consider Figure 3.15, which represents the Circle Line on the London Un-

derground. Assume a passenger has boarded a train at Edgware Road with three potential

goals: one at King’s Cross, one at Moorgate and another at Liverpool Street. The pas-

senger is now observed at Great Portland Street. Goal recognition using formulas (3.1)

or (3.2) is unable to determine which of the potential goals is most likely: the passenger

is on an optimal path to all three of them. Goal recognition using the complex formula

(RG1) (with negative reasoning), however, assesses that King’s Cross is the most likely

destination, Moorgate the second likeliest, and so on. The distinction is based on lowest

cost difference (highest probability) arising from the greater cost of taking an alternative

route (the only alternative being to travel in an anti-clockwise direction).

Though clearly correct, in principle, that the greater the cost of an alternative route,

the more likely the observed route and therefore (by Bayes’ Rule, priors being equal), the

greater the probability of the associated goal, one cannot help but ask: in the case of

Example 3, is this a valid conclusion?

Perhaps the question can only be decided on a case-by-case basis, depending on the

particular application. Would we rather be presented with a crisp subset of all possi-

ble stations a fully rational passenger might be targeting (the result using Ramirez and

Geffner’s 2009 formulation and our own approach) or a ranking in line with R&G, which

strictly applies Bayes’ Rule and so suggests that King’s Cross is more likely than Moorgate

and Moorgate more likely than Liverpool Street?

3.4.2 Application of our Model in a Task-Planning Domain

Our model has three main components: (i) a simpler formula (3.1), which eliminates

negative reasoning from Ramirez and Geffner’s original approach; (ii) a single-observation

formula (3.2), which further eliminates an agent’s observation history (between the initial

location and final observation); and (iii) the RMP measure (3.6), which states the distance

from goal within which, at any point, that goal is guaranteed to be the most probable (as

calculated under either of the previous formulas). Of these, only our first result, relating

to the “simpler” formula—which is also used by Escudero-Martin et al. (2015) and is

similar to that used by Vered et al. (2016)—is fully applicable in a task-planning domain

‘off-the-shelf’.

The ‘Simpler’ Formula

As we saw when reformulating our solution to the continuous domain, our theorems are

essentially “plug and play”: if we can redefine terms whilst preserving the meaning, then

the theorems hold. The simpler formula (Equations 3.1 and 3.4) differs from the original

(Ramirez & Geffner, 2010) account (Equation RG1) only in one respect: it substitutes

the cost of ‘an optimal plan or path’ for the cost of ‘an optimal plan or path that does
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not embed the observations’. We proved for path-planning that (in all cases, bar one) the

cost of an optimal plan for a goal g that does not embed all the observed actions is the

same as the optimal cost of a plan for g, that is, optc¬(s,O, g) = optc(s, g).

Now, the key differences between Ramirez and Geffner’s account of GR for task-

planning and our reformulation of that account for path-planning are (a) that plans in

their STRIPS-style domain are described as a sequence of actions, not states, and (b) that

observations for their account of GR for task-planning are also actions, not states. When

we generalise our simpler formula back to task-planning, neither of these differences come

into play. All the related theorems deal with the costs of complete paths that either embed

observations or do not; they never involve reasoning about individual observations or the

representation of individual states. Thus, the basis on which optimal costs are calculated

is not an issue, terms can be substituted and Theorems 1, 2, 3 and 4 will hold.

Arguably, in fact, the special case of exclusive optimality, characterised in Theorem 3

and discussed in Section 3.4.1 above (i.e., where there is no optimal plan for goal that

does not embed the observations and the two formulas therefore return different results),

is even less likely to occur in a general task-planning context. This is because, by defi-

nition, embedding the observed actions, involves performing them in the order they were

observed. In path-planning, if an optimal path from a to b passes through points c then d

then e, it cannot (optimally) pass through points e then d then c. In task-planning, on

the other hand, there might often be situations where the order of actions makes no dif-

ference whatsoever to the optimality of the plan, so optimal plans not compatible with

observations incidentally exist.

Example 4. Consider a task-plan to cook pasta. The optimal plan involves (a) filling a

saucepan with water; and (b) opening a packet of pasta. Reversing those actions constructs

an alternative optimal plan (and so, by Theorem 2, Equations 3.1 and RG1 return the same

result). That is, although there is no optimal plan for the “cooking pasta” goal that does

not include (a) and (b), an alternative optimal plan can be constructed by performing them

in reverse order and the special case of exclusive optimality, which seemed to pertain, does

not arise.

So, the first plank in construction of our model applies directly in a task-planning do-

main. Turning now to the single-observation formula and the RMP, however, the situation

is somewhat different.

Single-Observation Recognition and the RMP

Our complete model, including single-observation recognition and the RMP, does apply

to task-planning, provided the particular task-planning domain conforms to strict—though

unfortunately, for the most part, arguably unrealistic—assumptions. Setting aside inher-

85



CHAPTER 3: GOAL RECOGNITION AS PATH-PLANNING

ited requirements (which also apply to Equations 3.1 and RG1) that the domain should be

deterministic and that the observed agent should be rational (i.e., cost-sensitive), either:

• each observation must reveal a full state; or

• if observations are partial, those fluents that are observed must include precisely

the fluents necessary in order to correctly calculate the optimal costs of reaching all

goals.26

If either one of these conditions can be met, the single-observation formula is also

‘plug and play’. The conditions are necessary because, unlike Equation (3.1), this formula

does reason, not only about complete plans, but about individual observations. The

“single-observation” in the formula’s name is taken to be the observed agent’s most recent

complete state and, on that basis, the system is able to infer everything that has changed

since the plan began.

In Ramirez and Geffner’s model of GR, observations are actions which, by themselves,

simply do not provide enough information. Even in a strict path-planning context, a

sequence of observed actions such as “turn left; walk 5 metres; turn right,” would not

reveal the current location (e.g., other actions may have occurred after the agent turned

left and before she walked 5 metres). So, a final observation “turn left” would only tell us

that the agent ought to be in location that can be reached by turning left from somewhere

else! Thus, whereas in the path-planning context of our model, an observation reveals

the location/state of the agent fully, in Ramirez and Geffner’s model for task-planning, a

single observation reveals a set of all possible states the agent may be in.

For the single-observation formula to apply, the optimal path from the initial state

to the state reached at the final observation must have the same optimal cost no matter

which goal the agent is pursuing. Clearly, if the state at the final observation is one of a

family of possible states, the optimal cost of reaching it is unknown and may be different

depending on which goal is being targeted.

Example 5. Consider a task-planning domain with two candidate goals: shoot the am-

bassador or go on holiday. There are two observed actions: loads gun; arrives airport.

Using the single-observation formula, which considers only the final observation that the

agent is at the airport, there is a family of possible current states (“at airport with gun”,

“at airport with suitcase”) but no way to distinguish between them. Using Ramirez and

Geffner’s (or our simpler) formula, however, since the agent was observed loading the

gun, the cost difference between optimal and observed plans is greater for the holiday (no

suitcase was observed), making assassination the more likely goal.

26In fact, the first condition is a conservative assumption, which guarantees the second condition. The
first condition may be true in special cases (such as path-planning) but unrealistic for general task-planning.
The second condition is all that is really required but is much more difficult to specify (see Example 7).
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Figure 3.16: An ‘enhanced’ path-planning scenario. The optimal paths from S to o4 that
embed observations are different for each goal.

A further example shows that, even when path-planning is only slightly ‘enhanced’

(i.e., much less rich than general task-planning), the single-observation formula may be

unreliable.

Example 6. In the scenario depicted by Figure 3.16, a vehicle sets off from S with 10

litres of petrol. It is observed several times, the last time at point o4. It only takes 8 litres

of petrol to reach goal G but will need 12 litres to reach goal G′ (perhaps it is uphill).

Thus, assuming cost is measured by time or distance, the optimal route to G′ that embeds

observations involves driving first to the petrol station at p (the route marked in red);

but the optimal route through the observations to G (marked in blue) is direct. Since

the optimal path to each goal through the observations is different—and has a different

cost—the single-observation formula cannot be applied.

Now, looking at either of the above counter-examples in the light of our two conditions

(which would enable application of our model to task-planning) note that, if we were

able to accurately ascertain the optimal cost from the initial state to the most recently

observed action—and so whittle the family of possible states back down to one27—the

single-observation formula could be applied. All that is required is for the final observation

to be one that reveals a fully observable state (or rather, reveals all aspects of the state

relevant to the candidate goals).

So, in Example 5, the final observation must reveal what the agent is carrying or the

result, perhaps, of them having passed through a metal detector. In Example 6, we need

the vehicle to be equipped with telematics so that the final observation can reveal, not

only at(o4), but how much petrol is in the tank. If the optimal cost from initial state to

final observation can be accurately calculated then it can be applied equally to both goals:

the costs cancel out and Theorem 5 applies. The problem of determining which particular

fluents need to be observed, however, is a non-trivial task.

27Note that, in practice, for our formula, it is not strictly necessary to know the state itself but rather
the cost of reaching that state and the optimal cost of getting from that state to each goal.
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Example 7. In a kitchen domain which, for argument’s sake, includes only one glass,

an agent has two possible goals: to drink a glass of milk or to drink a cup of tea. A full

execution trace reveals that the agent takes a glass, drops it (causing it to break), then goes

to the fridge and takes out a carton of milk. Now, a GR system in a domain with full

observability—or one with partial observability that includes an observation of the glass

being dropped—gives zero probability to the goal of drinking a glass of milk but a GR model

that bases its prediction on the final observation only is unaware of the breakage and so

gives equal (or equal to prior) probability to each goal based on the carton of milk being

removed from the fridge.

There are various methods that might be employed to determine precisely which

fluents need to be observed in order to disambiguate between any set of particular goals.

However, it is a problem that opens a whole new area of investigation. It is beyond the

scope of this thesis but suggests a most interesting avenue for future work.

3.4.3 Implications for ‘Plan’ Recognition

So far, we have treated GR as if it were synonymous with plan recognition. It is not

unreasonable: Sukthankar et al. (2014) point out that the two things are typically taken

together; furthermore, our formalism is based on the work of Ramirez and Geffner, who

refer to the framework with the expression “plan recognition as planning” when it too

focuses on goals.

Strictly, though, GR is just one aspect of plan recognition and provides much less

information. Given that goal and plan recognition are typically used to inform some higher

purpose, the difference may be significant. Although GR can tell us the end result (or

destination) to ultimately prepare for, it cannot tell us, as plan recognition does, which

step in the plan is likely to come next. Thus, if we wanted to facilitate (or intercept) the

agent under observation, GR alone may be of limited use.

Example 8. Consider a traveller making a journey from Melbourne, Australia to one of

two possible destinations: Sydney to the north-east or Adelaide to the west. A domain

expert hand-crafts a plan library of half a dozen routes, which includes: direct routes via

the highways; scenic routes via the coast; and inland “heritage” routes via the back roads.

The traveller is observed at Lakes Entrance (on the coast, east of Melbourne). Given the

observation, a cost-based GR system correctly identifies Sydney as the most likely goal—

based on the optimal cost from Lakes Entrance to Sydney. A plan recognition system, on

the other hand, correctly identifies one particular “scenic route via the coast to Sydney”.

Either system, when interrogated, gives Sydney as the most likely goal but, if queried for

the traveller’s most likely next town or subgoal, the plan recognition system suggests Eden

(on the coast) whereas the GR system suggests Bombala or Jincumbilly, that is, whatever
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town happens to be on the optimal path back towards Sydney, no matter how unlikely it

would be for a traveller to deliberately choose such a route.

Our model—and any cost-based model that returns a goal but not a plan—would

make the same mistake as the GR system in Example 8. Such models can only assume that

the agent will now follow an optimal path from the currently observed location to the most

likely goal. This is a clear case, however, where consideration of all observations could be

advantageous. If the full sequence of observations had been processed, instead of assuming

the traveller would now take the optimal path to goal, the system might: (a) assume a

path to goal with a more or less equivalent degree of suboptimality to that which had

so far been observed; or (b) generate a more sophisticated cost function to prioritise the

types of locations so far encountered (e.g., ‘coastal’, ‘inland’, ‘picturesque’, etc.).

Either option would be a nice refinement. To our knowledge, however, no contempo-

rary plan recognition system takes all observations into account in this way so, although

this is an interesting avenue for future work, the available tactic under our model (i.e., the

assumption that the next step will be on the optimal path to the most likely goal) remains

a practical and competitive solution.

3.5 Summary

In this chapter, we have taken the ‘plan recognition as planning’ approach to probabilistic

GR first introduced by Ramirez and Geffner (2009; 2010), and applied it in the context

of path-planning. In particular, we have focused on how this cost-based approach to

GR, which they pioneered, can be exploited in core navigational domains to minimise the

computational effort required to determine an agent’s most probable destination.

We started by showing that a simpler cost difference formula (3.1)—which does not

require negative reasoning about observations and can be achieved by calls to a standard

path-planning algorithm—yields an identical result to the original more complex Ramirez

and Geffner formula (RG1), which does reason negatively, in all but one specific case, which

we characterised and discussed. We found, in fact that, even when the two formulas return

different results, that rarely results in different goal rankings; and, where rankings do differ,

the usefulness of the R&G ranking (which distinguishes between differently ‘optimal’ goals)

is debatable. We demonstrated an even simpler single-observation cost difference formula

(3.2) that does not even depend on the observation sequence but nevertheless generates

a posterior probability distribution which exactly preserves the goal rankings from the

simplified account and, by extension, results in an identical ordering to formula (RG1) in

all cases bar one.

Because the single-observation formula is independent of the observation sequence, it

has the benefit that, not only can it be used online for on-the-spot checks of agents who

have been observed entering but whose movement history is otherwise unknown; it can
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also be pre-computed offline in any domain for which the start location and candidate

goals are known in advance (e.g., doors to a building and rooms that require protection)

to create a probabilistic heatmap against which online checks can be made in constant

time.

We generalised our solution to the continuous domain and used that framework to

demonstrate calculation of the RMP (3.6), significant because it formalises the relationship

between position and probability (implicit in cost difference formula 3.2) by calculating

the cost-distance radius within which a given goal is guaranteed to be the most probable.

Moreover, it does this without having to calculate any probabilities and therefore in a

fraction of the time that it would take to generate a probabilistic heatmap using the single-

observation formula. The RMP formula can also be used offline as a tool complementary

to goal recognition design. Alternatively, since it is quickly calculable, it can be used

online to find RMPs, for example in games that automatically generate new (previously

unknown) terrains.

It seems that we can look at the results from this chapter in one of two ways, depend-

ing on whether we are in a glass-half-full or a glass-half-empty frame of mind. On the

one hand, the revelation that goal rankings from state-of-the-art GR can be determined

in an almost entirely domain-dependent (observation-free) process might be regarded as a

massive boon: for faster spot-checks, streamlined goal recognition design and so on, just

as we have described it up to this point. On the other hand, these undoubtedly useful

results raise the unsettling possibility that state-of-the-art GR may be ‘missing a trick’.

Is it really okay to dispense with all those observations? Surely some useful information

could be extracted from an agent’s complete movement history. If not—if the agent’s most

recent location really is the overriding factor in determining the probability of her goal—

might that not make the GR system rather easy to manipulate, somewhat vulnerable to

deception? These are the possibilities that we explore in Part II.

In summary, this chapter made the following contributions.

• We proved that a simpler cost difference formula plugged into the R&G probability

distribution formula (Ramirez & Geffner, 2010) returns the same result as their more

complex formula in all but one set of conditions and in less than half the time.

• We presented an alternative single-observation cost difference formula, which can be

used to rank goals in exactly the same order as the simpler formula, based on just

one observation (i.e., where the agent is ‘now’).

• We showed that single-observation recognition may be applicable to general task-

planning in some restricted scenarios; more work will be needed to precisely specify

the constraints.
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• We suggested that the single-observation formula could be used to generate a prob-

abilistic heatmap (relative to a known starting point), implying that probabilities

under the R&G model are domain- rather than observation- dependent.

• Building on the notion of single-observation recognition, we developed a novel method

of GR which we call the ‘radius of maximum probability’ (RMP). The RMP is a

radius from goal within which that goal is guaranteed to be the most probable (un-

der the R&G model). The calculation is based on similar information and takes

a comparable number of calls to the planner as calculation of a single probability

distribution using other methods.

• We showed that single-observation recognition and the RMP are applicable in dis-

crete graph-based domains and in continuous domains, although application of the

RMP in the discrete domain comes with certain caveats.
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CHAPTER 4

Deception as Path-Planning†

“Rigorous training tends to lead to straight thinking.

