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ABSTRACT 
Archaeologists generally view images and 3D models as objective witnesses to 

archaeological scholarship and excavation, capturing the subject as seen by human eyes 

so others can ‘see’ it for themselves. We employ the newest technology we can afford 

using prescribed, standardised methods to create as objective an image or visualisation as 

possible. There is much more to photography and 3D imaging, however, and restricting 

ourselves in this way severely limits the information we can gather from images. In this 

thesis, I introduce novel, effective and affordable methods for digitally imaging small, 

reflective and translucent objects using photography, PTM reflectance transformation 

imaging, and structure from motion photogrammetry. I focus on glass beads from Iron 

Age and Early Medieval Scottish contexts. First, I identify regional differences in trade 

and manufacture of Iron Age and Early Medieval Scottish glass beads using visible-range 

photographic filters to examine bubble concentrations. Next, I determine the chemical 

relationships between Iron Age and Early Medieval glass bead collections in Scotland and 

Anglo-Saxon, Roman, New Kingdom Egyptian, Medieval English, and modern 

collections using near-ultraviolet and near-infrared photographic filters. Third, I use 

visible- and non-visible-range filters to greatly increase the success rate of reflectance 

transformation imaging and structure from motion photogrammetry of glass beads. 

Finally, I apply all these techniques to non-glass subjects to demonstrate their wider 

applications. In conclusion, I argue that investigating and deploying novel and affordable 

imaging techniques in addition to standardised current technologies provides significantly 

more archaeological data than the current practice of continually adopting new imaging 

technologies for primarily documentary purposes. 
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1 INTRODUCTION 
On 19 August 1839, the French government publicly presented Louis Jacques 

Mandé Daguerre’s and Joseph Nicéphore Niépce’s technique for permanently fixing 

images onto copper plates using a camera obscura, one consequence of which was the 

thorough entanglement of photography-based imaging with the study of the human past 

(Eder 1945, 227 – 228; Friedman and Ross 2003, 4). Archaeologists first adopted 

photography in their excavations in the early 1840s and museums quickly joined in, using 

photography as a method for capturing and displaying pieces that were otherwise 

inaccessible. Now, little archaeology occurs without photography-based imaging of one 

kind or another, and there is an increasing emphasis on digital photography and imaging 

technologies. 

The historical entanglement of archaeology and photography has resulted in the 

limited use of archaeological imaging in the present. Archaeology as a field tends to view 

most archaeological imaging techniques as documentary tools for recording the 

archaeological record in a prescribed manner (Boehler and Heinz 1999, 2; Campana 

1977, 435; Cookson 1954, 13; Dorrell 1994, 6; Earl et al. 2008; Earl et al. 2010; Howell 

and Blanc 1995, 1; Mudge et al. 2005; Mudge et al. 2006; Simmons 1969, 2; Wright 

1982, 176). Archaeology values apparent objectivity, and champions techniques that it 

believes result in objective visualisations. These tend to be more expensive, complex 

technologies that create visualisations closely mimicking that seen by the human eye 

through standard, prescribed techniques (Conlon 1973, xiii; Cookson 1954, 13; Costall 

1997, 50; Dorrell 1989, 7; Howell and Blanc 1995, 1; Shanks 1997; 80; Simmons 1969, 

4).  

This framing of archaeological imaging as a documentary tool is beneficial to 

archaeological recording, but it is only a fraction of the possible applications of 
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archaeological imaging in the field. Photography, reflectance transformation imaging and 

photogrammetry can support and enhance analysis in addition to serving a purely 

documentary purpose, for example. Archaeological imaging and its outputs also need not 

mimic human vision to provide new information about an archaeological subject or 

collection, as demonstrated in Chapters 4 through 7 of this thesis. We as a discipline have 

limited our use, and consequently our understanding, of archaeological imaging 

techniques, largely to our detriment. 

This self-imposed limitation contributes to worrying consequences in 

archaeological imaging. The first is that our over-reliance on standard, objective 

methodologies often results in a reluctance to explore the full capabilities of the imaging 

technologies at our disposal. Standard methodologies allow for full comparisons between 

images or visual representations of archaeological subjects. However, using such 

techniques on many archaeological subjects does not create informative results due to 

difficulties such as size, reflection, and diaphaneity. These techniques also fail to realise 

the full analytical potential of imaging technologies, particularly those seen as less 

technologically advanced. Our reluctance to deviate from standard techniques therefore 

often results in a lack of informative visual representations for many objects and ignores 

the analytical capabilities of archaeological imaging in favour of documentation. 

The second worrying by-product of these self-imposed limitations is the 

privileging of results from projects that can afford the latest new technology over the 

results of those limited to more affordable techniques (Chapter 2.2.2). Archaeology tends 

to favour results from techniques seen by the field as more scientific or technologically 

advanced because we associate those characteristics with objectivity. However, few 

archaeological project budgets can afford such techniques, or can afford to use such 

techniques on more than a handful of archaeological subjects. The general bias in 
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archaeology towards newer and therefore more expensive techniques favours the results 

of projects with higher budgets and results in the devaluing of research from those 

without (i.e. the majority of archaeological endeavours). 

Perhaps the most concerning consequence of the discipline’s current approach to 

imaging techniques, however, is the omission of certain archaeological subjects from the 

visual archaeological record because they do not lend themselves well to current imaging 

methodologies (Chapter 2.2.3). This often includes objects that are small, reflective, 

translucent, transparent, or a combination of the four. If we do not image these objects, 

then we do not ‘see’ them regularly through these images. Consequently, we often 

unintentionally omit them from our discussions of the past, because we often 

communicate less about objects without a visual record. Even when such objects are 

discussed, there is often less available information about them due to a lack of images and 

visual representations. 

In this thesis, I argue for a change in how archaeology uses photography and other 

digital imaging techniques. First, archaeological imaging is an analytical tool in addition 

to a documentary one and deviating from standard methods can provide more information 

than currently available through documentary methods alone. Second, I argue for an 

increased emphasis on the development of affordable techniques for creating digital 

representations of archaeological subjects that are otherwise difficult to digitally image. 

Towards this end, the discipline should strive to exploit readily-available technologies in 

the search for affordable and informative digital imaging techniques.  

To demonstrate the effectiveness of challenging the standards of current imaging 

techniques, I have conducted four important studies focusing on Iron Age and Early 

Medieval glass beads found in Scottish contexts. Glass beads are small, reflective, and 

often translucent or transparent, making them notoriously difficult to photograph or 
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digitally image (Christie 2014; Dorrell 1994, 216). Iron Age and Early Medieval glass 

beads from Scottish contexts also form a collection of beads about which archaeology 

knows relatively little, despite the variety of unique patterns and sophisticated 

manufacturing techniques found in the Scottish collections (Christie 2014). In the first 

case study, I analysed visible-range, filtered photographs (400 – 700nm) for differences in 

bubble concentrations between different bead types and regions within Scotland. In the 

second case study, data collected from near-ultraviolet (300 – 400nm) and near-infrared 

(950 – 1000nm) photographs allowed for the identification of chemical differences 

between Scottish beads and Anglo-Saxon, Roman, New Kingdom Egyptian, medieval 

English, and modern glass samples. The third case study used visible- and non-visible-

range (300 – 1000nm) reflectance transformation imaging and photogrammetry to 

increase the success rates for digitally imaging and 3D modelling Iron Age and Early 

Medieval Scottish glass beads, something which is challenging using current methods. 

The final case study applied the techniques developed in the previous three case studies to 

a variety of other objects and materials to demonstrate the wide applicability of these 

techniques, including site trenches, silver brooches, faience and amber beads, and 

Medieval glazed and unglazed ceramics. These studies demonstrate the benefits of 

challenging current archaeological perceptions and applications of archaeological 

imaging and encourage similar investigations in the discipline as a whole. 

1.1 DEFINITIONS AND ABBREVIATIONS 

There are several phrases and abbreviations throughout this thesis that require 

definition. First, I often refer to ‘higher-’ and ‘lower-budget projects.’ By ‘higher-budget 

projects,’ I am referring to archaeological projects that have £5,000 or more dedicated 

specifically to archaeological imaging in a single season or year. This can come from 
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private funds or donation, but more often comes from larger research funding bodies like 

the National Science Foundation in the United States or the Arts and Humanities 

Research Council in the United Kingdom. ‘Lower-budget projects’ refers to any project 

that does not have such dedicated funds. While many archaeological projects have 

budgets of £5,000 or more, few of those have such a high sum dedicated specifically to 

visualisation. For perspective, £5,000 is the cost of a short-range, professional-grade laser 

scanner or a multispectral camera, plus a computer robust enough to process the data 

(Chapter 8). It is also nearly double the cost of all equipment used in this PhD (Appendix 

B). The distinction here is important because while significant contributions vital to the 

field have been made by higher-budget projects, the current attitude towards imaging and 

objectivity in archaeology has resulted, albeit unintentionally, in a devaluing of the results 

of lower-budget projects due to their use of technologies the field perceives as less 

objective (Santana Quintero and Eppich 2016, 3; Zubrow 2006, 14). This is particularly 

problematic because these projects comprise the majority of current archaeological 

research. 

Additionally, this thesis focuses on experimenting with digital imaging techniques 

to create informative visual representations of objects that are often notoriously difficult 

to image. These objects tend to be small, reflective, translucent, transparent, or a 

combination of these characteristics. Each of these creates problems for digital imaging. 

Small objects can be difficult for image sensors to detect or render in enough detail to be 

informative, while reflective materials often produce white or bright patches in an image 

where the reflection of light was so strong that the image sensor could not detect any data. 

Transparent or translucent objects scatter light differently than opaque objects in ways 

that imaging equipment often cannot predict, making these objects difficult to image 

using laser or structured light scanners. However, referring to these objects as ‘small, 
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reflective, translucent or transparent objects’ throughout this thesis would quickly become 

tedious for the reader, so I will refer to them hereafter as ‘SRT objects.’ SRT objects 

include any object that has any one of the above characteristics in addition to objects with 

multiple. 

Throughout this thesis I refer to ‘spectral imaging’ or ‘spectral photography,’ 

which I differentiate from multispectral imaging and hyperspectral imaging. Spectral 

imaging or spectral photography as used throughout this thesis are defined as the capture, 

processing and analysis of an object’s reactions to visible and non-visible spectra using a 

standard dSLR camera converted for full spectrum imaging (Chapter 3.2.1). This involves 

isolating specific wavelengths of light through either digital or physical photographic 

filters. Multispectral and hyperspectral imaging in this thesis refer to the capture, 

processing, and analysis of an object’s reactions to visible and non-visible spectra using a 

multispectral or hyperspectral camera, which are specifically designed for that purpose. 

Hyperspectral cameras capture data for a continuous range of spectra and costs 

significantly more than a multispectral camera (Chapter 8.10), which captures data for 5 – 

10 discrete bands of light (Liang 2012, 309). Both cameras also capture a wider range of 

spectra and filters and cost significantly more than a dSLR (Chapter 8.10). 

There are several abbreviations used to refer to various imaging techniques 

throughout this thesis. I refer to reflectance transformation imaging as ‘RTI,’ and focus 

specifically on polynomial texture mapping within RTI, which I refer to as ‘PTM RTI.’ 

Finally, the photogrammetry techniques discussed here focus on structure from motion 

photogrammetry, for which I have used the common abbreviation of ‘SfM 

photogrammetry.’ 

Since this thesis is image-based, all images have been created by the author unless 

otherwise stated. Images featuring specific archaeological subjects include an accession 
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number or finds number along with an abbreviation of the institution in which it is housed 

(see below). Some objects have not been accessioned or given a finds number, which is 

designated in the text as ‘Unknown #.’ 

Finally, there are many museums housing the material used in this study. The 

name of the museum in which an object is housed is listed in full in Appendix A, but the 

museum abbreviation also appears at the beginning of the accession or finds number 

when referring to an object in the main text. Thus, the National Museum of Scotland 

becomes ‘NMS,’ the British Museum becomes ‘BM,’ the Hunterian Museum and Art 

Gallery becomes ‘HMAG,’ the Marischal Museum in Aberdeen becomes ‘MM,’ the 

Kilmartin House Museum becomes ‘KHM,’ the Iona Abbey Museum becomes ‘IAM’ 

and the National Museum of Ireland becomes ‘NMI.’ Where certain objects have not 

been acquired by a museum, I refer to it by the organisation that currently possesses the 

object. The University of Glasgow therefore becomes ‘UG,’ the University College 

London becomes ‘UCL,’ and Northlight Heritage becomes ‘NH.’ Finally, there are two 

replica objects that appear as examples in the text. These are abbreviated as ‘RO’ (i.e. 

Replica Object). 

1.2 PRESENTATION AND IMAGERY 

This thesis is driven by images and imagery, specifically digital photographs, 

reflectance transformation images, and photogrammetric 3D models. Neither RTI nor 3D 

models render well in two-dimensional print form, and many of the significant 

contributions of this thesis would be poorly represented if this were the only medium 

relied upon. Similarly, there are certain two-dimensional images whose significance to 

the research presented here is best showcased in a more dynamic fashion. All figures in 

this thesis that benefit from being viewed on a computer screen rather than paper are 



Christie – 1: Introduction – 34 

included digitally in Appendix E. The reader is highly encouraged to reference images 

and models digitally through this appendix whenever mentioned in the text to understand 

the full benefits of the results. 

There are also certain images and models that were pivotal to the research 

included here. These pieces challenged conventional methods, spurred creative thought in 

new directions, demonstrated the success of these new techniques and uncovered 

significant differences between objects that led to the case studies included here. To 

highlight these pieces and the role they played in the development of this research, I have 

included a PowerPoint presentation that should be referenced where prompted to do so in 

the text. All pieces included in the PowerPoint are also included as static images in the 

text. There is also a PDF file which contains the slides of the PowerPoint for accessibility. 

1.3 PRIMARY CASE STUDY MATERIALS: IRON AGE AND EARLY 

MEDIEVAL GLASS BEADS 

The primary SRT objects I focus on in this thesis are glass beads from Iron Age 

and Early Medieval Scottish contexts (800 BC – AD 800). Beads have been one of the 

most ubiquitous trade items worldwide for the last 2400 years and the earliest beads 

found in archaeological contexts date to 135,000 years ago (d’Errico et al. 2008, 2676). 

Worldwide, glass bead trade mushroomed between 400 BC and AD 500 due to advances 

in glass bead technology, and many ships sailing along the major trade routes at this time 

carried glass and beads in addition to spices, metal, and timber (Christie 2011, Abraham 

and Christie 2010). Most contemporary South, East, and Southeast Asian sites with beads 

average around 300 per site, which is also true of Anglo-Saxon and Norse sites 

(Brugmann 2004; Callmer 1977; Christie 2011). We find Roman beads in Indonesian 

contexts, Indian beads in European contexts, and shipwrecks dating to the early medieval 
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period (400 – 800 AD) packed full of beads for trade. However, despite being ubiquitous 

in the archaeological record, particularly in relation to trade, there are very few images of 

archaeological glass beads and almost no 3D models. 

I chose to focus on glass beads in this thesis for two reasons. One is that I have 

spent a decade studying glass beads, particularly those from contexts dating to the first 

millennium AD. I began by studying Southeast Asian glass beads with a focus on 

Indonesian material, then expanded to East and South Asian material for comparison. 

After five years, I shifted my focus to look at Iron Age and Early Medieval Scotland, 

using Norse, Anglo-Saxon, Irish, and Roman material as my primary comparative 

assemblages. I have extensive experience examining and analysing beads across Europe 

and Asia during the first millennium AD, and I am familiar with the positive and negative 

aspects of their study. Since this research involved extensive experimentation with 

imaging techniques, I felt it wise to work with SRT objects with which I was already 

familiar. 

The other, perhaps more important reason for choosing glass beads as the primary 

focus object is that glass beads are notoriously difficult to image, even among SRT 

objects. They are highly reflective, often translucent or transparent, and the most popular 

trade bead in the archaeological record measures no more than 6mm in diameter (Francis 

2002, 19). For example, Pattanam in southern India has tens of thousands of glass beads 

dating to the first millennium AD (Abraham 2013, 241), while Pengkalan Bujang in 

Malaysia (Basa 1991, 129) and Tounokubi in Japan (Katsuhiko and Gupta 2000, 83) have 

more than 5,000 beads each. Arikamēḍu, in southern India, has over 27,000 objects 

classified as glass beads or associated with glass beadmaking (Francis 1991, 28). Of the 

objects from Arikamēḍu, however, fewer than 20 are directly associated with published 

photographs, even within Francis’s own work (Francis 1991; Francis 2002). European 
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collections also number in the thousands of objects and are similarly lacking in images. 

Guido (1978, 1999) describes over 10,000 glass beads across her two works on Iron Age 

and Roman collections in Britain and Ireland and Anglo-Saxon collections in England, 

but she provides images for fewer than 200. Of these photographed beads, only 16 were 

imaged individually and only 6 from more than one angle (Guido 1978, Plate III). The 

abundance of material, the significant lack of an associated visual record and their general 

issues of size, reflectiveness, and translucency make glass beads an ideal subject for 

developing and experimenting with affordable new imaging techniques for SRT objects.  

1.3.1 THE CORPUS 

Within Scotland, there are at least 4000 beads from over 200 sites possibly dating 

to the Iron Age and Early Medieval periods (800 BC – AD 800). Culbin Sands on the 

Murray coast has the largest number of beads in Scotland with roughly 700, while 

Glenluce Sands (Luce Sands), Newstead, and Traprain Law have roughly 100 beads each. 

All the other 207 sites have fewer than 65 beads each, and 204 of them have 25 or fewer. 

Yet, four thousand is a relatively low number when compared to the collections in other 

countries. For comparison, the average glass bead total for Asian sites active at this time 

is roughly 310 and the average site totals of glass beads for Anglo-Saxon contexts alone 

is around 140, while the average site totals for glass beads in Scotland at this time is eight 

or nine (Brugmann 2004, 112–117; Christie 2011; Christie 2014). Yet, the variety of glass 

beads in Scotland is impressive. Scottish beads tend to employ design features and 

manufacturing techniques not often seen elsewhere, including in Anglo-Saxon or Norse 

contexts, and they range in material from glass to stone, amber, faience, ceramic, shell 

and bone (Figure 1.1). 
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Figure 1.1: Example of a bead type unique to Scotland: that of a translucent base with a single-coloured opaque glass 

marbled into the surface to form a tri-coloured bead (NMS X.BIB 15). 

This thesis examines 400 beads from 48 sites in Scotland (Appendix A). These 

beads currently reside in the National Museum of Scotland, the Hunterian Museum and 

Art Gallery, the Marischal Museum, the Kilmartin House Museum, the Iona Abbey 

Museum, the University of Glasgow’s Department of Archaeology, and with Northlight 

Heritage in Glasgow. Roughly 350 of these beads featured in my master’s research in 

2014, which focused on analysing the regional distributions of specific colours and 

shapes of glass beads in Iron Age and Early Medieval Scotland. None of the case studies 

presented in the following chapters will include all 400 beads, because they focus on the 

techniques used to acquire the data rather than on the quantity of samples tested and 

because not all samples lent themselves well to every imaging technique. I also do not 

include beads from Norse or possible Norse contexts in this thesis, they often are easier to 
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identify and because the Iron Age and Early Medieval periods in Scotland already span 

1600 years. 

In addition to 400 beads, I also examined 43 Egyptian glass vessel sherds, 30 

Roman-period glass objects, 10 Anglo-Saxon glass vessel sherds, 10 late medieval 

English window glass sherds, and 56 modern Venetian glass tesserae. These pieces are 

housed at the British Museum and at University College London. Finally, to demonstrate 

the use of the techniques developed in this thesis on materials other than glass, I have 

preliminarily tested my methodologies on a variety of archaeological subjects, including 

trench sections, glazed ceramics, and amber, faience, copper-alloy and polished metal 

objects (Appendix A). For each SRT object category, I have demonstrated the benefits of 

pushing the boundaries of current imaging techniques in uncovering new information. To 

put these benefits into perspective, let us first examine the current state of glass bead 

visualisation in archaeology. 

1.3.2 VISUALISING GLASS BEADS IN ARCHAEOLOGY 

The development of glass bead visualisation followed a similar path to that of 

archaeological imaging in general, beginning with black and white drawings and 

continuing with photography (Chapter 2.1). While archaeological imaging developed 

further with technologies like photogrammetry, laser scanning and RTI, bead 

visualisation did not. Roughly half of publications at least mentioning beads that I have 

come across do not employ any form of visualisation technique at all (e.g. Bard et al. 

2013; Dussubieux and Gratuze 2002; Hall and Yablonsky 1998; Indraningsih 1985). 

Generally, publications relying on text alone to describe beads provide little more than a 

few non-descriptive sentences and rarely go so far as to discuss basic information like 

design, colour, or size.  
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Figure 1.2: Part of Beck’s famous set of line drawings (Beck 1926, Plate III). 

 

Figure 1.3: Diagram of a necklace from West Africa (van der Sleen 1973). 

Illustrations are the most common depiction of beads found in the archaeological 

record aside from text, most of which do not include colour (Figure 1.2). Roughly a third 

of sources concerning beads contain black and white drawings, while coloured drawings 
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appear in fewer than five percent. Coloured drawings are difficult to reproduce, and 

publishers often do not accept them due to high printing costs. Some authors use 

differential shadings or patterns to indicate colour instead (Figure 1.3) (e.g. Callmer 1977, 

van der Sleen 1973). Most simply provide black and white drawings and rely on the text 

to convey nuances of colour (e.g. Atkinson 1883; Beck 1926; Jewitt 1870). 

One of the earliest uses of photography for beads was Day’s work on the 

similarities of beads between Ireland and Egypt (1887, Plate 1), in which he illustrated the 

beads using a colourised collotype (Figure 1.4). Now, photography is relatively common 

in bead studies, with roughly half of publications using photography of some kind. 

Published photographs of beads often consist of piles or strings of beads rather than 

individual specimens, however, resulting in an image that conveys some information 

about many beads, but detailed information about none (Figure 1.5) (e.g. Brugmann 2004; 

Francis 2002; Mannion 2015). Roughly half of publications that include photographs of 

beads use black and white photographs. Some publications using black and white 

photographs also include colour photographs, though it is more common to find one or 

the other. Many publications using black and white line drawings to also include 

photographs of some kind.  

 

Figure 1.4: Collotype of glass beads (Day 1887, Plate 1). 
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Figure 1.5: Strings of Indo-Pacific beads, one each from Indonesia, Thailand, and Sri Lanka (Francis 2002, Colour 

Plate 9). 

Unfortunately, this is the extent of visualisation for glass beads in archaeology. 

Few projects even attempt 3D models of the objects, and none use RTI. Some studies, 

such as that by Bertini and colleagues (2014, 259; Figure 1.6), have imaged elements of 

beads using x-ray computed tomography, but few have published the results. Bead 

visualisation in archaeology has stagnated with photography, the results of which are 

often uninformative. 

 

Figure 1.6: 3D images produced by x-ray computed tomographic microscopy (Bertini et al. 2014, 261). 
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This does not mean bead research has stagnated. On the contrary, bead research 

has exploded in the last decade or so relative to what it has been in the past. This is 

particularly true in South, East, and Southeast Asia where excavators recover thousands 

of beads each season from numerous sites (e.g. Basa 1991; Bellina 2003; Dussubieux 

2001; Dussubieux et al. 2008; Dussubieux and Gratuze 2002; Dussubieux et al. 2010; 

Francis 1988-89; Francis 1990; Francis 1991; Francis 2002; Gan 2009; Gan et al. 2009; 

Indraningsih 1985; Kanungo 2004; Lankton and Dussubieux 2006; Lankton et al. 2009; 

Lee 2009). North America and large portions of Africa have also seen a significant 

expansion of bead studies, and there remains a large emphasis on studies of faience and 

early glass beads in Egyptian and Roman contexts (e.g. Dussubieux et al. 2008; Rehren 

1997; Rehren 2000; Rehren 2001; Robertshaw et al. 2010; Saitowitz and Sampson 1992; 

Turgeon 2001). Visual records of beads remain scarce, however, making communication 

and cross-comparison difficult. 

1.3.3 SOME PROBLEMS WITH BEAD VISUALISATION 

There are numerous problems with the current state of bead visualisation. First, 

there is the severe limitation in the methods specialists can employ. Drawings usually 

provide more information than purely textual descriptions, but they cannot convey as 

much detail of the object as other techniques. Many drawings leave out striations or 

uneven colour mixing (important for identifying recycled glass), bubbles (important for 

understanding manufacture), or patterns of wear or breakage (important for understanding 

use and disposal). Illustrators also often draw beads for typological purposes by averaging 

all beads of a single type together from one site, region, or period, rather than drawing 

individual beads (e.g. Brugmann 2004; Callmer 1977; Guido 1978; Guido 1999). If they 

do accurately depict one bead, it is usually one they or a bead specialist has chosen to 
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represent an entire group of beads, which can range from a few to a few thousand objects, 

depending on the region. 

Unfortunately, current bead photography is equally problematic. While a 

photograph itself is not an amalgamation of many beads averaged into one, bead 

publications often select an image of a single bead to represent anywhere from a few to a 

few thousand objects, as happens with drawings (e.g. Brugmann 2004; Christie 2014; 

Francis 2002; Guido 1978; Mannion 2015). These photographs can provide detail for the 

bead depicted, but not the others it represents. Additionally, beads are difficult to 

photograph and, consequently, images of beads in publications often exhibit patches of 

high reflection or lack of detail. Thus, even publications with photographs of beads may 

provide little additional information, depending on the quality of the image. 

This discussion of bead imaging would not be complete without a discussion of 

colour. Colour is an essential element of bead studies, and many reports struggle to 

communicate vital colour information. Since most journals and publishers require black 

and white illustrations or photographs, reports usually rely on the text to convey bead 

colours, if they discuss it at all. This often results in highly subjective (e.g. ‘sea-green’) or 

overly specific (e.g. Munsell) phrases.  Subjective designations like ‘sea-green’ could 

apply to a range of colours; the sea can be any number of different greens depending on 

location and weather. On the other hand, highly specific categories, like Munsell 

designations, are problematic because glass changes colour in different light and because 

the differences between categories are often indistinguishable. Many institutions and 

researchers also do not have access to the Munsell books of colour, particularly that 

designated for beads, and therefore cannot use or translate the system. Thus, most 

publications about archaeological beads do not provide colour images of the object and 

fail to discuss their colour in meaningful, comparative ways. 
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The techniques we use to visualise the objects we study will continually limit the 

research we can engage in and the conclusions we can draw. This is true of bead studies 

and of archaeology more generally. Additionally, these problems with visualisation are 

not unique to beads, or even to glass objects. They apply to most SRT objects, including 

glazed ceramics, precious and semiprecious stones, polished metal, amber, faience, bone, 

and certain organic materials. A specialism whose best and most published images are 

often black and white line drawings will not be able to advance in its research as quickly 

or efficiently as a specialism exploiting as many methods as possible for visualising its 

subject. Consequently, failing to develop methodologies that provide the best possible 

visual representation of SRT objects only hinders further research.  

1.4 TOWARDS AFFORDABLE ARCHAEOLOGICAL DIGITAL 

VISUALISATION 

The methods discussed and developed in this thesis provide a means through 

which archaeologists can both document and analyse visible and certain non-visible 

characteristics of archaeological subjects, particularly SRT objects. These methods are 

currently more affordable and have a higher success rate for SRT objects than the 

standard techniques used in archaeology today. They also allow for analysis of these 

objects that is otherwise difficult or impossible without expensive technological 

equipment. These techniques were developed by experimenting with current technologies 

in non-standard ways with aims to maximise affordability, practicality, and effectiveness, 

They allow for the analysis of SRT objects in new and informative ways and demonstrate 

the value in applying both these techniques and this approach to archaeology more 

generally.   
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Chapter 2 provides a brief history of the development of photography and 

photographic imaging techniques, particularly in relation to archaeology. It then discusses 

the connections between current digital imaging practices and prominent theoretical 

discourses within the discipline. Chapter 3 details the general principles of photography 

and photography-based imaging used and manipulated throughout this thesis, including 

photography, spectral photography, PTM RTI, and SfM photogrammetry. Chapter 4 

serves as the first of four case studies and uses visible-range photographic filters to 

examine and analyse relative bubble concentrations between Iron Age and Early 

Medieval glass beads across Scotland. The results of this study indicate previously 

unknown differences in the manufacture and long-distance trade of glass beads. In 

Chapter 5, I use non-visible-range photographic filters to determine relative chemical 

relationships between glass objects from Iron Age and Early Medieval Scotland and those 

from Roman, Egyptian, Anglo-Saxon, Medieval English, and modern contexts. Chapter 6 

combines visible and non-visible spectral photography with PTM RTI and SfM 

photogrammetry to improve upon the current techniques used for SRT objects, while 

Chapter 7 compiles several studies applying the techniques developed in this thesis to 

non-glass and non-bead subjects (e.g. excavation trenches, brooches, ceramics and lithics. 

Chapter 8 serves as a comparison of the affordability, practicality, and efficacy of these 

techniques to that of current standard technologies. Chapter 9 revisits the theoretical 

discussions from Chapter 2 in light of the results from Chapters 4 through 7, then 

provides several proposals for future work and a brief conclusion to the thesis. 
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2 ARCHAEOLOGICAL IMAGING: HISTORY AND THEORY 
Archaeology thoroughly became entangled with photography as soon as François 

Arago made the announcement of the daguerreotype in 1839. Since then, the fields have 

developed in tandem, each influenced in part by the discourses of the other. This chapter 

examines the history of archaeological visualisation techniques, beginning with 

photography and advancing through to laser scanning and x-ray computed tomography. It 

then identifies and critically examines the theoretical discourses surrounding 

archaeological imaging before advocating for a change in how we approach the practice. 

2.1 A BRIEF HISTORY OF ARCHAEOLOGICAL IMAGING 

As often happens with technological innovation, scientists developed many 

photographic techniques in tandem over a period of roughly a century, which culminated 

in what we now refer to as the earliest photographs. These early techniques greatly 

influenced the development of archaeology, and Arago even stated in his announcement 

that researchers could use the technology “to copy the millions of hieroglyphics which 

cover the exterior of the great monuments of Thebes, Memphis, Karnak, and others...,” 

(Eder 1945, 234). The inventor of the calotype, William Henry Fox Talbot, had also 

achieved international recognition for his work in translating Assyrian texts (Lyons 2005, 

33). Thus, any theoretical discussion of imaging in archaeology would be incomplete 

without some consideration of the development of photography more generally. 

Photography rests on the principle of the camera obscura, in which a light passing 

through a pin-sized hole of a box produces an inverted image on any surface opposite the 

pinhole (Eder 1945, 36; Friedman and Ross 2003, 3). Aristotle briefly mentions the 

concept and Ibn al Haitam used a camera obscura to study eclipses in the early 11th 

century (Eder 1945, 36-37). By the 17th century, many artists used a camera obscura to 
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draw a scene more accurately (Friedman and Ross 2003, 3). Yet, a camera obscura only 

projects an image onto a surface; it does not capture it. 

Photography as a discipline focuses on capturing an image and permanently fixing 

it to a surface.  In 1614, Angelo Sala published his discovery that silver nitrate turns black 

when exposed to the sun (Eder 1945, 23), and in 1727, Johann Heinrich Schulze 

confirmed that the sun’s light caused the effect, not its heat (Eder 1945, 60-62). If a 

photographer coated a surface in silver nitrate and exposed it to light via a camera 

obscura, they could capture a photographic image. However, the capture was not 

permanent – once the photographer moved the image, the resultant light exposure ruined 

it (Friedman and Ross 2003, 4). 

In 1777, Cal Wilhelm Scheele demonstrated that silver chloride dissolved in 

ammonia prior to light exposure, but not afterwards (Eder 1945, 97). After numerous 

experiments, Joseph Nicéphore Niépce successfully recorded images on silver chloride in 

1816 (Eder 1945, 195-196). In 1825, he created a fixed image using a pewter plate coated 

with bitumen of Judea, which hardens when exposed to light (Friedman and Ross 2003, 

4). Yet, while Niépce was successful, his process required eight hours of exposure 

(Friedman and Ross 2003, 4). His new goal was to shorten the time required to capture an 

image. 

Nièpce partnered with Louis Jacques Mandé Daguerre in 1829 (Eder 1945, 215; 

Friedman and Ross 2003, 4). Daguerre experimented with copper plates, coating them 

with silver and then treating them with iodine fumes to produce silver iodide (Eder 1945, 

223-225). Nièpce unfortunately died in 1833, but his son Isidore took his place in the 

contract with Daguerre. Daguerre then discovered that he could temporarily fix an image 

to a copper plate after only half an hour if he exposed the plates to mercury vapour 

immediately afterwards (Friedman and Ross 2003, 4).  As with many discoveries, 
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Daguerre discovered this rather by accident. He happened to store some of his iodine and 

silver-coated copper plates in a cupboard that also happened to have a basin of metallic 

mercury (Eder 1945, 228). When he removed these images after several weeks, the 

images remained. Daguerre realised something in the cupboard was the answer to 

capturing a permanent image and removed the items one by one. He did this until he 

believed there was nothing left and was beginning to consider the cupboard itself may 

have special properties, having forgotten the open basin of mercury in the back. 

Eventually, he remembered the mercury and realised it must be the vapours that fixed the 

images (Eder 1945, 228). In 1837, he discovered that by immediately coating these 

mercury-treated images in an aqueous salt solution, he could permanently fix the image to 

the plate (Eder 1945, 227-228; Freidman and Ross 2003, 4). This became the standard 

process used to make daguerreotypes like the “Boulevard du Temple” (Figure 2.1), which 

many consider the first photograph of human beings (Frizot 1998, 36). 

 

Figure 2.1: Boulevard du Temple (Daguerre 1838). 
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On 3 July 1839, Deputy of the East Pyrénées Fraçois Arago presented Daguerre’s 

technique to the French Chamber of Deputies (Eder 1945, 234). In his announcement, he 

specifically mentioned the use of daguerreotypes in capturing images of the Egyptian 

hieroglyphs and urged the Chamber to equip the Egyptian Institute with two or three of 

the machines (Eder 1945, 234 – 235). Within months, daguerreotypists were travelling to 

Egypt, Greece, Italy, and other ancient sites to photograph everything they could (Lyons 

2005, 30; Szegedy-Maszak 2005, 9). 

Yet, daguerreotypes proved problematic in the field. Expeditions had difficulty 

transporting the required equipment safely (Lyons 2005, 34). Perhaps the most vexing 

problem of the daguerreotype, however, was that the process created a fixed, but unique 

image. Copying an image from a daguerreotype requires engraving, which inevitably 

damages or destroys the daguerreotype (Eder 1945, 316; Lyons 2005, 30 – 33; Newhall 

2006, 39). These limitations dashed many of the hopes for ease of communication and 

exchange among scholars, because they could not easily reproduce daguerreotypes in a 

meaningful way (Lyons 2005, 33). 

William Henry Fox Talbot, an Englishman known at the time for his work in 

physics as well as his assistance in translating Assyrian texts, was working on the 

photographic problem independently of Daguerre and Nièpce in France (Dorrell 1994, 1; 

Lyons 2005, 33). In January of 1839, Talbot publicly announced his work and wrote to 

the Royal Society of London describing his methodology (Eder 1945, 320). By 1840, 

Talbot had developed a technique for capturing photographic negatives, which he termed 

‘calotypes’ (Eder 1945, 321) This technique shortened the required exposure to less than 

a minute and allowed for reproduction of multiple positive image copies from the original 

negative obtained through the camera (Eder 1945, 321 – 323; Lyons 2005, 33). As an 

antiquarian himself, Talbot urged other scholars to use his machine, and he happily 



Christie – 2: Archaeological Imaging: History and Theory – 50 

trained them in its mechanics (Lyons 2005, 33). For these reasons, many early 

expeditions of an archaeological or heritage nature preferred the calotype to the 

daguerreotype (Dorrell 1994, 4; Lyons 2005, 33). Scholars identify the first use of 

photography on an archaeological expedition as that by R. Lepsius to Egypt (1842-1845), 

but one of the best known early uses of photography in archaeology is by Tranchand 

during the 1852-1855 excavations of Khorsabad, Assyria and subsequent expeditions 

through Armenia and Kurdistan (Figure 2.2) (Dorrell 1994, 4).  

 

Figure 2.2: The Gate at Khorsabad, by M. Tranchand (from Dorrell 1994, 3). 

James Clerk Maxwell developed a method for photographing in colour by 1861, 

not long after the invention of photography itself. Working from Young and Helmhotz’s 
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assertions that human retinas have three types of nerves, which, when stimulated, react to 

red, green, and violet light respectively (von Helmholtz 1896, 364 – 365; Young 1802, 

21), Maxwell began to experiment with coloured filters to create colour images (Eder 

1945, 640 – 641). In 1861, he took three photographs of a coloured ribbon using three 

separate coloured light filters. He then combined these photographs to form a coloured 

image. He stated in a letter to the Royal Institution in London that ‘…if the red and green 

images had been as fully photographed as the blue, [it] would have been a truly coloured 

image of the ribbon,’ (Maxwell 1862, 374). The challenge, then, was not to create colour 

images but to do so using film that was equally sensitive to each of the three primary 

colours of red, green, and blue (Maxwell 1862, 374). 

Another development came in 1925 with the invention of the miniature camera, 

now known as the 35mm camera (Howell and Blanc 1995, 5). Miniature cameras, while 

quite familiar to us today, were smaller than roll film cameras and were therefore far 

more portable (Simmons 1969, 15-16). Researchers could carry them up a mountain or 

into the desert with relative ease and could capture more accurate photographs with a 

greater depth of field (Simmons 1969, 16-17). Miniature cameras also had a much shorter 

exposure times, speeding up the process considerably (Simmons 1969, 16-17). The 

primary difficulty came in processing the film safely, since any speck of dust on the 

negative would cause a much larger blemish than it might on the larger roll film 

(Simmons 1969, 17). 

In 1947, Edwin H. Land introduced the Polaroid process of creating a finished 

photographic print within seconds (Newhall 2006, 281). The primary disadvantage with 

most polaroid cameras was that they only produced a single copy of the photograph and 

did not create negatives (Conlon 1973, 8). Polaroids therefore posed similar problems to 

the daguerreotype in that multiple copies of an image were difficult to obtain. By the 
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1970s, however, archaeologists could obtain polaroid films that captured a negative and 

generated an immediate, positive print (Conlon 1973, 8). 

Despite the developments made in the first century of photographic techniques, 

many archaeologists did not regard photography as a vital tool for recording an 

excavation until the 1950s (Cookson 1954, 11). Simmons (1969, 2) noted that many 

supervisors complained about site photographers for slowing down the excavation. He 

also noted the change in tune when the same individuals needed to write reports, often 

long after the dig had concluded (Simmons 1969, 2). By the late 1960s, the general 

attitude towards archaeological photography had not changed in its purpose; it served as a 

method of scientific recording, particularly of information lost through excavation 

(Simmons 1969).  

Yet, beginning in the 1950s, photography did become much more prominent in 

archaeology due to perceptions that it was more objective and truthful than drawings 

(Bateman 2005, 192; Lyons 2005, 39, 43; Shanks 1997, 74, 82; Walsh 2012, 21). This 

period marked the rise and prominence of processual archaeology, which argued for the 

field to become more scientific in its analysis of the past (e.g. Phillips 1955; Phillips and 

Willey 1953; Willey and Phillips 1955; and Willey and Phillips 1958). It also marked the 

publication of one of the first archaeological photography manuals, in which M.B. 

Cookson (photographer to Mortimer Wheeler) described what he felt were the best 

methods for photographing archaeological subjects (Cookson 1954). The relationship 

between archaeological photography and archaeological theory is discussed further in 

Chapter 2.2, but imaging techniques in archaeology developed significantly from this 

point onwards, and it seems better to discuss them in individual subsections. 
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2.1.1 PHOTOGRAPHY 

During the 1960s and 1970s, the miniature camera, colour film, and polaroid 

technology finally entered mainstream archaeological photography (Simmons 1969, 11). 

Yet, even by the late 1960s, colour film was expensive to purchase, expensive to process, 

and difficult to maintain (Cookson 1954, 106-109; Simmons 1969, 38). Colour films were 

prone to deterioration in humid areas and tended to fade, complicating their use in the 

field (Simmons 1969, 38). Publishing in colour was expensive, and scholars opted to use 

colour images more often for lectures and other situations requiring slide projections 

(Cookson 1954, 109; Simmons 1969, 37). 

 

Figure 2.3:  Glass bead from Glenshee, Scotland in visible light (left) and near-infrared (right) (NH Unknown #). 

The mid 1980s saw the advent of image spectrometry, or the capture of many 

narrow spectral bands of ultraviolet, visible, and infrared light (Goetz et al. 1985, 1147). 

Visible-range filters for photography had existed since Maxwell’s experiments with 

colour photography in 1861 (Maxwell 1862, 374), but photographers could not capture 

infrared light and process it together with visible-range data prior to the late 20th century. 

Multispectral imaging (or image spectrometry) allowed scholars to compare specific 

reactions of objects and materials to each other to determine similarities or differences 
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between them. Multispectral imaging has been used extensively in the fields of geology, 

ecology, and urban planning (e.g. Fischer and Kakouli 2006; Lau et al. 2008; Noordam et 

al. 2007). Archaeologists use multispectral imaging on paintings and manuscripts 

(Christens-Barry et al. 2009; Dorrell 1994; Legnaioli et al. 2013; Liang 2012; Padfield et 

al. 2005). Infrared radiation can penetrate beneath the surface of an object, revealing 

underdrawings, damage, or other details (Figure 2.3) (Legnaioli et al. 2013, 1; Liang 

2012, 313). Ultraviolet light can also reveal areas where paintings have been retouched as 

well as erased or faded writing on historical manuscripts (Dorrell 1994, 200; Legnaioli et 

al. 2013, 1; Liang, 2012, 313-314). Multispectral imaging also allows for accurate colour 

rendering of a painting under any lighting, which highlights conservation efforts and 

degradation (Liang, 2012, 314-315). 

Hyperspectral imaging developed in tandem with multispectral imaging and 

involves capturing images for the full range of spectra for a single subject (Liang 2012, 

309). Multispectral imaging captures discrete bands of spectra (e.g. 560nm (green), 

660nm (red), or 800nm (near-infrared)) resulting in 5-10 distinct photographs, while 

hyperspectral imaging captures data for a continuous range of spectra and stores all the 

data for each pixel (e.g. 450 – 900nm) (Liang 2012, 309). While hyperspectral imaging 

has proven useful in geology, astronomy and other related fields (e.g. Baeten et al 2007; 

Balas et al. 2003; Chabrillat et al. 2002; Dale et al. 2013; Gomez and Del Re 2005; 

Fischer and Kakouli 2006; Lau et al. 2008; Park and Lu 2015; and Rapantzikos and Balas 

2005), it has yet to find much use in archaeological imaging. 

A technique related to multispectral and hyperspectral imaging is the creation of 

false colour images. False colour images involve altering the visible colour of a 

photograph such that no colour in the image represents that colour in reality (Chapter 

5.3). Geologists often use false-colour images combining infrared, red, and green spectra 
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(represented using red, green, and blue, respectively) to determine the mineral 

composition of geological formations (Kurz et al. 2012, 417; Kurz et al. 2013, 1799). 

Astronomy, physics, ecology, and art history use false colour imaging for various 

purposes, largely to identify differences otherwise invisible to the human eye. Thus far, 

however, archaeologists have yet to exploit false colour imaging for purposes other than 

identifying pigments and areas of retouching or conservation (e.g. Pilarska 2016). 

2.1.2 REFLECTANCE TRANSFORMATION IMAGING 

Reflectance transformation imaging (RTI) captures the reflectance properties of 

an object to highlight surface and subsurface characteristics. RTI software analyses 

between 30 and 50 photographs in which the camera and object remain stationary, but the 

light changes direction (Diaz-Guardamino and Wheatley 2013, 191; Malzbender et al. 

2001, 3). The resulting light patterns indicate surface features that may be invisible to the 

naked eye. 

Malzbender and colleagues (2001) developed the technique in the early 21st 

century to create more photorealistic representations of objects. The resulting 

visualisation, which many call 2.5D to mark its ambiguity between two and three 

dimensions, allows for the manipulation of light and the creation and manipulation of 

artificial lighting scenarios that are difficult if not impossible outside of the software. For 

example, specular enhancement illuminates the object in a way that maximises pixel 

brightness, while diffuse gain enhances the representation of surface features on an 

object, thus making depressions appear deeper (Cultural Heritage Imaging 2010, 12; 

Diaz-Guardamino and Wheatley 2013, 192). Both techniques reveal information that is 

not physically accessible to the naked eye. 

Reflectance transformation imaging has greatly enhanced the study of paintings 

and other artworks by providing a better understanding of the brush strokes and other 
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techniques involved in the creation of the piece (e.g. Giachetti et al. 2017; Tisato and 

Parraman 2014). In archaeology, RTI has been widely used in the study of rock art and 

stone sculpture, though some have used it for artefact recording and analysis (e.g. 

Dellepiane et al., 2006; Diaz-Guardamino and Wheatley 2013; Earl et al. 2008; Earl et al. 

2010, Jeffrey 2005; Mudge et al., 2005; Mudge et al., 2006). Yet, RTI has only found 

significant use in archaeology within the last decade due to its relatively recent 

development, and archaeologists have yet to exploit it to its fullest extent. 

2.1.3 PHOTOGRAMMETRY 

The foundational mathematical principle of photogrammetry, or the process of 

making accurate measurements from drawings, first came into use in the late 18th century 

to construct plans from hand-drawn landscapes (Eder 1945, 398; Moffitt 1967, 1). 

Photogrammetry itself did not appear as a scientific method until 1851, however, when 

Aimé Laussedat began experimenting with photogrammetry to create measured plans of 

Paris and its surrounding villages (Eder 1945, 398-399). Albrecht Meydenbauer was the 

first to use the technique for the preservation of historical monuments, and he formed his 

own photogrammetrical institute in Prussia in 1885 (Eder 1945, 400). Aerial 

photogrammetry took off during World War I, when plans were of vital importance for 

the battlefield (Eder 1945, 401). 

Dr. Carl Pulfrich was the first to combine stereoscopic imaging with 

photogrammetry as early as 1901, thus creating stereoscopic photogrammetry (Eder 1945, 

402). Stereoscopic imaging was a common practice in the 19th century and stereoscopes 

often featured in the parlours of wealthier families (Figure 2.4). In principle, stereoscopic 

imaging involves taking a photograph from one location, moving the camera slightly and 

taking another photograph of the same subject such that when viewed side-by-side the 

images are offset to the same degree as a pair of human eyes (Campana 1977, 435-436). 
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When placed side-by-side in a stereoscope or similar viewer, the images appear to take on 

a 3-dimensional quality. By 1901, photographers discovered that these 3D viewings of 

photographs allowed for accurate measurements of the objects in the images (Eder 1945, 

402). 

 

Figure 2.4: Stereoscopic image of Niagara Falls (Mystic Seaport Museum). 

Interestingly, archaeology did not find significant use for stereoscopic 

photogrammetry until the late 1960s, despite the popularity of aerial photography in the 

field since the early 1900s (Estes et al. 1977, 441). Stereoscopic photogrammetry was a 

common technique for taking accurate measurements and drawing plans, particularly 

topographically (Atkinson 1969; Green et al. 1971; McFadgen 1971; Scogings 1978; 

Whittlesey 1966). One of the first archaeological applications of the technique attempted 

to measure the building façades in Petra (Atkinson 1969) while others used the technique 

to document rock art (Scogings 1978). In the late 1970s, archaeologists began using 

stereo pairs to compare macro and microscopic images of objects, particularly those they 

could not transport from one location to another (Campana 1977, 435). Some argued 

stereo pairs were the primary means through which they could document and share 
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microscopic information, and that they generally captured more detail than standard 

photographs (Campana 1977, 435). 

Photogrammetric software gained popularity in the late 1990s and early 2000s 

(Boehler and Heinz 1999, 4; Boehler and Marbs 2004, 291; Chandler 1999, 51), when 

emphasis of photogrammetry shifted from acquiring simple measurements to 

documenting the object, site, or building in three dimensions with the intent of giving the 

viewer access to as much information as if they were viewing the object in person 

(Boehler and Heinz 1999, 2). Photogrammetric software had developed significantly by 

this time, and it could now create 2D and 3D line drawings of the photographed object 

(Boehler and Marbs 2004, 294). 

At roughly the same time, a new type of photogrammetry emerged. Previous 

photogrammetric models used a single stereoscopic pair to create a model, as described 

above. This required knowledge of the 3D positioning of the camera or multiple control 

points to create a model in 3-dimensional space (Westoby et al. 2012, 301). The new 

technology, termed Structure from Motion (SfM) photogrammetry, operated on the same 

principle that overlapping photographs provided the data needed to calculate 3D points, 

but it used multiple photographs surrounding the object of focus (Doneus et al. 2011, 82; 

Westoby et al. 2012, 301). The software calculated the digital 3D geometry by matching 

the overlapping points in each photograph (Westoby et al. 2012, 301; Zhao and Li 2006, 

70-71).  

Archaeologists generally use photogrammetry for buildings, sites, and aerial 

photography, though applying the technique to objects is becoming more common 

(Bernardini et al. 2002; Grün et al. 2004; Koutsoudis et al. 2014; Remondino et al. 2009; 

Remondino 2011; Salonia et al. 2005). There are also studies comparing the technique to 

other 3D visualisation methods, particularly laser scanning (Boehler and Marbs 2004; 
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Doneus et al. 2011; Nylén 2008). Generally speaking, archaeologists widely regard 

photogrammetry as a relatively simple, affordable mechanism for creating 3D models in 

archaeology. 

 

2.1.4 LASER AND STRUCTURED LIGHT SCANNING 

The 1960s also saw the development of lasers and laser scanning systems (3D 

Digital 2015; Hecht 2010; Maiman 1960). There were numerous logistical issues with 

using these technologies in archaeological contexts, not least of which were the relative 

lack of portability and the time required to complete a scan (3D Digital 2015; Matter and 

Form 2014). By the 1980s, 3D scanners using structured light or lasers were available for 

use in scientific research, but they had limited storage space (3D Digital 2015; Matter and 

Form 2014). By the 1990s, 3D scanners entered the commercial market and storage issues 

lessened (Matter and Form 2014).  

Currently, there are two primary types of 3D scanner on the market: structured 

light scanners and laser scanners. A structured light scanner creates highly accurate, 

coloured maps of the object by measuring the way a projected, structured pattern of light 

changes or distorts as it moves across the surface of a subject (McPherron et al. 2009, 20). 

The sensor measures these distortions for each pixel, resulting in a point cloud that can be 

turned into a model. Structured light scanning is often handheld, making it easier to direct 

and control than laser scans. It can also capture accurate data for objects as small as 1-

2cm (McPherron et al. 2009, 20). Within archaeology, structured light scanning has seen 

a lot of use in underwater archaeology as well as human and faunal skeletal remains (e.g. 

Niven et al. 2009; Roman et al. 2010). 

Laser scanners fire lasers at their current field of view, regardless of what is there 

(LAGOA 2014). Any time the laser beam touches a surface it reflects back to the scanner, 
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which records the position and reflective nature of each point the lasers touch on that 

surface (LAGOA 2014). The laser takes multiple scans from various angles around the 

subject in question and later joins them using common reference points (LAGOA 2014). 

These create a point cloud, or a series of points in three-dimensional space that can be 

joined together to create a 3D model (LAGOA 2014). 

Laser scanning has worked wonders in terrestrial imaging and discovery of sites, 

in part because it can often ‘see’ around vegetation, which generally blocks normal 

human vision. It also manages to secure significant detail in objects and buildings, 

allowing archaeologists to take accurate measurements from the models themselves 

(Historic Environment Scotland 2018, 31). Yet, archaeologists generally avoid using laser 

scanners on smaller objects due to either a lack of accuracy or a lack of funds to access 

the equipment. Laser scanners also do not work well with highly reflective, translucent, or 

transparent objects (Historic England 2018, 2). While the exact cause for this is unclear, it 

appears to be a result of the current algorithms being unable to predict the nature of light 

scatter for such materials. 

2.1.5 X-RAY COMPUTED TOMOGRAPHY (CT SCANNING) 

X-rays penetrate different materials to varying degrees, a feature that became 

heavily exploited in scientific applications shortly after the discovery of this type of 

radiation (Cnudde and Boone 2013, 2). The difficulty with this technique was the 

representation of three-dimensional data in two dimensions, resulting in a loss of depth 

information for the imaged subject. Computerised transverse axial tomography was 

developed in the early 1970s to combat this issue by creating projection images from 

different directions and reconstructing the 3D volume using complex algorithms (Cnudde 

and Boone 2013, 2; Hounsfield 1973, 1016). The technique was used almost immediately 

in the medical field, and soon found use in palaeontology, marine science, soil science, 
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geosciences and industrial applications (e.g. Boespflung et al. 1995; Gawler et al. 1974; 

Ledley et al. 1974; Petrovic et al. 1982; Vinegar and Wellington 1987; Zollikofer et al. 

1998). X-ray computed tomography grew in popularity within archaeology in the mid-

1990s and has since been applied to wooden statues, glass, lithics, ceramics, and other 

finds (e.g. Anderson and Fell 1995; Bertini et al. 2014; Casali 2006; Morigi et al. 2007; 

Morigi et al. 2010).  

Current archaeological imaging techniques have developed significantly since 

their beginnings in 1839, ranging from photography to RTI, photogrammetry, laser and 

structured light scanning, multi- and hyperspectral imaging and x-ray computed 

tomography. Each of these techniques forms a specialism in itself, but all currently strive 

to maximise the efficiency of, and detail acquired through, documentary archaeological 

imaging. 

2.2 ARCHAEOLOGICAL THEORY AND ARCHAEOLOGICAL IMAGING 

The previous section described the general history of photography and imaging in 

archaeology from a primarily technological standpoint, listing when and how certain 

developments occurred. Technology can never divorce itself fully from the social and 

scholarly milieu of its development and use, however, and each of the developments in 

archaeological imaging directly relate to the theoretical leanings of the discipline at the 

time. It is vital to any study of archaeological imaging, therefore, to address the 

entanglement of archaeological theory and archaeological photography. 

Photography developed and became popular at a time when archaeology was 

becoming more systematic and recognising that significant information could be gained 

from studying the material culture of prehistoric peoples. Thomsen had recently refined 

the Three Age System (i.e. Stone Age, Bronze Age, Iron Age) in Scandinavia and 
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contacts in Scotland and Switzerland led to its application in those nations as well 

(Trigger 2006, 133 – 134). This style of archaeology relied on creating relative 

chronologies of objects found in secure contexts using simple seriation techniques, and is 

one of the first systematic practices developed in archaeology (Trigger 2006, 135). Yet, 

these methods were seen as less reliable in England and France, the two loci of the 

development of Western photography. Archaeology in these nations focused on historical 

peoples and did not truly begin to examine prehistoric groups until the late 1850s (Trigger 

2006, 138). Instead, their principle revelations concerning prehistory came from the fields 

of geology and palaeontology, such as Lyell’s discussion of the uniformity of 

stratigraphic layers or Boucher de Perthes’s conclusions that Lower Paleolithic handaxes 

associated with extinct species such as mammoths in secure contexts necessarily meant 

the tools themselves were at least as old as the associated remains (Trigger 2006, 143 – 

145). Only after Herbert Spencer’s reframing of societal complexity as evolving out of 

individual efforts and free enterprise in the 1850s did England and France begin to 

investigate the notion of prehistory in earnest (Trigger 2006, 145 – 6). This change in 

archaeological thought is important because it marks the point at which archaeological 

remains became informative in their own right rather than materials requiring explanation 

from textual sources. It also meant that the material remains and their contexts held 

important information that would be lost as soon as the remains were separated from that 

context unless archaeologists recorded that information in some way. 

