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1. INTRODUCTION 

During the past decades the number of poorly water-soluble drug candidates has increased 

extraordinarily in pharmaceutical research and development. According to recent evaluations, 

approximately 75 % of the new candidates belong to BCS Class II (low solubility-high 

permeability) and Class IV (low solubility-low permeability) categories [1]. In order to overcome 

the major obstacles that these drug substances possess, such as poor solubility, low dissolution 

and oral bioavailability, new approaches and possibilities should be taken into consideration. 

Many of these technologies have already been examined and aimed to be used in pharmaceutical 

industry, for example particle size reduction, micronization, cyclodextrin complexation, co-

crystallization, solid dispersion preparation, solid lipid nanoparticles, polymeric micelles, freeze-

dried liposomes, the use of different salt forms, additives, co-solvents, or solubilizing agents, just 

to name a few [2–7]. 

As the majority of APIs and excipients can be produced by crystallization, significant 

progress is also essential in the control of crystallization processes to refine attributes of the 

crystalline product [8; 9]. Namely, different crystallization techniques could result in 

agglomerated particles, unstable polymorphic forms, poor flow, needle like crystals, or the 

product could contain impurities which can decrease stability and efficacy. Therefore, already in 

the early phase of development, the choice of the most appropriate crystallization method and the 

optimization of crystallization parameters are crucial to achieve a high quality product [10; 11]. 

Crystallization methods that are commonly used in the pharmaceutical industry include 

cooling, antisolvent and precipitation processes. However, with these techniques the particle size 

can be reduced only within certain limits [12; 13]. New methods are therefore sought to decrease 

the particle size of APIs with high percentage yield and good reproducibility, such as the use of 

impinging jet crystallization and the application of multiple inlet vortex mixers [14; 15]. Most of 

these crystallization processes are performed in batches, but because of the productivity and 

batch-to-batch variability problems, continuous technologies gain increasing attention. However, 

not every batch process has been suitable for continuous crystallization thus far, but only a 

continuous mode would offer potential economic advantages as well as high product efficiency 

[16; 17]. 
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2. AIMS 

In pharmaceutical technology great efforts have been made to develop cost-effective, time-

saving particle size reduction techniques which are suitable for the production of uniform 

crystalline products and can be built into the process of the manufacturing of pharmaceutical 

formulations. 

The main focus of this thesis is on the development of a robust and fast crystallization 

technique which can result in high quality crystalline product with proper physico-chemical 

properties besides high productivity and stability. Process intensification and optimization of 

operating conditions using batch technology have been accomplished, as well as the conversion 

of the parameters to continuous mode. The goal is to achieve significant particle size reduction, 

narrow particle size distribution, optimal crystal shape and stable polymorphic form in the case 

of a model material and a poorly water-soluble drug. Furthermore, the crystal habit modification 

effect of different crystallization methods is investigated and compared with each other. 

 

The main steps in the experiments were as follows: 

 

A  Investigation of particle size reduction efficacy by impinging jet antisolvent 

crystallization method with self-developed impinging jet device and comparison of 

the effect on crystal habit with conventional crystallization methods in the case of a 

model material, glycine. 

 

B Optimization of crystal habit by adjusting operating conditions with innovative 

solutions based on factorial design during impinging jet crystallization. 

 

C  Determination of particle size reduction effect of impinging jet method in the case 

of poorly water-soluble drug, cilostazol with the use of a full factorial design. 

 

D  Development of continuous crystallization method using the self-equipped 

impinging jet unit with both a model material and a poorly water-soluble drug. 
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3. LITERATURE SURVEY 

3.1. Crystallization 

Each crystallization process involves two subsequent steps: nucleation and crystal growth. 

During crystallization a certain level of supersaturation is needed for nucleation, where a non-

equilibrium system occurs and the solution tends to crystallize. Locally, the concentration in the 

solution is impermanent, and molecules can form aggregates as well as small clusters. In case the 

formation of stable nuclei overcomes the associated energy barrier, the nuclei can grow, 

otherwise it dissolves again [18]. 

Crystallization is an important pharmaceutical industrial process, not only in the field of 

pharmaceutical, but also food and cosmetic industries. The majority of APIs and excipients can 

be produced by crystallization and one of the main purposes of this step is to generate an 

appropriate form of the compound in terms of manufacturability. The APIs of commercial 

products have to be produced usually in large scale, and the well-chosen crystallization method 

with high efficacy and productivity can significantly decrease cost and time of production and 

provide an energy-efficient manufacturing step. The crystallization process determines the 

chemical purity and physical properties of the product, including particle size, PSD, morphology, 

polymorphic form, purity, tap density, flowability, compactibility, hygroscopicity and dissolution 

rate. These quality attributes influence the further processability of drug substances [19–21]. 

Those crystallization methods are preferable which can produce reproducible products in the 

simplest possible way, and the material can be directly applied in the formulation of 

pharmaceutical dosage forms [22–24]. 

3.1.1. Crystal habit 

The crystal habit, such as particle size, shape and surface, plays a decisive role in 

pharmaceutical formulation. These parameters have a crucial impact on bioavailability, influence 

the dissolution rate, and determine the tabletability of the drug substances. Direct tablet 

compression requires sufficiently large and isodimensional particles. In contrast, a small average 

particle size with a narrow particle size distribution is preferred and frequent requirement for 

poorly water-soluble APIs. In the case of these drugs, which belong to BCS Classes II or IV, the 

crystal habit is particularly important, as they have limited aqueous solubility, slow dissolution 

in the GI tract, in addition the low systemic absorption and erratic oral bioavailability lead to sub-
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optimal efficacy in patients [25–27]. Crystal engineering, which can attain small particle size of 

the final crystallized product, can increase dissolution rate, solubility and releasing quantity from 

dosage forms; improve the bioavailability of the drug products; as well as enhance the stability 

and the uniformity of the API incorporated in tablets [28]. A spherical crystal shape favours 

flowability and fluency during the tableting processes. The smooth surface decreases the 

agglomeration propensity of the particles, assures the presence of individual particles, therefore 

fast filtration is facilitated [29]. Overall, these properties appreciably influence the 

manufacturability and the processability of the given active agent [30; 31]. 

3.1.2. Effect of additives 

Additives selectively inhibit or enhance the growth of crystal faces via several mechanisms 

and effectively change the crystal morphology. The control of morphology is affected by 

particular functional groups which can promote crystal growth or conversely inhibit it via two 

main mechanisms depending on the additives’ aggregation state. On the one hand, the aggregated 

additives can provide a planar surface and the crystallizing material can adsorb onto that surface, 

and this way the nucleation is promoted. On the other hand, the molecularly dispersed additive 

can adsorb onto the growing crystallizing material or incorporate into the crystal lattice, and 

therefore inhibits the attachment of additional crystalline material and further crystal growth is 

inhibited [32–34]. Parameters such as the concentration and type of the additives can influence 

the occurrence of the different polymorphs [35–37]. The additives used for the crystallization 

process can improve the dissolution rate, the hardness, and therefore even the efficiency of the 

tablets [38–41]. 

Kaialy et al. successfully engineered xylitol crystals by conventional antisolvent 

crystallization technique in the presence of various hydrophilic additives. Xylitol crystallized 

with polyvinylpyrrolidone or polyvinyl alcohol demonstrated improvement in the hardness of 

directly compressed tablets which contained a poorly water-soluble model material, 

indomethacin [42]. Lyn et al. applied a solvent evaporation and a slow crystallization method 

with the use of different solvent mixtures and polymers as additives in the case of piroxicam. 

Incorporation of a polymer resulted in the formation of different crystal forms, the additive 

formed a hydrophilic film on the surface of drug crystals and had improved dissolution but not 

solubility [27]. Yang et al. investigated the effects of sodium chloride on the nucleation and 

transformation of two polymorphs of glycine. They found that the aqueous solution of NaCl 
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favoured the formation of the γ-form, and the final crystals were larger than the initial crystal size 

[43]. Sekar and Parimaladevi applied a slow evaporation method for glycine crystallization using 

a high concentration of potassium chloride (4-18 %, i.e., 4000-18000 ppm) as additive. They 

observed that the additive preferentially adsorbed on the (011) crystal face of α-glycine and 

inhibited its growth along the c-axis, while enhancing the growth along the a-axis [44]. Han et 

al. examined the effects of malonic and DL-aspartic acids as additives on the growth of γ-glycine 

and DL-alanine side faces. These amino acids usually grow with a needle-like morphology from 

their aqueous solutions and are elongated along the polar c-axis. It was found that both of the 

additives inhibited the side growth along the c-axis [45]. 

In summary, the additives are clearly shown to affect the crystal morphology in the case of 

long-lasting crystallization methods, but for fast crystallization methods like impinging jet 

crystallization, the effects of additives on morphology control have not yet been investigated [25]. 

3.1.3. Conventional crystallization methods 

Conventional crystallization methods, i.e. antisolvent, reverse antisolvent and cooling 

crystallization techniques are frequently used in the pharmaceutical industry. The crystallization 

conditions, such as temperature, cooling rate, solvent-antisolvent ratio and quality, material 

concentration, mixing factors, etc. can influence the physicochemical properties of the product 

[46–48]. However, the conventional route can influence the particle size only within certain 

limits. Therefore, several alternative processes have been developed for the control and 

modification of the solid state properties of APIs. Based on the literature, ultrasound application 

in crystallization is suitable for modifying the quality of the crystals. It can reduce the metastable 

zone width, and generate rapid, uniform mixing, which reduces the agglomeration of particles 

[49]. Higher sonication intensity and longer sonication time favour the formation of smaller 

crystals with narrow size distribution [50–52]. Combining cooling and antisolvent crystallization 

is also advantageous regarding the greater control of the process. With the application of different 

cooling and feeding policies not only the yield but PSD can be improved as well [53]. 

 

3.1.4. Impinging jet crystallization method 

Midler et al. introduced and adapted the impinging jet technique in crystallization [54]. The 

general use of this technique is a relatively new field for the researchers in the pharmaceutical 
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manufacturing and industrial crystallization [55; 56]. However, it is proved that this method 

effectively reduces particle size, as well as having the potential advantage to produce 

reproducible products with small average particle size and narrow PSD [57]. In the course of IJ 

crystallization, the rich solution of the API and the antisolvent flow through two jet nozzles 

arranged diametrically opposite each other, and it generates high-intensity micromixing of fluids 

to achieve high supersaturation before the onset of nucleation at the impinging point [58]. This 

process potentially results in rapid crystallization in the absence of concentration gradients and 

produces a monodisperse population of small crystals with a high surface area. The impinging jet 

element can be used in a crystallization reactor or operated in non-submerged mode. It is often 

used in combination with ultrasound to achieve a further reduction in particle size. The direct 

production of small uniform crystals with high surface area that meet the bioavailability and 

dissolution requirements can eliminate the need for milling, which can give rise to dust issues, 

yield losses, long production times, polymorphic transformation or amorphization [46; 59–64]. 

The currently applied unit, which was used during our experiments, was a self-developed and 

designed device. 

3.1.5. Continuous crystallization 

Due to a high demand to accelerate time-to-market developments for new therapies and 

critical medicines, a keen interest in robust and cost efficient continuous technology has leapt 

into the limelight. Regulators also encourage manufacturers for the development of continuous 

processes, since it gives the opportunity to gain more information on process parameters and 

collect more data to demonstrate that the procedure is consistent within the acceptable operating 

ranges [65; 66]. However, nowadays, it is still a great challenge to convert technologies from 

batch to continuous mode in the pharmaceutical industry. The application of scalable and flexible 

continuous processes is clearly becoming more and more widespread, since continuous 

manufacturing has a lot of advantages, such as faster process, better percentage yield, uniform 

product, thus the variations between batches can be avoided, and precision control and monitoring 

of critical quality attributes can also be achieved more easily. The main advantages of these 

techniques are that they have the merits of flexible change in production quantities and ease of 

scale-up, which are important in commercial manufacturing, however certain processes require 

parameter adjustment for prolonged operation [67]. 



7 

The development of conventional batch crystallization begins with lab-scale in small-volume 

reactors and during scale-up the parameters often need to be widely adjusted to achieve the same 

quality of the product. High-volume reactors and expensive equipment are needed in industrial 

scale, which require a lot of space to arrange them and have huge time-consuming purification 

steps. During continuous mode a small-size reactor is sufficient even in industrial-scale due to an 

ongoing removal of the product [68–72]. The development of a continuous system that is capable 

of filtering, washing, and drying the crystallized APIs is also advantageous. The system should 

be tested for success criteria of achieving comparable cake purity and consistent PSD compared 

with the crystallized material [73]. 

3.2. Polymorphism 

Polymorphism in the solid state occurs when the same molecule exists as multiple crystalline 

phases in the crystal lattice [74]. The most common technological factors which can induce 

polymorphism are i.a. scale-up, optimization of crystallization, change of solvent, drying, 

compression, and grinding/milling [75]. For the pharmaceutical industry, the main concern is the 

effect of the appearance of unwanted polymorphs during the production, because certain forms 

have different physico-chemical properties, such as stability, solubility or even toxicity. 

Therefore, this phenomenon must be very well monitored throughout the whole production chain, 

and the different forms have to be identified and fully characterized [76; 77]. 

3.3. Drug substances 

3.3.1. Glycine 

Glycine is a widely used material for crystallization experiments [78–80]. Gly crystals grow 

rapidly and the crystal size is typically quite large, therefore it is an ideal model material for 

particle size reduction studies and for the demonstration of the efficacy of crystallization methods 

[81; 82]. Figure 1 shows its chemical formula. 

 

Figure 1 Chemical formula of glycine. 
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Gly exists in three polymorphic forms under ambient conditions and under high pressure, δ- 

and ζ-polymorphs have also been observed [83]. α-glycine is metastable under ambient 

conditions and in aqueous solutions, it develops by spontaneous nucleation as the main 

polymorph. Its crystal structure is monoclinic (s.gr. P21/n) [79; 84]. β-glycine is the least stable 

form at all temperatures, and its formation is driven by the addition of methanol or ethanol to the 

aqueous solutions. It is also characterized by a monoclinic crystal structure (s.gr. P21). 

Thermodynamically, γ-glycine is the most stable form under ambient conditions, although most 

commonly the α-form crystallizes in aqueous solutions and it does not usually transform into the 

γ-form under these conditions. The γ-form is known to develop in acidic and basic water solutions 

containing additives like acetic acid, ammonia, or inorganic salts. Its crystal structure is trigonal 

(s.gr. P31). The addition of ethanol to an aqueous Gly solution induces precipitation of the β-form 

[57; 85; 86]. The crystallization methods and conditions, the pH of the solution, and the presence 

of additives also influence the crystal morphology and the polymorphism [28]. These three 

polymorphs exist in the zwitter-ionic form within the crystals, and they differ in terms of how the 

+NH3–CH2–COO– groups are linked by the hydrogen bonds [25; 87; 88]. 

Aigner et al. examined the effects of several crystallization methods and their parameters 

(cooling, reverse antisolvent and antisolvent crystallization with ultrasound) on the average 

particle size, PSD and roundness of glycine, and found that these methods are capable of reducing 

the average particle size only within a certain range. The particle size varied in a relatively wide 

range: in cooling crystallization 268-680 µm; in reverse antisolvent crystallization 160-466 µm; 

and in antisolvent crystallization with the use of ultrasound 82-232 µm were the range of the 

produced crystals particle size [47]. In order to reduce the glycine particle size, Louhi-Kultanen 

et al. (2006) studied the effects of ultrasound during cooling crystallization on the polymorphism, 

crystal size distribution and heat transfer in batch cooling crystallization. Sonocrystallization 

proved to be a good tool for optimizing and controlling the nucleation and crystallization of 

glycine, and can be used as a size reduction method to produce a final product with uniform 

crystal morphology. The smallest average particle size achieved was about 100 µm [89]. 

3.3.2. Cilostazol 

Cilostazol, 6-[4-(1-cyclohexyl-1H-tetrazol-5-yl)butoxy]-3,4-dihydro-2(1H)-quinolinone is a 

phosphodiesterase III inhibitor, which supresses platelet aggregation and has a direct arterial 

vasodilator effect [90–92]. It exists in three polymorphic forms in a monotropic system. Form A 
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is thermodynamically the most stable, orthorhombic polymorph, Forms B and C are metastable, 

and Form C has a monoclinic crystal structure [93]. Cilostazol belongs to the BCS Class II group, 

and accordingly, it is poorly soluble in water and highly permeable. Due to its poor aqueous 

solubility and low oral bioavailability, the therapeutic usage of cilostazol is limited. Therefore, 

several researchers have attempted to increase the solubility and oral bioavailability of cilostazol 

by using various procedures [94–96]. Gouthami et al. established that different solvent-

antisolvent compositions influence the crystal habit, methanol-hexane and ethanol-hexane 

resulted in hexagonal and rod shaped habits. The raw material cilostazol has needle-shaped 

crystals in general, and currently in commerce its average particle size is between 10-15 µm [97]. 

Kim et al. used supercritical antisolvent (SAS) process to reduce the particle size of cilostazol. 

Remarkable dissolution rate enhancement was observed due to the increased specific surface area 

[98]. Jinno et al. applied, among others, different mechanical milling processes, such as hammer-

mill and jet-mill technologies. These methods resulted in particles with mean diameters of 13 µm 

and 2.4 µm, respectively [99]. Figure 2 shows its chemical formula. 

 

Figure 2 Chemical formula of cilostazol. 
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4. MATERIALS AND METHODS 

4.1. Materials 

Glycine was purchased from VWR International Ltd., Debrecen, Hungary. Cilostazol was 

generously provided by Egis Pharmaceuticals Plc., Budapest, Hungary. 

All the applied solvents were of analytical grade. Ethanol 96%, methanol and acetone were 

supplied by VWR International Ltd., Debrecen, Hungary; neutral oil (Miglyol 812) was 

purchased from Sasol Germany GmbH, Hamburg, Germany; N,N-dimethylformamide and 

dimethyl sulfoxide were supplied by Scharlau, Barcelona, Spain; and purified water of Ph. Eur. 

quality was used for the experiments. Polysorbate 80 (VWR International Ltd., Debrecen, 

Hungary) was applied for sample preparation during particle size distribution analysis. Simulated 

gastric fluid without enzymes (10.0 g NaCl, ~59.4 g 37% HCl ad 5000 ml purified water, 

pH = 1.2 ± 0.1), and phosphate buffer (385 ml 0.2 M NaOH, 34.0 g KH2PO4 ad 5000 ml purified 

water, pH = 6.8 ± 0.1) were used during dissolution investigations. 

4.2. Methods 

4.2.1. Crystallization methods 

4.2.1.1. Conventional crystallization methods 

Conventional crystallization methods were implemented in a 250-mL flat-bottomed, double-

walled crystallization reactor with constant room temperature provided by the Julabo F32 (Julabo 

GmbH, Seelbach, Germany) cryothermostat controlled by the Julabo EasyTemp 2.3e software. 

Ongoing mixing was carried out with a magnetic stirrer by using an egg-shaped magnetic stir bar. 

In the case of the antisolvent system, supersaturation was achieved by exposing the saturated API 

solution to the antisolvent at room temperature with fast addition (24 mL min-1) by means of a 

peristaltic pump. Reverse addition of the solutions was applied in the case of reverse antisolvent 

crystallization, thus the saturated product solution was added to the antisolvent with the same 

constant velocity at 25 °C. In both cases the experiments were accomplished with and without 

the use of high power ultrasound device (Hielscher UP 200S Ultrasonic Processor, Germany). 

4.2.1.2. Impinging jet crystallization 

The impinging jet unit was a self-developed device which included 0.6-mm-diameter nozzles 

and was arranged in a non-submerged mode. Two calibrated peristaltic pumps (Rollpump Type 
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5198, MTA Kutesz, Budapest, Hungary) fed the near-saturated solution of APIs and the 

antisolvents to the IJ unit at defined temperatures. Crystallization experiments were carried out 

in a 250-mL round-bottomed, double-walled Schmizo crystallization reactor (Schmizo AG, 

Oftringen, Switzerland) equipped with an IKA Eurostar digital overhead stirrer (IKA-Werke 

GmbH & Co., Staufen, Germany) and an Anker-type mixer with constant stirring speed. 

Temperatures were adjusted with a Thermo Haake P5/C10 (Thermo Haake, Karlsruhe, Germany) 

thermostat and a Julabo F32 (Julabo GmbH, Seelbach, Germany) cryothermostat controlled by 

the Julabo EasyTemp 2.3e software. After the preparation of saturated API solution, further 

solvent (2 ml) was added consequently to avoid crystallization in the nozzles. The feeding was 

accomplished with certain linear velocity and with different solvent–antisolvent ratio, with 

various temperature differences between the solutions. The crystallized products were filtered in 

a porcelain filter and were washed with antisolvent, to minimize the quantity of residual solvent. 

After 24 hours of vacuum drying at 40 °C, the products were stored in closed containers under 

normal conditions. The schematic drawing of the experimental apparatus is outlined in Figure 3.  

 

Figure 3 Self-developed experimental apparatus of impinging jet crystallization. 
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4.2.1.3. Continuous crystallization 

During the continuous experiments the self-equipped impinging jet mixer was applied in 

non-submerged mode in a double-walled crystallization reactor (Schmizo AG, Oftringen, 

Switzerland), and the continuous mixing was achieved by an IKA Eurostar digital overhead 

stirrer (IKA-Werke GmbH & Co., Staufen, Germany) equipped with an Anker-type mixer with 

constant stirring speed. Constant temperatures of both of the API solution and the antisolvent 

were set by Thermo Haake P5/C10 (Thermo Haake, Karlsruhe, Germany) thermostat and Julabo 

F32 (Julabo GmbH, Seelbach, Germany) cryothermostat controlled by Julabo EasyTemp 2.3e 

software. The solutions were dosed in high volume by two calibrated peristaltic pumps 

(Rollpump Type 5198, MTA Kutesz, Budapest, Hungary). In the case of the glycine experiments 

the nearly saturated API solution, which contained 200 ppm KCl, and the antisolvent, 96% 

ethanol flowed through the nozzles with constant velocity (4.06 m s-1) in the ratio of 1:1 to the 

impinging point. During cilostazol experiments those parameters were set as well, which resulted 

the most appropriate product in the case of batch process. The nearly saturated API solution and 

the antisolvent, purified water were dozen to the impinging unit with constant 4.06 m s-1 velocity 

in the ratio of 1:1. 