Prideful of their abilities in observation and deductive

reasoning, [scientists and the like] do not realize that

this straight-line approach is totally inappropriate,

even dysfunctional, when used to detect deception.”

–J. Barton Bowyer

Deception is “the advantageous distortion of perceived reality” (Bowyer, 1982, p.47), a

slippery topic, no doubt; but grounded in path-planning it becomes easier to grasp.

Deceptive path-planning (DPP) is the problem of finding a path through a two-

dimensional map or three-dimensional navigational space such that an observer, watching

an agent make her way along that path, will be unable to determine—until the last possible

moment—where it is that the agent is going. Implicitly, the observer is performing goal

recognition (GR) but, compared with its treatment in Part I, this chapter flips the problem

on its head. In Part I, we developed a quick and practical method of GR in the context

of path-planning; In Part II, we look for a means to subvert it.

Consider an airport surveillance system (similar to the one previously encountered

in a GR context, p.41). An agent of interest is observed entering the domain. If it is

determined that she is approaching some particular boarding gate, a flag will be raised

to trigger her interception. The agent is not labelled and the system has no superpowers

to assess that it is now dealing with a deceptive agent so, as before, GR proceeds in line

with keyhole recognition (which, recall, assumes the agent is unaware of the fact that she

is being observed). Nevertheless, suppose that, in this case, the agent is deceptive and

suppose that she behaves in the way suggested by one of Jian et al.’s subjects who, when

challenged to draw a trajectory that would deceive an onlooker, said:

†Some of the work in this chapter has been published elsewhere (Masters & Sardina, 2017b, 2019b).
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[I was] trying to get to a target with the most confusing way possible which was

basically doodling lines all over the place. (Jian et al., 2006, p.1567)

In this situation, state-of-the-art GR tracks the deceptive agent’s movements exactly

as we have previously seen, accumulating observations and calculating probabilities as

she wanders “all over the place” with the effect that—in the absence of meta-reasoning

to notice that the observed agent favours now this goal, now that goal—it returns ap-

parently conclusive results (e.g., Goal A with probability 0.75) even though two or three

observations later the result is reversed (e.g., Goal B with probability 0.8). As feared (and

flagged) at the end of Part I, it appears that, although observations seem to be considered,

much of the information they ought to impart is being ignored. Furthermore, if this is the

agent’s best attempt at deception, she has chosen a pitifully uneconomical way of going

about it.

In this chapter, we tackle both aspects of the problem. First, we present an alternative

model of GR, a parsimonious elaboration of contemporary frameworks, but one which

degrades gracefully in the face of increasing suboptimality, seeming to ‘know that it does

not know’ rather than keep changing its mind. Then, acknowledging that a deceiver taking

this approach has been successful up to a point—her observer is unable to determine, after

all, which goal is her true target—we present a model of deceptive path-planning (DPP),

building on Bell and Whaley’s general theory of deception (Bowyer, 1982), which reveals

more economical ways of achieving arguably better results.

The rest of this chapter is organised as follows. Section 4.1 presents our self-modulating

formula for GR. We first analyse the behaviour of contemporary cost-based GR in situa-

tions where the observed behaviour seems to be becoming increasingly irrational, then set

out the formula itself, demonstrating its ability to deal with the manifestation of irrational-

ity in a principled way. Section 4.2 presents a more disciplined approach to deception:

our formal model for DPP, by reference to which, instead of wandering all over the place,

an agent has the option of choosing a rational path that may be even more effective in

disguising her destination. Section 4.3 proposes and evaluates deceptive strategies that

use our own single-observation recognition from Part I to model the observer. Section

4.4 discusses key issues, including consideration of ‘truthful’ path-planning, that is, the

inversion of our model for deception to instead facilitate intended recognition.

4.1 A Self-Modulating Formula

There are known knowns . . . things we know we know. We also know there

are known unknowns; that is to say we know there are some things we do not

know. Donald Rumsfeld
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Deception can be achieved by ‘simulation’ (showing the false) or ‘dissimulation’ (hid-

ing the true); and dissimulation in one of three ways: by masking, repackaging or dazzling

(Bowyer, 1982). While all these strategies can conceivably be applied in a path-planning

context (as discussed later in this chapter, p.131), in our minimalist setting, ‘dazzling’—

that is, the wandering behaviour described by Jian et al.’s subject (p.96), which involves

confusing the observer with false positives—seems a particularly promising approach, en-

abling a deceptive agent to hide in plain sight even when her observer knows that she is

there.

Dazzling involves deliberate obfuscation but manifests as cost-inefficient, irrational

behaviour. Given that the strategy is likely to be attractive to a deceiver, it is important

to understand how contemporary GR systems respond in the face of it and to consider

whether (and how) that behaviour might be improved.

Note. This sort of apparent irrationality does not necessarily signal deception. It

might also occur because the observed agent is actually irrational (e.g., mad or drunk)

or it may simply be that she is operating under a different cost model from that used

by the GR system observing her (i.e., she seems irrational but it is just that she has

different priorities from those we were expecting).

Technically, the problem for GR is that contemporary cost-based systems are strongly

predicated on the assumption of rationality, which carries with it a subsidiary assumption

that the observed agent is honest; and this represents a significant, exploitable limitation.1

On discovering that she is not (if, for example, the behaviour increasingly deviates from

any optimal plan), one would expect an intelligent system to become more ‘agnostic’,

that is, less confident in its predictions until, in the extreme case—confronted by wildly

suboptimal or intentionally deceptive behaviour—it judges all goals to be equally proba-

ble (or reverts to prior probabilities). Here, however, we analyse two state-of-the-art GR

frameworks—that of Ramirez and Geffner (2010), extended not only by us (in Part I)

but by many other authors (e.g., Escudero-Martin et al., 2015; Shvo, Sohrabi, & McIl-

raith, 2018; Sohrabi et al., 2016), and that of Vered et al. (2016), discussed in Chapter 2

(p.18)—and find that they do not achieve this. We find in fact that, when faced with

suboptimality in some clear cases, both of these state-of-the-art cost-based GR systems

yield unexpectedly anomalous results.

In this section, we present an alternative and, arguably, more intelligent solution: a

self-modulating probability distribution formula, which lifts the assumption of rational-

ity that can make otherwise effective state-of-the-art GR systems vulnerable to decep-

1The same significant and exploitable limitation is also present in humans, who overwhelmingly assume
honesty (Levine, 2014b) and cost-sensitive intentionality (Baker et al., 2009; Bonchek-Dokow & Kaminka,
2014), much to the frustration of behavioural economists who remind us that much of the behaviour we
observe results from unconscious impulses unrelated to conscious intent (Kahneman, 2011).
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tion. The self-modulating formula registers suboptimal behaviour and adjusts its level

of confidence accordingly. The new formula handles observations at both ends of the

spectrum—whether corresponding to optimal, suboptimal or totally random paths—in a

principled manner, automatically modulating the shape of the probability distribution as

it becomes apparent that the usual assumption of cost-sensitivity does not hold. That is,

the more irrational (or ‘deceptive by dazzing’) the observed behaviour becomes, the more

the distribution evens out.

Practically, use of a self-modulating formula can protect a system in three ways: (i) by

preventing it from naively jumping to unwarranted conclusions; (ii) by avoiding oscillation

between incompatible decisions; and (iii) by flagging the possibility of deceptive intent.

At the technical level, our self-modulating formula builds upon and improves the

probability distribution formulas used by Ramirez and Geffner (2010) and Vered et al.

(2016), which were originally developed for use in disparate domains: one for STRIPS-

style task-planning, the other for continuous online motion-planning. In order to analyse

these (and other) models on an equal footing, we next abstract our problem definition for

GR to facilitate direct comparison between them.

4.1.1 Technical Framework: Cost-Based GR (Generic)

The GR accounts presented in Part I (for the discrete domain at Section 3.1.1, p.44, for the

continuous domain at Section 3.2.1, p.62) were specific to path-planning. Of course, GR

occurs in multiple other settings. Therefore, for convenience, we introduce the notion of a

generic cost-based probabilistic GR problem whose components have different meanings

and structures depending on the interpretation given to the domain, represented by D.

Definition 8. A generic cost-based GR problem is a tuple Rg = 〈D, O, ss, G, ~o ,Prob〉
where: D is a model of the GR domain (which defines states, transitions between states

and the cost of transitions); O is the set of observable elements in D; ss is the initial state;

G is the set of candidate goals; ~o is the sequence of observations drawn from O; and Prob

is the prior probability distribution across G.

We are particularly concerned with the approaches of Ramirez and Geffner (2010)

(abbreviated to R&G, as before) and Vered et al. (2016) (now abbreviated to V&K).

• In R&G, which is geared to task-planning, D represents a STRIPS-like domain of

fluents and actions where each action has an associated precondition, add and delete

list and is individually costed (as set out in Section 2.5, p.35). Grounding Rg to

R&G, O is the set of actions, ss is a state under D, G is a set of the usual planning

goals (i.e., each g ∈ G is a conjunction of literals) and ~o is a sequence of actions.

• In V&K, which is concerned primarily with continuous motion-planning, the domain

is conceived as a multi-dimensional Euclidean space, D ⊆ Rn, n ≥ 2, typically used to
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represent two- and three- dimensional map or real-world locations but also capable of

representing any number of additional continuous dimensions such as pose, velocity

or colour (discussed at p.18). Grounding Rg to V&K, O is a (potentially infinite)

set of points and transitions through D, ss is a state (a subset of D), G is a set of

such states, ~o is a sequence of points and trajectories in Euclidean space, obtained

as the range of a time function f : ~t 7→ O, where ~t is a sequence of time intervals

during which the world has been observed.2

Generically, a plan π in D is a sequence of elements that imply changes to the un-

derlying domain, transforming it from one state to another.3 For R&G, a plan is as usual

a sequence of actions and its cost is the combined cost of all actions in the plan. For

V&K, meanwhile, a plan is modelled as a sequence of states and state transformations,

where (similar to the mechanism described in relation to observations above) each element

in the sequence is obtained by application of a time function. Thus, although for V&K

the space within which the problem plays out is itself continuous, a plan in the space

can be conceived as the concatenation of a discretised sequence of states and trajectories

(or multi-dimensional transformations) through which it must pass. The cost of a plan in

V&K is obtained by reference to a distance metric (i.e., represents the plan’s total length).

As previously, a plan is said to embed a sequence of observations if the observations

can be mapped to the plan in such a way that the order of elements (in both) is preserved.

That is, given a plan π = e1, . . . , em and observations ~o = o1, · · · , on, there must exist a

monotonic function f : {1, . . . , n} 7→ {1, . . . ,m} such that ef(i) = oi for all i ∈ {1, . . . , n}.4

Though calculated differently in different domains, the notion of optimal cost has its

expected meaning of a minimum cost plan between any definable initial and terminating

set of conditions. In line with Part I notation, the optimal cost of a plan from the initial

state ss to a goal g is denoted optc(ss, g) and the optimal cost of a plan from ss to g

embedding observations ~o is denoted optc(ss, ~o , g). The optimal cost of a plan from ss

to g that does not embed observations ~o is given by optc¬(ss, ~o , g). The meaning of

this negative construction has been discussed previously (see Section 3.4.1, p.80) and is

amplified below. Briefly, if c(π) is the cost of a plan π, Π(ss, g) is the set of all plans from

ss to g and Πo(ss, g) is the set of all plans from ss to g that embed observations ~o then

optc¬(ss, ~o , g) = minπ∈Π(ss,g)\Πo(ss,g) c(π).

As expected, the solution to a generic GR problem Rg is a posterior probability

distribution P (G | ~o ) which prefers those goals whose plans best satisfy the observations

~o , that is, plans that embed the observations at least additional cost when compared with

2We used a similar function to obtain observations for continuous goal recognition (see p.64).
3In this generic framework, we refer now to plans in general rather than paths in particular.
4Observations may not always be so closely related to plans; the mapping holds, however, for all

domains under consideration here. A comparable result may be achieved for other domains by modifying
the function. For example, Sohrabi et al. (2016) treats observations as observable fluents (not actions),
which map into the states of a plan’s execution trace rather than mapping to actions in the plan itself.
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the cost of an optimal plan for the same goal. Intuitively, the more closely observations

conform to the optimal plan for a goal g ∈ G, the more likely it is that goal g is being

pursued. Models vary, however, about the preferred method of performing the comparison.

Approaches to Obtaining Posterior Probabilities

Recall from Chapter 2 (p.35) that the R&G probability distribution formula derives from

Bayes’ Rule and makes (amongst others) the following assumptions: (i) that the proba-

bility of a plan is inversely proportional to its cost; and (ii) that probabilities for multiple

plans for the same goal can be said to be dominated by the highest of those probabilities.

The first assumption is central to the model and is encapsulated in the notion of cost

difference (discussed in detail in Part I and exploited by us to achieve Single-Observation

Recognition, 3.1, p.42).

The R&G formulation relies on comparing, for each goal, the cost difference between

the cheapest plan, given the actions already observed, and the cheapest plan that could

have achieved the goal if one or more of those actions had not been taken (see Figure 3.3,

p.50). If, for example, an agent seated in her armchair has several possible goals, one of

which is to mow the lawn, and she is observed playing with the dog, then the cost difference

with respect to lawn-mowing is the cost of getting up, playing with the dog and mowing

the lawn (i.e., the best she can do, given what has been observed) less the cost of just

getting up and mowing the lawn (i.e., the best she could have done if one or more of the

observed actions had not occurred). We remind the reader that we have already proved

that the latter cost optc¬(ss, ~o , g), which involves negative reasoning, is identical to the

optimal cost from initial state to goal, optc(ss, g), in all cases bar one (Theorem 3, p.52)

and always identical when ~o conforms to a suboptimal path (Theorem 1, p.50), which is

the situation of interest here.

For convenience, we reiterate R&G’s cost difference formula (our baseline cost differ-

ence formula (RG1) from Part I), using the slightly modified Rg notation as follows:

costdif(ss, g, ~o ) = optc(ss, ~o , g)− optc¬(ss, ~o , g). (4.1)

Again, recall that Ramirez and Geffner’s key intuition is that any solution to Rg should

have the property that the lower the cost difference for a particular goal, the higher its

probability and that they achieve this by plugging the cost difference parameters into a

Boltzmann equation. In Part I, we reformulated their probability distribution equation

and used it as a template into which we could insert various cost difference formulas (p.48).

Here, we present it as Ramirez (2012) describes (i.e., retaining the negative temperature

parameter β). Using the slightly modified notation of our generic representation, proba-

bilities are derived as follows:

PRG(G | ~o ) = α · 1

1 + e−β(optc¬(ss,~o ,g)−optc(ss,~o ,g))
(4.2)
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where α is a normalising constant and β is a positive constant (default = 1).5

Note. β is a rate—or ‘temperature’—parameter, variation of which modifies the

distribution in such a way that, as β approaches zero, the distribution flattens out. It

is this rate parameter that we exploit later on.

Seeking a similar outcome in the continuous domain and concerned particularly with

GR in an online motion-planning environment (e.g., while observing a human agent draw-

ing a number on a piece of paper, where observations are assumed to be revealed incre-

mentally and GR is an iterative, rather than a one-off, process), Vered et al. (2016) take a

different approach. Whereas R&G derives its probability distribution formula from Bayes’

Rule, V&K appeals to empirical evidence to support use of a ratio between (a) optimal

cost and (b) optimal cost embedding the observations. They characterise their probabil-

ity formula as an heuristic and, indeed, supporting evidence demonstrates that it was the

best performing of three competing heuristics for intent recognition when compared with

human performance (Bonchek-Dokow & Kaminka, 2014).

An intuitive basis to the V&K solution is given as follows.

The underlying assumption . . . is that the ideal plan is optimal; if the observed

plan is far from the ideal plan, then the agent must not be rational, and is

likely pursuing an alternative goal altogether. (Vered et al., 2016, p.5)

Concretely, the probability distribution across G in V&K is based on a simple ratio

between the costs of (a) an optimal plan (e.g., a perfectly formed 7, 8 or other number,

costed by length of line) and (b) an optimal plan that embeds the observations (e.g., what-

ever was actually drawn), articulated in terms of Rg as:

PVK(G | ~o ) = α · optc(ss, g)

optc(ss, ~o , g)
. (4.3)

Having defined the probablity distributions of interest, we next examine the per-

formance of formulas (4.2) and (4.3) more closely. In doing so, we distinguish between

scores, that is, the likelihoods calculated before normalisation (which may sum to any

value) and probability values, that is, the normalised results (which, after multiplication

by a constant α, sum to 1).

Note. Deception does not always have a nefarious purpose. It may be employed by

an agent for no reason other than to keep her personal intentions private.

