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Abstract: This paper develops a unified framework for fixed and random effects estimation 

of higher-order spatial autoregressive panel data models with spatial autoregressive 

disturbances and heteroskedasticity of unknown form in the idiosyncratic error component. 

We derive the moment conditions and optimal weighting matrix without distributional 

assumptions for a generalized moments (GM) estimation procedure of the spatial 

autoregressive parameters of the disturbance process and define both a random effects and a 

fixed effects spatial generalized two-stage least squares estimator for the regression 

parameters of the model. We prove consistency of the proposed estimators and derive their 

joint asymptotic distribution, which is robust to heteroskedasticity of unknown form in the 

idiosyncratic error component. Finally, we derive a robust Hausman-test of the spatial random 

against the spatial fixed effects model. 

JEL-code:  C13, C21, C23 

Keywords:  Higher-order spatial dependence; Generalized moments estimation; 
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I. Introduction 

This paper considers the estimation of panel data models with higher-order spatially 

autocorrelated error components and spatially autocorrelated dependent variables. Spatial 

interactions in data may originate from various sources such as strategic interaction between 

jurisdictions (to attract firms or other mobile agents) and firms (in their price, quantity, or 

quality setting) or general equilibrium effects which disseminate with spatial decay due to 

their transmission through trade flows, migration, or input-output relationships.
1

 Data sets 

used in empirical studies often share three features: first, they are available in the form of 

panel data, with a large cross-sectional and a small time series dimension; second, spatial 

interactions of various kinds co-exist – such as geography-related, trade-related, migration-

related interactions – or the decay function of a single spatial interaction is unknown; third, it 

is unclear whether spatial interactions are local – and affect only immediate neighbors – or 

global – and affect second third and other neighbors with repercussions. The estimator 

proposed here addresses the mentioned three features in a unified framework. It allows for 

panel data with a fixed but arbitrary number of channels or decay segments of spatial 

interaction in both the error components and the dependent variable, referred to as 

SARAR(R,S).  

 

Estimation and testing of both random and fixed effects spatial regressive panel data models 

with homoskedastic error terms has been considered in the recent literature using a maximum 

likelihood framework (Baltagi, Song, and Koh, 2003; Lee and Yu, 2010) or a generalized 

moments approach (Kapoor, Kelejian and Prucha, 2007; Mutl and Pfaffermayr, 2011). The 

present paper builds on Kapoor et al. (2007). They propose a generalized moments (GM) 

estimator for the parameters of the spatial regressive error process in a homoskedastic random 

effects panel data model without endogenous explanatory variables (such as spatial lags of the 

dependent variable), derive a simplified weighting matrix for the moment conditions under 

the assumption of normally and identically distributed error components, and prove 

consistency of the GM estimates. They also establish the asymptotic distribution of the 

feasible generalized least squares (FGLS) estimates of the parameters of the exogenous 

regressors.  

 

The present paper extends and generalizes the analysis in Kapoor et al. (2007) in several 

respects. First, we allow the explanatory variables to be related to the time-invariant error 

component, i.e., we provide an estimation framework that nests both the fixed and random 

                                                 
1
 See Cliff and Ord (1973, 1981), Anselin (1988), and Cressie (1993) for classic references 

about spatial econometric models in general. Recent theoretical contributions of spatial panel 

data models include Baltagi, Song, and Koh (2003), Baltagi, Song, Jung, and Koh (2007), 

Kapoor et al. (2007), Baltagi, Egger, and Pfaffermayr (2008), and Lee and Yu (2008). Recent 

applications of spatial panel data models include Arbia, Basile, and Piras (2005), Egger, 

Pfaffermayr, and Winner (2005), Baltagi, Egger, and Pfaffermayr (2007), and Badinger and 

Egger (2009). 



effects setup. Second, we allow for higher-order rather than only first-order spatial regressive 

processes in both the dependent variable and the error process, enabling a more flexible 

design and specification tests of the ‘spatial’ interdependence decay function.
2