Ongoing filtration was implemented of the crystallized product with porcelain filters without 

post-mixing. Fractions were separated from the crystallized product at given intervals in order to 

investigate the physico-chemical properties of the crystals in the pipeline. After 24 hours of 

vacuum drying at 40 °C, the products were stored in closed containers under ambient conditions. 

4.2.2. Determination of solubility 

The solubility of glycine and cilostazol was determined by using gravimetric method in pure 

water, EtOH, MeOH, DMSO, DMF, acetone and in mixtures of different volume ratios of 

solvents at ambient temperature. The effect of different concentrations of additives (NaCl and 

KCl) to solubility was also evaluated. Three parallel measurements were carried out and for each 

it took 24 hours to reach the equilibrium. After the sedimentation of the suspended particles, the 

clear solution was sampled into a vessel with a known mass. 

4.2.3. Product characterization 

4.2.3.1. Determination of crystal morphology 
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Light microscopy 

The crystal shape of the crystallized products was analysed using the Leica Image Processing 

and Analysis System (Leica Q500MC; Leica Cambridge Ltd., Cambridge, UK). It can provide 

detailed information about the morphology of single particles in terms of crystal length, breadth, 

surface area, perimeter and roundness. The products were suspended in Miglyol 812 with 

ultrasound for 2 minutes in order to ensure the presence of individual particles. Approximately 

1000 particles per sample were measured and the roundness value was evaluated of high priority. 

Roundness is a shape factor giving a minimum value of unity for the circle shape. The 

roundness value for the perfect sphere shape equals 1.00. Roundness is calculated as the ratio of 

the perimeter squared and the surface area. The adjustment factor of 1.064 corrects the perimeter 

for the effect of the corners produced by the digitization of the image. The following equation 

was applied: 

 

Scanning electron microscopy 

The morphology of the crystallized products was investigated by SEM (Hitachi S-4700, 

Hitachi Scientific Ltd., Tokyo, Japan). The working distance was 15 mm with an accelerating 

voltage of 10 kV and an emission current of 10 mA. A sputter coating apparatus (Bio-Rad SC 

502, VG Microtech, Uckfield, UK) was applied to induce electric conductivity on the surface of 

the samples applying a gold-palladium coating. The argon gas pressure was 1.3–13.0 mPa and 

the time was 90 sec. 

Particle size distribution analysis 

PSD was determined by a Malvern Mastersizer 2000 laser diffraction analyser (Malvern 

Instruments Ltd., Malvern, UK) in dry method with a Scirocco dry powder feeder, using air as 

the dispersion agent in the case of Gly samples. CIL was investigated with wet analysis using the 

Hydro S dispersion unit (capacity 100–150 mL), and the samples were dispersed in purified water 

which was saturated with CIL with a brief period (3 min) of sonication, and 0.02 mL 

Polysorbate 80 was added to the solution in order to avoid the reagglomeration of the particles. 

In both cases measuring range of 0.02–2000 µm was defined. Two repeated measurements were 

performed on each sample and the mean value was calculated. The tables with the results contain 

d (0.5), the diameter where half of the population lies below; and D [4,3], the mean diameter over 

the volume. 

064.14

2


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Area

Perimeter
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4.2.3.2. Identification of polymorphism 

X-ray powder diffractometry 

Crystal structures were identified by XRPD, the experiments were performed with a Bruker 

D8 Advance diffractometer (Bruker AXS GmbH, Karlsruhe, Germany). Scattered intensities 

were measured with a Våntec-1 line detector, symmetrical reflection mode with Cu Kα radiation 

(λ = 1.5406 Å), and Göbel Mirror bent gradient multilayer optics were used. Relevant 

measurement conditions were as follows: angular range, from 3° to 40° in steps of 0.01°; target, 

Cu; filter, Ni; voltage, 40 kV; current, 40 mA; measuring time, 0.1 s/steps. The diffraction 

patterns of the crystallized samples were compared with those of the structures available in the 

Cambridge Structural Database (Cambridge Crystallographic Data Centre, Cambridge, UK). 

Differential scanning calorimetry 

A Mettler Toledo DSC 821e thermal analysis system, equipped with the STARe software 

version 9.30 (Mettler-Toledo AG, Greifensee, Switzerland) was applied for the determination of 

melting points of the samples. The measuring parameters were as follows: 10 °C min-1 linear 

heating rate, argon as carrier gas (100 mL min-1), 2–5 mg sample weight, and 25–300 °C 

temperature interval. A sealed 40-μL aluminium crucible with three leaks in the lid was used for 

the measurements. 

4.2.3.3. Flowability properties  

The device was generously provided by Gedeon Richter Plc., Budapest, Hungary for our 

research work. A Brookfield Powder Flow Tester (PFT230, Brookfield Engineering Labs, Inc., 

Middleboro, USA) equipped with Powder Flow Pro software (Powder Flow Pro V1.3 Build 23, 

Brookfield Engineering Labs, Inc., Middleboro, USA) for automated instrument control and data 

acquisition, was used to measure the Gly samples with the running of standard Flow Function 

Test. The products were scooped into the trough (230 cc, 6-inch diameter) and the scraping tool 

was used to evenly distribute the powder and form the sample. Lid Type: Vane Lid, 304 s/s, 

33 cc, and 6-inch diameter. 

4.2.3.4. Determination of wettability by contact angle measurement  

Contact angle measurements were conducted under ambient conditions with a DataPhysics 

Contact Angle System OCA 20 (DataPhysics Instruments, Filderstadt, Germany). CIL 

compacted pastilles were produced with a manual hydraulic press (Specac Ltd., Orpington, UK). 

150 mg CIL powder was filled into the 13-mm die and compressed to tablets at a compression 



15 

force of 0.5 ton with a dwell time of 30 s. The sessile drop method was used to determine the 

contact angle: 5.2 μl of purified water was placed on a compact. The contact angle was measured 

immediately after the drop reached a quasiequilibrium shape. Triplicate determinations were 

carried out for each compact. 

4.2.3.5. Residual solvent quantity 

Glycine samples 

The residual solvent content was analysed by a headspace gas chromatographic method using 

a Varian CP-3800 gas chromatograph (Varian, Walnut Creek, CA, USA) with a DB-624 capillary 

column (60 m · 0.25 mm · 1.4 mm, nominal) equipped with a Tekmar Dohrmann 7000 headspace 

autosampler and a flame ionization detector. The conditions for the GC analysis were optimized 

for quantitative determination of ethanol.  

Cilostazol samples 

Residual solvent content was measured by a hGC method using a Perkin Elmer Clarus Gas 

Chromatograph with a DB-624 capillary column (30 m · 0.32 mm · 1.8 µm, nominal) equipped 

with a Turbomatrix 110 headspace autosampler and a flame ionization detector. The conditions 

were optimized for DMF concentration determination. 

4.2.3.6. Analysis of residual additive content 

Qualitative determination of the additive content 

SEM (Hitachi S-4700 cold field emission microscope type II) with EDS (Röntec XFlash 

energy dispersive X-ray spectrometer, Berlin, Germany) was used to examine the topology, the 

composition, and the elemental map of the samples. The resolution limit of this unit was 1.5 nm; 

the rate of magnification was 2500 x. The samples were made conductive by sputter-coating, 

producing an approximately 3-nm gold-palladium surface layer to avoid charging effects (Bio-

Rad SC 502, VG Microtech, Uckfield, UK). 

Quantitative determination of the additive content 

Determination of the KCl concentration of the samples was performed by FAAS. A Perkin 

Elmer 4100 ZL (Überlingen, Germany) flame atomic absorption spectrometer equipped with a 

deuterium background correction system and an air-acetylene burner was used for the 

determination of the potassium content. The conventional working parameters for the instrument 

were as follows: a wavelength of 766.5 nm, a spectral bandwidth of 0.7 nm, an acetylene flow 

rate of 2.5 L min–1, and a nebulizer flow rate of 8.0 mL min–1. The concentration of the standard 



16 

potassium stock solution was 1000 ppm (Acidum-2 Ltd., Debrecen, Hungary); the calibration 

series were made using a 0.2 M HNO3 solution and the stock solution in various quantities. The 

sample solutions were also prepared using the 0.2 M HNO3 solution. 

4.2.3.7. Investigation of dissolution rate 

The dissolution rate of the CIL samples was examined by a Ph. Eur. dissolution apparatus 

with a modified paddle method (Type PTW II, PharmaTest Apparatebau AG, Hainburg, 

Germany), using 11.11 mg of pure CIL powder, which corresponds to the dose of the product on 

the market, in 100 mL of SGF at a pH value of 1.2 ± 0.1. The suspension was agitated at 100 rpm 

and sampling was performed up to 120 min (sample volume 5.0 mL). Aliquots were withdrawn 

at 5, 10, 15, 30, 60, 90, 120 min, and immediately filtered through 0.2-μm cellulose filters 

(Phenomenex Syringe filters). At each sampling time, an equal volume of fresh medium was 

added, and the correction for the cumulative dilution was calculated. Each experiment was run in 

triplicate. After filtration and dilution, the API contents of the samples were determined UV-

spectrophotometrically (λSGF = 260 nm). 

4.2.4. Factorial design and statistical analysis 

The IJ experiments were implemented by a 32 full factorial design to identify the relevant 

factors which affect the solid state properties of the crystallized product. Different crystallization 

parameters were investigated, i.a. linear velocity, post-mixing time, temperature difference on 

independent variables, i.e. on roundness, d (0.5), D [4,3], percentage yield or dissolution rate. The 

experiments were performed in a randomized sequence. The following equation describing the 

interactions of the factors was used to determine the response surface and the relative effects of 

each factor investigated (b): 

y = b0 + b1x1 + b2x2 + b3x1
2 + b4x2

2 + b5x1x2 

Statistica for Windows 12 AGA software (StatSoft Inc., Tulsa, USA) was used for these 

calculations. The confidence interval was chosen to be 95%, i.e. the differences were regarded as 

significant at p < 0.05. 

Significant differences between the conventional and the IJ methods were also discovered in 

terms of the mean particle size (d (0.5)) and roundness. GraphPad Prism 5 Portable statistical 

software (GraphPad Software Inc., La Jolla, CA, USA) was applied for the statistical analysis by 

means of an unpaired t-test.  
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4. RESULTS AND DISCUSSION 

4.1. Glycine particle size reduction 

4.1.1. Solubility of glycine 

The solubility of Gly was measured in water-ethanol mixtures, so was in the pure solvents at 

ambient conditions in order to identify the saturated concentration in water and determine the optimal 

solvent-antisolvent ratio which occurs in the crystallization reactor after feeding of the solutions. The 

low solubility of Gly in that mixture prevents the dissolution of small crystals and improve the yield. 

Figure 4 shows that in the case of 1:2 ratio of water:ethanol the solubility is decreased appreciably 

and further increasing of ethanol quantity is not reasonable. It is worth to take into consideration the 

ratio of 1:1, because solubility of Gly is even low, and the lower ethanol concentration favors the 

presence of the more stable α polymorphic form. Therefore, 1:2 or 1:1 ratio can be chosen for the 

experiments to ensure high productivity and percentage yield during crystallization. 

 

Figure 4 Glycine solubility in water-ethanol mixture. 

4.1.2. Factorial design 

The IJ experiments were accomplished in two series and laid out by a 32 full factorial design. 

In the case of series A the influence of the linear velocity (1.41; 2.77; 4.06 m s-1) and the post-

mixing time (0; 5; 10 min) in three different levels, and in series B the influence of the 

temperature difference (0; 12.5; 25 °C) and the post-mixing time (0; 5; 10 min) were investigated 

on three operational parameters: roundness, d (0.5) and D [4,3]. 
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4.1.3. Crystal habit of the crystallized products 

In series A, 1:1 water:ethanol solvent ratio was applied and remarkable particle size 

reduction was experienced compared to the initial material. One of the investigated dependent 

variables had inverse effect: increase of the post-mixing time improved the roundness, but 

increased the particle size of the product, which was in contrast with the announced goal. The 

average particle size increased to a greater extent particularly at a post-mixing time of 10 min. 

As the crystallization parameters had opposite effects on the particle size and roundness, it was 

favourable to apply a post-mixing time reduction. In series B, the solvent ratio was modified to 

1:2 water:ethanol ratio. However, neither the temperature difference nor the post-mixing time 

influenced the particle size or roundness of the crystallized products significantly, but each 

individual parameter setting resulted in significantly smaller particles as compared with series A. 

The percentage yield in series B was higher due to the lower solubility of glycine in the 1:2 

solvent–antisolvent mixture. The filterability of all the crystallized products was satisfactory. 

 

Figure 5 SEM images of the initial glycine (A); product of series A (B);  

product of series B (C). 

In Figure 5 the differences in crystal size and morphological parameters are demonstrated. 

The original glycine contained large isodimensional crystals with a smooth surface. By contrast, 

the products with the smallest average particles in the two crystallization series consisted of small, 

irregular-shaped, needle-form crystals with a smooth surface and poorer roundness. The 

crystallized products exhibited a slight tendency to aggregate due to the small particle size, but 

this did not cause any problem for the laser diffraction particle size analysis measurements and 

allowed the application of the dry method. 

The results of particle size and shape for the two series are presented in Table 1 and Table 2. 

Each assay was repeated three times; the Tables show the average results of roundness, d (0.5), 

D [4,3] and percentage yield. 
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Table 1 IJ crystallization results for series A [57]. 

Sample Linear velocity 

(m s-1) 

Post-mixing time 

(min) 

Roundness d (0.5) D [4,3] 

A1 1.41 0 2.977 15.792 21.497 

A2 1.41 5 2.292 15.808 20.295 

A3 1.41 10 2.089 31.222 37.498 

A4 2.77 0 2.715 16.770 22.530 

A5 2.77 5 2.251 26.057 31.610 

A6 2.77 10 2.033 34.285 40.650 

A7 4.06 0 2.116 14.029 17.175 

A8 4.06 5 2.363 13.778 17.784 

A9 4.06 10 1.961 31.948 38.076 

Table 2 IJ crystallization results for series B [57]. 

Sample Temperature difference 

(°C) 

Post-mixing time 

(min) 

Roundness d (0.5) D [4,3] 

B1 0 0 1.825 10.142 13.329 

B2 0 5 2.429 9.249 11.241 

B3 0 10 2.935 9.368 11.563 

B4 12.5 0 2.851 8.335 10.889 

B5 12.5 5 2.186 8.524 10.803 

B6 12.5 10 2.292 9.664 12.662 

B7 25 0 2.071 8.575 11.599 

B8 25 5 2.166 10.204 13.849 

B9 25 10 2.513 8.835 11.636 

 

4.1.4. Polymorphism of the crystallized products 

4.1.4.1. XRPD analysis of the crystallized products 

The polymorphism of the initial material and the products was examined with XRPD and 

compared with the structures in the CSD (Figure 6). It was found that both the initial material 

and the series A products consisted of the pure stable α-polymorph. In contrast, the series B 

products contained mostly the less stable β-polymorph, and a small amount of the α-polymorph. 

According to the literature data [85; 86], the appearance of the β-polymorph is caused by the 

higher concentration of ethanol in the crystallization process. While the 1:1 solvent–antisolvent 

ratio favoured the formation of the stable α-form, the 1:2 ratio resulted in the appearance of the 

less stable β-polymorph. 
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Figure 6 XRPD diffractograms of the α- and β-glycine, and IJ crystallized products with the 

most appropriate morphology in series A and B after preparation and after one year of 

storage. 

4.1.4.2. Determination of the transformation of the polymorphic forms 

Transformation of the β-form into the α-polymorph began during storage. The exact 

characterization of polymorphic alteration and the ability to monitor the effect of process 

parameters are crucial, therefore a novel XRPD calibration approach was developed for the 

monitoring of this phenomenon in the case of glycine. 

The procedure of the pure β-form production based on the literature data [87] and was 

optimized for higher productivity in our laboratory. Powder mixtures of various compositions (0 

+ 100, 10 + 90, 20 + 80 Form α + Form β, and so on) were prepared from the two polymorphs 

and the calibration curve was recorded. The calibration curve based on the characteristic peak 

area of the α-form (peaks at 29.225, 29.827 and 30.172 2θ) was as follows:  

y (α-form %) = -1.7465 x (net area) + 158.25 (R2 = 0.991). 

It was specified that the initial β-form content of the series B samples was between 72 and 

96%. After 1 year of storage under normal conditions, the β-form content had decreased to 13–

17%. The series A products did not change during this storage period. It was found that the 1:1 

solvent ratio used in the crystallization processes was critical for the formation of the stable 

polymorphic form. 
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4.1.4.3. DSC results of the crystallized products 

DSC studies confirmed the results of the powder X-ray analysis. The thermograms of the 

initial material and the series A products contained one endothermic peak at about 257 °C, which 

corresponds to the melting point of the α-form. In contrast, the thermograms of the series B 

samples displayed two endothermic peaks. The lower-temperature peak corresponded to the 

melting point of the β-form, while the second peak was caused by the melting of the α-form. It 

was not possible to specify the proportion of the polymorphs because the two endothermic peaks 

overlapped. After storage for one year, the thermograms of the series B samples were similar to 

the previously recorded ones. It has been reported that the phase transition of the γ-form to the α-

polymorph causes a small endothermic peak at about 179 °C [35]. Our results indicated that our 

samples did not contain any γ-form (see Figure 7). 

 
Figure 7 DSC thermograms of the initial material and the IJ crystallized products 

in series A and B. 

4.1.5. Residual solvent quantity 

The growth of the crystals during IJ crystallization is fast, due to the homogeneous and high 

degree of supersaturation. Therefore, there is a high risk for the occurrence of solvent 

(antisolvent) inclusions in the crystals that is associated with such an extremely rapid 
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crystallization technique. Ethanol (used as antisolvent) belongs in the ICH Q3C(R7) Guideline 

Class 3 group, where the residual solvent concentration is at most 5000 ppm, and it was therefore 

necessary to determine its concentration in the crystallized products [100]. The residual solvent 

contents of the crystallized samples were determined by hGC. Our results indicated that the 

ethanol content of the initial sample was less than the limit of quantification, and it was therefore 

assumed that ethanol was not used in the preparation of this material. The maximum residual 

solvent content of the series A samples was 9 ppm, while the samples in series B contained a 

maximum 145 ppm of ethanol. The measured residual solvent content of the samples was low 

relative to the maximum values prescribed in the ICH requirements, which demonstrated the 

applicability of the IJ method in the antisolvent crystallization of glycine despite the extremely 

rapid nucleation. 

4.1.6. Effects of dependent variables 

Statistical analysis of the results relating to the effects of the crystallization parameters on 

the roundness and particle size are presented in Table 3, where the statistically significant factors 

are underlined. In the case of series A, only the post-mixing time exhibited a significant linear 

relationship with the changes in roundness, d (0.5) and D [4,3] results (the response surface R2 

results were 0.858, 0.937 and 0.943, respectively). Neither the linear nor the quadratic 

relationship of the linear velocity and the interaction effect of the two independent variables 

displayed a significant effect on the change in these dependent variables. An increase of the post-

mixing time increased the average particle size, but reduced the roundness, and the post-mixing 

time therefore had to be reduced to achieve the desired small particles. We assume that an 

increase of the linear velocity would cause a further particle size reduction, but the pump capacity 

was limited, so that the velocity could not be increased as compared with the original parameters 

described in the crystallization studies. Surface plot diagrams were also taken for demonstration 

the significant parameters (see Figure 8). The investigated parameters did not cause significant 

changes in the particle size and roundness in series B. 

Table 3 Factorial design results (series A) [57]. 

Dependent 

variable 

Polynomial function R2 

roundness y = 2.32 - 0.31x1 - 0.58x2 + 0.04x1
2 - 0.01x2

2 + 0.37x1x2 0.858 

d (0.5) y = 22.19 - 1.02x1 + 16.94x2 + 5.29x1
2 -5.46x2

2 + 1.25x1x2 0.937 

D [4,3] y = 27.47 - 2.09x1 + 18.32x2 + 6.24x1
2 -6.34x2

2 + 2.45x1x2 0.943 
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Figure 8 Surface plot diagrams of the series A products, investigating the effect of mixing 

time and liner velocity on average size (d (0.5) and D [4,3]), and roundness. 

4.1.7. Comparison with conventional crystallization methods 

The application of the IJ crystallization technique resulted in significantly smaller particle 

size as compared with the previously investigated conventional crystallization methods. The 

parallel crystallization processes with the same parameters produced the same particle size 

distribution, which confirmed the reproducibility of the methods. 

 

Figure 9 Particle size distribution and average particle size range produced by different 

crystallization methods (top: particle size distribution of the product with the smallest 

average particle size achieved with the given method; bottom: average particle size 

ranges (d (0.5)) attained with the given method). 

Figure 9 illustrates the particle size distributions of the products with the smallest particles 

and the average particle size ranges produced by IJ crystallization and the previously investigated 

crystallization methods [47]. The largest particles were achieved by conventional cooling 



24 

crystallization. The reverse antisolvent and antisolvent methods with the application of 

ultrasound were also able to achieve slight reductions in the average particle size of glycine. The 

IJ technology resulted in a further one order of magnitude reduction in particle size [57]. 

4.1.8. Conclusion 

Application of the self-developed IJ method in antisolvent crystallization led to a 

reproducible decrease in the average particle size of glycine with suitable low residual solvent 

quantity. The average particle size was an order of magnitude smaller (d (0.5) = 8–35 µm) as 

compared with the results of several other crystallization methods (cooling, reverse antisolvent 

and antisolvent crystallization with the application of ultrasound, where d (0.5) was between 82 

and 680 µm. Production of the stable polymorphic form required the application of a 1:1 water–

ethanol ratio. The IJ crystallization method has proved to be a good tool for optimizing and 

controlling the nucleation and crystallization of organic materials such as glycine. 

However, the IJ method resulted in needle-shaped crystals which is considered as an 

unfavourable shape, therefore improvement of the roundness is necessary with further 

optimization of process parameters [57]. 