5This thesis uses various formulations of the Boltzmann equation, all provably equivalent (see Ap-
pendix A).
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4.1.2 The Rationality Assumption

As explored in Part I, the intuition underlying cost-based GR rests on the assumption

of rationality: the more closely an agent is following an optimal plan for A, the more

likely it is that A is her intended objective. Published empirical results indicate that,

with reasonable plans (i.e., plans that stray not too far from the optimal), formulas (4.2)

and (4.3) give reasonable results, as good or better than competing offerings (Ramirez &

Geffner, 2010; Vered et al., 2016). Problems arise, however, when the rationality assump-

tion breaks down. This is because both frameworks are based on rationality but, faced

with its absence, neither of them take that assumption into account. Unsurprisingly,

unintended consequences arise.

What is Irrational in a GR Domain?

In the context of a GR problem, how exactly should the rationality of a partial plan (or

sequence of observations) be defined? Normally, we would say that the less rational plan

is the one that is more expensive with respect to the real goal but, in a GR scenario,

the ground truth is unknown. The fact that observations seem to suggest a plan that is

irrational (suboptimal) with respect to any one particular goal actually tells us very little.

When an agent pursues a particular goal, we expect observations to reflect a more-or-less

optimal plan for that goal. It stands to reason that the closer the agent is to achieving one

goal, the more suboptimal her actions are likely to become with respect to all the others.

Consider, for example, a cooking domain with three candidate goals: A, fried eggs, B,

boiled potatoes or C, chicken soup. Now, an agent observed peeling potatoes and filling

a pan with water is following a more or less optimal plan for goal B but an increasingly

suboptimal one for goals A and C. Is the plan rational or irrational? truthful or deceptive?

Without knowing the real goal, it seems we cannot answer the question.

Consider an alternative sequence of observations, however, where the agent is observed

heating the oven: a meaningful action in itself, but irrelevant to all three goals! In this

case, without needing to know the ground truth, we can confidently describe the observed

behaviour as irrational or deceptive: whatever the goal, it is suboptimal. Similarly, if an

agent behaves at one moment as if attempting to achieve goal A, at the next goal B, and

so on (e.g., by getting out the frying pan, peeling potatoes and opening a can of soup),

now her actions have again become suboptimal with respect to all the goals and, again,

palpably irrational (or deceptive).

This is the behaviour that we are interested in: behaviour that indisputably betrays

irrationality even though the ground truth is unknown.6

6This is related to epistemic notions of belief and knowledge under ‘possible world’ semantics (Hintikka,
1962): we believe a plan is irrational if it is irrational in every possible world (i.e., for every goal).
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Definition 9. Observation sequence ~o ′ ∈ O∗ is less rational than ~o ∈ O∗ iff for all

g ∈ G, optc(ss, ~o
′ , g) > optc(ss, ~o , g).

In words, if one plan (via ~o ′ ) costs more than another plan (via ~o ) no matter which goal

is being pursued, then it is less rational to select the more expensive plan.

For the purpose of demonstrating the limitations of existing systems, we now extend

the above definition to describe the special case where an observation sequence is not only

less rational than another observation sequence but less rational by the same degree for

all goals, as follows.

Definition 10. Observation sequence ~o ′ ∈ O∗ is uniformly less rational than ~o ∈ O∗

iff:

1. ~o ′ is less rational than ~o ; and

2. for all g1, g2 ∈ G, optc(ss, ~o
′ , g1)− optc(ss, ~o , g1) = optc(ss, ~o

′ , g2)− optc(ss, ~o , g2).

Under this definition, we distinguish three distinct classes of uniformly irrational

behaviour, as follows.

(a) Equivalence. Figure 4.1a depicts two different observation sequences ~o and ~o ′

with a shared starting point s. Both observation sequences end up in exactly the

same state. We say that, in this situation, the observation sequences are equivalent

and that the one that costs more is ‘uniformly less rational’ than the other. This

conforms to our usual understanding: if there are two different plans for reaching

one state from another, it is less rational to use the plan that costs more.

(b) Goal-cost equivalence. Figure 4.1b shows a situation where two different obser-

vation sequences ~o and ~o ′ end up in different states (red and blue); nevertheless, the

cost from either state to each goal is exactly the same (x to reach g1 and y to reach

g2). In this case we say that the observation sequences are ‘goal-cost equivalent’ and,

in such cases, the more expensive observations ~o ′ are again uniformly less rational

than observations ~o .

(c) Relative equivalence. In Figure 4.1c, there are two different observation sequences

(~o ending at the red node, ~o ′ continuing to the blue node) such that an optimal

plan which satisfies them ends up in different states (red and blue). Now, even

though an agent following ~o ′ has made progress towards both goals (and ends up

closer to g1), progress towards each goal has actually been the same (w−x = y− z)
and at a greater cost than if the agent had only followed ~o as far as the red node.

That is, an optimal path via ~o ′ costs more than an optimal path via ~o by the

same amount, regardless of which goal is being considered. In this situation, the

observation sequences are ‘relatively equivalent’ and, again, the one that costs more

is uniformly less rational than the other.
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(a) Equivalence: observa-
tions end up in the same
state.
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(b) Goal-cost equivalence:
observations end up in differ-
ent states but the cost from
either state to each goal is the
same.
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~o ′
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x z

s

(c) Relative equivalence:
(w − x = y − z) observations
progress (or fail to progress)
towards both goals by the
same amount.

Figure 4.1: Irrationality in a GR domain. Whatever the goal, observations ~o ′ are uni-
formly less rational than observations ~o . Dotted lines marked w, x, y and z represent costs
from the states reached (red and blue) when following an optimal plan via the observations
to each goal. Note that although, for convenience, the diagrams imply path-planning, the
notions are generally applicable.

Our description of relative equivalence is a literal rewording of Definition 10. It most

obviously arises if the uniformly less optimal plan zigzags (as in Figure 4.1c), advancing

on all goals without favouring any one in particular; but notice that the definition actually

subsumes both equivalence and goal-cost equivalence (i.e., cases (a) and (b), above).

With these classes in mind, we next look at how R&G and V&K respond.

GR and Irrationality

Consider the navigational scenarios depicted at Figure 4.2. An agent is observed in a

gridworld domain with three goals G = {g1, g2, g3}. In terms of a GR problem Rg, the

initial state, ss, goals G and components of a path O are all possible grid locations (cells).

We assume that a path is costed in terms of transitions between adjacent cells, that

horizontal and vertical transitions cost 1, diagonal transitions cost
√

2. The bottom right

(red) path shows an agent first observed at its initial state s (ss = s), then moving in two

loops; that is, instead of progressing it returns to the cell at s each time. The other (blue)

path depicts an agent setting off on an apparently optimal path towards goal g1. Having

reached location v, however, instead of continuing on, it loops twice, returning to v each

time. In the second diagram 4.2b, the agent again begins on an apparently optimal path

towards g1 via cell v but this time veers off to w, then takes an increasingly irrational

route via x, y and z (final destination unknown).

Table 4.1 shows the probability values for each goal on each visit to s and v, with an

additional result given for the case where the loop returning to v repeats 10 times. There

are three main columns: two for the R&G model, each with different β values (the lower
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(b) Zigzagging path.

Figure 4.2: Suboptimal paths as traversed by an apparently irrational agent.

β results in a flatter distribution overall); and one for the V&K model (which has no rate

parameter). The results are interesting and not necessarily as one would expect.

First, excepting the corner case where the only observation is the initial state ss,
7 we

see that PRG as per Equation (4.2) evaluates probabilities for paths that repeatedly return

to the initial state as equal for all goals (i.e., equivalent to priors). This seems reasonable

(though it is not true for V&K, as we discuss shortly). A discrepency occurs with respect

to R&G, however, if paths track first to v and then loop. Now, whichever goal was most

probable on the first visit becomes more probable at each subsequent visit.

If two observation sequences are

goal-cost equivalent, R&G is

more confident under the less

rational observations.

It turns out that this anomalous situation is

not just an issue with ‘looping’, but with the more

general case of uniformly less rational observed be-

haviour, which includes meaningless noise, such as

looping, as a special case. Indeed, as Theorem 8

shows, given two observation sequences ~o and ~o ′ , goal recognition under equation (4.2)

becomes more confident under the less rational observation sequence ~o ′ .

Theorem 8. Let ~o , ~o ′ ∈ O∗ be two observation sequences such that ~o ′ is uniformly

less rational than ~o and let ĝ ∈ G be such that PRG(ĝ | ~o ) > PRG(g | ~o ), for all

g ∈ G \ {ĝ} (i.e., goal ĝ is the best explanation under the more rational observations ~o ).

Then, PRG(ĝ | ~o ′ ) > PRG(ĝ | ~o ).

Proof. The effect is a by-product of normalising scores generated using the Boltzmann

distribution.

7This is an example of the extreme case described in Part I at p.55. Owing to the negative reasoning
in cost difference equation (4.1), if there exists a goal g such that every path to g satisfies the observations,
cost difference may evaluate to −∞ yielding an undefined normalised score.
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1. Without loss of generality, take β = 1. And let a = ecostdif(ss,~o ,g). Now formula (4.2)

can be rewritten as:

PRG(G | ~o ) = α · 1

1 + a
;

and we introduce an alternative non-sigmoidal distribution as:

PX(G | ~o ) = α · 1

a
.

2. Considering the scores (i.e., the likelihood of each goal prior to normalisation),

clearly, 1
1+a < 1

a . Furthermore, taking the ratio between the formulas PRG and

PX , we see that lima→∞
1

1+a ÷
1
a = 1. That is, as a approaches infinity, PRG con-

verges towards—though it never reaches—PX .

3. Now, 1
a is precisely (by definition) inversely proportional to a, whereas 1

1+a is not.

Calculating the difference between them (by subtraction), we get:

1

a
− 1

a+ 1
=

(a+ 1)− a
a(a+ 1)

=
1

a2 + a
;

which, proportionally, is a decrease of:

1

a2 + a
÷ 1

a
=

1

a2 + a
× a

1
=

1

a+ 1
.

Therefore, the proportional decrease is greatest when a is lowest.

4. Recall that a = ecostdif(ss,~o ,g) and PRG(ĝ | ~o ) > PRG(g | ~o ) was given. Therefore,
1

ecostdif(ss,~o ,ĝ)+1
> 1

ecostdif(ss,~o ,g)+1
for all g ∈ G \ {ĝ}. So, from 3, the proportional

decrease 1
a+1 is more for ĝ than for other goals. Therefore, PRG(ĝ | ~o ) < PX(ĝ | ~o ).

5. From 2, as a (which represents costdif ) increases, PRG(ĝ | ~o ) converges (upward)

towards PX(ĝ | ~o ). And since ~o ′ is uniformly less rational than ~o (as given), PRG(ĝ |
~o ′ ) > PRG(ĝ | ~o ).

The above anomaly occurs whenever cost difference increases by the same amount for

all goals (i.e., whenever one observation sequence is uniformly less rational than another).

The alternative observation sequence does not need to be wildly suboptimal; even the

slightest suboptimality generates the same anomalous result.

Note that, although the above result at first appears to contradict R&G’s principle—

that lower cost difference should result in higher probability—actually, it does not. That

principle applies to the total distribution across goals with respect to one GR problem,

whereas Theorem 8 examines the situation across two different problems (because we

have substituted for observations ~o the less rational ~o ′ ). So, we do not challenge the

R&G principle. Nevertheless, Theorem 8 states that: when we change to a uniformly

less rational observation sequence (a new GR problem), although the relative order across
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Table 4.1: Probabilities for loopy paths.

R&G (β = 1) R&G (β = 0.1) V&K
g1 g2 g3 g1 g2 g3 g1 g2 g3

s1 - - - - - - 0.3333 0.3333 0.3333
s2 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3610 0.3280 0.3110
s3 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3700 0.3259 0.3042
v1 0.9693 0.0304 0.0003 0.4200 0.3343 0.2458 0.4517 0.3194 0.2289
v2 0.9842 0.0157 0.0001 0.4656 0.3238 0.2106 0.4162 0.3224 0.2615
v3 0.9842* 0.0157* 0.0001* 0.4789 0.3196 0.2014 0.4060 0.3223 0.2717
v10 0.9842* 0.0157* 0.0001* 0.4820 0.3186 0.1994 0.3929 0.3216 0.2855

Non-sigmoidal distribution (does not change)

v1−k 0.9842 0.0157 0.0001 0.4820 0.3186 0.1994

Probabilities on each of multiple visits to s and v (see Figure 4.2a). Winners are highlighted. Anomalies
are italicised. (*Values have changed by tiny amounts, concealed by rounding.)

Table 4.2: Probabilities on a zigzagging path.

R&G (β = 1) R&G (β = 0.1) V&K
g1 g2 g3 g1 g2 g3 g1 g2 g3

v 0.9694 0.0303 0.0003 0.4200 0.3342 0.2458 0.4517 0.3194 0.2289
w 0.0008 0.0156 0.9835 0.2484 0.3264 0.4351 0.3176 0.3176 0.3647
x 0.3368 0.6050 0.0581 0.3436 0.3609 0.2955 0.3708 0.3380 0.2911
y 0.9951 0.0049 4.5e-05 0.4943 0.3072 0.1984 0.4233 0.3174 0.2593
z 0.0200 0.3734 0.6066 0.2694 0.3568 0.3737 0.3562 0.3318 0.3120

Probabilities as calculated at points v - z (see Figure 4.2b). Anomalies italicised, as above.

goals is maintained (the R&G principle applies) their specific probability values change in

counter-intuitive ways.

The discrepancy exposed by Theorem 8 arises out of the use of a sigmoidal equation

which is then normalised. As soon as we substitute a non-sigmoidal equivalent, the prob-

lem is resolved (as illustrated in the final row of Table 4.1 and proved formally at Theorem

13 below). Thus, replacing the R&G formula with its non-sigmoidal counterpart corrects

an inconsistency.

Note. Our results when using the single-observation formula (Section 3.3, p.74)

seemed to foreshadow the above. There, evaluating optimal cost via the observations

on the basis of a single observation instead of a sequence, cost differences were reduced

across the board (we subtracted from the first term, for all goals, the cost from the

starting point to the final observation). In order to restore a semblance of parity

with the R&G results, we found it necessary to add a large constant. If, instead of

Equation (RG2) we had used a non-sigmoidal distribution such as formula (4.5) below,

our results (whether using the baseline, simpler or single-observation cost difference)

would match with no adjustment necessary (see proof to Theorem 13).

Turning now to V&K, whereas R&G maintains rankings but increases the probability
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of the most probable goal, faced with irrational paths, this distribution has the effect that

the goal that is furthest from the start location must eventually become more probable

than any of the other goals (see highlighted anomalies in Tables 4.1 and 4.2).

Theorem 9. Let ~o , ~o ′ ∈ O∗ be observation sequences such that ~o ′ is uniformly less

rational than ~o and let g1, g2 ∈ G be two goals such that optc(ns, g1) > optc(ns, g2), that

is, the optimal cost of achieving g1 is greater than the optimal cost of achieving g2. Then,

there exists a c such that when optc(ns, ~o
′ , g1) − optc(ns, ~o , g1) ≥ c, PVK(g1 | ~o ′ ) >

PVK(g2 | ~o ′ ).

Proof. The numerators used for PVK(·) formula (4.3) to score each goal are different but

constant, based on the optimal cost to each of those goals. Under uniformly less rational

observations, by Definition 10, the cost of the denominator increases equally for all goals.

Thus, all scores decrease, but the score with the largest numerator decreases most slowly.

Since optc(ns, g1) > optc(ns, g2), the score for g1 has the largest numerator, and the

proposition follows.

One impact of Theorem 9 is that the cost difference principle is not maintained: lower

cost difference does not imply higher probability. Furthermore, the fact that, as the size

of the denominator increases, it is the most distant (i.e., most expensive) goal that begins

to be favoured, is again anomalous: the underlying intuition for cost-based GR is that

“cheaper is better”, yet here the goal’s score increases precisely because its attainment

costs more.

Observe also that V&K always returns a comparatively flat distribution: even on the

first visit to v on an optimal path to g1, it yields P (g1) < 0.5. In a practical application,

where the user might be waiting for the probability of a goal to exceed some threshold

before triggering an event, that trigger might never be reached.

Summary of Findings

The above analyses identify problematic cases in which both GR models yield undesirable

outcomes. The R&G model is relatively consistent and easy to understand but, faced with

apparent irrationality, oscillates between goals depending on the most recent observation.

Used with higher β values, it is also beguilingly decisive, able to return, in the zigzagging

example (Table 4.2), P (g3) = 0.98 then just a few steps later P (g1) = 0.99! Additionally,

the more irrational the agent, the more confidently the distribution points towards the

most probable goal (Theorem 8). This is apparent in the looping example (Table 4.1 at

v), most obviously for β = 0.1, where probabilities start from a lower (flatter) base.