Objectivity has been a hallmark of photography since its announcement in 1839. 

Two characteristics of early photographs greatly impressed viewers in the 19th century 

and proceeded to shape the reputation of these images: the exquisite detail of the images 

and the inherent truth they conveyed (Walsh 2007, 21-22). Samuel Morse, known for 

bringing the daguerreotype technology to the United States as well as creating Morse 
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code, marvelled at the detail, noting that letters on shop signs that were invisible to the 

naked eye appeared crisp and clear when using a hand lens (Walsh 2007, 21). Society saw 

photographs as more objective than portraits or other art forms because the photographer 

could not manipulate the result as easily. Photographs captured the truth, and that made 

them ideal for recording what archaeological excavation necessarily destroyed (Bohrer 

2005, 181; Walsh 2007, 22). For decades, antiquarians took photographs for the specific 

purpose of generating realistic, detailed information of excavations and difficult-to-reach 

sites to preserve what excavation could not and to allow consultation with as many 

scholars as possible (Dorrell 1994, 2; Eder 1945, 234 – 235; Lyons 2005, 25; Szegedy-

Maszak 2005, 9). The only difficulty was the practical logistics of transporting the 

equipment and protecting and developing the film (Chapter 2.1). Despite the widespread 

use of photography in archaeology, however, no manual had been published nor standard 

practices agreed upon for archaeological photography. 

By the early 20th century, certain archaeological institutions were calling for a 

more systematic approach to the discipline, which led to the development of more 

systematic means of photographing archaeology. Taylor, for example, noted in the early 

1940s that the limited intentions of American culture-historical archaeologists had 

resulted in the field failing to examine artefacts in detail, particularly those that were 

considered undiagnostic of a specific people or time (Trigger 2006, 368). Instead, he 

argued archaeologists should strive to recover as much information as possible from 

archaeological excavations. By the early 1950s, MB Cookson published one of the first 

manuals for archaeological photography, in which he laid out specific practices for 

achieving the most objective representation of the archaeological record (Cookson 1954).  

The rise of processual archaeology in the 1960s championed the notion that data 

acquired through technological means was objective. Processual archaeology argued that 
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archaeology was more science than history, and that the material remains recovered in 

excavation should be viewed as representative of the total cultural system in which they 

were found (Binford 1962, 224; Willey and Phillips 1958, 2). By the late 1960s, 

archaeological photographers noted that going into the field without photographic 

knowledge and equipment was unthinkable, and that site directors had come to rely on 

photographers and their skills for recording excavations in the field (Simmons 1969, 2; 

South 1968, 73). All archaeological photography manuals available at the time provided 

very specific techniques and approaches to archaeological photography, both to 

systematise the field and to help beginners navigate commonly encountered situations 

(e.g. Cookson 1954; Simmons 1969; South 1968). Each manual described the site 

photographer as a full-time position in the field, requiring at least one person highly 

skilled in using a camera. 

The 1960s to 1970s was also the point at which humans largely disappeared from 

archaeological manuals. Cookson (1954) did not speak about humans in photographs 

directly, admittedly, but this is because his dialogue assumed them to be there. He stated 

that some photographs in the record should be purely pictorial and that some more formal 

shots may need faster shutter speeds due to moving figures in the image (Cookson 1954, 

46). Similarly, South (1968, 78) argued that the site photographer should record every 

part of the process, including crews or machinery at work. Simmons, however, appears to 

mark the beginning of a decline in human subjects in archaeological photography, stating 

that only some images should include workmen for use in public relations (1969, 10). By 

the early 1970s, Conlon (1973, 56 – 57) stated that human figures should only be 

included at a distance for scale purposes and, if they must be included, they should be 

doing something, such as supporting a ranging rod or pointing at significant features.  
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The decline of human figures in archaeological photographs mirrored the rise in 

the desire for archaeological objectivity and in the perception that photographs are 

objective. While photography was perceived as objective upon its announcement in 1839, 

it was seen as so subjective by the time Sir Mortimer Wheeler wrote the forward to 

Cookson’s manual that his statement “…the camera is an awful liar,” (1954, 5) was 

widely known and repeated by Simmons over a decade later (1969, 4). These 

archaeologists knew that photography requires choice at every level, choices largely made 

by the photographer and the person commissioning the photograph. By contrast, Conlon 

championed photographs as “dispassionate factual records rather than pleasing 

illustrations” meant to represent the record as accurately as possible (1973, xiii).  

Post-processual archaeology developed in response to processual archaeology in 

the 1980s and was largely championed by the work of Ian Hodder and his students 

(Hodder 1982; Trigger 2006, 450). They argued against the notion that archaeology could 

reach an objective understanding of the past and published studies refuting the idea that 

material culture necessarily reflects social organisation (e.g. Cannon 1989; Gathercole 

1984; Hodder 1982; Huntington and Metcalf 1979). To borrow a phrase from Geertz 

(1972, 26), burial practices and other means of depositing material culture often reflected 

the stories a society or group told themselves about themselves rather than reality they 

practiced. Similarly, archaeology’s interpretation of the past is directly affected by the 

current philosophical leanings of the discipline at the time. The significance of the 

archaeological record therefore depended on its context both in an archaeological sense 

and in a cultural or societal one. In Hodder’s words, “interpretation [began] at the 

trowel’s edge,” (Hodder 1999, 83).  

The next archaeological photography manual to be published presented an 

archaeological photography that mirrored these changes in archaeological thought. 
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Dorrell reinstated the discussion of cameras as deceptive (1989, ix) and encouraged 

flexibility on the part of archaeological photographers to capture each image as best they 

can (1989, 129 – 131). He detailed both the method for and importance of photographing 

people working on-site (1989, 153 – 154). He also encouraged care and tact in 

photographing locals, particularly in societies where photographing people may not be 

welcome (Dorrell 1989, 154).  

The multivocality advocated by post-processual archaeology encouraged some 

individuals to begin examining photography in several veins. One large strand of inquiry 

and debate has been the perpetuation and spread of colonial practice through photography 

in the 19th and early 20th centuries, including archaeological photography (e.g. Behdad 

2013; Guha 2002; Michels 2018; Pinney 2003; Riggs 2017). Many archaeologists began 

to debate the authenticity of digital visual representations of the archaeological record and 

whether they captured and maintained the same aura as the original subject (e.g. Flynn 

2007; Jeffrey 2015; Latour and Lowe 2010). Others began to advocate for increasingly 

technological means of visualising the archaeological record to minimise this subjectivity 

(e.g. Earl 2006; Moser and Smiles 2005, Shanks 1997; Zubrow 2006), while still others 

began to caution against engaging in such practices without reason (e.g. Bateman 2005, 

Huggett 2004). Another strand began to question the objectivity of photography, 

particularly with the growth of digital photography and the ease with which digital 

images could be manipulated (e.g. Bohrer 2005; Burke 2001; Earl 2006; Lyons 2005; 

Moser and Smiles 2005; Papadopoulos 2005; Shanks 1997). Related to this, some 

archaeologists began exploring the relationship between archaeological photographs and 

memory, and to question for whom archaeological photographs should be taken (e.g. 

Bateman 2005; Tringham 2010). Of particular relevance for this thesis are the discussions 
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concerning the objectivity of archaeological imaging, the push for new technologies, and 

the relationship between images and memory.  

2.2.1 OBJECTIVITY AND ARCHAEOLOGICAL IMAGING 

In the mid- to late-1800s, society saw photography as more objective than 

drawings because it was the medium that captured the unbridled truth in the highest 

degree of detail possible at the time. Drawings captured what a draughtsperson felt was 

important, while photographs were unedited records of reality (Walsh 2007, 21). By the 

mid-1950s, archaeologists knew that cameras ‘saw’ differently than human eyes and 

prescribed methods for capturing images as close to human sight as possible (Cookson 

1954; Simmons 1969, 4; South 1968, 73). By the 1970s, discourse returned to 

photography being more objective than drawings because they are unselective in what 

they capture (Conlon 1973, 55). By the mid-1990s and early 2000s, however, discourse 

shifted again to acknowledging photography as subjective and possibly misleading 

(Bohrer 2005, 182; Earl 2006, 197; Moser and Smiles 2005, 1; Shanks 1997, 78).  

To combat the subjectivity of digital technologies, the field has developed and 

prescribed standardised methods for use in archaeological imaging. These have changed 

with new technological developments and shifts in the discipline’s perspective on the 

technique’s inherent objectivity or lack thereof, but there remains a set of standard 

imaging methods for each imaging technology that exists in archaeology today. Images 

should be well-lit with a scale provided and a perspective that allows for close 

measurement of the features in the image (Conlon 1973, 56; Cookson 1954, 75; Dorrell 

1989, 123; Howell and Blanc 1995, 51 – 52; Simmons 1969, 30 – 31). Site trenches 

should be clean and tools removed from the frame to show the highest amount of detail 

(Conlon 1973, 56; Cookson 1954, 13; Dorrell 1989, 7; Howell and Blanc 1995, 55; 

Simmons 1969, 48). Artefacts or other objects should have a neutral background and even 
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lighting that allows the equipment to capture the largest amount of detail (Conlon 1973, 

76; Cookson 1954, 75; Dorrell 1989, 162 – 173; Howell and Blanc 1995, 58 – 61; 

Simmons 1969, 71 - 73). Shadows should be minimised unless their presence reveals 

further detail not captured under other lighting conditions. Archaeological imaging should 

recreate the object as close to how the individual saw it at the time and retouching is 

discouraged if not forbidden (Conlon 1973, xiii; Cookson 1954, 13; Dorrell 1989, 7; 

Howell and Blanc 1995, 1; Simmons 1969, 4, 13). Such standards of archaeological 

imaging allow for an increased objectivity in the resulting visualisation and for easier 

comparison between them. 

These standard methods also emphasise the importance of replicating human 

vision in archaeological images, particularly those standards which discourage 

manipulation or retouching of photographs (Conlon 1973, xiii; Cookson 1954, 13; Dorrell 

1989, 7; Howell and Blanc 1995, 1; Simmons 1969, 4, 13). When discussing objectivity 

in photography and digital imaging, particularly for archaeology, the discipline often 

equates objectivity with realism (Bateman 2005, 194; Earl 2006, 194; Shanks 1997, 80). 

Photography in archaeology is primarily documentary and has been since its 

incorporation into the field. Consequently, the primary goal of archaeological imaging 

has been to create visual representations that mimic what human eyes see, and there is 

currently significant discourse concerning the photorealism of archaeological 

visualisations (Conlon 1973, xiii; Cookson 1954, 13; Costall 1997, 50; Dorrell 1989, 7; 

Howell and Blanc 1995, 1; Shanks 1997; 80; Simmons 1969, 4). This debate has risen to 

prominence with the advent of digital imaging and 3D modelling. Archaeologists – and 

indeed the public – now question the objectivity of digital images or 3D models because 

nearly anyone can manipulate them with relative ease to show whatever they wish (Earl 

2006, 191; Shanks 1997, 92; Tringham 2010, 72). There is a sense, then, that digital 
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images require authentication, or at least more authentication than analogue photographs 

do (Earl 2006, 191). This has only increased the desire for digital visualisations to mimic 

human eyes, because that is the simplest method for verifying the truthfulness of the 

image or 3D model (Shanks 1997, 82 - 83). 

Yet, no image is ever truly objective, or even mostly so. Capturing an image or 

creating a visualisation is riddled with choice at least on the part of the photographer or 

digital imaging specialist. We choose what to image, under specific conditions and 

lighting and with specific equipment. We choose how to edit the image and how to render 

the visualisation using specific software and methods we have chosen. Some of these 

choices are borne out of necessity; laser scanning does not produce informative results for 

glass objects, for example, and qGIS cannot process photographs into a photogrammetric 

model. Other choices are purely that, made by the individual to capture the information 

they seek as best they can. Photographs and other archaeological imagery result from the 

hundreds or more choices the creator has made, including the choice to image the subject 

at all. In archaeological imaging, interpretation begins when we decide to pick up the 

camera or set up the laser scanner. Any representation created by humans is riddled with 

choice, and archaeological images are far from innocent analogues of the scenes they 

represent (Bohrer 2005, 182; Earl 2006, 197; Lyons 2005, 25; Moser and Smiles 2005, 2; 

Papadopoulos 2005, 112; Shanks 1997, 92). In fact, archaeological photographs are 

considered ‘realistic’ and ‘objective’ more because they conform to the canon of realism 

established through disciplinary discourse rather than because they necessarily have an 

objective relationship with reality (Lyons 2005, 25; Moser and Smiles 2005, 3; 

Papadopoulos 2005, 112; Shanks 1997, 82 – 83).  

Importantly for this thesis, an image need not be truly objective nor mimic human 

vision to be archaeologically valuable. There is value in the aesthetic of the image, as 
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well as the analytical possibilities provided through controlled manipulation. Full 

discussion of the aesthetic value of archaeological images is outside the scope of this 

thesis. Both public and academic engagement with heritage and archaeology is mitigated 

and encouraged through images, however, and there is much to be said for ensuring these 

images draw people in aesthetically as well as serving as documentation of what once was 

(Arnold 2005, 92; Bateman 2005, 194; Bohrer 2005, 182; James 1997, 22; Phillips 2005, 

72). 

There is also significant value in the analytical possibilities for archaeological 

visual media, particularly those created through controlled manipulation. If all images of 

an artefact category undergo the same composition, treatment, and processing and use the 

same equipment, for example, the results still show relative differences and similarities 

between objects (Chapters 4 through 7). Also, archaeologists can recover significantly 

more information about a subject by intentionally representing it in a way that is 

impossible for the human eye to capture, such as using both visible and non-visible light. 

These assertions serve as the basis for all the case studies in this thesis. Indeed, by 

limiting informative archaeological imaging to that which appears as closely as possible 

to human vision, we severely limit the information and insight we can glean from 

archaeological subjects.  

While prescribing standardised methods across the discipline for each imaging 

technology allows for comparison between visualisations, it discourages deviation from 

the standard. For SRT objects, this results in a lack of informative or engaging images 

and visualisations due to the poor results generated by standard imaging techniques. “Our 

digital paintbox is far more diverse than currently employed, and far less open to diversity 

than the real canvas of our counterparts,” (Earl 2006, 195). Experimenting with 

techniques outside the prescribed standard can provide more information than previously 
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acquired through standard means, thereby furthering our understanding of and 

engagement with the archaeological record. 

2.2.2 OLD VERSUS NEW TECHNOLOGIES IN ARCHAEOLOGICAL IMAGING 

Many archaeologists embrace technological developments in the field and  

champion their use in archaeological research (e.g. Dellepiane et al. 2006; Doneus and 

Briese 2006; Doneus et al. 2011; Earl et al. 2008; Earl et al. 2010; Mudge et al. 2005; 

Mudge et al. 2006; Nylén 2008; Remondino et al. 2009; Remondino 2011). RTI has 

proven beneficial for studies of rock art, stone sculpture and artefact recording and 

analysis (e.g. Bernardini et al. 2002; Diaz-Guardamino and Wheatley 2013; Grün et al. 

2004; Kitzler Åhfelt 2002; Kitzler Åhfelt et al. 2015; Koutsoudis et al. 2014; Opitz 2015; 

Remondino et al. 2009; Remondino 2011; Salonia et al. 2005) while photogrammetry 

(particularly SfM photogrammetry) is often recommended for recording buildings, sites, 

and artefacts (e.g. Bernardini et al. 2002; Grün et al. 2004; Koutsoudis et al. 2014; 

Remondino et al. 2009; Remondino 2011; Salonia et al. 2005). Laser scanning and 

LiDAR have seen the largest success in aerial archaeology, particularly in uncovering 

sites and buildings located vegetation-dense regions such as the complex urban 

landscapes at Angkor Wat (Evans et al. 2013) or the Mayan lowlands of the Yucatan 

(Canuto et al. 2018). Laser and structured light scanning have also been successful in 

documenting buildings, sites, and certain artefact categories (e.g. Evans and Donahue 

2008; Forte et al. 2012; Grussenmeyer et al. 2008; Lerma et al. 2010; Lin et al. 2010; 

Lobb et al. 2010; McPherron et al. 2009; Niven et al. 2009; Roman et al. 2010). 

Multispectral and hyperspectral imaging has uncovered underdrawings and revealed 

conservation efforts of art historical pieces and has allowed art historians to identify the 

use of specific pigments (e.g. Christens-Barry et al. 2009; Cosentino 2014; Dorrell 1994; 

Fischer and Kakoulli 2013; Legnaioli et al. 2013; Liang 2012; Padfield et al. 2005; 
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Pilarska 2016). Digital technologies have significantly improved archaeological research 

and documentation and will likely continue to do so in the future. 

There has been a slower uptake of these technologies in excavation and contract 

archaeology, however, largely because doing so creates a wave of required changes 

across the recording of the site and the process of excavation (Backhouse 2006, 51). New 

technologies require new methodologies and new metadata, many of which cannot 

necessarily be predicted until months after the excavation has concluded (Backhouse 

2006, 51). Additionally, newer digital technologies create digital data that is less 

amenable to archival procedures, often because the type of file and metadata required are 

unlike anything for which there are already current archival practices. There are continual 

debates in archaeology (and elsewhere) concerning the preservation of digital data, a 

concern that only increases with the use of newer, and more obscure filetypes containing 

more and more data. Also, those who work with newer technologies are keenly aware of 

the frequency with which they require troubleshooting or simply break down. From 

personal experience, I have yet to be on a dig in Scotland during which the portable GPS 

unit worked consistently, and I can say the same for magnetometers, electrical resistance 

meters, laser and white light scanners, and even site laptops and printers. Backhouse 

(2006, 52) cites a related experience in which his team had a portable computer on-site 

for less than three days before they needed to return it to the head office due to a broken 

screen (costing £800 to repair). Electronic equipment in the field often has a high casualty 

rate in archaeology. Coupled with the high cost of much of the equipment and the 

requisite changes to recording methods and metadata, it is understandable why 

commercial units have been hesitant to adopt the newer technologies often championed 

by the research sector (Backhouse 2006, 53; Bradley 2006, 35). 
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Despite the large push for new technologies in academic archaeology, there are 

many who caution against allowing new technologies to become a fetish (Huggett 2004, 

82), a type of religious fervour (Zubrow 2006, 15), or more an indication of the social 

aspirations of the user than the quality of the results (Bateman 2005, 195). Still others 

argue that while in pursuit of new technologies, we do not discredit or diminish the use of 

the old (Beale et al. 2013, 240). Many criticising the obsession with new technology in 

archaeological imaging also posit that use of new technology in archaeology creates a 

power dynamic which privileges both those who can afford and use the technology over 

those who cannot (Huggett 2004, 85; Rutsky 1999, 156; Santana Quintero and Eppich 

2016, 3; Voorips 1984, 48; Zubrow 2006, 14). This power dynamic becomes so 

prominent in the field that new technologies often abolish older ones and become so 

essential themselves that there is little possibility for success without them (Zubrow 2006, 

14). In the case of archaeological imaging, older technologies have not been abolished so 

much as discredited. We know that photography is not entirely objective, so we look to 

new technologies to create objective representations of archaeological material. There 

appears to be less room for human intervention, so there is less human input to skew the 

results. Similarly, more technological methods and equipment provide more distance 

between the archaeologist and what they are recording, either physically or 

metaphorically, as highlighted through debates of aura and authenticity (Huggett 2015, 

89). This, together with the pre-programmed manner in which the equipment records 

data, furthers the perceived degree of objectivity for a given technology. Naturally, then, 

archaeologists wish to use more objective methods to produce more objective results, 

often at the expense of older techniques. 

The discussion of objectivity above applies to all techniques, however. There is 

always human choice in what to record and how, and even the most technical digital 
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visualisation tools require significant human input. Furthermore, new technologies are not 

without their limitations or faults: laser scanners cannot create 3D models of glass objects 

due to the differences in how the material refracts and reflects the laser’s energy back to 

the sensor while many white light scanners cannot work with small objects due to the 

inability to detect such objects with enough accuracy to create a model. Finally, most 

archaeological research and imaging results from lower-budget projects, many of which 

cannot afford the latest new technology and many of which cannot practically transport 

the technology to the location in which the images must be created. Consequently, older 

techniques like photography (both analogue and digital) remain more practical, portable, 

and affordable than any burgeoning new technology and is therefore the more logistical 

choice for many projects in the field. Championing new technologies at the expense of 

the old because they are more objective therefore 1) ignores the inherent subjectivity in 

imaging of any kind; 2) limits the field to imaging only those object categories falling 

within the limitations of the newer technologies; and 3) inadvertently predicates the value 

of a project’s results at least in part on the degree to which they can afford to use more 

technical, but often less practical digital equipment. Furthermore, the limitations imposed 

on archaeological imaging in our pursuit of new technologies for creating objective, 

standardised visual records of the archaeological materials limits what we record and the 

information we gain from it, thereby simultaneously placing limits on what information 

enters into the archaeological record. 

2.2.3 ARCHAEOLOGICAL IMAGING AND THE ARCHAEOLOGICAL RECORD 

Archaeological imaging has always served as one of the primary means of 

creating the archaeological record, and our understanding of the world, and therefore the 

past, is directly influenced by how we represent it visually (Beale et al. 2013, 243). Since 

its announcement, photography has been used to document archaeological finds and, 
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importantly, the archaeological process. Imaging techniques like photography or 3D 

scanning capture detail that excavators and other specialists may have missed, thereby 

entering information into the archaeological record for which we do not yet know the 

value. Consequently, we can argue that the archaeological record has significantly less 

information pertaining to archaeological material that is not imaged as it does for material 

that is.  

Many would argue, and rightly so, that not everything can enter into the 

archaeological record to the same degree. We cannot image everything; we must be 

selective. This selectivity is a problem in archaeology not because it exists, but because 

we do not apply it equally across the discipline. Instead, we apply standard imaging 

techniques to the objects for which those techniques work and often neglect those objects 

for which they do not, SRT objects being one such category. There are many more 

archaeological photographs of ceramics and standing stones than there are of glass 

objects, for example, even in locations where glass objects vastly outnumber the other 

two. Sources discussing imaging even for conservation purposes dedicate dozens of pages 

to structures, standing stones, human remains and documents, but dedicate less than 10% 

of their work to imaging objects and usually provide only a few sentences, if any, on the 

imaging of glass (e.g. Conlon 1973; Cookson 1954; Dorrell 1989; Howell and Blanc 

1995; Silver 2016). We therefore privilege certain object categories over others based on 

the ease with which we can image them using available standardised methods, rather than 

on the value of the information they provide to our understanding of the past. In so doing, 

we are omitting or ignoring the possible contributions of vast quantities of material to our 

collective understanding of humanity. 

Our pursuit of new technologies only increases the severity of this problem. Many 

projects cannot afford such technologies, but archaeological discourse often touts the 
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results as being more objective and therefore more valuable than those created using more 

affordable technologies. Archaeology therefore often privileges the results of higher-

budget projects that can afford new techniques over the results of those that cannot. Thus, 

archaeology omits, ignores or devalues possible contributions not only from material that 

does not lend itself well to current, standardised techniques but also from results created 

by lower-budget projects. 

A further complication is the degree to which these results can be entered and 

archived into the archaeological record. The prominence of digital technologies and their 

continual development has led to an explosion of digital data without a similar explosion 

in techniques for safeguarding and archiving said data. Newer technologies often 

complicate matters further by storing data in newer and rarer filetypes that often only 

work with specific software and often only in conjunction with several other files of 

similarly rare and unique types. The push for newer technologies continues to amass data 

before the field has fully understood what it is and how to care for it. Archival practices 

are not discussed in detail in this thesis due to space limitations, but the success of the 

archaeological record directly corresponds to our ability to archive the data it contains. 

The value, creation and maintenance of the archaeological record therefore 

depends on the information we enter into it and the degree to which we can preserve that 

data. Focusing our efforts on available, systematic, objective techniques for creating 

archaeological data therefore omits any data that does not lend itself well to capture 

through these techniques, including most data for SRT objects. Our privileging of the 

results of newer technologies over older ones omits or diminishes the value of data 

created by projects unable to afford such techniques. It also privileges the data for which 

we are least likely to have developed, standardised archival practices. The result is an 
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archaeological record for which modern practices and discourses are arguably as much as 

of a factor in its creation as the value of the archaeological data it contains. 

2.3 A NEW TYPE OF ARCHAEOLOGICAL IMAGING 

Fortunately, we can change our current practices and discourses. Challenging the 

standard rules of archaeological photography or finding affordable means of gathering 

data are both valuable pursuits that would allow us to begin releasing ourselves from the 

current limitations of archaeological imaging. We must continue to examine and employ 

new technologies and standard rules of photography to continue capturing valuable 

archaeological data. However, we must also pursue imaging techniques that challenge 

these standards, including older technologies we tend to view as less objective. In so 

doing, we can significantly increase the information gleaned from archaeological 

materials in practical, portable, and affordable ways. 

The remainder of this thesis serves as a demonstration of the value of this 

approach to archaeological imaging, focusing on visible photography (Chapter 4), non-

visible-range photography (Chapter 5), PTM RTI and SfM photogrammetry (Chapter 6). 

The primary goal was to create affordable, practical, and portable means of digitally 

imaging SRT objects (primarily glass beads and vessel sherds), but the techniques 

discussed in the following chapters can be applied to many subjects and materials 

(Chapter 7), including those outside the discipline of archaeology. It is hoped that this 

will serve as the impetus for others to begin challenging standard imaging methods for 

other objects and materials and to enter into this discourse of practical and affordable 

archaeological imaging techniques. 
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3 PRINCIPLES AND TECHNIQUES 
All the techniques used in this research build off the foundational principles of 

photography by challenging archaeological photographic standards. While there are some 

principles and techniques unique to each case study, which are outlined in their respective 

chapters, there are many that create the foundation for all experimentation in this thesis. 

This chapter discusses these general principles, beginning with the basic principles of 

photography and ending with a discussion of photogrammetry and 3D modelling. 

3.1 PRINCIPLES OF DIGITAL PHOTOGRAPHY 

The basic principle of a camera is the camera obscura discussed in Chapter 2: light 

passing through a pin-sized hole of a box will produce an inverted image on any surface 

opposite the pinhole. The most common digital cameras today are dSLRs (digital Single 

Lens Reflex) likely due to the popularity of the SLR design prior to the invention of 

digital cameras (Freeman 1985, 10; Johnson 1909, 10). Light entering an SLR camera 

passes through the lens onto a mirror, which reflects the image up through a pentaprism 

onto a matte surface (Figure 3.1) (Freeman 1985, 11; Mansurov 2009). This surface 

reflects the image back through the pentaprism into the viewer’s eye (Freeman 1985, 11; 

Mansurov 2009). This allows the photographer to see the image exactly as the camera 

will capture it (Freeman 1985, 11). When the photographer presses the shutter release, the 

bottom of the mirror flips up to reveal the shutter (Freeman 1985, 11; Mansurov 2009; 

Ward 2015). The shutter opens to allow light through the pinhole and onto the image 

sensor before it shuts again and the mirror moves back into place. 
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Figure 3.1: Basic workings of a digital Single Lens Reflex camera (dSLR). 

In film or analogue cameras, the light passes through to photosensitive film filled 

with silver halide crystals and colour couplers, which records a latent image that 

photographers can develop into a photograph (Freeman 1985, 98 – 101; Johnson 1909, 

10). In a digital camera, however, light passes through onto an image sensor (Mansurov 

2009; McDowell 2009; Ward 2015). This sensor contains millions of photo sensors, 

which collect data for each pixel in an image. When light hits a photo sensor, it passes 

through a coloured filter and registers the light as an electrical charge of red, green, or 

blue light in various intensities (Golowzcynski 2016; McDowell 2009; Verhoeven 2016, 

146 - 147). The screen in the camera or on a computer can then compile the data for each 

pixel to form a digital image. 

The camera only records data for red, green, and blue light because any screen 

that displays it will only use red, green or blue light to render the image, and because 

those are the only colours that human eyes see (Chapter 2.1) (Bayer 1976; Glotzbach et 

al. 2001, 141; Golowzcynski 2016; McDowell 2009; Taylor et al. 1991). Both digital 

cameras and the screens rendering these images all operate using the RGB colour model 

(Figure 3.2) (Taylor et al. 1991). This is an additive colour model with red, green, and 

blue as primary colours, and yellow, cyan and magenta as secondary colours (MacLeod 
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2008, 40; Malpas 2007, 14). Adding primary colours together creates each of the 

secondary colours, such as red and green for yellow or blue and red for magenta. Thus, 

when we see an image of a yellow flower on a screen, there are no yellow pixels. Instead, 

a combination of red and green pixels overlaps to appear yellow. 

 

Figure 3.2: The RGB colour model. 

3.1.1 SHUTTER SPEED, APERTURE, ISO AND EXPOSURE 

Given the mechanics of the camera, there are three factors that determine the 

exposure of an image: shutter speed, aperture, and ISO. Each of these control different 

elements of the camera itself, and therefore also control different elements of the resulting 

image. Shutter speed is the length of time the shutter is open in front of the image sensor 

to create an image. The longer the shutter speed, the longer the sensor is exposed to light. 

This can result in lighter or darker images, depending on how fast or slow the shutter 

speed is (Figure 3.3). It also affects the sharpness of the image. If the camera or subject of 

the image is moving or unstable, a slower shutter speed will result in a blurry image. 

Alternatively, a faster shutter speed will result in a sharper image. Scientific imaging 
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usually requires as sharp an image as possible, but fast shutter speeds may be difficult to 

achieve in relation to other settings. 

   

Figure 3.3: Comparison of an image taken at shutter speeds of 1/2 second (left), 1/10 second (middle), and 1/40 second 

(right), processed to have similar exposure. 

Aperture is the amount of light reaching the image sensor through the lens, which 

a photographer controls by widening or narrowing an opening in the lens. Photographers 

denote the aperture using f/#, which they call the f-stop. The number represents the factor 

by which we divide the diameter of the lens to create the aperture (Neblette 1952, 29). For 

example, a 52mm lens with an aperture of f/2.8 has a lens opening 18.57mm in diameter, 

whereas the same lens using an aperture of f/16 has an opening 3.25mm in diameter. 

Since the number denotes the factor by which we are dividing the diameter of the lens, 

the larger the number, the smaller the aperture. 

Aperture affects the depth of field in an image, which is the distance between the 

nearest and farthest elements of the image that are in focus (Neblette 1952, 32). For an 

object at a fixed distance, a larger aperture (smaller f-stop) results in a shallower the depth 

of field, while a smaller aperture (larger f-stop) results in a wider depth of field (Figure 

3.4). It is important to maintain proper focus across all elements of the image, but the 

smaller the aperture, the darker the exposure. 
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Figure 3.4: Comparison of images taken with a larger (f/4.5; left) and smaller (f/9; right) apertures, processed to have 

similar exposure. 

ISO, or film speed, originally described the size of the silver halide crystals on 

film (Freeman 1985, 96). The larger the grain, the higher its sensitivity to light and 

therefore the ‘faster’ the film reacted. In digital cameras, ISO determines the sensitivity of 

the photo sensors (Figure 3.5) (Rowse 2006; Mansurov 2009). When we overexpose a 

grain of silver halide or an individual photo sensor, it creates noise or grain in the image. 

This happens most often at higher ISO settings but can happen at lower ISO settings in 

digital cameras if we have not been careful with other settings (Figure 3.5).  

   

  Figure 3.5: Comparison of images taken with ISO-100 (left), ISO-400 (middle), and ISO-800 (right) (Loch Eriboll; 

UG F128), processed to have similar exposure. 

Ideally, an image would have a low ISO to reduce grain/noise, a small aperture to 

increase depth of field, and a fast shutter speed to reduce blur. Yet, each of these settings 
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greatly affects exposure, or the quantity of light reaching and registering on the image 

sensor. Using low ISO, small aperture, and fast shutter speed allows very little light to 

reach the sensor, and results in an image that is either very dark or entirely black. The 

difficulty, then, is balancing each of these factors to minimise error and optimise 

exposure. 

For the scientific photography of objects, we must prioritise aperture and ISO over 

shutter speed. We can decrease blurriness with relative ease by setting the camera on a 

tripod and either taking an image on a timer or using a remote, but we cannot easily 

lessen noise in the image or increase depth of field. If the camera, the object, and the 

platform(s) upon which they sit remain stationary, the image will remain sharp despite 

slower shutter speeds. Generally, an ISO of 100 – 200 and an aperture of f/11 – f/22 

works well for standard photography of archaeological finds. These two settings will 

determine the shutter speed, which often falls around 1 second under ambient fluorescent 

light.  

I have found that sometimes capturing slightly underexposed (+1.00 to +3.00) or 

overexposed (-1.00 to -3.00) images is better in small finds photography than setting the 

camera to capture perfect exposure (+0.00). Depending on the location, uneven lighting 

or multicoloured objects can cause an error whereby the camera believes it has captured 

perfect exposure when it has actually over- or underexposed elements of the object, losing 

valuable colour and surface information. We can always selectively adjust the exposure in 

post-processing to brighten darker elements or darken lighter ones. However, the 

computer cannot recover information that the camera never captured due to overexposure 

or underexposure (Figure 3.6). 
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Figure 3.6: Comparison of images that have been overexposed (left), evenly exposed (middle) and underexposed (right) 

(Loch Eriboll; UG F128). 

3.1.2 LENSES AND FOCAL LENGTH 

At its most basic, the lens of a camera focuses light through to the sensor. When 

light interacts with any single point on an object, the light refracts and diverges in 

different directions. A convex, or converging, lens bends the diverging light back to a 

single point on any available surface (Freeman 1985, 28; Wheadon 1968, 53–54). The 

focal length of a lens is the distance at which the light converges to this single point, 

which varies depending on both the distance between the object and the lens and the 

structure of the lens itself (Amateur Photography 2013; Neblette 1952, 22). Objects that 

are closer to a lens have a longer focal length, while those farther away have a shorter 

focal length. Additionally, a more convex lens will have a shorter focal length than a 

flatter one (Wheadon 1968, 59; Neblette 1952, 22). When zooming or focusing a camera 

lens, we are moving the lens closer to or farther away from the sensor and therefore 

changing the point at which the light converges to form a focused image. 

Object photography generally uses at least one of the following three lenses: a 

zoom lens, a macro lens or a microscope. The first two are attachments for a standard 

SLR or dSLR camera while the third is a stand-alone unit. Zoom lenses specialise in 

enlarging the image of an object as it appears on the sensor (Freeman 1985, 34). Most 
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dSLRs now come with an 18-55mm zoom lens, but 18-200mm lenses are also popular. 

The range in millimetres denotes the range in focal length; the higher the focal length, the 

higher the possible magnification of the image (Freeman 1985, 31). While these zoom 

lenses provide a range of focal lengths, however, this versatility comes at the expense of 

image resolution, particularly at the extremes of the lens’s settings (Freeman 1985, 35). 

Additionally, many objects are too small even for a highly versatile zoom lens to capture 

in significant detail, including many beads. 

Macro lenses focus the image such that the ratio of the subject to the amount of 

space it occupies on the image sensor is at least 1:1 (Freeman 1985, 37; Gajski et al. 

2016, 263; Meyer 2013; Smith 2009). This means that a 10mm x 10mm object will take 

up 100mm2 (or 28%) of the 23.1 x 15.4mm image sensor found in a Nikon D3100. Macro 

lenses generally have a fixed focal length; the shorter the focal length, the closer the lens 

must be to the object. Many point-and-shoot cameras have a ‘macro’ setting (often 

denoted by a flower), but this is not the same as a macro lens. Macro settings on a point-

and-shoot merely optimise the settings to expose and focus on a small object. Most point-

and-shoot macro images achieve less than half of the minimum 1:1 ratio of a macro lens, 

and often fail to capture the same level of detail (Freeman 1985, 288–289; Friedland 

2016). 

Many archaeological photography manuals discussing photomacrography 

techniques describe close-up photography instead (Connolly 1953, 12; Dorrell 1994, 177; 

Fisher 2009, 10). Most recommend using the macro settings on a point-and-shoot camera, 

while others advocate for using close-up filters (Connolly 1953, 14; Dorrell 1994, 178–

179; Fisher 2009, 10). Close-up filters are lenses that screw onto the end of the main lens 

to decrease the minimum focal length. They can provide useful results and are cheaper 
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than macro lenses, but they do not capture as much detail and do not achieve the same 

ratio (Freeman 1985, 288–289). 

Many objects are still too small to capture in detail with a good macro lens, 

especially if we wish to capture surface wear or corrosion. For these objects, a 

microscope may be the best imaging tool. Handheld digital microscopes use similar 

optics of focusing light through a lens onto an image sensor, then transferring that image 

to a computer. These microscopes can magnify the image up to 500x, therefore capturing 

much more detail than a macro or zoom lens (Absolute Data Services 2017). Microscopes 

have difficulty capturing a full image of any object over 15mm, however, and image 

quality suffers in exchange for increased magnification in the more affordable models. 

Most affordable digital handheld microscopes also do not allow for manual settings of 

aperture, shutter speed, or ISO, and only capture images as .jpg or .bmp rather than a raw 

image file. 

3.1.3 DEPTH OF FIELD  

 

Figure 3.7: Diagram showing depth of field. 
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Depth of field refers to the distance between the nearest and furthest elements of 

an image that appear in focus (Neblette 1952, 32). As discussed above, a lens focuses 

light at a single distance to create a sharp image of the subject of a photograph. Since 

most images capture three-dimensional subjects, not all points will be in perfect focus. 

Instead, any point for which light would focus at a different distance will render as a 

blurry point in the shape of the aperture. If the point is small enough, our human eyes 

accept it as being ‘in focus’ and therefore falling within the depth of field (Neblette 1952, 

32).The farther away an object is from that focal length, the larger this circle becomes. 

The circle of confusion is the largest circle our eyes accept as being in focus within an 

image (Neblette 1952, 31–32). When the aperture is larger, the threshold for the circle of 

confusion is much lower and the depth if field is smaller (Figure 3.7). When the aperture 

is smaller, the depth of field is larger. This is because the starting circle size for unfocused 

points directly correlates to the aperture opening. It is best in object photography to use a 

smaller aperture (larger f-stop) to maximise depth of field. 

3.1.4 COLOUR BALANCE 

Different temperatures of light cause an object to appear different colours. For 

example, a white sheet of paper can appear blue, orange, or even green depending on the 

lighting used to capture the image (Figure 3.8). Images of objects therefore often fail to 

capture the true colours of the object due to changes in lighting conditions. This creates 

problems for colour recording, particularly when using specific colour-recording systems 

like Munsell (Chapter 1.2.3). Consequently, photographers must colour balance their 

images to display the true colour of an object. 
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Figure 3.8: Comparison of an image photographed under cooler (left), neutral (middle) and warmer (right) light 

temperatures (Loch Eriboll; UG F128). 

While digital cameras can colour balance when they capture the image, it is easier 

to control the settings in post-processing. Including an object of known colour in the 

image helps to ensure colour balancing can occur. This is usually white, black, or a 

neutral grey, though sometimes includes a combination of the three. A preferable set-up 

in archaeological photography is to place the object on a neutral (e.g. white, grey or 

black) background and include a standardised scale. Either the scale or the background 

can serve as reference for colour balancing, depending on preference. Interestingly, I have 

found that near-ultraviolet and near-infrared images white balance the same no matter 

which part of the image acts as the standard, but it is best to continue to use similar 

backgrounds and scales as visible images to maintain uniformity across images. 

3.1.5 IMAGE FILE FORMAT 

Cameras capture images in a variety of formats, but most photographers would 

recommend capturing predominantly or only in the raw format. Raw image files contain 

the minimally processed raw data from the camera’s image sensor rather than a fully 

formed image, and they are often referred to as digital negatives because of this. Once 

processed, photographers can save the images as any file type without damaging the 

original data captured by the camera. Many cameras and software have their own 

extensions for raw files, which appear in Table 3.1. 
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Camera Raw File Extension 

Adobe .dng 

Canon .crw ; .cr2 ; .cr3 

Kodak .dcs ; .dcr ; .drf ; .k25 ; .kdc 

Nikon .nef ; .nrw 

Olympus .orf 

Panasonic .raw ; .rw2 

Sony .arw ; .srf ; .sr2 

Table 3.1: Common raw file extensions for common camera models and software. 

Most cameras offer the option to capture images as either.jpg, raw files or both. 

Capturing images in the raw file format is essential, because it allows for a full rendering 

of the final image. Many .jpg files undergo lossy or irreversible compression, in which 

the computer discards some data in favour of smaller file size (Verhoeven 2016, 234). 

There are settings to adjust the degree of compression but saving the image as a .jpg file 

often results in a loss of data. To ensure high quality photos, it is best to capture a raw file 

and save it as .tiff or .png rather than capturing the image outright as .jpg. If comparing 

images captured in different file formats, however, it is better to save all images as the 

lowest quality format to ensure differences spotted between images are due to actual 

differences in the object and not to quality of the image itself. 

3.1.6 IMAGE PROCESSING 

All digital archaeological images must undergo some form of computer 

processing, at the very least for white balancing, straightening, and possibly cropping. 

The most popular software for this is the Adobe Suite, using either Adobe Lightroom, 

Photoshop, or Bridge. In archaeological photography, the primary goal of image 

processing is to represent the object as it looks to the naked eye and as it looked to the 

viewer at the time of image capture.  To do this, most images only need white or colour 
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balancing to ensure proper colour representation. Auto tone settings may be useful, and 

rotation ensures the object is oriented well within the frame.  

This thesis challenges the notion that processing should aspire to create images as 

close to what the eye saw as possible, however, and instead processes images in a 

systematised manner to highlight information not otherwise visible to the naked eye. 

Doing so requires more extensive image processing than that required for mimicking 

human sight and the process differs depending on the desired information. I provide 

specific details of image processing in each chapter for the case studies included in this 

thesis, since each study processed the image in different ways. 

In all cases, image processing techniques can only work with the data 

photographers provide. Image processing cannot fix an image that is out of focus, poorly 

exposed, blurry or noisy. Sharpening an image, for example, will only help so much with 

blurriness or lack of focus, and often introduces grain into the image.  Reducing noise 

using various settings often introduces blurriness into the image, and only partially 

reduces noise. It is imperative, then, that the original image be of the best possible quality 

to ensure a good result. 

3.2 PHOTOGRAPHY AND THE PRINCIPLES OF LIGHT  

All three case studies in this thesis experiment with spectral photography, or 

photography that captures reactions to specific wavelengths of light for a given image or 

subject (Chapter 1.1). This can include the entire visible spectrum, rendering any standard 

image captured by a digital camera a spectral image, or it can include the non-visible 

spectra. In this study, I focus on spectra between 300 and 1000nm, ranging from the near-

ultraviolet to the near-infrared. 
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To capture different spectra for a given subject, I attach filters to the lens of my 

camera. Filters allow specific wavelengths of light through to the lens, thus altering the 

light a camera can ‘see’ through its sensor. This section details the principles by which 

objects interact with light, while the following section describes how we can photograph 

those interactions using filters and a converted dSLR camera. By understanding the basic 

principles and behaviours of light and how filters help us isolate that behaviour for 

specific wavelengths, we can create informative images that reveal and even emphasise 

previously invisible characteristics of an object. 

3.2.1 PRINCIPLES OF LIGHT 

A beam of light consists of both electric and magnetic waves. These 

electromagnetic waves oscillate as the beam of light travels through space (Figure 3.9) 

(Ditchburn 1991, 10 – 11; Jenkins et al. 1981, 223; Verhoeven 2016, 130; Wheadon 

1968, 2). Different types of light oscillate at different rates, and therefore have different 

wavelengths (Jenkins et al. 1981, 232 – 233; Verhoeven 2016, 130 – 131). The 

wavelength of a beam of light equals the distance between adjacent peaks or valleys of a 

wave, often measured in nanometres (10-9 m) (Jenkins et al. 1981, 223; Wheadon 1968, 

2). The electromagnetic spectrum spans from 1 picometre to 1 megametre (1/1000 to 

1e+15 nm) and includes familiar wavelengths like x-rays, gamma rays, radio waves, and 

visible light (Figure 3.10) (Ditchburn 1991, 13; Wheadon 1968, 3). My research focuses 

on wavelengths between 300nm and 1000nm, which includes some near-ultraviolet light 

(300-400nm), the entire visible spectrum (400-700nm), and a portion of near-infrared 

light (700-1000nm). This is the maximum span of wavelengths detectable by a dSLR 

camera converted for spectral photography. 
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Figure 3.9: Difference in light oscillations/wavelengths. 

 

Figure 3.10: The full electromagnetic spectrum and the spectral range employed in this thesis. 

Standard dSLR cameras have an internal hot mirror or coating on the image 

sensor that block extraneous ultraviolet and infrared light from reaching the sensor and 

ruining images (Tetley and Young 2007, 162; Tetley and Young 2008, 51; Verhoeven 

2016, 146 - 148). Consequently, they are sensitive only to wavelengths between roughly 

400 and 700nm. To capture images between 300 and 1000nm, we must remove the hot 

mirror and replace it with a filter of fused silica. Fused silica (also called fused quartz) is 

a glass made solely of melted silica (Esco Optics 2017; Jenkins et al. 1981, 459; Marshall 

et al. 1997, 59; Newport Corporation 2017). It does not include other common elements 

of glass, such as alkalis or colorants or trace elements, which alter the transmittance 

properties of the glass (Chapter 5.1). Consequently, fused silica is much better at 

transmitting ultraviolet and infrared light to the camera sensor (Esco Optics 2017; Jenkins 

et al. 1981, 459; Marshall et al. 1997, 59; Newport Corporation 2017; Phillip 1966, 73). 
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Attempting the conversion without a specialist is not recommended, as doing so could 

permanently damage or destroy the camera. Once the camera has been converted, we can 

begin to examine how light interacts with objects through photographs. 

3.2.2 REFLECTION, TRANSMISSION, ABSORPTION, AND FLUORESCENCE 

The vibrations of stimulated atoms emit energy at various wavelengths, many of 

which fall into the spectra of light we can capture with a camera (Jenkins et al. 1981, 

215). The wavelength of the emitted energy depends on the wavelength of the original 

stimulus and on the nature of the atom or molecule in question (Jenkins et al. 1981, 232). 

Electrons in atoms all vibrate at a natural frequency, which differ depending on 

the atom. If energy (e.g. light) hits an atom with the same vibrational frequency, the 

electrons absorb that energy by transferring it into vibrational motion (i.e. thermal energy) 

(Chaichian et al. 2014, 193; Wright 1958, 10–11). The atom has absorbed that energy, 

then, and will not reemit it as light (Figure 3.11). Conversely, an atom stimulated by 

energy that does not have its same vibrational frequency either reflects it back or 

transmits it, depending on the nature of the atom and the matter it forms (Gigahertz-Optik 

2017; The Physics Classroom 2017a; The Physics Classroom 2017b). Reflection is the 

return of light from either the surface (surface reflection) or the interior (volume 

reflection) of a medium, while transmission is the passing of light through a medium to 

the other side (Gigahertz-Optik 2017; The Physics Classroom 2017a; The Physics 

Classroom 2017b). In general, opaque objects reflect or absorb light, transparent objects 

transmit or absorb light, and translucent objects do all three. A medium may selectively 

reflect, transmit, or absorb any wavelength of light, including those in the non-visible 

spectra.  
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Figure 3.11: Absorption, reflection and transmission of light in a medium. 

The selective reflection, transmission, and absorption of various media is what 

gives objects their colour. When light from the visible range shines on an object, it 

absorbs certain wavelengths and reflects or transmits others (Jenkins et al. 1981, 458; 

Optical Society of America et al. 1968, 176). The object appears to be the colour of the 

reflected or transmitted wavelengths. For example, a red object appears red because the 

medium has absorbed all other wavelengths of light and is reflecting or transmitting only 

the red wavelengths. When those wavelengths pass through our eyes, we register the 

object as red (Figure 3.12).  

 

Figure 3.12: Light interacting with a ‘red’ object. 
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Fluorescence occurs when energy from one wavelength of light stimulates an 

atom or molecule and it reflects a longer wavelength of light as a result (Jenkins et al. 

1981, 464). An object lit with ultraviolet light may fluoresce in the visible range, for 

example, while an object lit with visible light may fluoresce in the infrared range. There 

are many animal species that fluoresce, particularly amphibians, arachnids, and 

butterflies. Many minerals and gemstones also fluoresce under ultraviolet light, often in 

different ways depending on the wavelength of the ultraviolet light (Kurz et al. 2012; 

Kurz et al. 2013; Pirard 2016). Art conservation and art history use a combination of 

reflection, transmission, absorbance, and fluorescence of visible and non-visible light to 

identify pigments used in historical paintings(e.g. Cosentino 2014). Infrared fluorescent 

images can expose underdrawings and other semi-subsurface features in paintings (van 

Asperen de Boer 1968; Legnaioli et al. 2013; Liang 2012).  

While I did test fluorescence on the objects I imaged for this thesis, none of the 

objects fluoresced in the infrared range and the results of fluorescence from ultraviolet 

light did not differ enough from ultraviolet reflectance to warrant further study at this 

time (Figure 3.13). This is an interesting result on its own, particularly given the tendency 

for certain pigments to fluoresce in various lights as discovered through art conservation 

research (Cosentino 2014). It is possible that glass objects made with starkly different 

recipes, such as those made or found outside Europe (Chapter 5.1), may differ in their 

fluorescence of near-infrared or near-ultraviolet light. It is also likely that different 

glasses fluoresce in far-infrared light, but capturing such data requires access to a multi- 

or hyperspectral camera. 
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Figure 3.13: Example of visible-range reflection, ultraviolet-visible fluorescence, and visible-infrared fluorescence 

images (BM 5615 29771 W, top; NMS X.BIB.13, bottom) 

Reflection, transmission, and absorption occur with any type of light, not just the 

visible range. While we cannot always see these reactions with our own eyes, we can 

capture them using a converted dSLR or multispectral or hyperspectral cameras. 

Capturing these images requires the use of filters, which isolate specific wavelengths of 

light much like Maxwell’s original coloured solutions (Chapter 2.1).  

3.3 VISIBLE-RANGE SPECTRAL PHOTOGRAPHY 

Practically, a filter is either 1) a physical attachment to the lens of a camera that 

only transmits certain wavelengths of light through to the image sensor; or 2) a series of 

settings applied in photo-editing software to imitate the results of a physical filter. Both 

work equally well for the visible spectrum, and physical filters can also transmit or absorb 

ultraviolet and infrared light. Digital filters can only mimic visible-range filters, but they 

work for any digital image captured in the visible range and can work in tandem with 

physical filters for producing false colour images (Chapter 2.1.1). 
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A physical filter is a coloured piece of gel either on its own or placed between two 

pieces of glass. Both sit in a frame that screws onto the front of a camera lens. Many 

photographers recommend glass filters, because they are more durable and generally are 

of a better quality than those without glass (Hermann 2017; Mansurov 2017; Weitz 2015). 

Some filters are treated pieces of glass mounted on a frame, with no gel involved. These 

are commonly filters for near-ultraviolet or near-infrared light, either allowing these lights 

to pass or blocking them from reaching the camera. Filters come in various sizes to fit 

different size lenses. 

 Physical filters for the visible range come in various strengths, denoted by the 

Wratten number. These codes include both a number (denoting the colour of the filter) 

and one or more letters (denoting strength) (Peed 1987, 1). Generally, the later a letter is 

in the alphabet, the stronger the filter. For example, both 80A and 80D are blue filters (as 

noted by the number 80), but 80D filters more light out of the images than 80A.  

Filters can also take the form of digital settings applied in photo-editing software. 

We can apply these settings to any digital image, regardless of when we took the 

photograph or whether we intended to use filters originally. We can use a physical filter 

as the baseline for these settings or simply apply the settings independently of any 

existing physical filter (Figure 3.14, Appendix E). Images resulting from digital filters are 

no different from those using physical ones for visible-range photography. Most photo 

editing software already have greyscale filter presets, which mimic physical filters as 

well. Results can vary between software when using non-custom presets, however, 

because the filters each company used to create their presets may differ. Unfortunately, 

digital settings cannot replicate the results of near-ultraviolet and near-infrared filters. 

While there are ways of mimicking an infrared image for landscape photography, this is 
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not a true manipulation of infrared light because the typical dSLR camera cannot capture 

infrared light (Chapter 3.2.1). 

  

Figure 3.14: Comparison between an image using digital settings derived from a physical filter (left), and an image 

using a physical filter (right) (Replica bead, RO 002)(Appendix E). 

The largest benefit of digital filters is that they can be applied them to any digital 

image taken in the visible spectrum. This includes images taken in the past, including 

those images taken for other purposes. The only requirement is that the filter be applied to 

the original digital image of the object. If applied to a scanned copy of the image, or an 

image of the original image (e.g. a photograph of an image in a book), the resulting data 

will not necessarily match the original.  

Visible-range filters operate using the RBG colour model, just as cameras and 

human eyes do (Figure 3.2). Filters of the primary colours will only transmit their own 

light and absorb the other two primary colours, so a red filter transmits red light and 

absorbs blue and green (Figure 3.15) (Optical Society of America et al. 1968, 172). 

Combining a red and green filter therefore does not create a yellow filter, because only 

the red light would ever pass through the red filter before being blocked by the green 

(Figure 3.16). Filters of the secondary colours transmit two of the primary colours and 

absorb the third. Thus, a yellow filter transmits red and green light and absorbs blue 
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(Figure 3.15). Combining a yellow and a magenta filter could, technically, create a red 

filter if desired, because the yellow filter allows both red and green light through, while 

the magenta filter allows blue and red through (Figure 3.16). Since there is no blue to 

allow through and the magenta filter blocks green light, only the red passes to the camera. 

This is generally unnecessary, however, as red, green, and blue filters produce better 

results. 

 

Figure 3.15: A red filter (left) contrasted with a yellow filter (right) in its treatment of light. 

 

Figure 3.16: Effects of combined red and green filters (left), combined yellow and magenta filters (middle), and a red 

filter on light entering a camera (right). 

The final filter on the visible spectrum is a visual pass filter, which transmits all 

wavelengths from 300-700nm (Schott 2017). These filters block only near-infrared light. 
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It does not absorb UV light, because unconverted cameras generally cannot detect UV 

light except in trace amounts and the extra treatment of the filter is therefore unnecessary. 

In a fully converted camera, however, a visual pass filter transmits wavelengths between 

300-700nm, which includes the ultraviolet spectrum. To replicate human vision or to 

ensure only the visible range reaches the image sensor in a converted camera, we must 

pair a visual pass filter with a UV-block filter (Chapter 3.4). 

Archaeological photographers have used visible-range filters since the invention 

of photography. Every manual for archaeological photography prior to the advent of 

digital cameras dedicated at least one chapter to the practice (Conlon 1973; Cookson 

1954; Dorrell 1994). However, these manuals focus on using filters for landscape images 

or images of structures or rock art rather than objects. While each of the manuals provide 

detailed workflows for photographing objects, they rarely discuss the use of filters for 

doing so, even filters within the visible range. 