4.2. Optimization of glycine crystal habit with the use of additive 

Based on thorough literature search it was found that inorganic salts are capable to modify 

glycine crystal habit in the case of long-lasting crystallization methods, like slow evaporation or 

cooling crystallization [43–45]. In the course of these methods high concentration of additives 

was applied to reach the desired effect on crystal habit. Their efficacy concerning either fast 

crystallization methods or low concentration levels (below 1000 ppm) has not been detected so 

far. 

4.2.1. Selection of additives 

First of all, the impact of inorganic salts on glycine solubility was determined, in order to 

keep later on the proper saturated level during the feeding of the API solution. Solubility of 

glycine varied due to the usage of different concentrations and types of additives. The presence 

of an additive increased the solubility of glycine from 0.20 g ml-1 to 0.24 g ml-1, but the higher 

concentration of both NaCl and KCl increased the solubility with just a small amount compared 

with the lower concentrations. Furthermore, solubility of KCl and NaCl was measured in the 
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mixtures of different ratio of water:ethanol, to determine their optimal concentration for IJ 

experiments. For the first time, those maximum additive concentrations were selected, which can 

ensure that the additive still remains in solution in the ratio of 1:1 of water:ethanol, thus the 

quantity of the crystallized additive is minimized in the bulk solution. 

NaCl was applied in 5000-15000 ppm concentration as additive in the case of glycine IJ 

crystallization and it resulted in mainly needle and irregular shaped crystals, in addition the high 

additive content caused the appearance of other polymorphic form as well. Based on these, NaCl 

was not included in our further investigations with the IJ device (see Figure 10). 

 

 

Figure 10 Light microscopy images of IJ crystallized products with high concentration of 

additives: A: Initial Gly; B: IJ Gly with 5000 ppm KCl; C: IJ Gly with 8000 ppm KCl; 

D: IJ Gly with 5000 ppm NaCl; E: IJ Gly with 10000 ppm NaCl; 

F: IJ Gly with 15000 ppm NaCl 

 

In our initial pilot research, a high concentration (5000-8000 ppm) of KCl resulted in more 

appropriate morphology in the case of the IJ method. The lower concentration, 2000 ppm 

approached our final goal mostly. Thus, in series I, the concentration of additive was decreased, 

and the concentration range of 1000-2000 ppm of KCl was found to produce the desired effect. 

In series II, the additive concentration was decreased further with one order of magnitude (100-

200 ppm) to find the lowest effective concentration of the additive and to reduce the residual KCl 

quantity in the products. 
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4.2.2. Crystal morphology of IJ products with the use of various concentrations of KCl additive 

The crystallization results for the two series of experiments are presented in Table 4 and 

Table 5, showing the percentage yield, the average values of roundness, the particle size (d (0.5) 

and D [4,3]), and the residual potassium content of the products. In series I the applied 

concentration of KCl improved the crystal roundness, besides particle size reduction was 

experienced. An increasing post-mixing time was found to adversely affect these properties. The 

additive concentration of 1000 ppm KCl and 0 min of post-mixing time were demonstrated to 

yield crystals with the most favourable properties, indicating that a lower concentration of 

additive contributes to the optimal glycine particle shape and to a lower level of residual impurity 

in the case of IJ crystallization.  

Table 4 IJ crystallization results in series I [25]. 

KCl 

concentration 

Post- 

mixing time 

Percentage 

yield 

Roundness Particle size 

d (0.5)         D [4,3] 

Residual 

potassium 

(ppm) (min) (m%) Mean SD (µm) (µm) (ppm) 

0 0 52.27 2.36 1.05 37.728 44.959 1 

0 5 56.53 2.62 1.36 39.662 46.803 1 

0 10 56.81 2.34 0.95 39.082 44.206 1 

1000 0 54.55 1.86 0.63 31.929 41.233 123 

1000 5 60.97 2.03 0.84 34.162 38.606 167 

1000 10 61.62 2.25 0.84 36.125 40.441 182 

2000 0 51.56 2.16 0.93 36.682 42.789 184 

2000 5 61.90 2.09 0.82 37.031 48.429 233 

2000 10 61.81 2.20 0.90 40.854 46.361 364 

 

In series II, the additive concentration was decreased sharply. The morphology of the glycine 

crystals was also found to be modified, even by a small amount of KCl added, in comparison to 

the samples without additive. This series of experiments clearly demonstrated that using low 

concentrations of KCl resulted in even better properties of the crystal habit compared to using 

higher concentrations of the additive. Even 100 ppm of additive appreciably improved the 

roundness of the crystals. A KCl concentration of 200 ppm and 0 min of post-mixing time were 

found to yield the smallest particle size and the most favourable roundness. 
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Table 5 IJ crystallization results in series II [25]. 

KCl 

concentratio

n 

Post- 

mixing time 

Percentage 

yield 

Roundness Particle size 

d (0.5)          D [4,3] 

Residual 

KCl 

(ppm) (min) (m%) Mean SD (µm) (µm) (ppm) 

0 0 52.27 2.36 1.05 37.728 44.959 1 

0 5 56.53 2.62 1.36 39.662 46.803 1 

0 10 56.81 2.34 0.95 39.082 44.206 1 

100 0 58.48 1.68 0.42 37.814 44.684 33 

100 5 58.78 1.65 0.39 33.970 40.311 30 

100 10 60.88 1.67 0.48 38.446 43.444 31 

200 0 59.58 1.63 0.41 30.877 38.443 35 

200 5 56.29 1.65 0.36 33.562 39.237 22 

200 10 60.78 1.62 0.38 36.083 41.909 48 

The laser diffraction analysis of all samples demonstrated a monodisperse PSD. In Figure 

11, the PSD diagrams of the most favourable samples of series I and II, and of the sample without 

additive, are illustrated and compared to each other. Differences in particle size between the 

samples produced by the different parameters can be recognized. 

 

Figure 11 Particle size distribution of the IJ crystallized products without the use of additive 

and with the use of additive in series I and II [25]. 

The SEM images show the differences in crystal size and morphological parameters of the 

experimental products. Those crystals with the smallest average particle size and the most 

favourable roundness are presented in Figure 12. The original glycine contained large 

isodimensional crystals with a smooth surface. The products yielded by the IJ crystallization 

process were shown to have a significantly smaller average particle size. The sample without 

additive consisted of irregularly shaped, needle-like crystals with a smooth surface and poor 
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roundness, and also exhibited a slight tendency to aggregate. On the other hand, the products 

crystallized with the KCl additive contained bipyramidal-shaped, small-size, individual crystals 

with a smooth surface. The crystals produced by using 200 ppm of the additive show the most 

favourable morphology, as confirmed by the analytical data. 

 

Figure 12 SEM images of glycine crystals. A: without additive; B: with KCl 1000 ppm; C: 

with KCl 2000 ppm; D: with KCl 100 ppm; E: with KCl 200 ppm. 

 

The percentage yield in the two series ranged between 52 and 62 %. An increasing effect of 

the KCl addition was noticeable for this parameter. The presence of KCl increased the solubility 

of glycine; therefore, the increased saturation concentration of glycine resulted in a higher 

supersaturation value in the same water-ethanol mixture. Hence, if a bigger amount of glycine 

was dissolved, higher supersaturation occurred. This condition is preferred over the higher 

percentage yield. The supersaturation also influenced the crystal habit; it increased the nucleation 

rate and was favourable for the smaller particle size, and it also improved the crystal roundness. 

The optimal supersaturation and KCl concentration were achieved in series II. Besides, the 

percentage yield also depended on the post-mixing time: with increasing post-mixing time, the 

yield was also increased. During post-mixing, crystal growth could be considered to increase the 

percentage yield. Without post-mixing time, the nuclei had no time to grow further, since they 

were filtered off immediately. The filterability of all the crystallized products was satisfactory in 

our small-volume system, since the obtained filter cake did not inhibit the removal of the solution 

and did not decrease the flow rate of the dispersion medium. 
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4.2.3. Polymorphism 

The polymorphism of the initial material and the products was examined immediately after 

vacuum drying, by both XRPD and DSC, in parallel. The XRPD diffractograms were compared 

with the structures available in the CSD (Figure 13). Based on the XRPD analysis, both the initial 

material and all the products were found to contain only the stable α-polymorph. 

 

Figure 13 XRPD diffractograms of the α-glycine and IJ products of series I and II. 

The DSC measurements, however, revealed two polymorphs, as this analytical method is 

more sensitive to the presence of β-glycine (Figure 14). The thermograms of the original glycine 

and of the products also contained two endothermic peaks at about 251 and 254 °C. The first peak 

corresponds to a small amount of the less stable β-form. The second one is the melting point of 

the α-form. It was not possible to specify the proportion of the polymorphs because the two 

endothermic peaks overlapped. Based on the literature, a higher additive concentration favours 

the formation of γ-glycine. The phase transition of the γ-form to the α-polymorph causes a small 

endothermic peak at about 179 °C. Our results indicate that our samples did not contain any 

amount of the γ-form, supporting the notion that the low concentrations of KCl applied did not 

change the crystal structure and the initial α-form was preserved in all the crystallized products. 

 

Figure 14 DSC thermograms of the initial Gly and the IJ crystallized samples 

 in series I and II. 
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4.2.4. Residual solvent content 

The residual ethanol content of the samples was analysed by hGC. As mentioned above, 

ethanol belongs to the ICH Q3C(R7) Guideline Class 3, with an upper limit of residual 

concentration of 5000 ppm [100]. The ethanol contents of the products of series I and II were 

between 38 and 80 ppm, which is minimal compared to the maximum value defined in the ICH 

requirements.  

4.2.5. Residual potassium content 

4.2.5.1. Qualitative analysis of potassium chloride 

The arrangement of the residual KCl content within the samples was examined by SEM-

EDS. Within the products containing high concentrations (5000 ppm) of the additive, the KCl 

crystals were found to be arranged separately and individually, as seen in Figure 15 visualizing 

K and Cl as red and green spots, respectively. In the case of low additive concentrations (100-

200 ppm) well-defined separate KCl crystals were not recognized in the SEM-EDS elemental 

maps; KCl was only found to be adsorbed widespread on the crystal faces all over the sample 

surfaces. In the case of higher concentrations, those K and Cl ions not able to adsorb to the faces 

because of their high quantity arranged themselves separately and individually next to the glycine 

crystals. Based on the literature, KCl prefers to adsorb to the (011) crystal face of glycine and 

inhibits further incorporation of glycine molecules into the crystal lattice along the “c” direction 

[44]. Thus, the adsorption of KCl inhibits the lengthwise growth of the crystals: in the case of 

this rapid crystallization method, the enhancing effect of KCl in the “a” direction is smaller than 

the inhibiting effect displayed in the c direction, while crystal growth in direction “b” is not 

affected by KCl. This way, it is possible that the additive also has a decreasing effect on the 

particle size. During the post-mixing period, the growth in directions “a” and “b” becomes 

prominent, as the faces have more time to grow without limit. Presumably, the lack of the post-

mixing period causes the more favourable roundness [25]. 
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Figure 15 SEM image and EDS elemental maps of potassium (red spots) and chlorine (green 

spots) for the arrangement of KCl crystals within the IJ Gly products containing 

5000 ppm of additive. 

4.2.5.2. Analysis of residual potassium quantity 

The quantitative measurement of the residual potassium content of the products was carried 

out by FAAS, as this is the most frequently used detector technique for the quantitative 

determination of this element. It was pointed that the residual KCl quantity in the samples 

strongly depended on the washing procedure during filtration. Therefore, several compositions 

of washing solutions and the washing procedures were investigated previously. The optimal 

circumstances were as follows, the final composition was 1:1 ratio of water:ethanol mixture (20 

ml) and after vacuum filtration the washing solution was remained on the filter for 30 sec, and it 

was repeated twice. That way the residual additive concentration was reduced to the tenth in the 

samples. The other relevant parameter regarding the residual quantity was the additive 

concentration in the API solution. 

The crystal samples produced by using a higher concentration (1000-2000 ppm) of KCl as 

additive were found to have a residual potassium content of 123-364 ppm. These values were 

found to be proportional to the length of the post-mixing time. A longer post-mixing time 

increased the residual potassium content because a higher amount of KCl was allowed to get 

adsorbed on the surface of the glycine crystals. The products generated in series II contained by 

one order of magnitude less potassium (22-48 ppm) compared to those produced in series I [25]. 

4.2.6. Statistical analysis 

The statistical analysis aimed to explore the effects of the crystallization parameters on the 

roundness and particle size of the crystals, and the results can be seen in Table 6. 
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Table 6 Factorial design results (x1: KCl concentration; x2: post-mixing time) [25]. 

Dependent 

variable 
Polynomial function r2 

I. Roundness y = 2.21 - 0.29 x1 + 0.14 x2 - 0.25 x1
2 + 0.05 x2

2 + 0.03 x1x2 0.74 

I. d (0.5) y = 37.03 - 0.64 x1 + 3.24 x2 - 4.43 x1
2 - 0.12 x2

2 + 1.41 x1x2 0.99 

I. D [4,3] y = 43.76 + 0.54 x1 + 0.68 x2 - 5.50 x1
2 + 1.28 x2

2 + 2.16 x1x2 0.77 

II. Roundness y = 1.92 - 0.79 x1 - 0.03 x2 - 0.38 x1
2 + 0.08 x2

2 - 0.03 x1x2 0.97 

II. d (0.5) y = 36.36 - 5.32 x1 + 2.40 x2 + 0.58 x1
2 - 0.94 x2

2 + 1.93 x1x2 0.76 

II. D [4,3] y = 42.67 - 5.46 x1 + 0.49 x2 + 0.22 x1
2 - 0.82 x2

2 + 2.11 x1x2 0.71 

In series I, the KCl concentration was revealed to exhibit a significant quadratic effect on the 

particle size, while it had no significant effect on the roundness because of outlier data. However, 

in series II, a tendency between the obtained data and an effect of the x1 factor was noticeable. 

The KCl concentration was found to have a significant linear relationship with the changes in 

roundness, as well as with the d (0.5) and D [4,3] values. Thus, increasing the concentration of 

the additive within a certain range (0-200 ppm) was shown to improve the roundness and to 

reduce the average particle size. For all significant effects, p < 0.036. In Figure 16, a surface plot 

diagram demonstrates the significant effects of the investigated parameters. 

 
Figure 16 Surface plot diagram of the series I products, investigating the effect of KCl 

concentration and mixing time on roundness. 

4.2.7. Conclusion 

To our knowledge, the current research is the first example of combining the IJ 

crystallization method with the application of different concentrations of potassium chloride as 

an additive to modify the crystal habit of glycine particles. Further aims were to adjust the optimal 

concentration of the additive and to optimize the crystallization and washing parameters. 
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Even low concentrations of the additive proved sufficient for an appropriate effect: as little 

as 100 and 200 ppm of KCl could significantly improve the roundness and reduce the particle 

size of the glycine crystal products. Based on the 32 full factorial design applied to identify the 

relevant factors affecting the impinging jet-crystallized product, the post-mixing time was 

demonstrated to be another important process parameter. A KCl concentration of 200 ppm and 0 

min of post-mixing time were found to yield the smallest particle size and the most favourable 

roundness. Residual KCl crystals were found to be arranged separately and individually within 

the products containing high concentrations of the additive, while those containing low 

concentrations of the additive were found to have residual KCl adsorbed on the crystal faces all 

over the sample surfaces. The crystallized product was characterized by low residual solvent and 

potassium contents. The newly applied jet crystallization method yielded a stable polymorph. 

Therefore, this study supports the notion that combining IJ crystallization with the application of 

an additive produces microparticles with the desired crystal morphology when the parameters of 

crystallization are chosen correctly [25; 41]. 

4.3. Poorly water-soluble drug, cilostazol particle size reduction 

Many researchers have made a great effort to improve the oral bioavailability and systemic 

absorption of cilostazol with the use of various particle size reduction methods as it was 

mentioned above [97–99]. However, this is the first study on the application and optimization of 

the IJ crystallization method in the case of this molecule. In our previous experiments the most 

influencing crystallization factors were discovered and the process parameters were optimized 

for our model material, glycine, and these observations were converted to the current experiments 

and were further devised specifically for the BCS II material, cilostazol. 

4.3.1. Solubility of cilostazol 

Based on our measurements the solubility of CIL increases in the following order according 

to the type of solvent: water < ethanol 96 % < methanol < DMSO < acetone < DMF. DMSO 

resulted in an opalescent solution, and the majority of the solvents dissolved CIL only in a very 

small amount. At ambient conditions DMF resulted in a clear API solution, the saturated solution 

concentration was 0.0947 g ml-1, therefore it was chosen as a solvent for CIL crystallization 

experiments. Furthermore, it was observed that the solubility of CIL depends on temperature, the 
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lower temperature of the antisolvent resulted in even lower solubility and higher supersaturation 

value in the same water-DMF mixture. 

4.3.2. Crystal morphology 

A 32 full factorial design series was accomplished in the case of IJ crystallization method. 

The dependent parameters were selected according to our preliminary results with Gly. The post-

mixing time and the temperature difference between antisolvent and solvent influenced mostly 

the crystal morphology, therefore cooling crystallization was combined with the antisolvent IJ 

method. The average particle size ((d (0.5)) of CIL was between 3.6-4.8 µm. The increase in post-

mixing time made the particle size systematically larger, as well as improving percentage yield, 

but not affecting roundness appreciably. The higher temperature differences between the 

saturated API solution and the antisolvent decreased the particle size due to the higher 

supersaturation which occurred in the water-DMF bulk solution after feeding. The roundness of 

the particles was between the values of 1.53-1.71, which means a remarkable improvement 

compared to the original material. IJ CIL-1; 4 and 7 samples revealed the most appropriate crystal 

habit and it was found that if the temperature difference is 20 °C between the API solution and 

the antisolvent, and the experiments are carried out without post-mixing, this results the most 

proper quality. 

In order to determine the effectiveness of the developed IJ method in the case of CIL, it was 

compared with the conventionally and generally applied crystallization methods in the 

pharmaceutical industry, which are also aimed at particle size reduction. AS and REV methods 

were implemented with and without the application of US. The parameters of crystallization were 

similar to the IJ process where relevant (solvents, concentration, temperature, feeding velocity, 

stirring speed, filtration, washing procedure, etc.). Conventional AS resulted in approximately 

thrice bigger crystals compared to the impinging results, and roundness deteriorated 

spectacularly. REV resulted in smaller particles and more favourable roundness compared to AS. 

With the application of US particle size reduction was attained with both methods. The US 

parameters were optimized in our previous experiments with the contribution of an outstanding 

expert of crystallization, Béla Farkas, and the most effective cycle time and amplitude were 

implemented. Among the conventional processes, REV equipped with US resulted in the most 

appropriate crystal habit. In Table 7 the investigated parameters and the results of the IJ series 

and conventional methods are summarized. 
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Table 7 Operating parameters and the results of the original, the IJ, and the conventionally 

crystallized CIL products. 

Sample code Temp. 

difference  

Post mixing 

time  

US 

amplitude 

US cycle 

time 

Percentage 

yield 

Round-

ness 

Particle size 

  (°C) (min) (ppm) (min)  (m%) Mean d (0,5) 

(µm) 

D [4,3] 

(µm) 

IJ CIL-1 0 0  -  - 79.62 1.56 3.887 5.281 

IJ CIL-2 0 5  -  - 81.94 1.57 4.259 5.653 

IJ CIL-3 0 10  -  - 87.01 1.58 4.801 6.027 

IJ CIL-4 10 0  -  - 79.41 1.63 3.810 5.171 

IJ CIL-5 10 5  -  - 85.53 1.67 4.134 5.423 

IJ CIL-6 10 10  -  - 86.80 1.71 4.557 6.578 

IJ CIL-7 20 0  -  - 75.40 1.53 3.626 5.158 

IJ CIL-8 20 5  -  - 84.05 1.66 3.714 5.200 

IJ CIL-9 20 10  -  - 83.63 1.63 3.759 4.824 

AS 0 0 0 0 88.70 4.39 14.411 19.218 

AS + UH 0 0 70 0.30 90.39 2.95 11.246 15.738 

REV 0 0 0 0 55.97 2.36 9.906 12.802 

REV + UH 0 0 70 0.30 92.93 2.27 8.028 12.006 

Original CIL 0 0  -  -  - 2.08 23.563 60.639 

The laser diffraction analysis of all IJ samples revealed monodisperse particle size 

distribution. The original material and the product of REV combined with US showed 

polydisperse distribution as can be seen in Figure 17. Overall, based on the results it can be stated 

that IJ resulted in remarkably smaller average particle size and improved the roundness compared 

to the initial material and conventional methods, not even with the application of US. 

 

Figure 17 Comparison of particle size distributions of samples made with different 

crystallization methods. 
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Figure 18 demonstrates the disparities in the appearance and morphology of the obtained 

crystals produced by different crystallization methods. The original CIL contained large, 

fragmented crystals with an irregular shape, and small pieces of crystal debris can be observed, 

which suggests that the material was ground in advance. The conventional crystallization 

products consisted of bigger-sized, needle-like crystals, and exhibited a slight tendency to 

aggregate. The effect of US is obviously noticeable, in both cases, AS and REV, the application 

of US reduced the particle size appreciably, but with a wide PSD. In contrast, the IJ product with 

the most favourable crystal habit shows significantly smaller average particle size, smooth 

surface, rounded crystal shape and uniform, individual crystals. 

 

Figure 18 SEM images of the ground initial CIL crystals (Original), IJ sample with the most 

appropriate morphology properties (IJ CIL-7) and the products of the different 

conventional crystallization methods (AS; AS + US; REV; REV+ US). 
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4.3.3. Polymorphism 

According to the XRPD analysis the initial material contains the orthorhombic A polymorph, 

which is the most stable form at ambient conditions. The diffractograms of each product were 

compared with CSD structures. It was found that all kinds of the crystallization methods resulted 

in the most stable orthorhombic A form, and any other polymorphic forms were not detected (see 

Figure 19). 

 

Figure 19 XRPD diffractograms of the crystallized products with different types of methods. 

In Figure 20 the results by DSC measurements can be seen, which confirm the XRPD results. 