V&K, on the other hand, appears inconsistent and indecisive. Even when the agent

seems clearly on the optimal path towards a particular goal (Table 4.2 at v), it assigns that

goal a probability below 0.5, scarcely outscoring its much more suboptimal competition.
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Moreover, faced with an irrational agent who seems not to be targeting any particular

goal, it appears biased to prefer the most distant or expensive goal, no matter where the

agent is currently located. At first, it oscillates (note that at w, V&K has ‘swung’ from

g1 to prefer g3, in agreement with R&G). Once the path becomes excessively suboptimal,

however, the ratio on which V&K depends becomes so diluted that the most distant or

costly-to-reach goal from the starting point (which supplies the largest numerator) again

dominates (Table 4.2, locations x, y and z).

In fairness, both the above accounts were developed under the assumption that the

observed agent is rational and honest. It is a ‘soft’ assumption, however, in that both

aim for a GR framework capable of accommodating suboptimal behaviour. Indeed, both

models derive their probability distributions based on the degree of suboptimality that

they encounter. Furthermore, the fact is that a GR system cannot ‘know’ what type of

recognition it is dealing with and in some settings (e.g., security) there may be adverse

consequences if the assumption is incorrect. It appears, therefore, that rationality ought

to be accommodated in the framework natively, as our formula aims to do.

4.1.3 Measuring the Degree of Irrationality

We have seen that probabilities generated by V&K’s formula (4.3), when confronted by

an excessively suboptimal plan, can seem illogical in the way that it biases towards the

most distant goal. Nonetheless, the score on which the probabilities are based degrades

(behind the scenes) in an interesting and useful way.

The ratio optc(ss, g) ÷ optc(ss, ~o , g) used under the V&K model balances optimal

cost from start to goal against optimal cost through the observations. Thus, a perfectly

rational observed plan, where optc(ss, ~o, g) = optc(ss, g), yields a score of 1; but as the

observed behaviour becomes increasingly erratic (that is, suboptimal for all goals), the

size of the denominator increases (for all goals) while the size of the numerator (for all

goals) remains the same.

Effectively then, the more irrational the observations, the lower all the scores become;

so the lower the maximum score becomes.

Note. If a plan is optimal (or close to optimal) for some goal, it is not an erratic or

irrational one, and the maximum score approaches 1. Only when the plan is suboptimal

for all goals—i.e., ‘less rational’ under Definition 9—is the maximum score diminished.

It turns out, then, that the maximum score at any point in the plan provides a good

measure of the degree to which optimality has (in general) become ‘diluted’.

Definition 11. Relative to a GR problem, P, the rationality measure (RM) is given

by:

RM(ns, G, ~o ) = max
g∈G

optc(ns, g)

optc(ns, ~o , g)
. (4.4)
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Notice that the RM represents a more general, cumulative measure than that sug-

gested by the notion of being ‘uniformly less rational’. Like Definition 9, although it

measures suboptimality across all goals, observations may not be suboptimal for each goal

by the same amount. Furthermore, by taking the maximum score, we always assess ratio-

nality based on the ‘best’ possible interpretation (i.e., with respect to the goal for which

observed behaviour is closest to optimal behaviour). So, given two observation sequences

~o and ~o ′ , where ~o ′ is less rational than ~o , RM(ns, G, ~o
′ ) < RM(ns, G, ~o ). That is, the

RM for the less rational observations is always lower. Observations with a lower RM are

not always uniformly less rational, however.

Note. ‘Uniformly less rational’ observations involve the same amount of unnecessary

work for all goals; observations with a low RM also do a lot of unnecessary work but

may still be tracking (albeit suboptimally) towards one particular goal: they are ‘less

rational’ but may or may not be ‘uniformly’ less rational.

Our model for self-modulating GR (below) uses the RM ‘on-the-fly’ to provide a

snapshot of the agent’s degree of irrationality, based on her immediate history but the

measure has other potential uses. For example, it could also be used from problem to

problem, as follows. Once the RM for a particular agent has been established (on the

basis of the current, or past, problem), it provides a means of predicting how suboptimal

that agent’s behaviour is likely to be in future. Though beyond the scope of this thesis, this

may have an impact on the sort of (suboptimal) planner that might be used to generate

plans with which to compare observations, should the same agent be encountered a second

time. If the RM is very low (i.e., highly suggestive of irrationality) then this might be

used to flag the need for additional (perhaps human) surveillance on future sightings.

We next present our self-modulating account which uses the RM, in combination with

a non-sigmoidal variation of R&G, to lift the rationality assumption.

4.1.4 A Self-Modulating Formula

Our objective is to generate a probability distribution—a solution to a GR problem

Rg = 〈D, ss, G, ~o ,Prob〉—that preserves the intuition behind R&G that the lower the

cost difference, the higher the probability but which modulates its level of confidence

relative to the degree of rationality observed so far.

To achieve this, we propose the following self-modulating formula:

P (G | ~o ) = α · 1

eβ costdif(ss,~o ,g)
, (4.5)

where β = RM(ss, G, ~o )γ , and γ is a positive constant.
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Formula (4.5) maintains an R&G-like awareness of the goal the agent seems to be

approaching but, if the agent becomes irrational with respect to all goals (i.e., apparently

cost-insensitive and possibly deceptive), the formula self-regulates and lowers its level of

confidence accordingly. Thus, the mechanism it uses explicitly accommodates the rational-

ity assumption in the process of performing GR. More concretely, while the agent behaves

rationally (with respect to at least one of the goals), a confident prediction in returned,

at the limit of those we have seen from R&G (β = 1); but the more irrational the agent

becomes (i.e., her observed behaviour is becoming excessively suboptimal with respect to

all goals in the domain), a less confident prediction is given, resembling the more subdued

distributions of V&K or R&G (β = 0.1) (i.e., with lower β value).

Importantly, our formula (4.5) substitutes for R&G’s Boltzmann equation a non-

sigmoidal distribution (which does not suffer from the discrepency captured by Theo-

rem 8). It does, however, draw on a seldom-discussed feature of the R&G model: the β

parameter.

The Rate Parameter in R&G

The solution to a GR problem under R&G is achieved using the Boltzmann probability

distribution—formula (4.2)—tempered by a rate parameter β. As seen in Tables 4.1

and 4.2, while the value of β makes no difference to the relative ranking of goals within a

probability distribution, it does have considerable impact on the shape of that distribution.

Indeed, as briefly discussed in Ramirez’s PhD thesis (2012, p.63) (though mostly ignored

in the papers):

This [parameter] allows plan recognition system developers to soften the im-

plicit assumption of the agent being rational as in preferring those plans that

minimize their total cost. The smaller the value of β the more will the distri-

bution resemble a uniform distribution ...

Thus, formula (4.2) already includes a parameter to control the level of confidence

in the observed agent’s rationality; but the choice of a value for β (given a value of 1.0

in Ramirez’s thesis and in code linked from Ramirez and Geffner’s 2010 paper) is left

to be set by the GR system developer, presumably on the basis of domain knowledge

or special information about the particular agent under observation. Our approach, in

Equation (4.5), is for the formula to self-adjust this parameter ‘on-the-fly’ based on the

RM, which, recall, we derive by maximising the score (not the probabilities) from V&K.

Properties of the Self-Modulating Formula

Formula (4.5) (via the now dynamic β) synthesises the two accounts discussed above with

additional features to achieve the following.
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1. In place of the Boltzmann, this exponential distribution precisely enforces the in-

tuition that the lower the cost difference, the higher the probability. Furthermore,

unlike formula (4.2), it is closed under scaling and so returns consistent probability

values when one sequence of observations is uniformly less rational than another;

also, it guarantees probabilities (before modification by the β parameter) always at

the limit of those calculated under formula (4.2) (see proof of Theorem 8).

2. The β parameter self-adjusts by reference to the current degree of suboptimality,

derived from the maximum score under V&K’s probability distribution formula (4.3).

3. We have introduced a confidence parameter γ to regulate how quickly confidence

should drop if irrational behaviour is detected. If γ is high, confidence drops rapidly

(i.e., the less suboptimal the observations need to be before the probability distri-

bution flattens out).

4. Our formula (4.5) ostensibly requires three calls to a planner per goal—to calculate

optc(ss, ~o , g), optc¬(ss, ~o , g) and optc(ss, g)—whereas the R&G distribution requires

only the first two. However, the additional call (required for the RM formula 4.4)

depends on the domain, not on the observations, so can be precalculated and cached.

Taking this approach, self-modulation can be achieved without time penalty (though

our main focus is on capturing the intended meaning more accurately, rather than

on achieving computational efficiency).

In the following results, P (·) represents our self-modulating formula; β~o represents

the β value for observations ~o from Equation (4.5), that is, β = RM(—~o )γ ; and P β=x
RG

represents Equation (4.2) with β = x.

First, we formalise the observation made at 1 above.

Observation 2. limcostdif(ss,~o ,g)→∞ P
β=β~o
RG (·)÷ P (·) = 1.

This simply follows from lima→∞ 1/(1 + a)÷ 1/a = 1 in the proof to Theorem 8.

Next, the more rational an agent’s behaviour (i.e., the observation sequence ~o ), the

higher the β in our account and, thus, the more closely probabilities approach those at

the limit of R&G (β = 1).

Theorem 10. Let ~o , ~o ′ ∈ O∗ be two observation sequences such that ~o ′ is less rational

than ~o . Then, it is the case that 1 ≥ β~o > β~o ′.

Proof. β is based on the ratio at formula (4.3). Across goals, numerators remain constant.

As observed costs increase, all denominators increase and all values decrease: therefore

the maximum must decrease.

Now, by Observation 2, the non-sigmoidal distribution returns probabilities always

at the limit of R&G for any particular β value (see Table 4.1, p.107). Moreover, when
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observations conform to optimal behaviour, β = 1 in Equation (4.5). Therefore, when an

agent behaves fully rationally—that is, behaves optimally with respect to any one of the

goals—our probability distribution is always at the limit of R&G (β = 1).

Next, see that even when our account diverges from R&G (β = 1), it still maintains

the same relative rankings across goals.

Theorem 11. For all observations ~o ∈ O∗ and goals g1, g2 ∈ G, P (g1 | ~o ) > P (g2 | ~o )

iff PRG(g1 | ~o ) > PRG(g2 | ~o ).

Proof. The differences between formulas (4.2) and (4.5) have no impact on probability

rankings. Specifically:

1. subtracting +1 from the denominator of every score does not change their relative

order; and

2. β is a multiplicative constant, so changing its value (including by the introduction

of γ) effects a monotonic transformation, which (again) does not change the relative

order of probabilities.

The more erratic the observa-

tions, the more the probabili-

ties under ‘Self-Mod’ even out.

Thus, our formula is aligned with the underly-

ing assumption of the R&G framework with respect

to the rationality of the observed agent and never

alters the qualitative outcome: goal rankings are

maintained. Critically, though, as the following im-

portant result states, the more erratic the observations (i.e., the more suboptimal for all

goals), the more even the probability distribution becomes.

Theorem 12. Let ~o , ~o ′ ∈ O∗ be two observation sequences such that ~o ′ is less rational

than ~o ∈ O∗. Then, for every two goals g1, g2 ∈ G such that P (g1 | ~o ′ ) 6= P (g2 | ~o ′ )
(i.e., whenever the two goals are distinguishable):

|P (g1 | ~o ′ )− P (g2 | ~o ′ )| < |P (g1 | ~o )− P (g2 | ~o )|.

Proof. 1. Since ~o ′ is less rational than ~o , by Definition 9, for all g1 ∈ G, optc(ss, ~o
′ , g1) >

optc(ss, ~o , g1).

2. From Theorem 10, β in Formula (4.5) is reduced when the cost of the observation

sequence increases.

3. When β is reduced, a monotonic transformation diminishes the difference between

probabilities.

Finally, we confirm that, using our self-modulating formula, the anomalous behaviour

of R&G identified in Theorem 8 can never occur.
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Theorem 13. Let ~o , ~o ′ ∈ O∗ be two observation sequences such that ~o ′ is uniformly less

rational than ~o and let ĝ ∈ G be such that P (ĝ | ~o ) > P (g | ~o ), for all g ∈ G\{ĝ} (i.e., goal

ĝ is the best explanation under the more rational observations ~o ). Then, P (ĝ | ~o ′ ) < P (ĝ |
~o ). That is, the probability of goal ĝ is lower under the less rational observations.

Proof. Since ~o ′ is uniformly less rational than ~o , there is a c such that for all g ∈ G,

optc(ss, ~o
′ , g) − optc(ss, ~o , g) = c. The addition c to the exponent is a multiplicative

constant, which cancels out on normalisation (recall that β~o ′ represents the β value from

Equation (4.5) when the observation sequence is ~o ′ ):

P (G | ~o ′ ) = α · 1

eβ~o ′ (optc(ss,~o ,g)−optc(ss,g)+c)

= α · 1

eβ~o ′ (optc(ss,~o ,g)−optc(ss,g))
· 1

eβ~o ′ (c)

=

1

eβ~o ′ (optc(ss,~o ,g)−optc(ss,g))
· 1

eβ~o ′ (c)∑
gi∈G

1

eβ~o ′ (optc(ss,~o ,gi)−optc(ss,gi))
· 1

eβ~o ′ (c)

=

1

eβ~o ′ (optc(ss,~o ,g)−optc(ss,g))
· 1

eβ~o ′ (c)

1

eβ~o ′ (c)
·
∑

gi∈G
1

eβ~o ′ (optc(ss,~o ,gi)−optc(ss,gi))

=

1

eβ~o ′ (optc(ss,~o ,g)−optc(ss,g))∑
gi∈G

1

eβ~o ′ (optc(ss,~o ,gi)−optc(ss,gi))

= α · 1

eβ~o ′ (optc(ss,~o ,g)−optc(ss,g))
.

Now, P (G | ~o ) = α · 1
eβ~o (optc(ss,~o ,g)−optc(ss,g))

. That is, under the less rational observations

~o ′ , there is no change in the underlying values; only the β value changes (from β~o to β~o ′ ).

From Theorem 10, 1 ≥ β~o > β~o ′ ; and from Theorem 12, when β~o > β~o ′ , for every two

goals g1, g2 ∈ G such that P (g1 | ~o ′ ) 6= P (g2 | ~o ′ ), it is the case that |P (g1 | ~o ′ )− P (g2 |
~o ′ )| < |P (g1 | ~o ) − P (g2 | ~o )|. That is, when the cost of observations increases, the

difference between probabilities for all distinguishable goals is reduced.

Therefore, since (as given) P (ĝ | ~o ) > P (g | ~o ) for all g ∈ G \ {ĝ} and since

probabilities sum to 1 (i.e., when the lower increases, the higher must decrease), P (ĝ |
~o ′ ) < P (ĝ | ~o ).

Comparison of Results

In Tables 4.3 and 4.4, we compare the probabilities returned by our self-modulating for-

mula (4.5) with the original ‘static’ R&G formula (4.2). Referring to Table 4.4, observe

that, at location v, when the agent appears to be on an optimal path to g1 (though on

a suboptimal path to g2 and g3), ‘Self-Mod’ (4.5) maintains β = 1 and therefore yields a

confident prediction. But, as the path becomes increasingly suboptimal, the distribution

obtained by formula (4.5) evens out so that, by location z, the most and least likely goals

are separated by just 0.07 (compared with 0.58 using static R&G).

114



SECTION 4.1: A SELF-MODULATING FORMULA

Table 4.3: Probabilities revisited: loopy paths.

R&G (β = 0.1) Self-Mod γ = 2
g1 g2 g3 g1 g2 g3 β

s2 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.2642
s3 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.1196
v1 0.4200 0.3342 0.2458 0.9842 0.0156 0.0001 1
v2 0.4656 0.3237 0.2106 0.5752 0.2906 0.1342 0.1649
v3 0.4789 0.3196 0.2015 0.4295 0.3283 0.2422 0.0649
v10 0.4820 0.3186 0.1994 0.3406 0.3336 0.3259 0.0050

Table 4.4: Probabilities revisited: zigzagging path.

R&G (β = 1) Self-Mod γ = 2
g1 g2 g3 g1 g2 g3 β

v 0.9694 0.0303 0.0003 0.9842 0.0156 0.0001 1
w 0.0008 0.0156 0.9835 0.1267 0.2458 0.6275 0.2262
x 0.3368 0.6050 0.0581 0.3514 0.3886 0.2500 0.1716
y 0.9951 0.0049 4.5e-05 0.6018 0.2674 0.1308 0.1526
z 0.0200 0.3734 0.6066 0.2894 0.3513 0.3637 0.0715

Notice that ‘Self-Mod’ always maintains the same rankings as R&G but, referring

now to Table 4.3, we clearly see that whereas a looping path causes ‘Self-Mod’ to return

a less confident prediction (the more the path loops, the more the distribution flattens

out), the opposite is true of R&G, which increases in confidence with every loop. Thus,

using formula (4.5), the validity of the assumption with respect to the rationality of the

observed agent has been accounted for.