 Third, we 

allow for endogenous variables, including spatial lags of the dependent variable in the main 

equation, which is shown to affect the optimal weighting matrix for the moment conditions as 

well as the distribution of the GM estimates. Fourth, we do not only prove consistency of the 

estimates of the model parameters but also derive their joint asymptotic distribution (which is 

affected by the presence of endogenous variables in a nontrivial way). Fifth, we dispense with 

the assumption of normally distributed error components, used by Kapoor et al. (2007) to 

derive a simplified weighting matrix of the moments. In particular, we relax the restrictive 

assumption that the idiosyncratic errors are identically distributed and allow for 

heteroskedasticity of arbitrary form over cross-sectional units and time in the idiosyncratic 

error terms. Under these assumptions, we derive a robust variance-covariance matrix, drawing 

on recent results by Stock and Watson (2008). We emphasize that the framework of the 

present paper, the advantage of the GM approach over maximum likelihood (ML) estimation 

goes beyond that of imposing less restrictive distributional assumptions and computational 

simplicity, since ML yields inconsistent parameters estimates in the SARAR(R,S) framework 

with heteroskedasticity of unknown form (see Lee and Yu, 2010). Sixth, we derive a 

Hausman-test that allows to test the spatial fixed effects against the random effects model in 

the presence of heteroskedasticity. Seventh and finally, we provide some limited Monte Carlo 

evidence on the small sample performance of the proposed estimation procedures. In sum this 

provides a fairly flexible framework for applied work, allowing specification tests, estimation, 

and inference in random and fixed effects panel data models with potentially higher-order 

cross-sectional interdependence and heteroskedasticity. 

 

The remainder of the paper is organized as follows. Section II introduces the basic model 

specification, discusses the fixed versus the random effects model, and provides an overview 

of the key assumptions of the proposed estimation procedure. Section III proposes GM 

estimators for the parameters of spatial dependence in the error components. Section IV 

derives a two-stage least squares (TSLS) and spatial generalized TSLS procedure for 

estimation of the regression parameters of the model and derives a joint heteroskedasticity-

robust asymptotic variance-covariance matrix of the GM and TSLS estimates of the model 

parameters. Section V derives a consistent estimator of the variance-covariance matrix.  

Section VI proposes a Hausman-type test of the random versus the fixed effects model. 

Section VII presents results of a Monte Carlo simulation exercise. Section VIII summarizes 

our main findings and concludes. The detailed proofs are relegated to a technical appendix. 

 

 

                                                 
2
 In a cross-sectional framework, estimation of higher order spatial regressive models is 

considered by Lee and Liu (2010) under homoskedasticity and by Badinger and Egger (2008) 

under heteroskedasticity. 



II. The Basic Model  

1. Specification and Key Assumptions 

We consider an R-th order spatial regressive panel data model with S-th order spatial 

regressive error components, referred to as SARAR(R,S) panel data error components model. 

The basic model comprises Ni ,...,1  cross-sectional units and Tt ,...,1  time periods. 

Throughout, subscript N  indicates that the variables or parameters are allowed to depend on 

sample size. For time period t, the model reads 

 

 Nt

R

r

NtNrNrNNtNt ,

1

,,,,, uyWβXy  


 ,  or  (1a) 

 NtNNtNt ,,, uδZy  , (1b) 

 

where Nt ,y  is an 1N  vector with cross-sectional observations of the dependent variable in 

year t, Nt ,X  is an KN   matrix of observations on K  non-stochastic explanatory variables, 

i.e., ),...,( ,,1,
 NNtNtNt xxX , where each of the N  vectors ),...,( ,,,,1, NitKNitNit xxx  is of 

dimension K1 , containing the observations on the K  explanatory variables for cross-

section i  and period t . For later reference, define the KT   matrix ),...,( ,,1,
 NiTNiNi xxX  as 

observations on the K  explanatory variables for cross-section i  and all periods Tt ,...,1 .  

 

The structure of spatial dependence in Nt ,y  is determined by the time-invariant NN   

matrices Nr ,W , Rr ,...,1 , whose elements Nrijw ,,  are assumed to be known and will often 

(but need not) be specified as a decreasing function of geographical distance between the 

cross-sectional units i and j. The expression NtNrNrt ,,,, yWy   is referred to as the r-th spatial 

lag of Ny . The specification of a higher-order process allows the strength of spatial 

interdependence in the dependent variable (reflected in the spatial autoregressive parameters 

Nr , , Rr ,...,1 ) to vary across a fixed number of R  subsets of relations between cross-

sectional units. 

 

In equation (1b), the )( RKN   design matrix is given by ),( ,,, NtNtNt YXZ  , with 

],...,[ ,,,1,, NRtNtNt yyY  , and ),(  NNN λβδ , where the 1K  parameter vector of the 

exogenous variables is given by ),...,( ,,1
 NKNN βββ  and the 1R  vector of spatial 

autoregressive parameters of Ny  is defined as ),...,( ,,1
 NRNN λ .  