Understanding the relationship between filters and object photography is 

paramount to understanding spectral imaging and the research contained in this thesis. 

Photographers generally view filtered images in greyscale, meaning the intensity of light 

through a filter becomes registered as lighter or darker for more or less intense light 

respectively. In other words, light that a filter allows to pass to the image sensor appears 

lighter, while light it blocks appears darker. If we photograph a turquoise object using a 

red filter, the object will look very dark in our image because there is no red light coming 

from the object to transmit to the image sensor. If an object reflects red light instead, it 

will appear lighter when photographed with a red filter because there is an abundance of 

red light for the sensor to register. If the object transmits red light, then it will look 

transparent to the sensor. The different reactions of light to each filter can provide 

valuable information about an object by differentially lightening or darkening certain 
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features (Chapter 4). The effects will vary depending on the degree to which the object 

reflects, absorbs, and transmits certain wavelengths of light. If an object absorbs the 

filtered light, then the object will appear both opaque and dark. If the object reflects the 

filtered light, then it will appear relatively opaque and light. If it transmits the filtered 

light, then the object will appear transparent. Simply put, colours that are the same as the 

filter and colours directly adjacent to it on the RGB model will appear lighter in the 

resulting image, while the opposite colour to the filter and colours directly adjacent to this 

opposing colour will appear darker. 

  

Figure 3.17: Comparison between a standard colour image of a dark blue bead (left) and one with a digital blue filter 

applied to the image (right) (Replica bead, RO 002) (Appendix E). 

  

Figure 3.18: Comparison between a standard colour image of the same bead (left) and one with a red filter applied to 

the image (right) (Replica bead, RO 002) (Appendix E). 
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These reactions provide valuable information about the object. For example, 

attempting to examine the interior of a translucent dark blue glass bead from a standard, 

visible-range image of the object is difficult, even when using a macro lens. When we 

apply a blue filter (i.e. the same colour as the glass), however, the interior matrix of the 

glass becomes clear, showing bubbles, inclusions, and even the perforation (Figure 3.17, 

Appendix E). Alternatively, a red filter (opposite on the RGB model) highlights surface 

detail, wear, and corrosion that would otherwise remain invisible in an unfiltered image 

(Figure 3.18, Appendix E). A filter that is the same colour as the object therefore allows 

for a closer inspection of the interior matrix of the object, while a filter opposite to the 

object’s colour on the RGB spectrum allows for a closer inspection of surface features. 

This is the foundational principle at work in the analysis of bubble concentrations in glass 

beads found in Chapter 4, which serves as the first case study in this thesis. 

3.4 NEAR-ULTRAVIOLET AND NEAR-INFRARED SPECTRAL 

PHOTOGRAPHY 

The above section details the use and application of visible-range filters in 

archaeological photography, but the same principles also apply to photography using non-

visible light (Jenkins et al. 1981, 459). While the results are largely invisible to the human 

eye, we can still photograph them using a converted dSLR and specialised near-

ultraviolet and near-infrared filters.  

Ultraviolet filters come in two varieties: UV-pass and UV-block filters. UV-pass 

filters transmit wavelengths from roughly 300-400nm and from roughly 700-1100nm or 

more, but absorb anything from 400-700nm (i.e. the visible range) (Hoya Optics 2017a). 

This means that all UV-pass filters also transmit some infrared light. Consequently, when 

using a UV-pass filters with a converted dSLR, we must pair it with a visual pass filter to 
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absorb all infrared light and ensure only UV light passes to the sensor (Figure 3.19). On 

the other hand, UV-block filters only transmit wavelengths over 400nm through to the 

sensor (Hoya Optics 2017b). Landscape photographers use these filters to negate the 

blueish haze that appears on the horizon, which results from near-ultraviolet light 

(395nm) in the ozone reaching the image sensor (Freeman 1985, 117).  

 

Figure 3.19: Effects of using only a UV-pass filter (left) vs. a UV-pass filter stacked with a visual pass filter (right). 

Most infrared filters are band-pass filters, usually noted with a nanometre 

designation (e.g. 720, 760, 850, or 950). These filters transmit that wavelength of light 

and higher, though only that wavelength up to 1000nm will register on the image sensor 

(Neewer 2014a; Neewer 2014b; Neewer 2014c). Thus, a 720nm filter transmits from 720-

1000nm, while a 950nm filter only transmits from 950-1000nm to the camera sensor. 

Ultraviolet and infrared photography is important in archaeological photography 

because the degree to which an object absorbs, reflects, and/or transmits different 

wavelengths of light directly relates to the chemical composition of the object (Ditchburn 

1991, 439; Jenkins et al. 1981, 458). In the visible range, differences in these reactions 
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correspond to the elements of the object that give it its colour. Outside the visible range, 

however, varying reactions stem from chemical components that may or may not provide 

any colour (Chapter 5). Often, objects which appear similar in the visible spectrum react 

very differently to ultraviolet or infrared light (Figure 3.20, Appendix E). Thus, analysing 

the reactions of various objects to these non-visible wavelengths of light can assist in 

identifying chemical similarities and differences through photography alone. This is 

perhaps the most important result of this thesis: the ability to analyse the chemical 

relationship between objects through photography alone (Chapter 5). This particular use 

of photography does not appear in the archaeological literature, likely because it requires 

deviating from the standard methods of archaeological photography described in Chapter 

2. 

   

   

Figure 3.20: Comparison between two beads under visible (left), ultraviolet (middle) and infrared (right) light (Top: 

Rhynie, UG SF 15021; bottom: Clachbreck, UG CLB 1) (Appendix E). 
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3.5 SPECTRAL REFLECTANCE TRANSFORMATION IMAGING (RTI) 

Spectral imaging does not end with photography. Reflectance transformation 

imaging (RTI) and photogrammetry are both photography-based digital visualisation 

techniques that benefit heavily from spectral imaging, particularly when applied to 

objects that do not lend themselves well to such imaging techniques (Chapter 2.1.2 – 

2.1.3). This forms the basis for the third case study of this thesis (Chapter 6). 

The RTI used in this thesis uses polynomial texture mapping, or PTM RTI. PTM 

RTI involves capturing 30-50 images of an object under varying angles of light (Diaz-

Guardamino and Wheatley 2013, 191; Malzbender et al. 2001, 3). Within these 30-50 

images, neither the object nor the camera changes position. Instead, the photographer 

moves a single light source around the object in a dome-like formation, capturing one 

image per lighting position (Malzbender et al. 2001, 3). They then process these 

photographs in software like RTIbuilder (Cultural Heritage Imaging 2018a) to calculate 

the surface normals of an object and create a 2.5-dimensional visualisation (Figure 3.21, 

Appendix E). 

 

Figure 3.21: RTI of a polychrome glass bead (Loch Eriboll, UG F128) (Appendix E). 

There are two primary advantages of PTM RTI. The first is the ability to 

manipulate light within this 2.5D representation of the object, especially in ways that are 

not physically possible in reality. This often emphasises surface and subsurface 

characteristics through naturally occurring lighting conditions that may be otherwise 
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difficult or impossible to see (Cultural Heritage Imaging 2010, 12; Diaz-Guardamino and 

Wheatley 2013, 192). The second advantage of RTI is the ability to emphasise certain 

surface characteristics beyond their natural state—most often the depths of grooves—to 

increase their visibility (Cultural Heritage Imaging 2010, 12; Diaz-Guardamino and 

Wheatley 2013, 192). Both applications are valuable for visualising wear on objects and, 

to a degree, subsurface features like bubbles or inclusions (Figure 3.22). However, many 

objects are highly reflective, like glass beads, or present problems of translucency or 

transparency that many would argue eliminates the possibility of RTI. 

 

Figure 3.22: RTI of the above bead using diffuse gain (left) and specular enhancement (right) (Loch Eriboll, UG F128). 

Spectral RTI combines spectral imaging and RTI by either placing a physical filter 

over the lens during image capture or by applying a simulated filter to images in post-

processing (Figure 3.23). This method allows for the manipulation of light while only 

capturing specific spectra, negating many of the issues created by reflective or translucent 

objects. For example, using certain filters can eliminate overexposed patches captured 

under normal lighting conditions (Figure 3.23, Appendix E). Additionally, using filters 

allows for RTI image capture in many areas where the photographer cannot control 

ambient light sources. Spectral RTI can allow for viewing surface and subsurface features 
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that might otherwise remain invisible such as wear patterns or bubbles in the glass. 

Likewise, it can lead to further discovery of invisible features, thus enhancing our 

knowledge of the object. A full discussion of spectral RTI forms the first half of the third 

case study of this thesis (Chapter 6). 

 

Figure 3.23: RTI using no filter (left) and a blue filter created in Adobe Lightroom (right) (RO 002) (Appendix E). 

3.6 SPECTRAL PHOTOGRAMMETRY 

Finally, we can combine spectral imaging with photogrammetric 3D models. 

Structure from Motion (SfM) photogrammetry involves capturing 40-60 overlapping 

images of an object from various angles (Doneus et al. 2011, 82; Westoby et al. 2012, 

301). The photographer then imports the images into photogrammetric modelling 

software, aligns them through overlapping points, turns the resulting data into a point 

cloud and then creates a three-dimensional model by joining the points together (Figure 

3.24, Appendix E) (Westoby et al. 2012, 301; Zhao and Li 2006, 70-71).  
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Figure 3.24: Snapshots of a photogrammetric model of a bead (Loch Eriboll, UG F128) (Appendix E). 

However, SRT objects present similar problems for photogrammetry as they do 

for RTI and for photography in general. Photogrammetric software often cannot recognise 

that reflective patches are not part of the object or that inclusions and bubbles are not part 

of the object’s surface. Consequently, the software cannot align the photographs properly 

(Figure 3.25, Appendix E). Just as spectral imaging can solve many of the issues of 

reflection and translucency for RTI, however, it can also solve them for photogrammetry. 

There will always be at least one filter that brightens or darkens the matrix of the object, 

allowing for the software to find overlapping points and eliminate confusion. The 

experimentation with and application of spectral photogrammetry forms the second half 

of the third case study in this thesis (Chapter 6.2).  
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Figure 3.25: Snapshot of a failed photogrammetric point cloud of a bead due to high reflection (RO 002) (Appendix E). 

3.7 ARCHIVING PRACTICES WITHIN THIS THESIS 

Archiving practices are an integral part of any archaeological endeavour, 

including digital imaging research. It is important to archive any images captured, both 

raw and processed, and to archive any RTI or photogrammetric outputs resulting from the 

images. The Archaeology Data Service (ADS) in the UK has guidelines for archiving 

many types of digital data, including raster images, shapefiles, photographs, laser scans, 

and other digital data (Archaeology Data Service 2018a). They recommend archiving data 

after each major phase of the project (i.e. at preservation intervention points), such as 

after image or data capture, image or data processing in the field, image or data post-

processing, and after the creation of outputs for publication (Archaeology Data Service 

2018b). These files should have accompanying metadata associated with them, examples 

of which can be found in the ADS guidelines (Archaeology Data Service 2018a). They 
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can then be archived with ADS or other archive services, like Zenodo or The Digital 

Archaeological Record (tDAR). 

All images in this thesis have been retained in their raw format and as processed 

files leading to any type of digital output, regardless of that output’s perceived success. 

All files associated with the final output images or 3D models were also retained 

regardless of the success of the output. The retention of all files regardless of their 

ultimate success stems from the argument that failed models and images still provide 

valuable data in how and why they failed. Few published sources discuss failed attempts 

at digital imaging and even fewer discuss why those failures may have occurred. We 

cannot progress as rapidly in our understanding of these technologies if we do not share 

our failures with the field as much as we share our successes, however, and engaging in a 

published dialogue as to why we have failed is as valuable as the published conversations 

about how we have succeeded. Given this, I have retained all files created during the 

course of this thesis regardless of their success (e.g. Appendix E). 

Metadata about the files provides valuable information as to how and when they 

were captured and processed, and it is as vital to the archival process as the files 

themselves. The metadata for files in this thesis has been compiled into a Microsoft 

Access database for use in conjunction with the files themselves. It details when images 

were captured with which equipment and how final models were processed (e.g. 

Appendix D and Appendix E).  

Most of the objects imaged in this thesis currently reside in museum collections. 

Some of these museums have policies in place that allow the creator to maintain 

copyright over the images or models, while others retain the copyright as property of the 

museum. Consequently, I cannot currently archive all the data generated in this thesis in a 
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public archive. The data has been maintained, however, and it is hoped that a solution for 

long-term archiving will be found shortly.  

3.8 CASE STUDIES 

There are four case studies in this thesis, all of which experiment with 

photography and photography-based imaging to create and evaluate more effective and 

representative visual representations of archaeological subjects. The first applies visible-

range spectral photography to Iron Age and Early Medieval glass beads in Scotland to 

evaluate differences in bubble concentration between objects. The identified differences 

provide valuable information about the long-distance trade and manufacture of beads in 

Scotland at this time, and this technique could provide similarly valuable information for 

other object categories. The second case study employs non-visible spectral imaging in 

near-ultraviolet (300 – 400nm) and near-infrared (950 – 1000nm) to determine chemical 

differences in otherwise typologically similar beads by measuring differences in the 

intensity of reflection for each light. This technique has also led to significant findings 

concerning long-distance trade of glass beads in Iron Age and Early Medieval Scotland 

and serves as a highly affordable, non-contact technique for determining chemical 

relationships between objects. The third case study investigates techniques for eliminating 

issues of size, reflection, and transparency in SfM photogrammetry and PTM RTI and 

demonstrates their use on glass beads. This research allows for the creation and analysis 

of PTM RTI and SfM photogrammetric outputs, which is currently challenging or 

impossible with standard techniques. The final case study applies the techniques 

developed in all three previous case studies to non-glass objects such as ceramics, lithics, 

metalwork, and site trenches. This final study demonstrates the applicability of these 
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techniques to other subjects within archaeology and implies the benefits of their use 

outside the discipline. 

Each of these case studies challenges the standards of archaeological photography, 

particularly for small finds. They encourage the systematic manipulation of images to 

isolate data not seen by human eyes and analyse this data to arrive at new insights and 

conclusions about the objects themselves. They demonstrate the value of experimenting 

with archaeological imaging techniques and champion affordable means of object 

analysis and imaging, beginning with the analysis of bubble concentrations in Iron Age 

and Early Medieval glass beads. 
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4 CASE STUDY 1: VISIBLE-RANGE PHOTOGRAPHY AND 

BUBBLES IN GLASS BEADS 
In the first of the four case studies presented in this thesis, I use digital visible-

range filters (Chapter 3.3) to analyse the relative concentration of bubbles in glass beads 

recovered from Scottish contexts possibly dating to the Iron Age and Early Medieval 

period (800 BC – AD 800). Bubbles differ between beads in their shape, orientation, and 

relative concentrations. These differences provide information about the manufacture 

techniques used to create a bead: bubbles oriented parallel to the perforation denote a 

drawn bead, for example, while bubbles oriented perpendicular to the perforation denote a 

wound bead. Unfortunately, bubble variation in ancient glass is under-researched due to 

the difficulty of seeing them in person and the lack of published, detailed images of beads 

that would allow for such a comparison.  

In pushing the boundaries of archaeological photographic techniques, however, I 

have been able to visualise, categorise and analyse the relative bubble concentrations of 

352 glass beads from Iron Age and Early Medieval Scottish contexts. The results show 

significant regional variation between otherwise typologically similar beads, which would 

suggest differences in manufacture and long-distance trade routes between different areas 

of Scotland. For example, significant differences between the southeast and northeast of 

Scotland highlight the increased influence of the Romans versus the Picts. This case study 

therefore demonstrates the value of investigating alternative photographic techniques, 

particularly more affordable ones, for their use in uncovering new information about 

archaeological finds. 
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4.1 BUBBLES AND GLASS  

All pre-modern glass has bubbles, or pockets of air trapped inside the glass. 

Producing glass without bubbles requires sterile equipment and melting under a vacuum 

(Shelby 2005, 40), neither of which were available in the Iron Age and Early Medieval 

periods. The concentration and cause(s) of bubbles in an object depends on a range of 

factors, intentional and unintentional, most of which correlate to the manufacturing 

process itself. To understand how bubbles form in glass beads, then, we must first 

understand how early craftspeople made both glass and glass beads. 

4.1.1 GLASS AND BEAD MANUFACTURE 

There were three general steps to glass manufacture between 800 BC and AD 800.  

First, glassmakers combined silica, an alkali (usually soda or potash) and a stabiliser 

(usually lime or alumina), in a furnace and heated the mixture for several days to allow 

the components to react to each other in a solid state (Biek and Bayley 1979, 1; Kanungo 

2004, 1–2).  This reaction produced a solid, dark mass called frit. They then ground the 

frit as finely as possible and melted it to form glass. Once the frit had melted, requiring 

temperatures between 900º and 1200º C, they could add any desired colourants, such as 

iron, copper, cobalt, or manganese (Biek and Bayley 1979, 3 – 5). 

In Iron Age and Early Medieval Europe, glass making and glass working occurred 

at different sites, often called primary and secondary workshops respectively (Degryse et 

al. 2005, 289; Freestone et al. 2008, 31; Guido et al. 1999, 5; Messiga and Riccardi 2001, 

58; Paynter 2006, 1047). Rehren has suggested three separate workshops: one for glass 

making, one for glass colouring, and a third for glass working (Rehren 1997, 366), though 

many – including Rehren – have questioned this theory (Smirniou et al. 2011, 53). The 

model of primary and secondary workshops largely originated in studies of Near Eastern 
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and Roman glass, and scholars have extrapolated the system to most of Europe for this 

period. Little evidence exists for glass making in Iron Age and Early Medieval Europe 

outside the Romans and the Merovingians, and so most manufacture was likely glass 

working rather than glass making. However, many objects from this period exhibit signs 

of recycling, in which the glassworker melted chunks of raw or broken glass together to 

create a workable material. Recycling required far less space to melt the glass, and there 

is significant evidence for recycling across Europe at this time (Aerts et al. 1999, 890; 

DeGryse 2005, 295; Freestone 2015; Messiga and Ricardi 2001, 68). Since no direct 

evidence exists for glassmaking in Scotland during the Iron Age and Early Medieval 

period and there is no evidence for alternative systems in Europe at this time, we can 

assume a similar system of glassmaking, trade, recycling and glassworking for glass 

beads in Scotland for this thesis. 

Beadmakers used four primary techniques for making glass beads during this 

period, of which two predominate: winding and drawing (Figure 4.1). There are two 

primary techniques for making wound beads: melting a cane or piece of glass over a 

flame and winding it around an iron rod (lamp-winding) or dipping the iron rod into a 

crucible of melted glass, pulling it out and quickly twisting to form a bead (furnace 

winding) (Francis 2002, 11; Kanungo 2004, 95; van der Sleen 1973, 23). In modern 

times, lamp-winding predominates in Europe and South, East, and Southeast Asia, while 

furnace winding occurs in the eastern Mediterranean, the Middle East, and East, South, 

and Central Asia (Kanungo 2004, 95). 

There is no archaeological evidence that allows us to deduce the exact procedure 

for drawn bead manufacture, which is the other most common technique for 

manufacturing glass beads in the ancient world. However, Peter Francis did identify a 

modern workshop at Papanaidupet, in Andhra Pradesh, India, which uses a technique that 
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produces identical waste material to that found at Arikamēḍu, a major glass beadmaking 

centre occupied between 200 BC and AD 1000 (Francis 1991; Francis 2002). At 

Papanaidupet, a craftsperson placed broken chunks of glass into a trough in a furnace.  

They heated the glass for about two hours, after which they transferred it onto a large 

tapered iron tube and rolled the glass into a large cone, so that it looked rather like a spear 

with a large glass point (Francis 2002, 22). Another worker pierced the tip of the cone of 

glass, creating an air pocket that became the bead’s perforation.  A master bead-maker 

then pierced a long-handled iron hook through the tip of the glass cone and pulled it 

towards himself to form perforated glass canes (Francis 2002, 22 – 24; van der Sleen 

1973).  The master continued to pull on the tube, breaking it every meter to form lengths 

of glass tubing.  Workers then cut the tubes into beads and pack them into ash, which they 

place into a kiln to round off the edges before sorting and stringing the beads. Given the 

similarities between debris found at Arikamēḍu and that produced at Papanaidupet, we 

can infer a similar technique was in use between 800 BC and AD 800. 

Both van der Sleen and Francis describe another method for making drawn beads, 

in which a worker manipulated a lump of glass on an iron rod such that it created an air 

pocket (Francis 1991, 29; van der Sleen 1973, 25). Another worker pierced the lump with 

another iron rod, then pulled the rod away to elongate the glass and create glass tubing 

(Figure 4.1). They broke the tubing into metre-long segments and then cut the tubes into 

beads. Finally, they rounded the edges off by tumbling the beads in sharp sand (van der 

Sleen 1973, 25). This technique was less industrial than that at Papanaidupet, but it 

produced similar waste material to its more industrial counterpart. Importantly, no 

evidence exists for drawn bead-making in Europe prior to the 14th century (Francis 2002, 

171), meaning that any drawn bead found in Europe either was imported or dates to later 

periods. 
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The two other forms of glass beadmaking at this time were considerably less 

common than wound or drawn beads. Moulded beads were made by placing softened 

glass into a mould (Beck 1928, 62). Folded beads were made by folding glass around a 

wire so that the edges fused together to make a tube (Beck 1928, 60–61; Francis 2002, 11; 

Sleen 1973, 26). Of the roughly 1250 glass beads I have examined in Scottish collections, 

roughly half are wound, a third are drawn, and fewer than 25 are either folded or 

moulded. The remaining 14.5% are unidentifiable. 

 

Figure 4.1: Differences in manufacture and bubble orientation between wound (left) and drawn glass beads (right). 

The manufacture of a bead determines the orientation of its bubbles (van der Sleen 

1973, 81 – 85). Wound and folded beads have elongated bubbles that are oriented 

perpendicular to the perforation, while drawn beads have elongated bubbles that are 

oriented parallel to the perforation (Figure 4.1). Moulded beads usually lack orientation or 

elongation in the bubbles. However, alterations such as decoration, further shaping, or 

additional heating can affect the orientation or elongation of the bubbles and even 
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eliminate them entirely. This often makes the manufacture of the object unclear and is 

one reason the manufacture for so many of the beads in this corpus is unidentifiable. 

Elongation or orientation are the predominant factors of conversations about 

bubbles in archaeological glass studies. Specialists occasionally note the concentration of 

bubbles in a glass object if it is particularly unusual, but rarely provide detailed 

discussions or analyses of bubbles in glass objects (e.g. Bourke 1994; Campbell 2007; 

Whitehouse 2000). This is especially true for glass beads. Given their correlation to 

manufacture, however, investigating differences in bubble concentrations between 

geographical regions could allow us to trace the origins of different bead types 

worldwide, or to at least identify differences between otherwise typologically similar 

objects. 

4.1.2 CAUSES OF BUBBLES IN GLASS 

Glass bubbles form when air becomes trapped in a glass mixture (Shelby 2005, 

40). This can happen through chemical reactions between the ingredients used to make 

the glass or when dust, sand, or other particles enter the mixture and form pockets of air 

(Shelby 2005, 40 – 41). The size of the bubble depends on the size of the sand or dust 

mixed into it; the finer the sand, the smaller the bubbles (Shelby 2005, 40). Bubbles also 

form when stirring glass, both because the stirring creates air pockets in the mixture and 

because the chemical makeup of the tools can cause certain ingredients in the glass to 

react by creating bubbles (Shelby 2005, 40).  

The above bubble formation processes occur during the initial melting and 

manufacture of the glass. These bubbles therefore reflect the setting in which the glass 

was made and can provide information about glass manufacture (Shelby 2005, 40). Many 

of the processes described above also occur during glass working, however, and many 

modern beadmakers intentionally introduce bubbles into their work. For example, there 
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are well-known modern techniques for creating ‘champagne beads’ in which the bead-

maker rolls the glass in dust, fine sand, or baking soda and immediately covers it with 

more glass to create dozens of tiny bubbles in a piece (Chrys Art Glass 2015a). There are 

even specialised metal pokers and spikes, used to create symmetrical holes that are 

covered with additional glass to create air bubbles (CheekyTorchGlass 2009; Chrys Art 

Glass 2015b; Williams 2015). All these techniques save for perhaps the baking soda were 

available in ancient times. Thus, bubbles always form as part of a manufacturing process, 

but can do so at any phase and may even be intentional. Following the model of primary 

and secondary workshops (Chapter 4.1.1), one workshop may cause or add some bubbles 

while another adds more. Similarly, bubbles created by the primary workshop can change 

or disappear based on the methods used by the secondary workshop.  

4.1.3 REDUCING BUBBLES IN GLASS 

In addition to producing bubbles, glass- and beadmakers can reduce bubbles in 

several ways. The first is simply allowing the bubbles to rise to the surface, which will 

eventually occur through continual heating due to the lower density of the bubbles 

compared to the glass mixture (Shelby 2005, 42). The smaller the bubble, however, the 

slower it will rise. Modern recommendations have found the rate of fining, or elimination, 

of small bubbles through allowing them to rise to the surface is inefficiently slow and 

requires further measures, like mechanically stirring the melt from below to form an 

upwards current and push the bubbles to the top (Shelby 2005, 43). There is no 

archaeological evidence for stirring from below prior to modern times, however, since the 

only containers able to withstand the high temperatures required for glass melting were 

ceramic crucibles (900º – 1200º C).  

Craftspeople could also reduce bubbles chemically by adding fining agents to the 

glass. Fining agents introduce gasses into the mix that either release large bubbles that 
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amalgamate with smaller bubbles and float to the surface, or absorb oxygen from existing 

bubbles to make them smaller and less noticeable (Shelby 2005, 43). Arsenic and 

antimony oxides are the most efficient and best studied modern fining agents, both of 

which were available in the Iron Age and Early Medieval periods (Shelby 2005, 43). The 

most common practice for removing bubbles from glass beads is to continue heating the 

object, however, which allows bubbles to float to the surface or to merge to form larger 

bubbles, which then rise to the surface.  

4.1.4 BUBBLES AND INTENTION 

As discussed earlier, many of the factors or reactions that cause or eliminate 

bubbles in glass can be either intentional or unintentional on the part of the craftsperson, 

and the degree to which those in the past cared about the bubbles in their glass likely 

varied from group to group. Many bead-makers today do not worry about bubbles, while 

many others do. Similarly, most modern glassmakers do worry about bubbles, because 

societal and scientific demands for bubble-less glass are high. It is difficult to know the 

degree to which craftspeople in the past considered bubbles in the making of a single 

object, and if so, at what phase. Additionally, if glass making and glass working occur at 

separate sites, then the individual or workshop making the glass may have distinct ideas 

about bubbles from the person making the object itself and from those ultimately 

purchasing and using it. It could be challenging, also, to determine whether bubble 

concentrations in a single object resulted from cultural or individual preference. To 

increase the likelihood that observed difference correspond more to cultural preference, 

this study generally compares objects between geographical regions rather than between 

specific sites (Chapter 4.3.4). 



Christie – 4: Case Study 1: Visible-Range Photography and Bubbles in Glass Beads – 121 

 

Figure 4.2: Example of a glass bead with ‘white’ trail design (Rumbleton, HMAG B.1914.521/14). 

There are many glass beads in Scotland for which bubbles seem intentional and 

important. Many, for example, are so saturated with bubbles that they appear more bubble 

than glass. Others have trails of what appears to be white glass, but upon further 

inspection could be a section of the base colour that has been saturated with bubbles 

(Figure 4.2). This would have required significant control and skill, and it was clearly 

intentional as part of the design. Conversely, early Scottish window glass has relatively 

few bubbles compared to glass beads because bubbles impair the view through the 

window. Creating glass with minimal to no bubbles was of a similar level of difficulty to 

creating glass with many bubbles, and it required a degree of skill and forethought 

(Shelby 2005, 40-42). Thus, early glass manufacturers must have considered bubbles, at 

least when creating certain objects. Since these bubbles reflect both the techniques used in 

manufacturing the object and the possible preferences of individuals using the beads, 

analysing these bubbles in some way provides valuable insight into both the manufacture 

and use of glass beads during the Iron Age and Early Medieval period in Scotland. 
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4.2 DEVELOPING THE TECHNIQUE 

   

   

Figure 4.3: Initial comparison of bubbles in three cobalt-blue glass beads from Culbin Sands (NMS X.BIB 40 (left), 

NMS X.BIB 41 (middle) and NMS X.BIB 42 (right) (Appendix E). 

Having established that digital visible-range filters were no different in their 

results from using physical filters, I began applying them to a series of cobalt-blue glass 

beads from Culbin Sands on the Moray Coast of northern Scotland. A red filter 

completely opacified these dark blue beads, highlighting surface wear and corrosion, 

while a blue filter rendered the beads almost transparent, highlighting bubbles and the 

perforations. These images showed significant differences in bubble concentration 

between these otherwise typologically similar beads (Figure 4.3, Appendix E (PowerPoint 

Slide 6)).  
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  Figure 4.4: Examples of each category of bubble concentrations, before and after applying filters Top row: None 

(NMS X.BIB 42), Few (NMS X.BIB 41), and Moderate (NMS X.BHB 11). Bottom Row: Many (NMS X.BIB 70) and 

Superabundant (NMS X.BIB 40) (Appendix E). 

Given the importance of bubbles in providing information about bead manufacture 

and the relative lack of studies concerning bubbles in glass beads, I began investigating 

whether filtered visible-range photography could help archaeologists identify differences 

in bubble concentrations between otherwise typologically similar beads. No current 
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method exists for the categorisation of bubble concentrations in archaeological glass 

objects, however, so determining an appropriate method was an experiment. Initially, 

spectral images of the objects were examined manually and bubble concentrations 

classified using a five-point system: None, Few, Moderate, Many, and Superabundant 

(Figure 4.4, Appendix E). ‘None’ signified virtually no bubbles while ‘few’ was any glass 

with bubbles covering less than half the object. ‘Moderate’ applied to glass that appeared 

to be roughly half bubbles and half glass, while ‘Many’ denoted any object that seemed 

more bubble than glass. ‘Superabundant was reserved for glass that was saturated with 

bubbles. 

While this system yielded interesting preliminary results that suggested value in 

documenting and analysing this characteristic of glass, it was too subjective to speak of 

statistical significance. What looks like many bubbles to one person may look like 

moderate amounts to another, and it is difficult to define the boundaries between 

concentration categories. Before continuing, then, I began examining quantitative 

methods for measuring bubble concentrations instead. 

Geologists examine a thin section of a stone and determine the percentage of 

specific minerals present through point counting, or the process of determining the 

specific mineral for between 200-500 specific, randomly selected points on the thin 

section (Aziz 2013, 22-23; Garrison 2003, 129-130). Many use freeware to assist in the 

randomisation and selection of points, one of which (JMicroVision) was used in this 

study to test the effectiveness of such a method on identifying bubbles in glass beads 

(Figure 4.5). Classifications remained simple: glass or bubble. A survey area was traced 

around the bead, within which 200 points were categorised per object for 100 translucent 

dark blue and turquoise glass beads. 
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Figure 4.5: Example of bubble point counts using JMicroVision. 

While this technique provided statistically significant results between different 

sites and regions, there were significant problems with the accuracy of the data. First, 

bubbles in glass are less distinct than specific minerals on a geological thin section 

viewed through a microscope. Bubbles bend and scatter the light in different ways 

depending on where they are, how large they are, where the light is coming from, and 

where it is hitting the bubble. Glass is also highly reflective, and most images contain 

patches of an object that are impossible to use for point counting. Glass objects also 

generally suffer from corrosion, and not all corrosion relates to bubbles. This corrosion 

can block the view of or masquerade as bubbles in a filtered image. Bubbles can be 

similar size to either grain or pixilation in an image, making it difficult to differentiate 

between them. Finally, the point counts used here look at the entire bead, because 

acquiring thin sections is destructive and therefore not possible with most bead 

collections. Because of this, the counts made for each object depend largely on the 

diaphaneity of the object and the thickness of the wall of the bead between its outside 

edge and its perforation, both of which often differ significantly between beads. Given the 
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large number of problems with this technique, it was deemed inappropriate for 

quantitatively categorising bubbles in glass. 

Biologists estimate population counts of animals that travel in large groups (e.g. 

herds of water buffalo or schools of fish) by photographing several parts of the group and 

counting the individuals in each image (Elzinga et al. 2009, 42). They then estimate the 

area of the herd and extrapolate population counts from the counts in each image. This 

technique can be adapted for glass objects by scaling images of beads to each other, 

selecting 3-5 areas of a specific size (e.g. 0.5mm2) on each bead, counting the bubbles 

that appear in those areas, averaging the counts together and comparing them across 

objects. Unfortunately, the same problems arose as those for point counting, so the data 

was equally problematical. Additionally, three to five areas of 0.5mm2 covers different 

percentages of each bead, depending on how large it is. The size of the object therefore 

affected the average number of bubbles for each bead, reducing the ability to compare 

results in a standardised manner. 

Given these difficulties, I concluded that an affordable, non-destructive, 

quantitative technique for assessing bubbles in glass was not possible, at least for the 

duration of this thesis. I therefore returned to the subjective method discussed above for 

determining relative bubble concentrations in an object but limited the categories to three 

instead of five. The distinctions between ‘Few,’ ‘Moderate,’ and ‘Many’ are relatively 

clear, much more so than the previous five-point system (Figure 4.6). Most significantly, 

the three-point system still yields statistically significant patterns. This system therefore 

yields more consistent results than the practical and affordable quantitative methods 

discussed above and became the established methodology for this case study.  
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Figure 4.6: Images showing the difference between few (NMS X.BIB 42), moderate (NMS X.BHB 11) and many bubbles 

(NMS X.BIB 40). 

4.3 METHODOLOGY 

I examined total of 372 glass beads from Iron Age and Early Medieval contexts in 

Scotland for relative bubble concentrations, leading to data for 427 individual colours 

(Table 4.1). There are significant differences in the interior visibility of opaque, 

translucent, and transparent beads, so I avoided cross-comparison where possible. Glass 

beads of other colours, such a red, orange or purple, did not have more than a few 

examples for comparison and therefore were omitted from this discussion. The distinction 

between cobalt-blue and copper-blue is in the colourant used to create them, with cobalt-

blue beads being quite dark and copper-blue beads having a blue-green colour. Any beads 

made of glass that does not appear to have colourants added to it falls under the term 

‘Natural’. Glass is not naturally clear, due to impurities in the sand colouring the glass a 

light yellow, green, brown, or blue colour. Separating these here would lead to the 
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category not having enough samples for comparison, and so they have been combined to 

determine how the general category compares to other colours. 

Colour Diaphaneity Number of Samples 

Cobalt-blue Translucent 120 

Copper-blue Translucent 61 

Green Translucent 23 

Natural Transparent 28 

White Opaque 29 

Yellow Opaque 166 

Table 4.1: Number of bubble samples per colour. 

Of the objects examined, 301 are currently housed at the National Museum of 

Scotland. One object is from the Iona Abbey Museum while seven are in the Kilmartin 

House Museum. The Marischal Museum in Aberdeen holds 25, a further 28 are housed in 

the Hunterian Museum and Art Gallery at the University of Glasgow and a final 11 are 

housed in the University of Glasgow Department of Archaeology. 

4.3.1 IMAGE CAPTURE 

Beads were photographed on a white sheet of computer paper with a clear plastic 

ruler beneath for scale. I used a 40mm macro lens with stacked visible pass and UV cut 

filters to limit the captured image to the visible spectrum (400-700nm). The camera was 

attached to a tripod for stability and lit using an LED torch and the ambient fluorescent 

lighting of the museum (Figure 4.7). Spaces with sunlight coming through a window, 

such as in the image below, warranted the use of a makeshift paper light studio. For 

specific exposure settings, ISO fell between 100 and 200 and aperture between f/18 and 

f/22. This consequently set the shutter speed at or near 1 second for proper exposure. 
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Focus was set automatically, then switched to manual prior to image capture to avoid 

changes. Images were captured in raw format using a remote shutter. 

 

Figure 4.7: Camera set-up for spectral photography at Kilmartin House Museum. 

Some objects were too small to capture with a macro lens and therefore 

necessitated a digital handheld microscope. Images were composed identically and 

captured by mounting the microscope on a flexible tripod and positioning it directly over 

the object (Figure 4.8). Magnification varied between objects to allow each to appear in 

focus, since the microscope itself was fixed to the tripod. The object was lit using the 
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LED lights attached to the microscope itself. There are no ISO or aperture settings for the 

microscope. I captured images as .bmp files using the microscope’s internal software, 

which can only capture .bmp (uncompressed) or .jpg (compressed) images. 

 

Figure 4.8: General equipment set-up for micrography. 

4.3.2 IMAGE PROCESSING 

Images were white-balanced in Adobe Bridge. Visible-range filters of similar 

colour to the glass were applied in Adobe Lightroom to allow for clear examination of the 

bubbles (Chapter 3.3). In some instances, semi-contrasting filters resulted in clearer 

definition of the bubbles and were applied instead (e.g. green filters to blue beads or red 

filters to yellow beads). The digital filters in this study were modelled after Neewer 

colour filters (Appendix C). Filtered images were saved as .jpg files with 300 dpi because 

images of lower resolution presented difficulties in identifying whether a feature was a 

bubble versus grain or noise. 

4.3.3 DATA RECORDING AND ANALYSIS 

As described above, relative bubble concentrations were categorised using a three-

category system of “Few,” “Moderate,” and “Many” bubbles (Chapter 4.2). While this 
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system was subjective, it proved the best possible method for this study. Several other 

glass characteristics were recorded for this analysis, including the object and site the 

sample came from, its diaphaneity and colour, its location on the bead, the bead’s size, 

and the region of Scotland (Appendix D). 

The object’s site information comes from the associated museum records. Many 

beads lack contextual information, either because they are stray finds or because the data 

has since been lost. In these cases, I recorded the site as best as possible. For this study, 7 

objects (13 samples) do not have associated site information while a further 3 objects (4 

samples) have an associated site, but no information that would allow for the location of 

that site on a map or even within a broad region of Scotland. While this number may 

seem low, eight of the samples come from colours for which samples already number 

fewer than 30, rendering 10 – 15% of the samples of these colours ineligible for regional 

comparison. Additionally, over 90% of the samples, and indeed glass bead finds in 

Scotland, lack specific contextual information (Christie 2014, 30). Thus, while a 

comparison between bubble concentrations of glass beads found in different contexts may 

be informative, such a study is currently impossible for Iron Age and Early Medieval 

Scottish material. 

The diaphaneity and colour of each sample are some of the most prominent 

typological characteristics of the object and could correlate to significant differences in 

bubble concentrations. Only opaque yellow, opaque white, translucent cobalt-blue, 

translucent copper-blue, translucent green, and transparent ‘natural’ glass beads were 

included in this study. Opaque objects block light from passing through, while translucent 

objects allow light through, but not images. Transparent objects allow enough light 

through to see objects beyond them. 
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Another recorded factor was whether a sample forms the core of the object or a 

part of the decoration, which would indicate whether the simple fusing of glass creates 

significantly more bubbles. If so, then yellow samples forming the designs of polychrome 

beads would skew the results if combined with yellow samples forming the core of 

monochrome beads, for example. For polychrome beads, I also recorded the type of 

design to see whether there were discernible differences in bubbles – and therefore 

manufacture or manufacture location – between beads with different decorations. 

The length and diameter of each bead was recorded to determine whether size 

variation affected bubble concentrations. All size measurements were recorded to the 

nearest 0.25mm. Finer measurements would be difficult for the bead-maker to regulate, 

and likely went unnoticed by those using the objects. I also divided the diameter by the 

length of the object to determine whether the ratio affected bubble concentrations, even if 

length and diameter did not affect it individually. 

Finally, I recorded the general region of Scotland an object came from, which was 

determined loosely (Figure 4.9). The northeast comprises sites from north of the Forth 

River into Perthshire and Aberdeenshire and up towards Inverness. The southeast 

includes the Scottish Borders, the Lothians, Falkirk and parts of North and South 

Lanarkshire. The west includes the western highlands and islands down to Dumfries and 

Galloway. The west and southwest are combined in this study due to low numbers of 

beads in both regions that were eligible for analysis – 9 from the west of Scotland, and 36 

from the southwest. While there are enough objects from the southwest for it to serve as a 

single region, all 36 beads come from a single site: Glenluce Sands (or Luce Sands) in 

Wigtonshire. Combining the two regions as western Scotland allowed for the inclusion of 

objects from more than one site. The north includes the northern region of Caithness and 
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the isles of Orkney and Shetland, which are also combined in this study due to a lack of 

Iron Age and Early Medieval examples available for this thesis. 

 

Figure 4.9: Regional division of Scotland used in this study. 

The data was first analysed on a subjective level by examining percentages for 

each category and judging whether the difference was large enough to indicate a pattern, 

given the sample size. To clarify the likelihood that the perceived patterns were 

significant, I then confirmed their possibility using Pearson’s chi-square test of 

independence using the standard statistical significance threshold of 0.05. Given the 

fragmentary nature of archaeological data and the subjectivity of the classifications used, 
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any test scoring under 0.05 was treated as a significant pattern, while any test scoring 

under 0.1 was treated as being very likely. 

4.4 RESULTS 

Many significant patterns emerge from the data in relation to bubbles and what 

they reveal about Scotland between the Iron Age and Early Medieval periods. The results 

are presented here in sub-sections corresponding to broad categories of the factors listed 

above. The following section contains further discussion of the significance of these 

results. 

4.4.1 DIFFERENCES IN REGIONAL AND SITE DISTRIBUTION 

Visually, there appear to be regional differences in bubble concentrations on a 

broad level (Figure 4.10). Bead glass in the northeast (n=249) tends towards few to 

moderate concentrations of bubbles, while most bead glass in the southeast (n=79) and 

west (n=56) have fewer bubbles. Beads in the north (n=26) have an even spread between 

all three categories, but there are also fewer beads from this region included in this study. 

This difference is not statistically significant using these regional separations (p=0.126), 

but it still appears likely due to the nature of the data. 

There are also significant differences in bubbles between the 36 sites represented. 

Only five of these sites have more than ten beads, but the results are still statistically 

significant (p = 0.0096) when limited to these five sites (Figure 4.11). Bead glass at 

Glenluce Sands on the southwest coast has few bubbles (60%), while that at Culbin Sands 

in the northeast has relatively equal numbers of few and moderately-bubbled glass beads 

(42% and 39% respectively). Traprain Law and Newstead, both in the southeast (roughly 

40km apart as the crow flies), exhibit significantly different patterns of bubble 

concentrations in glass beads. Roughly half of the bead glass at Traprain Law has few 
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bubbles, while a further third has many. Alternatively, roughly half the bead glass at 

Newstead has moderate amounts of bubbles, while a further third has few bubbles. 

Finally, Knowe of Moan in Orkney has equal numbers of moderate to many-bubbled 

beads (43% each), with clear preference given to these over beads with fewer bubbles 

(14%). 

 

Figure 4.10: Regional bubble concentrations in glass beads from Iron Age and Early Medieval Scottish contexts. 

 

Figure 4.11: Comparison of bubble concentration between Culbin Sands, Glenluce Sands, Knowe of Moan, Newstead, 

and Traprain Law (p=0.039) 

4.4.2 DIFFERENCES IN COLOUR AND DIAPHANEITY 

Bubbles differ significantly between different colours and diaphaneities as well. In 

examining different diaphaneities without accounting for colour, opaque and transparent 

beads tend to exhibit fewer bubbles while translucent ones exhibit an even spread across 
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the three categories (Figure 4.12). Opaque beads do not allow us to see as far into the 

matrix of the glass as translucent material, which likely explains the bias towards fewer 

bubbles for that category. The transparent beads included in this study are all naturally 

coloured, which indicates fewer inclusions in the glass to form bubbles (Chapter 4.1.2). 

Naturally-coloured glass often served as window glass during the Early Medieval period, 

and it is possible broken window panes could be used to make glass beads. Since bubbles 

impair the view through a window, window glass necessarily had fewer bubbles. Finally, 

the even spread of concentrations between translucent beads is important because it 

suggests that any difference between translucent beads results from factors other than 

their diaphaneity, such as colour or manufacture. 

 

Figure 4.12: Differences in bubble concentrations between opaque, translucent, and transparent glass beads (p = 

0.008). 

In terms of general colours, white and copper-blue beads tend towards more 

bubbles. Natural and yellow beads have fewer, which may stem from the opacity of 

yellow beads and the reuse of window glass for natural beads (Figure 4.13). Cobalt-blue 

beads tend towards moderate to few bubbles, while greens exhibit predominantly 

moderate or many bubbles. 
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Figure 4.13: Comparison of bubble concentration between copper-blue, cobalt-blue, green, natural, white, and yellow 

glass beads (p=0.0000000000728). 

Natural colours in beads (e.g. very light blues, greens, yellows, and browns) tend 

towards few bubbles (54%) with a further 31% falling into the moderate category. There 

are no statistically significant differences on a regional level for natural bead glasses (p = 

0.118), though this may be due to the small sample size (n = 26) (Figure 4.14). The west 

appears to have relatively equal numbers of few, moderately-, and many-bubbled natural 

bead glass (38%, 25%, and 38% respectively), while the southeast clearly favours fewer 

bubbles (75%). The northeast has an even spread between natural bead glasses with fewer 

and those with moderate bubbles (50% each, n = 10). 

 

Figure 4.14: Regional bubble distributions of naturally-coloured bead glasses (p = 0.118). 

Cobalt-blue glass exhibits predominantly few (43%) or moderate (38%) bubbles 

(n = 120). There are statistically significant differences in cobalt-blue beads between 
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regions (p = 0.012), particularly between the west and the northeast on the one hand and 

the southeast and the north on the other (Figure 4.15). These differences are accentuated 

when looking at only monochrome cobalt-blue beads (p = 0.010). Polychrome cobalt-blue 

beads likely differ between regions (p = 0.069). 

 

Figure 4.15: Regional bubble distributions of cobalt-blue bead glasses (p = 0.012). 

Copper-blue bead glass has significantly more bubbles than the cobalt-blue glass 

in Scotland, with 54% of the overall copper-blue bead glasses having many bubbles 

(compared to 23% for cobalt-blues). There are also statistically significant regional 

differences in copper-blue bead glass (p = 0.000095) (Figure 4.16). The northeast has a 

number of many-bubbled copper-blue beads (60%) with a further third being moderately-

bubbled. The southeast, on the other hand, has few copper-blue beads, most of which 

have few bubbles (75%). The west also has a higher percentage of sparsely bubbled beads 

(60%). Importantly, 61% of copper-blue samples come from Culbin Sands on the Moray 

coast. When we remove these objects from the data, however, the differences between 

regions become less statistically significant, but still likely even with a lower sample size 

(p = 0.0828; n = 19) (Figure 4.17). 
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Figure 4.16: Regional bubble distributions of copper-blue bead glasses (p = 0.000095). 

 

Figure 4.17: Regional bubble distribution of monochrome copper-blue bead glasses excluding 35 beads from Culbin 

Sands (p = 0.0828). 

Only the northeast and southeast (n = 21) yielded green beads for use in this 

study, and both regions seem to differ in bubble concentrations (Figure 4.18). The 

northeast has more green beads with moderate bubble concentrations while the southeast 

has more many-bubbled beads. Green glass beads that are not a naturally-coloured green 

are relatively uncommon in Iron Age and Early Medieval Scottish beads, with the largest 

number coming from Culbin Sands in Moray (Christie 2014, 38 - 39). Unfortunately, 

most of the green beads from Culbin Sands could not be analysed for bubble 

concentration due to the heavily corroded nature of the objects. 
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Figure 4.18: Regional bubble distribution of green bead glasses (p = 0.264) 

White bead glasses in Scotland have large concentrations of bubbles overall, with 

32% and 61% classified as having moderate and many bubbles respectively (n = 28; 

Figure 4.19). All but three samples come from design elements of polychrome beads. 

Interestingly, the southeast and west do not seem to have any few- or moderately-bubbled 

white beads despite clear trends towards those concentrations with other colours. They do 

have 10 many-bubbled white beads between them, however, and many of them form 

white trail or reticella designs.  

 

Figure 4.19: Bubble concentrations of white bead glasses (p = 0.073). 

Yellow bead glasses tend towards fewer bubbles. While we can argue this is due 

to the opacity of yellow bead glass, all the white glass sampled is also opaque and they 

tend towards having many bubbles. There are no statistically significant differences 
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between regions (p = 0.579) and no discernible patterns between regions either (Figure 

4.20). There are statistically significant differences between monochrome and 

polychrome uses of yellow glass, however, with polychrome yellow glass containing 

significantly more bubbles (p = 0.000044) (Figure 4.21). 

 

Figure 4.20: Regional bubble distribution of opaque yellow bead glasses (p = 0.579).  

 

Figure 4.21: Monochrome and polychrome bubble variation in opaque yellow bead glasses (p = 0.000044). 

4.4.3 DIFFERENCES IN LOCATION AND DESIGN OF GLASS ON THE OBJECT 

In addition to differences in colour and diaphaneity, there are significant 

differences in bubble concentration depending on the location of the glass on polychrome 

objects (p = 0.019) (Figure 4.22). Glass used as the core of the bead tends towards 

moderate amounts of bubbles (50%), with some having few (33%).  Glass used to create 
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the design of a bead, however, tends towards having moderate to many bubbles (40% and 

31% respectively). Interestingly, there is no statistically significant difference between 

glass used in different polychrome designs (p = .217). 

 

Figure 4.22: Bubble variation between core and decorative samples (p = 0.019). 

4.4.4 DIFFERENCES IN MANUFACTURE 

There are statistically significant differences between bubble concentrations in 

wound and drawn beads in Scottish Iron Age and Early Medieval contexts (p = 

0.0000043) (Figure 4.23). Wound beads (n = 213) tend to have few (50%) to moderate 

(35%) bubbles while drawn beads (n = 71) tend to have moderate (35%) to many (41%) 

bubbles. In further subdividing the samples to translucent and opaque beads, the pattern 

continued for translucent material (p = 0.0003) (Figure 4.24).  

 

Figure 4.23: Bubble variations between wound and drawn glass beads (p = 0.0000043). 
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Figure 4.24: Bubble variations between translucent/transparent wound and drawn glass beads (p = 0.0003). 

When divided by colour, only bubbles in copper-blue glass differ significantly 

between wound and drawn beads (p = 0.000027) (Figure 4.25). Drawn copper-blue beads 

had many bubbles (67%) while wound copper-blue beads had few (67%). Neither cobalt-

blue nor yellow beads (the only other colours with significant sample sizes) differed 

significantly between wound and drawn beads. 

 

Figure 4.25: Bubble variation between wound and drawn copper-blue beads. 
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fewer bubbles than smaller beads. Similarly, when looking at the relative thickness of the 

wall of the bead (i.e. the difference between the diameter of the object and the diameter of 

the bead’s perforation), we also see a general decrease in bubble concentrations as the 

thickness of the bead wall increases. Since 70% of the beads in this study range from 0 – 

10mm in diameter, however, this difference in bubble concentrations is unlikely to have 

significantly affected the above data.  

 

Figure 4.26: Bubble variation between objects of different diameters.  

4.5 BUBBLES AND BEAD MANUFACTURE 

There are several significant results to discuss in relation to bubbles in beads. 

First, there are significant differences between objects made with different manufacturing 

techniques. Wound beads overwhelmingly have fewer bubbles while drawn beads tend to 

have many (Figure 4.23). Given the myriad ways in which bubbles can form in glass, 

many of which are connected to manufacture, it is unsurprising there are significant 

differences between objects depending on manufacture. Winding beads is a relatively 

individual, hands-on technique in which the craftsperson forms each bead individually. 

They may make a batch of up to 10 wound beads on a single rod before removing them, 

but they would have difficulty making more at once. We might expect, then, that the 
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pattern of bubble concentration in wound beads might vary or favour concentrations that 

are more difficult to achieve due to individual agency in altering the bubbles in a single 

object. However, drawn beads are less individualised. The craftsperson draws long canes 

of glass that they cut, anneal, and string for sale. They cannot adjust bubble 

concentrations for each individual bead, and likely cannot necessarily do so even for the 

individual canes they draw. We could therefore expect drawn beads to have fewer beads 

with few or many bubble concentrations and more with moderate concentrations due to 

the difficulties associated with producing glass with few or many bubbles (Chapter 4.1).  

Instead, drawn beads in Scottish contexts have significantly more bubbles than we 

would expect, and significantly more than wound beads. It is unlikely for this pattern to 

be a product of the manufacture technique, because the process does not allow for the 

control required to intentionally maintain such an abundance of bubbles. Additionally, 

while the annealing process requires the beads sit in a container of ash for an extended 

time, ash or dust only form bubbles in melted glass if additional glass covers it to seal the 

ash or dust inside. It is possible, then, that the differences seen here between wound and 

drawn beads relates more to the chemistry of the glass than its process of manufacture.  

However, when dividing wound and drawn beads by colour in addition to 

manufacture technique, only the copper-blue beads showed significant differences 

between wound and drawn beads (Figure 4.25). The only other colours with significant 

sample sizes (cobalt-blue and yellow) showed nearly identical patterns of bubble 

concentrations between the two manufacture types. This again suggests that it is not 

necessarily the process of drawing versus winding a bead that produces more or fewer 

bubbles respectively; it is more likely a difference in glass chemistry. Given the 

difference between wound and drawn copper-blue beads in Scottish contexts, it is 

relatively safe to assume the difference in bubbles does not stem from a chemical 



Christie – 4: Case Study 1: Visible-Range Photography and Bubbles in Glass Beads – 146 

difference in colorants, but more likely alkalis (e.g. soda or potash) or secondary 

ingredients like stabilisers (e.g. lime or alumina). The drawn copper-blue beads in 

Scotland – or at least the glass used to make them – likely come from a different 

workshop than the wound copper-blue beads and may even indicate a chronological 

difference between objects. Additionally, these results suggest that while the drawn and 

wound cobalt-blue and yellow beads may come from different workshops due to 

differences in manufacturing technique, the glass may come from the same workshop or 

at least use similar recipes. In other words, it supports the idea of primary and secondary 

workshops in Europe during the Iron Age and Early Medieval periods. 

4.6 THE INTENTIONAL MANIPULATION OF BUBBLES IN PRE-MODERN 

GLASS 

Another significant result is the relative lack of bubbles in naturally-coloured 

glasses. Naturally-coloured glass does not have any colorants added in the manufacture 

process, instead taking its colour from natural impurities in the sand (usually varying 

combinations of iron and copper). The resulting glass is transparent brown or a 

transparent pale blue, green, or yellow. The difficulties of eliminating bubbles still apply 

to this colour group, but they overwhelmingly have few bubbles. Windows or glass 

vessels often used naturally coloured glass, which suggests a desire to make naturally-

coloured glasses with few bubbles; the more bubbles in a windowpane, the more difficult 

it is to see out of. Naturally-coloured beads may have used recycled shards of broken 

windows or vessels, resulting in beads with few bubbles. Unfortunately, there are too few 

examples of naturally-coloured beads from Iron Age and Early Medieval Scotland to 

comment on this further. 
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White glass in beads also gives some insight into glass and bead manufacture for 

this period, both within Scotland and in Europe as a whole. Most white glass examined 

here was saturated with bubbles (59%). Most of these samples are decorations on 

polychrome beads, though some are monochrome. In many of these cases, it is difficult to 

discern whether the glass is white or whether it is simply either a natural glass (in the case 

of monochrome beads) or the base glass (in the case of polychrome beads) that has been 

packed full of bubbles in certain areas rather than white glass being added. Similar white 

designs appear on imported glass vessels from the Early Medieval period (Type C; 

Campbell 2007, 64), but the vessels are generally different colours than beads using the 

same design.  