The thermograms of both the initial CIL and the products contained one endothermic peak at 

about 160 ºC. Based on the literature, this peak corresponds to the melting point of Form A. Our 

results indicate that our samples did not contain any of the B- or C-forms, supporting that the 

crystallization methods applied did not change the crystal structure, and the initial orthorhombic 

form was preserved in all the crystallized products. 

 

Figure 20 DSC thermograms of the crystallized products. 
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4.3.4. Wettability 

Wetting is the first step for a solid oral system to dissolve, in addition, it can influence the 

disintegration time in the medium. Wettability describes the spreading of a liquid on a surface, 

which is usually indicated by contact angle. The limits of contact angle are 0° for complete 

wetting and 180° for no wetting [101; 102]. Table 8 shows our results. IJ products’ contact angle 

was lower compared to the products made with conventional methods, which could be correlated 

to higher solubility values. The smaller particle size resulted in lower contact angle values in 

every case at 5 second. Presumably, in the case of the more uniform and individual crystals, the 

higher porosity of the surface also favoured the infiltration of the water droplet into the deeper 

layers. Therefore, the pharmaceutical formulation which contains one of the IJ products could 

reach faster disintegration time and higher dissolution rate. 

Table 8 Contact angle of the crystallized products. 

Time (sec) Original AS AS + US REV REV + US IJ CIL 1 IJ CIL 4 IJ CIL 7 

0 72.7 65.0 66.0 64.7 61.8 58.0 61.0 55.7 

1 67.8 64.0 64.5 61.8 60.1 56.9 58.6 50.6 

2 65.8 63.1 62.3 60.7 58.4 55.4 57.2 49.4 

3 64.3 62.5 61.2 59.8 57.0 54.2 55.9 48.4 

4 63.0 62.0 60.6 59.1 55.8 53.1 54.4 47.6 

5 62.4 61.7 59.9 58.5 54.6 52.1 53.3 46.9 

6 61.9 61.3 59.5 57.9 53.4 51.1 52.3 46.2 

7 61.6 61.0 59.2 57.2 52.2 50.0 51.1 45.5 

8 61.6 60.7 59.0 56.7 51.1 49.3 50.2 44.9 

9 60.7 60.4 58.3 56.1 50.0 48.5 49.2 44.3 

10 59.7 60.1 57.7 55.6 48.9 47.6 48.3 43.7 

11 58.8 59.8 57.1 55.1 47.8 46.8 47.3 43.1 

12 57.6 59.5 56.6 54.6 46.8 46.0 46.4 42.6 

13 56.6 59.3 56.1 54.1 45.7 45.2 45.5 42.1 

14 56.5 59.0 55.6 53.7 44.7 44.4 44.5 41.5 

15 56.4 58.7 55.1 53.2 43.7 43.9 43.8 40.9 

16 56.1 58.5 54.6 52.6 42.6 43.1 42.8 40.4 

17 55.4 58.2 54.2 51.2 41.6 42.4 42.0 39.8 

18 54.7 57.9 53.8 50.7 40.6 41.7 41.2 39.3 

19 54.0 57.7 53.1 50.3 39.6 41.2 40.4 38.8 

20 53.3 57.4 52.7 49.8 38.7 40.4 39.5 38.3 

21 52.6 57.2 52.4 48.7 37.7 40.0 38.8 37.7 

22 51.9 56.9 51.9 48.4 36.7 39.5 38.1 37.2 

23 51.2 56.7 51.5 48.0 35.8 38.8 37.3 36.7 

24 50.6 56.4 51.1 47.5 34.9 38.2 36.6 36.2 

25 49.9 56.2 50.8 46.4 34.0 37.8 35.9 35.7 

26 49.2 55.9 50.2 46.0 33.0 37.2 35.1 35.2 

27 48.5 55.6 49.7 45.2 32.2 36.6 34.4 34.7 

28 47.8 55.4 49.2 44.8 31.2 36.0 33.6 34.2 

29 47.2 55.1 48.9 44.3 30.8 35.6 34.2 33.7 

30 46.5 54.9 48.5 43.9 30.0 35.1 33.6 33.2 
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4.3.5. Dissolution rate 

The dissolution profile of the pure CIL products was accomplished by 120-min-range in vitro 

studies in SGF without enzymes (pH=2±0.1). It can be observed on the dissolution curves of 

Figure 21 that after 5 min the dissolved CIL varied in a wide range showing the strong influence 

of particle sizes on the responses. On the dissolution curves at 5 min, a rapid increase of 

dissolution can be observed in the case of IJ results, which is a typical phenomenon when small 

particles possess a large surface area. Faster dissolution could be a consequence of the uniform, 

individual and rounded crystal habit as well, while in the case of the conventional products, the 

aggregated crystals delayed dissolution. At 120 min, the IJ CIL-7 sample with the smallest 

particle size led to the highest dissolution quantity. Based on our results, a clear correlation is 

revealed between the dissolution rate and the particle size; the smaller the particle size, the higher 

the dissolution rate. If the unique, small particles could remain in the final dosage form as well, 

the higher dissolved concentration of the API in the initial period of dissolution would improve 

bioavailability. 

 

Figure 21 Dissolution rate of the crystallized CIL products. 

4.3.6. Residual solvent quantity 

Residual DMF content of the samples was analysed by hGC. DMF belongs to ICH Q3C(R7) 

Guideline Class 2, with an upper limit of residual concentration of 880 ppm [100]. These solvents 

are associated with less severe toxicity compared to Class 1 solvents, but they should be limited 

in order to protect patients from potential adverse effects. The DMF contents of the products of 
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IJ were between 4747 ppm and 5455 ppm, which exceeded the limit of the maximum requirement 

described. In order to reduce the solvent quantity, further development related to washing or other 

purifier procedure is still necessary. During the filtration step there is a possibility to use higher 

volumes or various compositions of washing solutions, or keep them on the filter surface for a 

longer period. The drying process could be accomplished at a higher temperature, and longer 

time which could also mean another mode for decreasing the residual solvent quantity. These 

experiments are intended to be performed in the future. 

4.3.7. Statistical analysis 

On the one hand, the statistical analysis was aimed to explore the effects of the IJ operating 

circumstances on key process parameters such as, particle size, roundness, percentage yield and 

dissolution rate. It was found that both the temperature difference and the post-mixing time had 

significant effect on particle size (d (0.5)), while they had no significant effects on roundness 

because of outliers in the data. As for the dissolution rate, the temperature difference verified a 

quadratic significant effect, thus when the temperature difference is higher, it enhances 

dissolution. Post-mixing time was found to have a significant relationship with the changes of 

percentage yield values. Therefore, increasing post-mixing time proved to improve yield. For all 

significant effects p<0.038. On the other hand, all of the conventional methods were compared 

with the IJ results in terms of particle size (d (0.5)) and roundness. Based on the unpaired t-test, 

the IJ method resulted in a significantly smaller particle size (p<0.04) in every case (Figure 22). 

 

Figure 22 Statistical comparison of the particle size (d (0.5)) and roundness of the 

crystallized CIL products. 

4.3.8. Conclusion 

It was observed that the self-equipped IJ apparatus is a very effective and reproducible 

method for reducing the particle size of CIL and to attain a final product with suitable crystal 
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morphology and a narrow PSD. Post-mixing time and temperature difference are the significant 

factors in the case of CIL particle size modification. IJ resulted in significantly smaller and more 

uniform crystals compared to the original ground material, as well as compared to the traditional 

crystallization methods even with the application of ultrasound. This method resulted in stable 

orthorhombic polymorphic form (Form A) and enhanced the dissolution rate remarkably. 

Therefore, the combined cooling and IJ method is a promising approach to optimize the crystal 

habit, furthermore the practical application of the method in the manufacture is feasible in the 

case of poorly water-soluble drugs, if the crystallization parameters are chosen prudently. 

4.4. Development of a continuous crystallization method with glycine 

Based on our previous results in the batch processes the optimal parameters were converted 

to the novel continuous IJ antisolvent crystallization method with the use of glycine, as a model 

material at first. The solvent:antisolvent ratio was 1:1, 200 ppm KCl additive was added to the 

nearly saturated API solution, and feeding of the solutions was performed with linear velocity 

(4.06 m s-1) at room temperature. Moreover, scale-up was also accomplished as the volume of 

the solutions was 20 times higher than in batch size. One complete experiment took 20 minutes 

and it was repeated 3 times. The parallel measurements were set with the same operational 

parameters to investigate the reproducibility of the method. In-process-monitoring was achieved 

with sampling in every minute in order to determine the consistency of the quality, as well as 

monitoring the key process parameters, for instance average particle size and roundness during 

the whole process [103]. 

4.4.1. Crystal habit and PSD 

According to SEM images, which can be seen in Figure 23, it can be stated that the average 

particle size and the roundness of the particles are quite consistent independently of the sampling 

time, so the crystal morphology was not changed remarkably when the first and the last samples 

were compared with each other. The continuous mode resulted in small, bipyramidal shaped 

crystals with smooth surface. Due to the fast crystallization method and the lack of post-mixing 

time the edges and corners of the crystals are not rounded. These properties ensure the occurrence 

of individual crystals and ease the filtration of the product. 
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Figure 23 SEM images of the products of continuous IJ crystallization method in the course 

of in process monitoring.  

A: sample in minute 1; B: sample in minute 10; C: sample in minute 20. 

Based on micrometric data the average particle size (d (0.5) = 25.899 µm-34.313 µm) altered 

with low SD (2.54) and CV (0.08). This indicates the small variation between the process start 

and end points, and confirms the visual observations by SEM images. Based on PSD diagrams it 

can be stated that all of the twenty samples gave monodisperse distribution, and due to the 

constant circumstances of crystallization the difference between the samples was not remarkable 

(see Figure 24). The previous IJ batch process resulted in 52-62% percentage yield, which value 

was increased in the continuous mode to 64-70%. As the whole amount of the suspended crystals 

was filtered directly on the filtration surface, the material loss between the operating steps, i.e. 

crystallization and filtration, was eliminated. During the process neither obstruction nor 

operational difficulty was observed. 

 

Figure 24 Particle size distribution of the crystallized products by continuous IJ method 

[103]. 
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The average particle size results, such as d (0.5) and D [4,3] of the batch and continuous 

mode were compared with each other with a statistical software (GraphPad Prism5, GraphPad 

Software Inc., La Jolla, CA, USA). With the application of the two-sample t-test it was 

established that there was no significant difference between the batch (29,707-31,967 μm) and 

continuous mode (25,899-34,313 μm) regarding particle size. 

4.4.2. Flowability 

Flowability was measured with the use of PFT. The standard classification of powder 

flowability is based on the standard flow indices, and flow behaviour can be rated as free flowing 

(10<ff), easy flowing (4<ff<10), cohesive (2<ff<4), very cohesive (1<ff<2), and non-flowing 

(ff<1) [104]. The flowability of the IJ samples and the initial Gly is shown in Figure 25, at 

different levels of consolidating stress. The IJ crystallized products from batch process with the 

use of additive, without additive, as well as the continuous mode with additive are represented 

here. These results demonstrate that the initial material is a free flowing powder as it was expected 

from the large isodimensional shape of the particles. The IJ crystallized products without the use 

of additive contain needle-like crystals as described above, thus its flowability properties concur 

with this property, and it is generally a cohesive powder which could cause possible problems in 

the tableting process when the hopper empties. In contrast, both the batch and the continuous IJ 

products with the use of additives are mostly easy flowing, and their flowability properties are 

comparable. The use of these products could be suitable for further tableting procedures. 

 

Figure 25 Comparison of flowability properties of glycine IJ products. 
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4.4.3. Polymorphism 

XRPD was applied for the analysis of possible crystal structure transformations during the 

continuous process. The diffractograms were compared to the glycine polymorphic forms 

available in CSD and were demonstrated in a 3D figure (see Figure 26), because it makes it 

attainable to follow graphically the potential polymorphic form alterations. According to the 

XRPD results, all of the samples remained in the same crystal structure, the most common α-

glycine, which is identical with the polymorphic form of the initial material. 

 

Figure 26 Three-dimensional XRPD diffractograms of the crystallized glycine samples by IJ 

continuous method. 

Previous investigations revealed that DSC is already more sensitive to the presence of a small 

amount (less than 5%) of β-glycine in the Gly samples. On the thermograms the peak at about 

254 ºC corresponds to the α-form, and the β-form occurs as an overlapped peak at about 251 ºC. 

Based on these, we assumed that the initial material contained the unstable β-form and this form 

can be detected in addition to the stable α-form in the IJ samples. The amount of the unstable 

form increased slightly from the beginning to the end of the process. This phenomenon might 

have been caused because of the presence of β-form in the initial material, since it can induce the 

production of the unstable form (see Figure 27). 

 

Figure 27 DSC thermograms of the crystallized products by IJ continuous mode. 
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4.4.4. Residual solvent quantity 

According to the ICH Q3C (R7) guideline the residual solvent quantity has a maximum limit 

of 5000 ppm in the case of Group 3 solvents, where EtOH belongs to [100]. Based on our hGC 

measurements, all of the samples contained less than 100 ppm residual EtOH, which corresponds 

to the limit described in the guideline. The result of the IJ continuous mode is comparable with 

the values of the batch process, which means that the optimal batch operating parameters are 

suitable for the continuous mode regarding this data, and can produce a high quality product. 

4.4.5. Residual potassium content 

The KCl was used as an additive in our continuous crystallization process, and its 

concentration as well as the washing procedure of the samples were optimized previously in our 

batch process in order to minimize the residual quantity as much as possible in the final products. 

Regarding FAAS results the potassium quantity in all of the samples was less than 62 ppm, which 

shows a slight increase compared with the results in batch series B, but the difference is not 

significant. 

4.4.6. Conclusion 

One of the main purposes of the current work was to develop a robust continuous 

crystallization method with the use of the self-developed IJ device, and implement those 

operating parameters from the batch process. This latter can ensure the quality and the 

consistency of the key process parameters, such as particle size, PSD, roundness and 

polymorphism, in the case of glycine reproducibly. The percentage yield was increased 

remarkably compared to the batch process. Based on the results of the sample monitoring, 

physico-chemical properties of the crystals were consistent during the whole process and were 

comparable with the batch method results. The average particle size was reduced significantly 

(31.55 μm) compared to the initial material (680.69 μm) with an appropriate roundness, low 

residual solvent and potassium quantity. However, a slight alteration in the quantity of β-form 

was observed between the start and end points due to the presence of the unstable form in the 

initial material. The flowability values demonstrated that the samples have easy-flowing 

properties, which predicts good processability during tableting processes [103]. 

The results show that this scaled-up continuous method is simple and effective to improve 

the process efficiency, decrease the process time, but maintain the quality of the final product. 
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4.5. Development of IJ continuous crystallization method with cilostazol 

After a successful implementation of IJ batch parameters for the novel IJ continuous method 

in the case of a model material, Gly, the poorly water-soluble drug, CIL was also tested with the 

application of the method. The previously optimized crystallization parameters for CIL (IJ CIL-

7 factors) were selected for our scaled-up, continuous experiments. The robustness of the device 

was monitored with the same sampling procedure, every minute. The samples were analysed for 

the key process parameters, such as particle size, PSD, polymorphism, and dissolution rate. 

4.5.1. Crystal morphology 

Based on PSD analysis, all of the samples revealed monodisperse distribution from the 

beginning until the last samples in the end of one process. In Figure 28 the d (0.5) results were 

summarized. The values represent a very narrow range (d (0.5) = 4.021-5.797 µm) where the 

average particle size varied, the red lines indicate the smallest and the biggest sizes. The 

continuous results were comparable with the batch process average particle size results (d (0.5) 

= 3.6-4.8 µm), and although the values differed slightly, the difference was not significant based 

on statistical analysis. Compared to the batch process the percentage yield did not increase, it was 

between 80.19-86.52 %. 

During the initial runs, smaller obstructions were observed in the course of our experiments, 

mainly in the second half of the process, as the bulk solution with the suspended crystals could 

not pass through the narrow part of the IJ unit. Finally, we came to the conclusion that the upper 

part of the unit should be closed during the process, thus the pressure can increase inside the unit, 

and the bulk solution could flow through the unit more easily. 

 

Figure 28 Average particle size (d (0.5) of the CIL samples made by the IJ continuous 

method during the whole process. 
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4.5.2. Polymorphism 

XRPD results can be seen in Figure 29. The two dimensional figure demonstrates 

expressively the consistency of the CIL crystal structure through the process, as the lines in the 

figure are fixed and no alteration can be observed. The diffractograms were compared to the CIL 

polymorphic forms available in CSD and it can be stated that all of the samples contained the 

most stable polymorphic form, the orthorhombic Form A. 

 

Figure 29 Two-dimensional XRPD diffractograms of the crystallized CIL samples by IJ 

continuous method. 

The polymorphic forms of the samples was also determined by DSC (see Figure 30). The 

thermograms of the CIL samples displayed one endothermic peak at about 160 °C, which 

corresponded to Form A, confirming the XRPD results. The initial material as well as the batch 

process products contained the same polymorphic form, the most stable Form A. 

 

Figure 30 DSC thermograms of the continuous IJ CIL method products. 



48 

4.5.3. Dissolution rate 

The in vitro dissolution rate was determined under the same circumstances as in the batch 

process, and this way the results could be compared. In Figure 31 the dissolution rate of six pure 

CIL crystallized materials are shown, sampling from different time points of the continuous 

process. It can be stated that the dissolution profile was similar to the batch process results in all 

of the continuous IJ products and the difference between them was also negligible, since the 

average particle size of the samples varied in a narrow range. At 5 min the dissolution was 

increased sharply and after 120 min just a slight difference could be detected between the 

samples. These observations proved that the continuous method was capable of producing the 

same quality compared with the batch process. 

 

Figure 31 Dissolution rate of the continuous IJ method products with the sampling of 

different period of time. 

4.5.4. Conclusion 

The self-developed continuous IJ method was capable of producing a high quality product 

with small average particle size in the case of a poor water-soluble drug, CIL as well. The applied 

operating parameters of the batch process were converted to the continuous mode successfully. 

If the continuous IJ method using Gly is compared to the method using CIL, a small change was 

necessary in the method, as obstruction occurred during the crystallization of CIL. The main 

advantage of our continuous process is that the increased volume can be handled easily and fast, 

furthermore the method can produce crystals with improved morphology, reproducibly.  
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5. SUMMARY AND CONCLUSIONS 

In this study the efficiency of the self-developed impinging jet crystallization method was 

investigated regarding its crystal habit modification effect in the case of a model material and in 

the case of a poorly water-soluble drug. The critical process parameters were optimized for both 

a batch and a continuous mode in order to achieve a stable and uniform crystalline product. 

 

New approaches and practical relevance of the current research work: 

 

A The self-developed impinging jet device proved to be an effective, fast and reproducible tool 

for particle size reduction of a model material, glycine. The process influencing factors were 

ascertained by means of a full factorial design. 

 A novel X-ray powder diffractometry calibration approach was developed for the 

monitoring of the polymorph transformation in the case of β-glycine, which has not been 

reported previously. 

 Our impinging jet method resulted in one order of magnitude smaller average particle 

size compared to the generally applied conventional crystallization methods which 

methods can reduce the particle size only within certain limits. 

 The developed impinging jet crystallization technique enables the production of a stable 

polymorphic form with a low residual solvent quantity. 

 

B This is the first description of combining the impinging jet crystallization method with the 

application of different concentrations of potassium chloride as an additive to modify the 

crystal habit of glycine particles. 

 Crystal roundness was successfully improved with even low (100-200 ppm) KCl 

additive concentration. 

 The distinct arrangement of the additive was determined in the final product and its 

residual quantity was adjusted to an optimal level. 

 The critical operational parameters of crystallization were optimized for the desired 

crystal morphology with suitable flowability and low residual solvent quantity. 
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C The developed impinging jet method enabled us to reduce the particle size of a poorly water-

soluble drug, cilostazol and ensure the quality of the final product, reproducibly. 

 Significant improvement of the crystal habit of cilostazol was achieved by a combined 

impinging jet and cooling crystallization method. 

 The critical process parameters were determined by a full factorial design, which were 

the post-mixing time and the temperature. 

 Crystal morphology and dissolution rate were improved remarkably compared to the 

conventional crystallization methods. 

 

D The batch process was successfully converted to a novel continuous impinging jet 

crystallization method not only with the use of a model material, glycine, but also in the case 

of a poorly water-soluble drug, cilostazol. 

 The developed continuous method is simple and effective to improve the process 

efficiency, decrease the process time, but maintain the quality of the final product. 

 Scale-up was achieved with an improved percentage yield compared to the batch 

method. 

 During the process the operating parameters were optimized for the actual drug 

substance, furthermore the key process parameters, for instance particle size, particle 

size distribution and roundness were monitored, and the results revealed the consistency 

and robustness of the method. 

 

Overall, it can be concluded that the developed batch and the streamlined continuous 

methods enable the production of a crystalline material with improved rheological properties, and 

this material could be applied directly in the tableting processes without further modifications, 

and the crystallization approach could be built into the manufacturing line of pharmaceutical 

formulations without large investments. The comparison of the different conventional 

crystallization methods revealed their particle size reduction capacity, and the results can ease 

the decision on which method is suitable for attaining the desired particle size range. The 

observations about the crucial process parameters can serve as a basis for the crystal habit 

optimization of other poorly water-soluble substances as well. 
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A B S T R A C T

The parameters of crystallization processes determine the habit and particle size distribution of the
products. A narrow particle size distribution and a small average particle size are crucial for the
bioavailability of poorly water-soluble pharmacons. Thus, particle size reduction is often required during
crystallization processes. Impinging jet crystallization is a method that results in a product with a
reduced particle size due to the homogeneous and high degree of supersaturation at the impingement
point.
In this work, the applicability of the impinging jet technique as a new approach in crystallization was

investigated for the antisolvent crystallization of glycine. A factorial design was applied to choose
the relevant crystallization factors. The results were analysed by means of a statistical program.
The particle size distribution of the crystallized products was investigated with a laser diffraction particle
size analyser. The roundness and morphology were determined with the use of a light microscopic image
analysis system and a scanning electron microscope. Polymorphism was characterized by differential
scanning calorimetry and powder X-ray diffraction. Headspace gas chromatography was utilized to
determine the residual solvent content.
Impinging jet crystallization proved to reduce the particle size of glycine. The particle size distribution

was appropriate, and the average particle size was an order of magnitude smaller (d(0.5) = 8–35 mm) than
that achieved with conventional crystallization (d(0.5) = 82–680 mm). The polymorphic forms of the
products were influenced by the solvent ratio. The quantity of residual solvent in the crystallized
products was in compliance with the requirements of the International Conference on Harmonization.