 

The 1N  vector of error terms ),...,( ,,1,
 NNtNtNt uuu  is assumed to follow a spatial 

autoregressive process given by  

 



 Nt

S

s

NtNsNsNt ,

1

,,,, εuMu 


 , (1c) 

 NtNNt ,, vμε  ,   (1d) 

 

where Ns,  and Ns,M  denote the time-invariant, unknown parameters and the known NN    

matrix of spatial interdependence, respectively. The structure of spatial correlation in the 

disturbances is determined by the S  different, time-invariant NN   matrices Ns,M . As in 

equation (1a), the specification of a higher-order process allows the strength of spatial 

interdependence in the disturbances (reflected in the parameters Ns, , Ss ,...,1 ) to vary 

across a fixed number of S  subsets of relations between cross-sectional units. This enables a 

more flexible parameterization of the decay of spatial dependence than with a first-order 

process along two lines: by capturing more than just one channel of interdependence and by 

allowing for estimation of several parameters Ns,  for S  segments of the decay function 

(e.g., rings of neighbors or segments of distance). The expression NtNsNst ,,,, uMu   is referred 

to as the s-th spatial lag of Nu . The 1S  vector of the spatial autoregressive parameters of 

Nt ,u  is defined as .),...,( ,,1
 NSNN ρ  

 

Finally, the 1N  vector of error terms Nt ,ε  consists of two error components, a cross-section 

specific, time-invariant error component Nμ  and an idiosyncratic error component Nt ,v , 

which is specific to both the cross-sectional unit and the time period. The typical elements of 

Nt ,ε  and Nt ,v  are the scalars Nit ,  and Nitv , , respectively, and the 1N  vector of unit-specific 

error components is given by ),...,( ,,1
 NNNN μμμ . 

  

Stacking observations for all time periods such that t  is the slow index and i  is the fast index 

with all vectors and matrices, the model reads 

 

 NNNNNN uλYβXy  , or (2a) 

 NNNN uδZy  , (2b) 

 

with the KNT   regressor matrix ),...,( ,,1
 NTNN XXX , and ),...,( ,,1 NRNN yyY  , where  

),...,( ,,,,1,
 NrTNrNr yyy  is the 1NT  vector of observations on the r-th spatial lag of the 

dependent variable Nr ,y . The 1NT  vector of disturbances ),...,( ,,1
 NTNN uuu  for the 

spatial autoregressive process of order S  is given by  

 

 N

S

s

NNsTNsN εuMIu 
1

,, )( , (2c) 

 



where TI  is an identity matrix of dimension TT  . The 1NT  vector ),...,( ,,1
 NTNN εεε  is 

specified as  

 

  
NNNNNTN vμvμIeε 



)( , (3a) 

 

where Te  is a unit vector of dimension 1T  and NI  is an identity matrix of dimension 

NN  . In light of (2c), the error term can also be written as  

 

 



S

s

NNsNsNT

S

s

NNsTNsNN

1

,,

1

,, )()( uMIIuMIuε  . (3b) 

 

It follows that  

 

 )]()([])([
1

1

,,

1

1

,, 






 


S

s

NNNsNsNT

S

s

NNsNsNTN vμMIIεMIIu  , and (4a) 

 N

R

r

NrNrNTNN

R

r

NrNrNTN uWIIβXWIIy ])([])([ 1

1

,,

1

1

,,









   , (4b) 

 

A more general specification of (4a) would allow the spatial regressive parameters (and 

possibly the weighting matrices) associated with the two error components Nμ  and Nv  to 

differ as in Baltagi, Egger, and Pfaffermayr (2009). With a higher order process as considered 

in the present paper, such a specification would be both difficult to identify and 

computationally involved. Hence we assume the pattern of the spatial regressive disturbance 

process to be the same for Nμ  and Nv  as in Kapoor et al. (2007). 

 

 

2. Key Assumptions  

As it is standard in the spatial econometric panel data literature, we assume that the 

explanatory variables collected in XN are nonstochastic with elements that are bounded 

uniformly in absolute value.
3

 Without loss of generality we further assume that each 

explanatory variable changes over time, at least for some cross-section i. (Under random 

effects estimation, this assumption could be relaxed in a straightforward way without 

invalidating the asymptotic results.) Beyond those, the following assumptions are maintained 

throughout this paper.  

Assumption 1. 

Let T be a fixed positive integer. (a) For all Tt 1  and 1,1  NNi , the error 

components Nitv ,  are (mutually) independently distributed with 0)( , NitvE , 2

,

2

, )( itvNitvE  , 
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 See Kapoor, Kelejian, and Prucha (2007, p. 100), Lee and Yu (2008, p.3), Lee and Yu 

(2010, Assumption 6, p. 6) or Mutl and Pfaffermayr (2011, p.51).  



where  2

,0 itv , and 
4

,NitvE  for some 0 . Hence, the idiosyncratic disturbances 

exhibit heteroskedasticity of unknown form. 