Putting it all together, our self-modulating formula provides the performance we set

out to achieve: as the agent becomes more erratic (suboptimal), it yields a distribution

closer to uniform. Practically, faced with apparently irrational—and possibly deceptive—

behaviour, the GR system judges goals ‘more equally’, displaying a reduced level of con-

fidence.

In this section, we presented a self-modulating model of GR. Our model ‘lifts’ what

is perhaps the strongest assumption in contemporary state-of-the-art cost-based GR ap-

proaches: the apparent rationality of the observed agent. As a result, we can handle agents

ranging from the strictly rational to the arbitrarily irrational in a principled manner.

Notwithstanding the advantages of our approach, from the deceiver’s point of view,

deception by dazzling is still somewhat successful: it leaves the observer unable to reliably

arrive at a correct conclusion. At worst (for the deceiver), a GR system using our model

‘knows that it does not know’ and, potentially, uses the levelling out of probabilities to

trigger human intervention or some other method of anomaly detection; at best (for the

deceiver) a GR system using other methods jumps to a false conclusion long before the
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true goal has been revealed.

Whatever the outcome, deception by dazzling is an expensive strategy: the best plan

(from the deceiver’s point of view) seems to be whichever plan costs the most. In the next

section, we look for a more economical solution.

4.2 A Model for Deceptive Path-Planning

He will conquer who has learnt the artifice of deviation. Sun Tzu

We have seen, from Section 4.1 that, given a large enough budget, it should be possible to

confound (if not deceive) an observer by adopting a wildly irrational plan. Our objective,

however, goes further: we want to maximise deceptivity but at the lowest possible cost.

In what follows, we reduce this problem back to path-planning in order to establish a

straightforward way in which it can be done.

Our definition of deception, recall, is from Bowyer (1982, p.47). It is the “distortion

of perceived reality” which may be achieved in one of two ways: by simulation (showing

the false) or dissimulation (hiding the real).8 In path-planning, where the only reality

is movement towards a goal, this equates either to obscuring the path-planner’s true

destination or to creating the impression that she is going somewhere that she is not.

Considered in terms of the GR systems that we examined in Part I and in Section 4.1

of Part II, the problem can be framed as the task of generating a sequence of locations

such that, when they are submitted to a GR system as observations, that system (whether

computational or human) either: (i) is unable to determine the agent’s true destination

(because there are multiple possible goals all with the same probability) or (ii) wrongly

identifies the agent’s destination (because the probability of some bogus goal exceeds the

probability of the real one).

Thus, our method is essentially an ‘inversion’ of probabilistic GR. We have seen

that probabilistic GR systems take as input a sequence of observations and output the

probability of each goal. Observation sequences may be broken or continuous but, in GR,

they are always partial (i.e., incomplete) insofar as the purpose of GR is to determine the

goal before it has been reached. Equipped with such a system, therefore, having generated

an unbroken path all the way from the starting point to the real goal (e.g., as shown in

Figure 4.3), we can present for GR a sequence of all observations from the starting point

up to any (or every) step in the path and obtain the relative probabilities of every goal

at that step. If the probability of the real goal is less than or equal to the probability of

some other goal (as at x and y in the figure), then we say that that step is ‘deceptive’.

In this section, we present a DPP model, which uses GR as a black box. That is, the

model is agnostic with respect to the particular GR framework employed, requiring only

8The theory was introduced under a pseudonym (Bowyer, 1982), then rearticulated independently
by Bell (2003) and (Whaley, 1982) as discussed in Section 2.4.2, p.28.
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s

g1 g2 gr

π

•x

•
y

•z
Probabilities

Point in π g1 g2 gr D
x 0.75 0.20 0.05 3

y 0.10 0.45 0.45 3

z 0.05 0.10 0.85 7

Figure 4.3: Deception as an inversion of probabilistic GR: if we can rank for likelihood,
we can rank for unlikelihood. Column D shows deceptivity when gr is the real goal.

that it be capable of returning a probability distribution across goals at any point, given

a sequence of observations. Building on this routine capability of any probabilistic GR

system, our model quantifies a path’s deceptivity on the following three dimensions.

• Magnitude. At step level, we measure the relative probability values across goals

to determine whether the step is truthful or deceptive. In Section 4.4.2, we discuss

how an extended interpretation of magnitude—which also evaluates the degree of

simulation versus the degree of dissimulation—can be incorporated into the model.

• Density. At path level, we measure how much of the path is deceptive. In fact, we

take a ‘worst case’ approach to density, inverting our quantification of how truthful

(and therefore liable to detection) it has become.

• Extent. In a fully observable domain, every path eventually becomes truthful (be-

cause it is observed reaching its goal). At path level, extent measures the distance

travelled along a path until it reaches its last deceptive point. In evaluating ex-

tent, we introduce the concept of ‘path completion’: a means of comparing distance

travelled along different suboptimal paths between the same two points.

As Bowyer (1982) points out, in combat, it is deception, not honesty, that saves lives.

Nevertheless, deception has had such a ‘bad press’ that, when advocating its use, the

literature tends to characterise the practice instead as protection of privacy (e.g., Keren

et al., 2016). The distinction is moot. Consider, for example, a convoy escorting a VIP

to one of three possible destinations. An observer plans to deploy an assassin once the

VIP’s destination is known. What (deceptive) path will (protect the VIP’s privacy so as

to) minimise the likelihood of the observer correctly identifying the convoy’s destination?

If Figure 4.3 illustrates the convoy’s path π, then an assassin deployed after observation

point x will probably be deceived into setting up at g1. At point y, she will be unable to

decide whether to go to g2 or the real goal gr. Thus, whether characterised as privacy or

deception, the ability to conceal the convoy’s real goal could save the VIP’s life.
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We have described the DPP problem informally as one of finding a path, such that

an observer watching an agent make her way along that path is unable to determine, until

the last possible moment, where the agent is going. We next set out the formal definition.

4.2.1 Technical Framework: DPP

Without loss of generality, we express the framework here in a discrete setting of nodes and

edges.9 However, we abbreviate the notation, referring henceforth to the starting location

as s (not ns) and to a goal location as g ∈ G (not ng ∈ G). Thus, from Definition 2

(p.45), a discrete path-planning problem Pd = 〈Dd, s, g〉 (for convenience, redefined within

Definition 12 below) is the problem of finding a path from a starting location s to a

goal g in a discrete path-planning domain Dd (originally defined p.44). Meanwhile, from

Definition 3 (p.46), a discrete GR problem for path-planning Rd = 〈Dd, G, s, ~o ,Prob〉
attempts to identify from a set of goals G and a sequence of observations (or partial path)

~o , which particular goal that partial path is most likely to be targeting.

DPP is a path-planning problem that inverts goal recognition. Like path-planning, it

is the problem of finding a path from the starting location s to the only real goal gr (in a

set of possible goals); but, whereas a GR system determines the most likely goal based on

a sequence of observations, DPP assembles a continuous sequence of observations (i.e., a

path) from which an observer (or GR system) is least likely to identify the real goal.

Definition 12. A deceptive path-planning problem is a tuple 〈Pd, G, P 〉, where:

• Pd = 〈Dd, s, gr〉 is a discrete path-planning problem such that:

– Dd = 〈N,E, c〉 is a discrete path-planning domain, where:

∗ N is a non-empty countable set of nodes,

∗ E ⊆ N ×N is a set of edges between nodes, and

∗ c : E 7→ R+
0 returns the non-negative cost of traversing each edge;

– s ∈ N is the start location;

– gr ∈ G is the real goal;

• G ⊆ N is the set of all candidate goal locations, including bogus goals and the real

goal; and

• P (G | ~o · n) is the posterior probability of a goal, given a sequence of observations

ending at n, where:

– ~o = o1, . . . , ok, such that oi ∈ N for each 1 ≤ i ≤ k, k ≥ 0,

9Our framework depends on the ability to obtain a probability distribution at any point along a path
where an agent could be observed. This may be achieved in a discrete domain (as described in Section
3.1.1, p.44) or in a continuous domain (as described in Section 3.2.1, p.62).
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– n ∈ N , and

– the observation sequence is feasible, that is, optc(s, ~o , n) 6=∞.

That is, P stands for the model of the observer, a black box against which the most

recent step n or the ‘path so far’ ~o · n can be tested.10

The solution to a dpp problem is a solution to its path-planning problem (i.e., a path

from s to gr, as defined p.44) that is deceptive. The quality of that solution depends on

the magnitude, density and extent of the deception, as we now discuss.

4.2.2 Measuring Deception

We first examine deception as it applies to an individual node or step along the path.11 GR,

captured in our model as the probability function P (·), gives us a means of determining,

at any particular point, whether the path (at that point) is truthful or deceptive, based on

the magnitude of the probabilities. In Section 4.4.2, we discuss how a step’s magnitude

can be further evaluated in terms of simulation and dissimulation. For now, we use it as

a binary measure.

Definition 13. A truthful step is the final node n in an observation sequence ~o · n such

that the probability of the real goal gr exceeds the probability of any other candidate goal,

that is, P (gr | ~o · n) > P (g | ~o · n), for all g ∈ G \ {gr}. Otherwise, the step is deceptive.

Clearly, we want to minimise the opportunities for an observer to correctly identify

the real goal. Since we have no way of knowing when or how often the observer will be

making observations, that means minimising the number of truthful steps. The fewer such

steps a path π contains, the greater its deceptive density :

density(π) =
1

|Nt|
, (4.6)

where Nt is the set of all truthful steps in π.

Now, in life, a deception might not be uncovered for months or years after it occurs (if

ever); but a deceptive path, with full observability, is always ultimately truthful because

the final step always arrives—and is seen to terminate—at its goal.12 So, a path that is

deceptive all the way to the goal has the minimum number of truthful steps (|Nt| = 1)

and, therefore, a maximum density of 1. Furthermore, referring to Figure 4.4, observe

that, since every path is deceptive at its start and truthful at its goal, there must always

10A GR system using single-observation recognition as set out in Part I, requires only a single current
location n, not the complete observation sequence ~o · n.

11To apply the concept of ‘steps’ in a continuous domain, a path may be discretised into segments of
equal length between notional waypoints, as suggested by Kaminka et al. (2018), which are then treated
as nodes.

12Implicitly, we assume an observation at the final time-step+1, at which the agent is seen to remain—
i.e., terminate—at her goal.
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sDeceptive

g1

g2

gr

Truthful

ftp
ldp If ftp>ldp, π is ‘strongly’ de-

ceptive (continually deceptive to
the ldp, then continually truth-
ful); if ftp<ldp, π is ‘weakly’
deceptive.

Every path has one first
truthful point and one last
deceptive point.

Figure 4.4: A deceptive path.

Every path is deceptive before setting off and truthful once it has reached its destination. Therefore every
path has a first truthful point and a last deceptive point. When the observed path from s is assessed at
point FTP above, gr is the most probable goal. When the path detours around g2, however, g2 becomes
more probable. Finally, assessed at any point in the path after LDP , gr is again the most probable goal.

be one unique truthful node (even if it is the goal) prior to which all previous steps (if

any) are deceptive; and one unique deceptive node (even if it is the starting point) beyond

which all subsequent steps are truthful. We call these the ‘first truthful point’ (FTP) and

‘last deceptive point’ (LDP) respectively.

Definition 14. Given a path π, its first truthful point ftpπ is a node πi which is itself

truthful whereas all (if any) previous nodes πj, for all j ∈ {0, . . . , i− 1}, are deceptive.13

Definition 15. Given a path π, its last deceptive point ldpπ is a node πi, which is

itself deceptive whereas all (if any) subsequent nodes πj, for all j ∈ {i + 1, . . . , |π|}, are

truthful.

Intuitively, the location of the LDP is a measure of the path’s deceptive extent (it

is a deceptive point beyond which all subsequent points are truthful) but, by considering

also the location of the FTP, we can make a more nuanced assessment as to the degree of

deceptivity that the path achieves overall.

By their nature, in any given path, there can be only one LDP and only one FTP.

However, as illustrated at Figure 4.4, after the first truthful point has occurred there may

be many subsequent steps that are deceptive before the last deceptive point is reached.

Thus, depending on the relative location of these two points, we can identify two extreme

notions of a deceptive path. If all truthful steps in a path occur after the LDP, we

say that the path is ‘strongly deceptive’; whereas a path that includes truthful segments

interspersed with deceptive segments, we say, is ‘weakly deceptive’.

13For a reminder of our notation conventions with respect to paths, see Definition 1, p.44.
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Definition 16. A strongly deceptive path π is continually deceptive to its LDP, that

is, if ldpπ = πi, then ftpπ = πi+1.

Definition 17. A weakly deceptive path π includes truthful steps before its LDP, that

is, if ldpπ = πi, then ftpπ = πj, for some j < i.

Now, in order to maximise the deceptive density of a path, we need it to be strongly

deceptive (i.e., to have no truthful steps before the LDP) but we also need to minimise

the number of truthful steps that occur afterwards. That is, we want the LDP—which

indicates the path’s deceptive extent—to occur ‘as late in the path as possible’.

Although we are able to identify the location of the LDP as a particular node in the

path (or, in a continuous domain, by its position proportional to the length of the path

as a whole), that information by itself does not properly match our intended meaning. If

a deceptive path includes two or three meaningless additional ‘loops’, for example, should

we regard its deceptive extent as having increased? This is the problem that we consider

next.

Note. Before proceeding, we briefly mention the potentially confusing relationship

between path optimality and deceptivity. Note that a path can be truthful without

being optimal (it may favour the real goal more than any bogus goal but still be a

suboptimal path) and deceptive without being suboptimal (it may be an optimal path

to multiple goals).

4.2.3 Maximising Deceptive Extent

In order to compare the relative deceptivity of two competing paths, we want to know

which of them has the greatest deceptive density and which has been deceptive ‘for longer’;

but the latter concept is not straightforward. Given that deceptive paths (in fact all

paths!) are typically suboptimal to some degree, we need to consider how, practically, one

should go about assessing the distance travelled along one suboptimal path by comparison

with the distance travelled along another.

Path Completion

The LDP is significant because it represents the point in a path at which a rational

observer ceases to be deceived; that is, the moment when, in the eyes of the observer, the

probability of the real goal comes to outweigh the probability of any other possible goal

and beyond which the probability of that real goal dominates continuously until the goal

is reached. Intuitively, we want to delay this point until ‘as late in the path as possible’;

but although the LDP is easy to identify (i.e., we can say with certainty that it occurs

at the ith or jth step), expressing its location in terms that allow for comparison between

paths of different lengths and shapes is problematic.
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Figure 4.5: Progress along a suboptimal path: which event occurs ‘later’?

This problem is not unique to the case of an LDP; it arises whenever we want to

compare progress along two different suboptimal paths. Consider the three paths in

Figure 4.5. The black markers represent different events but which of them, relative

to their respective paths, should we say occurs later? Considered purely in terms of

distance travelled, Event B occurs later than Event A, even though they both end up

at approximately the same distance from goal. By the same reckoning, Event C occurs

much later than either of the others; after it has occurred, however, the traveller on π3

has further left to go than a traveller on either of the other paths. Does it make sense to

say that we are later in the path, if we have ended up further from the goal?

Returning to our special case of the LDP, in the absence of a cost or time constraint,

a deceptive path may loop or backtrack indefinitely, delaying the LDP without making

any progress towards the goal or, as in the following example, causing an agent to traverse

more truthful steps, not less!

Example 9. Consider two paths πa, πb ∈ Π(s, gr) of different lengths taking entirely

different routes from the starting location s to the real goal gr. Suppose that ldpπa occurs

at π312
a and ldpπb at π203

b . ldpπa is clearly ‘later’ if we are counting steps; but does that

make πa the more deceptive path? Suppose that |πa| − 312 = 200 and |πb| − 203 = 10,

that is, there are many more truthful steps from ldpπa to gr than from ldpπb to gr. This

means an agent on πb (where the LDP occurs ‘sooner’) gets closer to the goal before the

path stops being deceptive; and this, after all, is the main point of the LDP: to establish

how far an agent on the path will need to travel truthfully ‘in plain sight’.

Our method of measuring deceptive extent eliminates this confusion by completely

ignoring path length, which is potentially infinite and therefore ultimately immeasurable.