ã 2014 Elsevier B.V. All rights reserved.

1. Introduction

Crystallization is an important pharmaceutical industrial
process. The majority of active pharmaceutical ingredients (APIs)
and excipients can be produced by crystallization. The crystalliza-
tion process determines the chemical purity and physical
properties of the product, including its habit, particle size and
crystal structure. The average particle size, the particle size
distribution, and the habit of particles play decisive roles in
pharmaceutical formulation. These parameters may influence the
bioavailability and the processability. Direct tablet compression
requires sufficiently large and isodimensional particles, but a small
average particle size with a narrow particle size distribution is
preferred for poorly water-soluble APIs. The marketable materials
will be those that can be directly applied in the formulation of
pharmaceutical products (Hacherl et al., 2003; Woo et al., 2011; Liu
et al., 2013).

Crystallization methods that are commonly used in the
pharmaceutical industry include cooling, antisolvent and precipi-
tation processes. However, with these techniques the particle size
can be reduced only within certain limits. New methods are
therefore sought to decrease the particle size of APIs. One such may
be sonocrystallization, which has been studied with various
crystallization systems, but its advantages in various crystalliza-
tion applications are disputed (McCausland et al., 2001; McCaus-
land and Cains, 2003; Louhi-Kultanen et al., 2006). Other options
involve the use of impinging jet crystallization and the application
of multiple inlet vortex mixers (Liu et al., 2008; D’Addio and
Prud’homme, 2011).

Midler et al. (1994) introduced and adapted the impinging jet
technique in crystallization (Midler et al., 1994; Tung et al., 2009).
The impinging jet mixer consists of two jet nozzles arranged
diametrically opposite and facing each other. The impinging jet
element can be used in a crystallization reactor or operated in non-
submerged mode. A rich solution of the API and the antisolvent
flow through the nozzles at a constant linear velocity, causing high
supersaturation at the impingement point before the onset of
nucleation. This process potentially results in rapid crystallization

* Corresponding author. Tel.: +36 62 545 577; fax: +36 62 545 571.
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in the absence of concentration gradients and produces a
monodisperse population of small crystals with a high surface
area. Impinging jet crystallization is often used in combination
with ultrasound to achieve a further reduction in particle size. The
direct production of small uniform crystals with high surface area
that meet the bioavailability and dissolution requirements can
eliminate the need for milling, which can give rise to dust issues,
yield losses, long production times, polymorphic transformation or
amorphization (Woo et al., 2009; Bauer-Brandl, 1996a,b; am Ende
and Brenek, 2004; Calvignac and Boutin, 2009; Hacherl et al., 2003;
Dong et al., 2011).

Glycine exists in three polymorphic forms under ambient
conditions. Forms a and b are monoclinic (a, P21/n; b, P21), while
g is trigonal (P31). Other polymorphs have been observed at high
pressure. In aqueous solution, form a is obtained by spontaneous
nucleation (Rabesiaka et al., 2010; Goryainov et al., 2006; Lin et al.,
1998). The less stable b glycine has been found to transform rapidly
into form a in air or water, but the crystals remain unchanged if
kept in a dry environment. The g form of glycine is the stable form
at room temperature and transforms to the a form when heated
above 165 �C (Boldyreva et al., 2003a,b,b; Ferrari et al., 2003;
Srinivasan, 2008). The addition of ethanol to an aqueous glycine
solution induces precipitation of the b form (Weissbuch et al.,
2005; Ferrari et al., 2003). The crystallization methods and
conditions, the pH of the solution, and the presence of additives
also influence the crystal morphology and the polymorphism
(Dubbini et al., 2014).

Glycine is a widely used material for crystallization experi-
ments (Srinivasan et al., 2011; Rabesiaka et al., 2010; Lung-
Somarriba et al., 2004). It is fast-growing and its crystals are
typically quite large, so it is a suitable model material for particle
size reduction studies. In order to reduce the glycine particle size,
Louhi-Kultanen et al. (2006) studied the effects of ultrasound
during cooling crystallization on the polymorphism, crystal size
distribution and heat transfer in batch cooling crystallization.
Sonocrystallization proved to be a good tool for optimizing and
controlling the nucleation and crystallization of glycine, and can be
used as a size reduction method to produce a final product with
uniform crystal morphology. The smallest average particle size
achieved was about 100 mm. Aigner et al. (2012) examined the

effects of several crystallization methods and their parameters
(cooling, reverse antisolvent and antisolvent crystallization with
ultrasound) on the average particle size, particle size distribution
and roundness of glycine, and found that these methods are
capable of reducing the average particle size only within a certain
range. The particle size ranges (d(0.5)) obtained were as follows:
268–680 mm in cooling crystallization; 160–466 mm in reverse
antisolvent crystallization; and 82–232 mm in antisolvent crystal-
lization with ultrasound.

In the present work, the impinging jet antisolvent crystalliza-
tion of glycine as model material were investigated by means of a
factorial design for a further particle size decrease. The effects of a
number of operating parameters, such as the linear velocity of
feeding, the post-mixing time, the temperature difference and the
solvent ratio, on the resulting particle size distribution and
roundness were studied. A statistical program was used to
evaluate the results. The particle size distribution was measured
with a laser diffraction particle size analyser. Glycine crystals were
analysed with a light microscopic image analysis system, scanning
electron microscopy (SEM), differential scanning calorimetry
(DSC) and powder X-ray diffraction (XRPD) in order to obtain
images of the crystal shape, roundness and structure. The residual
solvent content of the crystallized products was investigated by a
headspace gas chromatographic method.

2. Materials and methods

2.1. Materials

The following components were used in the experimental
work: glycine and ethanol 96% supplied by VWR Hungary; neutral
oil (Miglyol 812) purchased from Sasol Germany GmbH; and
purified water (Ph. Eur. quality).

2.2. Impinging jet crystallization

Crystallization experiments were carried out in a 250 mL
round-bottomed, double-walled Schmizo crystallization reactor
(Schmizo AG, Oftringen, Switzerland) equipped with an IKA
Eurostar digital mixer (IKA-Werke GmbH & Co., Staufen, Germany).

Fig. 1. Experimental apparatus with an impinging jet unit applied in non-submerged mode.
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Temperatures were adjusted with a Thermo Haake P5/C10
(Thermo Haake, Karlsruhe, Germany) thermostat and a Julabo
F32 (Julabo GmbH, Seelbach, Germany) cryothermostat controlled
by Julabo EasyTemp 2.3e software. Two calibrated Rollpump Type
5198 peristaltic pumps (MTA Kutesz, Budapest, Hungary) were
used for liquid feeding. The impinging jet unit was a locally
developed device equipped with variable-diameter nozzles, used
in non-submerged mode.

During the experiments, the two pumps dosed a nearly
saturated aqueous solution of glycine at 25 �C (10.02 g of glycine
dissolved in 50 mL of purified water) and the required amount of
ethanol at defined temperatures. The stirring speed was 250 rpm.
The crystallized products were filtered in porcelain filter and
washed with 96% ethanol. After vacuum drying (40 �C, 24 h), the
products were stored under normal conditions in closed contain-
ers. The experimental apparatus is outlined in Fig. 1.

2.3. Factorial design

A 32 full factorial design was applied to choose the relevant
factors. In series A the influence of the linear velocity and the post
mixing time, and in series B the influence of the temperature
difference and the post mixing time were investigated on three
operational parameters: roundness, d(0.5) and D[4,3].

The levels of the factors can be found in Table 1, while the
samples are designated in Table 2. The experiments were
performed in randomized sequence. The following approach,
containing the interactions of the factors, was used to determine
the response surface and the relative effects of the factors (b):

y ¼ b0 þ b1x1 þ b2x2 þ b3x21 þ b4x22 þ b5x1x2

Statistica for Windows 11 AGA software (StatSoft, Inc. Tulsa,
USA) was used for the calculations. During the mathematical
evaluations, the confidence interval was 95%, i.e. the differences
were significant if p < 0.05.

2.4. Differential scanning calorimetry

The DSC analysis was carried out with a Mettler Toledo STARe

thermal analysis system, version 9.30 DSC 821e (Mettler-Toledo
AG, Greifensee, Switzerland), at a linear heating rate of 10 �C min�1,
with argon as carrier gas (100 mL min�1). The sample weight was
in the range 2–5 mg and examinations were performed in the

temperature interval 25–300 �C, in a sealed 40 mL aluminium
crucible having three leaks in the lid.

2.5. X-ray powder diffractometry

Crystal structures were verified by measuring the X-ray
powder diffraction patterns of crystallized samples and the
initial material with a Bruker D8 Advance diffractometer (Bruker
AXS GmbH, Karlsruhe, Germany) and compared with the
structures in the Cambridge Structural Database (Cambridge
Crystallographic Data Centre, CCDC, Cambridge, UK). The experi-
ments were performed in symmetrical reflection mode with Cu
Ka radiation (l = 1.5406 Å), using Göbel Mirror bent gradient
multilayer optics. The scattered intensities were measured with a
Våntec-1 line detector. The angular range was from 3� to 40� in
steps of 0.007�. Other measurement conditions were as follows:
target, Cu; filter, Ni; voltage, 40 kV; current, 40 mA; measuring
time, 0.1 s per step.

2.6. Investigation of crystal shape and roundness

The crystal shape and roundness of the crystallized products
were measured with the LEICA Image Processing and Analysis
System (LEICA Q500MC, LEICA Cambridge Ltd., Cambridge, UK).
The particles were described in terms of their length, breadth,
surface area, perimeter and roundness, which is a shape factor
giving a minimum value of unity for a circle. This is calculated from
the ratio of the perimeter squared to the area. The adjustment
factor of 1.064 corrects the perimeter for the effect of the corners
produced by the digitization of the image:

Roundness ¼ Perimeter2

4�p�Area�1:064

Table 2
Designation of samples.

Sample code Linear velocity (m s�1) Post mixing time (min) Temperature difference (�C)

Series A x1 x2
–

A1 1.41 0 0
A2 1.41 5 0
A3 1.41 10 0
A4 2.77 0 0
A5 2.77 5 0
A6 2.77 10 0
A7 4.06 0 0
A8 4.06 5 0
A9 4.06 10 0
Series B

–
x2 x1

B1 2.77 0 0
B2 2.77 5 0
B3 2.77 10 0
B4 2.77 0 12.5
B5 2.77 5 12.5
B6 2.77 10 12.5
B7 2.77 0 25
B8 2.77 5 25
B9 2.77 10 25

Table 1
Values of factors.

Factor Low level (�) Mid level (0) High level (+)

Linear velocity (m s�1) 1.41 2.77 4.06
Post mixing time (min) 0 5 10
Temperature difference (�C) 0 12.5 25
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The products were suspended in Miglyol 812 with ultrasound in
order to ensure the presence of individual particles. Approximately
1000 particles per sample were examined.

2.7. Scanning electron microscopy

The morphology of the particles was examined by SEM (Hitachi
S4700, Hitachi Scientific Ltd., Tokyo, Japan). A sputter coating
apparatus (Bio-Rad SC 502, VG Microtech, Uckfield, UK) was
applied to induce electric conductivity on the surface of the
samples. The air pressure was 1.3–13.0 mPa.

2.8. Particle size distribution analysis

A Malvern Mastersizer laser diffraction analyser (Malvern
Instruments Ltd., Malvern, UK) with a measuring range of 0.02–
2000 mm was used to measure the crystal size distributions. The
particle size distribution was determined in a dry method with a
Scirocco dry powder feeder; air was used as the dispersion agent.

At least three repeated measurements were performed on each
sample and the mean value was calculated. The tables with the
results contain d(0.5) (defined as the diameter where half of the
population lies below this value) and D[4,3] (the mean diameter
over volume, also referred to as the DeBroukere mean).

2.9. Determination of residual solvent content

The residual solvent content was analysed by a headspace gas
chromatographic method, with an Agilent 7890 A gas chromato-
graph (Agilent Technologies Inc., Santa Clara, CA, USA) with a DB-
624 capillarycolumn (60 m � 0.25 mm � 1.4 mm, nominal) equipped
with an Agilent GC Sampler 80 and a flame ionization detector. The
conditions of the gas chromatographic analysis were as follows: the
oven temperature was initially maintained at 40 �C for 6 min, and
then raised at a rate of 7 �C min�1 to 194 �C, where it was held for
0 min. The temperature of the injector was set at 220 �C and the
detector temperature was set at 300 �C. Helium was used as carrier
gasatapressureof34.8 psi.1 mLsampleswere injectedinsplitmode,
with a split ratio of 8:1. The agitator temperature was 80 �C with a
speed of 500 rpm, and the syringe temperature was 110 �C. The
sample equilibration time was 20 min. The hydrogen gas and air flow
rates were 30 and 350 mL min�1, respectively.

The ethanol concentration of the standard solution was
100 mg mL�1. The blank sample contained 500 mg of sodium
sulfate dissolved in 1 mL of water for injection in a 20 mL
headspace vial. The standard sample contained the same quantity
of sodium sulfate dissolved in 1 mL of standard solution, while the
sample solution contained 500 mg of sodium sulfate and 100 mg of
crystallized glycine sample dissolved in 1 mL of water for injection.

Table 3
Crystallization results in series A.

Sample Linear velocity (m s�1) Post mixing time (min) Roundness d(0.5) (mm) D[4,3] (mm) Percentage yield

A1 1.41 0 2.977 15.792 21.497 62.84
A2 1.41 5 2.292 15.808 20.295 65.90
A3 1.41 10 2.089 31.222 37.498 67.22
A4 2.77 0 2.715 16.770 22.530 65.17
A5 2.77 5 2.251 26.057 31.610 64.14
A6 2.77 10 2.033 34.285 40.650 66.10
A7 4.06 0 2.116 14.029 17.175 64.97
A8 4.06 5 2.363 13.778 17.784 68.06
A9 4.06 10 1.961 31.948 38.076 68.72

Table 4
Crystallization results in series B.

Sample Temperature difference (�C) Post mixing time (min) Roundness d(0.5) (mm) D[4,3] (mm) Percentage yield

B1 0 0 1.825 10.142 13.329 82.25
B2 0 5 2.429 9.249 11.241 81.11
B3 0 10 2.935 9.368 11.563 80.54
B4 12.5 0 2.851 8.335 10.889 81.54
B5 12.5 5 2.186 8.524 10.803 85.59
B6 12.5 10 2.292 9.664 12.662 82.34
B7 25 0 2.071 8.575 11.599 80.60
B8 25 5 2.166 10.204 13.849 85.73
B9 25 10 2.513 8.835 11.636 84.33

Fig. 2. Light microscopy images of glycine crystals.
(left: original crystal; middle: crystallized product A8; right: crystallized product B7).
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3. Results and discussion

The crystallization results for the two series are presented in
Tables 3 and 4. Each assay was repeated three times; the
Tables show the average results of roundness, d(0.5), D[4,3] and
percentage yield.

The application of the impinging jet crystallization technique
resulted in a smaller particle size as compared with the previously
investigated conventional crystallization methods. The parallel
crystallization processes with the same parameters produced the
same particle size distribution, which confirmed the reproducibil-
ity of the method. In series A, increase of the post-mixing time
improved the roundness, but increased the particle size of the

product, which was in contrast with the announced goal. The
average particle size increased to a greater extent particularly at a
post-mixing time of 10 min. As the crystallization parameters had
opposite effects on the particle size and roundness, it was
favourable to apply a post-mixing time reduction. In series B,
neither the temperature difference nor the post-mixing time
influenced the particle size or roundness of the crystallized
products significantly, but each individual parameter setting
resulted in significantly smaller particles as compared with series
A. The percentage yield in series B was higher due to the lower

Fig. 3. SEM images of glycine crystals.
(left: original crystal; middle: crystallized product A8; right: crystallized product B7).

Fig. 5. DSC thermograms of the initial material and crystallized products.
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solubility of glycine in the 1:2 solvent–antisolvent mixture. The
filterability of all the crystallized products was satisfactory.

The differences in crystal size and morphological parameters
can be seen in the light microscopy and SEM images (Figs. 2 and 3).
The original glycine contained large isodimensional crystals with a
smooth surface. By contrast, the products with the smallest
average particles in the two crystallization series consisted of
small, irregular-shaped, needle-form crystals with a smooth
surface and poorer roundness. The crystallized products exhibited
a slight tendency to aggregate due to the small particle size, but
this did not cause any problem for the laser diffraction particle size
analysis measurements and allowed the application of the dry
method.

The polymorphism of the initial material and the products was
examined with a powder X-ray diffraction apparatus and
compared with the structures in the Cambridge Structural
Database (refcodes GLYCIN02 (a) and GLYCIN (b)) (Fig. 4). It
was found that both the initial material and the series A products
consisted of the pure stable a polymorph. In contrast, the series B
products contained mostly the less stable b polymorph, and a
small amount of the a polymorph. According to the literature data
(Weissbuch et al., 2005; Ferrari et al., 2003), the appearance of the
b polymorph is caused by the presence (and the concentration) of
ethanol in the crystallization process. While the 1:1 solvent–
antisolvent ratio favoured the formation of the stable a form, the
higher ethanol ratio resulted in the appearance of the less stable b
polymorph.

Transformation of the b form into the a polymorph began
during storage. The pure b form had been generated as described
in the literature (Boldyreva et al., 2003a). Powder mixtures of
various compositions (0 + 100, 10 + 90, 20 + 80 a + b forms, and so
on) were prepared from the two polymorphs and the calibration
curve was recorded. The calibration curve based on the

characteristic peak area of the a form (peaks at 29.225,
29.827 and 30.172 2u) was as follows: y (a form %) = �1.7465 x
(net area) + 158.25 (R2 = 0.991). The initial b form content of the
series B samples was between 72 and 96%. After 1 year of storage,
the b form content had decreased to 13–17%. The series A products
did not change during this storage period. It was found that the
1:1 solvent ratio used in the crystallization processes was crucial
for the formation of the stable polymorphic form.

DSC studies confirmed the results of the powder X-ray analysis.
The thermograms of the initial material and the series A products
contained one endothermic peak at about 257 �C, which corre-
sponds to the melting point of the a form (Srinivasan, 2008). In
contrast, the thermograms of the series B samples displayed two
endothermic peaks. The lower-temperature peak corresponded to
the melting point of the b form, while the second peak was caused
by the melting of the a form. It was not possible to specify the
proportion of the polymorphs because the two endothermic peaks
overlapped. After storage for one year, the thermograms of the
series B samples were similar to the previously recorded ones. It
has been reported that the phase transition of the g form to the a
polymorph causes a small endothermic peak at about 179 �C
(Srinivasan, 2008). Our results indicated that our samples did not
contain any g form (Fig. 5).

The growth of the crystals during impinging jet crystallization
is rapid, due to the homogeneous and high degree of supersatura-
tion, so that the chance of the occurrence of solvent inclusion is
high. Ethanol (used as antisolvent) belongs in the ICH Q3C(R2)
Guideline Class 3 group (where the residual solvent concentration
is at most 5000 ppm), and it was therefore necessary to determine
its concentration in the crystallized products (ICH, 2011). The
residual solvent contents of the crystallized samples were
determined by headspace gas chromatography (Grodowska and
Parczewski, 2010). Our results indicated that the ethanol content of
the initial sample was less than the limit of quantification, and it
was therefore assumed that ethanol was not used in the
preparation of this material. The maximum residual solvent
content of the series A samples was 9 ppm, while the samples
in series B contained a maximum 145 ppm of ethanol. The
measured residual solvent content of the samples was low relative
to the maximum values prescribed in the ICH requirements, which
demonstrated the applicability of the impinging jet method in the
antisolvent crystallization of glycine despite the extremely rapid
nucleation.

Statistical analysis results relating to the effects of the
crystallization parameters on the roundness and particle size
are presented in Table 5, where the statistically significant factors
are underlined.

In the case of series A, only the post-mixing time exhibited a
significant linear relationship with the changes in roundness, d
(0.5) and D[4,3] results (the response surface r2 results were 0.858,
0.937 and 0.943, respectively). Neither the linear nor the quadratic
relationship of the linear velocity and the interaction effect of the
two independent variables displayed a significant effect on the
change in these dependent variables. An increase of the post-
mixing time increased the average particle size, but reduced the
roundness, and the post-mixing time therefore had to be reduced
to achieve the desired small particles. We assume that an increase

Table 5
Factorial design results (series A).

Dependent variable Polynomial function r2

Roundness y = 2.32 � 0.31x1�0.58x2 + 0.04x2
1 � 0.01x22 + 0.37x1x2 0.858

d(0.5) y = 22.19 � 1.02x1 + 16.94x2 + 5.29x21 � 5.46x22 + 1.25x1x2 0.937

D[4,3] y = 27.47 � 2.09x1 + 18.32x2 + 6.24x21 �6.34x22 + 2.45x1x2 0.943

Fig. 6. Particle size distribution and average particle size range produced by
different crystallization methods.
(top: particle size distribution of the product with the smallest average particle size
achieved with the given method; bottom: average particle size ranges (d(0.5))
attained with the given method).
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of the linear velocity would cause a further particle size reduction,
but the pump capacity was limited, so that the velocity could not
be increased as compared with the original parameters described
in the crystallization studies. The investigated parameters did not
cause significant changes in the particle size and roundness in
series B.

Fig. 6 depicts the particle size distributions of the products with
the smallest particles and the average particle size ranges
produced by impinging jet crystallization and the previously
investigated crystallization methods (Aigner et al., 2012). Those
studies had shown that the largest particles were achieved by
conventional cooling crystallization. The reverse antisolvent and
antisolvent methods with the application of ultrasound were also
able to achieve slight reductions in the average particle size of
glycine. The impinging jet technology resulted in a further one
order of magnitude reduction in particle size.