(b) For all 1,1  NNi , the unit-specific error components Ni,  are identically and 

(mutually) independently distributed with 22

, )(  NiE , where   b20 , and 





4

,NiE  for some 0 . Following Mundlak (1978), it is assumed that 

NitNitNi wμ ,,,  πx . Averaging over time periods Tt ,...,1 we obtain NiNiNi wμ ,,,
  πx  for 

Ni ,...,1  “between-transformed” observations, where  



T

t

NitNi T
1

,

1

, xx  and 





T

t

NitNi wTw
1

,

1

,
  are both 1N  vectors, and ),0(~ 2

,, NwNiw  . In the random effects model, 

we have 0π  , which implies that the time-invariant error component is uncorrelated with 

the explanatory variables Nit ,x  in any time period t. In the fixed effects model, we have 0π 

, i.e., the explanatory variables are correlated with the time-invariant error component. More 

precisely, in the random effects specification we have 0)( , NNiE X , whereas in the fixed 

effects model it holds that 0)()( ,  NNNi fE XX .
4

  

(c) The processes }{ ,Nitv  and }{ ,Ni  are independent of each other.
5

  

 

We emphasize that the estimation framework considered here assumes that the spatial 

regressive structure of the empirical model given by (1a) to (1d) is identical under the fixed 

effects and the random effects setup, i.e., the time-invariant error component displays the 

same spatial regressive structure through equations (1b) and (1c), irrespective of the 

properties of the covariates. This differs from the specification of the spatial regressive fixed 

effects models in Lee and Yu (2010) as well as Mutl and Pfaffermayr (2011), who exclude the 

time-invariant error component from the spatial regressive error process.
6

  

                                                 
4

 Strictly speaking, with non-stochastic regressors, the two expectations could also be stated 

unconditionally (see Greene, 2008, p. 18). 
5

 Assumption 1 is maintained throughout the paper. For some results, in particular for 

consistent estimation of the variance-covariance matrix of the GM estimates without 

distributional assumptions, Assumption 1 will have to be strengthened, assuming that 

 for all  and . 

6
 Lee and Yu (2008) consider maximum likelihood estimation of a homoskedastic spatial 

regressive fixed effects panel data model; Mutl and Pfaffermayr (2008) consider a Hausman-

test for random versus fixed effects first order SARAR(1,1) model with homoskedastic error 

components. Both partial out the time invariant error component  from the spatial 

regressive disturbance process under fixed effects estimation. This choice implies that the 

time-invariant error component displays the spatial regressive structure of the dependent 

variable. The difference of Mutl and Pfaffermayr (2008) to our approach is apparent from the 


8

,NitvE Tt 1 Ni 1

Nμ



 

As we will see below, our specification implies that the spatial generalized least squares 

(GLS) transformed model nests the standard fixed and random effects panel data models. 

Hence, we regard the nature of the spatial regressive process and the properties of the 

explanatory variables under random versus fixed effects as two separate sets of assumptions.  

Our approach allows for cross-sectional interdependence (with a known spatial structure) not 

only in unobserved variables captured by Nv  but also in unobserved time-invariant variables 

subsumed in Nμ  in SARAR(0,S) models (i.e., without a spatially lagged dependent variable). 

More importantly, this approach allows us to use the same set of four moment conditions both 

under random effects and fixed effects estimation. Finally, when considering a Hausman test 

of the random effects versus the fixed effects model in section VI, we wish to consider two 

model specifications, i.e., the random effects and the fixed effects model, whose assumptions 

regarding the spatial regressive structure of the error components and the nature of 

heteroskedasticity are identical and which only differ with regard to whether or not 0π   

Assumption (1b).  

 

Assumption 1 implies that  

 

 2

,

2

,, )( itvNjsNitE     for i = j and t = s,      (5a) 

 2

,, )(  NjsNitE  for i = j and t  s,            (5b) 

 0)( ,, NjsNitE  , otherwise.                                (5c) 

 

As a consequence, the variance-covariance matrix of the stacked error term Nε  reads 

 

 NNTNNN E ΣIJεεΩε  )()( 2

,  , (6a) 

 

where TTT eeJ   is a TT   matrix with unitary elements, NTI  is an identity matrix of 

dimension NT  NT, and  

 

 NTNn

NT

nNn

NT

nNNN εEdiagvEdiagE IvvΣ
22

,1

2

,1 )()()(   .  (6b) 

 

Note that we use single indexation NTn ,...,1  in equation (6b) to denote elements of the 

stacked vectors or matrices. We will adopt this convention at several points in the paper in 

order to simplify notation, when there is no possibility for confusion. 