While these results may suggest a simple chemical difference between white glass 

and other glasses during this period, the two most common opacifiers used to create white 

glass were antimony oxide (Sb2O3) or tin oxide (SnO2), which also serve as fining agents 

(Agua et al. 2017, 119; Dejneka and Gomez 2012, 3; Freestone et al. 2008, 41; Henderson 

1985, 270; House et al. 2009, 5; Molina et al. 2014, 171; Shelby 2005, 43). Specialists 

often assume white glass contains either antimony or tin oxide because most white glass 

found in Europe from the Iron Age and Early Medieval periods contain these oxides, but 

these compounds should significantly reduce the concentration of bubbles. The apparent 

abundance of bubbles in white glasses therefore suggests either the use of a different 

chemical opacifier, if one was used at all, or the intentional introduction of bubbles to 

many white glass beads at the time. Chemically testing the trails on both vessels and 

beads to determine whether any antimony oxide or other decolourisers or opacifiers have 

been added and whether the two object types share chemical (and therefore manufacture) 

signatures would help answer the question, but this is outside the scope of this thesis.  
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These results show that there was significant, intentional control of bubbles both 

within and between beads. While manufacturers may not have worried about bubbles 

constantly, they clearly manipulated and controlled them to achieve specific types or 

designs, such as a clearer natural glass or a more highly bubbled white glass. The 

difficulty of controlling bubbles in glass, particularly without the use of a vacuum, 

suggests a sophistication and knowledge of the craft that often does not enter the current 

discussion of glass working for this region. 

4.7 THE PROBLEMS WITH CULBIN SANDS 

One possible caveat to the data is that each region differs significantly in the 

number of objects included in this study, which may alter the results. The northeast has 

235 samples, while the southeast and west have 72 and 56 respectively. Northern 

Scotland has only 26 samples included in this study. The primary culprit of such disparate 

numbers in the northeast is a group of several hundred beads said to be from Culbin 

Sands, on the Moray coast. This site has the largest number of reported beads in total for 

the entirety of Scotland - over 700 compared to the site average of five or six for all other 

sites with beads in Scotland during the Iron Age and Early Medieval period. All the beads 

recovered from Culbin Sands are stray finds, with no associated contextual information.  

There are two large problems with the beads from Culbin Sands. The first is that it 

is perhaps the best-known site in Scotland for glass beads in the Iron Age or Early 

Medieval periods. As such, it is entirely possible that individuals donating or accessioning 

beads to museum collections had been told the objects were from Culbin Sands without 

confirming they had originated from that site. There is no specific research into whether 

this phenomenon has occurred in the United Kingdom, but it plagues many bead sites in 

Asia, particularly Ban Chiang, in northern Thailand. Scholars and tourists alike have 
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found thousands of tiny glass seed beads at Ban Chiang, so much so that vendors often 

refer to beads of this type as Ban Chiang beads. Now, when individuals donate strings of 

beads to museums or speak to archaeologists about their beads, they say the beads came 

from Ban Chiang because that is what vendors told them. Instead, these beads often come 

from dozens of other sites in Thailand or are modern replicas. It is not unlikely for such a 

phenomenon to have occurred with Culbin Sands. The Society of Antiquaries published 

widely on the site several times around when most of the glass beads from Culbin Sands 

were donated to the National Museum of Antiquaries (Black 1891; Callander 1911; 

Linton 1876; Matthewson 1877). Since many of the beads from Culbin Sands were stray 

finds, it would not be surprising for some to be misattributed to the site. 

The second issue with Culbin Sands is the lack of contextual information for the 

beads. Most were recovered in the 1800s and donated to the National Museum of 

Antiquaries shortly afterwards. The museum strung many of the monochrome beads 

together, organising strings by colour rather than by objects that may have been found 

together. We therefore have one string of cobalt-blue beads, one of copper-blue beads, 

one of green, two of yellow, one of black or deep purple, three of clear glass of which two 

sets have what appears to be seaweed clung to it, and one of a milky-white colour. Of 

these strings, the three clear and one milky-white string are likely post-medieval objects, 

given the quality and colouring of the glass. It would not be surprising to find certain 

other strings were also either post-medieval or modern, but the other colours are more 

difficult to eliminate based on the glass alone. Given the differences in bubble 

concentrations of the copper-blue beads from Culbin Sands, this ‘string’ may post-date 

the early medieval period. 



Christie – 4: Case Study 1: Visible-Range Photography and Bubbles in Glass Beads – 150 

4.8 BUBBLES AS EVIDENCE OF LONG-DISTANCE TRADE 

If the drawn beads discussed in this chapter date to the Iron Age or Early 

Medieval period, particularly those from Culbin Sands, then they would provide clear 

evidence of long-distance trade. Little, if any, evidence for glass bead manufacture exists 

in Scotland for the Iron Age or Early Medieval period. There is also no current evidence 

for European manufacture of drawn beads prior to the 14th century, meaning that any 

drawn beads in Scotland either postdate the 14th century or came from outside Europe 

(Francis 2002, 171). Major centres of drawn bead manufacture between 800 BC and AD 

800 are concentrated in the Near East, southern India, Sri Lanka, and Thailand (Francis 

2002). Claims of manufacture have been made for roughly 30 sites in South and 

Southeast Asia, though fewer than 10 provide significant evidence for it. Thirty-five of 

the 36 drawn beads in this study are the small, monochrome copper-blue drawn beads 

found at Culbin Sands on the Moray Coast. Of these, the majority have many bubbles 

while some have moderate amounts. Comparable beads in terms of size, colour, and 

bubble patterns occur in Thailand, with significant numbers of many-bubbled copper-blue 

drawn beads occurring at Tham Chhaeng in Phetchaburi province on the northeast coast 

of the Thai peninsula (Figure 4.27). It is unlikely that the drawn turquoise beads from the 

Culbin Sands came from Thailand. If the turquoise beads from Culbin Sands date 

between 800BC and 1000 AD, however, then they likely were made at a site outside 

Europe, possibly one in Asia. Otherwise, these beads likely post-date the early medieval 

period. 
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Figure 4.27: Small drawn monochrome copper-blue beads from Culbin Sands (NMS X.BIB 57) (left) and Tham 

Chhaeng (right). 

Regional differences in bubble concentrations more generally also indicate 

differences in trade routes between different regions of Scotland. First, there is a probable 

difference between the northern regions of Scotland versus the southeast and west (Figure 

4.10). This difference could result from the increased Roman presence or influence in the 

south, but it is impossible to know without further contextual information for the beads. 

However, the picture changes as we separate out individual colours. The west and 

northeast of Scotland have similar bubble concentrations in their cobalt-blue beads, for 

example, despite differing in bubble concentrations in their glass beads in general. The 

copper-blue beads in the northeast differ greatly from those elsewhere in Scotland, even if 

we remove the string of small copper-blue beads from Culbin Sands. Despite these 

contrasts, there is no significant regional difference in bubble concentration between 

yellow glass beads across Scotland. These regional differences between colours suggest 

that each region had its own import routes for glass beads, and possibly its own 

manufacture technique(s) if objects were made within the region itself. Import routes may 

have overlapped when multiple regions acquired glass either from the same trade partner 

or from each other. Without contextual information for the objects in question, however, 

the specifics of these routes are difficult to comment on further. 
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Finally, there are the possible connections between beads with highly bubbled 

white decorations and imported vessel glass exhibiting similar techniques (Figure 4.28). 

These are Campbell’s Group C vessels, or glass vessels in the Atlantic tradition with 

highly bubbled white trail designs (2007, 64). These tend to be either naturally light green 

or light yellow, though some are amber or deep green in colour (Campbell 2007, 55). 

None of the vessels in Campbell’s corpus are dark blue, however, which is the 

predominant colour for glass beads with highly bubbled white trails. The technique does 

not appear in bead literature, nor is it used in neighbouring regions. It is possible that 

different colours and colour combinations were reserved for different object types. It is 

also possible that the vessels and the beads come from different workshops and one has 

been designed to mimic the other. Full comparison between beads and vessels could 

establish a connection, but this is currently outside the scope of this study. 

 

Figure 4.28: Examples of ‘white’ bubbled trails in vessel and bead glass (Rumbleton, HMAG B.1914.521/14). Vessel 

image courtesy of Ewan Campbell. 

4.9 CHRONOLOGICAL INSIGHT FROM BUBBLES 

The regional differences seen here may have more to do with chronology or ethnic 

group than trade, or they are at least affected by a combination of the three. Traprain Law 

and Newstead, for example, are in the same region (southeast Scotland, roughly 40km 

apart) but have significantly different patterns of bubble concentrations. Beads at Traprain 
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Law have few or many of bubbles, while Newstead favours moderately-bubbled beads 

(Figure 4.29). This data only includes beads of colours present at both sites to avoid 

confusing the results. 

 

Figure 4.29: Comparison of bubble concentrations between Traprain Law and Newstead (P = 0.026). 

Newstead was a Roman fort largely occupied between the late 2nd and early 3rd 

centuries AD (Richmond 1950, 1), while Traprain Law was a Late Iron Age hillfort 

occupied in the first couple centuries AD and then again between the 3rd and 5th centuries 

AD (Hunter 2013, 6). Newstead therefore exhibits a large amount of culturally Roman 

glass while Traprain Law exhibits largely non-Roman Iron Age and Early Medieval 

beads. The differences in their glass likely reflects the different chronological periods 

between each site, the different cultural preferences between groups at each site, or both.  

 

Figure 4.30: Faience and glass melon beads from Newstead (NMS X.FRA 890 (left) and NMS X.FRA 862 (right)). 
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Some of this bubble data also indicates the possibility of modern beads being 

falsely attributed to the Iron Age or Early Medieval period. The difference in bubble 

concentrations in the drawn copper-blue beads from Culbin Sands suggests they are either 

coming from outside Europe or they may be post-medieval or even modern beads instead. 

Comparing bubble density to other glass bead collections in Europe and between the early 

medieval period and the present would provide further insight. 

4.10 THE BENEFITS OF VISIBLE-RANGE SPECTRAL PHOTOGRAPHY FOR 

ARCHAEOLOGICAL FINDS 

The preliminary results discussed above indicate that visible-range spectral 

photography produces insight into the glass bead assemblage for Iron Age and Early 

Medieval Scotland that previously was not possible without technologically advanced 

equipment. This insight would have been impossible without challenging the standards of 

archaeological imaging and experimenting with current affordable technologies. The 

application of visible-range filters to archaeological photography is not a new technique 

(Chapter 3.3). The analysis of objects through imaging has been reserved instead for more 

scientific imaging techniques, however, such as microscopy or multispectral and 

hyperspectral imaging, 3D modelling, or RTI. These techniques are helpful for 

archaeological research, but often require expensive equipment and software that many 

projects cannot afford (Chapter 8).   

Using digital filters does not require new images, either, just the original digital 

image files. Even scans of a slide made from the original image will work, though an 

original digital image is ideal. Only photographs of the original image are unlikely to 

provide useful results, as the colours will change between the original image and a 

photograph of said image. Many of the images in this study were captured in 2014 
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without any knowledge of this imaging technique and were still able to be included in this 

study.  

Visible-range spectral photography can be applied to a wide range of materials, 

too. Some filters highlight corrosion or surface wear, while others emphasise paint or 

staining. Digital software can apply filters to any digital image to emphasise certain 

features over others, such as surface wear on lithics or ceramics, carvings or surface wear 

on stone sculpture, wear and corrosion on metalwork, cropmarks in the landscape or 

differences in stone or mortar in buildings. The possible applications are varied, and the 

equipment affordable. Nor is this technique limited to archaeology. Filters work the same 

no matter the subject of the image. Spectral photography can highlight wear or 

weathering on anything from rocky outcrops or gemstones to mechanical elements or 

other metalwork in vehicles or machines. It can forensically identify markings on bone or 

weapons. If something is worth imaging for analytical purposes, it is worth examining 

through filters to emphasise or discover new information. 

The case study provided here uses filters to examine a single characteristic of a 

single, specific set of archaeological objects: bubble concentrations in Iron Age and Early 

Medieval glass beads found in Scottish contexts. Even limited in this way, the technique 

provides significant conclusions about glass beads, which have led to an advancement in 

possible conclusions concerning trade and manufacture of these objects within Scotland 

during this time. Additional data will certainly help further this discussion, but the 

conclusions resulting from this brief case study provide more information than has 

previously been available relating to glass beads. If such experiments can gain significant 

insight for objects with as little contextual information as glass beads, it stands to reason 

that we would only reap even more benefits from objects associated with specific 

archaeological contexts. 
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5 CASE STUDY 2: NON-VISIBLE-RANGE PHOTOGRAPHY AND 

OBJECT CHEMISTRY 
Having demonstrated the benefits of visible-range filters in archaeological 

photography in the previous chapter, this chapter will now turn to filters in the non-visible 

range. Objects react to light based on their chemical composition, regardless of whether 

human eyes can see it (Chapter 3.2.1). Consequently, we can determine the chemical 

composition of an object by examining and measuring its reactions to light (i.e. 

spectroscopy). This principle has allowed the scientific community to chemically test 

objects for nearly a century. Chemical differences in glass indicate differences in 

manufacture and trade, and their analysis can determine possible connections between 

specific objects and the workshop in which they were made. For example, chemical 

studies of ancient glass have led to the identification of glass objects made at Roman 

versus pre- or post-Roman workshops due to differences in available resources 

(Henderson et al. 2004, 466; Rehren 2000, 1225; Silvestri et al. 2005, 798). Spectroscopy 

and other techniques for acquiring chemical data usually requires expensive equipment, 

however, and the techniques available for chemically analysing glass are all at least 

partially destructive.  

This chapter uses non-visible-range spectral photography as a non-destructive, 

non-contact technique for identifying chemical relationships between objects using a 

dSLR converted for full spectrum imaging. The results from this study lead to important 

conclusions about these objects without requiring expensive equipment or permissions. In 

bead studies, archaeologists chemically test relatively few objects, particularly those 

made of glass, due to the associated costs and the potential destructive nature of the 

technique. For example, only 55 objects have been chemically tested from Arikamēḍu 

despite the site yielding over 9,000 glass beads (Dussubieux et al. 2008, 801; Francis 
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2002, 213). The ability to identify chemical differences and possible similarities using 

only a converted dSLR and photo editing software allows us to generate far more 

information about these objects than is otherwise currently feasible in a non-destructive 

manner, and it significantly reduces the effects of the two largest barriers to object 

chemical studies: cost and destructiveness. 

To demonstrate the application of this technique, I focus again on glass from Iron 

Age and Early Medieval Scottish contexts. Glass chemists rarely test Scottish material, 

with few sources publishing object-specific chemical data (e.g. Bertini et al. 2011; 

Campbell and Lane 1993). Given the relatively unique nature of each glass bead in 

Scotland, acquiring permission and funding to chemically test these objects is difficult. 

This collection is therefore ideal for investigating the possible benefits of this non-

destructive, non-contact technique. I have compared the Scottish material to 

contemporary Roman and Anglo-Saxon glass to determine the chemical relationship of 

Scottish material to these assemblages. I also have compared these assemblages to New 

Kingdom Egyptian, medieval English and modern glass to examine possible 

chronological differences between them. The results demonstrate clear differences 

between each of these assemblages and provide new information concerning the 

manufacture and trade of glass beads found in Iron Age and Early Medieval Scotland. 

5.1 IRON AGE AND EARLY MEDIEVAL GLASS CHEMISTRY 

There are six general categories of chemical components in glass: formers, alkalis, 

stabilisers, colorants, opacifiers, and trace elements (Francis 2002, 211; Ramli et al. 2009, 

586 – 587). Each occur to varying degrees, with formers comprising the largest portion of 

the object and trace elements the least. Each affects the chemical composition, and 

therefore the spectral reactions, of a glass object. 



Christie – 5: Case Study 2: Non-Visible-Range Photography and Object Chemistry – 158 

Glass formers comprise most of the glass, often ranging between 55 and 75% of 

the total weight (Francis 2002, 211; Ramli et al. 2009, 586). The most common glass 

former is silica (SiO2), which comes from the sand or quartz pebbles used to make the 

glass (Ramli et al. 2009, 586). Lead (Pb) also occurs as a glass former and can account for 

up to 90% of the total weight due to its high specific gravity (Ramli et al. 2009, 586). 

Heavily lead-based glasses are often found in ancient Chinese contexts, while glasses 

with smaller proportions of lead often occur in Iron Age and Medieval European contexts 

(Biek and Bayley 1979, 11 – 17; Francis 2002, 73). 

Silica melts at too high a temperature for ancient ovens to achieve (~1700ºC), so 

glassmakers added an alkali (or flux) to lower the melting point (Francis 2002, 211; 

Kanungo 2004, 1).  Two dominant alkalis occur in glass-making: soda (Na2O) and 

potassium oxide (K2O).  Lead (Pb) can function as an alkali, but is less common (Francis 

2002, 211; Ramli et al. 2009, 586).   Most alkalis were a mixture of sodium and 

potassium, especially if derived from plant ash.  Alkalis often compose 15 to 20% of the 

total weight of the ingredients (Francis 1988, 4). 

When an alkali mixes with silica at such high temperatures, the melt becomes 

chemically unstable. To avoid explosion and cracking, a stabiliser was added to 

strengthen the glass and its chemical bonds, usually lime (CaO) or alumina (Al2O3) 

(Francis 2002, 211; Ramli et al. 2009, 587). Most ancient glass in Europe used lime, 

while large portions of Asian material used alumina. Some recipes use both in relatively 

equal amounts. 

Colorants are any component that gives colour to the glass. Glassmakers can add 

these to the melt during the manufacture process or they can occur as impurities in the 

sand (Francis 2002, 211). The two most common colorants are iron oxide (Fe2O3) and 

cupric oxide (CuO). These two components, added in varying amounts at different times 
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in the process, can form any colour save dark blues, purples, or colourless/clear glasses 

(Francis 2002, 211; Kanungo 2004, 2; Ramli et al. 2009, 587). Cobaltous oxide (CoO) 

creates deep blues while manganese oxide (MnO) produces deep purple or clear glass, 

depending on how much is added and when (Kanungo 2004, 2; Ramli et al. 2009, 587). 

Iron and copper often occur naturally in sand and give glass a natural colouring 

depending on how much of each is in the sand used to make the glass (Ramli et al. 2009, 

587). These natural colours range from brown to very light green, blue, or yellow. 

Opacifiers are additions to the glass to make it opaque. In ancient glass, many of 

these components appear to be impurities in the sand, but there is significant evidence for 

the intentional use of opacifiers (Francis 2002, 211; Ramli et al. 2009, 587). Antimonates 

are the most common opacifier and serve as a fining agent to reduce the bubbles in glass 

(Shelby 2005, 43).  Lead-antimonate (Pb2Sb2O7), arsenic oxide (As2O3), calcium-

antimonate (Ca2Sb2O7 or Ca2Sb2O6), and lead-tin (PbSnO3) or tin oxide (SnO2) also occur 

as opacifiers in ancient glass (Biek and Bayley 1979, 9; Francis 2002, 211; Ramli et al. 

2009, 587). The use of certain opacifiers will impart certain colours, such as lead-

antimonate or lead-tin for yellow and tin-oxide or calcium-antimonate for white. Bone, 

salt, sand, and bubbles can opacify glass if added in the right quantities. 

Trace elements are any element that is not intentionally added, and generally 

make up less than 1% of the object’s weight (Francis 2002, 211; Ramli et al. 2009, 587). 

One exception to this is magnesia (MgO), which can compose more than 2.5% of the 

object’s weight. Magnesia often occurs in plants and can therefore indicate a plant-based 

source of soda rather than a mineral one (Biek and Bayley 1979, 5; Lankton and 

Dussubieux 2006, 135; Robertshaw et al. 2010, 5). Other trace elements include barium 

(BaO), titanium (TiO2), gold (Au), silver (Ag), vanadium (V2O3), strontium (SrO), 

uranium (U), and zirconium (Zr).  



Christie – 5: Case Study 2: Non-Visible-Range Photography and Object Chemistry – 160 

Silica-soda-lime glass has been the primary glass type in Europe since 

glassmaking began, so much so that many papers written about ancient European glass 

assume a silica-soda-lime composition (Rehren 2000, 1225; Silvestri et al. 2005, 797). It 

consists of a silica former, soda alkali, and lime stabiliser, but can contain a variety of 

colourants, opacifiers, and other chemical components. There are two main varieties: one 

using a mineral (m-Na-Ca, after Dussubieux and Gratuze 2002, 139) and the other using a 

vegetal or plant-ash (v-Na-Ca) source of soda, though the plant ash source often 

contained elements of potassium as well. Egyptian and Middle Eastern glasses used a 

plant-ash source of soda (v-Na-Ca) prior to the Roman period. The rise of the Roman 

Empire prompted a shift to a mineral source of soda (m-Na-Ca) because they were able to 

collect resources from modern day Italy, Egypt, and Jordan to do so (Rehren 2000, 1225; 

Silvestri et al. 2005, 798). After the collapse of the infrastructure associated with the 

Roman Empire, glassmakers in most of Europe and the Middle East had difficulty 

acquiring the requisite materials for m-Na-Ca glass and instead experimented with local 

ingredients to create a type of v-Na-Ca glass in the 8th and 9th centuries AD. The site of 

al-Raqqa in Syria shows experimentation with recipes, which suggests the shift was not 

the remembrance but rather the rediscovery or reinvention of an old technique 

(Henderson et al., 2004, 466). By the thirteenth century, glass in Europe shifted again to a 

potash glass (K2O), using wood ash as the alkali. This ash contained high levels of 

potassium oxide rather than soda and the glass develops a characteristic iridescent sheen 

upon corroding.  

While it was (and still is) the primary glass type found in Europe, silica-soda-lime 

glass was not the only glass type in circulation in the ancient world. Silica-soda-alumina 

glasses predominate in Asia, particularly South and Southeast Asian contexts from the 4th 

century BC to the 10th century AD (Robertshaw et al. 2010, 5). They are also found in 
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Africa, particularly in Sub-Saharan and East African contexts from the 9th to 19th 

centuries AD (Dussubieux et al. 2010, 5). These glasses generally use a mineral source of 

soda (m-Na-Al) and trace element analysis of samples in Africa, South Asia, and 

Southeast Asia has determined five separate types depending on levels of barium, 

uranium, strontium, and zirconium (Dussubieux et al. 2010). 

A plant-ash soda-lime glass with high-alumina (v-Na-Ca-Al) has been found in 

Pakistan and Northern India, but currently has very few examples (Dussubieux and 

Gratuze 2002, 142; Lankton and Dussubieux 2006, 135). There are also mineral-potash 

glasses found in Thailand and Vietnam in the last few centuries BC (m-K-Ca), in 

Vietnam, China, Korea, and Japan in the first few centuries AD (m-K-Al), and South and 

Southeast Asia (m-K-Ca-Al; no date range given) (Lankton and Dussubieux 2006, 130 – 

136). Finally, mixed-alkali glasses use roughly equal amounts of soda and potash, but 

these appear limited to India and Sri Lanka (Lankton and Dussubieux 2006, 138). 

While there were many glass recipes available worldwide during the Scottish Iron 

Age and Early Medieval periods (800 BC – AD 800), few specialists have chemically 

tested Scottish glass, particularly that from the Iron Age or Early Medieval periods. Most 

studies test between one and ten objects from a single site to compare to Roman or 

Anglo-Saxon glass, which have been examined more thoroughly. Few publish the full 

chemical results, instead averaging the samples together or opting to omit the concrete 

data from the publication. Given the lack of chemical testing of Scottish objects, it is 

possible some objects use a different recipe than that so often assumed for European 

assemblages. Comparisons between Scottish objects are difficult, however, because 

chemical testing of Scottish glass is rare and publication of chemical data for individual 

objects is rarer still.  



Christie – 5: Case Study 2: Non-Visible-Range Photography and Object Chemistry – 162 

5.2 CURRENT TECHNIQUES FOR TESTING GLASS CHEMISTRY 

The primary reason few glass beads in Scotland have been chemically tested is the 

logistics required for doing so. Several methods exist for acquiring precise chemical 

compositions for glass objects, but the only techniques to provide complete chemical 

information are all at least partially destructive. Acquiring permission to destroy objects 

as relatively rare, unique, and small as glass beads is difficult at best. Non-destructive 

techniques generally do not provide complete information, and current destructive and 

non-destructive techniques are often expensive for many projects. This section details the 

most common techniques in archaeological chemistry and the benefits and pitfalls of 

each. 

5.2.1 LASER-ABLATION INDUCTIVELY-COUPLED-PLASMA MASS-SPECTROMETRY (LA-

ICP-MS) 

One of the most popular techniques for chemically testing glass is laser-ablation 

inductively-coupled-plasma mass-spectrometry (LA-ICP-MS). A laser samples a minute 

portion of the object, after which the sample is dissociated, atomised, and ionised 

(Dussubieux and Gratuze 2002, 137). The ions move into a vacuum chamber where a 

quadrupole mass filter separates the ions based on their mass-charge ratio (Dussubieux 

and Gratuze 2002, 137). This method can detect between 20 and 50 elements in a sample 

with minimal destruction to the object. LA-ICP-MS provides accurate measurements for a 

wide range of elements, including trace elements, and it is the only minimally-destructive 

technique to measure sodium content in glass accurately. It also requires very small 

samples, such that the point at which the laser has carved into the object is often 

undetectable; you must be looking for it to find it. 
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However, while LA-ICP is minimally destructive, it is still destructive and 

acquiring permission to perform such analysis on museum collections is difficult. 

Additionally, while the average price of LA-ICP-MS for a single glass sample is roughly 

£30 (e.g. The Field Museum 2018; University of South Florida 2018), this would amount 

to over £3000 for 100 samples. This amount also does not include the cost of shipping or 

travel, nor does it include the difficulties associated with acquiring permission from 

museums for such study. Given the cost and the destructive nature of the technique, LA-

ICP-MS is not feasible for most projects working on glass objects, particularly those with 

lower budgets. 

5.2.2 FAST NEUTRON ACTIVATION ANALYSIS (FNAA) 

Another technique for determining chemical composition is fast neutron activation 

analysis (FNAA), in which a fast neutron beam irradiates the object and measures 

elemental composition through direct gamma-ray spectroscopy (Dussubieux and Gratuze 

2002, 136). The object is irradiated again several days later. Finally, specialists take three 

radioactive measurements after three, five, and sixty days cooling to determine the weight 

percentages of 31 elements (Dussubieux and Gratuze 2002, 137). This method determines 

all major elements in glass save for oxygen, which can be calculated assuming all 

elements are in an oxidised form. 

One clear difficulty with this method is the time required for measuring. Upwards 

of sixty days is lengthy for analysis of limited samples, and it is difficult to obtain 

permission from collection owners to remove objects from storage for so long. It is even 

more difficult to acquire permission to remove objects from storage and irradiate them 

twice over 60 days. Standard rates average £100 per sample and require a minimum of 8 

– 15 samples, which is too expensive for many archaeological project budgets (e.g. Delft 

University of Technology 2018; University of Missouri Research Reactor 2018). The 
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extended time frame, high cost, and irradiation of the object make FNAA a difficult 

option for chemically testing ancient glass. 

5.2.3 RAMAN SPECTROSCOPY  

Raman spectroscopy uses the principle of objects reacting differently to light to 

measure its chemical composition through the inelastic (Raman) scattering of light after 

illuminating an object with an ultraviolet, visible, or infrared laser beam (Renishaw 

2018). A detector then collects and measures the electromagnetic radiation from the 

illuminated spot to generate results. Raman spectroscopy is non-destructive, only 

requiring a clean surface to measure. It also provides specific measurements for many 

major and trace elements. Raman spectroscopy seldom provides measurements of certain 

elements important to glass chemistry, however, such as sodium or magnesium. It also 

requires a sizable, clean surface for testing, which is not possible for many glass beads. 

Finally, while this technique is generally accurate and provides good results, it is 

expensive. Miniature Raman spectrometers cost a minimum of £2,500, while larger 

models cost about £10,000 (StellarNet 2018). Raman spectroscopy therefore falls outside 

the budget for many projects, including this one. 

5.2.4 X-RAY FLUORESCENCE (XRF) 

Perhaps the most popular chemical analysis technique is x-ray fluorescence, due 

to the versatility and portability of the machines. X-ray fluorescence works in much the 

same manner as fluorescence described in Chapter 3. The machine fires x-rays at an 

object, which then reacts with and either absorbs, reflects, or transmits the x-rays 

(Shackley 2011, 28). Some of these rays will be of a higher wavelength than those used in 

the original x-ray beam (Shackley 2011, 16). The nature and degree of these fluoresced 
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rays depends on the chemistry of the object. Thus, XRF can determine a wide range of 

elements through non-destructive means for most materials. 

While XRF is non-destructive, it generally does not provide reliable data for one 

of the largest components of glass: sodium. Sodium is too light for the sensors to acquire 

a proper reading. Additionally, acquiring permissions and funds to use XRF equipment 

can be difficult, particularly if the collection is in a museum. XRF requires a sizable, 

clean surface for testing, and many glass beads are too small or too corroded or dirty to 

fulfil this requirement. Finally, XRF is far from affordable for many archaeological 

projects. A portable machine suitable for glass analysis currently costs between £20,000-

25,000 at base level (NitonUK 2018), while repairs can cost between £3000-5000 (Bruker 

2017). Individual samples cost between £80 – 100 (Instituto Nazionale di Fisica Nucleare 

2018). This technique is not ideal for glass, then, and it is unaffordable for many projects. 

5.2.5 PROTON INDUCED X-RAY EMISSION (PIXE) 

Finally, proton induced x-ray emission (PIXE) is a non-destructive chemical 

testing technique in which the machine fires an ion beam at an object, which emits X-rays 

as a result. The energies of these x-rays directly correspond to the elements which emitted 

them, thus allowing for the measurement of these elements in the object. This is similar to 

XRF, only differing in the beam fired at the object and in its ability to accurately measure 

lighter elements than XRF. PIXE is more accurate than XRF, but comes with similar 

limitations in sample size, cost, and elements analysed (Instituto Nazionale di Fisica 

Nucleare 2018; Janssens et al. 1996, 691; Weber et al. 2002, 357). 

5.3 CHEMICAL ANALYSIS THROUGH SPECTRAL PHOTOGRAPHY 

All the techniques described above, along with any other chemical testing 

techniques that we may apply to ancient glass, encounter similar problems in their 
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execution. They are often destructive, require permissions that may be difficult to obtain, 

and require expensive and often non-portable equipment. Yet, objects react differently to 

various wavelengths of light based on their chemistry, some of which dSLR cameras can 

capture through photography. This chapter discusses the capture and analysis of chemical 

data for glass objects using non-visible-range spectral photography. This technique 

cannot capture precise measurements of individual elements in an object’s chemical 

composition (Chapter 5.2), but it does determine chemical relationships between objects 

using an affordable, portable, non-destructive, non-contact technique. This allows for a 

general comparison between objects prior to investing in more precise and expensive 

chemical testing, leading to a more targeted approach. It also allows for general chemical 

testing of a larger collection of material than often is feasible through the above methods 

due to cost and logistics. 

 

Figure 5.1: Difference between visible-range (top) and near-infrared (bottom) of cobalt-blue beads from Rhynie (UG 

SF 15021, left) and Clachbreck (UG CLB 1, right) (Appendix E). 
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This technique developed after noticing a significant difference in spectral 

reactions to non-visible light between two otherwise typologically similar cobalt-blue 

glass beads (Figure 5.1, Appendix E (PowerPoint Slide 11)). The bead from Clachbreck is 

both smaller and more vibrantly dark blue than that from Rhynie, but most specialists 

would consider these objects typologically and likely chemically similar if following 

current practices (e.g. Brugmann 2004; Guido 1978; Guido 1999; Mannion 2015). The 

bead from Rhynie absorbs near-infrared light while that from Clachbreck transmitted it, 

however, indicating significant chemical differences between the two. 

Multispectral imaging in art conservation has produced a general flow chart of 

reactions that leads to pigment identification (Cosentino 2014; 7 – 8). Further 

experimentation with glass objects negated this as an option, however, when glass objects 

yielded a spectrum of reactions rather clear differences between ‘absorption,’ 

‘transmission,’ or ‘reflection,’ (Chapter 3.2.2). The dilemma then became how to measure 

the reaction to light from digital photographs alone. 

Cameras and computer screens only display red, green, and blue pixels to create a 

wide variety of colours on the screen (Chapter 3.3). They do this in a similar way to 

human eyes, by combining red, green, and blue in various intensities to create the 

perception of other colours. In digital image manipulation software like Adobe Photoshop 

or Gimp, artists define and create colours using ‘colour values’ for red, green, and blue. 

These colour values denote the intensity or amount of red, green, or blue in a single 

colour, and often range from 1 to 255 (i.e. the range a single 8-bit byte can provide). In 

digital photography, this colour value directly corresponds to the reflectance, 

transmission, or absorption of red, green, or blue light by the subject. 

Isolating these colour channels in Photoshop results in a greyscale image like 

those produced using digital filters in the previous chapter. Photoshop will render any 
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image copied into any of these three channels as if it were the data for that colour 

channel. Switching the images represented by red, green, or blue to other light spectra 

provides measurements for those wavelengths. One common application of this is false 

colour imaging, which switches the colour channels of an image such that no colour in the 

image represents that same colour in reality (Chapter 2.1.1). False colour images work 

predominantly with both visible and non-visible spectra, such that infrared light appears 

red in the final image, red elements appear green, and green elements appear blue (Figure 

5.2, Appendix E). 

 
Figure 5.2: Example of a visible-range photograph showing an Egyptian glass vessel sherd (Amarna? BM 5615-29775 

Z) (top) and a false colour image in which reds represent infrared light, greens represent blue light, and blue 

represents red light (bottom) (Appendix E). 
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False colour images need not be limited to the infrared and visible ranges. 

Copying the ultraviolet image into the blue channel, the entire visible spectrum image of 

an object into the green channel, and the infrared image into the red channel creates a 

false colour image in which blue represents ultraviolet reactions (300 – 400nm), green 

represents the visible spectrum (400 – 700nm), and red represents infrared reactions (950 

– 1000nm) (Figure 5.3, Appendix E). Any colour that is a mixture of the primary RGB 

colours (e.g. yellow, magenta, purple) indicates reflection from two or more of the spectra 

represented by the channels. In the figure below, yellow elements indicate the reflection 

of both infrared (represented by red) and visible light (represented by green), while 

magenta elements indicate reflection of both infrared (represented by red) and ultraviolet 

light (represented by blue). 

 

Figure 5.3: A false colour image in which reds represent infrared, greens represent visible, and blues represent 

ultraviolet light (BM 5615-29775 Z) (Appendix E). 

These false colour images provide quantitative data for each spectral range it 

incorporates by recording the colour values of the pixels representing the object (Figure 
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5.4). In this case, the red value corresponds to infrared absorbance or reflection, the green 

value corresponds to the visible range, and the blue value corresponds to ultraviolet 

reactions. Recording and comparing these readings therefore allow for the quantitative 

analysis of chemical differences between objects. 

 

 

Figure 5.4: Using the eyedropper tool to acquire spectral data from a visible-range photograph (top) and a false-

colour image (bottom). 

However, these measurements depend greatly on the exposure of the image copied 

into each channel. Differences in image exposure will produce different measurements for 
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the same object, for example, negating the comparability of the data. To ensure 

comparable results from each false-colour image, the original images must be exposed as 

similarly as possible to all other images for all other samples in the study. The specific 

standard for exposure is relatively arbitrary, since the data indicates relational similarities 

and differences between objects; the relationships will remain identical whether exposure 

is set at -1.0, +0.0, or +1.0, so long as all objects follow the same standard. Additionally, 

the intensity of the light source affects the quality and rigour of this data more than 

standard exposure. In other words, images of the same object exposed similarly but using 

different intensities of light will result in different measurements. It is more important, 

then, to use the same light sources for each image and adjust the exposure in post-

processing to acquire the same intensity readings from something common to all images. 

Photographs of glass objects in this thesis all contain a sheet of white computer paper as a 

background, which was used to standardise white balancing and exposure across all 

images. 

 

Figure 5.5: Example of a hotspot in infrared imaging (Ugadale Point, KHM Captm 0221.01). The images are the same, 

with the hotspot outlined on the right (Appendix E). 

One final factor to consider in standardising object exposure is the tendency for 

hotspots to occur in infrared images. Hot spots are regions of an image, often in the shape 
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of the aperture, that register more light or register the light more intensely than the rest of 

the image (Melentijevic 2018). They manifest when a variety of lens and light intensity 

factors cause severe reflection of light, which concentrates near the centre of the image 

sensor (Melentijevic 2018). This results in an image with an area that appears over-

exposed (Figure 5.5, Appendix E). It generally occurs in infrared images, and the 

difference between intensity values within and outside this area differ significantly. To 

combat this, images can be taken at such a magnification as to locate the object of interest 

entirely within the hotspot zone. It will therefore affect all infrared measurements equally 

and still results in consistent relational data between objects. In the event of capturing an 

image before recognising the presence of hotspots, such as the one above, one can either 

acquire new images or limit measurements to only that area of the object situated within 

the hotspot range. 

Once reactions to specific light spectra are captured, they must be compiled and 

analysed. I investigated several techniques for doing so, the first of which involved 

collecting and averaging together 30 readings for ultraviolet and infrared reactions from a 

sample of individual pixels on the object. The sample was chosen to cover as much of the 

surface as possible while avoiding areas of corrosion and overexposure. Corroded glass 

reacts differently to light due to differing chemically from the glass itself, and differences 

in the type or manner of corrosion produce different reactions to light. Ultimately, data 

acquired for corroded areas likely gave more data for the corroding agent than the original 

glass. Similarly, over-exposed regions lack data, and therefore cannot provide accurate 

measurements for the object. Thus, both areas of corrosion and areas of overexposure 

should be omitted from studies investigating the chemical relationships of an object.  

However, this method only collects data from 30 pixels. As described in Chapter 

4, geologists use no fewer than 200 points when counting minerals in rock samples, and 
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one could argue that 30 pixels is too few to acquire an average reading. Point choice was 

also subjective, further questioning whether the sample is truly representative of the 

object. A single pixel is not a standard measurement that can be controlled between 

objects, either; the space it covers on an object will depend on the size of the object in the 

camera’s frame. Additionally, this technique would require 19,200 readings to cover the 

640 samples in this study, which is a large amount of work for only 640 data points.   

Given these issues, I decided to collect samples from 30 fixed 0.25mm squares for 

which the data had been averaged using Photoshop’s Blur: Average filter, which averages 

the readings in a selection together (Figure 5.6). This technique collected data for roughly 

2mm2 per object, measured using the scale included in the frame of each image. While 

this standardised the area of each object averaged for a reading, 2mm2 as a fixed area still 

constitutes different percentages of differently-sized objects. Readings for a smaller bead 

therefore cover a higher percentage of the object than readings for a larger bead. Thus, 

while it appears to standardise the area of measurement, it does not account for objects of 

different sizes. This technique therefore differed little from that collecting readings from 

individual pixels. 

 

Figure 5.6: Example of data collection through averaging 30 0.25mm squares per sample. 
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Figure 5.7: Final spectral measurement technique, selecting and averaging the entire surface of a sample except for 

areas of corrosion and over-exposure (Culbin Sands, NMS X.BIB 10) (Appendix E). 

Instead, the data in this case study derives from selecting as much of the object or 

area of interest as possible and averaging the colour for the area to produce a single 

reading for infrared (red), visible (green), and ultraviolet (blue) light for the entire sample 

(Figure 5.7, Appendix E). While this still resulted in different percentages of each sample 

being represented in the data due to differences in corrosion or exposure, each 

measurement captures as much of the object’s available data as possible. For polychrome 

objects, I limited each average reading to specific colours in specific areas of the object. 

For example, separate readings exist for the cobalt-blue glass used in the core of the 

object and the cobalt-blue used in a reticella line across the bead. This final technique 

seemed the most standardised and controlled that a study of this nature could achieve. 

5.4 MATERIALS 

For this study, I photographed 370 objects in the near-ultraviolet (300 – 400nm), 

visible (400 – 700nm), and near-infrared (950 – 1000nm) ranges. Of these objects, 25 

come from the Marischal Museum in Aberdeen, three are at the University of Glasgow, 
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seven at Kilmartin House Museum, six at the Iona Abbey Museum, and 180 at the 

National Museum of Scotland. I imaged a further 14 pieces currently housed at the 

University College London Department of Archaeology and 135 objects from the Anglo-

Saxon, Roman, and Reference collections at the British Museum for comparison. When 

accounting for polychrome objects, this provides multispectral data for 461 samples of 

glass (Table 5.1).  

Origin Objects Samples 

Anglo-Saxon 10 10 

Egyptian (New Kingdom) 43 95 

English (Late Medieval) 10 10 

Roman 30 36 

Scottish 221 254 

Modern 56 56 

Total 370 461 

Table 5.1: Total number of objects and samples from each region imaged for this study. 

I collected the 254 Scottish samples from 221 objects housed at museums across 

the nation. Yellow Scottish glass yields higher infrared readings than ultraviolet and tends 

to cluster towards the right side of the chart (Figure 5.8). Copper-blue glass tend to yield 

higher ultraviolet than infrared readings, while both white and cobalt-blue glasses vary 

widely. Unfortunately, there are insufficient samples of other colours in Scottish glass to 

allow for comparison between colours.  



Christie – 5: Case Study 2: Non-Visible-Range Photography and Object Chemistry – 176 

 

Figure 5.8: Scatter plot of near-infrared and near-ultraviolet spectral data of Scottish glass beads, grouped by colour. 

Roman samples came from three mosaic glass vessel sherds and 27 glass tesserae 

(Figure 5.9). While there are many samples of Roman glass, there are relatively few of 

each colour, making comparison to samples from other regions difficult. Another possible 

caveat is the tendency for Roman tesserae to show evidence of recycling. However, much 

of the glass in circulation in Europe during the Iron Age and Early Medieval periods was 

recycled, particularly that in regions with no evidence for glass manufacture (Chapter 

4.1.1).  

 

Figure 5.9: Spectral data for Roman tesserae and vessel glass. 
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Anglo-Saxon objects form the smallest sample group, with results from 10 

monochrome glass vessel sherds across 8 sites. Most objects were naturally-coloured and 

many were claw beakers. All Anglo-Saxon glass gave very low readings for both infrared 

and ultraviolet light, which appears to be common for many naturally-coloured glasses 

(Figure 5.10). 

 

Figure 5.10: Spectral data for Anglo-Saxon vessel glass. 

 

Figure 5.11: Spectral data for Scottish, Roman and Anglo-Saxon glass. 
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Compared to the Scottish material, the Roman and Anglo-Saxon glass clusters 

towards the middle of the chart. Some of the Scottish material overlaps with the glass 

from these regions, but much of the Scottish glass does not (Figure 5.11). This suggests 

that certain glass objects in Iron Age and Early Medieval Scotland were made using 

different recipes of glass, were made using recycled glass or are from a different 

chronological period than previously assumed. 

Egyptian samples for chronological comparison came from 43 glass vessel sherds, 

most of which were polychrome (Figure 5.12). These sherds date to 18th Dynasty New 

Kingdom Egypt (1550 – 1292 BC). While this predates the Scottish Iron Age and Early 

Medieval periods by at least 500 years, it still provides a valuable comparative 

assemblage both in verifying the effectiveness of this technique and in examining the 

possibility of recycled Egyptian glass appearing in the Scottish Iron Age or later periods. 

The primary colours represented were cobalt-blue, yellow, and white, with some 

examples of black and copper-blue. These samples could be compared relatively easily to 

the Scottish material, given the many samples of each colour.  

 

Figure 5.12: Spectral data for Egyptian vessel glass. 
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I also compared the Scottish samples to medieval potash window glass from Wells 

Cathedral in Somerset and 56 modern Venetian tesserae to determine whether it was 

possible to see a difference between the soda and potash glasses discussed earlier in this 

chapter. Interestingly, there is a visible difference in spectral data between modern 

tesserae and the stained window glass from Wells Cathedral (Figure 5.13), indicating that 

the difference in glass recipe is at least visible between medieval and modern samples. 

 

Figure 5.13: Spectral data comparing medieval English window glass to modern tesserae. 
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for scale. Smaller objects sometimes required the use of a macro lens, which did not 

affect the data. The camera was secured to a tripod and a remote shutter used to capture 

images of each object from as close to the same angle as possible (Figure 5.14). For a full 

list of equipment used in this thesis, see Appendix B. 

 

Figure 5.14: Camera set-up for visible and non-visible spectral photography. 

Each object was photographed using five combinations of filters and lighting 

(Table 5.2). Zoom was set automatically, then switched to manual for image capture and 

switched back to automatic before changing filters to ensure identical focus between 
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images. The camera inevitably moves when changing filters, but maintaining as much 

similarity as possible between photographs of the same object reduces the amount of 

correction required in compiling the false colour images. 

 

Image Filter(s) Wavelengths Lighting 

Ultraviolet Reflectance Schott S8612 

Hoya 360 

300 – 400nm LE UV torch 

Ultraviolet 

Fluorescence 

Schott S8612 

Hoya HMC UV cut 

400 – 700nm LE UV torch 

Visible Reflectance Schott S8612  

Hoya HMC UV cut 

400 – 700nm LED torch 

Infrared Fluorescence Neewer 950nm Infrared 950 – 1000nm LED torch 

Infrared Reflectance Neewer 950nm Infrared 950 – 1000nm Maglite Solitaire 

Xenon torch 

Table 5.2: Filter and lighting combinations for each photograph taken per object. 

All locations used to photograph objects in this study had standard fluorescent 

lighting, which was not captured in infrared or ultraviolet images when tested on-site. 

Some locations had windows that cast sunlight onto the workspace and therefore altered 

the intensity of light on the object, particularly ultraviolet and infrared. To combat this 

difference in lighting, objects were photographed in a portable light studio to block the 

light from the window (Figure 5.15). All objects therefore have as similar lighting as 

possible to each other despite being photographed in widely different locations. To ensure 

even lighting across the object despite using a single light source, I took multiple 

photographs with light from various angles for each combination of filters and lighting. I 

captured images in raw format to allow for greater processing capabilities. 
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Figure 5.15: Camera set-up in locations with ambient infrared and ultraviolet light. 

Photographs were imported into Adobe Bridge to adjust exposure and white 

balance to the white sheet of computer paper used as a background, then saved as .tiff 

files and imported into Adobe Photoshop. Here, photographs for each wavelength were 

combined in stacked layers with the blending set to ‘Lighten,’ (Figure 5.16, Appendix E). 

This sets all pixels to the lightest reading registered across all layers. Practically speaking, 

it creates an evenly lit image with no shadows, even when using a single light source to 

capture the original image. The layers were merged into a single, composite image. These 
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I exposed manually in Adobe Photoshop so the readings of either red (in infrared images) 

or blue (in ultraviolet images) for the white sheet of paper used as a background ranged 

between 235 and 255 all around the object (Figure 5.17, Appendix E). The final 

composite image was saved in .tiff format for further processing. 

   

 

Figure 5.16: Top row: Processed original ultraviolet images of a polychrome Guido Class 14 bead from Banff (MM 

ABDUA 15526; Guido 1978, 87) with light from varying angles; Bottom: Final processed image combining the 

originals into a single, composite image (Appendix E). 
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Figure 5.17: Example of an infrared (top) and ultraviolet (bottom) image with acceptable exposure readings (Amarna? 

BM 5615-29775 Z) (Appendix E). 

5.5.1 SPECTRAL MEASUREMENT AND ANALYSIS 

The composite near-infrared (950 – 1000nm), visible (400 – 700nm) and near-

ultraviolet (300 – 400nm) images were copied into Photoshop’s red, green, and blue 

channels to create false colour images. I manually aligned the images to each other to 
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ensure readings corresponded to the same areas of the object. I then duplicated the image, 

generated readings for each element of the object as discussed above (Chapter 5.3) and 

recorded the readings for infrared and ultraviolet light for each sample. 

The readings were then compiled into scatterplots (Figure 5.18). These plots omit 

the data for the visible range, instead opting to compare samples of similar colour to each 

other rather than print 3D scatter plots in two dimensions. I compared these readings for 

differences in region, colour, size, manufacture, and bubble concentration within the 

Scottish collections. I then compared this material to samples from contemporary Roman 

and Anglo-Saxon objects to determine chemical similarities or differences between each 

group. All interregional comparisons omit analysis of factors specific to beads, such as 

method of manufacture, because most comparative glass samples come from vessel 

sherds rather than beads. Finally, I compared these samples to New Kingdom Egyptian 

glass vessels, medieval window glass from Wells Cathedral and modern Venetian 

tesserae to determine whether known chemical differences between glass of differing 

chronological periods appeared in the data. 
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Figure 5.18: Scatterplot of spectral data for all glass samples included in this study. 
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them. Different combinations of ingredients may reflect near-ultraviolet and near-infrared 
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chemical differences between objects, but it does not necessarily show all possible 

differences. Similarly, clustering may not indicate chemical similarity between objects. 

However, it still provides more information than otherwise currently available using 

affordable, non-destructive methods.  

Additionally, there are limitations as to the number of objects imaged for each 

region and time period and the degree to which those match objects from other regions 

and periods. For example, I initially imaged 60 Roman objects, but only 30 contained 

similar colours to Scottish samples and were therefore eligible for comparison. 

Comparing spectral data for an opaque red bead to that of a translucent cobalt-blue bead 

does not work well, because it is difficult to determine the degree to which observed 

spectral differences are a result of different colourants or other chemical components. 

Additionally, I could not image similar numbers of the same type of glass from each 

region. There are 135 samples of opaque yellow glass from Scottish contexts, for 

example, but only three from Roman contexts. Despite this, the data still provide 

significant insight into relational chemical data for Scottish glass beads when compared to 

the other groups discussed above. 

Finally, this study also does not distinguish between possible recycled glass and 

visibly ‘pure’ glass. Recycling can drastically change the chemistry of an object, 

particularly if multiple batches of varying origins are melted together to form a new batch 

of glass (Freestone 2015). Spectral data for these objects would reflect the chemistry of 

the newly melted batch rather than the original glass and may not match spectral data for 

any other known glass sample. Accounting for recycling is beyond the scope of this 

study, but it remains a caveat to the data and the possible conclusions drawn from it. 

None of these caveats are particularly problematic, or at least no more so than 

they might be for any other study of archaeological glass. Recycling is a common caveat 
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in archaeological glass studies, one which chemical specialists are working to alleviate 

(Freestone 2015). The lack of samples for certain colours in certain regions largely results 

from both cultural preference at the time and from the inherent bias of what survives in 

the archaeological record. Additionally, the purpose of this case study is to demonstrate 

the value of challenging the current paradigms in archaeological imaging; fully 

investigating chemical differences in Iron Age and Early Medieval glass through false 

colour imaging is a possibility for future work, but it is not within the scope of this thesis.  

Finally, the inability to detect all chemical differences using a camera is 

negligible. While it would be ideal for the clusters in these scatter plots to indicate 

chemical similarity and the separations to indicate difference, it is unsurprising that not all 

chemical differences manifest as different reactions to light within the 300 – 1000nm 

spectrum. Still, the information gleaned from this study and described throughout the rest 

of this chapter is far more information than we might otherwise have about these objects. 

This technique is not meant to replace current methods testing chemical composition. 

Rather, it is meant to compliment them, to provide information that allows for a more 

targeted approach and to provide significant information to projects unable to access or 

afford more precise techniques. Additionally, this thesis did not focus on creating the best 

method for chemically testing objects through spectral photography. Further research 

would likely provide more insight into such a technique and the possible differences we 

could determine from it. 

5.6 RESULTS AND DISCUSSION 

Despite the caveats, the results of this study provide significant new information 

about bead and glass manufacture and trade in Iron Age and Early Medieval Scotland. 

Much of the Scottish material does not overlap with Roman or Anglo-Saxon material, 
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which becomes particularly apparent when comparing similar colours. There are also 

some preliminary chronological conclusions we can draw from the comparison between 

Iron Age and Early Medieval Scottish material, New Kingdom Egyptian glass vessels, 

Medieval stained glass and modern tesserae. This section will discuss the results and their 

significance for bead studies, while the next section will focus on the significance of this 

study for archaeological photography and spectral imaging. 

5.6.1 CORRELATION BETWEEN BUBBLES AND SPECTRAL DATA 

Given the possible indication in the last chapter that bubbles may correspond to 

object chemistry, comparing the spectral data to that for the bubbles within Scottish Iron 

Age and Early Medieval samples seemed beneficial. Interestingly, there was no 

significant difference between samples when grouped by the bubble concentration 

categories discussed in Chapter 4 (Figure 5.19). There were also no significant patterns 

when examining regional or colour variation for each bubble concentration.  This does 

not mean there are no bubble or spectral differences between objects of the same colour 

or from the same region; the previous chapter clearly demonstrates such differences. 

Instead, it suggests that the differences seen through bubble concentrations in the 

previous chapter are providing different information than the spectral information 

acquired here. Most likely, the bubble concentrations provide more indication of 

manufacture techniques while spectral data give more indication of chemical 

composition. 
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Figure 5.19: Spectral data for Scottish glass separated by bubble concentrations. 

5.6.2 DRAWN BEADS IN SCOTTISH CONTEXTS 

Separating the samples by the method of manufacture used to create the object 

shows a clear distinction between wound and drawn beads in Scottish contexts (Figure 

5.20). The chart below only includes data for glass serving as the core material of the 

object, because that is the material affected by these manufacturing techniques. This 

indicates a chemical difference between wound and drawn beads, but it is unlikely to 

relate specifically to the method of manufacture. 
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Figure 5.20: Spectral data for Scottish glass beads, separated by method of manufacture. 

There are currently 56 drawn glass beads from Scottish contexts included in this 

study, 48 of which come from the beach at Culbin Sands (Chapter 4.7). Drawn beads 

were not made in Europe prior to the 14th century, and therefore must either come from 

the Near East at the closest or date to a later chronological period (Francis 2002, 171). 

Only three colours of drawn beads appear in Scotland: copper-blue, cobalt-blue, and 

yellow. All the copper-blue and cobalt-blue drawn beads in this study come from Culbin 

Sands, while all but one of the drawn yellow beads were found at Glenluce Sands in the 

southwest. The final drawn yellow bead comes from Traprain Law in the southeast. 

The drawn copper-blue beads form a distinct cluster in the data, with infrared 

values less than 100 and ultraviolet values greater than 80. These blue beads also cluster 

separately from other objects of similar colour, both from Scotland and from Roman 

contexts (Figure 5.21). It is therefore unlikely that they are made with Roman glass, given 

the differences in spectral reactions. Similarly, it is unlikely that the glass used in the 

drawn copper-blue beads at Culbin Sands was made using a similar recipe to that found in 

other copper-blue beads in Scotland from this period. 
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Figure 5.21: Spectral data comparing Scottish and Roman copper-blue glass. 