Instead, we focus on the position of a node in terms of how much ‘true work’ has been

done towards achieving its purpose.

Path completion measures true

work done, based on how much

there is left still to do.

Now, if a path can be said to have a purpose,

then its purpose is its goal. So to capture ‘true

work’, we define the notion of path completion .

This concept is similar to ‘task completion’ in a

project plan. No matter what resources have been used up or how many wrong, un-

necessary or costly subtasks have been attempted, task completion is ultimately based on
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s

gr

π

n

optc(s, gr)− optc(n, gr)

Figure 4.6: Path completion. The dashed blue line represents true work done, the result
of Equation 4.7. (Straight lines represent optimal cost, the arc represents points from
which the optimal cost to gr is identical.)

how much work there is left still to do. Similarly, to measure path completion, we use

optimal cost (from s to gr) to calculate how close to achieving its purpose (i.e., reaching

its goal gr) a potentially meandering suboptimal path π has come when it arrives at some

particular node n ∈ N . Formally, pcomp : N ×N ×N → R is defined as follows:

pcomp(n, s, gr) = optc(s, gr)− optc(n, gr). (4.7)

Figure 4.6 depicts the equation graphically.

When we measure the position of the LDP in terms of path completion, we learn how

far an agent has been able to travel deceptively and (therefore) how far remains to be

travelled ‘in plain sight’. It is a method that explicitly enables us to distinguish between

‘deceiving longer’ (e.g., a path that repeatedly circles a bogus goal without making any

progress towards the real goal) and ‘deceiving further’ (i.e., a path that makes progress

towards the real goal before it ceases to be deceptive).

With this concept in hand, we can express the notion of delaying the LDP for ‘as

long as possible’ and so maximising a path’s deceptive extent.

Definition 18. A path, π, is deceptive to the maximum extent if pcomp(ldpπ, s, gr) ≥
pcomp(ldpπi , s, gr), for all πi ∈ Π(s, gr).

In words, π gets closer (or as close) to goal before it stops being deceptive than (as)

any other path from s to gr in the domain. Since we calculate the ‘value’ of the LDP in

terms of path completion, when a path π is deceptive to the maximum extent, we say that

its last deceptive point ldpπ has been maximised .

We now have all the tools we need to craft a deceptive path in a principled manner.

At the step level, we use GR to evaluate the magnitude of probability values and determine

whether (at that step) the path is truthful or deceptive. At the path level, by minimising

the number of truthful steps, we maximise the path’s deceptive density. Finally, using path
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completion, we calculate the position of the path’s LDP and so determine its deceptive

extent.

To maximise deceptivity, a path must be strongly deceptive to the maximum extent.

We next consider how such a path can be generated.

The Radius of Maximum Probability (Revisited)

So far our framework for deception has been agnostic with regard to the model of the

observer (denoted by P in a DPP task, p.118), which may be any probabilistic GR sys-

tem capable of returning a probability distribution across goals based on a sequence of

observations (i.e., the path ‘so far’). For the purposes of a practical application, however,

it is useful to assume some particular observer and a particular domain. In this case, we

take the particular observer represented by the GR model that we developed in Part I of

this thesis and describe the process as it applies in a discrete environment. To summarise

some of the key properties of our GR model:

• it is derived from the R&G framework, specialised to path-planning;

• it enables us to generate a probability distribution based on a single-observation or

step in the path; and

• it enables us to calculate the radius of maximum probability (RMP) for any goal of

interest.

The RMP for the real goal im-

poses a constraint on the maxi-

mum value of any path’s LDP.

The last point is important. Recall that the

RMP (defined at p.68 and, for convenience, illus-

trated afresh at Figure 4.7) is a cost-distance from

goal within which that goal is guaranteed to be the

most probable. Now, compare the LDP (defined at

p.120): a deceptive point in a path beyond which all subsequent points (between the LDP

and real goal) are truthful.

Redefined in terms of deception, the RMP for the real goal, rmpgr , could be framed

as a cost-distance from the real goal within which all points are guaranteed to be truthful.

Considered in these terms, we see that rmpgr measures the distance between the real goal

and its closest deceptive point. The LDP (a deceptive point by definition) cannot be closer

to the real goal than this. Thus, the RMP for the real goal, rmpgr , represents a constraint,

imposed by the domain, on the maximum value of any path’s LDP.

Under our single-observation model, a probability distribution across goals is gener-

ated using P2(·), which requires only the single most recent observation (see Equation

(3.2), p.56, and (RG2), p.48). For clarity, therefore, we redefine a truthful step for use

with P2(·), assuming ~o = ∅ (defined previously in the context of ~o · n, p.119).
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s

gr

g
r

rmpgr = min
g∈G\{gr}

optc(gr,g)+optc(s,gr)−optc(s,g)
2

Figure 4.7: RMP revisited. The LDP cannot be closer to goal than rmpgr . (Straight lines
imply optimal cost-distance. The tipping point is marked by a cross.)

Definition 19. A truthful step is a node n at which P2(gr | n) > P2(g | n), for all

g ∈ G \ {gr}. Otherwise, the step is deceptive.

As our next result shows, the last deceptive point in a path cannot lie within the real

goal’s RMP.

Theorem 14. Let π be a path such that π ∈ Π(s, gr). Then, optc(ldpπ, gr) ≥ rmpgr .

Proof. By definitions 7 and 19, for all n ∈ N such that optc(n, gr) < rmpgr , n is truthful.

But ldpπ is deceptive. Therefore optc(ldpπ, gr) ≮ rmpgr and the proposition follows.

Corollary 1. The value of an LDP at rmpgr from gr cannot be exceeded: if rmpgr =

optc(ldpπ, gr), then pcomp(ldpπ, s, gr) ≥ pcomp(ldpπi , s, gr), for all πi ∈ Π(s, gr).

Thus, if we know the value of rmpgr , which we can readily calculate using Equation

(3.6) (reproduced alongside Figure 4.7), we can use path completion to find the maximum

LDP for the domain. That is:

max
π∈Π(s,gr)

pcomp(ldpπ, s, gr) = optc(s, gr)− rmpgr . (4.8)

This equation provides the benefits previously noted with respect to the RMP but in

the setting of DPP. Namely, it enables us to establish a zone within which all points are

truthful, without having to calculate probabilities at any particular point (or at any point

at all). In addition, we can now use it to identify deceptive ‘target nodes’ at which an

LDP can be maximised.

Definition 20. A target node t ∈ N is a deceptive node such that optc(t, gr) ≈ rmpgr .
14

14The approximation ≈ is necessary because, in a discrete domain, there may be no node at precisely
rmpgr (as discussed in Part I, p.70). In this case, an approximation (always greater) suffices; and we
‘retreat’ to the closest actual node, as described in the text.
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Figure 4.8: A target node at t. Paths generated by strategies 1 and 2 (p.127) are shown.

Note that a target node is, by definition, deceptive; but not all (and perhaps few)

nodes at rmpgr from gr are deceptive. (The RMP for the real goal signifies a radius within

which all nodes are truthful, which does not mean that all nodes outside that radius are

not.) We can, however, identify a suitable target node, as follows.

Recall that our calculation of the RMP involved identifying a ‘tipping point’ between

goals (marked by a cross in Figures 4.7 and 4.8). In the context of DPP, that process

now provides a simple means of locating (programmatically) a target node which (a) is

guaranteed to be accessible (its location is calculated based on the cost of an optimal,

navigable path between goals); and (b) is a point at which the LDP is guaranteed to be

maximised.

In developing deceptive strategies (in Section 4.3), we use gmin to denote the goal

referenced in calculation of rmpgr . It is on the optimal path between gmin and gr that the

tipping point closest to gr is located.

gmin = argmin
gi∈G

optc(gr, gi) + optc(s, gr)− optc(s, gi)

2
. (4.9)

As a brute-force solution, we could find a suitable target node by performing a best

first search starting at the real goal gr and continuing until we reach the first node at

a distance greater than rmpgr from that goal. Alternatively, referring to Figure 4.8, we

can first identify gmin using Equation 4.9, then retreat along (gr, gmin), the optimal path

between the goals, to a distance of rmpgr (i.e., the point marked by ‘t’). In a continuous

domain, we can specify our target at precisely this point (the distance, calculated as a

real, rmpgr from gr); in a discrete domain, however—where there may be no node at that

exact location—we continue to ‘backtrack’ along (gr, gmin) to the first actual node that

we encounter.

4.3 Deceptive Strategies

The following approaches involve the computation of paths whose deceptivity is maximised

in terms of extent. We consider how the two fundamental deception strategies, simulation
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(a) Path πd1. (b) Path πd2. (c) Path πd3. (d) Path πd4.

Figure 4.9: Deceptive path-planning strategies.
The above screenshots show automated path-plans through a gridworld domain (n.b., the algorithm draws
the diagonal path segment first, then the vertical, rather than alternating between the two, making some
optimal paths appear suboptimal to the human eye). The green cross (bottom centre) marks the start of
the path and the red cross (top left) is the real goal. The red arrow overlaid indicates the location of the
target node t. Path πd3 is superimposed on πd2 to highlight the differences. Paths πd1 and πd4 both have
maximum deceptive density but πd4 is optimal (amongst deceptive solutions that pass through t) with
respect to cost.

(showing the false) and dissimulation (hiding the real) can help to maximise such paths’

deceptivity and minimise their cost. Screenshots from simulations of the four strategies

are reproduced at Figure 4.9 with corresponding algorithms in Listings 4.1 to 4.5.15

4.3.1 Simulation

Deceptive strategy 1 (πd1). The simplest simulation (considered by Keren et al. (2015)

with respect to ‘bounded deception’) first takes an optimal path towards a bogus goal.

Referring to Figure 4.8, this strategy generates πd1 = s, .., gmin, ..., gr. Computationally

inexpensive, this achieves a strongly deceptive path (every step to the LDP is deceptive),

maximises deceptive density (by minimising truthful steps) and maximises deceptive ex-

tent (its LDP occurs at rmpgr , in this case, t). However, path cost is likely to be high

and, although it initially deceives both human and automated observers, reaching but not

stopping at gmin immediately signals to a human that gmin is not the real goal; though an

automated observer depending on the R&G model is deceived all the way to t.

4.3.2 Dissimulation

Deceptive strategy 2 (πd2). Dissimulation seeks an ambiguous path. The simplest

such strategy takes an optimal path πd2 direct from s to t, then on to gr. This generates

the cheapest path that can pass through t. It might be deceptive to a human observer

until later in the path than πd1 above. However, we would expect πd2 to be only weakly

deceptive, that is, truthful steps are likely to occur before the LDP without additional

checks and balances. We therefore propose two refinements:

15Algorithms assume availability of a path-planner, similar to the A* listing in Chapter 2 (p.15).
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Listing 4.1: Strategy 1.

1 Requires: starting node, s; possible goals, G; real goal r
2 Returns: path or failure

3

4 rmp,argmin = getrmp(s,G, r)
5

6 path1 = buildPath(s, argmin) //returns shortest path

7 path2 = buildPath(argmin, r)
8

9 if not failure then

10 return path1 + path2
11

12 return failure

Deceptive strategy 3 (πd3). A path πd3 can be assembled using a modified heuristic so

that, while still targeting t, whenever there is a choice of routes, it favours the bogus goal,

increasing its likelihood of remaining deceptive. Still using an off-the-shelf path-planner,

the usual heuristic h(n, t)—which returns the estimated cost from node n to target h—is

modified to also evaluate heuristics for gr and gmin:

if h(n, gr) < h(n, gmin) then h(n, t) = αh(n, t),

where constant α > 1. Path πd3 is computationally more demanding than πd1 or πd2

(it evaluates more heuristics), but aims to approach πd1’s deceptive density at something

close to πd2’s cost.

Deceptive strategy 4 (πd4). As an alternative—and perhaps definitive refinement with

respect to cost—we can use single-observation recognition to precalculate a heatmap of

probabilities (as described in Section 3.1.3, p.55)—or calculate them on-the-fly—to prune

truthful nodes in the search. The resulting path πd4 is strongly deceptive with maximised

LDP and maximum density at minimum cost.

Contrary to the common idea of a deceptive path—that is, a rambling suboptimal

path, full of expensive loops and unnecessary detours—this brute force strategy demon-

strates that there is such a thing as a fully deceptive path that is also fully rational.

Differences between strategies are highlighted at Figure 4.9.

4.3.3 Evaluation

Though not proposed as optimised algorithms, we evaluated the relative efficiencies (time/

cost) of the above strategies and the effectiveness (deceptivity) of paths they can produce.

We generated a problem set based on game maps from the Moving-AI benchmarks (Sturte-

vant, 2012) to which we added three extra candidate goals at random locations. For each

of 50 problems, we generated one optimal path using a standard implementation of A*
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Listing 4.2: Strategy 2.

1 Require: starting node, s; possible goals, G; real goal r
2 Returns: path or failure

3

4 rmp,argmin = getrmp(s,G, r)
5 t = findTarget(rmp,argmin, r)
6

7 path1 = buildPath(s, t) //direct to target

8 path2 = buildPath(t, r)
9

10 if not failure then

11 return path1 + path2
12

13 return failure

Listing 4.3: Strategies 3 and 4.

1 Require: starting node, s; possible goals, G; real goal r
2 Returns: path or failure

3

4 rmp,argmin = getrmp(s,G, r)
5 t = findTarget(rmp,argmin, r)
6

7 path1 = customAstar(s, t, argmin) //calls one of customised routines (below)

8 path2 = buildPath(t, r)
9

10 if not failure then

11 return path1 + path2
12

13 return failure

Listing 4.4: Heuristic routine (Strategy 3).

1 Require: t, r, argmin and current coord, c
2 Returns: Real

3

4 tHeur = octile(c, t) //calculates usual heuristic

5 rHeur = octile(c, r)
6 aHeur = octile(c, argmin)
7

8 if rHeur < aHeur then

9 tHeur = tHeur ∗ 1.5 //constant

10

11 return tHeur

and four deceptive paths (each using a different strategy). We timed path generation and

recorded path costs. We truncated paths at the RMP (beyond which all paths would be

truthful) and, using single-observation recognition (Section 3.1, p.42), calculated proba-

bilities at intervals to assess (and confirm) deceptive density and extent.

Figure 4.10 captures our results. Comparison with A* shows a clear trade-off between
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Listing 4.5: Truth check (Strategy 4).

1 Require: starting node, s; goals, G; real goal r, current coord c
2 Returns: true or false

3

4 for g in G
5 if g not r
6 costdif(s, g, c) <= costdif(s, r, c) then

7 return false

8

9 return true

10

11 costdif(start, goal, coord)
12 return optCost(start, goal)− optCost(coord, goal)

Path cost Gen. time 10% 25% 50% 75% 90% 99%

πA∗ 215.9 0.208 78 68 40 32 22 12
πd1 375.2 1.378 100 100 100 100 100 100
πd2 245.2 1.997 92 88 76 72 62 74
πd3 245.6 1.924 90 90 72 66 68 70
πd4 248.7 1423.8 100 100 100 100 100 100
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Figure 4.10: Deceptive paths.

Results show the percentage of paths returned by each strategy that were deceptive when tested at 10%,
25%, etc., of their path length prior to the RMP (beyond the RMP, all paths were truthful). Table columns
show average (total) path costs and average time taken to generate the (total) path. Generation time for
all strategies exceeded that of A* by an order of magnitude. See inline text for discussion of time taken to
generate πd4. πd1 and πd4 were both strongly deceptive to the full extent but πd4 achieved this at much
lower cost. (Two maps, 50 Moving-AI scenarios, each modified to include three extra goals. Experiments
were conducted on a i7 3.6GHz machine with 8GB RAM.)

cost and deceptivity. Strategies πd2 and πd3 returned comparatively cheap paths and

were computationally efficient but performed erratically, each showing an increase in the

number of paths deceptive immediately before the RMP. This implies that they are only

weakly deceptive (i.e., deceptive nodes may follow truthful ones). Simulation (πd1) was

strongly deceptive but the least efficient strategy in terms of cost. Dissimulation with

pruning (πd4) was fully deceptive at much lower cost. (In fact, as we know, paths generated

using this strategy are optimal amongst deceptive paths.) Although generation of πd4 was

slow, this is only because we calculated each node’s deceptivity on-the-fly. If repeatedly

considering deceptivity in a known domain, a probability heatmap could be precalculated

(as previously discussed), enabling truthful nodes to be pruned in constant time, so closing

the time difference between this and other strategies.
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4.4 Discussion

In the three previous sections of this chapter, we have considered deception from the

point of view of a GR system, responding to observations consistent with ‘deception by

dazzling’, and from the deceptive path-planner’s point of view, developing a model that

facilitates evaluation and generation of deceptive paths. In this section, we discuss some

of the many refinements, avenues and extensions still waiting to be explored. First, we

look at some of the more sophisticated aspects of Bell and Whaley’s theory of deception.