4. Conclusions

Glycine crystals grow rapidly and the crystal size is typically
quite large, and glycine is therefore an ideal model material for
particle size reduction experiments. Application of the impinging
jet method in antisolvent crystallization led to a reproducible
decrease in the average particle size of glycine, with suitable low
residual organic solvent quantity and roundness. A factorial design
was applied to choose the relevant crystallization factors, and the
results were analysed by means of a statistical program. The
average particle size was an order of magnitude smaller (d
(0.5) = 8–35 mm) as compared with the results of several other
crystallization methods (cooling, reverse antisolvent and anti-
solvent crystallization with the application of ultrasound, where d
(0.5) was between 82 and 680 mm). Production of the stable
polymorphic form required the application of a 1:1 water–ethanol
ratio.

The impinging jet crystallization method has proved to be a
good tool for optimizing and controlling the nucleation and
crystallization of organic materials such as glycine. Furthermore, it
can be used as a very effective size reduction method to attain a
final product with suitable crystal morphology and a narrow
particle size distribution.
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Optimizing the Crystal Habit of Glycine
by Using an Additive for Impinging Jet
Crystallization

Additives selectively inhibit or enhance the growth of crystal faces and effectively
change the crystal morphology. For the first time, potassium chloride was used as
additive during impinging jet crystallization of glycine. The structure of the pow-
der particles was evaluated by X-ray powder diffraction, differential scanning calo-
rimetry, scanning electron microscopy with energy dispersive X-ray spectroscopy,
headspace gas chromatography, and flame atomic absorption spectrometry. Even
a minor amount of KCl had a significant effect on the crystal roundness and
reduced the particle size significantly, despite of the extremely rapid nature of the
crystallization process. This method resulted in the a-polymorph of glycine with
an appropriate low residual additive content and a minimal residual organic
solvent content. The arrangement and the optimal concentration of the additive
were determined.
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1 Introduction

The main purpose of crystallization is to produce the most
appropriate form of an active compound in terms of manufac-
turability, in the pharmaceutical, food, or cosmetic industries.
The crystal habit, such as the particle size, shape and surface,
influences the processability [1–3]. A small average particle size
and a narrow particle size distribution (PSD) are frequent
requirements in case of poorly water-soluble drugs (Biophar-
maceutics Classification System (BCS) class II). These parame-
ters can increase the dissolution rate from dosage forms,
enhance the bioavailability of the drug products, and influence
the stability and uniformity of the active agent incorporated in
tablets [4, 5]. The roundness of the crystals affects their flow-
ability and fluency and the agglomeration of the particles dur-
ing the tableting process, both in case of direct tablet compres-
sion and in case of wet granulation. A spherical crystal shape
and a smooth surface are known to improve the flowability
and assure the presence of individual particles [6].

During the course of impinging jet crystallization, the rich
solution of the active pharmaceutical ingredient (API) and the
antisolvent flow through two jet nozzles arranged diametrically
opposite to and facing each other. At the impinging point,
where the mixing of small volumes of the two solutions occurs,
high supersaturation evolves before the onset of nucleation,
which produces a monodisperse population of small crystals
with a high surface area [7, 8]. The PSD can be adjusted by
modifying the crystallization parameters, including the linear
velocity of the fluid flow, the temperature of the liquids, or the
post-mixing time [9]. On the other hand, modifying the crystal

shape is hardly feasible because of the momentary and
extremely rapid nature of the crystallization process.

Glycine crystals are well known to grow rapidly; their parti-
cle size is typically large, and therefore glycine is an ideal model
material for crystal habit modification experiments [10, 11].
Glycine has three polymorphic forms including a-, b-, and
g-polymorphs under normal conditions. Under high pressure,
d- and z-polymorphs have also been observed [12]. The forma-
tion of these polymorphs can be influenced by various experi-
mental conditions and different crystallization parameters [13].
a-Glycine is metastable under ambient conditions, and in
aqueous solution, it develops by spontaneous nucleation as the
main polymorph. Its crystal structure is monoclinic (space
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group (s.gr.) P21/n). b-Glycine is the least stable form at all
temperatures, and its formation is driven by the addition of
methanol or ethanol to the aqueous solutions. It is also charac-
terized by a monoclinic crystal structure (s.gr. P21). Thermo-
dynamically, g-glycine is the most stable form under ambient
conditions, although most commonly the a-form crystallizes in
aqueous solutions and it does not usually transform into the
g-form under these conditions. The g-form is known to devel-
op in acidic and basic water solutions containing additives like
acetic acid, ammonia, or inorganic salts. Its crystal structure is
trigonal (s.gr. P31). These three polymorphs exist in the zwit-
ter-ionic form within the crystals, and they differ in terms of
how the +NH3–CH2–COO– groups are linked by the hydrogen
bonds [14–16].

Additives selectively inhibit or enhance the growth of crystal
faces via several mechanisms and effectively change the crystal
morphology [17–19]. Parameters such as the concentration
and type of the additives can influence the occurrence of the
different polymorphs [20–22]. The additives used for the crys-
tallization process can influence the dissolution rate, the hard-
ness, and therefore even the efficiency of the tablets [23–25].
Yang et al. [26] investigated the effects of sodium chloride on
the nucleation and transformation of two polymorphs of gly-
cine. They found that the aqueous solution of NaCl favored the
formation of the g-form, and the final crystals were larger than
the initial crystal size. Sekar and Parimaladevi [27] applied a
slow evaporation method for glycine crystallization using a
high concentration of potassium chloride (4–18 %, i.e.,
4000–18 000 ppm) as additive. They observed that the additive
preferentially adsorbed on the (011) crystal face of a-glycine
and inhibited its growth along the c-axis, while enhancing the
growth along the a-axis [27]. Han et al. [28] examined the
effects of malonic and DL-aspartic acids as additives on the
growth of g-glycine and DL-alanine side faces. These amino
acids usually grow with a needle-like morphology from their
aqueous solutions and are elongated along the polar c-axis. It
was found that both of the additives inhibited the side growth
along the c-axis [28]. In summary, the additives are clearly
shown to affect the crystal morphology in case of long-lasting
crystallization methods, but for fast crystallization methods like
impinging jet crystallization, the effects of additives on mor-
phology control have not yet been investigated.

Previously, it was demonstrated that impinging jet crystalli-
zation is a very effective method for the particle size reduction
of organic materials such as glycine, yielding reproducible
products with a small average particle size and a narrow PSD
[29]. In any case, the applied rapid antisolvent crystallization
method gave needle-like crystals during our experiments,
which is considered as an unfavorable shape.

In the present work, the purpose was to produce glycine
crystals with suitable roundness besides a small average particle
size, a narrow PSD, and a stable polymorphic form. To the
authors’ knowledge, the current research is the first example of
combining the impinging jet crystallization method with the
application of different concentrations of potassium chloride as
an additive to modify the crystal habit of glycine particles. Fur-
ther aims were to adjust the optimal concentration of the addi-
tive and to optimize the crystallization parameters.

2 Materials and Methods

2.1 Materials

Glycine and ethanol 96 % were supplied by VWR (Leuven,
Belgium) and potassium chloride was obtained from Scharlau
(Barcelona, Spain). Purified water of Ph. Eur. quality was used
for the experimental work.

2.2 Impinging Jet Crystallization

The impinging jet unit was used in the non-submerged mode
with given-diameter nozzles (d = 0.6 mm). During the experi-
ments, two calibrated peristaltic pumps (Rollpump Type 5198;
MTA Kutesz, Budapest, Hungary) fed the near-saturated aque-
ous solution of glycine containing different concentrations of
potassium chloride and the antisolvent (ethanol 96 %). The gly-
cine concentrations of the saturated solutions were varied
between 20.05 and 23.48 % (m/v), corresponding to the solubil-
ity-increasing effect of the various concentrations of added
potassium chloride. After preparation of the saturated glycine
solution, 2 mL of additive solution were added subsequently to
avoid crystallization in the nozzles. The feeding was accom-
plished with constant linear velocity (4.06 m s–1) and with a sol-
vent/antisolvent ratio of 1:1, at 25 �C. The crystallization ex-
periments were carried out in a 250-mL round-bottom,
double-walled Schmizo crystallization reactor (Schmizo, Of-
tringen, Switzerland) equipped with an IKA Eurostar digital
overhead stirrer (IKA-Werke, Staufen, Germany) and an
Anker-type mixer. The stirring speed was 250 rpm.

Constant temperature was provided by a Thermo Haake
P5/C10 (Thermo Haake, Karlsruhe, Germany) thermostat and
a Julabo F32 (Julabo GmbH, Seelbach, Germany) cryothermo-
stat controlled by the Julabo EasyTemp 2.3e software. The crys-
tallized products were filtered in a porcelain filter and washed
with 40 mL of an ethanol-water mixture of ratio 1:1, to mini-
mize the quantity of residual potassium. After vacuum drying
(40 �C, 24 h), the products were stored in closed containers
under normal conditions. The experimental apparatus is out-
lined in Fig. 1.

2.3 Characterization of the Glycine Particles
Produced by Impinging Jet Crystallization

2.3.1 Investigation of the Crystal Morphology

The crystal shape of the crystallized products was investigated
using the Leica Image Processing and Analysis System (Leica
Q500MC; Leica Cambridge Ltd., Cambridge, UK). Crystal
length, breadth, surface area, perimeter, and roundness were
analyzed for approximately 1000 particles per sample. Round-
ness is a shape factor giving a minimum value of unity for the
circle shape. The roundness value for the perfect sphere shape
equals 1.00. Roundness is calculated as the ratio of the perime-
ter squared and the surface area. The adjustment factor of
1.064 corrects the perimeter for the effect of the corners pro-
duced by the digitization of the image:
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roundness ¼ perimeter2

4p area · 1:064
(1)

The morphology of the particles was analyzed by scanning
electron microscopy (SEM) (Hitachi S-4700; Hitachi Scientific
Ltd., Tokyo, Japan) using a working distance of 15 mm, an
accelerating voltage of 10 kV, and an emission current of
10 mA. A sputter coating apparatus (Bio-Rad SC 502; VG
Microtech, Uckfield, UK) was used to induce electric conduc-
tivity on the surface of the samples applying a gold-palladium
coating. The argon gas pressure was 1.3–13.0 mPa and the time
was 90 s.

2.3.2 Particle Size Distribution Analysis

The PSD was analyzed by a Malvern Mastersizer laser diffrac-
tion analyzer (Malvern Instruments Ltd., Malvern, UK) in a
dry method with a Scirocco dry powder feeder, using air as
the dispersion agent, and defining a measuring range of
0.02–2000 mm. Two repeated measurements were performed
on each sample and the mean value was calculated. The tables
with the results contain d(0.5), the diameter where half of the
population lies below, and D[4,3], the mean diameter over the
volume.

2.3.3 Identification of Polymorphism

X-ray powder diffractometry (XRPD) and differential scanning
calorimetry (DSC) were used to identify the crystal structure of
the products. The XRPD experiments were performed with a
Bruker D8 Advance diffractometer (Bruker AXS GmbH, Karls-
ruhe, Germany) using the symmetrical reflection mode with
CuKa radiation (l = 1.5406 Å) and Göbel mirror bent gradient
multilayer optics. Scattered intensities were measured with a

Våntec-1 line detector. The angular range included 3 to 40� in
steps of 0.01�. Other relevant measurement conditions were as
follows: target, Cu; filter, Ni; voltage, 40 kV; current, 40 mA;
measuring time, 0.1 s step–1. The diffraction patterns of the
crystallized samples were compared with those of the structures
available in the Cambridge Structural Database (Cambridge
Crystallographic Data Centre (CCDC), Cambridge, UK).

The DSC analysis was carried out with a Mettler Toledo
DSC 821e thermal analysis system, equipped with the STARe

software version 9.30 (Mettler-Toledo AG, Greifensee, Switzer-
land). The measuring parameters were as follows: 10 �C min–1

linear heating rate, argon as carrier gas (100 mL min–1), 2–5 mg
sample weight, 25–300 �C temperature interval. A sealed 40-mL
aluminum crucible with three leaks in the lid was used for the
measurements.

2.4 Factorial Design

A 32 full factorial design was applied to identify the relevant
factors affecting the impinging jet-crystallized product. In
series I and II, the influence of the additive concentration and
the post-mixing time on three independent variables, i.e., on
roundness, d(0.5), and D[4,3], was investigated. Tab. 1 shows
the influential levels of these two factors. The experiments were
performed in a randomized sequence. The following equation
describing the interactions of the factors was used to determine
the response surface and the relative effects of each factor
investigated (b):

y ¼ b0 þ b1x1 þ b2x2 þ b3x2
1 þ b4x2

2 þ b5x1x2 (2)

Statistica for Windows 12 AGA software (StatSoft Inc., Tulsa,
OK, USA) was used for the calculations. The confidence inter-
val was chosen to be 95 %, i.e., the differences were regarded as
significant at p < 0.05.
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Figure 1. Experimental ap-
paratus.
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2.5 Determination of the Residual Solvent Content

The residual solvent content was analyzed by a headspace gas
chromatographic method using a Varian CP-3800 gas chroma-
tograph (Varian, Walnut Creek, CA, USA) with a DB-624 cap-
illary column (60 m · 0.25 mm · 1.4 mm, nominal) equipped
with a Tekmar Dohrmann 7000 headspace autosampler and a
flame ionization detector. The conditions for the gas chromato-
graphic analysis were as follows: the oven temperature was ini-
tially maintained at 40 �C for 6 min and then raised to 194 �C at
a rate of 7 �C min–1, at which the sample was held for 0 min.
The temperature of the injector was set to 220 �C and the
detector temperature was set to 270 �C. Helium was used as the
carrier gas at a volume of 1.5 mL min–1.

Aliquots of 1 mL were injected in split mode, with a split
ratio of 8:1. The platen temperature was 80 �C, the loop tem-
perature was 90 �C, and the transfer line temperature was
110 �C. The sample equilibration time was 20 min. The gas flow
rates of hydrogen, air, and nitrogen were 30, 300, and
25 mL min–1, respectively. The ethanol concentration of the
standard solution was 100 mg mL–1. The blank sample con-
tained 500 mg of sodium sulfate dissolved in 1 mL water for
injection in a 20-mL headspace vial. The standard sample con-
tained the same quantity of sodium sulfate dissolved in 1 mL of
standard solution, while the sample solution contained 500 mg
sodium sulfate and 100 mg crystallized glycine with the KCl
sample dissolved in 1 mL water for injection.

2.6 Determination of the KCl Content

2.6.1 Qualitative Determination of the KCl Content

SEM (Hitachi S-4700 cold field emission microscope type II)
with energy dispersive X-ray spectroscopy (EDS) (Röntec
XFlash energy dispersive X-ray spectrometer, Berlin, Germany)
was used to examine the topology, the composition, and the
elemental map of the samples. The resolution limit of this unit
was 1.5 nm; the rate of magnification was 2500·. The samples
were made conductive by sputter-coating, producing an
approximately 3-nm gold-palladium surface layer to avoid
charging effects.

2.6.2 Quantitative Determination of the KCl Content

Determination of the KCl concentration of the samples was
performed by flame atomic absorption spectrometry (FAAS). A
Perkin Elmer 4100 ZL (Überlingen, Germany) flame atomic ab-
sorption spectrometer equipped with a deuterium background
correction system and an air-acetylene burner was used for the
determination of the potassium content. The conventional
working parameters for the instrument were as follows: a wave-
length of 766.5 nm, a spectral bandwidth of 0.7 nm, an acety-
lene flow rate of 2.5 L min–1, and a nebulizer flow rate of
8.0 mL min–1. The concentration of the standard potassium
stock solution was 1000 ppm (Acidum-2 Ltd., Debrecen, Hun-
gary); the calibration series were made using a 0.2 M HNO3 so-
lution and the stock solution in various quantities. The sample
solutions were also prepared using the 0.2 M HNO3 solution.

3 Results and Discussion

3.1 Crystal Morphology

The crystallization results for the two series of experiments are
presented in Tabs. 2 and 3, showing the percentage yield, the
average values of roundness, the particle size (d(0.5) and
D[4,3]), and the residual potassium content of the products.

In our initial pilot research, a high concentration
(5000–8000 ppm) of KCl was applied as additive, but these
concentrations did not prove to be suitable to achieve the
appropriate morphology in case of the impinging jet method.
Thus, in series I, the concentration of additive was decreased,
and the concentration range of 1000–2000 ppm of KCl was
found to produce the desired effect: it improved the crystal
roundness and reduced the particle size. An increasing post-
mixing time was found to adversely affect these properties. The
additive concentration of 1000 ppm KCl and 0 min of post-
mixing time were demonstrated to yield crystals with the most
favorable properties, indicating that a lower concentration of
additive contributes to the optimal glycine particle shape and
to a lower level of residual impurity in case of impinging jet
crystallization. Therefore, in series II, the additive concentra-
tion was decreased sharply.

In series II, the morphology of the glycine crystals was also
found to be modified, even by a small amount of KCl added, in
comparison to the samples without additive. This series of ex-
periments clearly demonstrated that using low concentrations
of KCl resulted in even better properties of the crystal habit
compared to using higher concentrations of the additive. Even
100 ppm of additive appreciably improved the roundness of the
crystals. A KCl concentration of 200 ppm and 0 min of post-
mixing time were found to yield the smallest particle size and
the most favorable roundness. The laser diffraction analysis of
all samples demonstrated a monodisperse PSD. In Fig. 2, the
PSD diagrams of the most favorable samples of series I and II,
and of the sample without additive, are illustrated and com-
pared to each other. Differences in particle size between the
samples produced by the different parameters can be recog-
nized.
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Table 1. Values of factors investigated by the 32 full factorial
design.

Factor Low level
(–)

Mid level
(0)

High level
(+)

Series I

KCl concentration [ppm] 0 1000 2000

Post-mixing time [min] 0 5 10

Series II

KCl concentration [ppm] 0 100 200

Post-mixing time [min] 0 5 10
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The quantitative measurement of the re-
sidual potassium content of the products
was carried out by FAAS, as this is the most
frequently used detector technique for the
quantitative determination of this element.
The crystal samples produced by using a
higher concentration (1000–2000 ppm) of
KCl as additive were found to have a resid-
ual potassium content of 123–364 ppm.
These values were found to be proportional
to the length of the post-mixing time. A
longer post-mixing time increased the re-
sidual potassium content because a higher
amount of KCl was allowed to get adsorbed
on the surface of the glycine crystals. The
products generated in series II contained by
one order of magnitude less potassium
(22–48 ppm) compared to those produced
in series I.
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Table 2. Crystallization results in series I.

KCl concentration
[ppm]

Post-mixing time
[min]

Percentage yield
[wt %]

Roundness [–] Particle size [mm] Residual potassium
[ppm]

Mean SD d(0.5) D[4,3]

0 0 52.27 2.36 1.05 37.728 44.959 1

0 5 56.53 2.62 1.36 39.662 46.803 1

0 10 56.81 2.34 0.95 39.082 44.206 1

1000 0 54.55 1.86 0.63 31.929 41.233 123

1000 5 60.97 2.03 0.84 34.162 38.606 167

1000 10 61.62 2.25 0.84 36.125 40.441 182

2000 0 51.56 2.16 0.93 36.682 42.789 184

2000 5 61.90 2.09 0.82 37.031 48.429 233

2000 10 61.81 2.20 0.90 40.854 46.361 364

Table 3. Crystallization results in series II.

KCl concentration
[ppm]

Post-mixing time
[min]

Percentage yield
[wt %]

Roundness [–] Particle size [mm] Residual potassium
[ppm]

Mean SD d(0.5) D[4,3]

0 0 52.27 2.36 1.05 37.728 44.959 1

0 5 56.53 2.62 1.36 39.662 46.803 1

0 10 56.81 2.34 0.95 39.082 44.206 1

100 0 58.48 1.68 0.42 37.814 44.684 33

100 5 58.78 1.65 0.39 33.970 40.311 30

100 10 60.88 1.67 0.48 38.446 43.444 31

200 0 59.58 1.63 0.41 30.877 38.443 35

200 5 56.29 1.65 0.36 33.562 39.237 22

200 10 60.78 1.62 0.38 36.083 41.909 48

Figure 2. Particle size distributions of selected samples. Add: additive.
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The percentage yield in the two series ranged between 52
and 62 %. An increasing effect of the KCl addition was notice-
able for this parameter. The presence of KCl increased the solu-
bility of glycine; therefore, the increased saturation concentra-
tion of glycine resulted in a higher supersaturation value in the
same water-ethanol mixture. Hence, if a bigger amount of gly-
cine was dissolved, higher supersaturation occurred. This con-
dition is preferred over the higher percentage yield. The super-
saturation also influenced the crystal habit; it increased the
nucleation rate and was favorable for the smaller particle size,
and it also improved the crystal roundness. The optimal super-
saturation and KCl concentration were achieved in series II.
Besides, the percentage yield also depended on the post-mixing
time: With increasing post-mixing time, the yield was also
increased. During post-mixing, crystal growth could be consid-
ered to increase the percentage yield. Without post-mixing
time, the nuclei had no time to grow further, since they were
filtered off immediately. The filterability of all the crystallized
products was satisfactory in our small-volume system, since the
obtained filter cake did not inhibit the removal of the solution
and did not decrease the flow rate of the dispersion medium.

The SEM images show the differences in crystal size and
morphological parameters of the experimental products. Those
crystals with the smallest average particle size and the most
favorable roundness are presented in Fig. 3. The original gly-
cine contained large isodimensional crystals with a smooth sur-
face. The products yielded by the impinging jet crystallization
process were shown to have a significantly smaller average par-
ticle size. The sample without additive consisted of irregularly
shaped, needle-like crystals with a smooth surface and poor
roundness, and also exhibited a slight tendency to aggregate.
On the other hand, the products crystallized with the KCl addi-
tive contained bipyramidal-shaped, small-size, individual crys-
tals with a smooth surface. The crystals produced by using
200 ppm of the additive show the most favorable morphology,
as confirmed by the analytical data.