Some of the modern copper-blue samples do overlap with the drawn copper-blue 

beads from Culbin Sands, however, suggesting these objects may be more modern than 

originally thought (Figure 5.22). In fact, when we eliminate the copper-blue beads from 

Culbin Sands, the modern samples do not overlap with any other samples. While overlap 

in these plots does not inherently signal chemical similarity, these beads do differ 

significantly from all other copper-blue samples in the study and, significantly, differ 

from Egyptian and Roman samples. Other beads from Culbin Sands date to later periods 

(Chapter 4.7), and none of the objects have secure contextual information. There are no 

other tiny drawn copper-blue beads in Scottish contexts from this period, and no parallels 

in nearby contemporary European contexts. When we consider both the spectral data 

provided here and the differences in bubbles discussed earlier (Chapter 4.8), it is likely 

that the copper-blue drawn beads from Culbin Sands are, in fact, modern beads. 
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Figure 5.22: Spectral data comparing drawn copper-blue samples from Culbin Sands to New Kingdom Egyptian glass 

and modern tesserae. 

 

Figure 5.23: Comparison of spectral data for drawn cobalt-blue Scottish samples to Anglo-Saxon, Egyptian, Roman, 

and modern cobalt-blue glass. 
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The drawn cobalt-blue beads do not separate themselves from Roman or Egyptian 

glass as nicely as the copper-blue beads do, but they also do not overlap with them 

(Figure 5.23). Scottish cobalt-blue samples do not overlap with Anglo-Saxon material 

either. Interestingly, the drawn cobalt-blue samples again correlate more closely with the 

modern tesserae. This could indicate that these beads, also largely from Culbin Sands, are 

likely modern as well. Alternatively, they could be from other regions not included in this 

study, like Scandinavia or the Near East. While many drawn cobalt-blue beads occur at 

Norse sites across Scotland, however, these are of a different shape and size to those at 

Culbin Sands. It therefore appears more likely that these beads postdate the 8th century 

AD, but more samples are needed given the scattered nature of the spectral results for 

cobalt-blue glass in this study. 

 

Figure 5.24: Comparison of drawn yellow Scottish samples to Egyptian, Roman, and modern yellow glass. 

Perhaps most interesting is the lack of drawn yellow beads in northern Scotland, 

coupled with the lack of drawn blue beads outside Culbin Sands for the Iron Age and 

Early Medieval periods. While drawn, these yellow beads do overlap with Egyptian and 

Roman yellow glass (Figure 5.24). In fact, the one drawn yellow bead from Traprain Law 

is the only yellow bead from the southeast to overlap with Egyptian and Roman material. 

Since these are still drawn beads, they cannot be coming from Europe in the Iron Age or 
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Early Medieval period. Their possible similarity to New Kingdom Egyptian material 

suggests they could be coming from the Near East. 

5.6.3 OPAQUE YELLOW GLASS IN SCOTTISH WOUND BEADS 

Opaque yellow glass, particularly that from wound beads in Scotland, is generally 

quite reflective of infrared and moderately reflective of ultraviolet light. There are not 

enough samples for regional comparison within Scotland, but there is a distinct difference 

between Scottish, Roman and Egyptian opaque yellows (Figure 5.25 top). There is 

Scottish material that overlaps with the Roman and Egyptian readings, but most yellow 

Scottish glass does not. However, most yellow data for Scotland comes from roughly 200 

monochrome wound yellow beads from Culbin Sands. Given the overlap between these 

and modern yellow samples as well as possibility of the copper-blue and cobalt-blue 

beads coming from post-medieval contexts, this group of beads could have similar 

problems. In fact, when we eliminate these beads from the data, the separation between 

Scottish and Roman and Egyptian samples almost disappears (Figure 5.25 bottom).  

While these results are compelling, other factors are affecting the data. When the 

Scottish data is isolated and grouped by samples coming from monochrome objects (for 

which the glass forms the core of the bead) versus polychrome objects (for which the 

glass forms a design element of the bead), a distinction between the two becomes clear 

(Figure 5.26). This suggests that the samples overlapping with Roman and Egyptian 

material may not indicate similarities between these collections. Instead, they could 

indicate chemical mixing between yellow glasses and the glass forming the core material 

of the bead they decorate, usually cobalt-blue, deep green or natural colours. 

Additionally, all Egyptian samples come from polychrome designs and could indicate 

similar mixing. Experimental archaeology would allow for further insight into this 

possibility. 
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Figure 5.25: Spectral data for Scottish, Roman, Egyptian and modern yellow glass including (top) and excluding 

(bottom) strings from Culbin Sands. 
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Figure 5.26: Comparison of Scottish monochrome and polychrome yellow glass samples. 

Finally, we cannot discuss possible chemical differences in yellow glass without 

examining differences in colourants. There are two primary colourants used to create 

opaque yellow glass: lead-antimonate and lead-tin. Importantly, lead-antimonate is the 

preferred (if not the only) colourant for Roman and Egyptian yellow glass, while the 

Merovingians used lead-tin (Heck et al. 2003, 43; Molina et al. 2014, 171; Nicholson and 

Henderson 2000, 208; Sayre and Smith 1973, 6; Shortland 2002, 518; Tite et al. 2008, 

67). It is possible, then, that the observed differences result from a difference in colourant 

between yellow beads.  

Some of the samples of yellow glass imaged in this study have been chemically 

tested, but only three of them are lead-tin yellows while the other 13 are lead-antimonate 

(Bertini et al. 2011; Bertini 2012; Freestone 2018). When plotting these samples using 

their infrared and ultraviolet reactions, there is no clear difference between those using 

lead-antimonate and those using lead-tin (Figure 5.27). It is possible that these objects are 

using larger percentages of lead in their recipes, particularly because lead is a prominent 

ingredient in yellow glasses and because similar increases in reflection are observed 

among cobalt-blue samples with high lead content (Chapter 5.6.4). Given the issue of 
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polychrome versus monochrome samples and the fact that all chemically tested samples 

of yellow glass in this thesis are polychrome designs, however, differences between lead-

antimonate and lead-tin may be overpowered by intermixing with other glass types in 

polychrome samples.  

 

Figure 5.27: Comparison of yellow samples grouped by known colourant. 
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and Anglo-Saxon cobalt-blue glass only adds to the confusion (Figure 5.29). This could 
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Figure 5.28: Spectral data for cobalt-blue glass in Scotland, separated by region. 

Modern cobalt-blue tesserae do appear to respect the outer edge of the Scottish 

samples (Figure 5.29). They generally do not overlap with Scottish, Egyptian, Roman, or 

Anglo-Saxon glass, but neither do they cluster together particularly strongly by 

themselves. Modern cobalt-blue samples do show similarly wide variations to ancient 

samples: they continue to include samples that are absorptive of ultraviolet and infrared 

light as well as samples that are highly reflective of both. 

 

Figure 5.29: Spectral data comparing wound cobalt-blue Iron Age and Early Medieval Scottish glass beads to Anglo-

Saxon, Roman, Egyptian and modern samples. 
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The wide variation in readings likely is due both to different recipes used for 

making cobalt-blue glass and to the frequency with which it was recycled. The varied 

measurements from 18th Dynasty Egyptian samples to Iron Age and Early Medieval 

Scottish samples and even modern tesserae indicate that people have been recycling 

cobalt-blue glass for millennia. Despite the continuous range of readings, however, there 

is a clear difference between certain extremes (Figure 5.30, Appendix E). Interestingly, 

one of the highly reflective samples has been chemically examined through pXRF and 

found to have a significantly higher lead content (33.5%) than one of the highly 

absorptive samples tested at the same time (0.07%). This lead makes the blue more 

vibrant and may render the glass highly reflective in infrared and ultraviolet light. 

Additionally, chemically tested Roman samples showed similar patterns: samples with 

higher lead concentrations produced higher infrared readings than those without. There 

are samples with high lead percentages that do not produce high spectral readings, but 

these also appear to have higher percentages of cobalt, which may be negating the effects 

of the lead. More precise, quantitative chemical testing is needed to determine the nature 

of this relationship, but it appears that the more lead a cobalt-blue object has, the more 

reflective it becomes in non-visible spectra.  

Regardless of which chemical compound has caused the differences observed in 

cobalt-blue beads, one important outcome of this study is that we can see a difference 

between these objects. Cobalt-blue glass and glass objects often appear typologically 

similar, particularly in monochrome objects. Coupled with the frequency with which this 

glass was recycled in pre-modern glass-working, it is often difficult to identify difference 

at all. While this method has not produced specific clusters of cobalt-blue glass that could 

serve as typological categories, it does indicate a significant chemical difference between 

objects for which typological classification is otherwise difficult. 



Christie – 5: Case Study 2: Non-Visible-Range Photography and Object Chemistry – 201 

 

 

Figure 5.30: Visible-range and false-colour images of a highly absorptive cobalt-blue bead from Rhynie (left) (UG SF 

15021) and a highly reflective cobalt-blue bead from Clachbreck (right) (UG CLB 1) images (Appendix E). 

5.6.5 OPAQUE WHITE GLASS IN SCOTTISH WOUND BEADS 

Some opaque white samples come from Scottish objects in which the white 

appears as an accidental inclusion in an otherwise yellow design (Figure 5.31, Appendix 

E). Invariably, these white samples give ultraviolet readings below 100 and infrared 

readings over 100 (Figure 5.32). Overheating lead-tin, a common colourant of opaque 

yellow glass (Chapter 5.5.3), will create tin-oxide and turn the glass white beginning 

around 1000º C (Biek and Bayley 1979, 16). This could indicate that those white glasses 

with infrared and ultraviolet readings above and below 100 respectively were made using 

tin-oxide. However, overheating lead-antimonate, the other common colourant of opaque 
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yellow glass (Chapter 5.5.3), creates calcium antimonate and turns the glass white 

beginning around 1000º C as well (Molina et al. 2014, 178 – 179), leading to a lack of 

clear identification for the possible chemistry of this cluster. Another cluster of white 

glass invariably produces readings over 100 for both ultraviolet and infrared, which may 

indicate the use of either tin-oxide or calcium-antimonate, but without further testing we 

cannot be sure. However, this group does have higher concentrations of bubbles. These 

may be coming from bone ash or other sources of calcium used to create calcium-

antimonate white glass, which would react with the glass to form large numbers of 

bubbles. There is also a third group with readings below 100 for both infrared and 

ultraviolet wavelengths, which also has high concentrations of bubbles. This could 

indicate that these ‘whites’ are instead areas of the core glass colour that have been 

saturated with bubbles to appear white (Chapter 4.1.4). 

 

Figure 5.31: Example of possible overheating of either lead-tin or lead-antimonate yellow to create white glass (Culbin 

Sands, NMS X.BIB 10) (Appendix E). 
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Figure 5.32: Spectral data for Scottish samples of white glass. 

Available chemical data for Scottish samples shows two calcium-antimonate 

glasses with both readings above 100 and two calcium-antimonate glasses with both 

readings below 100. There is not enough evidence to determine what is causing such a 

difference in readings, particularly because one of the glasses with higher readings has 

larger amounts of silver and manganese than the other samples, including the one with 

similarly high readings. There is also chemical evidence for another sample with low 

ultraviolet and infrared readings that indicates it is not coloured white, but rather is a 

colourless glass that has been saturated with bubbles, as stated above. It appears, then, 

that both white glasses coloured with calcium-antimonate and colourless glasses saturated 

with bubbles may give similarly low readings while having starkly different chemical 

compositions. Further chemical testing of these samples would allow for confirmation 

and clarification of these patterns, particularly because none of the published data for the 

samples included in this study include a lead-tin white glass. 
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White glass in Scotland does overlap strongly with that used in New Kingdom 

Egyptian objects (Figure 5.33). Scottish glass seems to separate into clusters, but this may 

be due to a relative lack of samples. Roman white glass clusters together, while Egyptian 

white glass presents more of a spread. Scottish glass does not seem to overlap with the 

Roman material per se, but this could be due to the relative lack of samples from Roman 

contexts. 

 

Figure 5.33: Spectral data comparing Scottish, Roman and Egyptian white glasses to modern white tesserae. 

Modern white glass forms a highly reflective cluster that is somewhat separate 

from the ancient samples (Figure 5.33). It is quite distinct from the Roman white glasses 

included in this study, and barely overlaps with the outer edges of Scottish and Egyptian 

samples. One sample of chemically tested modern white glass shows elevated levels of 

both lead and manganese, which may indicate why these samples are highly reflective 

(5.4.4). This sample does not have detectable levels of tin or antimony, if any, suggesting 

it is neither lead-tin or calcium-antimonate. Still, it is not clear whether all modern 

samples are chemically separate from the Scottish and Egyptian samples or whether a 

relative lack of samples coupled with a lack of chemical testing is affecting the current 

data. 
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5.6.6 NATURALLY-COLOURED GLASS IN SCOTLAND 

There are clear differences between naturally green and naturally brown glass 

within the Scottish assemblage (Figure 5.34). This suggests that larger differences in base 

chemistry or trace elements may be affecting these results, since colourants have not been 

added to these samples. We cannot know which elements are affecting the change without 

chemical testing, but it likely is due to the impurities in the sand used to make the glass. 

 

Figure 5.34: Spectral data for Scottish naturally-coloured glass samples. 

Naturally-coloured Scottish glass does not generally overlap with Roman or 

Anglo-Saxon samples either, particularly when separated by colour (Figure 5.35). 

Naturally brown glasses form two clusters, one with infrared readings under 60 and 

ultraviolet under 35, and the other with infrared over 70 and ultraviolet over 40. All 

Roman and Anglo-Saxon samples cluster in the first group, while all but one of the 

Scottish samples cluster in the second. This separation between Scottish and Roman 

samples is unexpected, because many of the Scottish samples come from window glass 

often said to be Roman in origin. Chemical data suggests the Anglo-Saxon material has 
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higher concentrations of manganese than some of the Scottish samples, but this is 

speculation without other chemical data for comparison. 

 

Figure 5.35: Spectral data for Scottish, Roman, Anglo-Saxon and medieval English naturally-coloured green glasses 

and naturally brown glasses. 

Most of the naturally-coloured glass from Wells Cathedral does not overlap with 

the Scottish samples (Figure 5.35). Interestingly, some of the naturally-coloured browns 

from Wells Cathedral do overlap well with Roman and Anglo-Saxon natural brown 

samples. This could indicate some medieval window glass at Wells Cathedral is remelted 

or reused Roman or Anglo-Saxon glass. As stated earlier, however, we cannot equate 

overlap in these scatter plots with chemical similarity.  

5.6.7 NEWSTEAD AND TRAPRAIN LAW 

Samples from Newstead and Traprain Law do cluster separately in the data, 

suggesting a chemical difference between the glass at each site (Figure 5.36). Relatively 

few samples from both sites are eligible for comparison, because I could only image five 

objects from Newstead for this study. All five are cobalt-blue glass melon beads, which 

are highly distinctive in the archaeological record in Scotland. When comparing only 

cobalt-blue beads from Traprain Law and Newstead, we see differences in the glass that 
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mirror the conclusions drawn in the last chapter using bubble data (Chapter 4.9). Only 

one object from Newstead has an infrared reading over 40, compared to all cobalt-blue 

objects from Traprain Law. These results suggest a significant difference between the 

beads at Newstead and those at Traprain Law, particularly when combined with the 

differences in bubble concentrations discussed in the previous chapter (Chapter 4.9). This 

is relatively unsurprising, however, since all samples from Newstead are cobalt-blue 

melon beads while none of the samples from Traprain Law are. Melon beads are a 

distinctly Roman style in southeast Scotland. However, difference in the glass used to 

make the beads between Newstead’s melon beads and the other cobalt-blue beads at 

Traprain Law indicates differences in cultural preference between the Roman-occupied 

Newstead and the local population at Traprain Law.  

 

Figure 5.36: Scatterplot showing cobalt-blue samples from Traprain Law and Newstead. 
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5.7 NON-VISIBLE-RANGE SPECTRAL PHOTOGRAPHY AS CHEMICAL 

TESTING 

Compared to the techniques discussed at the beginning of this chapter, there are 

many benefits to spectrally photographing archaeological finds. First, there is a much 

lower minimum size requirement, if one exists at all. So long as the camera can see the 

object, it can spectrally photograph it. This is important for beads, since most 

archaeological beads from Iron Age and Early Medieval contexts worldwide are less than 

6mm in diameter. Objects that are too small for XRF, Raman Spectroscopy, or other 

techniques with minimum size requirements can still be spectrally photographed. Second, 

the technique is non-destructive for most archaeological materials. Art historians often 

use it to identify pigments, suggesting the types of infrared and ultraviolet light used are 

safe for more sensitive objects. Photography is entirely non-contact, allowing for imaging 

of fragile or delicate objects, and does not require a sample for testing. 

Spectral photography as described here is also affordable. The largest expense is a 

camera and its conversion to full spectrum imaging, totalling roughly £600 for a standard 

dSLR. In total, then, the equipment required for visible and non-visible spectral 

photography will cost a project roughly £1200 – 2300 if starting from scratch (Chapter 

8.4). While this is still out of reach for certain project budgets, it is significantly more 

affordable than any of the techniques mentioned earlier in this chapter. 

The equipment is portable, allowing for travel to museums and other locations. 

This enables specialists to image objects that may not be able to move to a lab, such as 

sensitive or fragile collections or larger monuments such as buildings or standing stones. 

The kit can fit into a backpack or camera bag and can be transported to any desired site so 

long as proper precautions are taken to weather-proof the bag. Additionally, anything can 

be spectrally photographed, from the landscape to buildings and monuments to small 
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finds (Chapter 7). The principles apply to everything in existence, so there is no limit to 

the type or number of things one can spectrally image. Few if any techniques for chemical 

analysis currently exist that are affordable, portable, non-destructive, and can be applied 

to any archaeological material. 

Non-visible spectral photography of archaeological objects is a non-destructive, 

affordable, portable technique that archaeologists can use to gather general chemical 

information about an assemblage or collection of objects. While there is currently a 

significant need to chemically test certain groups of objects to confirm the patterns seen 

here, the mere existence of patterns is data not previously acquired for many of these 

samples, particularly the Scottish ones. These results provide significant data that can lead 

to both new conclusions about the objects and a more targeted approach to further, more 

precise chemical testing, should a project desire. The technique does not replace more 

precise methods like XRF, PIXE, or LA-ICP-MS, nor was it ever intended to do so. 

Rather, it provides quick, relative chemical data in an affordable, non-destructive manner 

that can then be confirmed or expanded upon using a more precise technique if needed. 

There is the possibility that this methodology could provide further data on chemical 

relationships between objects, but this would require additional chemical testing to 

confirm the patterns seen above. 

Our obsession with the latest new technology in archaeology has led to the general 

assumption that a project must either spend significant amounts of their budget on 

determining the precise chemical composition of a series of objects or that they simply do 

without. Projects with lower budgets must choose their samples carefully to acquire the 

desired data. This approach directly correlates to our assumption that the latest new 

technology is more objective and provides the best results, our subsequent tendency to 
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invest less in existing affordable technologies and our hesitance in challenging the current 

standardised techniques in archaeological photography. 

Chemical testing is not an all-or-nothing endeavour. There is no fault or shame in 

forgoing precise chemical measurements in favour of a more affordable technique. There 

is also no reason archaeology as a field should not be striving to create such techniques, 

particularly because most archaeological projects have relatively low budgets. This 

chapter presents a technique that can provide a degree of relational chemical data for any 

object or assemblage using three torches, a camera, some filters, and photo-editing 

software. While the process for developing this technique was complex, it was less 

complex than inventing XRF or LA-ICP-MS. Questioning the boundaries of 

archaeological imaging techniques is therefore an accessible, relatively affordable 

endeavour that yields highly informative results, particularly for object categories that the 

field has historically struggled to represent well. 
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6 CASE STUDY 3: SPECTRAL RTI AND PHOTOGRAMMETRY 
Archaeology need not limit its use of spectral imaging to photography alone; it 

can also benefit any visualisation technique that uses photography as its core principle, 

like reflectance transformation imaging and structure from motion photogrammetry. 

Glass beads are notoriously difficult to photograph due to issues of size, reflectance, and 

translucency or transparency (Chapter 1.2.3). The problems encountered in photographing 

these objects naturally transfers to creating 2.5- and 3D visualisations that use 

photography as their dataset. For example, the algorithm used to predict the location of an 

image relative to the object in SfM photogrammetry appears to treat reflective patches as 

a surface design feature, thereby thinking it has correctly aligned the images to produce a 

model of the bead when instead it has aligned the reflective patches. In this chapter, I 

apply spectral imaging techniques to PTM RTI and SfM photogrammetry of Iron Age and 

Early Medieval glass beads from Scotland to demonstrate their success where standard 

methods typically fail. 

The difficulties associated with imaging SRT materials has encouraged many 

specialists to avoid imaging these objects altogether. During this PhD, several 

archaeological imaging specialists voiced that it was impossible to successfully 3D model 

such objects without expensive equipment like a CT scanner. In a sense, they are correct: 

it is difficult, if not impossible, to create 2.5- and 3D visualisations of SRT objects like 

glass beads using the standard methods for RTI and SfM photogrammetry. By 

experimenting with and applying non-standard archaeological photography techniques to 

the base images used in PTM RTI and SfM photogrammetry, however, I have 

successfully imaged objects for which such visualisations are supposedly impossible. 
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6.1 REFLECTANCE TRANSFORMATION IMAGING 

Reflectance transformation imaging creates a 2.5-dimensional visualisation by 

calculating the surface normals of an object from a single perspective, normally using 30 

– 50 images with varying lighting angles (Diaz-Guardamino and Wheatley 2013, 191; 

Malzbender et al. 2001, 3). The result is a visualisation of the object from a single 

viewpoint that has the appearance of being three dimensional. Specialists can create 

polynomial texture maps (PTM) within RTI to manipulate the surface through varying 

texture adjustments and measurement alterations, allowing them to deepen grooves or to 

apply certain settings that allow for easier identification of surface features such as 

carvings, surface wear, or tool marks (Cultural Heritage Imaging 2010, 12; Diaz-

Guardamino and Wheatley 2013, 192). 

6.1.1 CURRENT IMAGE CAPTURE TECHNIQUES FOR PTM RTI OF OBJECTS 

The current procedure for generating PTM RTI of an object is as follows. Place 

the object on a neutral background with a reflective RTI sphere next to it. These spheres 

come in a range of sizes and all are either black or red. Certain objects require two 

spheres, but these spheres also block light in some images. For this reason, one sphere is 

preferable to two. Place the sphere so that it will always show a highlight reflection 

regardless of where the light source is, but also casts minimal shadow on the object 

(Figure 6.1).  
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Figure 6.1: Ideal positioning of the RTI sphere such that it can capture reflections from all angles, but casts minimal 

shadow on the object itself. 

Next, attach the camera to a tripod at an angle that captures both the object and the 

sphere straight on. Set the field of view such that both the object and the sphere lie within 

the frame at their maximum level of detail. Set the focus to automatic to avoid 

accidentally adjusting the field of view while adjusting other settings. Next, attach a 

remote shutter to ensure the camera remains still during image capture. Touching the 

camera or even shifting your weight during image capture often results in micro-

movements of the camera or object. Images captured when the camera or object has 

moved therefore show the object at a different angle or in a different position than the rest 

of the images. Consequently, the compression of these images into a single RTI will be 

blurry because the object is in different locations in each image. 

Set the camera to manual exposure, turn off all other light sources that may 

interfere with the process and turn on the single light source used for RTI image capture 

(e.g. a torch). Aim the torch at a roughly 60-degree angle to the object, then set the 

aperture. Set ISO around 100-200 for the largest sensitivity to light (Figure 6.2). Aperture 

will range between F11 and F30, but ideally would fall at or above F18. The aperture and 

ISO determine the necessary shutter speed for even exposure, which usually falls around 
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1 second. Next, move the torch to the level of the table to ensure the camera can still 

capture an image at the lowest level of light. This image will be darker but should still 

register on the camera’s sensor. Finally, move the torch to the same angle as the lens and 

ensure the camera can capture an image without areas of overexposure on the object. This 

image will be lighter but should still contain the necessary data for RTI. 

   

 

Figure 6.2: Setting focus and exposure using various angles of light. 

With the torch next to the lens, set the focus of the camera automatically. Take a 

test image and examine it to ensure it has captured the desired detail. Continue setting the 

focus automatically and taking test images until you are satisfied with the result. 

Immediately set the focus to manual to avoid the autofocus changing between images. Do 

not touch the lens until you are finished with image capture to avoid moving the camera.  

Using the remote shutter, begin taking images while placing the torch at different 

angles to the object. Follow a dome pattern between the camera and the object, taking 
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care not to touch the camera or the object (Figure 6.3, Appendix E). Remain as stationary 

as possible while moving the torch, as many floors are flexible and may bounce when you 

take a step. Capture between 30-50 images. More will help the process up to a point, 

while fewer will jeopardise the possible success of the resulting visualisation. Take care 

in placing the torch near the tripod, since any movement will jeopardise the results. 

Always capture images in the camera’s raw format to ensure the most detail.  

   

 

Figure 6.3: Example of the dome pattern of light (top) and the resulting composite image of all reflections captured by 

the RTI sphere indicating coverage (bottom) (Appendix E). 

It is possible to automate light angles using a dome of various automated light 

sources (Cultural Heritage Imaging 2018c). One light flashes per image taken, 

standardising both the number of images and the angle of each light source. Domes 
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ensure full coverage of an object and are slightly faster in capturing images than changing 

the light by hand, but they are also expensive. Domes often contain between 40 and 100 

individual lights as well as the separate mechanisms for running each of them, which 

quickly becomes too expensive for many projects. The primary supplier for RTI domes 

has stopped selling them and making a 12” dome from scratch costs roughly £800 

(Cultural Heritage Imaging 2018c; Pawlowicz 2015). A good torch costs between £10 - 

£50, and manually moving or holding the torch while capturing images is not difficult. 

Import the images into the photo-editing software of your choice and white 

balance to the neutral background behind the object. Process images as a batch to ensure 

they maintain the same settings relative to each other. Do not make any adjustments other 

than white balancing or adjusting exposure by an identical interval for each image. Other 

alterations such as sharpening the images, reducing noise, or altering images individually 

can destroy data vital to RTI processing. Import the images into RTIbuilder using the 

settings for polynomial texture mapping (PTM) and follow the steps for processing 

(Cultural Heritage Imaging, 2010). In the completed file, examine the surface normals to 

ensure proper coverage. 

If the RTI is fuzzy or out of focus, it is likely that the camera or the object moved 

during image capture. If so, there are three primary methods to fix the blurriness. The first 

option is to reset the object and camera and acquire a new set of photos. This negates the 

previous image set in favour of a new one and requires equal amounts of work. The 

second technique is to eliminate the images that are in a different position from the RTI 

process. This eliminates certain exposure angles from the RTI, but it is a quick solution if 

there are a small number of offending images. The final option is to edit the misplaced 

images by shifting them to the correct relative location. This requires access to photo-

manipulation software and can take significant amounts of time, but it is worthwhile if 
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either only a few images are out of alignment or if the object is not available for further 

imaging. 

6.1.2 RTI OF SRT OBJECTS USING CURRENT PRACTICES 

The above technique for RTI works quite well for objects measuring between 0.05 

- 1m in length, width, or diameter and made from an opaque, non-reflective material. I 

have found it problematic for any object outside this description, particularly SRT 

objects. The results vary considerably and often contain large patches of missing or 

poorly represented data due to issues of transparency or translucency (Figure 6.4, 

Appendix E). 

 

Figure 6.4: Photograph (left) and standard RTI output (right) of a highly reflective bead, resulting in grey patches 

(Appendix E). 

Small objects run the risk of not being captured by the camera. A standard zoom 

lens cannot capture objects smaller than a few centimetres in enough detail to produce 

informative results. Additionally, most surface features of small objects are smaller and 

shallower than those on larger objects and may not register on the sensor if using a 

standard lens. Reflective objects result in overexposed patches in the images that produce 

grey areas on the final output (Figure 6.4). These areas contain little to no surface data. 
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The more patches of overexposure there are of an object, particularly when moving the 

light source around, the less information the final reflectance transformation image will 

contain. Finally, images (and therefore RTI) of translucent or transparent objects capture 

elements that are beneath rather than a part of the surface. These could include bubbles, 

inclusions, striations, or anything behind the object such as a background, table, or even 

the opposite surface of the object. The resulting visualisation will provide information 

about the perceived surface of the object, which will include its interior or the objects 

behind in addition to the surface itself. 

Each of these factors often result in failed RTI, particularly if an object has two or 

more offending characteristics. Unfortunately, many archaeological small finds are SRT 

objects (e.g. glazed ceramics, lithics, glass vessel sherds, amber pendants, faience beads, 

bangles, semi-precious stone ornaments, or any type of metalwork). Specialists 

recommend covering a reflective, translucent, or transparent object in talc or other 

powders to create a matte surface, a recommendation that appears in earlier texts 

concerning the photography of reflective surfaces (e.g. Ives 1941, 264). This is often 

unhelpful for archaeological objects, however, since many materials react poorly to 

powders and acquiring permission to use them on archaeological objects may be difficult. 

Additionally, many surface features of these objects are shallow or faint enough that the 

powder fills them in, thereby defeating the purpose of the RTI. Standard techniques and 

troubleshooting for PTM RTI of SRT objects often fail, rendering RTI difficult if not 

pointless for these objects. 

6.1.3 PHOTOMACROGRAPHIC AND PHOTOMICROGRAPHIC RTI 

To solve the issues of poor RTI outputs, we must solve the issues encountered in 

photographing SRT objects. First, we must solve the issue of size; RTI software cannot 

create RTI of an object if it cannot ‘see’ it. I originally began experimenting with a 40mm 
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macro lens to capture photomacrographic RTI, or RTI with a macro lens (Figure 6.5, 

Appendix E). Macro lenses work well for bead photography, and this does not change the 

standard RTI procedure significantly. Macro lenses require care in setting the focus and 

aperture due to differences in depth of field to a standard lens (Chapter 3.1.3), but 

otherwise follow the same steps as standard RTI. 

 

Figure 6.5: Example of successful photomacrographic RTI (Loch Eriboll, UG F128) (Appendix E). 

Because the macro lens focuses an object so that the ratio of the object’s size to 

the space it covers on the sensor is at least 1:1, images taken with a macro lens appear to 

have a shallower depth of field (i.e. more of the image appears out of focus). Rather than 

setting the focus automatically to the surface of the object, then, set the focus to just 

beyond the object’s surface instead. The range of acceptable focus as perceived by human 

eyes falls on either side of the specific focal length of the macro lens. Setting the focus to 

the surface of the object only uses half of the range of acceptable focus and results in 

more of the image appearing blurry (Figure 6.6). Setting the focus to just beyond the 

surface of the object captures the surface in the front half of this range and the rest of the 
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object in the back, thus maximising the amount of the object that appears focused. All 

other processing is the same as the standard method described above. 

 

Figure 6.6: The range of acceptable focus when the plane of focus lies at the surface of the object (top) versus just 

beyond the surface of the object (bottom). 

Despite the benefits of photomacrographic RTI, there were still many beads that 

failed due to their size. Having worked with a digital handheld microscope in the field for 
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several years, photomicrographic RTI seemed a logical option (Figure 6.8, Appendix E 

(PowerPoint Slide 10)). For this, I used a DinoLite AM4113ZT Pro Digital Microscope, 

but many other models should also work. These microscopes require a tripod and cannot 

use the same tripod as the camera due to their size. DinoLite and various other providers 

do sell tripods for their microscopes, but a Gorillapod Original tripod, a bicycle light 

mount and some blu-tack work well enough (Figure 6.7). This kept the microscope 

stationary enough for image capture and cost £25, whereas the cheapest tripod from the 

microscope suppliers costs £80 – 100 (GT Vision 2018b). 

 

Figure 6.7: Set-up for RTI using a microscope (Appendix E). 
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Figure 6.8: Example of successful photomicrographic RTI (Glenshee, NH no known number) (Appendix E). 

For photomicrographic RTI, I fixed the tripod so that the microscope was directly 

over the object, then affixed a small RTI sphere on the table next to the object. A 

handheld LED torch is recommended as a light source; the microscope has built-in LED 

lights, but these do not help in RTI because they never change position. Otherwise, 

photomicrographic RTI proceeds similarly to photomacrographic RTI, with the focus set 

to just beyond the surface of the object to maximise depth of field and ensuring automatic 

exposure settings for the microscope have been turned off. Images were saved as .bmp 

files and processed the using RTIBuilder 2.0.2 using the standard PTM methods 

described in section 6.1.1 (Cultural Heritage Imaging 2018a). I have not encountered any 
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problems relating to size that could not be solved through photomacrographic or 

photomicrographic RTI. 

6.1.4 SPECTRAL RTI 

Solving the issue of size helps, but it does not eliminate all difficulties 

encountered when imaging glass beads or other SRT objects; they are still reflective and 

often translucent or transparent (Figure 6.9, Appendix E (PowerPoint Slide 7)). Most 

advice for reducing reflection in photographing and object centres around diffusers or 

light tents, which spread light out from its source to soften its effect on the subject. 

Alternatively, photographers can use a polarising filter, which only allows light in a 

certain orientation to pass through and thereby eliminates reflective patches. 

Unfortunately, diffusers, light tents, and polarising filters also block or eliminate the 

reflection of light on the RTI sphere, which RTI software requires for calculating surface 

normals.  

 

Figure 6.9: RTI result of a replica Norse bead using conventional techniques, resulting in grey patches across the 

surface of the bead (RO 002) (Appendix E). 
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Spectral photography provides a solution. Certain filters make translucent or 

transparent objects appear opaque while others make them appear transparent (Chapter 

3.3). Applying these filters to RTI images produces significantly better results than 

visible-range images (Figure 6.10, Appendix E (PowerPoint Slide 7)). Additionally, both 

outputs allow for analysis of how surface wear (in the case of opacifying filters) or 

bubbles (in the case of clarifying filters) react to light at varying angles, something that 

rarely has been examined in archaeological glass studies. Interestingly, I have never 

encountered problems with translucent or transparent objects in RTI after solving the 

issue of reflection. Either the object is opaque in the image, thus negating the issue of 

translucency, or it is entirely transparent. Perhaps, then, translucency or transparency is 

not as problematic as previously thought. 

  

Figure 6.10: The same Norse replica bead after applying a digital red filter (left) and a digital blue filter (right) to the 

images (RO 002) (Appendix E). 

Shortly after discovering this technique and beginning my experiments with non-

visible-range spectral imaging, I travelled to Kilmartin House Museum to photograph 

eight glass beads and toggles using spectral photography, RTI, and photogrammetry. I 

could to turn off the light for image capture, but there was a large window with no drapes 

or blinds to block the light from outside. I was not capturing any ambient light through 
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the window with a UV filter, however, and could use ultraviolet-RTI to eliminate the 

window problem. This is because ultraviolet light fixtures are rare in a public setting, 

especially in museums, and because modern window glass blocks ultraviolet light. 

Capturing RTI images in the ultraviolet range rather than the visible in spaces for which 

one cannot control ambient light produces results similar to capturing visible-range RTI 

images in a space in which one can (Figure 6.11, Appendix E (PowerPoint Slide 12)).  

 

  

Figure 6.11: Example set-up of ultraviolet RTI in an open office with ambient fluorescent light (above) and its results 

(below) (Newstead, NMS X.FRA 890) (Appendix E). 
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The ability to capture RTI images without worrying about ambient lighting from 

windows or fluorescent lighting is a significant benefit to archaeological imaging. While 

photography in a light-controlled room is possible in museums, it often requires further 

scheduling in larger institutions and may be impossible in smaller ones.  There may be 

other people in the workspace unless reserving specific photographic areas, making it 

inconvenient if not impossible to turn off overhead lights. The lack of ultraviolet ambient 

lighting indoors allows specialists to capture ultraviolet RTI image sets in an indoor space 

lit with natural, incandescent or fluorescent lighting without either compromising the 

results or inconveniencing others in the room (Figure 6.11, Appendix E). 

  

Figure 6.12: Example of an unsuccessful UV-RTI with dark patches and poor surface normals (Balure Dun, KHM SF 

56) (Appendix E). 

Not all UV-RTI outputs were successful; many produced the same grey or black 

patches of lost data and the calculated normals only provided minimal information, if any 

(Figure 6.12, Appendix E). Applying visible-range digital filters eliminated all reflection 

problems and resulted in successful RTI of even the most highly reflective glass beads 

(Figure 6.13, Appendix E). Thus, using UV-RTI when in indoor spaces without light 

control and applying visible-range filters to any image set that produces artefacts in the 

RTI, including non-visible-range RTI, solves any issue of reflection. 
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Figure 6.13: Example of an unsuccessful UV-RTI and successful filtered UV-RTI (Balure Dun, KHM SF 57) (Appendix 

E). 

6.2 PHOTOGRAMMETRY 

Similar issues of size, reflectiveness, and translucency or transparency also plague 

standard photogrammetric 3D modelling processes. Structure from Motion (SfM) 

photogrammetry is the creation of 3D models by digitally aligning multiple overlapping 

images of an object taken from various angles (Doneus et al. 2011, 82; Westoby et al. 

2012, 301). It builds on the principles of stereoscopic imaging to calculate three-

dimensional data for individual points found in overlapping images taken at different 

angles (Campana 1977, 345 – 346; Doneus et al. 2011, 82; Eder 1948, 402; Westoby et 

al. 2012, 301). Yet, these standard methods often produce worse results for SRT objects 

than those created using alternative techniques. 
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6.2.1 CURRENT PHOTOGRAMMETRIC TECHNIQUES 

There are two current styles of SfM photogrammetric image capture: one in which 

the object remains stationary as the camera moves around it and one in which the camera 

remains stationary as the object rotates on a turntable. This thesis focuses on the 

technique in which the camera moves, because experience has shown that the software 

currently has more difficulty aligning images captured using a turntable than those 

captured by moving the camera for SRT objects.  I also focus on rendering images in 

Agisoft Photoscan, because that was the most affordable software available for 

photogrammetric 3D modelling during the research phase of this PhD. The methods for 

image capture and rendering prior to importing them into 3D modelling software will be 

similar if not the same for other 3D modelling software. 

According to current, standard methods, place the object on a neutral background. 

Light the object evenly. Set camera settings to auto focus and auto exposure and attach 

the camera to a tripod at the desired angle. Setting the camera settings manually may 

result in failed models if images are unfocused or poorly exposed. Either manually or 

using a remote shutter, take an image in the camera’s raw format. Move the camera to the 

next desired angle around the object, but do not change the lighting or background. 

Repeat the process until you have acquired a minimum of 40 images from as many angles 

as possible. When assembled, the images should capture numerous angles of the object 

with significant of overlap between them. There is no required number of images for 

photogrammetric 3D modelling, but the minimum recommended number is around 40. 

Most projects should take closer to 60 – 100 images to ensure full coverage with enough 

overlap between images. Capture images in the raw format and process them into .tiff or 

.png files for modelling. While photogrammetry software can process .jpg files into a 
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model, most .jpg files have eliminated certain amounts of data in favour of smaller file 

size (Chapter 3.1.5).  

To minimise error for difficult objects, current methods suggest using a diffuser, 

light tent or polarising lens to minimise glare or overexposed patches. For symmetrical 

objects, current methods also suggest placing targets it at certain intervals which the 

software can identify and align instead of the object itself. For glass or SRT objects, 

however, current techniques suggest it is best to not attempt making a 3D 

photogrammetric model due to near-certain failure. 

6.2.2 PHOTOGRAMMETRIC RESULTS FOR GLASS BEADS USING CURRENT TECHNIQUES 

To begin experimenting with non-standard methods, we must first understand why 

these standard methods fail to produce a successful model. How does each model fail, and 

can we create a technique that minimises the factors responsible for such failure? For 

example, some image sets create photogrammetric models of the background and its 

targets but leave a gaping hole where the object should be. Others align all the images, 

but do so incorrectly, such that they align in a single position with all their points 

stretching from there infinity (Figure 6.14, Appendix E). Still others merely render the 

points of a single image into a flat, two-dimensional set of points forming a single image, 

despite registering other cameras as having aligned (Figure 6.14, Appendix E). All these 

issues occur regularly in object photogrammetry.  
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Figure 6.14: Examples of a failed model (UG SF 15021) with a long string of points and with certain point cloud 

rendering as a two-dimensional series of points (Appendix E). 

More problems arise when following the standard proposed solutions for working 

around these issues. Agisoft (2017, 51) often recommends using targets or some sort of 

background design for objects that are having difficulty aligning. Targets are specific 

patterns, usually printed on cards or paper, which specialists can place around the object 

during image capture. These targets remain in the same position relative to the object 

throughout image capture. Upon importing images into photogrammetric software, 

certain options inform the software to align images based on the targets rather than other 

elements in the photographs. This theoretically aligns images which otherwise may not do 

so, because the software can always align the targets. Unfortunately, targets or decorated 

backgrounds not only do not help the situation for most difficult objects or materials, but 

often produce worse results (Figure 6.15, Appendix E (PowerPoint Slide 4)). While the 

targets do align, the calculation of specific points on an object are difficult if not 

impossible for the software to calculate in relation to the targets, likely due to the object’s 

reflective and translucent properties. Each image still captures the way light behaves on 

an object, which still differs significantly for highly reflective or translucent materials. 

The algorithm appears unable to account for this difference in behaviour due to extreme 
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variability between objects, and so it cannot calculate accurate points to create a model of 

the object. This is uncertain due to the lack of published information about the algorithm 

itself, but I suggest it here based on the numerous failed models employing targets 

throughout this research. 

  

Figure 6.15: Examples of models using a decorated background (left) versus an undecorated background (right), 

assuming all other factors are identical (Glenshee, NH Unknown #) (Appendix E). 

Agisoft also recommends the use of markers, which pinpoint identical locations 

on each photograph in which an element appears (2017, 41). Markers work along a 

similar principle to targets, save that the user is physically telling the software which 

points of the image are identical. Markers can occur on an object or on the background or 

other elements in the photograph. Unfortunately, the same problem arises with markers as 

with targets: the markers may align, but the other points forming the object often align 

incorrectly, because the algorithm for calculating their location does not appear to 

account for variable reactions of light due to differing degrees of reflection or 

translucency. Consequently, markers often produce worse models for SRT objects (Figure 

6.16, Appendix E (PowerPoint Slide 5)). 
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Figure 6.16: Example of a model using markers (top) and one not using markers (bottom), assuming all other factors 

are identical (Culbin Sands, NMS X.BIB 37) (Appendix E). 

One recommendation for reducing reflective patches is to use a polarising filter. 

Polarising filters only allow light aligned on a single plane through to the sensor, so 

rotating the filter changes the angle of light allowed through (Dorrell 1994, 48). 

Polarising filters generally eliminate glare or reflection on an object, because the filter 

blocks the light from the angle causing the glare. While this is a viable solution for certain 

highly reflective materials in photogrammetry, however, many highly reflective 

archaeological objects are rounded in such a way that light from even a single source 

creates multiple spots of overexposure or glare that refract in different ways (Dorrell 
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1994, 48). This means that even a polarising filter cannot eliminate all reflective patches 

on an object (Figure 6.17, Appendix E), and it is not a viable solution for most highly 

reflective archaeological objects. 

 

Figure 6.17: Image of a bead captured with a polarising filter (Loch Eriboll, UG F128) (Appendix E). 

 

Figure 6.18: Image of a bead with (left) and without (right) a diffuser (RO 002) (Appendix E). 

Another recommendation is to use a diffuser, which is either a piece of milky or 

textured clear plastic placed over the flash of a camera or a piece of white cloth placed 
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between the light and the subject being photographed (Dorrell 1994, 219). Diffusers 

reduce patches of overexposure in an image by spreading the light from its source, and 

therefore should eliminate the problem of reflection in photogrammetry. While a diffuser 

does eliminate specific patches of glare, however, many objects still reflect the diffuser 

itself, particularly objects made of glass or similar materials. Rather than a small patch of 

overexposure, a photographed reflective object now has a large patch of white reflected 

on its surface from the diffuser (Figure 6.18, Appendix E). This creates similar problems 

to the reflective patches it tries to solve and generally does not produce better models. 

The same issue arises when using a light tent or cloth diffuser. 

A final suggestion for reflective materials is to place light sources at angles that 

minimise reflection, such as behind the object at an angle (Dorrell 1994, 218 – 219). This 

can work well for standard photography, since only one image is captured from any given 

angle and lighting need not remain the same between shots. In photogrammetry, however, 

changing the lighting to remain similar in each image rather than to remain in a similar 

position relative to the object will result in multiple images from starkly different angles 

with similar shadow patterns. The software often registers these shadows as areas to use 

for alignment, leading to a model that aligns the shadows rather than the object. 

Masking is an oft-suggested solution for instances in which the software uses 

undesirable elements to align images, such as shadows (Agisoft 2017, 60). Masks are 

areas of each image that the specialist selectively deletes or omits from the process to 

eliminate bias from those elements. Unfortunately, masking does not solve most of the 

issues above. Images using the same lighting and creating the same shadows will continue 

to cause problems even after masking the shadows in the background, because these 

shadows still appear on the object itself. At times, differential masking of specific areas 

does create a more successful model than that produced without masks (Chapter 7.3). In 
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many cases, however, eliminating the images’ backgrounds creates more confusion in 

aligning the images, not less (Figure 6.19, Appendix E (PowerPoint Slide 3)). 

 

 

Figure 6.19: A model of a glass bead before (top) and after (bottom) masking (Appendix E). 

Current techniques for making photogrammetric models of SRT objects fail, then, 

because neither they nor the suggested methods for fixing the issues take these factors 

into account. Targets, markers, and masks do not reduce reflection or translucency, nor do 

they account for size. A polarising filter often does not eliminate all reflective patches in a 

series of images and diffusers often create even larger reflective patches than the lights 

they are diffusing. To create viable models of SRT objects, then, we must work to reduce 

the effects of these issues in the images used to create the model. 
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6.2.3 ACCOUNTING FOR SIZE: PHOTOMACROGRAMMETRY 

Many objects fail to render as viable 3D models because they take up too little 

space in the image for the software to process. There are two solutions to this problem, 

both of which have appeared in this chapter already: macro lenses and digital handheld 

microscopes (Chapter 6.1.3). In photogrammetry, macro lenses with shorter focal lengths 

work better because they reduce the required space between the object and the camera 

lens. I use an AF-S Nikkor 40mm Micro lens, but others also work. 

For photomacrogrammetry, place the object on a blank, neutral background 

(preferably a white sheet of computer paper). It is surprisingly common to fail to capture 

images of small objects with enough overlap between them. To combat this, I have 

created a background with a range of equally-spaced markers surrounding a blank central 

area with a dot in the centre (Figure 6.20).  The number of equally-spaced lines 

corresponds to the number of overlapping images desired per set camera angle; I use 

more rays for more intricately shaped SRT objects to ensure enough overlap. To make a 

reusable version, line the edges and corners with sellotape before affixing it to a table 

using tape or blu-tack. Objects were placed on the central dot to keep it centred and 

therefore equidistant from the camera as it moved around the template. All models I have 

attempted have benefitted from the use of these backgrounds. 

 

 

Figure 6.20: Possible backgrounds using 10, 20, and 40 rays. 
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 The camera was affixed to a Gorillapod Hybrid flexible tripod (Joby 2018b), 

which allowed for stability and adjustments to the vertical angle while still fitting on a 

small table (Figure 6.21). Full size tripods generally keep the camera too far away from 

the object to produce high quality images of smaller objects. While a platform could be 

fashioned to raise the object to the desired level, the increased depth and complexity of 

the background of the image becomes more attractive for the software to align than the 

object, which results in failure similar to the models using targets or markers. 

Additionally, many platforms are not stable or contained enough to allow for unimpeded 

movement around the entire object without significant chance of collapse. Alternatively, 

freehand image capture (i.e. without a tripod) usually results either in fewer images taken 

than necessary or in large areas being omitted unintentionally. Flexible tripods provide 

stability and result in enough overlapping images for SfM photogrammetry, if following 

the pattern on the background above. They also allow for a wider range of adjustments in 

size and configuration than a standing tripod and are the most effective affordable option 

currently available. 

Objects were lit with ambient lighting and an LED torch in most models. In 

experimenting with light placement, I found leaving the torch in the same location 

relative to the camera works well if placed directly next to the camera lens and facing the 

object straight on (Figure 6.22). If placed in an alternate location for the duration of the 

photoshoot, the changing shadows lead to the issues described earlier: the software 

appears to align the shadows before aligning the object, leading to problematic models. 

Interestingly, keeping the light source next to the camera does not produce similar issues 

of shadow alignment. 
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Figure 6.21: Set-up for photogrammetric imaging using a dSLR and a Gorillapod Hybrid tripod. 

 

Figure 6.22: Placement of a focused light source during image capture. 
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I then placed the camera so that the bottom of the lens fell between two of the 

rayed lines forming the background (Figure 6.23). While lighting the object, ISO was set 

to 100 or 200 and aperture as high as possible while maintaining a shutter speed of 1 

second or less to minimise capture time (i.e. between F16 and F30). Camera focus was set 

to automatic. While manual focus could help with certain objects, it rarely results in better 

images than those captured using automatic focus. If automatic focus did not provide the 

desired results, particularly given the issues with depth of field for macro lenses, I 

manually set the focus to just beyond the object’s surface as described for 

photomacrographic RTI (Figure 6.6). A remote shutter was used to ensure the camera 

remained stationary during image capture. Any movement of the camera or object during 

the longer exposure times results in blurry images that do not work well for 

photogrammetry. All images were captured in raw format to allow for maximum data 

retention. I then repeated the process for each camera position on the template.  

 

Figure 6.23: Placement of the camera lens in relation to the background. 

After collecting 20 – 40 images for the first camera angle, the height of the camera 

was adjusted to be either taller or shorter and the circuit repeated until there were roughly 
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80 – 100 images for a single side of the object. This may seem like more images than 

needed, but a number of these images are always too unfocused for the software to 

process due to micromovements in the room. Taking 80 – 100 images per side of an 

object ensures there will be 60 – 80 images per side that the software could process. I 

finished capturing each side of the object by taking several freehand images, moving up 

and over the object from one side of the table to the other several times. This provided 

key areas of overlap that greatly assisted the alignment process. 

I processed the captured images in Adobe Bridge, auto-adjusting the exposure and 

tone and setting white balance to the white area of the template background. Many 

programmes automatically set sharpness, grain, and noise above zero, which often 

negatively affects the 3D model. Reset these to the minimum amount (zero if possible) 

and save all images as .tiff or .png files. I then imported images into Agisoft Photoscan 

and estimated the image quality for each image, or the measurement of the focus of an 

image (Agisoft 2017, 15 – 16). Any images with an estimated quality less than 0.60 were 

disabled. Some graphics cards or hard drives do not have enough memory or RAM for 

processing models at the highest settings allowed by Agisoft Photoscan. I therefore 

aligned images using the highest settings my computer could handle, but I sometimes 

found lower quality settings produced a more complete model.  

Once aligned, the point cloud was examined for accuracy and any non-relevant 

points were deleted, particularly those associated with the background. I then created a 

dense point cloud, again using settings as high quality as possible. Any non-relevant 

points were deleted either manually or through colour selection, then a mesh and texture 

created. If the alignment or quality of the model was unsatisfactory at any point in the 

process, I repeated the previous step using lower quality settings. This resulted in at least 

a section of the object that was well-aligned and formed a partial 3D model, if not a 
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complete one. It always resulted in a better model than that produced using standard 

methods. 

6.2.4 ACCOUNTING FOR SIZE: PHOTOMICROGRAMMETRY 

Some objects are too small to create viable 3D models using a macro lens. Many 

archaeological glass beads are less than 3mm in diameter, for example, and are too small 

to successfully model using a dSLR and macro lens. Having used microscopes for 

imaging beads in other ways, it was logical to try the technique to create 

photomicrogrammetric 3D models. There are a range of handheld microscopes on the 

market, but perhaps the most prominent are models sold by DinoLite. Each microscope is 

roughly 10cm long and works with a range of tripods. Most digital microscopes can 

capture digital images of an object between 10 and 220x magnification using visible light, 

though some use non-visible light or have increased magnifications.  

I attached the microscope to a mount for a bicycle light and attached that to the 

foot of a Gorillapod Original tripod using blu-tack (Figure 6.24). The microscope plugs 

into the computer using a USB port and can view and capture images using the 

DinoCapture software. Focus was set manually by moving closer to or farther from the 

object, taking care to locate the point of focus just beyond the surface of the object 

(Chapter 6.1.3).  
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Figure 6.24: Set-up for photomicrogrammetry used in this study. 

Image capture for photomicrogrammetry was similar to photomacrogrammetry 

and standard photogrammetry. Roughly 40 images were taken per circuit around the 

object, capturing as many overlapping angles as possible. Images were processed 

identically to photomacrogrammetry (Chapter 6.2.3). I have also found that combining 

images taken with the microscope and those taken with either standard or macro lenses 

often enhances the quality of the model. The images from the microscope provide detail 

to the general outlines in the macro images, thereby giving the software more data to use 
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when calculating camera and point locations. For some beads, such as a small early 

medieval triple bead from Glenshee, photomicrogrammetry was the only technique that 

created a functional model (Figure 6.25, Appendix E (PowerPoint Slide 9)). 

 

Figure 6.25: Example of a photomicrographic 3D model of a small glass bead (3mm x 10mm) (Glenshee, NH Unknown 

#) (Appendix E). 

6.2.5 ACCOUNTING FOR REFLECTION: LIGHT TENTS 

For reflective objects, most patches of over-exposure can be eliminated by holding 

a sheet of paper between the object and the light source. Hold the paper far enough away 

that light can continue to reach the object; the paper merely serves as a large diffuser 

(Figure 6.26, top). If ambient lighting creates too many reflective patches or there are not 

enough hands available to hold the remote shutter, camera and piece of paper, a small 

light tent can be made out of computer paper and some tape (Figure 6.26, bottom). These 

tents can use black or grey paper to direct light in the desired manner as well. A portable 

light tent serves the same purpose but can be difficult to manoeuvre to adjust either the 

camera or the object to capture different angles.  
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Figure 6.26: Using a sheet of paper (top) or a small paper ‘tent’ (bottom) to block reflections from ambient light. 



Christie – 6: Case Study 3: Spectral RTI and Photogrammetry – 245 

When using these light tents, I rotated the tent with the camera as it moved around 

the object. Additionally, using white paper for at least the back of the tent ensured a 

neutral background for the software to analyse and minimised the contrast between the 

paper used as a base and the paper used as the back of the tent. A high contrast between 

the base and the light tent often led to confusion in the photogrammetric software. 

6.2.6 ACCOUNTING FOR TRANSLUCENCY AND TRANSPARENCY: SPECTRAL 

PHOTOGRAMMETRY 

Transparent or translucent objects are difficult to 3D model, because the software 

mistakenly assumes any element it can see within the bounds of the object is part of the 

object’s surface. Translucent and transparent objects transmit at least some light, such that 

inclusions, bubbles, perforations and even other objects appear part of the object’s 

surface. Because these elements do not behave like surface elements, the software cannot 

use them to accurately predict the locations of the cameras for each image and therefore 

cannot align a model of the object. Spectral photography can eliminate the transparency 

issue for many objects (Chapter 3.3 and 6.1.4). Spectral photogrammetry, then, is the 

creation of a 3D model using images filtered to specific wavelengths of visible or non-

visible light.  

There are several ways to create a spectral photogrammetric model, which largely 

depend on the desired wavelength of the images. Models using visible light (e.g. between 

400 and 700nm) require images either captured or processed using visible-range filters. 