Then, we examine more thoroughly the notion of magnitude, which we use in our model

to determine whether any one particular step in a path is truthful or deceptive but which

can also tell us the extent to which the path is simulating or dissimulating from point to

point. Finally, we consider truthful path-planning, the flip-side of the model we presented

in Section 4.2.

4.4.1 More Sophisticated Strategies

In setting out their theory of deception, Bell and Whaley (Bowyer, 1982) subdivide the

broad strategies of simulation and dissimulation into six sub-stratagems, revisited in Ta-

ble 4.5. Of these, we have examined only two: simulation by mimicking (which could be

said to describe the strategy of targeting a bogus goal before diverting towards the true

goal); and dissimulation by dazzling (taking a wildly suboptimal route, the main topic of

Section 4.1). The other sub-strategems can also be achieved in a path-planning context

although, in some cases, the route-planning type of domain on which we have focused does

need slight enhancement.

Masking

Masking is simply another word for hiding. In a realistic three-dimensional terrain, this

can be achieved quite literally by keeping an obstacle between the agent and the observer

but there are other possible ruses.

For purposes of GR, we assume that observations are incomplete. Conversely, for

DPP, although observations are unlikely to be continual, since we cannot know precisely

when they will take place, we must plan our path on the assumption that all the agent’s

movements are fully observable. If, however, there were some means of controlling the

availability of the agent’s location (e.g., because the source of observations is the signal

from the agent’s mobile phone, which can be switched off, as suggested by Keren et al.,

2016), the agent would not only be able to hide but could then adopt a wide variety of

alternative strategies. For example, she might simulate (by mimicking), taking a course

that particularly favours a bogus goal, maximising its probability by comparison to the

others, then turn off the phone and track directly (by the shortest, quickest or most hidden

path) to the real goal.
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Table 4.5: Bell and Whaley’s six strategies revisited.

Dissimulation Simulation

Masking - hide the real by making
it invisible.

Mimicking - show the false by hav-
ing one thing imitate another.

Repackaging - hide the real by dis-
guising.

Inventing - show the false by dis-
playing an alternate reality.

Dazzling - hide the real by creating
confusion.

Decoying - show the false by di-
verting attention.

Note. With full observability, masking can be achieved by dazzling or ‘hiding in

plain sight’, the strategy already discussed, whereby the agent traverses a path so

randomised that no clear intention can be identified.

Repackaging

Repackaging involves adopting a disguise. In a path-planning domain, there does not

immediately seem to be a ‘charc’ (i.e., characteristic) that can be disguised. However,

there is cost.

Cost-based GR assumes a cost model. If the agent can persuade her observer (whether

AI or human) that she is following a cost model different from the one that she is actually

following, then she can disguise her intent. Suppose, for example, that the agent’s goal

is located on the coast and suppose that the deception is to take place at some future

date (i.e., she has time to set it up). By repeatedly taking paths that favour a coast road,

even when her ultimate goal is inland, she could give the impression that her cost model

favours the coast (i.e., that she evaluates coast roads as being cheaper than inland roads).

Now, on the foray of importance, she can take the coast road directly to her coastal goal

leaving her observer unable to determine whether it is the coastal goal she is making for

or the inland goal, via a coastal route.

Inventing

Similar to mimicking (which, in path-planning we have suggested may be achieved by

seeming to target a bogus goal, only to deviate at the last moment towards the real goal),

inventing involves fabrication of a false reality. Simplistically, in path-planning, one might

behave as for mimicking but move directly towards some non-goal feature of the terrain,

giving an impression of intentionality where none exists.

More creatively, a deceptive path-planner can make use of a fundamental strategy

used in magic, known as ‘one-ahead’. In the context of a card trick, for example, audience

members believe that they know when the trick started (e.g., when they were offered a

deck of cards from which to choose) not realising that the real start of the trick occurred
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at the end of the previous trick (e.g., at the moment when, while replacing the cards on

the table, the magician checked the value of the card on the bottom of the deck).

Applying this principle to deceptive path-planning, recall that the cost-based GR

systems discussed in this thesis have all assumed a known starting location. If an agent

can persuade the GR system (her observer) that her start location is different from her

actual start location, she can significantly change the underlying domain and thereby

(potentially) the probability distributions at key locations on her preferred path to goal.

Concretely, this could be achieved if she were able to ‘mask’ the movement from her real

start location to her preferred bogus starting location so that, from the observer’s point of

view, the first significant observation involves the agent setting off from her bogus starting

point.

Decoying

Decoying shows the false by diverting attention. A conjuror would call it ‘misdirection’;

a ball-player might call it ‘selling the candy’. In path-planning the strategy suggests a

zig-zagging route between goals. Every time the observer thinks she knows where the

agent is going, the agent changes direction and sets off the opposite way. We note also

that, though beyond the scope of this thesis, there is an emerging trend towards the

development of multi -agent path-planning (e.g., Le & Plaku, 2018) that has the potential

to facilitate a more traditional approach to decoying whereby, for example, one agent

A (deemed dispensible) is visibly sent off in some direction, sacrificed for the benefit of

another agent B (deemed more valuable), sent elsewhere but only when the observer has

commited to following agent A.

4.4.2 Deceptive Magnitude

Our model has treated deception as a yes or no proposition. If the probability of the real

goal exceeds the probability of all others, then the step is truthful, if not, it is deceptive.

This is consistent with many real-world applications: a dupe (whether we regard her

as observer or spy) either is deceived or she is not. In evaluating a path’s deceptivity,

however, it is possible for us to achieve a (potentially more useful) graduated response:

how much more likely is it that an observer would be deceived by this path rather than

that path?

To suggest the possibilities, consider how we might capture the two distinct notions

of simulation and dissimulation at the step level (i.e., at a node n).

Definition 21. Simulation (showing the false) occurs when the probability of a bogus

goal is strictly greater than the probability of the real goal gr, that is, there exists a goal

g ∈ G \ {gr} such that P (gr | ~o · n) < P (g | ~o · n).
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We can quantify simulation by measuring the amount by which a false goal dominates

the real goal. The greater the dominance, the greater the deception.

simulation(~o · n) = max
g∈G\{gr}

P (g | ~o · n)− P (gr | ~o · n). (4.10)

Recall our example of a convoy, escorting a VIP to one of three possible destinations

(p.117). If we simulate successfully, our hypothetical assassin is deployed to the wrong

location and the VIP survives.

Note. The result of (4.10) is in the range [-1, 1] and tells us more than just the

degree of simulation that has been achieved. A negative result indicates that the step

is truthful (i.e., non-deceptive: the probability of the real goal is highest). A zero

result indicates dissimulation (i.e., there is at least one bogus goal whose probability

equals that of the real goal).

Definition 22. Dissimulation (hiding the real) occurs when the probability of the real

goal gr is less than or equal to the probability of another goal, that is, there exists a goal

g ∈ G \ {gr} such that P (gr | ~o · n) ≤ P (g | ~o · n).

Following Bowyer (1982), this definition of deception always involves dissimulation

and may also involve simulation. We can quantify that aspect of deception exclusive to

dissimulation (the degree of ambiguity) using Shannon’s entropy:16

dissimulation(~o · n) = −κ
∑
g∈G

P (g | ~o · n)× log2(P (g | ~o · n)), (4.11)

where κ is a normalisation constant.17

In the context of our convoy, successful dissimulation means the controller will not

know where to send the assassin; though she may guess correctly.

4.4.3 Truthful Path-Planning

Recall from Chapter 2 (p.22) that, traditionally, GR can be categorised into three types:

keyhole, intended and adversarial. This thesis has considered keyhole recognition, in

which the observed agent is unaware of (or unaffected by) the GR process, and adver-

sarial recognition, where the agent believes herself observed and attempts to thwart the

recognition process. Intended recognition is just the opposite; it arises when the observed

agent assumes herself observed and attempts to reveal her goal.

Once neglected, intended recognition has lately become an important area of research

owing to the explosion of interest in human-machine interaction (e.g., Kulkarni, Srivastava,

16Shannon’s entropy is used in information theory to measure information gain. Any change towards
equalisation of probabilities increases the uncertainty, which increases the entropy.

17The range of Shannon’s entropy is 0 ≤ entropy ≤ log2(n) where n is the number of possible outcomes,
so it is convenient to use κ = log2(|G|) to normalise (4.11) in the range [0-1].
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(a) A vehicle minimising cost or travel
time may take a deceptive path.

(b) A vehicle minimising the probability
of other goals takes a truthful path.

Figure 4.11: Truthful path-planning.

& Kambhampati, 2018; Sreedharan et al., 2017) and several authors have used probabilistic

reasoning to identify transparent or legible (as opposed to ‘predictable’) motion (Dragan,

Lee, & Srinivasa, 2013; MacNally, Lipovetzky, Ramirez, & Pearce, 2018).

In this context, our model, though developed with a view to identifying and evaluating

deceptive paths can similarly be inverted to identify truthful or least deceptive paths.

Now, the problem becomes one of finding a path from starting point to goal such that the

observer can determine as quickly as possible and with minimal computational effort where

the agent is going. For example, an autonomous vehicle approaching an intersection could

take the least deceptive path in order to convey to other vehicles (whether autonomous

or human-driven) a human-like non-verbal signal of its intended exit.

Only a minor modification to our current model would be required. Recall that we

distinguish between dissimulation, which can be satisfied by an ambiguous solution, and

simulation, which is only satisfied while the probability of an alternative goal is strictly

greater than the probability of the real goal. Now, when we use simulation to increase a

path’s deceptivity, we seek to maximise the probability of some (any) alternative to the

real goal. So, the magnitude of the simulation (repeated here from Definition 4.10, p.134

with respect to a DPP problem) is given by:

simulation(~o · n) = max
g∈G\{gr}

P (g | ~o · n)− P (gr | ~o · n).

Reformulating the above equation to identify the most truthful sequence of observations

or path πt, we could say that, given a set Πgr of all possible (legal) paths to gr:

πt(G, gr) = arg max
π∈Πgr

P (gr|π)− P (g′|π)

where g′ ∈ G is such that P (g′|π) ≥ P (g|π) for all g ∈ G \ {gr}.

The impact of employing this probabilistic measure of truthfulness is that, rather than

minimising cost, the preferred path minimises the probability of any alternative goal.
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Example 10. Consider the situation depicted in Figure 4.11. A vehicle is preparing to

turn left. The most efficient trajectory (to save time) is to start the manoeuvre from as

far to the right as possible and make a shallow turn to the left at high speed. The vehicle’s

primary objective, however, is to demonstrate its intent and therefore it moves to the left

side of its current lane before making the turn. The vehicle maximises the opportunity to

display its intent rather than minimising its costs.

As when implementing particular deceptive strategies, although a model for truthful

path-planning may be agnostic, in order to devise a particular plan, it can only be ‘truth-

ful’ relative to some particular observational model. Here we assume a cost-sensitive

observer. If we assume that observers evaluate probabilities based on alternative criteria,

this inverted model to support truthful path-planning (or ‘intended’ recognition) would

still apply but might generate quite different trajectories.

The extensions and adaptations discussed in this section are by no means exhaustive.

They are preliminary ideas and suggestions to illustrate how much is yet to be explored

with regard to deception, even in path-planning.

4.5 Summary

In this chapter, we examined deception in the context of path-planning, focusing partic-

ularly on the simulation and dissimulation strategies of Bell and Whaley.

First, we analysed the responses of two contemporary GR systems when faced with

observation sequences consistent with dissimulation by dazzling and found that the prob-

ability distribution formulas that they use have unintended and unhelpful consequences

when faced with paths that appear to be irrational. We presented an alternative model

based on a self-modulating formula, which takes the observed agent’s history into account.

Our formula respects the principle (from Ramirez and Geffner’s probabilistic model, 2010)

that, typically, a plan’s probability is inversely proportional to its cost; but it degrades

gracefully if the underlying assumption of rationality is compromised. As a result, the

improved model can handle agents ranging from the strictly rational (and honest) to the

arbitrarily irrational (or dishonest) in a principled manner.

Although dissimulation by dazzling can confuse a GR system, it is unnecessarily

expensive with no means of assessing whether or not ‘deceptivity’ has been achieved. In the

second half of this chapter, we addressed the problems of (a) measuring deceptivity, and (b)

controlling its cost. Our model for DPP operates at three levels of granularity: magnitude,

density and extent. We introduced the notions of a first truthful point and last deceptive

point and, rather than counting steps or measuring a path’s length, used path completion

(similar to ‘task completion’ in a project plan) to identify distance travelled along a

suboptimal path. Using an observational model based on our GR system from Part I,
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we considered strategies to compute deceptive paths, including one capable of achieving

paths that are ‘optimally deceptive’, that is, continually deceptive to the maximum extent

at the lowest cost. Finally, we considered potential extensions to our DPP model.

In summary, this chapter made the following contributions.

• We presented a definition of rationality applicable even when the ground truth is

unknown; and we provided a rationality measure (RM) based on an agent’s current

behaviour which could be used as a predictive tool.

• We analysed the performance of two state-of-the-art GR systems confronted by in-

creasingly irrational behaviour and showed that one (Ramirez & Geffner, 2010) be-

comes more confident in predicting the most probable goal as the observed behaviour

becomes less rational, while the other (Vered et al., 2016) ultimately evaluates as

most likely whichever goal is most distant (or most expensive to reach) from the

start location.

• We developed a self-modulating formula that lifts the rationality assumption implicit

in many contemporary cost-based accounts of GR: the less rational the observed

agent’s actions seem to be, the less confident its prediction.

• We presented a model for DPP that can use (as a black box) any probabilistic GR

system capable of measuring the deceptivity of a path at a given point. Our model

measures deceptivity in terms of magnitude, density and extent.

• We introduced the notion of a last deceptive point (LDP) and, in path completion,

provided a reliable method of identifying its location even in a suboptimal path.

A path continually deceptive up to its LDP is strongly deceptive to the maximum

extent. The cheapest path deceptive up to this point is optimally deceptive.

• We suggested that our DPP model could be extended to measure simulation and

dissimulation at step level or could be inverted for use in truthful path-planning,

also known as ‘intended recognition’.
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Conclusion

“Everything should be made as simple as possible, but

not simpler.”

–Albert Einstein (attrib.)

Path-planning is an uncomplicated undertaking. A path-planning agent has a desti-

nation and chooses the ‘best’ way to get there. A surveillance agent, assuming herself to

know the definition of ‘best’ being applied, asks herself, “If it were me taking that route,

where would I be going?” On the ‘flipside’, a deceptive path-planner assumes she is being

watched and asks herself, “If I want to confuse my observer or make her think I am going

somewhere I am not, which route should I take?” Simplifying the problem back to these

terms, the main achievement of this thesis has been to demonstrate that, provided we

know an agent’s starting point, goal recognition in path-planning depends on the nature

of the domain, not on the observation history of the agent whose goal we are trying to de-

termine. This realisation not only facilitates swift performance of goal recognition (using

single-observation recognition, a heatmap or the radius of maximum probability); applied

in the context of deceptive path-planning, we see that the maximum extent of a deceptive

path (i.e., its last deceptive point) is also constrained, not by the agent’s behaviour, but

by the domain itself.

At the start of our literature review, we observed that preliminary explanations of

task-planning algorithms are often expressed in relation to a ‘toy’ gridworld domain. Peo-

ple frequently construct graph-like brain maps to help them understand potentially con-

fusing ideas. But while simplistic navigational domains are frequently used as an example,

we have followed the “Keep It Simple, Stupid” principle and made them our focus. It is

an approach that has the advantage of exposing fundamental aspects of the core prob-

lem (which can easily become obscured by confounding variables) without sacrificing the

possibility of generalising lessons learnt back to task-planning at a later stage.
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We began in Chapter 2 by reviewing the literature and found that long-established

path-planning techniques continue to be employed in contemporary applications. In goal

recognition, we found a focus on minimising computational cost and saw in the recent

emergence of ‘plan recognition as planning’—whereby goal recognition can be achieved

using automated planning techniques, with no dependence on a plan library—a method

well-suited to path-planning domains. We saw the problem encountered by authors seeking

to implement Ramirez and Geffner’s approach (2010) whilst avoiding the computational

cost of negative reasoning and observed that, although a simpler formula was in use, it had

not been subjected to formal scrutiny. We observed that, until recently, goal recognition

for task-planning has concentrated on ‘keyhole’ recognition with an expectation of ratio-

nality and that ‘adversarial’ recognition, where it does appear, has typically been either

domain-specific or studied in terms of anomaly detection. In relation to deception itself,

we found that, although it has been discussed since the very inception of AI, it has usually

been considered with a view to prevention, for example, in the context of network security.