3.2 Polymorphism

The polymorphism of the initial mate-
rial and the products was examined
immediately after vacuum drying, by
both XRPD and DSC, in parallel. The
XRPD diffractograms were compared
with the structures available in the
Cambridge Structural Database (Fig. 4).
Based on the XRPD analysis, both the
initial material and all the products
were found to contain only the stable
a-polymorph. The more sensitive DSC
measurements, however, revealed two
polymorphs (Fig. 5). The thermograms
of the original glycine and of the prod-
ucts also contained two endothermic
peaks at about 251 and 254 �C. The first
peak corresponds to a small amount of
the less stable b-form. The second one
is the melting point of the a-form. It

was not possible to specify the proportion of the polymorphs
because the two endothermic peaks overlapped. Based on the
literature, a higher additive concentration favors the formation
of g-glycine, as it was mentioned above [27]. The phase transi-
tion of the g-form to the a-polymorph causes a small endother-
mic peak at about 179 �C. Our results indicate that our samples
did not contain any amount of the g-form, supporting the
notion that the low concentrations of KCl applied did not
change the crystal structure and the initial a-form was pre-
served in all the crystallized products.
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Figure 3. SEM images of glycine crystals. (a) Initial glycine, (b)
without additive, (c) with KCl 1000 ppm, (d) with KCl 2000 ppm,
(e) with KCl 100 ppm, (f) with KCl 200 ppm.

Figure 4. XRPD diffractograms of the initial material and of the crystallized products. Add:
additive.
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3.3 Statistical Analysis

The statistical analysis aimed to explore the effects of the crys-
tallization parameters on the roundness and particle size of the
crystals, and the results can be seen in Tab. 4. In series I, the
KCl concentration was revealed to exhibit a significant qua-
dratic effect on the particle size, while it had no significant
effect on the roundness because of outlier data. However, in
series II, a tendency between the obtained data and an effect of
the x1 factor was noticeable. The KCl concentration was found
to have a significant linear relationship with the changes in
roundness, as well as with the d(0.5) and D[4,3] values. Thus,
increasing the concentration of the additive within a certain
range (0–200 ppm) was shown to improve the roundness and
to reduce the average particle size. For all significant effects,
p < 0.036.

3.4 Residual Solvent and
Potassium Content

The residual ethanol content of the samples
was analyzed by headspace gas chromatog-
raphy due to the high risk of the occur-
rence of solvent (antisolvent) inclusions
that may be associated with such an
extremely rapid crystallization technique as
used here. Ethanol belongs to the Interna-
tional Council for Harmonisation (ICH)
Q3C(R5) Guideline Class 3, with an upper
limit of residual concentration of 5000 ppm
[30]. The ethanol contents of the products
of series I and II were between 38 and
80 ppm, which is minimal compared to the
maximum value defined in the ICH
requirements.

The arrangement of the residual KCl
content within the samples was examined
by SEM-EDS. Within the products contain-
ing high concentrations (5000 ppm) of the
additive, the KCl crystals were found to be
arranged separately and individually, as
seen in Fig. 6 visualizing K and Cl as bright
spots. In case of low additive concentra-

tions (100–200 ppm), in the SEM-EDS elemental maps, well-
defined separate KCl crystals were not recognized; KCl was
only found to be adsorbed widespread on the crystal faces all
over the sample surfaces. In case of higher concentrations,
those K and Cl ions not able to adsorb to the faces because of
their high quantity arranged themselves separately and individ-
ually next to the glycine crystals. Based on the literature, KCl
prefers to adsorb to the (011) crystal face of glycine and inhibits
further incorporation of glycine molecules into the crystal lat-
tice along the c direction [27]. Thus, the adsorption of KCl
inhibits the lengthwise growth of the crystals: in case of this
rapid crystallization method, the enhancing effect of KCl in the
a direction is smaller than the inhibiting effect displayed in the
c direction, while crystal growth in direction b is not affected
by KCl. This way, it is possible that the additive also has a
decreasing effect on the particle size. During the post-mixing

period, the growth in directions a and b
becomes prominent, as the faces have more
time to grow without limit. Presumably, the
lack of the post-mixing period causes the
more favorable roundness.

4 Conclusions

The current research is the first example of
combining the impinging jet crystallization
method with the application of potassium
chloride as an additive. The combination
method was demonstrated to improve the
crystal habit of glycine, despite the ex-
tremely rapid nature of the crystallization
process. Even low concentrations of the
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Figure 5. DSC thermograms of the initial material and of the crystallized products. Add:
additive.

Table 4. Factorial design results (x1: KCl concentration; x2: post-mixing time).

Dependent variable Polynomial function r2

Series I

Roundness y = 2.21 – 0.29x1 + 0.14x2 – 0.25x1
2 + 0.05x2

2 + 0.03x1x2 0.74

d(0.5) y = 37.03 – 0.64x1 + 3.24x2 – 4.43x1
2 – 0.12x2

2 + 1.41x1x2 0.99

D[4,3] y = 43.76 + 0.54x1 + 0.68x2 – 5.50x1
2 + 1.28x2

2 + 2.16x1x2 0.77

Series II

Roundness y = 1.92 – 0.79x1 – 0.03x2 – 0.38x1
2 + 0.08x2

2 – 0.03x1x2 0.97

d(0.5) y = 36.36 – 5.32x1 + 2.40x2 + 0.58x1
2 – 0.94x2

2 + 1.93x1x2 0.76

D[4,3] y = 42.67 – 5.46x1 + 0.49x2 + 0.22x1
2 – 0.82x2

2 + 2.11x1x2 0.71
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additive proved sufficient for an appropriate effect: As little as
100 and 200 ppm of KCl could significantly improve the
roundness and reduce the particle size of the glycine crystal
products. Based on the 32 full factorial design applied to identi-
fy the relevant factors affecting the impinging jet-crystallized
product, the post-mixing time was demonstrated to be another
important process parameter. A KCl concentration of 200 ppm
and 0 min of post-mixing time were found to yield the smallest
particle size and the most favorable roundness.

Residual KCl crystals were found to be arranged separately
and individually within the products containing high concen-
trations of the additive, while those containing low concentra-
tions of the additive were found to have residual KCl adsorbed
on the crystal faces all over the sample surfaces. The crystal-
lized product was characterized by low residual solvent and
potassium contents. The newly applied jet crystallization meth-
od yielded a stable polymorph. Therefore, this study supports
the notion that combining impinging jet crystallization with
the application of an additive produces microparticles with the
desired crystal morphology when the parameters of crystalliza-
tion are chosen correctly.
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DSC differential scanning calorimetry
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Crystal morphology is a very important factor in the processability of active agents and 
excipients. Thus, it is beneficial if the product of crystallization already possesses the de-
sired particle size, shape and surface. In our previous work it was found that impinging jet 
crystallization is a very effective particle size reduction method for organic materials, such 
as glycine, and it results reproducible samples with narrow particle size distribution. How-
ever, that rapid antisolvent crystallization method causes unfavorable shaped, needle-like 
crystals. Due to the momentary and extremely rapid method, the changing of morphology 
is hardly feasible. In the present work our purpose was to produce glycine crystals with 
suitable roundness besides small average particle size, narrow particle size distribution 
and stable polymorphic form. The impinging jet crystallization process supplemented with 
different concentration of additives was applied for modifying the crystal habit of glycine 
particles. The effects of operating parameters, such as the post mixing time and the KCl 
concentration, were investigated by full factorial design. 
 
1 Introduction 

 
The crystal habit, such as particle size, shape and surface, influences the processability 
of active agents even in pharmaceutical, food or cosmetic industry. The method and the 
parameters of crystallization processes determine these properties. The small average 
particle size, narrow particle size distribution and suitable crystal shape of the poorly 
water-soluble drugs (BCS II) are very important factors in the field of formulation [1]. 
Impinging jet crystallization is an antisolvent method. The rich solution of the active 
agent and the antisolvent flow through two jet nozzles arranged diametrically opposite 
and facing each other. At the impinging point will be high supersaturation producing a 
monodisperse population of small crystals. As well as in our previous work, it was 
proved that impinging jet crystallization is a very effective particle size reduction 
method for organic materials such as glycine, and in case of the rapid crystallization, the 
change of crystal morphology is hardly feasible [2].  
Glycine crystals grow rapidly, their particle size is typically large. Glycine exists in three 
polymorphic forms under ambient conditions. Forms α (space group: P21/n) and β (s. g.: 
P21) are monoclinic, while γ (s. g.: P31) is trigonal. α-glycine is obtained by spontaneous 
nucleation in aqueous solution as the main polymorph from pure aqueous solutions and 
it is stable at ambient conditions. The γ-form is the most stable at low temperature, but 
it transforms to the α-form at high temperature. The β-form is the less stable polymorph 
at all conditions [3]. 
Additives selectively inhibit or enhance growth of crystal faces with several mechanisms 
and effectively change the morphology. For example, the additive molecule is able to 
adsorb to the competent crystal face and then it is incorporated into the crystal lattice or 
after the adsoption it can desorb. The probable mode of the bonding depends on the mo-
lecular arrangement and the crystal structure. The concentration and type of additives 
can influence the occurance of the different polymorphic forms, also the additives can 
improve the dissolution rate or control the impurity in the products [4]. C. Sekar et al. 
used high concentration of potassium chloride additive for the slow evaporation crystal-
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lization method of glycine. The preferential adsorption of KCl to the (011) crystal face 
was confirmed in case of the α-form, and the high concentration of KCl resulted the γ-
form [5]. 
In the present work, our purpose was to produce glycine crystals by impinging jet crys-
tallization with suitable roundness besides small average particle size, narrow particle 
size distribution and stable polymorphic form. The impinging jet process supplemented 
with different concentration of additives was applied for modifying the crystal habit of 
glycine particles. The effect of different potassium chloride concentrations and post mix-
ing times were studied by means of a 32 full factorial design. 
 
2 Experimental methods  
 
2.1 Materials 
Glycine and ethanol 96% were supplied by VWR (Leuven, Belgium); potassium chloride 
was obtained from Scharlau (Barcelona, Spain); purified water (Ph. Eur. quality). 
 
2.2 Impinging jet crystallization 
Crystallization experiments were carried out in a double-walled Schmizo crystallization 
reactor equipped with an IKA Eurostar digital mixer and the stirring speed was 250 rpm. 
The constant 25 ºC temperature was adjusted with a Thermo Haake P5/C10 thermostat. 
Two calibrated peristaltic pumps were used for the saturated glycine solution with dif-
ferent concentration of additive and the ethanol 96% feeding to the impinging jet unit 
with permanent velocity. The schematic representation of the experimental apparatus is 
outlined in Fig. 1. 
Two series were prepared and the parameters were chosen based on our previous re-
sults. In Serie I. the KCl concentrations were 0; 1000; 2000 ppm, in Serie II. they were 0; 
100; 200 ppm. In case of both series the other examined parameter was the post mixing 
time, the values were 0; 5 and 10 min. 
 

 
Fig. 1: Experimental apparatus 

 
2.3 Methods 
Roundness and morphology of the crystals were determined with the use of light micro-
scopic image analysis system and scanning electron microscope (SEM). The particle size 
distribution was investigated with a laser diffraction particle size analyser. Polymor-
phism was characterized by differential scanning calorimetry (DSC) and powder X-ray 
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diffraction (XRPD). Headspace gas chromatography (GC) was utilized to determine the 
residual solvent content. The amount of the residual potassium of the products was de-
tected by flame atomic absorption spectrometry (FAAS). The topology, the composition 
and the elemental map of the samples were examined by scanning electron microscope 
equipped with element dispersive X-ray spectroscopy (SEM-EDS). The results were ana-
lysed by means of a statistical program. 
 
3 Results and Discussion 
 
3.1 Crystal morphology 
The crystallization results for the two series are presented in Tables 1 and 2. The per-
centage yield, the average results of roundness, d(0.5), D[4,3] and the residual potassi-
um contant of the products are shown in the tables. 
 

Tab. 1: Crystallization results in Serie I. 
KCl conc. Post 

mixing time 
Percentage 

yield 
Roundness Particle size 

d(0.5)         D[4,3] 
Residual 

potassium 
(ppm) ( min) (m%) Mean SD (µm) (µm) (ppm) 

0 0 52.27 2.36 1.05 37.728 44.959 1 

0 5 56.53 2.62 1.36 39.662 46.803 1 

0 10 56.81 2.34 0.95 39.082 44.206 1 

1000 0 54.55 1.86 0.63 31.929 41.233 123 

1000 5 60.97 2.03 0.84 34.162 38.606 167 

1000 10 61.62 2.25 0.84 36.125 40.441 182 

2000 0 51.56 2.16 0.93 36.682 42.789 184 

2000 5 61.90 2.09 0.82 37.031 48.429 233 

2000 10 61.81 2.20 0.90 40.854 46.361 364 

 
In Serie I. the added high concentration of KCl improved the crystal roundness and re-
duced the particle size. The increase of the post mixing time affected these properties 
adversely. The 1000 ppm KCl additive with 0 minute post mixing resulted in the crystals 
with the most favorable properties of habit.  
 

Tab. 2: Crystallization results in Serie II. 
KCl conc. Post 

mixing time 
Percentage 

yield 
Roundness Particle size 

d(0.5)          D[4,3] 
Residual 

KCl 
(ppm) (min) (m%) Mean SD (µm) (µm) (ppm) 

0 0 52.27 2.36 1.05 37.728 44.959 1 

0 5 56.53 2.62 1.36 39.662 46.803 1 

0 10 56.81 2.34 0.95 39.082 44.206 1 

100 0 58.48 1.68 0.42 37.814 44.684 33 

100 5 58.78 1.65 0.39 33.970 40.311 30 

100 10 60.88 1.67 0.48 38.446 43.444 31 

200 0 59.58 1.63 0.41 30.877 38.443 35 
200 5 56.29 1.65 0.36 33.562 39.237 22 
200 10 60.78 1.62 0.38 36.083 41.909 48 
 
In Serie II. the morphology of the crystals was also modified by the added small amount 
of KCl compared to the samples without additive. 100 ppm of additive has already im-
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proved the roundness appreciably. This serie resulted in even better properties of the 
crystal habit compared to the higher concentrations. The 200 ppm KCl with 0 minute 
effected the smallest particle size and the most favorable roundness. 
The amount of the residual potassium of the products was detected quantitatively by 
FAAS. In case of the higher concentration additive the values were between 123 and 364 
ppm. The longer post mixing time increased the quantity. The products of Serie II. con-
tained an order of magnitude less potassium (22–48 ppm) compared to the results of 
Serie I. 
The differences in crystal size and morphological parameters can be seen in the SEM im-
ages, those products are presented which had the smallest average particle size and the 
most favorable roundness (Fig. 2). The original glycine contained large isodimensional 
crystals with a smooth surface. The products of impinging jet crystallization possess sig-
nificantly smaller average particle size. The sample without additive consisted of irregu-
lar-shaped, needle-form crystals with smooth surface and poor roundness, also exhibit-
ed a slight tendency to aggregate. On the other hand the products crystallized with addi-
tive contained bypiramidal-shaped, small size, individually crystals with smooth surface. 
The crystals of 200 ppm additive show the most favorable morphology confirmed the 
measured data. 
 

 
Fig. 2: SEM images of glycine crystals 

 
3.2 Polymorphism 
The polymorphism of the initial material and the products were examined with XRPD 
and DSC apparatus. The XRPD diffractograms were compared with the structures in the 
Cambridge Structural Database (Fig. 3). It was found that both the initial material and all 
the products consisted of the pure stable α-polymorph. The more sensitive DSC meas-
urements represented two polymorphs (Fig. 4). The thermograms of the original glycine 
and the products also contained two endothermic peaks at about 251 ºC and 254 ºC. The 
first peak refers to a little amount of the less stable β-form. The second one is the melt-
ing point of the α-form. It was not possible to specify the proportion of the polymorphs 
because the two endothermic peaks were overlapped. 

2000 ppm KCl 1000 ppm KCl 

100 ppm KCl 200 ppm KCl 

Initial material 

Without additive 

100 µm 100 µm 

100 µm 100 µm 100 µm 

300 µm 
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Fig. 3: XRPD diffractograms of the crystallized products 

 

 
Fig. 4: DSC thermograms of the initial material and the crystallized products 

 
3.3 Statistical analysis 
Statistical analysis results related to the effects of the crystallization parameters on the 
roundness and the particle size. In case of Serie I. the KCl concentration exhibited a sig-
nificant quadratic relationship with the changes in particle size, but this parameter did 
not display significant effect on the change of roundness. But in Serie II. the KCl concen-
tration denoted a significant linear relationship with the change of roundness as well as 
the d(0.5) and D[4,3] results. An increase of the concentration improved the roundness 
and reduced the average particle size. The confidence interval was 95% and the alpha 
value indicating significant factors was 0.05. In case of all significant effects the p<0.036. 
 
3.3 Residual solvent and potassium content 
The residual ethanol content of the samples was detected due to the high risk of the oc-
currence of solvent inclusion which can happen during an extremely rapid crystalliza-
tion. The ethanol quantity of the products was between 38 ppm and 80 ppm, which val-
ues were low relative to the maximum value – 5000 ppm – prescribed in the ICH re-
quirements. 
The arrangement of the KCl in the samples was examined by SEM-EDS. The KCl crystals 
were arranged separately and individually in the products containing high concentra-
tion additive, in Fig. 5 the bright spots denoted the K and the Cl. In case of low concen-
tration additive the KCl arrenged diffuse on the samples, adsorbed to the crystal faces. 
Based on the literature KCl prefers adsorbing to the (011) crystal face of glycine and in-
hibits further glycine molecules incorporation into the crystal lattice along the „c” 
direction. 
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ClK ClK

 
Fig. 5: The arrangement of KCl crystals in product 

which contains high concentration additive by SEM-EDS 
 
4 Conclusions 
 
Impinging jet crystallization method supplemented with KCl additive was able to 
improve crystal habit of glycine despite of the extremely rapid process. For the suitable 
effect it was sufficient to apply low concentration of additives, already 100 and 200 ppm 
KCl could significantly advance the roundness and reduce the particle size. The KCl 
crystals were arranged separately and individually in the product containing high 
concentration additive and adsorbed to the (011) crystal face. That adsorption inhibited 
the lengthwise growing along the „c” direction of the glycine crystals. The product 
contained low residual solvent and potassium quantity. The method resulted in a stable 
polymorphic form. Thereby, the desired crystal morphology could be produced in only 
one step if the parameters of crystallization are chosen correctly. 
 
References 
 
(1) Xu, J.; Luo, K. Q. Enhancing the solubility and bioavailability of isoflavone by parti-

cle size reduction using a supercritical carbondioxide-based precipitation process. 
Chem. Eng. Res. Des. 2014, 92, 2542–2549. 

(2) Tari, T.; Fekete, Z.; Szabó-Révész, P.; Aigner, Z. Reduction of glycine particle size by 
impinging jet crystallization. Int. J. Pharm. 2015, 478, 96–102. 

(3) Boldyreva, E. V.; Drebushchak, V. A.; Drebushchak, T. N.; Paukov, I. E.; Ko-
valevskaya, Y. A.; Shutova, E. S. Polymorhism of glycine. Thermodynamic aspects. 
Part I. Relative stability of the polymorphs. J. Therm. Anal. Calorim. 2003, 73, 409–
418. 

(4) Kaialy, W.; Maniruzzaman, M.; Shojaee, S.; Nokhodchi, A. Antisolvent precipitation 
of novel xylitol-additive crystals to engineer tablets with improved pharmaceuti-
cal performance. Int. J. Pharm. 2014, 477, 282–293. 

(5) Sekar, C.; Parimaladevi, R. Effect of KCl addition on crystal growth and spectral 
properties of glycine single crystals. Spectrochim. Acta A 2009, 74, 1160–1164. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

IV. 

 

 

 



 2017/2. Acta Pharmaceutica Hungarica 69

 Acta Pharmaceutica Hungarica 87. 69-76 2017.

Folyamatos kristályosítási eljárás fejlesztése impinging jet módszerrel
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1. Bevezetés

A gyógyszeriparban manapság egyre inkább teret 
hódít a folyamatos technológiák kialakítása mind 
a kutatás-fejlesztés, mind a gyártás területén. A fo-
lyamatos eljárásnak számos előnye van a korábban 
alkalmazott  szakaszos módszerekkel szemben, 
amelyek közül legmeghatározóbbak a költségek, 
az idő- és a helyigény jelentős csökkentése [1, 2]. A 

folyamatos módszer egységesebb terméket ered-
ményez, hiszen a gyártási tételek között i minőségi 
különbségek kiküszöbölhetőek, jobb kitermelés ér-
hető el, a minőségi ellenőrzés könnyebben megva-
lósítható, az automatizálásuk egyszerűbben kivite-
lezhető [3, 4].

A hagyományos kristályosítási eljárások fejlesz-
tése laborméretű reaktorokban kezdődnek, és a je-
lentős méretnövelés során nem minden esetben 

Summary

Tari, T., Aigner, Z.: Development of continuous 
crystallization process using impinging jet method

Introduction: Nowadays, in pharmaceutical industry, it 
is a great challenge to convert technologies from batch to 
continuous mode. Our aim was to develop a continuous 
antisolvent crystallization method using impinging jet 
nozzles in case of glycine as model material and optimize the 
crystallization parameters for high quality product. 

Methods: Impinging jet mixer was applied in non-submerged 
mode in a double-walled crystallization reactor, and samples 
were separated from the crystallized product at given intervals 
during continuous crystallization. Properties of the samples 
were examined by several analytical methods (laser diff raction 
particle size analyser, light microscopic image analysis 
system, scanning electron microscope, diff erential scanning 
calorimetry, powder X-ray diff raction, etc.)

Results: Morphology, average particle size, particle size 
distribution, residual solvent and additive potassium 
quantity of the continuous crystallized products were not 
changed signifi cantly compared to the batch process. The 
main polymorph was the α form, during progression of 
crystallization, increasing of small amount of β-polymorphic 
form was observed. Percentage yield was improved compared 
to the batch crystallization method.

Conclusion: It was found, that the continuous impinging 
jet crystallization is suitable for producing of high quality, 
uniform product in large quantity. The method also proved to 
be reproducible.

Keywords: continuous crystallization, impinging jet, 
glycine, crystal habit, polymorphism

Összefoglalás

Bevezetés: A gyógyszeriparban manapság nagy kihívást 
jelent a hagyományos szakaszos technológiák átalakítása 
folyamatos eljárásokká. Jelen munkánkban célunk volt egy 
folyamatos antiszolvens kristályosítási módszer fejlesztése 
impinging jet technikával, glicin modell anyag esetében, és a 
kristályosítási paraméterek optimalizálása magas minőségű 
termék előállítása céljából.