Capture the images as per the descriptions above (Chapter 6.2.3), and import them into 

Adobe Bridge, Lightroom, or other photo-editing software. I processed my images 

identically to the above sections, then applied the digital visible-range filter of my choice 

(Chapter 3.3). Save images as .png or .tiff and follow the same procedure for creating a 

model as described above (Chapter 6.2.3) (Figure 6.27, Appendix E). 
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Figure 6.27: Results for standard (top) and visible-range spectral photogrammetry (bottom) of the same object 

(Glenshee, NH no known number) (Appendix E). 

It is possible to use non-visible light to create either a near-ultraviolet or a near-

infrared photogrammetric 3D model. Infrared light has longer wavelengths and therefore 

penetrates further into the object, so any 3D model made with infrared images will render 

a model of the immediate sub-surface of the object rather than the surface itself (Figure 
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6.28, Appendix E (PowerPoint Slide 8)). Ultraviolet light has shorter wavelengths, 

however, and 3D models made with ultraviolet images capture the direct surface of the 

object. I therefore recommend ultraviolet photogrammetry, but not necessarily infrared. 

To create ultraviolet photogrammetric 3D models, I attached the appropriate filters to a 

fully converted camera. I used a UV-LED torch as a light source and captured and 

processed the images in a similar manner to standard images discussed in the above 

sections (Chapter 6.1.1 and 6.1.3). 

  

Figure 6.28: Results for standard (left) and infrared photogrammetry (right) of the same object (Loch Eriboll, UG 

F128) (Appendix E). 

Note that this technique generally does not work for photomicrogrammetry unless 

using a specific microscope with ultraviolet or infrared lights and filters. My own had a 

transparent front cap that could not be removed. Placing a physical filter in front of the 

cap does not block all visible or infrared light from reaching the image sensor due to the 

space created by the cap. Even models with removable caps can be problematic, as they 

require holding the filter flush against the microscope lens to capture the ultraviolet 

image. This will likely either scratch the lens or let non-ultraviolet light through. 

Additionally, most microscopes are not built to capture non-visible light. I therefore 
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recommend avoiding ultraviolet or infrared photomicrogrammetry unless using a 

microscope that is built to capture non-visible light and either has or allows for the 

attachment of filters specific to that task. 

Spectral photogrammetry allows for modelling of SRT objects that otherwise fail 

to produce viable models, like glass beads, precious and semi-precious stone or metal 

objects like coins or brooches. It also allows for the modelling of object elements that 

may not be visible to the naked eye, such as surface wear or inclusions. It allows for 3D 

modelling objects using false-colour images (Pilarska 2016), but this requires taking 

multiple individual images from the same angle and significantly increasing processing 

time for similar amounts of information to that given in a photograph. At the very least, 

however spectral photogrammetry allows us to create functional 3D models of objects 

that otherwise resist such efforts. 

6.2.7 MODELLING ALL SIDES OF AN OBJECT 

One problem that results not from reflective or translucent materials, but from 

modelling objects like beads is that specialists, myself included, would like to capture all 

sides of the object in a continuous model. This is unusual for many archaeological 3D 

models. A building sits on the ground, as do standing stones. The general landscape is the 

ground. Even models of excavated trenches only capture the side facing the excavator, 

not anything behind or below it. There is often at least one side that we omit from the 

model, giving the model a ‘back’ or ‘bottom.’ Objects often do not have an undesirable 

side. Some have a distinct ‘bottom’, but there are often markings or other important 

elements on the bottom of these objects. One difficulty in modelling objects, then, is to 

capture all possible sides of it to create a single, continuous 3D model.  



Christie – 6: Case Study 3: Spectral RTI and Photogrammetry – 249 

 

 

Figure 6.29: A point cloud showing two sheets of paper before (top) and after processing (bottom) (Culbin Sands, NMS 

X.BIB 27) (Appendix E). 

In trying to create a model of a full bead capturing all sides of the object, I first 

attempted the simplest technique I could: flipping the object over and repeating the 

process. Contrary to current photogrammetric wisdom, this technique works. So long as 

enough images capture the overlap between one side and the next and so long as the 

specialist has photographed the object on a non-decorated, non-descript neutral 

background, the software appears to favour aligning the object over the background. The 

resulting point cloud will contain traces of two sheets of white paper in it – one on the 

‘top’ and another on the ‘bottom’ – which can be deleted through colour selection before 
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processing the model further (Figure 6.29, Appendix E). This results in a complete three-

dimensional model without holes. 

6.2.8 FAILED PHOTOGRAMMETRIC MODELS 

 

Figure 6.30: Example of a failed model in which two of the same object appear (Loch Eriboll UG F128) (Appendix E). 

There are some standard ways in which these models fail, most of which we can 

fix through troubleshooting. First, a point cloud of aligned images shows what appears to 

be two of the same object, usually close together and possibly connected (Figure 6.30, 

Appendix E). This results from a misalignment between sides of the object due to a lack 

of overlapping images between the sides. To remedy it, I process each side as separate 

chunks in Photoscan, then align and merge them together. If this fails, there are not 

enough overlapping images between the sides for the software to join the two. In this 

case, either take more images of the areas common to both sides or bring both meshes 
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into another modelling software (such as Blender or MeshLab) and align them manually 

(Chapter 7.3). Depending on the software and technique used to manually align and 

merge the chunks, creating a photorealistic texture for them may not be possible 

afterwards. It is better to take more photographs of the problem areas, if possible, than to 

manually align and merge chunks. 

Another common failed model is one in which the cameras all align in a single 

location rather than a dome, and the points stretch from the cameras to the far reaches of 

the workspace, usually in a linear fashion (Figure 6.31, Appendix E). This often occurs 

when only a few images can align or when the object has moved between images, rather 

than the camera. In either case, there is not enough overlap between both horizontal and 

vertical camera angles to align anything. We can solve this either by taking more images 

to cover the entire object or by taking entirely new images using a less discernible 

background. I have found that a blank sheet of computer paper works well; even most 

white tables have a texture that the software finds more interesting and align-able than 

many objects. 

 

Figure 6.31: Example of failed model (UG SF 15021) in which cameras align in the same location and points stretch 

from there outwards (Appendix E). 



Christie – 6: Case Study 3: Spectral RTI and Photogrammetry – 252 

Some models align the cameras properly and create what appears to be a useful 

point cloud, but do not include any points for the object itself. Instead, there is a large, 

gaping hole where the object should be (Figure 6.32, Appendix E). In this case, the object 

occupies too small an area within the image for the software to find useful details, the 

background may be too discernible to the software for the object to register, or both 

factors may be at play. To solve this, either zoom in closer to the object or use a different 

lens (Chapters 6.2.3 and 6.2.4) and place the object on a non-descript background.  

 

Figure 6.32: Example of an early attempt at coloured targets for modelling glass beads in which the cameras modelled 

everything but the desired object (Glenshee, NH no known number) (Appendix E). 

Unfortunately, there are objects for which none of these techniques will work, and 

which continue to elude effective visual representation in the archaeological record 

(Figure 6.33, Appendix E (PowerPoint Slide 14)). It may be possible to create 3D models 

of these objects using more sophisticated equipment, such as better cameras or lenses, a 

higher quality microscope, or by altering the algorithm used by photogrammetric 

software. CT scanning or confocal laser scanning microscopy would create viable 3D 
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models of these objects or, but these techniques are prohibitively expensive for many 

projects (Chapter 8). Scientific x-ray computed tomography also requires different 

machinery to medical x-ray computed tomography, thus pushing both the monetary and 

logistical cost even higher. However, the techniques described in this chapter vastly 

improve upon any 3D modelling results for the objects and generally result in highly 

successful models of objects for which the industry often labels 3D modelling as 

impossible. Additionally, even failed models lead to the creation of 60 – 80 high quality 

images taken from as many overlapping angles as possible. This still yields 60 – 80 more 

images than currently exist for these objects, thereby often creating and vastly improving 

the existing visual record of these finds. 

 

Figure 6.33: Example of a model that currently fails regardless of the adjustments made to the images or the process 

(Glenluce Sands, NMS X.BHB 20.4) (Appendix E). 
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6.3 THE USEFULNESS OF RTI ON ARCHAEOLOGICAL FINDS 

This chapter has discussed several methods for creating viable SfM 

photogrammetric 3D models and PTM RTI of SRT objects, with a focus on glass beads. 

Yet, our ability to create these visualisations does not make them automatically useful for 

analysis (Chapter 2.2). Most archaeological finds research has never exploited reflectance 

transformation imaging, in large part because it is a relatively new technology and 

because many small finds are notoriously difficult to photograph in general, let alone for 

RTI purposes. When successful, RTI can provide a range of useful information for 

archaeological finds, particularly regarding surface wear. Studies of surface wear are rare 

for objects made from reflective or translucent materials largely due to the difficulty of 

visually analysing wear on such materials. For example, most publications for surface 

wear on ancient glass centre predominantly around use-wear on knapped glass 

implements in 19th century African American, Argentinian and Aboriginal Australian 

contexts which, while valuable, is linked more closely to the extensive studies of use wear 

on lithics than to that of more common glass objects (Clemente Conte and Goméz 

Romero 2008; Harrison 2000; Ulm et al. 2009; Wilkie 1996). Further examination of the 

varied applications of spectral RTI likely would lead to significantly more information for 

glass or other objects made of translucent or transparent materials, such as amber, 

semiprecious stones, or bone. 

Many low-budget projects or research groups do not have access to scanning 

electron microscopes or other more technical tools that help significantly with surface 

wear analysis. Yet, spectral RTI eliminates issues surrounding reflectance and 

translucency or transparency and allows for the manipulation of both light and surface 

features to emphasise any surface wear that may exist. Spectral RTI would serve as a 
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highly affordable and practical technique for gathering large quantities of data for surface 

wear on any material, particularly those found and examined by low-budget projects. 

6.4 THE USEFULNESS OF PHOTOGRAMMETRY FOR ARCHAEOLOGICAL 

FINDS 

The usefulness of photogrammetric models for small finds is less clear, in part 

because of the difficult nature of the materials these objects are made of and in part 

because the possible uses of photogrammetry vary widely. One large benefit is the ability 

to create models for objects that are otherwise inaccessible, such as those in remote 

collections or locations or those which have since deteriorated or been misplaced (e.g. 

Rekrei 2018). Large numbers of archaeological finds are housed in remote locations and 

cannot leave their country of origin. Many of these objects are small, reflective, 

translucent or transparent. Photogrammetric models provide a visual representation of 

these objects which allow scholars to examine them virtually from afar. 

However, making models simply to document an object in 3D is the same as the 

documentary photography we already limit ourselves to in archaeology. Such 

documentary imaging is not without purpose in archaeology, but it is not the totality of 

what can be achieved with 3D modelling. We can use these models to examine surface 

features of an object in more detail, for example, or to engage with the general public. We 

cannot incorporate accurate models of individual SRT objects into virtual or augmented 

reality if we cannot model them. The techniques described here allow us to create models 

of specific finds that we can incorporate into various VR and AR engagement tools and 

that we can 3D print. This allows the objects to serve as the best representation of 

themselves, rather than a model created by hand or using a template. 
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Unfortunately, photogrammetric models of SRT objects can be difficult to 

produce even with the techniques described above. Images do not align, the texture fails, 

there are holes in the mesh or there is less detail than desired. Creating a single model 

requires time to capture upwards of 100 images at low shutter speeds and the software 

often fails to create an accurate model on the first attempt. There is usually some 

troubleshooting involved, and what works for one object does not necessarily work for 

another. While I listed several possible problems and their solutions above, many models 

suffer from more than one, and it is difficult to know which method will fix them. There 

are also many objects for which none of the available troubleshooting methods work. 

Similarly, there are many objects for which the model, while successful, provides similar 

information to that provided by a few good photographs. Given the time and effort 

needed to create a 3D model, especially one that often either does not provide any more 

information than a few photographs or one which does not work at all, photogrammetric 

3D modelling of archaeological SRT objects may not be worth the effort without specific 

research questions or outreach ideas in mind.  

This does not mean that photogrammetric 3D modelling of archaeological objects 

is never useful or worthwhile. Rather, it means the benefits of and uses for the output 

must be worth the time, effort, and funds expended to create it. Many of the current 

difficulties encountered in accessing information about the objects discussed above, like 

glass beads, stems from a general lack of informative images of these objects, which in 

turn results from the difficulties associated with imaging SRT objects. Once we solve the 

issues surrounding the photography of these objects, these photographs tend to provide 

similar amounts of information to photogrammetric 3D models of glass beads. Thus, 

photogrammetric models of archaeological finds can be of great use, but we should 

always consider whether we can acquire the same information using more efficient 
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methods like photography. Otherwise, we begin to fall into the fetishism of the new, or 

the use of new technology for the sake of using new technology. 

6.5 SPECTRAL RTI AND PHOTOGRAMMETRY IN ARCHAEOLOGY 

According to conventional methods, RTI and photogrammetry of many SRT 

objects will result in problematic models at best, with the recommendation of most 

specialists limited to a single word: “Don’t.” However, this chapter demonstrates that it is 

possible to create informative, successful photogrammetric 3D models and viable RTI 

polynomial texture maps of SRT objects. While there are still objects that elude 

successful photogrammetric modelling, these methods significantly improve the chances 

of creating informative visualisations. Additionally, I have not found a single object for 

which the RTI techniques discussed in this chapter fail to produce a viable and 

informative polynomial texture map.  

These techniques were successful because this research does not follow the 

standard techniques in archaeological imaging. However, there are thousands of 

archaeological finds in Scotland are small or reflective or translucent that we would omit 

from the visual record if we continue to use current techniques. This lack of imagery 

reduces the role of these objects in or even eliminates them from our understanding of the 

past.  

Inevitably, when this point is voiced to colleagues, some insist I could acquire 

detailed results either by using their personal equipment of choice or by developing my 

own software. When the issue of expense is raised, they often suggest that if I know the 

right people, I can access these high-cost services at a more affordable rate. However, 

most projects cannot afford highly technical solutions or hiring someone to create project-

specific software, and we cannot class ‘knowing the right people’ as a sustainable or 
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effective plan for research development. Our reluctance to question the standards of 

digital and archaeological imaging and our emphasis on new technologies either assumes 

all projects have the budgets to afford such things or reflects a field which is unconcerned 

about the loss of information resulting from a lack of funds for such analysis. The notion 

that knowing the correct people makes a technique affordable and our failure to develop 

or experiment with affordable means of creating informative visualisations of 

archaeological subjects ignores the reality of most archaeological projects worldwide.  

In this chapter, I have proposed new RTI and photogrammetry methodologies that 

allow for a marked increase in the success of these techniques on SRT objects. The 

alterations proposed for RTI have not produced any failed attempts, while those proposed 

for photogrammetry have yielded significant improvements. There are many applications 

for which even partially successful RTI or photogrammetric models of SRT objects are 

essential, including studies of surface wear, the ability to 3D print objects for use in 

classrooms and communities worldwide, and the inclusion of specific object models in 

VR and AR experiences. These results therefore improve the applicability and results of 

these techniques in archaeological imaging significantly, particularly that of 

archaeological small finds. 

None of the techniques developed here are unusual. They stem from examining 

the problem of photographing glass beads and mitigating those problems while 

maintaining the information required for RTI and photogrammetry. The primary 

difference between this and conventional troubleshooting techniques is that I ignored the 

conventionally understood limits of what these technologies could do and how we could 

exploit them to get at the desired result or information. The true innovation of this 

research therefore lies in changing our approach to digital imaging, in understanding the 
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technologies we use to their fullest extent and manipulating the boundaries of those 

technologies to uncover new methods and information. 
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7 CASE STUDY 4: WIDER APPLICATIONS OF 

ARCHAEOLOGICAL SPECTRAL IMAGING 
The previous chapters focused heavily on the uses of spectral imaging for glass 

objects, particularly glass beads. These are not the only objects that benefit from these 

techniques, however, and they result in equally informative visual representations of 

faience, amber, copper-alloy, gold, silver, glazed and unglazed ceramic, and lithic finds as 

well as stone sculpture, landscapes, archaeological trenches, and stratigraphic sections. 

These techniques also succeed in imaging a variety of archaeological finds, including 

beads, brooches, figurines, moulds, potsherds, vessel sherds, and flint debris. Some 

techniques work better for certain subjects and materials than others, but they all provide 

new information and valuable visual records of the subjects. This chapter demonstrates 

the value of spectral imaging for subjects other than archaeological glass beads.  

7.1 STRATIGRAPHIC IDENTIFICATION 

Spectral imaging of the north-facing section of Trench A (HY17A) at Cnoc nan 

Càrnan, Iona (Figure 7.1) has helped to identify differences between certain stratigraphic 

layers that were not visible in section, not recorded through drawings nor seen in images 

using the full visible range (Figure 7.2, top, Appendix E (PowerPoint Slide 13)). Cnoc 

nan Càrnan is a rocky knoll to the west of Iona Abbey, St. Columba’s famous monastery 

founded in AD 563 (Campbell and MacIver 2017, 11). It forms part of the vallum, or 

enclosing banks and ditches of the monastery, and was excavated by Thomas in 1956 and 

again by Campbell and MacIver in 2017 (2017, 11). While digging in 2017, Campbell 

and MacIver suspected there was a palisade posthole at the eastern end of the north-facing 

section due to perceived texture differences in the soil, but they could not see a visible 

difference in section (Campbell 2018b). Having observed the benefits of spectral 
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photography for archaeological objects, we decided to apply it to the trench section. After 

imaging the section using near-infrared, visible, and near-ultraviolet light, the area 

suspected of being a palisade posthole appeared visibly different from the surrounding 

soil (Figure 7.2, bottom, Appendix E (PowerPoint Slide 13)).  

 

Figure 7.1: Location of trenches A and B, Iona excavations 2017 (base map derived from RCAHMS 1982). 

Another outcome of spectral imaging at Iona was the classification of specific 

dark layers within the stratigraphy. The south-facing section of Trench B from the 2017 

excavations (HY17B) contained a darker layer (208) rich with secondary deposits of 

charcoal, slag, and iron-working waste (Campbell and MacIver 2017, 31). This layer was 

deposited against the edge of a stone structure and dates to the 7th – 8th centuries AD 

(Campbell 2018b). When imaged with non-visible-range filters, (208) reflected 

significantly more ultraviolet light than the surrounding layers, rendering as a deep blue 

band in the resulting false colour image (Figure 7.3, right; Appendix E (PowerPoint Slide 

13)). In Trench A the darker soils (105, 109, 116) contained organic material instead 

(Campbell and MacIver 2017, 19). These layers reflected more infrared light, which 

resulted in red bands when rendered as a false colour image (Figure 7.2, bottom; 
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Appendix E (PowerPoint Slide 13)). The difference in the contents of these darker layers 

is clear in these trenches because both contained clear evidence of either ironworking 

debris or organic material, but these results indicate the potential for using spectral 

imaging to identify the presence or absence of characteristics like metalworking debris or 

organic material in contexts where their survival is less certain.  

 

Figure 7.2: Comparison of a visible-range image (top) and a false-colour image using near-infrared, visible, and near-

ultraviolet light (bottom) of the north-facing section of Trench A, Cnoc nan Càrnan, Iona (Appendix E). Arrow 

indicates possible palisade posthole. 
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Figure 7.3: Visible-range (left) and false-colour images using near-infrared, visible, and near-ultraviolet light (right) of 

the south-facing section of Trench B, Iona Abbey (Appendix E). Arrows indicate layer with metalworking debris (208). 

Additionally, the high reflectance of infrared light from buried organic material in 

Trench A suggests potential for understanding the relationship between vegetal decay and 

its reaction to light. Vegetation is highly reflective of infrared light when living, and the 

degree to which different plants reflect the light helps ecologists determine both the type 

and general health of the subjects. However, I have been unable to find significant 

literature on buried organic material and its spectral reactions. Much of the organic 

material from Trench A formed the basal layers of the original deposit in the vallum, 

which dates to the late 6th to early 7th centuries AD (Campbell and MacIver 2017, 18 – 

21). For it to continue having a clear spectral reaction after many centuries underground 

is important both for being able to identify organic material in archaeological contexts 

and for understanding the relationship between near-infrared reflectance and plant decay.  
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Figure 7.4: False colour images from 2017 (left) and 2018 (right) of the south-facing section of Trench B, Iona Abbey 

(Appendix E). 

A final insight resulting from the spectral imaging of trench sections arose after 

returning to Iona for a second season of excavation and spectrally imaging the 

stratigraphic section near the wall again. Despite employing the same capture and 

processing techniques, the resulting images were not quite the same (Figure 7.4, 

Appendix E). While these images capture the section at two different angles, the images 

taken in 2018 have more visible and less ultraviolet light in them than the images taken in 

2017. The only differences are the angle of the camera and the time of day during capture. 

The first set of images was captured around 14:00 on 18 May 2017 and the second around 

16:30 on 12 May 2018. The weather on these days was relatively similar: sunny, mild 

spring days with a slight breeze. The earth’s atmosphere blocks much of the sun’s UV 

rays, however, and they are strongest between the hours of 10:00 and 16:00. Since I was 
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using sunlight for a light source, waiting to capture the second images until after 16:00 

likely led to the observed difference between the images. I therefore recommend that any 

images captured outside use similar weather conditions at similar times of the year and 

similar time of day to minimise the differences caused by natural forces. 

Thus, spectral photography need not be limited to objects; it can work equally 

well for landscape or site photography. Spectral photography and false colour imaging 

allow for the identification of soil types and for the potential to identify or confirm the 

presence of features that are invisible to the human eye. More research into the reactions 

of soil inclusions to light, such as metalworking debris or organic material, would provide 

valuable insight into the further applications of this technique and make it a valuable tool 

in field archaeology. 

7.2 CHEMICAL DIFFERENCES IN COPPER-ALLOY, GLAZED, AND 

CERAMIC OBJECTS 

In addition to trench sections, I also spectrally imaged two copper-alloy pieces 

from Iona: a small lion mount (SF 0997; Figure 7.5, top; Appendix E) and an even 

smaller human head (SF 0962, Figure 7.5, bottom; Appendix E), possibly from a 

reliquary shrine (Campbell and Maldonado 2016, 86 – 87). Both objects are currently on 

display at the Iona Abbey Museum. The lion mount was found in a pit to the north of the 

Reilig Odhráin in 1959 (Campbell and Maldonado 2016, 77). It has possible parallels to 

lions in the Book of Kells and to an 8th – 9th century hanging bowl mount found in Gausel, 

Norway (Campbell and Maldonado 2016, 86). The head was uncovered to the west of the 

Street of the Dead and shows possible similarities to 12th century Norse-influenced 

metalwork like St. Manchan’s Shrine (Campbell and Maldonado 2016, 87). 
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Figure 7.5: Visible range and false-colour images of the Iona lion (top) and head (bottom) copper-alloy pieces (IAM, 

SF 0997 and SF 0962 respectively) (Appendix E). 

Both objects were spectrally imaged in near-ultraviolet, visible, and near-infrared 

light and analysed as per the technique used for glass objects in Chapter 5 (Figure 7.5, 

Appendix E). Previous chemical testing indicates the lion is 23% copper, 45% tin, and 

17% lead, while the head is 65% copper, 24% tin, and only 2% lead (Campbell 2018a). 

Spectrally, the lion and head have nearly identical results for infrared (118 and 117 

respectively), but they differ in their reflectance of ultraviolet light (lion: 67; head: 82). It 

is unlikely that this difference is due to photographic factors, since both objects were 

imaged at the same time in the same location with identical techniques and conditions. 

Metals often are highly reflective of infrared light, but they can differ significantly in 

their reflectance of ultraviolet (Paquin 1995, 35.28 – 35.41). The higher reflectance of 

ultraviolet by the head figurine likely results from the difference in the percentage of 
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copper, tin, and lead within the metal. The difference in ultraviolet reflectance may be 

more a product of higher copper concentrations in the head than the lion. Referring to the 

glass data in Chapter 5, we also see that the beads most reflective of ultraviolet light tend 

to be those colours traditionally associated with copper, but the lack of chemical testing 

for these objects prevents further insight into this possibility. 

In addition to the copper-alloy pieces, I spectrally imaged 31 glazed and unglazed 

ceramics recovered during the 2018 excavations at Iona Abbey. These represented a 

range of ceramics, but most samples were medieval green glazed white gritty wear 

coming from Trench B mentioned above (Figure 7.1) and Trench D, located in the field 

directly to the south of the Abbey. The ceramic data form two distinct clusters when 

charting their near-infrared and near-ultraviolet metrics in a scatter plot (Figure 7.6). The 

first cluster consists of samples with infrared measurements less than 130 and ultraviolet 

measurements less than 60, while the second has infrared measurements higher than 150 

and ultraviolet measurements between 35 and 110. Interestingly, these clusters do not 

correspond to the general colour of the ceramic (Figure 7.7). Instead, they likely show a 

separate chemical difference in the samples that would become clear upon further testing. 

 

Figure 7.6: Near-ultraviolet and near-infrared reflectance data for medieval ceramic samples from the 2018 

excavations on Iona with Cluster 1 (left) and Cluster 2 (right) highlighted. 
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Figure 7.7: Iona samples separated by colour of the base ceramic. 

 

Figure 7.8: Scatter plot showing near-infrared and near-ultraviolet reflectance data for glaze samples from ceramics 

recovered during the Iona Abbey 2018 excavations. 

The glazes show less clear evidence of clustering, likely because there are only 

seven samples (Figure 7.8). Still, two of the glaze samples do not cluster with the rest of 

the glazes from Iona (SF 510 and SF 523). The ceramic of one of these samples (SF 510) 

forms part of Cluster 1 while the other (SF 523) forms part of Cluster 2. This suggests 

that while these ceramics may have chemical similarities to others found nearby, the glaze 

on the samples has either come from elsewhere or has chemically reacted to something in 
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such a way that it now remains chemically distinct from contemporary vessels found on 

site. 

    

  

Figure 7.9: Visible-range and false-colour images of glazed ceramic sherds from Kubad Âbâd, Turkey (Kubad Âbâd  1, 

top (UCL Girişteki Hamam 4); Kubad Âbâd 2, bottom (UCL 35LL 2EngKU)) (Appendix E). 

I also sampled two turquoise-blue glazed ceramic sherds from the Seljuk Palace of 

Kubad Âbâd, Lake Beyşehir, Turkey (Figure 7.9, Appendix E) using identical techniques 

for comparison with the ceramics from Iona. The palace was built in the 13th century AD 

and the tiles are likely from a similar period (Freestone et al. 2009, 3). Since the Turkish 

ceramics differed from the Iona samples in their glazing, fabric and where they were 

manufactured, we could expect to see a significant difference between the two groups in 

their reactions to non-visible light. Both Turkish pieces are monochrome turquoise-glazed 

ceramic tiles. The near-ultraviolet and near-infrared measurements for the glaze appear 
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very similar to each other (Kubad Âbâd 1 infrared: 60, ultraviolet: 105; Kubad Âbâd 2 

infrared: 66, ultraviolet: 93). The ceramics beneath the glaze do differ in their reflectance 

of both infrared and ultraviolet, however, with that from Kubad Âbâd 1 (infrared: 169, 

ultraviolet: 195) producing significantly higher values than the ceramic from Kubad Âbâd 

2 (infrared: 146; ultraviolet: 77). Interestingly, when plotted together with the ceramic 

material from Iona, Kubad Âbâd 2 falls into the previously identified Cluster 2, while 

Kubad Âbâd 1 is a clear outlier (Figure 7.10). However, the glaze on both ceramics from 

Turkey differs significantly from those used on Iona (Figure 7.11), suggesting that 

perhaps Kubad Âbâd 2 was manufactured with a similar recipe to the ceramics on Iona 

but glazed similarly to Kubad Âbâd 1. We should remember that this technique does not 

necessarily indicate chemical similarity, but one of the Turkish ceramics clustering so 

closely with material from Iona is certainly interesting. 

 

Figure 7.10: Scatter plot of near-ultraviolet and near-infrared reflectance data of ceramics from Iona and Turkey. 
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Figure 7.11: Scatter plot of near-ultraviolet and near-infrared reflectance data from glazes on ceramics from Iona and 

Turkey. 

The potential for analysing chemical composition through spectral photography 

therefore applies to a variety of object types, including metalwork and ceramics. Despite 

the small sample sizes for both above investigations, spectral photography still provided 

important insights into the chemical relationships both between the copper-alloy head and 

lion mount from Iona and between the glazed and unglazed medieval ceramics from Iona 

and Turkey. Future research combining precise chemical analysis with the more relational 

spectral photography would allow this technique to advance significantly, but the current 

technique certainly provides a means of rapid chemical testing in the field on a relative 

scale. 

7.3 PHOTOGRAMMETRY AND RTI OF DIFFICULT MATERIALS 

Finally, I have applied the photogrammetric and RTI techniques developed in 

Chapter 6 to a variety of materials and objects. Some of the first non-glass experiments 

were a Neolithic potsherd (SF 001) and lithic flake (SF 002) from Cranberry and a lead 

spindle whorl from Leadketty (SF 03). Both sites were excavated as part of the Strathearn 
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Environs and Royal Forteviot Project in Perthshire, Scotland in 2016. The potsherd was 

found in topsoil at Cranberry while the lithic flake came from the upper fill of a postpipe 

or posthole in a Late Neolithic/Chalcolithic post pit alignment (Wright 2018a). The 

spindle whorl came from the topsoil of a posthole feature (Wright 2018b). Images for all 

three objects were captured and processed on-site, using one of the dig tents for a studio 

(Figure 7.12). All three models were relatively successful, including that of the lithic 

flake (Appendix E). 

 

Figure 7.12: Image capture conditions at Cranberry, Perthshire 2016. 

 

Figure 7.13: RTI of the Ballyspellan brooch (NMI Unknown #) (Appendix E). 
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I was also presented with the opportunity to create RTI and 3D photogrammetric 

models of the Ballyspellan and Hunterston brooches during the dismantling of the Celts 

exhibit at the National Museum of Scotland in 2016. The Ballyspellan brooch was found 

in 1806 and dates to the 9th century (Farley and Hunter 2015, 245; Youngs, 1989, 103). 

The brooch is made of silver, with ten bosses protruding from the terminals and a long 

pin (25.28cm) (Youngs 1989, 103). It has several lines of ogham text carved into the back 

of the brooch, which specialists believe are the names of four of the owners (Youngs 

1989, 104). The processed RTI of the brooch allowed ogham specialists to examine the 

text in detail (Figure 7.13, Appendix E). 

 

Figure 7.14: RTI of the Hunterston brooch (NMS X.FC.8) (Appendix E). 

The Hunterston brooch is one of the most famous finds from early medieval 

Scotland. Two workmen discovered it while quarrying stone in Ayrshire in 1830 (Farley 

and Hunter 2015, 174). The brooch is silver with gold filigree interlace and amber inlays, 

with intricate interlace on the terminals, hoop, and pinhead. The brooch has a series of 

runes carved into the back. One side of the runes says ‘Melbrigda owns this brooch,’ 

while the other is a design carved to mimic runes, but saying nothing (Clarke et al. 2012, 

15; Farley and Hunter 2015, 174). As with the Ballyspellan brooch, captured RTI of the 
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carvings on both sides allowed specialists to examine them in more detail (Figure 7.14, 

Appendix E). 

 

 

Figure 7.15: Difference in positioning of the pinhead between images taken of the front of the Hunterston brooch (top) 

and those taken of the back (bottom). 

Photogrammetric models of both brooches proved reasonably successful using the 

techniques described for photomacrogrammetry and highly reflective objects (Chapter 
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6.2.3 and 6.2.4). When changing the position of the brooch, care was taken to keep the 

pin and pinhead in the same location to allow for ease of alignment during processing. 

Unfortunately, when turning the Hunterston brooch over to capture the back, the pinhead 

changed the side of the hoop it rested upon (Figure 7.15). This problem was recognised 

only after attempting to align the images for the first time, at which point the objects were 

no longer available.  

   

Figure 7.16: Photogrammetric models of the Hunterston (left) (NMS X.FC.8) and Ballyspellan (right) (NMI Unknown 

#) brooches (Appendix E). 

To avoid misalignment, the images were masked differentially to allow separate 

models of the front of the brooch, the front of the pinhead, and the back of the brooch that 

could then be aligned and merged to create the final model. While Chapter 6.2.2 describes 

several problems with masking reflective materials, it provided a better model in this case 

due to the changed positioning of the pinhead. There is a slight disparity in the final 

model between the front and back of the Hunterston brooch, causing a small gap between 

sides in the textured model. Processing in MeshLab closed these gaps, but the technique 

for doing so also destroyed the texture. Despite the difficulties in navigating brooch 
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pinheads, the models themselves were still relatively successful and likely more so than 

the results using standard techniques (Figure 7.16, Appendix E). 

 

 

Figure 7.17: Photogrammetric models of the lion (top) (IAM SF 0997) and head (bottom) (IAM SF 0962) figurines from 

Iona Abbey (Appendix E). 

To demonstrate the success of this technique with metal objects, I also created 

photogrammetric 3D models of both the lion and head figurines from Iona using the 

techniques discussed above for photomacrogrammetry and highly reflective objects 

(Figure 7.17, Appendix E) (Chapters 6.2 and 7.2) The lion model captured the entire 
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object, including elements of the interior of the mount, but the head was more difficult. 

The thinness of the object results in less overlap between the front and the back, making it 

difficult for the software to identify matching points to join them together. However, the 

purpose of these methods is to create either a successful model or to create a more 

successful model than is currently possible through standard techniques. The model of the 

lion is successful, while the model of the head figurine still presented more aligned points 

and better resolution than currently achievable using standard photogrammetric methods. 

   

 

Figure 7.18: 3D photogrammetric models of faience beads from Castle Craig (top left)(UG, Unknown #) and Newstead 

(top right) (NMS X.FRA 890) and an amber bead from Culbin Sands (bottom) (NMS X.BIB 27) (Appendix E). 



Christie – 7: Case Study 4: Wider Applications of Archaeological Spectral Imaging – 278 

 

 

Figure 7.19: Close-up of the dark material on the Newstead faience bead (NMS X.FRA 890) from a textured (top) and 

untextured (bottom) 3D model (Appendix E). 

Finally, I spectrally imaged, reflectance transformation imaged, and 

photogrammetrically modelled two faience and one amber bead to test the applicability of 

the techniques to these materials (Appendix E). One faience bead comes from the 2011 

excavations at Castle Craig broch and is currently house in the University of Glasgow’s 

department of Archaeology. The other faience bead is from Newstead (NMS, X.FRA 

890) and the amber bead is from Culbin Sands (NMS, X.BIB 27). Castle Craig is an early 

medieval broch in Perthshire, while Newstead is a Roman fort in southern Scotland 

(Chapter 5.5.7). Beads from Culbin Sands on the Moray Coast lack contextual 
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information, so their date is less certain (Chapter 4.7) The model of the amber bead 

captures the cracked nature of the amber and the texture also renders the way in which 

amber tends to ‘glow’ (Figure 7.18, Appendix E). The models of the two faience beads 

also worked well, and that of the faience bead from Newstead captured a previously 

unnoticed feature: a strip of dark, possibly burnt or melted material at the edge of one of 

the perforations. The discolouration is visible to the naked eye, but it is difficult to know 

the strip is raised without using a microscope or viewing the photogrammetric model 

without a texture (Figure 7.19, Appendix E).  

Both photogrammetric modelling and RTI of the faience bead from Newstead also 

captured the ridges inside the perforation of the bead, providing information about the 

tool used to create it (Figure 7.20, Appendix E). The photogrammetric model for the 

amber bead captured the entire perforation as well. The interior of the perforation is 

visible on some glass beads, particularly those which are broken or fragmentary, but the 

nature of the tool is less clear, save that it is an iron rod. 3D modelling of perforations for 

objects of adornment, personal or otherwise, could lead to further insights into their 

manufacture and trade. 

 

Figure 7.20: 3D model of the perforation of the faience bead from Newstead (NMS X.FRA 890) (Appendix E). 
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The above examples demonstrate that the techniques described in the previous 

chapters are beneficial not just for glass beads, but to any archaeological subject a person 

wishes to study. All objects react to light and we can capture most of these reactions with 

a digital camera, particularly one that has been converted for near-ultraviolet and near-

infrared photography. While the techniques described here may not work for every object, 

they certainly work for many of the more difficult subjects and materials and significantly 

improve the results for many more. Furthermore, they are some of if not the most 

affordable, practical, and portable methods for creating informative visual representations 

of many archaeological subjects, particularly SRT objects. 
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8 COMPARING SPECTRAL IMAGING AND OTHER IMAGING 

TECHNIQUES 
Throughout this thesis, I have discussed the cost, benefits, and drawbacks of 

various archaeological imaging techniques, often in general terms. This chapter serves to 

summarise that information and critically assess the affordability, practicality, and 

portability of each of these techniques, including spectral imaging as described 

throughout this thesis. I will speak specifically about the practicalities of using such 

techniques for imaging SRT objects as well as more generally in archaeology. The prices 

quoted here are market prices as of December 2018 within the United Kingdom, because 

that is where this research was based. Prices may differ between nations and years.  

Each of the following methods require access to a computer capable of depicting 

digital images. Currently, laptops cost as little as £300 or as much as £2000 or more, 

while desktop computers range between £500 and £2000 or more. The higher the cost, the 

more versatile the machine and the faster it can process visualisations. The assessment of 

each technique below includes the costs of the requisite computers, as many £300 laptops 

do not have enough processing power to render 3D models. This section does not include 

miscellaneous costs like paper, putty adhesive, or other office supplies due to the varied 

application of these materials to each circumstance. These costs also do not include the 

specific materials needed to safely transport the equipment for each technique, as those 

will also vary depending on circumstances. Instead it focuses on the primary expenses of 

each technique followed by a critical examination of the practicality and efficiency of 

each for providing the desired results. 
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8.1 DIGITAL PHOTOGRAPHY 

Digital photography is highly affordable for most archaeological project budgets, 

and it is usually a technique already accounted for to some degree. It requires a computer 

and digital camera at its most basic, though some type of photo-editing software is 

recommended. Gimp is free to download and has some versatility when working with 

photographs (Gimp 2018), though I recommend a more robust photo-editing software for 

ease and versatility. Adobe Photoshop or Lightroom Classic CC are industry standards, 

and subscriptions for each cost £19.97 per month or £49.94 per month for all Adobe 

products (Adobe 2018). Adobe also has a special photographer’s package available, 

which includes both software and Lightroom CC for £9.98 per month (Adobe 2018). 

Take care not to confuse Lightroom Classic CC and Lightroom CC; Lightroom Classic 

CC allows for batch processing and the creation of pre-set filters whereas Lightroom CC 

is a more user-friendly version of the software with less versatility. Adobe Bridge is also 

useful for processing raw images, and costs £19.97 per month (Adobe 2018). Students 

can access all Adobe programs for £16.24 per month while schools and universities can 

access them for £29.49 per month (Adobe 2018). The computer required for processing 

digital photographs can be highly affordable, though lower-cost computers often take 

longer to run more robust programs like the Adobe Suite. A computer intended to run 

programs such as Adobe Photoshop or Lightroom costs around £500 while a computer 

that can run Gimp or Inkscape costs closer to £400.  

The required camera can be a point-and-shoot or a dSLR. A phone camera could 

work for archaeological photography, but the quality of point-and-shoot or dSLR cameras 

is generally much better. Currently, the megapixel ratings of point-and-shoots and dSLRs 

are similar, so there is no significant difference in quality of the image between camera 

types. The cost of a point-and-shoot camera ranges between £70 – 100, while a dSLR 
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currently costs £350 or more. A basic dSLR is enough for digital archaeological 

photography, as are most point-and-shoot cameras. Additionally, most cameras can store 

a small number of images on the camera itself, but this quickly fills up, particularly when 

capturing raw images. Most cameras therefore require SD cards to capture and store 

images without continually stopping to transfer them to the computer. SD cards range in 

size and cost from 16 MB (usually included with the camera) to 512 GB (£250). A 32GB 

SD card is enough for most archaeological photography, and generally costs between £10 

– 15. Finally, most archaeological photography benefits significantly from the use of a 

tripod. Tripods cost between £20 and £900 (Currys 2017; Manfroto 2018a), but the 

average cost falls between £50 and £200. Most archaeological projects do not require 

tripods costing more than £80; this thesis did not use any tripods costing more than £35 

(Appendix B). The total cost for a camera, computer, SD card, tripod, and photo-editing 

software can be as little as £400, though the average cost is generally between £700 – 

1,650. While more expensive computers, SD cards, and cameras certainly exist, there is 

little need for them in most digital archaeological photography. This technique is 

therefore the most affordable of those discussed here, with even the highest average cost 

still falling well within range for most lower-budget projects. 

The equipment for digital photography is highly portable as well. The camera, SD 

card, and computer (if a laptop) can fit into a backpack or between a camera case and 

laptop bag. Tripods usually weigh between 0.5 and 3kg and can be carried to site by hand 

(Currys 2018; Manfroto 2018b). The equipment for digital archaeological photography is 

compact and relatively light-weight, making it highly portable in field and laboratory 

settings. One possible drawback is the ruggedness of the equipment – cheaper cameras 

and laptops or equipment that is not specifically ruggedized can suffer in the field without 

proper precautions. Protecting the equipment is often as simple as keeping it in its 
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protective cases when not in use, however, particularly during inclement weather. 

Additionally, this equipment is the easiest for sourcing repairs, as many camera shops 

offer such services. 

The results of digital archaeological photography can be highly informative. 

Digital photography creates a visual representation of a specific object, complete with 

surface features, wear, inclusions, and colour. The resulting digital image generally is 

considered an accurate representation of the object’s surface, colour, and design features 

according to standard archaeological imaging practices. Photographs also capture 

information for individual objects rather than averaging them together, even when such 

objects are grouped into the same image. Digital images are valuable in archaeological 

research for the same reason photographs have been valuable since their announcement in 

1839: they capture significant detail of specific subjects that provide valuable information 

and are easily sent to other specialists for consultation. 

Unfortunately, many archaeological finds are of a size or made of materials that 

do not photograph well. Surface wear or inclusions on small objects are often too small to 

capture using a standard zoom lens. Materials like glass, amber, faience, glazed ceramics, 

lithics, bone, or semi-precious stone are highly reflective, and many are also translucent. 

Standard photographic practices used on these materials will produce images that are 

overexposed, do not capture the desired detail, or capture information for other objects 

that are either reflected in the desired object or situated directly behind it. Standard 

practices in digital archaeological photography therefore work well for creating digital 

visual 2D representations of medium or large objects made of opaque, non-reflective 

materials, but not for objects that do not meet those criteria. 
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8.2 PHOTOMACROGRAPHY AND PHOTOMICROGRAPHY 

Photomacrography and photomicrography allow for the photography of small 

objects and add comparably little to the cost of standard digital photography. A 

serviceable macro lens costs roughly £270 - 300 and will solve most size issues (e.g. 

Canon 2018a; Jessops 2018b; Nikon 2018a), but high-end macro lenses can cost closer to 

£1300 – 1400 (e.g. Canon 2018b; Sigma 2018). For particularly small objects, a 

serviceable digital handheld microscope costs roughly £325 (e.g. GT Vision 2018a), 

though more expensive models can cost closer to £700 (e.g. GT Vision 2018c; GT Vision 

2018d). These microscopes connect directly to a computer or laptop and allow the user to 

capture images for analysis. They can be stabilised with a microscope stand, which has a 

similar cost to an average camera tripod (DinoLite 2018; GT Vision 2018b). The cost of 

equipment for photomacrography therefore averages between £1,200 – 2,050, while that 

for photomicrography averages between £900 – 1,700. 

Practically-speaking, macro lenses add little to the equipment needed for standard 

digital photography described in the previous sub-section, though a camera bag is 

recommended. Most camera bags have space for an extra lens, which hold a single macro 

lens safely. Digital handheld microscopes and their stands are often even more portable, 

fitting into a small box that can slide into a backpack or laptop case without issue. Both 

macro lenses and digital handheld microscopes run the risk of damage through common 

culprits like grit, dust, rain or simple carelessness. The effects of these dangers can be 

minimised through careful packing and regular cleaning. Repairs are relatively simple to 

source for photomicrography due to the abundance of camera shops, while many digital 

handheld microscopes come with a limited warranty and can be repaired by the company 

for a fee thereafter (e.g. DinoLite 2017b). 
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For subjects or details of subjects smaller than about 10mm, macro lenses and 

digital microscopes create significantly better digital images than standard digital 

photography. They allow us to examine and analyse detail that is not visible to human 

eyes in an affordable way. Some subjects are too large to capture fully through a macro 

lens or digital microscope, however, and for such subjects this technique is less ideal. If 

working with subjects of varying size, like vessel sherds, it would be advisable to focus 

on standard digital photography and photomacrography before exploring digital handheld 

microscopes. In the case of glass beads, I have found most objects image best using either 

a macro lens or a digital handheld microscope. 

8.3 SPECTRAL PHOTOGRAPHY 

The application of digital filters to images like that described in Chapter 4 does 

not necessarily add an extra cost to that of standard archaeological photography in the 

visible range; digital filters can be created and applied through photo-editing software like 

Adobe Photoshop or Lightroom Classic CC (Appendix C). Unfortunately, these settings 

are not available in current open source software, and they therefore require software like 

Adobe Photoshop, Bridge, or Lightroom Classic CC. Otherwise, physical visible-range 

filters can cost as little as £20 for a set of five (red, green, blue, yellow, and orange) 

(Neewer 2018b). This brings the minimum cost of visible-range filtered photography to 

roughly £800 (assuming a year-long subscription to Adobe software), but the average cost 

remains similar to standard photography (£800 – 1,650). 

Applying visible-range filters to archaeological photographs allows us to capture, 

emphasise, and examine object characteristics or features that are not necessarily visible 

using standard photography. These may be inclusions or bubbles in the object, as 

demonstrated in Chapter 4, or elements of wear or decoration on the surface. This type of 



Christie – 8: Comparing Spectral Imaging and Other Imaging Techniques – 287 

photography often represents these surface or internal features of an object better than a 

standard visible-range image. Additionally, this style of photography differs little from 

standard archaeological photography; it merely limits the representation of the data 

captured in standard visible-range photography to a much smaller spectrum of light. The 

image capture technique can even remain the same if digital filters are applied. Visible-

range filters in photography capture a two-dimensional image of an object from a single 

angle, however, and the technique is not ideal for examining the shape of an object or its 

three-dimensionality. It also does not represent colour data for more than the wavelength 

represented and is not ideal for any study of an object’s colour more generally. Yet, the 

information gained does provide significant detail in surface and interior features of an 

object and can lead to a more representative image of the object’s shape or decoration 

than what is currently possible using standard visible-range photography, particularly for 

SRT objects. 

Near-ultraviolet or near-infrared photography, such as that used in Chapter 5, 

requires a dSLR that has been converted for full spectrum imaging. The conversion 

replaces the hot mirror with fused silica and costs roughly £250 excluding shipping and 

delivery (Protech Repairs 2017). This type of spectral photography also requires filters 

for both the visible and non-visible spectra. Once the camera has been converted, any 

unfiltered shot will capture the full range of wavelengths from roughly 300 – 1000nm. 

This means that any image intending to capture the visible spectrum without filters will 

instead capture the near-ultraviolet, visible, and near-infrared spectrum together. Once the 

camera has been converted, then, it requires at least four filters to capture each of the 

spectral ranges between near-ultraviolet and near-infrared: 1) a visible-range filter 

capturing wavelengths from 400 – 700nm (e.g. Schott S8612); 2) an ultraviolet pass filter 

capturing wavelengths from 300 – 400nm and from 700 – 800nm (e.g. Hoya 360); 3) an 
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ultraviolet cut filter eliminating wavelengths from 300 – 400nm (e.g. Hoya HMC UV 

cut); and 4) at least one infrared pass filter capturing between 720 – 1000nm (e.g. Neewer 

720nm Infrared with a range of 720 – 1000nm or Neewer 950nm Infrared with a range of 

950 – 1000nm). The cost of each filter used in this study is listed below (Table 8.1). 

 

Filter Range Cost 

Schott S8612 400 – 700nm £65 (UVIROPTICS 2018b) 

Hoya 360 300 – 400nm  £50 (UVIROPTICS 2018a) 

Hoya HMC UV Cut 400 – 1000nm £30 (Jessops 2018a) 

Neewer 720nm Infrared 

Neewer 760nm Infrared 

Neewer 850nm Infrared 

Neewer 950nm Infrared 

720 – 1000nm;  

760 – 1000nm;  

850 – 1000nm;  

950 – 1000nm 

£30 for the full set (Neewer 

2018a) 

Table 8.1: List of filters required for visible- and non-visible-range spectral imaging and their costs. 

Non-visible-range spectral photography also requires specialised light sources. 

Torches serve this purpose well for many archaeological objects. Full spectrum imaging 

requires three torches: one with a xenon or incandescent bulb, one with LEDs, and one 

with an ultraviolet bulb or ultraviolet LEDs (Appendix B). Each torch costs roughly £15, 

while larger light sources will likely cost more. Given the cost of conversion and 

additional costs of filters and torches, the average cost of non-visible-range spectral 

photography falls between £1,200 – 2,300. 

The primary benefit to spectral photography is in its ability to provide a sample of 

information about the object’s chemistry. Even a preliminary understanding of the 

chemical relationships between objects allows for a more targeted approach in deciding 

which objects warrant further chemical testing. If archaeologists imaged more collections 
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in this manner, the results would provide more information about an object’s chemical 

makeup. There is little change to the portability and practicality of the technique, since 

the only additional equipment are some filters and torches that easily fit into a backpack 

or camera bag. Finally, and importantly for this study, spectral photography allows for 

better imaging of subjects that do not lend themselves well to standard techniques, 

including SRT objects. Laser and structured light scanners do not capture data for SRT 

objects well; without photographic filters, the only technology that could be said to create 

informative visual representations of SRT objects is x-ray computed tomography, the 

machine for which costs upwards of £71,000. Without the photographic techniques 

described in this thesis, SRT objects would remain largely visually undocumented.  

Infrared and ultraviolet photographs also capture either interior or surface features 

of an object in more detail or represent such features in a more easily identifiable manner 

than standard visible-range photographs. Since they use the non-visible range, they also 

have the additional benefit of not requiring strict control of ambient lighting in a 

workspace. This style of photography therefore captures more information than standard 

practices, can determine certain chemical relationships between objects, and often 

requires less ambient light control than other photographic techniques. Full spectrum 

imaging still creates a two-dimensional image, however, and is therefore not ideal for 

capturing data relating to the shape or three-dimensionality of an object. It also generally 

captures limited colour information for an object and adds further costs due to conversion 

and the required filters. 

8.4 REFLECTANCE TRANSFORMATION IMAGING 

While the software for creating and viewing RTI is free, there is an added cost for 

the RTI spheres required for image capture. Admittedly, RTI spheres need only be red, 
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black or silver, and passable spheres can be made from snooker balls or ball bearings of 

various sizes. Officially marketed RTI spheres are only sold as part of a kit, which 

currently costs roughly £300 not including shipping (Cultural Heritage Imaging 2018b). 

More make-shift RTI spheres cost as little as £2 for a pack of 100 ball bearings (Simply 

Bearings 2018). All other costs are the same as standard digital photography. The average 

cost for RTI therefore falls between £700 – 2,000 (£1100 – 2,400 for photomacrographic 

RTI). It is also possible to use a microscope for RTI (Chapter 6.1.3), which costs an 

average of £900 – 2,050. If working exclusively with very small objects, then, it may be 

more cost effective to invest in a digital handheld microscope rather than a functional 

dSLR and macro lens. Portability changes little from digital photography, since the added 

equipment is a maximum of an additional tripod and some reflective spheres the size of 

snooker balls. The primary benefit of RTI is its ability to capture data for the surface 

features of an object and its calculation of surface normals. Additionally, the software 

allows for the manipulation of surface features to deepen grooves or change the texture to 

emphasise wear, decoration, or surface markings that may not otherwise be visible to the 

naked eye. The output is still not a three-dimensional image, however, so the technique is 

still not ideal for representing the shape of an object. 

Spectral RTI requires the same additional costs associated with the various types 

of spectral photography. Visible-range spectral RTI requires the additional cost of photo-

editing software like Adobe Photoshop, Bridge, or Lightroom (£120 per year for 

Photoshop and Lightroom together or £240 per year each for Adobe Bridge, Photoshop, 

and Lightroom Classic CC individually) (Adobe 2018). Near-ultraviolet or near-infrared 

RTI requires the extra cost for conversion (£250) and that of filters and torches for each 

desired wavelength (£45 for near-infrared, £150 for near-ultraviolet). Depending on the 

type of spectral RTI and quality of the camera and computer desired, the average cost 
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ranges from £800 – 2,600 (£1,200 – 3,000 for photomacrography and £1,000 – 2,700 for 

photomicrography). Portability remains similar to standard RTI, since the addition of 

some filters and small light sources often require little space. If imaging larger objects, 

however, the required additional lighting and logistics of moving the torch while 

capturing an image could be substantial enough to require a second team member. 

Spectral RTI allows for successful reflectance transformation imaging of highly reflective 

or translucent objects and can also allow for imaging of an object in an open or shared 

office with minimal or no control over ambient lighting. It does not represent an object’s 

colour as seen by human eyes, however, and only captures the pseudo-three-

dimensionality of one side instead of the entire object. 

8.5 PHOTOGRAMMETRY 

Photogrammetry is the most affordable imaging technique for creating 3D models. 

Photogrammetry using standard photographic techniques requires a camera (dSLR or 

point-and-shoot) and photogrammetric modelling software like Agisoft Photoscan. It is 

possible to create photogrammetric 3D models from mobile phone images, but I 

recommend at least a point-and-shoot camera to improve alignment and quality. The 

average camera cost can range from £100 – 500 for photogrammetry, but it can also be 

significantly higher if more detail is desired or required. A single-use licence for Agisoft 

Photoscan Standard Edition currently costs $179 USD (£125) or $59 USD (£41) for an 

educational licence (Agisoft 2018a; Agisoft 2018b). A single-user licence for Agisoft 

Photoscan Professional Edition costs $3,499 USD (£2,500) or $549 USD (£385) for an 

educational licence (Agisoft 2018a; Agisoft 2018b). While this is quite an expense, 

particularly for a non-educational Professional Edition licence, it is generally much more 

affordable on average than other 3D modelling software and equipment. Finally, 
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rendering the models in a timely manner requires a relatively robust graphics card and 

sizable RAM. This pushes the cost for a computer to between £600 – 2,500, depending on 

the desired processing power. Thus, the average cost for standard photogrammetry falls 

between £900 – 6,000. Using a macro lens raises the cost to between £1,400 – 6,400, 

while using a digital handheld microscope brings it to £1,150 – 6,000. The portability of 

photogrammetry remains similar to standard digital photography, since the primary 

difference is in the computer and software required to process models rather than in 

camera equipment. 

The primary benefit of photogrammetry is in the ability to represent an object in 

three dimensions. Photogrammetry captures surface data and measurements of an object 

and renders the results in 3D to form a visual representation that viewers can rotate and 

manipulate in several ways. We can alter or eliminate the texture to emphasise surface 

features or render it as close to reality as possible using data from the images provided. If 

the object is no longer accessible, we can capture RTI from a photogrammetric model 

instead. Researchers can calculate certain metrics that may not be possible in reality, such 

as the volume of certain objects or elements of a building. Photogrammetry also allows 

for the identification of the finished product of a mould, for example, or the modelling of 

specific elements of an object to the exclusion of others through either masking or 

deletion.  