Active deception (where the agent deliberately sets out to deceive) has mostly arisen inci-

dentally in a game-theoretic context, where the agent’s behaviour is expedient rather than

deliberate: that is, she is doing whatever is most likely to optimise the reward, deceptive

or not. Meanwhile, computational theories of deception (also game-theoretic) seemed to

concern themselves more with ethical considerations than any systematic approach as to

how deception could best be achieved. Furthermore, we found little discussion as to how

the potential deceptivity of a sequence of actions might be measured. Even looking out-

side computer science, we found the ‘measurement’ of deception only in the context of

ethical considerations (i.e., how relatively ‘bad’ each different type of deception should be

considered). These are the gaps that our work has aimed to fill.

In Chapter 3, we asked the first of our research questions: “What gains can we

make when we apply state-of-the-art task-plan recognition in core path-planning domains?”

We found many gains and, indeed, have been able to minimise the computational effort

required to determine an agent’s most probable destination to the point where we only

need to know the relative locations of the possible goals and the agent’s starting point

to calculate a radius around a goal within which that goal is guaranteed to be the most

probable. In arriving at our radius of maximum probability (Definition 7, p.68), we have

made several contributions.

• We presented a novel cost difference formula (Equation 3.2, p.56) that can be used

in discrete and continuous navigational domains. Provided that the start location is

known in advance, it relies on a single observation, whereas competing goal recog-

nition techniques depend on an agent’s complete observation history. Our formula

can be plugged into any probability distribution formula that enforces the principle

that ‘the lower the cost difference, the higher the probability’ including the Boltz-

mann probability distribution formula used by Ramirez and Geffner (2010) in their
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seminal work, where they first introduced the idea of using a cost difference formula

in this context.

• While others (e.g., Escudero-Martin et al., 2015; Vered et al., 2016) have recognised

that the negative reasoning used by Ramirez and Geffner (i.e., negative because

it compares an optimal plan via the observations with an optimal plan that does

not go via all of them) can usually be avoided by substituting a simpler term, we

are the first to prove that the replacement impacts the result in only one corner

case (Theorems 1, 2 and 3, pp.50-52). We are the first to define that case; and

we also show that the Ramirez and Geffner interpretation in that corner case is

not necessarily to be preferred (see Section 3.4.1, p.80). Our results provide formal

justification for the previous informal treatments, which do not demonstrate what

is lost (or gained) by the substitution.

• Writing in parallel with us, Vered and Kaminka (2017) identified (as we do) that

when calculating the cost of a path through the observations, the first part of

that path (from starting point to most recent observation) is the same for every

goal. They reuse their calculation; however, we show that—used with Ramirez and

Geffner’s probability distribution formula—that cost can actually be disregarded al-

together. Furthermore, they imply that their reuse of that cost (from initial state

to final observation) is applicable for task-planning domains in general, whereas—as

we discuss in Section 3.4.2 (p.84)—it turns out not to be applicable in task-planning

domains generally, not even in slightly enriched path-planning domains.

In Chapter 4.1, we asked: “How can we improve on the response of goal recognition

systems when the observed agent’s behaviour is (apparently) irrational?” Approaches to

keyhole recognition typically assume rationality. However, for probabilistic accounts, this

is a soft assumption since, simultaneously, they rely on suboptimality to construct a

probability distribution across goals. Furthermore, a blanket assumption ignores the fact

that, typically, an agent engaged in goal recognition cannot know in advance that it is

not dealing with an adversary, so the assumption of keyhole recognition (or intended

recognition) may be inadvisable in many domains (e.g., most obviously, surveillance).

• We analysed the output from the distribution formulas used by Ramirez and Geffner

(2010) and Vered et al. (2016) and demonstrated anomalies in their behaviour when

confronted by suboptimally (Theorems 8 and 9, pp.105-108).

• We suggested an approach that expects keyhole recognition while nevertheless ac-

commodating the possibility that the observed agent may be adversarial (or behaving

suboptimally for other reasons). Our self-modulating formula (Equation 4.5, p.110)

‘lifts’ the rationality assumption. It not only self-adjusts its level of confidence rel-
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ative to the apparent irrationality of the observed agent but is also more consistent

than either of the state-of-the-art formulas that we analysed.

In Chapter 4.2, we asked: “How can we define and generate measurably deceptive

paths?” We presented our model for deceptive path-planning, built on ideas derived from

the theory of deception that first appeared in the book “Cheating” by military strategists

Bell and Whaley (Bowyer, 1982). Although, as acknowledged in Section 4.4, there is

considerable scope to apply other aspects of their theory in future work, our model is not

just a single strategy or one-off formula.

• Our model inverts probabilistic goal recognition so that, instead of measuring which

goal is most likely, we examine the relative unlikeliness of the real goal.

• The model provides a mechanism for the first time (to our knowledge) whereby the

relative deceptivity of multiple paths can be evaluated and compared. Importantly,

many different strategies (in addition to the four that we suggest, pp.126-128) can

be developed with the objective of maximising the target dimensions that our model

defines.

• We introduced the notions of a last deceptive point and a first truthful point (Def-

initions 14 and 15, p.120): concepts that seem obvious once stated but which are

less obvious outside the path-planning context (although they still apply). Based on

these, we defined three dimensions against which to measure the path’s potential to

deceive: extent, density and magnitude.

We conclude by drawing attention to several interesting overlaps between Keren’s work

on goal recognition design (Keren et al., 2014, 2015, 2016) and our work on deceptive

path-planning.

First, their concept of worst case distinctiveness (which measures distance from the

initial state to a point where disambiguation can be achieved) is superficially similar to our

last deceptive point. Worst case distinctiveness, however, is a property of the domain (not

the path) and is measured by counting steps. The problem with this approach is that, since

the length of a suboptimal path is potentially infinite, as soon as an attempt is made to

accommodate suboptimality (Keren et al., 2015), worst case distinctiveness is potentially

infinite too! To handle this situation, the authors use a process that they call ‘bounded

non-optimality’, that is, they cap the number of permissible steps within a fixed budget.

This is a constraint that could be avoided if, instead of measuring distance-travelled in

terms of steps (or plan-length from the initial state), they adopted a method such as path

completion (Section 4.2.3, p.121) to measure distance travelled along a suboptimal path.

Computation of worst case distinctiveness is ingenious but computationally expen-

sive. Since, like us, Keren et al. (2014) applies the goal recognition model from Ramirez
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and Geffner (2010), our RMP calculation (Section 3.2, p.61) might be used in appropriate

domains (e.g., real-world path-planning) to abbreviate calculations. Instead of working

from the initial state, as Keren does, our model could provide a computationally econom-

ical means (with no dependence on classical planning) of finding the precise cost-distance

from goal at which ‘distinctiveness’ is achieved.

It is worth noting, finally, that modification of a domain using goal recognition design

actually facilitates deceptive path-planning because it allows simulation (i.e., the unam-

biguous targeting of a bogus goal) to begin at an earlier point in the path than would

otherwise have been possible.

5.1 Limitations

Our model of single-observation recognition inherits certain limitations from Ramirez and

Geffner’s account (2010) from which it derives. First, it assumes rationality. Also, as

highlighted by Sohrabi et al. (2016), it fails to accommodate the possibility of noisy or

missing observations (e.g., actions that were recorded but did not occur or that did occur

but went unrecorded as a result of unreliable equipment, such as a malfunctioning sensor).

Our model of deception can use any goal recognition system as a ‘black box’. Nev-

ertheless, it is limited by the assumption that the deceiver has access to that system (or

at least the cost model that it is using). There is also an assumption that the observer

is naive. If, for example, the same observer were to see the deceiving agent on multiple

occasions, one might expect the goal recognition system to adapt (e.g., using a machine

learning approach such as that described by Liao, Patterson, Fox, and Kautz, 2007). No

provision is made for this, however, nor for double-bluffs or counterplanning (Pozanco et

al., 2018).

5.2 Future Work

In Part I, we showed that single-observation recognition ranked goals in the same order

as the Ramirez and Geffner (2010) model. However, in order to ensure that probability

values were similar, we found it necessary to add a large constant to our cost difference

results. In Part II we showed that this anomalous behaviour resulted from using the

Boltzmann equation as a probability distribution formula and we showed that our non-

sigmoidal variation would return probabilities at the limit of that formula. Our interest

there was to amend our self-modulating goal recognition formula in such a way that it

would provide a correct and consistent baseline to be adjusted strictly according to our

level of confidence (flattening the probability distribution as the agent’s behaviour becomes

less rational). With this improved understanding, it would be useful now to explicitly

extend our model for single-observation recognition, using our improved version of the
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probability distribution formula. With that minor change (which corrects an anomaly

in Ramirez and Geffner’s original output), the probability distribution achieved using

single-observation recognition should become identical to that obtained using Ramirez

and Geffner’s formula, not only in terms of rank, but in terms of the probability values

themselves; and this applies in all but the one corner case which, as discussed in Section

3.4.1, differentiates between goals in a subtle way that can sometimes be more misleading

than useful.

A second—and perhaps even more useful—extension would be to fully generalise our

solution back to task-planning. As discussed in Section 3.4.2, this involves either the

(unreasonable) assumption of full observability or determining—in a domain-independent

fashion—precisely which fluents need to be observed in order to extrapolate accurate

costs from the most recently observed action to each candidate goal. Although this is a

substantial piece of work, it may be achievable. As a brute-force solution, for example,

one might work back from each goal through all possible preconditions to the problem’s

initial state to arrive at a definition of partial observability that would suffice.

Building on the above, the notion of a heatmap or a radius of maximum probability

for task-planning are interesting propositions: the idea of being able to ‘look up’ an action

and immediately determine an agent’s most likely objective is an attractive one.

Our self-modulating formula for goal recognition does not represent a typical approach

to adversarial recognition. Taking a cost-based approach, we identify behaviour that is

suboptimal with respect to every goal as being symptomatic of irrational (or rational

but deceptive) behaviour. This could be characterised as domain-independent anomaly-

detection—and, indeed, it can be used that way—but this was not our primary objective.

Rather, we wanted to factor into keyhole recognition the possibility of encountering an

adversarial agent. The crucial difference is that, whereas an adversarial recognition system

has achieved its objective as soon as the anomaly has been detected, our system simply

proceeds as before but with less confidence in its predictions. This means that when,

eventually, the deceptive agent does begin to approach her real goal, our system is still

operating. In future work, therefore, there is scope to consider how confidence could be

restored if, after a period of irrationality or erratic behaviour, the observed agent seems

once again to be ‘back on track’.

The self-modulating formula depends on a sequence of observations to assess an

agent’s degree of rationality. This is quite different from single-observation recogni-

tion, which minimises the number of observations required. Recall, however, that single-

observation recognition does use the β parameter (a rate or ‘heat’ parameter, which we

use to modulate the shape of the distribution). This means that, although the two pro-

cesses cannot be unified (we cannot have self-modulating single-observation recognition,

for example), we could use a rationality measure obtained during one event as the β value

for single-observation recognition in another. Using this aproach, it should be possible to
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determine the most likely destination of a ‘highly rational’ agent, on the basis of fewer

than usual observations.

In relation to deception, several opportunities for further research were flagged in

Section 4.4: full incorporation of magnitude into our model, development of more sophis-

ticated strategies that exploit other aspects of Bell and Whaley’s theory of deception and

the potential for inverting our model of deceptive path-planning so that it can be ap-

plied to truthful path-planning (i.e., intended recognition). There is also scope to develop

optimised algorithms to implement the strategies already proposed.

Another promising aspect of deceptive path-planning concerns exploitation of known

(or suspected) psychological idiosyncrasies and biases when it is known that the observer

is human. Recall that (on the negative side) we noted, in Section 4.3, that a ‘pure’

simulation strategy (which heads straight towards a bogus goal, then diverts towards the

real goal) ceases to deceive a human observer almost the moment the diversion towards the

real goal begins; whereas, for a computerised goal recognition system, deception—i.e., the

probability of the bogus goal—may persist for some considerable distance. The flipside of

this human tendency to jump quickly to conclusions was noted by Baker et al. (2011) in

their work on Bayesian theory of mind. In humans, they observed that opinions formed

early tend to dominate opinions that are formed late. We could take advantage of this

computationally, for example, by introducing a discount factor (or value gain) for paths

that ‘simulate’ strongly at the start. Other possibilities of a similar nature include the

idea of incorporating rewards (or discounts) for consecutive moves in the same direction,

based on the idea (untested) that continuity increases the perception of intent.

If we were to enrich the domain so that it became capable of dealing with more

complete motion-planning and extended navigational scenarios, we could consider the

impact of speed. For example, is fast, direct movement more persuasive of intentionality

than slow, indirect movement, even if both movements are generally tending towards the

same goal? There may be many other psychological factors that could be brought to bear

on the deceptive path-planning problem. Cognitive science has already had considerable

influence on goal recognition (e.g., in the work of Baker et al., 2011 and Vered et al., 2016)

much of which may also apply to deception, particularly when treated—as it has been by

us—as an inversion of the goal recognition problem.

Our approach to goal recognition and deceptive path-planning has involved special-

ising from task-planning to path-planning in the hope that, by reducing complexity, we

might gain new insights. Perhaps the greatest potential for future work lies in following

through on an attempt to generalise those insights back to task-planning.
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APPENDIX A

The Boltzmann Equation

The Boltzmann equation is one of the major equations used to describe the behaviour

of thermodynamic systems but, drawing parallels between systems of particles in ther-

modynamic equilibrium and systems of neurons, it is also used by computer scientists to

model neurons in simulated neural networks (Maren, 1989). The equation describes the

probability of a particle being in a particular state α and is usually given as:

Pα =
1

1 + e−∆E/T
, (A.1)

where ∆E is the energy difference between states and T is the temperature of the system.

Thus, when ∆E is large, e−∆E/T is very small, owing to the negative exponential.

In his thesis, Ramirez (2012) arrives at an almost identical formulation to describe

his probabilistic model of plan recognition:

P (O | G) =
1

1 + e−β∆(G)
, (A.2)

where O is the observations, G the set of possible goals and ∆(G) = optc¬(G,O) −
optc(G,O), with optc(·) and optc¬(·) the optimal cost of a plan for goal via and ‘not’ via the

observations, respectively. Similar to the temperature of the system, β is a rate parameter

which ‘modulates’ the assumption that the observed agent is pursuing plans sensitive to

the same cost function used by the observer: as β approaches zero, the distribution flattens

out (Ramirez, 2012, p.63).

Observe that ∆(G) is a representation of the cost difference formula (similar to that

given at (RG1), p.47) but with terms reversed though, for legibility, we reorganised the

terms when articulating this as a template for cost difference formulas in Part I (at p.48).

Observe also that the equation describes the probability of observations given the goal,

whereas we require the probability of the goal given the observations. From Bayes’ Rule,

however:

P (G | O) = αP (O | G) · P (G), (A.3)
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Figure A.1: Curve given by Equation (A.2) where ∆(G,O) = optc¬(G,O) − optc(G,O)
and β = 1. Reproduced from Ramirez’s thesis (2012, p.65).

where α is a normalising constant and P (G) represents prior probabilities. Since we

assume that P (G) is given, Equation (A.2) returns the distribution we require.

An alternative formulation appears in the codebase referenced from Ramirez and

Geffner’s 2010 paper, as follows.

PX(G | O) = α
e−βX

1 + e−βX
, (A.4)

where again α is a normalising constant and β a positive constant. Here, however, X =

costdif(G,O) = optc(G,O)−optc¬(G,O), not optc¬(G,O)−optc(G,O), that is, the terms

of the cost difference formula appear in the expected order.

In any event, the two formulations are provably equivalent. Here, let A = optc¬(G,O)

and B = optc(G,O):

(A.4) = α
e−β(B−A)

1 + e−β(B−A)
= α× 1

eβ(B−A)
÷ (1 +

1

eβ(B−A)
)

= α× 1

eβ(B−A)
÷ eβ(B−A) + 1

eβ(B−A)

= α× 1

eβ(B−A)
× eβ(B−A)

eβ(B−A) + 1

= α
1

eβ(B−A) + 1
= α

1

eβB−βA + 1

= α
1

1 + e−β(A−B)
= (A.2).

Figure A.1 shows the curve generated by formula (A.2). The Boltzmann is a sigmoid

equation, guaranteed never to exceed 1 or drop below zero. In the context of a probabil-

ity distribution, this ‘protection’ is superfluous, however, since probabilities are anyway

guaranteed (by the normalisation constant α) to fall within this range.
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