Módszerek: Az impinging jet egységet a dupla-falú 
kristályosító reaktoron kívül elhelyezve („non-submerged” 
mód) alkalmaztuk, és a folyamatos kristályosítás során 
a kristályosított  termékből adott  időközönként mintákat 
különített ünk el. A termékminták tulajdonságait számos 
analitikai módszerrel vizsgáltuk (lézer diff rakciós szem cse-
méret analízis, fénymikroszkópos képanalizálás, pásztázó 
elektronmikroszkóp, diff erenciális pásztázó kaloriméter, por-
röntgen diff raktométer, stb.)

Eredmények: A folyamatos kristályosítással készült termék 
morfológiája, átlagos szemcsemérete, szemcseméret-eloszlása, 
maradék oldószer- és additív-tartalma nem változott  a szakaszos 
előállítással készített  termékhez képest. A kristályosított  
termék α-polimorf volt, mellett e a folyamat előrehaladása 
során a β-polimorf forma kismértékű növekedését detektáltuk. 
A kitermelési százalék javult a szakaszos módszerhez képest.

Összegzés: Megállapított uk, hogy a folyamatos impinging jet 
kristályosítás alkalmas reprodukálható, egyenletes minőségű, 
nagy mennyiségű termék előállítására.

Kulcsszavak: folyamatos kristályosítás, impinging jet, glicin, 
kristály habitus, polimorfi a
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vihetők át egyszerűen az optimális paraméterek 
ipari méretekbe. Nagyobb gyártási mennyiség el-
éréséhez nagy méretű reaktorok, drága készülé-
kek szükségesek, melyeknek tisztítása időigénye-
sebb, minden külön lépést validálni szükséges. A 
felsoroltak mindegyike a gyártásból kiesett  időt 
jelentik. Folyamatos kristályosítás során elegendő 
egy kisméretű reaktor használata, hiszen a termék 
eltávolítása folyamatosan történik, használatuk 
gazdaságosabb [5-7]. Célszerű tehát a már létező 
és engedélyezett  szakaszos eljárást átalakítani fo-
lyamatos módszerré, hiszen a megalkotott  terve-
zési tér („design space”) elemeit követve biztosít-
ható az állandó minőségű termék, és lehetőség 
nyílik a mai szigorú szabályozások mellett  is a 
gyorsabb engedélyeztetési eljárásra [8]. A megfe-
lelő kristályosítási módszer megválasztásával 
pénz és energia spórolható, hiszen ha már a ható-
anyaggyártás során optimális tulajdonságokkal 
rendelkezik a termék, nincs szükség további utó-
műveletek elvégzésére (pl. szemcseméret csök-
kentés, frakcionalizálás, egyéb technológiai műve-
letek) [9, 10].

A kristályhabitus, mint a szemcseméret, -felület 
és -alak, nagymértékben befolyásolják a hatóanya-
gok gyógyszerformába történő feldolgozhatóságát 
[11]. A kis átlagos szemcseméret és a szűk szem-
cseméret-eloszlás gyakori követelmény a rossz 
víz oldékonyságú (Biopharmaceutics Classifi cation 
System, BCS II. csoportba tartozó) hatóanyagok 
esetében. Ezek a paraméterek befolyásolhatják az 
oldódási sebességet, biohasznosíthatóságot, stabi-
litást, a tablett ákban a hatóanyagok eloszlatott sá-
gának egységességét [12, 13]. A megfelelő kerek-
dedségű és sima felszínű szemcsék agglomeráció-
ra kevésbé hajlamosak, így szűrhetőségük és por-
reológiai, folyási tulajdonságuk is kedvezőbbek. A 
szemcsék habitusa additívek hozzáadásával is 
módosítható, hiszen az additívek szelektíven gá-
tolják vagy elősegítik az egyes kristályoldalak nö-
vekedését többféle mechanizmuson keresztül. Ha-
tásuk függ többek között  az anyagi minőségüktől 
és koncentrációjuktól, továbbá befolyásolhatják a 
hatóanyagok polimorfi áját, ezzel oldékonysá gu-
kat, a készített  tablett ák szilárdságát, hatékonysá-
gát [14-16].

Impinging jet (IJ, „összeütköző sugarak”) anti-
szolvens kristályosítás során a hatóanyagot tartal-
mazó telített  oldat és az antiszolvens két külön, 
egymással szemben álló csövön keresztül áramlik 
nagy sebességgel. A kis térfogatú keverési térben 
az oldatok találkoznak, ahol nagy intenzitású 
mikrokeverés jön létre, homogén és nagy szuper-

szaturáció jelentkezik a nukleáció megindulása 
előtt , így elérhető a szűk szemcseméret-eloszlású, 
kis átlagos szemcseméretű termék előállítása. A 
szemcseméret-eloszlás és a kristály habitus befo-
lyásolható a kristályosítási paraméterek változta-
tásával, mint például az áramlási sebesség, hő-
mérséklet vagy az utókeverési idő módosításával. 
A pillanatszerű, gyors kristályosítási folyamat kö-
vetkeztében viszont a kristályok morfológiája ne-
hezen befolyásolható [17-19].

A glicin a legegyszerűbb kémiai szerkezetű ami-
nosav. Jellemzően gyors kristálynövekedéssel nagy 
méretű kristályokban kristályosodik, így különö-
sen jól alkalmazható a habitus módosító és szem-
cseméret csökkentő eljárások hatékonyságának 
modellezésére. A glicinnek standard körülmények 
között  három polimorf módosulata ismert: α-, β- és 
γ-forma. A módosulatok megjelenését befolyásol-
ják a különböző kristályosítási paraméterek, mint 
pl. az oldószer és az antiszolvens minősége és ará-
nya, a hőmérséklet, a különböző koncentrációjú 
additívek jelenléte. Vizes közegből spontán nuk-
leációval képződő fő polimorfj a az α-glicin. A kris-
tályszerkezete monoklin (tércsoport: P21/n) és nor-
mál körülmények között  ez a forma metastabil. A 
β-glicin a legkevésbé stabil módosulat, bizonyos 
idő elteltével átalakul α-polimorff á, kristályszerke-
zete szintén monoklin (tércsoport: P21). Megjelené-
sét elősegíti az etanol és metanol jelenléte vizes kö-
zegben. Termodinamikailag a γ-glicin a legstabi-
labb polimorf forma standard körülmények között , 
melynek kristályszerkezete trigonális (tércsoport: 
P31). Azonban az α-glicin gyakrabban fordul elő vi-
zes közegben, és nem alakul át ezen körülmények 
között  γ-formává [20-22].

Korábbi vizsgálatainkban glicin kristályosításá-
nál alkalmaztuk az impinging jet módszert és 
szemcseméret csökkentő hatását összehasonlítot-
tuk a konvencionális kristályosítási eljárásokkal 
szemben. Megállapított uk, hogy a hűtéses, az 
antiszolvens, illetve a reverz antiszolvens módsze-
rekhez képest is több mint egy nagyságrendnyi 
szemcseméret csökkentést eredményezett  az új 
módszer, megfelelő szemcseméret-eloszlás és ma-
radék oldószer-tartalom mellett  [23]. Továbbá 
megfelelő koncentrációjú kálium-klorid additív 
alkalmazásával elérhető a szemcsék kerekdedsé-
gének javítása, így közel szférikus szemcsék állít-
hatók elő alacsony maradék kálium-tartalom és 
stabil polimorf forma mellett  [24].

Jelen munkánkban egy saját fejlesztésű impin-
ging jet eszköz folyamatos kristályosítási eljárás-
ban való alkalmazhatóságát vizsgáltuk nagy térfo-
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gatú oldatok felhasználásával, additív jelenlété-
ben. Célunk volt, hogy a módszer biztosítson meg-
felelő kitermelést, reprodukálható, gyors és pontos 
legyen. A korábbi vizsgálataink alapján optimali-
zált kristályosítási paramétereket alkalmaztuk 
glicin modell anyag esetében, és összehasonlítot-
tuk a termék fi zikai-kémiai tulajdonságait a szaka-
szos eljárás eredményeivel.

2. Anyagok és vizsgálati módszerek

2.1. Anyagok

Munkánk során a glicint, mint modell anyagot al-
kalmaztuk, melyet a VWR forgalmaz (Leuven, 
Belgium). Az antiszolvensként használt 96%-os 
etanol szintén a VWR terméke. Az additívként al-
kalmazott  kálium-kloridot a Scharlau forgalmazza 
(Barcelona, Spanyolország). Oldószerként Ph. Hg. 
VIII. minőségű tisztított  vizet használtunk.

2.2. Impinging jet kristályosítás

Az impinging jet egység külső elemként (non-
submerged) volt alkalmazva a duplafalú, kerekített  
aljú Schmizo kristályosító reaktorral (Schmizo AG, 
Oftringen, Svájc), amelyben a folyamatos keverést 
egy IKA Eurostar digitális motor-
ral meghajtott  anker-típusú keverő 
biztosított a 250 rpm fordulatszám-
mal (IKA-Werke GmbH & Co., 
Staufen, Németország). A folyadé-
kok adagolását két azonos típusú 
kalibrált perisztaltikus pumpa vé-
gezte (Rollpump Type 5198, MTA 
Kutesz, Budapest, Magyarország). 
A 200 ppm KCl additívet tartalma-
zó telített  glicin oldat és a 96%-os 
etanol állandó sebességgel 
(4,06 m/s) áramlott , 1:1 arányban az 
adott  átmérőjű csöveken keresztül 
az impinging jet elem keverő teré-
be [24]. A kísérleteket állandó hő-
mérsékleten, 25 °C-on végeztük, 
amelyet Julabo F32 (Julabo GmbH, 
Seelbach, Németország) krioter-
mosz tátt al biztosított unk, Julabo 
EasyTemp 2.3e software vezérlésé-
vel. A folyamatos kristályosítás so-
rán keletkezett  szuszpenzió szűré-
se szűrőnucson folyamatosan tör-
tént, ennek során percenként külö-
nített ünk el a nedves kristály frak-

ciókat. A minták 40 °C-on, 24 óráig történő vákuum 
szárítása után zárt edényekben voltak tárolva. A 
teljes berendezés felépítése az 1. ábrán látható.

2.3. Termékek analitikai vizsgálatai

2.3.1. Kristály habitus és szemcseméret-eloszlás 
vizsgálata

A kristályosított  termékek kerekdedségének és szem-
cseméretének vizsgálatát LEICA fénymikroszkópos 
képanali zátor (Leica LEICA Q500MC, LEICA Camb-
ridge Ltd., Cambridge, UK), valamint pásztázó 
elektronmikroszkóp (SEM, Hitachi S-4700, Hitachi 
Scientifi c Ltd., Tokyo, Japán) segítségével végez-
tük. A SEM minták felületét arany pallá dium be-
vonatt al látt uk el a megfelelő elektromos vezetőké-
pesség biztosítása céljából, Bio-Rad SC 502 készü-
lék (VG Microtech, Uckfi eld, UK) alkamazásával.

A minták szemcseméret-eloszlását Malvern 
Mastersizer 2000 lézerdiff rakciós szemcseméret 
ana li záló berendezéssel (Malvern Instruments 
Ltd., Malvern, UK) határoztuk meg, száraz mód-
szerrel Scirocco száraz poradagoló segítségével. 
Két párhuzamos mérést alkalmaztunk minden 
minta esetében, a táblázatok az átlag értékeket tar-
talmazzák.

1. ábra: A saját fejlesztésű impinging jet kristályosítási rendszer sematikus 
felépítése
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2.3.2. Polimorfi a vizsgálata

A termékek polimorfi áját porröntgen (XRPD) ké-
szülék és diff erenciáló pásztázó kaloriméter (DSC) 
segítségével vizsgáltuk. Az XRPD mérésekhez 
Bruker D8 Advance diff raktométert (Bruker AXS 
GmbH, Karlsruhe, Németország) alkalmaztunk. 
A vizsgálatok fő paraméterei a következők voltak: 
szögtartomány: 3°-40° 2-Theta; lépésköz: 0,01°. A 
kristályosított  termékek diff raktogramjait a Camb-
ridge Szerkezeti Adatbázis adataival hasonlított uk 
össze (Cambridge Crystallographic Data Centre, 
CCDC, Cambridge, UK).

A DSC analízis Mett ler Toledo DSC 821e 
(Mett ler-Toledo AG, Greifensee, Svájc) berende-
zéssel történt. Az adatok értékelését STARe ver. 
9.30 software-rel végeztük. A vizsgálatok paramé-
terei: hőmérsékleti tartomány: 25-300 °C; fűtési se-
besség: 10 °C/perc.

2.3.3. Szennyezők vizsgálata

A minták maradék oldószer-tartalmának megha-
tározása headspace gázkromatográfi ás módszer-
rel történt, vizsgálatainkat Varian CP-3800 gáz-
kromatográff al (Varian, Inc., Walnut Creek, CA, 
USA) végeztük, DB-624 kapilláris oszlopon (60 m 
x 0.25 mm x 1.4 μm, nominal) kiegészítve Tekmar 
Dohrmann 7000 headspace automatikus mintave-
vővel és lángionizáló detektorral.

A kristályosítási additívként alkalmazott  káli-
um maradék koncentrációjának pontos mérésére 
Perkin Elmer 4100 ZL (Überlingen, Németország) 
atomabszorpciós lángspektrométert alkalmaztunk 
(FAAS), deutérium hátt ér korrekciós rendszerrel 
és levegő-acetilén láng alkalmazásával.

3. Eredmények értékelése

3.1. Kristály habitus és szemcseméret-el-
oszlás

Az impinging jet antiszolvens kristá-
lyosítás során megnövelt térfogatt al 
(1000-1000 ml) végeztük el kísérletein-
ket, a kristályosító reaktorban utókeve-
rés nélkül folyamatosan történt a 
szuszpenzió továbbhaladása a szűrő-
be, ahol percenként történt a mintavé-
tel. Egy kristályosítási kísérlet időtar-
tama 20 perc volt, a megadott  paramé-
terekkel 3 párhuzamos mérést végez-
tünk. A továbbiakban az eredmények 
átlagértékeit mutatjuk be.

A SEM felvételeken látható, hogy a kiindulási 
anyag lekerekített  oldalú, nagy, izodimenziós 
szemcsékből áll, ezzel szemben az impinging jet 
kristályosított  termékek szemcsemérete jelentősen 
csökkent, alakja bipiramidális, felszíne sima. A 
gyors kristályosítási eljárásból adódóan az élek és 
csúcsok nincsenek lekerekedve. Ezek a tulajdonsá-
gok biztosítják, hogy a kristályok egyedi szemcsé-

2. ábra: Minták SEM felvételei
A: kiindulási glicin (150x), B: termék 1. perc (150x), C: termék 1. perc 

(500x), D: termék 20. perc (150x), E: termék 20. perc (500x)

I. táblázat
Kristályosított  minták szemcseméret-eloszlása

Minta 
[perc]

d (0,1) 
[μm]

d (0,5) 
[μm]

d (0,9)
 [μm]

1. 8,524 27,934 70,382
2. 7,701 25,899 68,285
3. 8,520 29,278 74,356
4. 8,360 28,265 69,346
5. 8,758 29,969 75,320
6. 9,292 33,190 82,260
7. 9,577 34,313 84,812
8. 9,657 33,825 77,717
9. 9,674 34,066 78,151

10. 8,990 30,854 70,155
11. 8,864 30,308 69,338
12. 8,567 29,334 72,748
13. 8,626 29,748 74,385
14. 9,605 34,028 77,861
15. 9,627 33,880 77,352
16. 9,259 32,922 76,072
17. 9,197 32,470 75,244
18. 9,367 33,379 76,586
19. 9,417 33,622 77,036
20. 9,358 33,719 78,712

Átlag 9,047 31,550 75,306
Szórás 0,54 2,54 4,35
Relatív szórás 0,06 0,08 0,06
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ket alkotnak, aggregációra kevéssé haj-
lamosak. A 2. ábrán a kiindulási anyag 
és a folyamatos kristályosítás során az 
első és a huszadik percben vett  minták 
SEM felvételei láthatóak, különböző 
nagyítással készítve. A képek alapján 
megfi gyelhető, hogy nem történt jelen-
tős változás a kristály morfológiában a 
kristályosítás teljes időtartama alatt .

A kristályosított  minták mikro-
metriai adatait az I. táblázatban fog-
laltuk össze. Feltüntett ük a 20-20 min-
ta szemcseméret analízisére vonatkozó 
d (0,1), d (0,5) és d (0,9) értékeket, átla-
got, szórást és relatív szórást számol-
tunk. Az alacsony szórásértékek azt 
igazolják, hogy a kristályosítási folya-
mat során nem változnak jelentősen az 
említett  paraméterek.

A szemcseméret-eloszlási görbék 
alapján kijelenthető, hogy a 20 minta 
mindegyike mono diszperz eloszlást 
mutat, az állandó kristályosítási körül-
ményeknek köszönhetően az eloszlás 
lefutása is azonos (3. ábra).

A korábbi szakaszos eljárás 52-62% 
kitermelési százalékot eredményezett , 
amelyhez képest növekedés volt ta-
pasztalható, hiszen a folyamatos mód-
szerrel 64-70%-ra emelkedett  a kiter-
melés értéke. A keletkezett  glicin 
szuszpenzió teljes mennyisége a szű-
rőfelületre jutott , így elkerülhető volt a 
műveletek között i anyagveszteség. A 
folyamat során az impinging jet elem 
elzáródása, illetve egyéb működési ne-
hézség nem volt megfi gyelhető.

A szakaszos és folyamatos módszer-
rel előállított  minták átlagos szemcse-
méret különbségét statisztikai szoft-
verrel, kétmintás t-próba segítségével 
hasonlított uk össze (GraphPad Prism 
5, GraphPad Software Inc., La Jolla, 
CA, USA), amely alapján megállapítot-
tuk, hogy a szakaszos (29,707-
31,967 μm) és a folyamatos (25,899-
34,313 μm) módszer termékei között  
nincs szignifi káns különbség (4. ábra).

3.2. Polimorfi a

A kiindulási anyag és a kristályosított  
termékek kristályszerkezetét XRPD 

4. ábra: Átlagos szemcseméret összehasonlítása a szakaszos kristályosítási 
eljárás termékeivel

3. ábra: Impinging jet kristályosított  termékek szemcseméret-eloszlása

5. ábra: A termékek kétdimenziós XRPD diff raktogramjai
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berendezéssel vizsgáltuk, és az eredményeket a 
Cambridge Szerkezeti Adatbázis diff rakto gram-
jaihoz hasonlított uk. A mérések alapján mind a 
kiindulási glicin, mind a termékek kristályformája 
a leggyakrabban előforduló α-polimorf volt. A 
kristályosítási folyamat során nem tapasztaltunk a 
polimorfi ában eltérést. Eredményeinket az 5. áb-
rán szemléltetjük.

Korábbi vizsgálataink során megállapított uk, 
hogy a DSC termoanalitikai módszer érzékenyebb 
az instabil β-glicin jelenlétére [24]. Ennél az anali-
tikai eljárásnál a β-formára jellemző, 251 ºC-nál je-
lentkező csúcs már kis (5% alatt i) mennyiségben is 
megjelenik, amely az α-glicin 254 ºC-os endoterm 
csúcsához kapcsolódva, kis vállként jelentkezik, 
ezért pontos mennyisége nem határozható meg. A 
porröntgen vizsgálatok során ez a mennyiség még 
nem detektálható. Ezek alapján már a kiindulási 
glicin is tartalmazott  kis mennyiségben β-poli-
morfot. A kristályosított  termékekben ugyancsak 
megfi gyelhető volt az α- és β-forma keverékének 
megjelenése, a kristályosítás folyamatának előre-
haladásával a β-glicin mennyisége kis mértékben 
növekedett . A növekedés oka feltehetőleg a kezde-
ti β-polimorf jelenléte, amely indukálta az instabil 
forma megjelenését (6. ábra).

3.3. Maradék oldószer- és maradék kálium-tartalom

A headspace gázkromatográfi ás mérések alapján 
meghatároztuk a termékek maradék oldószer-tar-
talmát. A gyors kristályosítási folyamat következ-
tében előfordulhat, hogy a kristálynövekedés so-
rán oldószer zárványok keletkeznek a szemcsék-
ben, így fontos a pontos meghatározásuk. Az eta-

nol az ICH Q3C (R5) irányelv szerint a 
3. csoportba tartozik, a maximális érté-
ke 5000 ppm lehet [25]. A termékekben 
38 ppm és 80 ppm között i maradék 
etanol koncentráció volt mérhető, így 
ez megfelelt az előírt követelmények-
nek.

A habitus javítása céljából alkalma-
zott  kálium mennyiségét a termékek-
ben FAAS mérések alapján határoztuk 
meg. A maradék kálium koncentráció-
ja 22-48 ppm közé esett  a mintákban, 
amely nem jelent nagy mértékű szeny-
nyezett séget.

4. Összefoglalás

A fejlesztett  impinging jet antiszolvens 
kristályosítási módszer glicin modell anyag eseté-
ben alkalmasnak bizonyult a folyamatos kristá-
lyosítás kivitelezésére. A módszer reprodukálható 
és pontos, valamint rövid idő alatt  magas kiterme-
léssel, jó minőségű termék állítható elő. A korábbi, 
szakaszos kristályosítás során optimalizált para-
méterek jól alkalmazhatóak a folyamatos techno-
lógia esetén is, hiszen a termékek fi zikai-kémiai 
tulajdonságai nem térnek el szignifi kánsan a sza-
kaszos módszer mintáihoz képest. A kapott  kris-
tályok átlagos szemcsemérete (31,55 μm) szignifi -
kánsan csökkent a kiindulási anyaghoz (680,69 μm) 
képest, megfelelő kerekdedség, stabil polimorf 
módosulat, alacsony maradék oldószer- és kristá-
lyosítási additív (kálium) tartalom mellett . Össze-
gezve, a szakaszos kristályosítási módszerek fo-
lyamatos technológiává történő konvertálásával 
elérhető a magasabb kitermelési százalék, vala-
mint az előállításhoz szükséges idő jelentős csök-
kentése, a termék fi zikai-kémiai tulajdonságainak 
változása nélkül.
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