Unfortunately, photogrammetry only works for objects that photograph well. 

Photogrammetry can only work with the data provided by the image, and so cannot 

render points for overexposed areas of highly reflective materials. The current software 

also incorrectly aligns particularly symmetrical, translucent, transparent, or smooth 

objects. This makes it difficult if not impossible to photogrammetrically model most 

archaeological finds. However, even when the photogrammetric model fails to align or 
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render with enough detail, the process of acquiring data to create the model still generates 

80 – 100 overlapping images of the subject at hand from a variety of angles. This is often 

significantly more visual representation than currently available for most archaeological 

finds. Thus, even failed photogrammetric models lead to significant improvements in the 

visual record available for most archaeological subjects. The same cannot be said of laser 

or structured light scanning, certainly not to the same degree. 

Spectral photogrammetry requires all the above costs stated for photogrammetry 

as well as the associated costs for spectral photography. If working purely within the 

visible range of light, the average falls between £1000 – 6,000. If working within the non-

visible range, costs increase: £1,200 – 6,300 for near-infrared, £1,300 – 6,400 for near-

ultraviolet, or £1,400 – 6,500 for both. Spectral photogrammetry has the primary benefit 

of creating successful photogrammetric 3D models for materials or objects that fail using 

the full visible spectrum. For many archaeological finds, full spectrum photogrammetry is 

the only way to produce a successful photogrammetric 3D model. The primary caveat is 

that spectral photogrammetry does not capture colour data for an object aside from the 

specific range used to capture the image. 

Spectral photogrammetry is certainly the most expensive of the techniques 

included in this thesis. Unfortunately, the only open source software for photogrammetric 

rendering, 123D Catch, is no longer available, leaving Agisoft Photoscan as the primary 

available software. The cost of a computer is much higher, too, as rendering a 

photogrammetric 3D model requires more RAM and a better graphics card. Despite this, 

however, photogrammetric modelling is still the most affordable 3D modelling technique 

currently on the market. 



Christie – 8: Comparing Spectral Imaging and Other Imaging Techniques – 294 

8.6 STRUCTURED LIGHT SCANNING 

Structured light scanners vary widely in price. Cheaper models range from £2,000 

– 5,000, but those considered appropriate for professional use range from £10,000 – 

20,000 or more (e.g. Artec 2018a; Artec 2018b; Artec 2018c). A computer that can 

process the model costs an average of £1,000 – 2,000, pushing the average cost of 

structured light scanning to £11,000 – 22,000. Practically speaking, structured light 

scanners require their own robust case and padding, and many require an electrical outlet, 

making them less portable than photography-based imaging techniques. These scanners 

are also more difficult to repair than a camera, since there are fewer specialists able to do 

so. Additionally, there are many discontinued structure-light scanners; Artec alone has 

discontinued 10 of their model series since 2007, averaging roughly one discontinuation 

per year (Artec 2018d). Their current software also does not support scans created by six 

of these series, jeopardising the ability to view material created with many Artec 

structured light scanners within the last decade (Artec 2018d). While this is a single 

company, it is one of the leading companies on the market for structured light scanners. 

Considering the rate with which the security of Artec scan data has been jeopardised in 

the past from an archival standpoint (Chapter 2.2.3), the chance that results may become 

unreadable is much higher for structured light scanners than for digital cameras.  

The primary benefit of structured light scanners is that they capture precise 

measurements of the object’s surface as well as colour and texture information for 

photorealistic 3D models. They work very well for creating models of buildings or 

standing stones, for example, and can work well for non-SRT objects. Within 

archaeology, for example, structured light scanning has provided valuable results for 

underwater archaeology, human and faunal skeletal remains, and non-SRT archaeological 

finds (e.g. McPherron et al. 2009; Niven et al. 2009; Roman et al. 2010). Unfortunately, 
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structured light scanners have difficulty with SRT objects due to apparent challenges of 

matching the algorithms calculating distance through changes in light to materials that 

refract light in unpredictable ways. They therefore often fail to model many 

archaeological objects successfully. This, combined with the cost of equipment and the 

possible difficulties in archiving and repair, often renders structured light scanners less 

affordable and practical, both in the field and for archival purposes. 

8.7 LASER SCANNING 

Laser scanners are certainly the most popular tool for creating 3D models. The 

scanners themselves range from large scanners mounted on tripods to small, portable, 

handheld devices (LAGOA n.d.). While there are more affordable models available for 

$749 USD (£571), close-range professional scanners that can capture enough data from 

small objects to create a 3D model cost between £3,000 and £80,000 (Matter and Form 

2018a; NextEngine 2016; Russell 2016; Schroedter 2016). Coupled with the price of a 

computer that can run the required software and process the data, the average cost of laser 

scanning falls between £4,500 and £82,000. Like structured light scanners, laser scanners 

require their own robust cases and padding. Many also require a tripod like that used for a 

total station or other survey equipment. Many companies offer repairs of their machines 

(e.g. Faro 2018a; Matter and Form 2018b; NextEngine 2018), making support easier to 

access than for structured light scanners. There also appear to be fewer discontinued 

models of laser scanner, with Faro only listing the FARO Gage, a measuring arm rather 

than a laser scanner, as discontinued (Faro 2018b).  

Laser scanners benefit from using infrared lasers to capture data points, which can 

penetrate vegetation in landscapes. Well-known examples of its success have been seen in 

uncovering sites and buildings located vegetation-dense regions such as the complex 
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urban landscapes at Angkor Wat (Evans et al. 2013) or the Mayan lowlands of the 

Yucatan (Canuto et al. 2018). Laser scanning of any type is highly accurate and captures 

large amounts of data in a relatively short time. Additionally, laser scanners only capture 

the measurements of the surface of a subject rather than the colour or texture. This allows 

for the visualisation of the surface without the distraction of colour data. Unfortunately, 

the lack of colour data captured can also be a caveat, particularly in subjects for which 

colour is a primary characteristic. Laser scanners also do not work well with SRT objects, 

given both the resolution of the scanner and the variable reactions of reflective, 

transparent, and translucent materials to light. The cost of the equipment and variable 

success with objects of different materials makes laser scanners less than ideal for 

imaging most archaeological objects, despite their success with landscapes, buildings and 

site trenches. 

8.8 X-RAY COMPUTED TOMOGRAPHY 

X-ray computed tomography (CT scanning) is perhaps the most precise method 

for 3D modelling an object currently used in archaeology. The costs associated with x-ray 

computed tomography vary, because most institutions cannot afford to purchase a system 

on its own. The average cost of a scientific CT scanner is between £71,000 – 1,000,000 

(Microphotonics 2015). The cost of a computer to process the data only increases this 

amount. X-ray computed tomography is not portable or taken easily into the field. It is 

possible to send objects to certain institutions for CT scanning, but the cost associated 

with doing so equates to a plane ticket and lodging for at least one researcher to travel to 

the nearest laboratory, which is often not in the same country. The cost of obtaining 

permission to bring objects out of the country will vary, if permission can be obtained at 
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all. The cost for x-ray computed tomography is therefore high, both monetarily and 

logistically.  

Despite this, the models produced are extremely valuable. Since the technique 

acquires measurements by capturing slices of the object and stitching them together, it 

captures all the interior elements of an object in addition to surface features. These can be 

bubbles, inclusions, perforations, or other features (e.g. Bertini et al. 2014). In 

archaeology, it has been applied to wooden statues, glass, lithics, ceramics, and other 

finds (e.g. Anderson and Fell 1995; Bertini et al. 2014; Casali 2006; Morigi et al. 2007; 

Morigi et al. 2010). It is currently impossible to capture these elements in three 

dimensions using photogrammetry, structured light scanning, or laser scanning. This 

marks x-ray computed tomography as one of the best techniques for digitally imaging 

archaeological finds, including SRT objects. Unfortunately, the logistical and monetary 

cost coupled with the lack of portability make x-ray computed tomography less suited to 

many archaeological imaging projects than any other method discussed in this chapter.  

8.9 MULTISPECTRAL AND HYPERSPECTRAL IMAGING 

The spectral imaging described in Chapters 5 and 6 is multispectral imaging with 

a dSLR rather than a multispectral camera, and one could argue that using a multispectral 

camera would be more efficient. Multispectral cameras tend to capture data for a wider 

spectral range than is currently possible with a converted dSLR. However, they currently 

cost between £3,000 – 10,000 (e.g. Buzzard Cameras 2018; SILIOS Technologies 2018; 

Thorlabs 2018a; Thorlabs 2018b). Coupled with a computer and software, this technique 

has an average cost of £4,500 – 11,500. The technique is highly portable, requiring only 

the camera and computer for image capture and processing. The benefit of this technique 

is that it can capture spectral data for a much wider range than a fully converted dSLR 
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can. This data helps in understanding chemical relationships between different objects 

and allows us to see details we cannot see with our own eyes. Isolating specific 

wavelengths of light makes bubbles, inclusions, perforations, striations, colour 

differences, and surface wear much easier to spot. Unfortunately, multispectral cameras 

are expensive and provide little additional information to that acquired through spectral 

imaging with a converted dSLR. 

Hyperspectral imaging captures colour data for each wavelength on the spectrum, 

thereby capturing far more information than a converted dSLR ever will. Hyperspectral 

cameras also capture data for a much wider spectral range than a dSLR. Hyperspectral 

cameras costs between £13,000 – 250,000, however, depending on the needs of the 

project (Keating 2016). Coupled with a computer and imaging software, the full cost of 

hyperspectral imaging ranges from £14,500 – 251,500. Despite the benefits of highly 

accurate spectral imaging, the cost of equipment is prohibitively high for most projects 

and institutions. 

8.10 A COMPARATIVE ANALYSIS OF ARCHAEOLOGICAL IMAGING 

TECHNIQUES 

The above sub-sections discuss the benefits, caveats, and costs of major 

visualisation techniques, including those techniques introduced in this thesis. For ease of 

comparison, a summary of the costs is provided inTable 8.2. In terms of affordability, 

only the higher range of average costs for photogrammetry overlap with even the lowest 

range of costs for laser scanning or multispectral imaging. All other techniques are at 

least double the highest average cost of any technique described in this thesis. These costs 

also assume the individual or organisation does not have a computer or camera. If we 

assume a project already has access to a computer and camera, then the costs for 
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photography lower to a maximum average of £500 – 1,350 for non-visible-range 

photography, £500 – 1,650 for non-visible-range RTI, and £500 – 3,800 for non-visible-

range photogrammetry. The techniques developed and championed in this thesis therefore 

open a range of imaging solutions for lower-budget projects and for archaeological 

subjects that do not lend themselves well to currently recognised standard imaging 

techniques, such as SRT objects.   

Technique Average Cost 

(Photography) 

Average Cost 

(Photomacrography) 

Average Cost 

(Photomicrography) 

Photography  

     Standard 

     Visible-range filtered 

     Non-visible-range filtered 

 

£700 – 1,650 

£800 – 1,650 

£1,200 – 2,300 

 

£1,200 – 2,050 

£1,300 – 2,050 

£1,300 – 2,700 

 

£900 – 1,700 

£1000 – 1,700 

£1,050 – 1,750 

RTI 

     Standard 

     Visible-range filtered 

     Non-visible-range filtered 

 

£700 – 2,000 

£800 – 2,000 

£1,200 – 2,600 

 

£1,100 – 2,400 

£1,200 – 2,400 

£1,500 – 3,000 

 

£900 – 2,050 

£1000 – 2,050 

£1,050 – 2,700 

Photogrammetry 

     Standard 

     Visible-range filtered 

     Non-visible-range filtered 

 

£900 – 6,000 

£1000 – 6,000 

£1,200 – 6,500 

 

£1,400 – 6,400 

£1,500 – 6,400 

£1,500 – 6,900 

 

£1,150 – 6,000 

£1,250 – 6,000 

£1,300 – 6,550 

Structured Light Scanning £11,000 – 22,000 - - 

Laser Scanning £4,500 – 82,000 - - 

X-ray computed tomography £71,000 – 1,000,000 - - 

Multispectral Imaging £4,500 – 11,500 - - 

Hyperspectral Imaging £14,500 – 252,000 - - 

Table 8.2: Average costs of the base equipment required for common digital imaging techniques in archaeology, 

including computers and cameras. 
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This is not to say the more expensive techniques are poor techniques; they are 

valuable technologies that often provide more information than photography can. Yet, 

even if a project could acquire permission to send a researcher and several objects to a lab 

with a scientific CT scanner, for example, the cost of travel, housing, and other expenses 

for a researcher travelling from Glasgow to the Paul Scherrer Institute in Switzerland for 

a week costs upwards of £1000 for the one-time visualisation of a set number of objects 

(Paul Scherrer Institute 2016). Photography and photography-based imaging are also 

more portable and practical in the field, have a wider market for repairs, and have 

generally well-established methods for archiving the results. For the moment, at least, 

photography and photography-based imaging techniques are the most affordable, 

practical, and portable archaeological imaging techniques currently available on the 

market. 
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9 PUSHING THE BOUNDARIES OF ARCHAEOLOGICAL 

IMAGING 
This thesis has examined the history of imaging technologies and their 

relationship to archaeology, identified a need for and developed affordable, practical, and 

portable techniques for imaging SRT objects, and demonstrated their value in furthering 

our knowledge about glass beads from Iron Age and Early Medieval Scottish contexts. 

The techniques developed and employed in this thesis are many, but they all centre on 

spectral imaging, or the creation of visual representations of a subject through the 

isolation, capture, and analysis of certain wavelengths of light. Chapter 4 used visible-

range spectral photography to ‘see’ into the matrix of hundreds of glass beads and 

compare their relative bubble concentrations. The results provide important information 

about the manufacture and possible short- and long-distance trade of these objects in Iron 

Age and Early Medieval Scotland. Chapter 5 used non-visible-range spectral photography 

to capture and analyse the reactions of hundreds of glass objects to infrared and 

ultraviolet light, which served to elucidate many of the chemical relationships between 

objects through non-destructive means. The results provided valuable insight into the 

manufacture and trade of glass in Iron Age and Early Medieval Scotland and allowed for 

the possible classification of certain objects as belonging to later periods. Chapter 6 

demonstrated the value of visible- and non-visible-range spectral photomacrography and 

photomicrography in improving the results of PTM RTI and SfM photogrammetry for 

SRT objects. Finally, Chapter 7 provided numerous brief examples of the possible 

application of these techniques to other archaeological subjects, including objects and 

trench sections. 

The primary contribution of this thesis is demonstrating the value of challenging 

the standards of current archaeological imaging techniques and pushing the boundaries of 
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what information they can reveal by developing affordable, portable, and practical 

techniques for imaging any archaeological subject, especially those neglected by current 

methods. The conclusions about Iron Age and Early Medieval Scotland drawn in the 

previous chapters as relating to glass objects would be difficult if not impossible to 

discover via other means. Given the significant increase in information garnered for glass 

beads in Chapters 4 and 5 and the brief demonstration of the use of these techniques for 

other object categories in Chapter 7, we can assert that the changes proposed in 

approaches to archaeological imaging would provide significant insight into many 

archaeological subjects from any context, particularly those that are habitually 

underrepresented and understudied. 

9.1 ARCHAEOLOGICAL THEORY AND ARCHAEOLOGICAL IMAGING 

REVISITED 

Chapter 2.2 examined current archaeological imaging practices and their 

relationship to several contemporary archaeological theories and discourses, namely the 

objectivity of archaeological imaging, the general requirement that visual representations 

mimic the human eye as closely as possible, the prescription of standard techniques for 

creating such visualisations, the championing of new technologies and the effects current 

approaches to archaeological imaging have on the archaeological record. This section 

aims to revisit these discourses considering the results provided in Chapters 4 through 7. 

9.1.1 ARCHAEOLOGICAL IMAGING AND OBJECTIVITY 

Archaeology tends to view photography and other imaging techniques as an 

objective tool for documenting the results of archaeological investigation and fieldwork. 

In general, archaeological photography manuals provide instructions and advice on how 

to take such documentary images of different subjects that capture as much relevant 
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archaeological information as possible (Cookson 1954, 13; Howell and Blanc 1995, 1; 

Lyons 2005, 25; Moser and Smiles 2005, 6; Shanks 1997, 73 – 74; Wright 1982, 176). 

Archaeological imaging functions much like field notes: it is meant to record what an 

archaeologist has seen to allow them to both remember what they saw and communicate 

that to other people. 

Yet, archaeological imaging can be analytical, too; just because archaeology has 

used photography as a documentary technique for over a century does not mean it should 

only ever be considered as such. Biology, ecology, geology, and other sciences regularly 

use photography as an analytical tool, and through it they know that the colour of a male 

mandrill’s face and a male gelada’s chest directly correlates to the animal’s position 

within group hierarchy, for example (Bergman et al. 2009, 796; Setchell et al. 2008, 367; 

Setchell et al. 2009, 831). Careful photography and image processing allow for the 

determination of the individual’s position through a similar method to that used in 

Chapter 5: measuring the intensity of red in the mandrill’s face by averaging colour data 

for that area together. 

In this thesis, photography has led to the identification of different regional 

variations in glass bead trade and manufacture in Scotland between 800 BC and AD 800 

(Chapter 4), something that was not possible through purely visual analysis. It has also 

identified significant chemical differences between glass bead collections within Scotland 

and between Scottish and Anglo-Saxon, Roman, Egyptian, Medieval English, and modern 

collections (Chapter 5). This research has led to the classification of certain objects likely 

being modern or at least post-medieval (Chapter 5.6.2) and has highlighted a chemical 

difference between naturally coloured Scottish glass and naturally coloured Anglo-Saxon 

glass from this period (Chapter 5.6.6). All conclusions specific to glass and glass beads 

drawn in this thesis stem from employing photography as an analytical tool, not purely a 
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documentary one. By treating archaeological photography as we always have, we are 

limiting the information we can glean from an image to a fraction of what is truly 

possible. Photography is an analytical tool, and one that archaeology as a discipline has 

failed to appreciate fully. 

The studies presented here also demonstrate the value of intentionally deviating 

from replicating human vision in archaeological imaging (Chapter 2.2.1). None of the 

contributions this thesis makes to photographic and imaging techniques replicate human 

vision; at the very least, they provide a much closer view of the object through 

photomacrography or photomicrography and at most they delve into light spectra that are 

invisible to humans. Furthermore, the data recovered and conclusions drawn by the case 

studies in this thesis are not possible without deviating from replicating human vision in 

imaging these objects. The conclusions I have drawn here are only possible through 

challenging the emphasis on realism in archaeological imaging. 

In addition to deviating from replicating human vision, these studies also 

intentionally deviate from the standard, prescribed methods of archaeological 

photography and photography-based imaging (Chapter 2.2.1). The techniques presented 

in this thesis do not image an object using perfectly angled LED visible-range lighting 

and many prefer to emphasise rather than minimise shadows. They use visible- and non-

visible-range filters and alter the images in post-processing through white-balancing and 

exposure adjustment. Nearly all outputs are composite images of multiple visible- or non-

visible-range photographs and a significant proportion of the equipment used to generate 

these images was made of computer paper, paperclips, tape and adhesive putty. Just as the 

conclusions drawn in this thesis are only possible through challenging the emphasis on 

realism in archaeological photography, so too are they only possible through challenging 

the prescribed standards of archaeological imaging. 
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Finally, these case studies demonstrate that less objective methods still produce 

important and viable results. Neither bubble concentrations nor chemical composition of 

glass can be objectively measured through spectral photography alone (Chapters 4.2 and 

5.3). It is the identical treatment of the images that allows this thesis to compare the 

relative similarities and differences between samples and draw informed conclusions 

from the results. Our analysis therefore need not be truly objective to provide important 

information that is otherwise difficult or impossible to uncover. Indeed, by employing 

less-objective techniques in addition to objective ones, we can uncover more information 

about the past than if we were to limit ourselves to one or the other. 

9.1.2 THE VALUE OF OLDER TECHNOLOGIES 

Many of the current seminars and publications concerning digital visualisation in 

archaeology focus on using the latest new technology either to understand the 

archaeological landscape or to document and visualise an archaeological excavation (e.g. 

Dellepiane et al. 2006; Doneus and Briese 2006; Doneus et al. 2011; Earl et al. 2008; Earl 

et al. 2010; Mudge et al. 2005; Mudge et al. 2006; Nylén 2008; Remondino et al. 2009; 

Remondino 2011). When new techniques appear, many archaeologists discard previously 

championed methods in favour of the latest new technology. Most of these newly 

proposed digital techniques emphasise new equipment, new methods, new software, and 

new algorithms.  

The pursuit of new technologies is valuable in archaeology, but the pursuit of new 

technologies to the detriment of older ones is becoming problematic. First, the rapidity 

with which technology changes coupled with the limitations of standardised methods and 

the replication of human vision described above ensure that archaeology rarely will 

understand and exploit an imaging technology to its fullest before moving on to the latest 

new piece of equipment. By continually discarding or discrediting older technologies 
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when new ones arrive, we are allowing the possible information gleaned from them to 

remain undiscovered and unused.  

Second, technology changes rapidly, and each change in technology requires 

funds to continue to progress. Very little new technology is ever affordable for lower-

budget projects, and the specifics of new techniques or of the software developed for 

them rarely appears in an openly accessible manner. New technologies and techniques are 

valuable, and we should not abandon our interest in them. However, our current obsession 

with an emphasis on these techniques is widening the economic gap, and therefore the 

perceived academic gap, between those projects that can afford the technology and those 

that cannot (Chapter 2.2.2). 

The results of this thesis demonstrate that a technology is not less useful or less 

innovative merely because it is older or less expensive. The principles of photography are 

sound and relatively easy to manipulate when understood. In exploring and experimenting 

with photography, this thesis has uncovered results that have significantly added to our 

understanding of glass manufacture and trade in Iron Age and Early Medieval Scotland. 

While it is possible to make these conclusions using newer technologies such as x-ray 

computed tomography and LA-ICP-MS, these techniques are expensive. The logistics 

required for conducting a study of this scale using x-ray computed tomography and LA-

ICP-MS are also complex, and they are unlikely to garner permission from the museums 

in which the objects are housed due to the destructive nature of LA-ICP-MS. The 

argument can be made that current technologies are becoming cheaper by the day, but 

relying on the capitalist market to reduce the price of a technology for those currently 

unable to afford it merely passes the responsibility to a third party, one with a vested 

interest in making a profit. The price of technology lowers because demand lowers, and 

demand lowers often because the technique is older and seen by many fields as less 
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objective than the newest technology. Consequently, by the time the price of the current 

newest technology like x-ray computed tomography lowers to a price range most 

archaeological projects can afford, the field will have progressed to even newer 

technologies and relegated x-ray computed tomography to a similarly denigrated status as 

currently less-valued technologies like photography. The system will continue as it has, 

along with the widening economic gap between projects and the perceived difference in 

the inherent value of their results. 

By comparison, the techniques proposed here are affordable, portable, practical, 

non-contact, and produce results comparatively quickly (Chapter 8). They are not new 

technologies, but they have led to conclusions that, according to current archaeological 

practice, are not currently possible without expensive, newer technologies. The methods 

developed in this thesis are not meant to replace newer technologies; rather, they are 

intended to begin narrowing this divide between higher- and lower-budget projects and 

the results they can produce. These techniques therefore demonstrate the need to 

champion exploration and experimentation with older technologies to the same degree we 

do newer ones, which in turn will provide affordable means of analysis for lower-budget 

projects in addition to higher-budget ones. 

Finally, while archiving does not form a significant discussion throughout this 

thesis, it would be remiss not to address the topic in relation to newer versus older 

technologies. Chapter 2.2.3 discusses the difficulties of changes in technology bringing 

with them changes to archaeological record keeping and archival practices. Many newer 

technologies continue to create outputs using unusual or new filetypes for which the 

discipline has not yet developed systematic archival practices or safeguards. The 

continued emphasis on new technology has created an explosion in data and outputs 

within the archaeological record that consequently are less likely to securely enter the 
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archaeological record due to a current lack of standard archival practices that best protect 

said data. The consequences for creating an abundance of data in new file formats or 

using new storage methods could be severe, however, and society has seen examples in 

which data on floppy disks, photographic slides, and even CD-ROMS – all of which were 

new at one time – have become or are becoming obsolete. Artec has discontinued 10 

models since 2007 alone (Artec 2018d). Certain photogrammetric files will not open in 

any program other than Agisoft Photoscan, for example, and even within this software, 

there are certain filetypes that only open in the Professional version and not the Standard. 

Other types of files only open with the software specifically designated for a certain 

brand’s laser or white-light scanner. This is a perpetual problem in archival work, one that 

likely will never disappear. The archaeological record would likely benefit from 

techniques that lend themselves better to current archival practices, however, at least until 

new practices can develop for newer technologies. 

9.1.3 ARCHAEOLOGICAL IMAGING AND THE ARCHAEOLOGICAL RECORD 

Connected to issues of archival practices, there are problems concerning 

archaeology’s current approaches to archaeological imaging and the selection and 

retention of information in the archaeological record. Our understanding of the 

archaeological record as a discipline directly correlates to the degree to which we ‘see’ 

elements of that record (Chapter 2.2.3). Famous paintings are famous in large part 

because they were photographed and widely disseminated. Similarly, objects that 

photograph well are better-known in the archaeological community than those that do not, 

such as SRT objects. While there are certainly archaeological photographs of SRT 

objects, archaeology has concentrated on photographing only the relatively unique objects 

in an informative manner (e.g. the Hunterston Brooch or the Lycurgus Cup). The lack of 
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informative images of subjects that do not lend themselves well to current imaging 

techniques results in the general omission of these objects from the archaeological record. 

As a field, we are largely unconscious of this choice, but it is indeed a choice. The 

omission of these objects from the archaeological record is perpetuated by our continued 

insistence on employing imaging technologies in prescribed, standard ways to create 

standard images with a standard aesthetic and by our failure to explore and experiment 

with the boundaries of current archaeological imaging. Instead, we can consciously 

choose to investigate currently available technologies for their capacity to document 

objects using non-standard methods. This thesis has demonstrated several ways in which 

this type of investigation expands the boundaries of what is currently possible and results 

in more informative visualisations of SRT objects than is otherwise currently feasible. If 

challenging the limits of archaeological photography and photography-based imaging 

produces such informative and beneficial results for SRT objects, it is likely to do so for 

any archaeological subject currently underrepresented in the archaeological record. 

Importantly, archaeology need not explore these boundaries on its own. One 

important contribution to this thesis and this approach more generally has been that of 

other disciplines, particularly physics, chemistry, biology, ecology, geology, and art 

history and conservation. The insights gained here would not be as numerous nor as 

developed were it not for previous research in each of these fields. Many other fields have 

spent decades investigating non-standard methods for currently available technologies 

already and serve as vital inspiration for applying similar methods in archaeological 

imaging. In beginning to challenge our own imaging standards, then, we would do well to 

examine the progress other disciplines have made already in employing current 

technologies in new and innovative ways. 
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The results of this thesis therefore demonstrate that photographs need not be 

specifically objective, nor mimic human vision, nor follow specific, prescribed methods 

of capture to be valuable in archaeological research. This thesis also champions the 

exploration of and experimentation with older technologies in addition to newer ones and 

the investigation of creating affordable, portable, and practical techniques that benefit all 

archaeological research, regardless of their budgetary circumstances. Finally, it 

recognises and champions the responsibility of archaeology to examine the consequences 

of current techniques on the archaeological record and to work to eliminate any biases. 

This proposed approach to archaeological visualisation will result in the recovery of more 

information and the preservation of more archaeological material than currently possible. 

9.2 FUTURE WORK 

There are many avenues for future work relating to this thesis, both specifically 

for glass and glass beads and for archaeological imaging more generally.  First, the 

differences in bubble concentrations between otherwise typologically similar glass beads 

has not been examined in bead studies before. Photographing more objects would build a 

corpus of information that may lead to more specific conclusions, such as how or where 

an object may have been made. Additionally, the control of bubbles exhibited by certain 

objects warrants further research, particularly in Scotland, as it demonstrates a skill with 

glass that has not been recognised previously.  

Photographing objects that have already been chemically tested would help 

develop the spectral imaging technique used in Chapter 5 significantly. The primary 

difficulty in making conclusions from the data presented was in not having enough 

previously analysed material for specific chemical components. Photographing objects 

with confirmed chemical compositions would allow us to narrow the possible list of 
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chemical factors affecting reactions to near-infrared and near-ultraviolet light. Such 

chemical testing could elucidate whether lead-tin and lead-antimonate yellows differ 

significantly in their reactions, for example, which would allow researchers to classify 

yellow glass from this period as Roman or Merovingian in origin with significantly less 

need of destructive chemical testing. Additionally, capturing data for other contemporary 

glass bead collections would allow for extensive regional comparison that is not currently 

available due to the limited number of chemically tested objects. 

Spectral photography or RTI of glass and glass beads would improve our 

knowledge of surface wear significantly without requiring more expensive techniques. 

Surface wear is seldom examined for glass objects, and further examination could lead to 

the differentiation between production, use, and post-depositional wear. Unfortunately, 

while the photogrammetric results were significantly more successful than any other 3D 

modelling technique except x-ray computed tomography, the detail in the results is too 

variable to suggest further research into glass beads using photogrammetry. However, 

further work and experimentation with photogrammetry and photogrammetric software 

could provide consistently successful photogrammetric results. 

All case studies included in this thesis would benefit from collections with 

contextual and chronological data. Most glass beads in Scottish contexts are stray finds 

with little to no contextual or chronological information. Imaging collections that differed 

in where they were found, how they were deposited, and when they were made and used 

would likely result in significant conclusions about the larger workings of the societies in 

which they circulated. 

On a more general level, we should apply these techniques to other object types, 

both SRT and non-SRT, to determine the degree to which they are successful for each. 

Different materials react differently to light and are therefore more or less amenable to 
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different technologies. While the technologies discussed in this thesis certainly work for 

glass beads and appear to work for amber, ceramic, metal, faience, and lithic materials, 

they may differ in their degree of success. It is important to investigate the possible 

benefits of these techniques with other objects to understand their applicability in 

archaeology more generally. 

These techniques need not be limited to archaeology, either. Specialists could 

apply them to geological, ecological, biological, art historical, or even mechanical 

research. Spectral imaging would assist in the identification of precious and semi-

precious stone and the quarries it comes from, for example. The photogrammetry 

techniques can help create models of metal parts of machinery, particularly smaller 

pieces. While many research teams in these fields have access to more technologically 

advanced methods, many would also benefit from more affordable and portable 

techniques. 

Finally, there is future work relating to how archaeology views digital imaging. 

Further research investigating the analytical applications of photography and digital 

imaging would encourage archaeology to deviate from the standard technique of 

mimicking what the human eye can see. We should also continue to experiment with 

imaging archaeological subjects using non-standard methods. Doing so would increase 

the versatility of digital imaging and encourage further innovation directly pertinent to 

archaeology. We must also investigate the applications of current technologies in addition 

to newly developed ones to maximise the tools at our disposal. There are many avenues 

for future research, then, all of which would benefit archaeology and archaeological 

imaging.  
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9.3 CONCLUSION 

Archaeological imaging often advocates for the use of expensive, complex 

imaging technologies that create visualisations closely mimicking that seen by the human 

eye through standard, prescribed techniques. While this approach is beneficial for 

archaeological recording, it severely limits the possible applications of archaeological 

imaging. It contributes to the omission of certain archaeological subjects from the visual 

archaeological record and to an economic bias that favours the results of projects that can 

afford the latest new technology over those that cannot.  

This thesis has demonstrated the value of pushing the boundaries of 

archaeological imaging and experimenting with novel approaches to the discipline. The 

results presented here led to conclusions that are not currently possible through visual 

comparison and are not currently feasible using other imaging techniques due to 

logistical, technological, and budgetary restrictions. Thus, to combat the current 

difficulties faced in archaeological imaging and to exploit the full potential of 

archaeological imaging techniques, we must approach digital imaging from alternate 

angles and test the limits of each technology currently available to us. It is our 

responsibility to create imaging techniques that benefit archaeology as a whole; we must 

not leave the task to other disciplines nor focus solely on techniques few can afford. Only 

by exploring and experimenting with currently available imaging technologies in non-

standard ways can we realise the true potential of archaeological imaging. 
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APPENDIX A: CORPUS OF OBJECTS INCLUDED IN THIS THESIS 
 

SCOTTISH BEADS: 

Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

B.1914.521/1 Balevullin Hunterian Museum 

and Art Gallery, 

Glasgow 

Natural 1       Naturally-green 

annular bead with 

black swag design. 

ABDUA 15528 Ballater 

Glenmuick 

Marischal Museum, 

Aberdeen 

Cobalt-

blue; 

yellow 

2 2     Guido Class 14 

black annular bead 

with yellow rays 

emanating from the 

centre.  
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

X.FJ 16 Balmerion National Museums 

Scotland, Edinburgh 

Yellow 1       Naturally-brown 

Guido Class 13 bead 

with yellow spirals. 

SF 56 Balure Dun Kilmartin House 

Museum, Kilmartin 

Natural 1 1 Yes Yes Naturally-blue 

globular bead. 

SF 57 Balure Dun Kilmartin House 

Museum, Kilmartin 

Natural 1 1 Yes   Naturally-blue 

toggle bead. 

SF 58 Balure Dun Kilmartin House 

Museum, Kilmartin 

Copper-

blue 

1 1 Yes   Copper-blue toggle 

bead. 

ABDUA 15526 Banff Marischal Museum, 

Aberdeen 

Natural; 

white; 

yellow 

3 3     Naturally-brown 

Guido Class 13 bead 

with yellow/white 

spirals. 
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

ABDUA 15531 Buchan Marischal Museum, 

Aberdeen 

Cobalt-

blue; white 

2 2     Cobalt-blue globular 

bead with white 

swag design. 

 Unknown # Castle Craig University of 

Glasgow 

Archaeology Dept. 

Cobalt-blue 1   Yes Yes Cobalt-blue 

biconical wound 

bead. Likely Roman.  

 Unknown # Castle Craig University of 

Glasgow 

Archaeology Dept. 

NA: 

Faience 

bead 

      Yes Turquoise-coloured 

faience melon bead. 

Likely Roman.  

ABDUA 15530 Chapel of 

Garioch 

Marischal Museum, 

Aberdeen 

Yellow 1 1     Black Guido Class 

14 bead with yellow 

whirl design.  
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

CLB 1 Clachbreck University of 

Glasgow 

Archaeology Dept. 

Cobalt-blue 1 1     Small cobalt-blue 

globular bead. 

B.1914.521/27 Clarilaw Muir Hunterian Museum 

and Art Gallery, 

Glasgow 

Cobalt-blue 1       Cobalt blue bead 

with opaque red 

glass marbled into 

the surface. 

X.FJ 13 Clova National Museums 

Scotland, Edinburgh 

Yellow 1       Naturally-brown 

Guido Class 13 bead 

with yellow spirals. 

X.FJ 169 Coldingham National Museums 

Scotland, Edinburgh 

Cobalt-blue 1       Cobalt-blue globular 

bead. 
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

X.FJ 32 Coulter National Museums 

Scotland, Edinburgh 

Green 1    Dark green, pressed 

lozenge-shaped glass 

bead. 

A.1905.2 Craigsfordmains Hunterian Museum 

and Art Gallery, 

Glasgow 

White 1       Cobalt-blue glass 

bead with white 

spiral eyes.  

ABDUA 15507 Culbin Sands Marischal Museum, 

Aberdeen 

Green; 

yellow 

2 1     Guido Class 13 dark 

green bead fragment 

with yellow spirals. 

ABDUA 15514 Culbin Sands Marischal Museum, 

Aberdeen 

Yellow 1 1     Guido Class 13 

brown bead 

fragment with 

yellow spirals. 
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

ABDUA 15524 Culbin Sands Marischal Museum, 

Aberdeen 

Cobalt-blue 1 1     Cobalt-blue annular 

glass bead.  

ABDUA 15694 Culbin Sands Marischal Museum, 

Aberdeen 

Natural; 

yellow 

2 2     Naturally-yellow 

globular glass bead 

with opaque yellow 

core. 

ABDUA 15695 Culbin Sands Marischal Museum, 

Aberdeen 

Yellow 1 1     Annular yellow glass 

bead. 

ABDUA 39481 Culbin Sands Marischal Museum, 

Aberdeen 

Yellow 1 1     Small yellow glass 

bead. 

ABDUA 39482 Culbin Sands Marischal Museum, 

Aberdeen 

Cobalt-blue 1 1     Wound cobalt-blue 

bicone. 
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

ABDUA 39486 Culbin Sands Marischal Museum, 

Aberdeen 

Cobalt-blue 1 1     Small opaque 

greyish cobalt-blue 

bead. Possibly post-

medieval. 

B.1951.971/31 Culbin Sands Hunterian Museum 

and Art Gallery, 

Glasgow 

Copper-

blue 

1       Long copper-blue 

bead or glass tube. 

Unknown Culbin Sands National Museums 

Scotland, Edinburgh 

Yellow 1       Annular yellow glass 

bead fragment. 

X.BIB 10 Culbin Sands National Museums 

Scotland, Edinburgh 

White; 

yellow 

2 2     Brown Guido Class 

13 bead with yellow 

and white spirals. 
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

X.BIB 11 Culbin Sands National Museums 

Scotland, Edinburgh 

White; 

yellow 

3 3     Purple Guido Class 

13 bead fragment 

with a white core 

and yellow, white, 

and purple spirals. 

X.BIB 12 Culbin Sands National Museums 

Scotland, Edinburgh 

Cobalt-blue 1       Highly 

corroded/melted 

cobalt-blue globular 

bead. 

X.BIB 13 Culbin Sands National Museums 

Scotland, Edinburgh 

Natural; 

yellow 

2 1     Purple Guido Class 

13 bead with yellow 

spirals and naturally-

green dots. 
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

X.BIB 14 Culbin Sands National Museums 

Scotland, Edinburgh 

Natural; 

yellow 

2       Naturally-yellow 

bead with opaque 

yellow marbled into 

the surface. 

X.BIB 15 Culbin Sands National Museums 

Scotland, Edinburgh 

Cobalt-

blue; 

yellow 

2 2 Yes Yes Cobalt-blue bead 

with opaque yellow 

marbled into the 

surface. 

X.BIB 16 Culbin Sands National Museums 

Scotland, Edinburgh 

Natural; 

white; 

yellow 

3       Naturally blue-green 

Guido Class 14 bead 

fragment with white 

and yellow whirls. 
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

X.BIB 17 Culbin Sands National Museums 

Scotland, Edinburgh 

Green; 

white; 

yellow 

4       Dark green Guido 

Class 14 bead with 

yellow and 

white/dark green 

reticella whirls. 

X.BIB 18 Culbin Sands National Museums 

Scotland, Edinburgh 

Cobalt-

blue; white; 

yellow 

3       Annular bead with 

cobalt-blue, white, 

yellow, and red 

whirls. 

X.BIB 19 Culbin Sands National Museums 

Scotland, Edinburgh 

Cobalt-

blue; 

natural; 

yellow 

3       Cobalt-blue Guido 

Class 13 bead 

fragment with 

yellow spirals and 
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

naturally green 

elements. 

X.BIB 20 Culbin Sands National Museums 

Scotland, Edinburgh 

Cobalt-

blue; 

yellow 

2       Cobalt-blue Guido 

Class 13 bead 

fragment with 

yellow spirals. 

X.BIB 21 Culbin Sands National Museums 

Scotland, Edinburgh 

Cobalt-

blue; white 

2       Cobalt-blue and 

white reticella 

annular bead. 

X.BIB 22 Culbin Sands National Museums 

Scotland, Edinburgh 

Cobalt-blue 1       Drawn cobalt-blue 

segmented bead. 

Likely Norse. 
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

X.BIB 24 Culbin Sands National Museums 

Scotland, Edinburgh 

Copper-

blue 

1       Small copper-blue 

segmented melon 

bead. 

X.BIB 27 Culbin Sands National Museums 

Scotland, Edinburgh 

NA: Amber 

bead 

    Yes Yes Short cylinder amber 

bead. 

X.BIB 30 Culbin Sands National Museums 

Scotland, Edinburgh 

Copper-

blue 

1       Highly 

corroded/melted 

copper-blue globular 

bead fragment 

X.BIB 31 Culbin Sands National Museums 

Scotland, Edinburgh 

Cobalt-blue 1       Cobalt-blue globular 

bead fragment. 

X.BIB 32 Culbin Sands National Museums 

Scotland, Edinburgh 

Cobalt-blue 1       Cobalt-blue globular 

bead fragment. 
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

X.BIB 33 Culbin Sands National Museums 

Scotland, Edinburgh 

Cobalt-blue 1       Cobalt-blue globular 

bead fragment. 

X.BIB 34 Culbin Sands National Museums 

Scotland, Edinburgh 

Cobalt-blue 1       Cobalt-blue globular 

bead fragment. 

X.BIB 35 Culbin Sands National Museums 

Scotland, Edinburgh 

Cobalt-blue 1       Cobalt-blue bead 

with faceted seed-

like shape. 

X.BIB 36 Culbin Sands National Museums 

Scotland, Edinburgh 

Cobalt-blue 1       Cobalt-blue bead 

with faceted seed-

like shape. 

X.BIB 37 Culbin Sands National Museums 

Scotland, Edinburgh 

Copper-

blue 

1 1   Yes Copper-blue annular 

bead. 
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

X.BIB 38 Culbin Sands National Museums 

Scotland, Edinburgh 

Copper-

blue 

1       Copper-blue 

globular bead. 

X.BIB 39 Culbin Sands National Museums 

Scotland, Edinburgh 

Copper-

blue 

1       Copper-blue 

globular bead. 

X.BIB 40 Culbin Sands National Museums 

Scotland, Edinburgh 

Cobalt-blue 1       Cobalt-blue thick 

annular bead. 

X.BIB 41 Culbin Sands National Museums 

Scotland, Edinburgh 

Cobalt-blue 1       Cobalt-blue annular 

bead. 

X.BIB 42 Culbin Sands National Museums 

Scotland, Edinburgh 

Cobalt-blue 1       Cobalt-blue annular 

bead. 

X.BIB 43 Culbin Sands National Museums 

Scotland, Edinburgh 

Cobalt-blue 1       Cobalt-blue annular 

bead. 
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

X.BIB 44 Culbin Sands National Museums 

Scotland, Edinburgh 

Cobalt-blue 1       Cobalt-blue disc 

bead. 

X.BIB 45 Culbin Sands National Museums 

Scotland, Edinburgh 

Copper-

blue 

1       Copper-blue annular 

bead fragment. 

X.BIB 5 Culbin Sands National Museums 

Scotland, Edinburgh 

Yellow 91 91     String of 91 yellow 

annular beads. 

X.BIB 52 Culbin Sands National Museums 

Scotland, Edinburgh 

Copper-

blue 

1       Copper-blue 

globular bead. 

X.BIB 56 Culbin Sands National Museums 

Scotland, Edinburgh 

Cobalt-blue 11 12     String of 12 cobalt-

blue beads. 

X.BIB 57 Culbin Sands National Museums 

Scotland, Edinburgh 

Cobalt-

blue; 

copper-blue 

34 36     String of 35 copper-

blue beads and one 

cobalt-blue bead. 
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

X.BIB 58 Culbin Sands National Museums 

Scotland, Edinburgh 

Green 7    String of 37 green 

glass beads. 

X.BIB 6 Culbin Sands National Museums 

Scotland, Edinburgh 

White; 

yellow 

2       Amber-coloured 

bead with yellow 

and white lines. 

X.BIB 70 Culbin Sands National Museums 

Scotland, Edinburgh 

Copper-

blue 

1       Cobalt-blue square 

disc bead fragment. 

X.BIB 8 Culbin Sands National Museums 

Scotland, Edinburgh 

Yellow 1       Deep purple Guido 

Class 13 bead 

fragment with 

yellow spirals. 
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

X.BIB 9 Culbin Sands National Museums 

Scotland, Edinburgh 

Yellow 1 1 Yes Yes Black Guido Class 

13 bead fragment 

with yellow spirals. 

B.1914.521/11b Dryburgh Hunterian Museum 

and Art Gallery, 

Glasgow 

Cobalt-blue 1       Wound cobalt-blue 

bead with greenish 

tinge. Possibly 

copper-blue. 

Captm 1418 Dun Fhinn Kilmartin House 

Museum, Kilmartin 

Cobalt-blue 1 1 Yes   Cobalt-blue toggle 

bead. 

SF 22 Earl's Bu University of 

Glasgow 

Archaeology Dept. 

Copper-

blue 

1       Small, cylindrical 

cobalt-blue bead. 
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

SF 712 Earl's Bu University of 

Glasgow 

Archaeology Dept. 

Cobalt-blue 1       Drawn cobalt-blue 

segmented bead. 

Likely Norse. 

SF 743 Earl's Bu University of 

Glasgow 

Archaeology Dept. 

Natural 1       Naturally-green 

thick annular bead. 

SF 881 Earl's Bu University of 

Glasgow 

Archaeology Dept. 

Cobalt-blue 1       Cobalt-blue melon 

bead. 

Unknown Earlston National Museums 

Scotland, Edinburgh 

Cobalt-blue 1       Cobalt-blue globular 

bead. 



Christie – Appendix A: Corpus of Objects Included in this Thesis – 333 

Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

X.FJ 142 Earlston National Museums 

Scotland, Edinburgh 

Cobalt-blue 1       Large cobalt-blue 

bead with white 

spiral protrusions. 

X.BK 1 Fendom Sands National Museums 

Scotland, Edinburgh 

Copper-

blue 

1       Short cylinder 

copper-blue bead. 

X.BK 2 Fendom Sands National Museums 

Scotland, Edinburgh 

Green 1    Green barrel-shaped 

glass bead. 

X.BK 157 Fendom Sands National Museums 

Scotland, Edinburgh 

Cobalt-blue 1       Copper-blue annular 

bead fragment. 

X.BK 158 Fendom Sands National Museums 

Scotland, Edinburgh 

Cobalt-blue 1       Cobalt-blue 

(possibly copper-

blue) annular bead. 
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

X.BK 159 Fendom Sands National Museums 

Scotland, Edinburgh 

Copper-

blue; green 

2       Copper-blue glass 

tube or long bead 

with green chunks 

inlaid. 

X.FJ 123 Fetlar National Museums 

Scotland, Edinburgh 

Yellow 1       Yellow annular 

bead. 

 Unknown # Forteviot University of 

Glasgow 

Archaeology Dept. 

Cobalt-blue 1   Yes Yes Small cobalt-blue 

segmented bead. 

Likely Norse. 

 Unknown # Forteviot University of 

Glasgow 

Archaeology Dept. 

Natural 1   Yes Yes Pressed naturally-

blue donut bead. 
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

X.BHB 10 Glenluce Sands National Museums 

Scotland, Edinburgh 

Natural; 

yellow 

2       Naturally-green 

Guido Class 13 bead 

with yellow spirals. 

X.BHB 11 Glenluce Sands National Museums 

Scotland, Edinburgh 

Cobalt-blue 1       Cobalt-blue globular 

bead. 

X.BHB 12 Glenluce Sands National Museums 

Scotland, Edinburgh 

Cobalt-blue 1 1 Yes Yes Cobalt-blue globular 

bead. 

X.BHB 13 Glenluce Sands National Museums 

Scotland, Edinburgh 

Copper-

blue 

1       Copper-blue barrel-

shaped bead. 

X.BHB 14 Glenluce Sands National Museums 

Scotland, Edinburgh 

Natural 1       Naturally-blue 

toggle bead. 
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

X.BHB 17 Glenluce Sands National Museums 

Scotland, Edinburgh 

Cobalt-

blue; white; 

yellow 

3 3 Yes Yes Cobalt-blue 

segmented (fused?) 

bead with white 

double-swag design 

on one segment and 

an unmarvered 

yellow zone line on 

the other. 

X.BHB 18 Glenluce Sands National Museums 

Scotland, Edinburgh 

Yellow 1       Cobalt-blue bead 

with white and 

yellow raised dots. 

X.BHB 19 Glenluce Sands National Museums 

Scotland, Edinburgh 

White; 

yellow 

2       Small cobalt-blue 

Guido Class 13 bead 



Christie – Appendix A: Corpus of Objects Included in this Thesis – 337 

Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

with yellow dots and 

white and yellow 

zone lines. 

X.BHB 20.1 Glenluce Sands National Museums 

Scotland, Edinburgh 

Yellow 1 1     Annular yellow glass 

bead. 

X.BHB 20.2 Glenluce Sands National Museums 

Scotland, Edinburgh 

Yellow 1 1     Annular yellow glass 

bead. 

X.BHB 20.3 Glenluce Sands National Museums 

Scotland, Edinburgh 

Yellow 1 1     Annular yellow glass 

bead. 

X.BHB 20.4 Glenluce Sands National Museums 

Scotland, Edinburgh 

Yellow 1 1 Yes Yes Annular yellow glass 

bead. 

X.BHB 20.5 Glenluce Sands National Museums 

Scotland, Edinburgh 

Yellow 1 1     Annular yellow glass 

bead. 
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

X.BHB 21 Glenluce Sands National Museums 

Scotland, Edinburgh 

Yellow 1 1     Annular yellow glass 

bead. 

X.BHB 22 Glenluce Sands National Museums 

Scotland, Edinburgh 

Yellow 2 2     Annular and 

globular yellow 

glass bead. 

X.BHB 23.1 Glenluce Sands National Museums 

Scotland, Edinburgh 

Cobalt-blue 1 1     Cobalt-blue annular 

bead fragment. 

X.BHB 23.2 Glenluce Sands National Museums 

Scotland, Edinburgh 

Cobalt-blue 1 1     Cobalt-blue annular 

bead. 

X.BHB 23.3 Glenluce Sands National Museums 

Scotland, Edinburgh 

Cobalt-blue 1 1     Cobalt-blue annular 

bead. 

X.BHB 23.4 Glenluce Sands National Museums 

Scotland, Edinburgh 

Cobalt-blue 1 1     Cobalt-blue annular 

bead. 
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

X.BHB 23.5 Glenluce Sands National Museums 

Scotland, Edinburgh 

Cobalt-blue 1 1     Cobalt-blue annular 

bead. 

X.BHB 23.6 Glenluce Sands National Museums 

Scotland, Edinburgh 

Cobalt-blue 1 1     Cobalt-blue annular 

bead. 

X.BHB 23.7 Glenluce Sands National Museums 

Scotland, Edinburgh 

Cobalt-blue 1 1     Cobalt-blue annular 

bead. 

X.BHB 24 Glenluce Sands National Museums 

Scotland, Edinburgh 

Cobalt-blue 1       Cobalt-blue globular 

bead. 

X.BHB 25 Glenluce Sands National Museums 

Scotland, Edinburgh 

Cobalt-blue 1       Cobalt-blue globular 

bead. 

X.BHB 26 Glenluce Sands National Museums 

Scotland, Edinburgh 

Cobalt-blue 1 1     Cobalt-blue bicone. 
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

X.BHB 27 Glenluce Sands National Museums 

Scotland, Edinburgh 

Cobalt-blue 1 1     Short cobalt-blue 

bicone. 

X.BHB 28 Glenluce Sands National Museums 

Scotland, Edinburgh 

Cobalt-blue 1       Cobalt-blue bead 

with faceted seed-

like shape. 

X.BHB 29 Glenluce Sands National Museums 

Scotland, Edinburgh 

Cobalt-blue 1       Cobalt-blue bead 

with faceted seed-

like shape. 

X.BHB 36 Glenluce Sands National Museums 

Scotland, Edinburgh 

NA: Amber 

bead 

    Yes Yes Barrel-shaped amber 

bead. 

X.BHB 51 Glenluce Sands National Museums 

Scotland, Edinburgh 

Yellow 1       Opaque yellow bead 

fragment with 
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

naturally-yellow 

core. 

X.BHB 52 Glenluce Sands National Museums 

Scotland, Edinburgh 

Yellow 1 1     Yellow globular 

bead. 

X.BHB 53 Glenluce Sands National Museums 

Scotland, Edinburgh 

Copper-

blue 

1       Long copper-blue 

bead or glass tube. 

X.BHB 61 Glenluce Sands National Museums 

Scotland, Edinburgh 

Natural; 

yellow 

4       Naturally-green bead 

fragments with 

yellow stripes. 

X.BHB 63 Glenluce Sands National Museums 

Scotland, Edinburgh 

Copper-

blue 

1       Naturally-blue 

pinhead (?) 

fragment. 



Christie – Appendix A: Corpus of Objects Included in this Thesis – 342 

Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

X.BHB 9 Glenluce Sands National Museums 

Scotland, Edinburgh 

Natural; 

yellow 

2       Naturally-yellow 

Guido Class 13 bead 

with yellow spirals 

Unknown # Glenshee Northlight Heritage, 

York 

Green 2    Yes Yes Tiny triple-

segmented (fused?) 

bead with 2 green 

segments and one 

dark green segment. 

X.BJ 204 Golspie Links National Museums 

Scotland, Edinburgh 

Cobalt-blue 1       Short cobalt-blue 

melon bead. 

X.BJ 205 Golspie Links National Museums 

Scotland, Edinburgh 

Cobalt-blue 1       Small cobalt-blue 

disc bead. 
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

X.BJ 206 Golspie Links National Museums 

Scotland, Edinburgh 

Yellow 1       Small yellow thick 

annular bead. 

X.FJ 171 Inveresk National Museums 

Scotland, Edinburgh 

Cobalt-blue 1       Cobalt-blue long-

bead or glass tube. 

  Iona Abbey Iona Abbey 

Museum 

Cobalt-

blue; white 

3 1     Cobalt-blue long 

glass bead fragment 

with cobalt-blue and 

white reticella lines 

and spirals. 

ABDUA 14350 Jericho Marischal Museum, 

Aberdeen 

Copper-

blue 

1 1     Copper-blue wound 

globular bead.  

ABDUA 15505 Jericho Marischal Museum, 

Aberdeen 

Cobalt-

blue; 

4 5     Naturally-green 

pinhead (?) with 
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

natural; 

white; 

yellow 

red/yellow and 

cobalt-blue/white 

spiral designs. 

ABDUA 15536 Kildrummy Marischal Museum, 

Aberdeen 

White; 

yellow 

2 2     Guido Class 14 

black annular bead 

with yellow and 

white whirl design. 

ABDUA 15538 Kildrummy Marischal Museum, 

Aberdeen 

Natural; 

yellow 

2 2     Naturally-brown 

Guido Class 14 bead 

with yellow whirl 

designs. 
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

B.1914.524/1 Knowe of Moan Hunterian Museum 

and Art Gallery, 

Glasgow 

Cobalt-blue 5       Five drawn cobalt-

blue segmented 

beads, one of which 

has white lines 

running between the 

perforations. Likely 

Norse. 

B.1914.524/14 Knowe of Moan Hunterian Museum 

and Art Gallery, 

Glasgow 

Cobalt-blue 1       Wound globular 

cobalt-blue bead. 

B.1914.524/1a Knowe of Moan Hunterian Museum 

and Art Gallery, 

Glasgow 

Cobalt-blue 1       Wound segmented 

cobalt-blue bead. 
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

B.1914.524/3 Knowe of Moan Hunterian Museum 

and Art Gallery, 

Glasgow 

Cobalt-

blue; white; 

yellow 

2       Large cobalt-blue 

glass bead with 

cobalt-blue and 

white reticella 

collars, blue and 

white reticella lines 

and raised yellow 

dots. Likely Irish. 

B.1914.524/4 Knowe of Moan Hunterian Museum 

and Art Gallery, 

Glasgow 

Cobalt-blue 1       Cobalt-blue collared 

bead with large 

central bulge. 
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

B.1914.524/6 Knowe of Moan Hunterian Museum 

and Art Gallery, 

Glasgow 

Cobalt-

blue; 

yellow 

3       Two globular yellow 

beads and one 

cobalt-blue bead 

from a larger string. 

F 128 Loch Eriboll University of 

Glasgow 

Archaeology Dept. 

Natural; 

yellow 

2 1 Yes Yes Naturally-green 

Guido Class 13 bead 

with yellow spirals 

X.FJ 163 Meiklelaw Field National Museums 

Scotland, Edinburgh 

Copper-

blue 

1       Copper-blue 

globular bead, 

probably post-

medieval. 

X.FJ 164 Meiklelaw Field National Museums 

Scotland, Edinburgh 

Cobalt-blue 1       Cobalt-blue globular 

bead. 
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

X.FJ 165 Meiklelaw Field National Museums 

Scotland, Edinburgh 

Copper-

blue 

1       Copper-blue 

globular bead. 

X.FJ 167 Meiklelaw Field National Museums 

Scotland, Edinburgh 

Copper-

blue 

1       Copper-blue 

globular bead, 

probably post-

medieval. 

ABDUA 15539 Mill of Gellan Marischal Museum, 

Aberdeen 

Copper-

blue; white; 

yellow 

3 4     Black Guido Class 

14 bead with yellow, 

white, and copper-

blue whirl design. 

ABDUA 15540 Mill of Gellan Marischal Museum, 

Aberdeen 

Copper-

blue; 

yellow 

2 2     Copper-blue Guido 

Class 14 bead 
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

fragment with 

yellow whirl design. 

ABDUA 15544 Mill of Gellan Marischal Museum, 

Aberdeen 

Yellow 1 1     Brown Guido Class 

13 bead with yellow 

spirals. 

F.1905.3 Newstead Hunterian Museum 

and Art Gallery, 

Glasgow 

Cobalt-blue 1       Cobalt-blue melon 

bead. Likely Roman. 

Possibly dark green. 

F.1905.4 Newstead Hunterian Museum 

and Art Gallery, 

Glasgow 

Natural 1       Naturally-green 

globular bead. 

X.FRA 861 Newstead National Museums 

Scotland, Edinburgh 

Cobalt-blue 1       Cobalt-blue melon 

bead. 
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

X.FRA 862 Newstead National Museums 

Scotland, Edinburgh 

Cobalt-blue 1 1     Cobalt-blue melon 

bead. 

X.FRA 863 Newstead National Museums 

Scotland, Edinburgh 

Cobalt-blue 1 1     Cobalt-blue melon 

bead. 

X.FRA 864 Newstead National Museums 

Scotland, Edinburgh 

Cobalt-blue 1 1     Cobalt-blue melon 

bead. 

X.FRA 865 A Newstead National Museums 

Scotland, Edinburgh 

Cobalt-blue 1 1     Cobalt-blue melon 

bead. 

X.FRA 868 Newstead National Museums 

Scotland, Edinburgh 

Cobalt-blue 1       Cobalt-blue melon 

bead. 

X.FRA 869 Newstead National Museums 

Scotland, Edinburgh 

Cobalt-blue 1 1     Cobalt-blue melon 

bead. 
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

X.FRA 870 Newstead National Museums 

Scotland, Edinburgh 

Cobalt-blue 1       Cobalt-blue melon 

bead. 

X.FRA 890 Newstead National Museums 

Scotland, Edinburgh 

NA: 

Faience 

bead 

    Yes Yes Faience melon bead. 

X.FRA 895 Newstead National Museums 

Scotland, Edinburgh 

Natural 1       Naturally-blue bead 

with cobalt-blue and 

white reticella-like 

dots. 

X.FRA 897 Newstead National Museums 

Scotland, Edinburgh 

Cobalt-blue 1       Cobalt-blue annular 

bead with white 

swag design. 
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

X.FRA 900 Newstead National Museums 

Scotland, Edinburgh 

Natural 1       Naturally-green bead 

with white swag and 

yellow/other reticella 

line. 

X.FRA 906 Newstead National Museums 

Scotland, Edinburgh 

Natural 1       Naturally green thick 

annular bead. 

X.FRA 907 Newstead National Museum 

Scotland, Edinburgh 

Green 1    Dark green long 

glass tube/bead. 

B.1914.521/2 Philiphaugh Hunterian Museum 

and Art Gallery, 

Glasgow 

Yellow 1       Annular yellow glass 

bead. 
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

B.1914.521/26 Plestie Hunterian Museum 

and Art Gallery, 

Glasgow 

Yellow 1       Amber-coloured 

large annular bead 

with yellow swag 

design. 

SF 15021 Rhynie University of 

Glasgow 

Archaeology Dept. 

Cobalt-blue 1 1 Yes Yes Coil-wound cobalt-

blue glass bead. 

X.FJ 199 Rink National Museums 

Scotland, Edinburgh 

Copper-

blue 

1       Coil-wound copper-

blue long bead. 

B.1914.521/3 Ruberslaw Hunterian Museum 

and Art Gallery, 

Glasgow 

Green 1    Dark green lozenge-

shaped glass bead. 
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

B.1914.521/25 Rule Hunterian Museum 

and Art Gallery, 

Glasgow 

Natural 1       Naturally-green 

thick annular bead. 

B.1914.521/14 Rumbleton Hunterian Museum 

and Art Gallery, 

Glasgow 

Cobalt-

blue; white 

2       Copper-blue short 

cylindrical bead with 

white double-swag 

design. 

ABDUA 15515 Scotston Marischal Museum, 

Aberdeen 

Natural; 

yellow 

2 2     Naturally-brown 

Guido Class 13 bead 

with yellow spirals.  

X.FJ 126 Siccar Point National Museums 

Scotland, Edinburgh 

Cobalt-blue 1       Cobalt-blue annular 

bead. 
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

Q.L.1961.10 Smithston National Museums 

Scotland, Edinburgh 

White; 

yellow 

1       Cobalt-blue Guido 

Class 13 bead with 

yellow spirals. 

Q.L.1961.9 Smithston National Museums 

Scotland, Edinburgh 

Natural; 

Yellow 

2       Naturally-brown 

Guido Class 14 bead 

with yellow, brown, 

and white whirls. 

X.FJ 161 Soutra National Museums 

Scotland, Edinburgh 

Cobalt-blue 1       Cobalt-blue annular 

bead. 

B.1951.1304 Todhaugh Hunterian Museum 

and Art Gallery, 

Glasgow 

Cobalt-

blue; 

copper-blue 

3       Copper-blue 

globular bead, 

cobalt-blue globular 

bead, and copper-
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

blue pressed bicone 

(likely modern). 

X.GV 156 Traprain Law National Museums 

Scotland, Edinburgh 

Green 1    Green cylindrical 

glass bead. 

X.GV 165 Traprain Law National Museums 

Scotland, Edinburgh 

Cobalt-blue 1       Cobalt-blue globular 

bead fragment. 

X.GV 517 Traprain Law National Museums 

Scotland, Edinburgh 

Cobalt-blue 1       Naturally-green 

annular bead. 

X.GV 518 Traprain Law National Museums 

Scotland, Edinburgh 

Cobalt-blue 1       Naturally-green 

annular bead. 

X.GV 519 Traprain Law National Museums 

Scotland, Edinburgh 

Cobalt-blue 1     Yes Yellow annular 

bead. 
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

X.GV 520 Traprain Law National Museums 

Scotland, Edinburgh 

Cobalt-blue 1 1     Cobalt-blue annular 

bead fragment. 

X.GV 598 Traprain Law National Museums 

Scotland, Edinburgh 

Yellow 1       Yellow annular 

bead. 

X.GV 768 Traprain Law National Museums 

Scotland, Edinburgh 

Cobalt-

blue; white 

2       Cobalt-blue bead 

with white swag 

line. 

X.GV 767 Traprain Law National Museums 

Scotland, Edinburgh 

Green 1    Dark green globular 

glass bead. 

X.GV 785 Traprain Law National Museums 

Scotland, Edinburgh 

Green 1    Dark green globular 

glass bead. 

X.GV 925 Traprain Law National Museums 

Scotland, Edinburgh 

White 1       Cobalt-blue bead 

with white spirals. 
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

X.GV 944 Traprain Law National Museums 

Scotland, Edinburgh 

Cobalt-blue 1       Cobalt-blue globular 

bead. 

X.GV 945 Traprain Law National Museums 

Scotland, Edinburgh 

Cobalt-blue 1       Cobalt-blue thick 

annular bead. 

X.GV 955 Traprain Law National Museums 

Scotland, Edinburgh 

Cobalt-blue 1       Cobalt-blue annular 

bead. 

X.GV 1141 Traprain Law National Museums 

Scotland, Edinburgh 

Yellow 1       Yellow annular 

bead. 

X.GV 1187 Traprain Law National Museums 

Scotland, Edinburgh 

Cobalt-

blue; white 

2 2     Cobalt-blue barrel-

shaped bead with 

white swag design. 

X.GV 1230 Traprain Law National Museums 

Scotland, Edinburgh 

Cobalt-blue 1       Cobalt-blue globular 

bead. 
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

X.GV 1272 Traprain Law National Museums 

Scotland, Edinburgh 

Cobalt-blue 1       Cobalt-blue disc 

bead. 

X.GV 1274 Traprain Law National Museums 

Scotland, Edinburgh 

Cobalt-

blue; 

natural; 

white 

3       Naturally-blue bead 

with cobalt-blue and 

white reticella swag 

line and dots. 

X.GV 1441 Traprain Law National Museums 

Scotland, Edinburgh 

Cobalt-blue 1 1     Cobalt-blue thick 

annular bead. 

XI 14-121 Traprain Law National Museums 

Scotland, Edinburgh 

Yellow 1 1     Yellow annular 

bead. 

XI 14-123 Traprain Law National Museums 

Scotland, Edinburgh 

Cobalt-blue 1 1     Cobalt-blue globular 

bead. 
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

XI 14-132 Traprain Law National Museums 

Scotland, Edinburgh 

Cobalt-blue 1 1     Small cobalt-blue 

globular bead. 

XII 15-116 Traprain Law National Museums 

Scotland, Edinburgh 

Yellow 1 1     Yellow annular 

bead. 

XII 15-117 Traprain Law National Museums 

Scotland, Edinburgh 

Yellow 1 1     Yellow annular 

bead. 

XII 15-119 Traprain Law National Museums 

Scotland, Edinburgh 

Yellow 1 1     Yellow annular bead 

fragment. 

XII 15-121 Traprain Law National Museums 

Scotland, Edinburgh 

Yellow 1 1     Yellow annular 

bead. 

XII 15-122 Traprain Law National Museums 

Scotland, Edinburgh 

Yellow 1 1     Yellow annular bead 

fragment. 
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

XII 15-123 Traprain Law National Museums 

Scotland, Edinburgh 

Yellow 1 1     Yellow annular bead 

fragment. 

XII 15-132 Traprain Law National Museums 

Scotland, Edinburgh 

Yellow 1 1     Yellow annular bead 

fragment. 

XII 15-134 Traprain Law National Museums 

Scotland, Edinburgh 

Cobalt-

blue; 

natural 

2 1     Naturally-blue 

annular bead and 

cobalt-blue bicone 

fragment. 

XII 15-136 Traprain Law National Museums 

Scotland, Edinburgh 

Cobalt-blue 2 2     Cobalt-blue globular 

bead and cobalt-blue 

glass tube. 

XII 15-137 Traprain Law National Museums 

Scotland, Edinburgh 

Cobalt-blue 1 1     Cobalt-blue globular 

bead. 
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

Captm 0221.01 Ugadale Point Kilmartin House 

Museum, Kilmartin 

Cobalt-

blue; white 

3 2 Yes   Large cobalt-blue 

glass bead with 

collars and white and 

blue reticella raised 

dots. 

Captm 0221.02 Ugadale Point Kilmartin House 

Museum, Kilmartin 

Cobalt-blue 1 1 Yes   Annular cobalt-blue 

bead. 

Captm 0221.03 Ugadale Point Kilmartin House 

Museum, Kilmartin 

Cobalt-blue 1 1 Yes   Annular cobalt-blue 

bead. 

ABDUA 15520 Unknown Marischal Museum, 

Aberdeen 

White; 

yellow 

2 2     Dark green Guido 

Class 14 bead with 

white and yellow 

spiral designs. 
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

ABDUA 15532 Unknown Marischal Museum, 

Aberdeen 

Cobalt-

blue; white 

2 2     Cobalt-blue annular 

bead with white 

swag design. 

ABDUA 15541 Unknown Marischal Museum, 

Aberdeen 

Cobalt-

blue; 

yellow 

2 2     Guido Class 13 

cobalt-blue bead 

with yellow spirals. 

ABDUA 15543 Unknown Marischal Museum, 

Aberdeen 

Yellow 1 1     Brown Guido Class 

13 bead with yellow 

spirals. 

ABDUA 15545 Unknown Marischal Museum, 

Aberdeen 

Green; 

yellow 

2 2     Grey-green Guido 

Class 13 bead with 

yellow spirals. 
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Accession # Site name Museum  Colours Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

B.1914.521/3f Unknown Hunterian Museum 

and Art Gallery, 

Glasgow 

Yellow 1       Annular yellow glass 

bead. 

X.FJ 158 Unknown National Museums 

Scotland, Edinburgh 

Cobalt-

blue; 

natural; 

white 

3       Naturally-blue 

bangle fragment 

with cobalt-blue and 

white reticella line. 
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OTHER SCOTTISH MATERIAL: 

Accession # Site Name Museum Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

SF 001 Cranberry University of Glasgow 

Archaeology Dept. 

     Yes Neolithic ceramic potsherd. 

SF 002 Cranberry University of Glasgow 

Archaeology Dept. 

     Yes Lithic flake. 

SF 003 Leadketty University of Glasgow 

Archaeology Dept. 

     Yes Lead spindle whorl. 

SF 1023 Iona Abbey Iona Abbey Museum 5 5     Naturally-green window glass 

sherds. 

SF 0962 Iona Abbey Iona Abbey Museum   1   Yes Copper-alloy head figurine. 

SF 0997 Iona Abbey Iona Abbey Museum   1   Yes Copper-alloy lion figurine. 

X.FC 8 Hunterston National Museum of 

Scotland 

   Yes Yes Silver penannular brooch with 

gold filigree and amber inlays. 
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Accession # Site Name Museum Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

35LL 

2EngKU 

Kubad-Âbâd University College 

London, Archaeology 

Dept. 

  2     Glazed ceramic sherd from 

Kubad-Âbâd, Turkey. 

Girişteki 

Hamam 4 

Kubad-Âbâd University College 

London, Archaeology 

Dept. 

  2     Glazed ceramic sherd from 

Kubad-Âbâd, Turkey. 

SF 613 Iona Abbey University of Glasgow 

Archaeology Dept. 

  1     Medieval ceramic sherd. 

SF 595 Iona Abbey University of Glasgow 

Archaeology Dept. 

  2     Medieval glazed ceramic sherd. 

SF 509 Iona Abbey University of Glasgow 

Archaeology Dept. 

  1     Medieval ceramic sherd. 
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Accession # Site Name Museum Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

SF 427  Trench D University of Glasgow 

Archaeology Dept. 

  1     Medieval ceramic sherd. 

SF 411  Trench D University of Glasgow 

Archaeology Dept. 

  1     Medieval ceramic sherd. 

SF 420  Trench D University of Glasgow 

Archaeology Dept. 

  1     Medieval ceramic sherd. 

SF 501 Iona Abbey University of Glasgow 

Archaeology Dept. 

  1     Medieval ceramic sherd. 

SF 510 Iona Abbey University of Glasgow 

Archaeology Dept. 

  2     Medieval glazed ceramic sherd. 

SF 523 Iona Abbey University of Glasgow 

Archaeology Dept. 

  2     Medieval glazed ceramic sherd. 
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Accession # Site Name Museum Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

SF 538 Iona Abbey University of Glasgow 

Archaeology Dept. 

  1     Medieval ceramic sherd. 

SF 548 Iona Abbey University of Glasgow 

Archaeology Dept. 

  2     Medieval glazed ceramic sherd. 

SF 553 Iona Abbey University of Glasgow 

Archaeology Dept. 

  1     Medieval ceramic sherd. 

SF 592 Iona Abbey University of Glasgow 

Archaeology Dept. 

 2   Medieval glazed ceramic sherd. 

SF 593 Iona Abbey University of Glasgow 

Archaeology Dept. 

  2     Medieval glazed ceramic sherd. 

SF 594 Iona Abbey University of Glasgow 

Archaeology Dept. 

  1     Medieval ceramic sherd. 
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Accession # Site Name Museum Bubble 

Samples 

Chemistry 

Samples 

RTI SFM Description 

SF 596 Iona Abbey University of Glasgow 

Archaeology Dept. 

  1     Medieval ceramic sherd. 

SF 625 Iona Abbey University of Glasgow 

Archaeology Dept. 

  1     Medieval ceramic sherd. 

 

IRISH MATERIAL: 

Accession # Site Name Museum RTI SFM Description 

Unknown Ballyspellan National Museum of 

Ireland 

Yes Yes Silver penannular brooch. 
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ANGLO-SAXON MATERIAL:  

Accession # Site name Museum  Colours Chemistry 

Samples 

Description 

1336.70 Faversham The British Museum Cobalt-blue 1 Cobalt-blue claw beaker sherd. 

1891,0624.3 Kempston The British Museum Cobalt-blue 1 Cobalt-blue palm cup sherd. 

1893,0716.3 East Shefford The British Museum Natural 1 Naturally-brown claw beaker sherd. 

1335'70 Faversham The British Museum Natural 1 Naturally-green globular beaker sherd. 

1902,7-22.85 Droxford The British Museum Natural 1 Naturally-brown cone beaker sherd. 

1905,0418,10 Sittingbourne The British Museum Natural 1 Naturally-brown claw beaker sherd. 

1936,0511,48 Howletts The British Museum Natural 1 Naturally-brown claw beaker sherd. 

1936,5-11,30 Howletts The British Museum Natural 1 Naturally-green claw beaker sherd. 

1970,4-6,7 Mucking The British Museum Natural 1 Naturally-brown claw beaker sherd. 

80,2-4,22 Longbridge The British Museum Natural 1 Naturally-green cone beaker sherd. 
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ENGLISH MATERIAL: 

Accession # Site name Museum  Colours Chemistry 

Samples 

Description 

Wells 2 Wells Cathedral The British Museum Natural 1 Naturally-green window glass. 

Wells 2A1 Wells Cathedral The British Museum Natural 1 Naturally-brown window glass. 

Wells 2A4 Wells Cathedral The British Museum Natural 1 Naturally-brown window glass. 

Wells 2B1 Wells Cathedral The British Museum Cobalt-blue 1 Cobalt-blue glass sherd. 

Wells 2W2 Wells Cathedral The British Museum Natural 1 Naturally-green window glass. 

Wells 2Y1 Wells Cathedral The British Museum Natural 1 Naturally-brown window glass. 

Wells 3 Wells Cathedral The British Museum Natural 1 Naturally-brown window glass. 

Wells 31 Wells Cathedral The British Museum Natural 1 Naturally-brown window glass. 

Wells 4 Wells Cathedral The British Museum Natural 1 Naturally-brown window glass. 

Wells W1 Wells Cathedral The British Museum Natural 1 Naturally-green window glass. 
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EGYPTIAN MATERIAL:  

Accession # Site Name Museum  Colours Chemistry 

Samples 

Description 

5615-2972 X Amarna? The British Museum Cobalt-blue 1 Glass vessel sherd. 

5615-29771 W Amarna? The British Museum Cobalt-blue; copper-blue; 

white; yellow 

4 Glass vessel sherd. 

5615-29772 U Amarna? The British Museum Copper-blue 1 Glass vessel sherd. 

5615-29775 Z Amarna? The British Museum Cobalt-blue; white; yellow 4 Glass vessel sherd. 

5615-29779 V Amarna? The British Museum Cobalt-blue; white; yellow 6 Two glass vessel sherds. 

5615-29780 U Amarna? The British Museum Cobalt-blue; white; yellow 3 Glass vessel sherd. 

5615-29787 R Amarna? The British Museum Cobalt-blue; white; yellow 3 Glass vessel sherd. 

5615-29793 V Amarna? The British Museum Cobalt-blue 1 Glass vessel sherd. 

5615-29795 Russel 

3 

Amarna? The British Museum Cobalt-blue 1 Glass vessel sherd. 

5615-29796 P Amarna? The British Museum Copper-blue 1 Glass vessel sherd. 
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Accession # Site Name Museum  Colours Chemistry 

Samples 

Description 

REFC 29768 X Amarna? The British Museum Cobalt-blue; copper-blue; 

white; yellow 

8 Three glass vessel sherds. 

REFC 29769 V Amarna? The British Museum Cobalt-blue; white; yellow 6 Two glass vessel sherds. 

REFC 29770 Y Amarna? The British Museum Cobalt-blue; white; yellow 3 Glass vessel sherd. 

REFC 29774 Q Amarna? The British Museum Copper-blue 2 Glass vessel sherd. 

REFC 29776 X Amarna? The British Museum Cobalt-blue; white; yellow 9 Four glass vessel sherds. 

REFC 29781 S Amarna? The British Museum Cobalt-blue; white; yellow 3 Glass vessel sherd. 

REFC 29783 Z Amarna? The British Museum Cobalt-blue; white; yellow 3 Glass vessel sherd. 

REFC 29785 V Amarna? The British Museum Cobalt-blue; white; yellow 3 Glass vessel sherd. 

REFC 29786 T Amarna? The British Museum Cobalt-blue; copper-blue; 

white; yellow 

4 Two glass vessel sherds. 

REFC 29789 Y Amarna? The British Museum Cobalt-blue 2 Glass vessel sherd. 

REFC 364 box Amarna? The British Museum Cobalt-blue; white; yellow 6 Two glass vessel sherds. 
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Accession # Site Name Museum  Colours Chemistry 

Samples 

Description 

REFC 3642 T Amarna? The British Museum Cobalt-blue 3 Three glass vessel sherds 

REFC 36457 Y Amarna? The British Museum Cobalt-blue; white; yellow 3 Glass vessel sherd. 

REFC 36458 W Amarna? The British Museum Cobalt-blue; white; yellow 3 Glass vessel sherd. 

REFC 36459 U Amarna? The British Museum Cobalt-blue; white; yellow 3 Glass vessel sherd. 

REFC 36461 V Amarna? The British Museum Cobalt-blue; copper-blue; 

yellow 

3 Glass vessel sherd. 

REFC 36463 R Amarna? The British Museum Copper-blue; white 4 Four glass vessel sherds. 

REFC 66878 Amarna? The British Museum Copper-blue 1 Glass vessel sherd. 

REFC 66879 Amarna? The British Museum Copper-blue 1 Glass vessel sherd. 
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ROMAN MATERIAL: 

Accession # Site name Museum  Colours Chemistry Description 

SVP-6423-115a San Vincenzo Al 

Volturno 

University College London, 

Archaeology Dept. 

White 1 White tessera. 

SVP-6423-115b San Vincenzo Al 

Volturno 

University College London, 

Archaeology Dept. 

White 1 White tessera. 

SVP-6423-115c San Vincenzo Al 

Volturno 

University College London, 

Archaeology Dept. 

White 1 White tessera. 

SVP-6423-116b San Vincenzo Al 

Volturno 

University College London, 

Archaeology Dept. 

Yellow 1 Yellow tessera. 

SVP-6423-116c San Vincenzo Al 

Volturno 

University College London, 

Archaeology Dept. 

Yellow 1 Yellow tessera. 

SVP-6423-117a San Vincenzo Al 

Volturno 

University College London, 

Archaeology Dept. 

Copper-blue 1 Copper-blue tessera. 
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Accession # Site name Museum  Colours Chemistry Description 

SVP-6423-117b San Vincenzo Al 

Volturno 

University College London, 

Archaeology Dept. 

Copper-blue 1 Copper-blue tessera. 

SVP-6423-117c San Vincenzo Al 

Volturno 

University College London, 

Archaeology Dept. 

Copper-blue 1 Copper-blue tessera. 

SVP-6423-117d San Vincenzo Al 

Volturno 

University College London, 

Archaeology Dept. 

Copper-blue 2 Two copper-blue tesserae. 

SVP-6423-121a San Vincenzo Al 

Volturno 

University College London, 

Archaeology Dept. 

Copper-blue 1 Copper-blue tessera. 

SVP-6423-121b San Vincenzo Al 

Volturno 

University College London, 

Archaeology Dept. 

Copper-blue 1 Copper-blue tessera. 

SVP-6423-121c San Vincenzo Al 

Volturno 

University College London, 

Archaeology Dept. 

Copper-blue 1 Copper-blue tessera. 

SVP-6423-124c San Vincenzo Al 

Volturno 

University College London, 

Archaeology Dept. 

Copper-blue 1 Copper-blue tessera. 
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Accession # Site name Museum  Colours Chemistry Description 

SVP-6423-124d San Vincenzo Al 

Volturno 

University College London, 

Archaeology Dept. 

Copper-blue 1 Copper-blue tessera. 

1866.11.17.252  Unknown The British Museum Cobalt-blue; 

natural; white 

5 One naturally-brown, white, and 

cobalt-blue mosaic Roman glass 

vessel sherd and one naturally-

brown and white mosaic Roman 

glass vessel sherd. 

86.11.17.203  Unknown The British Museum Cobalt-blue; 

natural; white 

3 Naturally-brown, white, and 

cobalt-blue mosaic Roman glass 

vessel sherd. 

7150-56 Belvedere, Baths 

of Septimius 

Severus, Rome 

The British Museum Cobalt-blue 1 Cobalt-blue tessera. 



Christie – Appendix A: Corpus of Objects Included in this Thesis – 378 

Accession # Site name Museum  Colours Chemistry Description 

7150-57 Belvedere, Baths 

of Septimius 

Severus, Rome 

The British Museum Copper-blue 1 Copper-blue tessera. 

7150-58 Belvedere, Baths 

of Septimius 

Severus, Rome 

The British Museum Copper-blue 1 Copper-blue tessera. 

7150-63 Belvedere, Baths 

of Septimius 

Severus, Rome 

The British Museum Yellow 1 Yellow tessera. 

7150-64 Belvedere, Baths 

of Septimius 

Severus, Rome 

The British Museum Cobalt-blue 1 Cobalt-blue tessera. 
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Accession # Site name Museum  Colours Chemistry Description 

7150-65 Belvedere, Baths 

of Septimius 

Severus, Rome 

The British Museum Copper-blue 1 Copper-blue tessera. 

7150-66 Belvedere, Baths 

of Septimius 

Severus, Rome 

The British Museum Copper-blue 1 Copper-blue tessera. 

7150-67 Belvedere, Baths 

of Septimius 

Severus, Rome 

The British Museum Natural 1 Naturally-green tessera. 

7150-87 Domus Augustana, 

Rome 

The British Museum Cobalt-blue 1 Cobalt-blue tessera. 

7150-90 Domus Augustana, 

Rome 

The British Museum Natural 1 Naturally-yellow tessera. 
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Accession # Site name Museum  Colours Chemistry Description 

7150-91 Domus Augustana, 

Rome 

The British Museum Cobalt-blue 1 Cobalt-blue tessera. 

7150-93 Domus Augustana, 

Rome 

The British Museum Natural 1 Naturally-yellow tessera. 

7150-94 Domus Augustana, 

Rome 

The British Museum Cobalt-blue 1 Cobalt-blue tessera. 
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APPENDIX B: SPECIFIC EQUIPMENT USED IN THIS RESEARCH 
*All prices current as of December 2018* 

Camera: Nikon D3100 dSLR (Nikon 2017) £240 (discontinued) 

Lenses: Nikon AF-P DX Nikkor 18-55mm (Nikon 

2018b) 

Nikon AF-S Micro Nikkor 40mm (Nikon 

2018a) 

(included with camera) 

£270 

Microscope: DinoLite AM4113ZT (GT Vision 2018) £325 

Filters: Schott S8612 (UVIROPTICS 2018b) 

Hoya 360 (UVIROPTICS 2018a) 

Hoya HMC UV Cut (Jessops 2018a) 

Neewer 720nm Infrared (Neewer 2018a) 

Neewer 760nm Infrared 

Neewer 850nm Infrared 

Neewer 950nm Infrared 

£65 

£50 

£30 

£30 for all Neewer 

 

 

Torches: LE UV (Lighting Ever 2018) 

LED (Mountain Warehouse 2018) 

Maglite Solitaire (Maglite 2018) 

£14.50 

£5.99 

£5.90 

Remote 

Shutter: 

Hähnel Remote Shutter Release Pro HRN 

280 (Hähnel 2018) 

£27 

Tripods: Joby Gorillapod Hybrid (Joby 2018b) 

Joby Gorillapod Original (Joby 2018a) 

Vivitar 120 SE 

£31.50 

£7.75 

Discontinued 
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Laptop: ASUS Transformer Book T300 Chi (Asus 

2018)  

Dell Inspiron 15 7000 (Dell 2018) 

£350 

£1200 (Discontinued) 

Software: Adobe Bridge CC 2018 (Adobe 2018) 

Adobe Lightroom Classic CC 2018 (Adobe 

2018) 

Adobe Photoshop CC 2018 (Adobe 2018) 

Agisoft Photoscan Pro 1.4.1 (Agisoft 2018b) 

Agisoft Photoscan Standard 1.4.1 (Agisoft 

2018b) 

Blender v2.79b (Blender 2018) 

DinoCapture 2.0 (DinoLite 2017a) 

MeshLab 2016.12 (MeshLab 2018) 

RTIbuilder 2.0.2 (Cultural Heritage Imaging 

2018a) 

RTIViewer 1.1.0 (Cultural Heritage Imaging 

2018d) 

£16.24/month for all 

Adobe 

 

 

£385 

£41 

£0 

£0 

£0 

£0 

£0 
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APPENDIX C: DIGITAL FILTER SETTINGS USED 
 

Blue Filter:     Red Filter: 

Reds -16  Reds +40  

Oranges -29  Oranges +20  

Yellows -35  Yellows +3  

Greens -35  Greens -21  

Aquas -9  Aquas -35  

Blues +38  Blues -9  

Purples +38  Purples +27  

Magentas +12  Magentas +40  

 

 

 

Green Filter: 

Reds +25 

Oranges +38 

Yellows +40 

Greens +30 

Aquas +38 

Blues 0 

Purples 0 

Magentas 0 
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APPENDIX D: SAMPLE DATA RECORD FORMS 
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APPENDIX E: SELECTION OF EXAMPLE FILES AND METADATA FOR THIS THESIS 
The enclosed USB drive contains a PowerPoint and PDF file of pivotal image files in this research (Chapter 1.2).  The PDF does not have 

the same functionality as the PowerPoint, but it is included for accessibility purposes. It also contains the processed results for all objects 

featured as examples in the text plus several further examples. This section contains selected metadata for these examples, including the bubble 

and spectral data and the parameters of images capture. Successful and unsuccessful attempts feature in this appendix, because the failures 

informed the techniques that lead to success. Unfortunately, metadata and files cannot be included for all objects examined and imaged in this 

research due to limitations of space, both within the text and on the USB drive. Nevertheless, this selection provides evidence of all factors 

discussed in this thesis and serves as a representative sample of this research. 

File-naming: The files included in this appendix are named according to various parameters. First, imaging results for the same subject 

are contained in folders labelled with the museum accession number for the subject (Appendix A) followed by the number given to the subject in 

the larger database used in this thesis (e.g. BM 1336.70 – FAV001). Different numbering systems result from the tendency for museums and 

excavations to combine multiple objects under the same accession number, particularly glass beads. Finished, processed photographic, RTI, or 

photogrammetric files appear in each folder with names corresponding to the number given to the subject for this thesis followed by the number 

given to the original set of images used to create it, a designation for the type of output generated (‘Ph’ for photography, ‘RTI’’ for RTI, and 

‘Pg’ for photogrammetry) and the number of that output generated using that set of images. For example, CS002_1_Ph1 is the first photographic 
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output generated for the first set of images taken of CS002, while HUN001_2_Pg1 is the first photogrammetric output created from the second 

set of images of the Hunterston Brooch. All examples correspond to entries in Appendix A. 

Please note that some files have been redacted per request of the National Museum of Scotland. The author is currently working with the 

NMS to make these models available to view on the museum’s SketchFab page.  
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Bubble and Spectral Data Examples: 

Object ID Appendix A # Material Colour Diapheneity Location Bubbles Infrared  

(950 - 1000nm) 

Ultraviolet  

(300 - 400nm) 

Amarna-002 BM 5615-29771 W Glass Cobalt-blue Translucent Core  54 34 

Amarna-002 BM 5615-29771 W Glass Copper-blue Translucent Design  53 68 

Amarna-002 BM 5615-29771 W Glass White Opaque Design  85 76 

Amarna-002 BM 5615-29771 W Glass Yellow Opaque Design  69 36 

Amarna-004 BM 5615-29775 Z Glass Yellow Opaque Design  99 49 

Amarna-004 BM 5615-29775 Z Glass Cobalt-blue Translucent Core  72 95 

Amarna-004 BM 5615-29775 Z Glass White Opaque Design  68 95 

Amarna-004 BM 5615-29775 Z Glass White Opaque Design  106 140 

Balure Dun-001 KHM SF 56 Glass Light blue Transparent Core Few 53 93 

Balure Dun-002 KHM SF 57 Glass Light blue Transparent Core Few 67 86 

Banff-001 MM ABDUA 15526 Glass Natural yellow Transparent Core Moderate 39 28 

Banff-001 MM ABDUA 15526 Glass White Opaque Design Moderate 94 50 

Banff-001 MM ABDUA 15526 Glass Yellow Opaque Design Many 67 28 

Clachbreck-001 UG CLB 1 Glass Cobalt-blue Translucent Core Moderate 150 80 
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Object ID Appendix A # Material Colour Diapheneity Location Bubbles Infrared  

(950 - 1000nm) 

Ultraviolet  

(300 - 400nm) 

Culbin Sands-002 NMS X.BIB.13 Glass Natural blue Transparent Design Few 91 74 

Culbin Sands-002 NMS X.BIB.13 Glass Yellow Opaque Design Moderate 148 40 

Culbin Sands-004 NMS X.BIB.10 Glass Yellow Opaque Design Few 172 33 

Culbin Sands-004 NMS X.BIB.10 Glass White Opaque Design Few 118 74 

Culbin Sands-008 NMS X.BIB.15 Glass Cobalt-blue Translucent Core Few 64 22 

Culbin Sands-008 NMS X.BIB.15 Glass Yellow Opaque Core Moderate 101 34 

Culbin Sands-025 NMS X.BIB.37 Glass Copper-blue Translucent Core Many 58 40 

Culbin Sands-028 NMS X.BIB.40 Glass Cobalt-blue Translucent Core Many   

Culbin Sands-029 NMS X.BIB.41 Glass Cobalt-blue Translucent Core Few   

Culbin Sands-030 NMS X.BIB.42 Glass Cobalt-blue Translucent Core Few   

Culbin Sands-490 NMS X.BIB.70 Glass Copper-blue Translucent Core Moderate   

Faversham-001 BM 1336.70 Glass Cobalt-blue Translucent Core  68 57 

Glenluce Sands-012 NMS X.BHB.11 Glass Cobalt-blue Translucent Core Moderate   

Glenluce Sands-070 NMS X.BHB.20.4 Glass Yellow Opaque Core Few 176 41 

Glenshee-001 UG Unknown # Glass Green Translucent Core Many 101 51 

Glenshee-001 UG Unknown # Glass Dark green Translucent Core Many 83 51 
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Object ID Appendix A # Material Colour Diapheneity Location Bubbles Infrared  

(950 - 1000nm) 

Ultraviolet  

(300 - 400nm) 

Iona-001 IAM SF 0962 Cu-Alloy     117 82 

Iona-002 IAM SF 0997 Cu-Alloy     118 67 

Kubud Abad-001 UCL Giristeki Hamam 4 Glaze Copper-blue    169 195 

Kubud Abad-002 UCL 35LL 2EngKU Glaze Copper-blue    146 77 

Loch Eriboll-001 UG F128 Glass Natural green Transparent Core Few 55 41 

Loch Eriboll-001 UG F128 Glass Yellow Opaque Design Many 161 66 

Mill of Gellan-001 MM ABDUA 15539 Glass Copper-blue Translucent Design Many 43 36 

Mill of Gellan-001 MM ABDUA 15539 Glass White Opaque Design Many 61 64 

Mill of Gellan-001 MM ABDUA 15539 Glass Yellow Opaque Design Many 61 29 

Rhynie-001 UG SF 15021 Glass Cobalt-blue Translucent Core Many 45 35 

Sittingbourne-001 BM 1905.0418.10 Glass Natural brown Transparent Core  33 28 

Ugadale-001 KHM Captm 0221.01 Glass Cobalt-blue Translucent Core Moderate 68 17 

Ugadale-001 KHM Captm 0221.01 Glass Cobalt-blue Transparent Design Moderate   

Ugadale-001 KHM Captm 0221.01 Glass White Opaque Design Many 126 80 

Unknown-001 BM 1886.11.17.252 Glass Natural brown Transparent Design  42 32 

Unknown-001 BM 1886.11.17.252 Glass Cobalt-blue Translucent Core  35 38 
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Object ID Appendix A # Material Colour Diapheneity Location Bubbles Infrared  

(950 - 1000nm) 

Ultraviolet  

(300 - 400nm) 

Unknown-001 BM 1886.11.17.252 Glass White Opaque Design  92 88 

Unknown-002 BM 1886.11.17.252 Glass White Opaque Design  103 96 

Unknown-002 BM 1886.11.17.252 Glass Natural brown Transparent Core  37 24 

Wells Cathedral-003 BM WELLS 2A1 Glass Natural brown Translucent Core  52 40 

Wells Cathedral-006 BM WELLS 2A4 Glass Natural brown Translucent Core  60 43 
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Photo Set and Parameter Examples: 
Photo 

Shoot 

Date Purpose Photos Camera Lens Lighting Aperture ISO Shutter 

Speed 

Filter Background 

AM001_1 14/12/2017 Spectral 

Photography 

15 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

LE UV; 

LED; 

Maglite 

Solitaire 

F20 200 1/6 S8612; Hoya 

HMC UV; 

Hoya U-360; 

Neewer 

950nm 

white paper 

AM002_1 14/12/2017 Spectral 

Photography 

26 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

LE UV; 

LED; 

Maglite 

Solitaire 

F20 200 1/6 S8612; Hoya 

HMC UV; 

Hoya U-360; 

Neewer 

950nm 

white paper 

BAD001_3 12/06/2017 RTI 37 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

LE UV F20 200 1/4 S8612; Hoya 

U-360 

white paper 

BAD002_3 12/06/2017 RTI 35 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

LE UV F16 200 1 S8612; Hoya 

U-360 

white paper 

BAL001_1 27/09/2016 RTI 47 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

LED F22 200 1/2 S8612; Hoya 

HMC UV 

white paper 
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Photo 

Shoot 

Date Purpose Photos Camera Lens Lighting Aperture ISO Shutter 

Speed 

Filter Background 

BAL001_2 27/09/2016 Photogrammetry 168 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

LED F22 200 1/2 S8612; Hoya 

HMC UV 

white paper 

BNF001_1 24/10/2017 Spectral 

Photography 

14 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

LE UV; 

LED; 

Maglite 

Solitaire 

F20 200 1/8 S8612; Hoya 

HMC UV; 

Hoya U-360; 

Neewer 

950nm 

white paper 

CCR001_1 06/07/2016 Photogrammetry 95 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

Natural and 

LED torches 

F29 200 Various None white paper 

CLB001_7 13/06/2017 Spectral 

Photography 

3 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

LE UV; 

LED; 

Maglite 

Solitaire 

F16 200 1/6 S8612; Hoya 

HMC UV; 

Hoya U-360; 

Neewer 

950nm 

white paper 

CNC001_1 30/05/2017 Spectral 

Photography 

3 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

LE UV; 

LED; 

Maglite 

Solitaire 

F5 100 Various S8612; Hoya 

HMC UV; 

Hoya U-360; 

Neewer 

950nm 

white paper 
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Photo 

Shoot 

Date Purpose Photos Camera Lens Lighting Aperture ISO Shutter 

Speed 

Filter Background 

CS002_1 21/08/2017 Spectral 

Photography 

11 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

LE UV; 

LED; 

Maglite 

Solitaire 

F22 200 1.6 S8612; Hoya 

HMC UV; 

Hoya U-360; 

Neewer 

950nm 

white paper 

CS004_1 21/08/2017 Spectral 

Photography 

10 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

LE UV; 

LED; 

Maglite 

Solitaire 

F22 200 1.6 S8612; Hoya 

HMC UV; 

Hoya U-360; 

Neewer 

950nm 

white paper 

CS008_1 21/08/2017 Photogrammetry 90 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

LED F16 200 Various S8612; Hoya 

HMC UV 

white paper 

CS008_2 21/08/2017 Photogrammetry 100 DinoLite 

AM4113ZT 

DinoLite 

AM4113ZT 

DinoLite 

AM4113ZT 

LED lights 

    white paper 

CS008_3 21/08/2017 RTI 48 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

UV Torch F20 200 1 S8612; Hoya 

U-360 

white paper 

CS025_1 21/08/2017 Photogrammetry 111 DinoLite 

AM4113ZT 

DinoLite 

AM4113ZT 

DinoLite 

AM4113ZT 

LED lights 

    white paper 
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Photo 

Shoot 

Date Purpose Photos Camera Lens Lighting Aperture ISO Shutter 

Speed 

Filter Background 

CS028_1 05/06/2014 Documentary 6 iPhone 4s iPhone 4s Maglite F2.4 50 1/50  white paper 

CS029_1 05/06/2014 Documentary 6 iPhone 4s iPhone 4s Maglite F2.4 50 1/50  white paper 

CS030_1 05/06/2014 Documentary 7 iPhone 4s iPhone 4s Maglite F2.4 50 1/40  white paper 

CS490_1 05/06/2014 Documentary 7 iPhone 4s iPhone 4s Maglite F2.4 160 1/20  white paper 

CS493_1 21/08/2017 Spectral 

Photography 

5 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

LE UV; 

LED; 

Maglite 

Solitaire 

F22 200 1.6 S8612; Hoya 

HMC UV; 

Hoya U-360; 

Neewer 

950nm 

white paper 

CS493_2 21/08/2017 Photogrammetry 147 DinoLite 

AM4113ZT 

DinoLite 

AM4113ZT 

DinoLite 

AM4113ZT 

LED lights 

    white paper 

CS493_3 21/08/2017 Photogrammetry 72 DinoLite 

AM4113ZT 

DinoLite 

AM4113ZT 

DinoLite 

AM4113ZT 

LED lights 

    white paper 

CS493_4 21/08/2017 RTI 44 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

UV Torch F20 200 1 S8612; Hoya 

U-360 

white paper 

FAV001_1 14/12/2017 Spectral 

Photography 

29 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

LE UV; 

LED; 

Maglite 

Solitaire 

F20 200 1/8 S8612; Hoya 

HMC UV; 

Hoya U-360; 

white paper 
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Photo 

Shoot 

Date Purpose Photos Camera Lens Lighting Aperture ISO Shutter 

Speed 

Filter Background 

Neewer 

950nm 

GL001_04 04/02/2016 Photogrammetry 22 Nikon 

D3100 

AF-P DX 

Nikkor 18-

55mm  

Ambient 

fluorescent 

f/5.6 1000 1/80 None Coloured web 

on white 

paper 

GL001_11 12/02/2016 Photogrammetry 28 Nikon 

D5300 

Nikon AF-S 

40mm 

Micro 

Ambient 

fluorescent 

F36 640 1.6 None white table 

GL001_13 12/02/2016 Photogrammetry 28 Nikon 

D5300 

Nikon AF-S 

40mm 

Micro 

Ambient 

fluorescent 

F36 640 2 None Coloured web 

on white 

paper 

GL001_30 19/09/2016 Photogrammetry 109 DinoLite 

AM4113ZT 

DinoLite 

AM4113ZT 

DinoLite 

AM4113ZT 

LED lights 

   None white paper 

GL001_31 19/09/2016 Photogrammetry 57 DinoLite 

AM4113ZT 

DinoLite 

AM4113ZT 

DinoLite 

AM4113ZT 

LED lights 

   None white paper 

GL001_32 25/8/2016 RTI 81 DinoLite 

AM4113ZT 

DinoLite 

AM4113ZT 

DinoLite 

AM4113ZT 

LED lights 

   None White paper 
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Photo 

Shoot 

Date Purpose Photos Camera Lens Lighting Aperture ISO Shutter 

Speed 

Filter Background 

GL001_34 13/06/2017 Spectral 

Photography 

3 Nikon 

D5300 

Nikon AF-S 

40mm 

Micro 

LE UV; 

LED; 

Maglite 

Solitaire 

F16 200 1/2 S8612; Hoya 

HMC UV; 

Hoya U-360; 

Neewer 

950nm 

white paper 

GS012_1 05/06/2014 Documentary 4 iPhone 4s iPhone 4s Maglite 

Solitaire 

F2.4 125 1/20  white paper 

GS070_1 21/08/2017 Photogrammetry 92 DinoLite 

AM4113ZT 

DinoLite 

AM4113ZT 

DinoLite 

AM4113ZT 

LED lights 

    white paper 

GS070_2 21/08/2017 Spectral 

Photography 

5 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

LE UV; 

LED; 

Maglite 

Solitaire 

F22 200 1.6 S8612; Hoya 

HMC UV; 

Hoya U-360; 

Neewer 

950nm 

white paper 

GS070_3 21/08/2017 Bubbles 1 DinoLite 

AM4113ZT 

DinoLite 

AM4113ZT 

DinoLite 

AM4113ZT 

LED lights 

    white paper 

GS070_4 21/08/2017 RTI 43 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

LE UV F20 200 1 S8612; Hoya 

U-360 

white paper 
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Photo 

Shoot 

Date Purpose Photos Camera Lens Lighting Aperture ISO Shutter 

Speed 

Filter Background 

HUN001_1 27/09/2016 RTI 42 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

LED F20 200 0.8 S8612; Hoya 

HMC UV 

white paper 

HUN001_2 27/09/2016 Photogrammetry 224 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

LED Various 200 Various S8612; Hoya 

HMC UV 

white paper 

IOA001_1 31/05/2017 Photogrammetry 81 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

LED F16 100 1/13 S8612; Hoya 

HMC UV 

white paper 

IOA001_2 31/05/2017 Spectral 

Photography 

6 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

LE UV; 

LED; 

Maglite 

Solitaire 

F16 100 Various S8612; Hoya 

HMC UV; 

Hoya U-360; 

Neewer 

950nm 

white paper 

IOA002_1 31/05/2017 Photogrammetry 184 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

LED F16 100 1/8 S8612; Hoya 

HMC UV 

white paper 

IOA002_2 31/05/2017 Spectral 

Photography 

4 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

LE UV; 

LED; 

Maglite 

Solitaire 

F16 100 Various S8612; Hoya 

HMC UV; 

Hoya U-360; 

Neewer 

950nm 

white paper 
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Photo 

Shoot 

Date Purpose Photos Camera Lens Lighting Aperture ISO Shutter 

Speed 

Filter Background 

IOA003_1 18/05/2017 Spectral 

Photography 

8 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

LE UV; 

LED; 

Maglite 

Solitaire 

F5 100 Various S8612; Hoya 

HMC UV; 

Hoya U-360; 

Neewer 

950nm 

white paper 

KA001_1 13/12/2017 Spectral 

Photography 

14 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

LE UV; 

LED; 

Maglite 

Solitaire 

F20 200 1/8 S8612; Hoya 

HMC UV; 

Hoya U-360; 

Neewer 

950nm 

white paper 

KA002_1 13/12/2017 Spectral 

Photography 

10 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

LE UV; 

LED; 

Maglite 

Solitaire 

F20 200 1/8 S8612; Hoya 

HMC UV; 

Hoya U-360; 

Neewer 

950nm 

white paper 

LEB001_01 23/03/2016 Photogrammetry 37 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

Ambient 

fluorescent 

F18 100 1.3 Jessops 

Circular 

Polariser 

white paper 

LEB001_03 23/03/2016 Photogrammetry 28 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

Desk lamp F22 400 1 Jessops 

Circular 

Polariser 

white paper 
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Photo 

Shoot 

Date Purpose Photos Camera Lens Lighting Aperture ISO Shutter 

Speed 

Filter Background 

LEB001_05 24/03/2016 Photogrammetry 72 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

Ambient 

fluorescent 

F18 800 1 Jessops 

Circular 

Polariser 

white paper 

LEB001_06 24/03/2016 Photogrammetry 19 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

Ambient 

fluorescent 

and RTI AP 

PRO Series 

LED torch 

with paper as 

diffuser 

F18 100 1.3 Jessops 

Circular 

Polariser 

white paper 

LEB001_10 24/03/2016 RTI 55 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

(RTI AP 

PRO Series 

LED torch 

F18 100 1/2  white paper 

LEB001_11 29/04/2016 Photogrammetry 95 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

Ambient 

fluorescents 

and cold 

light 

F25 100 1/3 None white paper 

LEB001_15 07/03/2017 Photogrammetry 48 Nikon D80 Nikon AF-S 

40mm 

Micro 

Halogen 

lamp 

F9 200 0.8 Neewer 

720nm 

white paper 
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Photo 

Shoot 

Date Purpose Photos Camera Lens Lighting Aperture ISO Shutter 

Speed 

Filter Background 

LEB001_17 14/03/2017 RTI 42 Nikon D80 Nikon AF-S 

40mm 

Micro 

Maglite 

Solitaire 

F7.1 200 Various Neewer 

950nm 

white paper 

LEB001_19 13/06/2017 Spectral 

Photography 

3 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

LE UV; 

LED; 

Maglite 

Solitaire 

F16 200 1/2 S8612; Hoya 

HMC UV; 

Hoya U-360; 

Neewer 

950nm 

white paper 

MG001_1 24/10/2017 Spectral 

Photography 

14 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

LE UV; 

LED; 

Maglite 

Solitaire 

F20 200 1/8 S8612; Hoya 

HMC UV; 

Hoya U-360; 

Neewer 

950nm 

white paper 

NE078_1 21/08/2017 Photogrammetry 67 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

LED F16 200 1/6 S8612; Hoya 

HMC UV 

white paper 

NE078_2 21/08/2017 Photogrammetry 85 DinoLite 

AM4113ZT 

DinoLite 

AM4113ZT 

DinoLite 

AM4113ZT 

LED lights 

    white paper 

NE078_3 21/08/2017 Photogrammetry 85 DinoLite 

AM4113ZT 

DinoLite 

AM4113ZT 

DinoLite 

AM4113ZT 

LED lights 

    white paper 
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Photo 

Shoot 

Date Purpose Photos Camera Lens Lighting Aperture ISO Shutter 

Speed 

Filter Background 

NE078_6 21/08/2017 RTI 33 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

LE UV F20 200 1 S8612; Hoya 

U-360 

white paper 

RO001_1 14/01/2016 Photogrammetry 25 Samsung 

Galaxy S6 

Samsung 

Galaxy S6 

LED F1.9 Vari

ous 

Various  white paper 

RO002_10 24/03/2017 RTI 34 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

LED F18 100 0.6  white paper 

RO002_2 29/01/2016 Photogrammetry 83 iPhone 4s iPhone 4s LED F2.4 Vari

ous 

Various  white paper 

with drawn 

targets 

RO002_29 14/03/2017 RTI 39 Nikon D80 Nikon AF-S 

40mm 

Micro 

Maglite 

Solitaire 

F7.1 200 1/2 Neewer 

720nm 

white paper 

RY001_05 15/08/2016 Photogrammetry 56 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

Cold light F22 200 1/25 None white paper 

RY001_10 19/09/2016 Photogrammetry 167 DinoLite 

AM4113ZT 

DinoLite 

AM4113ZT 

DinoLite 

AM4113ZT 

LED lights 

    white paper 
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Photo 

Shoot 

Date Purpose Photos Camera Lens Lighting Aperture ISO Shutter 

Speed 

Filter Background 

RY001_13 22/08/2016 Photogrammetry 53 DinoLite 

AM4113ZT 

DinoLite 

AM4113ZT 

DinoLite 

AM4113ZT 

LED lights 

   None white paper 

RY001_19 13/06/2017 Spectral 

Photography 

3 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

LE UV; 

LED; 

Maglite 

Solitaire 

F16 200 1/2 S8612; Hoya 

HMC UV; 

Hoya U-360; 

Neewer 

950nm 

white paper 

SIT001_1 14/12/2017 Spectral 

Photography 

23 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

LE UV; 

LED; 

Maglite 

Solitaire 

F20 200 1/8 S8612; Hoya 

HMC UV; 

Hoya U-360; 

Neewer 

950nm 

white paper 

U001_1 14/12/2017 Spectral 

Photography 

25 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

LE UV; 

LED; 

Maglite 

Solitaire 

F20 200 1/8 S8612; Hoya 

HMC UV; 

Hoya U-360; 

Neewer 

950nm 

white paper 

U002_1 14/12/2017 Spectral 

Photography 

21 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

LE UV; 

LED; 

Maglite 

Solitaire 

F20 200 1/8 S8612; Hoya 

HMC UV; 

Hoya U-360; 

white paper 
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Photo 

Shoot 

Date Purpose Photos Camera Lens Lighting Aperture ISO Shutter 

Speed 

Filter Background 

Neewer 

950nm 

UP001_1 12/06/2017 RTI 48 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

LE UV F16 200 Various S8612; Hoya 

U-360 

white paper 

UP001_2 12/06/2017 Spectral 

Photography 

5 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

LE UV; 

LED; 

Maglite 

Solitaire 

F20 200 1/6 S8612; Hoya 

HMC UV; 

Hoya U-360; 

Neewer 

950nm 

white paper 

WC003_1 14/12/2017 Spectral 

Photography 

9 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

LE UV; 

LED; 

Maglite 

Solitaire 

F20 200 0.6 S8612; Hoya 

HMC UV; 

Hoya U-360; 

Neewer 

950nm 

white paper 

WC003_2 14/12/2017 Spectral 

Photography 

8 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

LE UV; 

LED; 

Maglite 

Solitaire 

F20 200 0.6 S8612; Hoya 

HMC UV; 

Hoya U-360; 

Neewer 

950nm 

white paper 
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Photo 

Shoot 

Date Purpose Photos Camera Lens Lighting Aperture ISO Shutter 

Speed 

Filter Background 

WC006_1 14/12/2017 Spectral 

Photography 

9 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

LE UV; 

LED; 

Maglite 

Solitaire 

F20 200 0.6 S8612; Hoya 

HMC UV; 

Hoya U-360; 

Neewer 

950nm 

white paper 

WC006_2 14/12/2017 Spectral 

Photography 

9 Nikon 

D3100 

Nikon AF-S 

40mm 

Micro 

LE UV; 

LED; 

Maglite 

Solitaire 

F20 200 0.6 S8612; Hoya 

HMC UV; 

Hoya U-360; 

Neewer 

950nm 

white paper 
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