 

                                                                                                                                                         

specification of the ‘Mundlak assumption’ in (9). In matrix form and using notation in an 

obvious way, we assume that , whereas Mutl and Pfaffermayr (2008) assume 

that  (which differs from the specification of their random 

effects model).  

NNN wπXμ  

NNNNNN wπXWIμ   )( 



Next, we define two matrices N,0Q  and N,1Q , which are central to the estimation of error 

component models and the moment conditions of the GM estimator: 

 

 N
T

TN
T

I
J

IQ  )(,0  (7a) 

 N
T

N
T

I
J

Q ,1 . (7b) 

 

Pre-multiplying an NT  1 vector with N,0Q  transforms its elements into deviations from 

cross-section specific sample means taken over time (“within-transformation”). We will refer 

to “within-transformed” vectors or matrices with an underbar, e.g., NNN ZZQ ,0 . Pre-

multiplying a vector by N,1Q  transforms its elements into cross-section specific sample means 

(“between-transformation”). Notice that N,0Q  and N,1Q  are both of order NT  NT, 

symmetric, idempotent, orthogonal to each other, and sum up to NTI .
7

  

 

Assumption 2.  

(a) All diagonal elements of the matrices Nr ,W , Rr ,...,1 , and Ns,M , Ss ,...,1 , are zero.  

(b) The admissible parameter space for the spatial lag of the dependent variable is given by  

),( ,,,
rr

NUNLNr aa
  , with r

NLa


,0  ,  
aaa r

NU
r ,

, , Rr ,...,1 ,  and 


 A
R

r

Nr

1

, , 

where we define a  such that )(max ,

,...,1

r

Rr
aa 


  holds.  

Analogous assumptions are made for the parameters of the spatial autoregressive error 

process: ),( ,,,
ss

NUNLNs aa
  , with ,0 ,

s

NLa


   
aaa s

NU
s ,

, , Ss ,...,1 ,  and 




 A
S

m

Nm

1

, , where we define a  such that )(max ,

,...,1

s

Ss
aa 


  holds.  

(c) The matrices )(
1

,,



R

r

NrNrN WI   and )(
1

,,



S

m

NmNmN MI   are nonsingular for 

),( ,,
rr

NUNLr aa
   and ),( ,,

rr

NUNLs aa
  , respectively.  

 

Part (a) of Assumption 2 is standard. Assumption (2b) requires the spatial regressive 

parameters to be finite. The admissible value of the scalars A  ( A ) will generally depend on 

the properties of the weights matrices Nr ,W  ( Ns,M ). For example, with row-normalized 

matrices Nr ,W , Rr ,...,1 , choosing 1A  ensures that )(
1

,,



R

r

NrNrN WI   is invertible, as 

                                                 
7
 See Remark A.2 in Appendix A for further properties of  and . N,0Q N,1Q



required in Assumption (2c).
8

 Finally, Assumption (2c) ensures that Nu  and Ny  are uniquely 

identified through equations (4a) and (4b).  

 

Assumption 3.  

The row and column sums of the matrices Nr ,W , Rr ,...,1 , Ns,M , Ss ,...,1 , 

1

1

,, )( 




R

r

NrNrN WI  , and 1

1

,, )( 




S

s

NsNsN MI   are bounded uniformly in absolute value.  

 

In light of Assumptions 1-3 and Remark A.1 in the Appendix, it follows that 0u )( NE  and 

the variance-covariance matrix of Nu  is given by  

 

 






 
S

s

NsNsNT

S

s

NNsNsNTNNN E
1

1

,,

1

,

1

,,, ])([])([)( MIIΩMIIuuΩ εu  , (8) 

 

For the sake generality, all explanatory variables and parameters (except for the variances of 

the error components Nμ  and Nv ) are allowed to depend on sample size N. (Of course, all 

results hold up in the case where parameters do not depend on N.) In spatial econometric 

models this degree of generality is important, given that spatial lags (and disturbance 

processes) depend on normalized weights matrices. Depending on the weighting scheme, both 

the spatially weights and the corresponding parameters will change with the size of the cross 

section dimension, N, since a growing N (e.g., a growing number of countries or regions) 

requires renormalizing the weights matrices. Such a specification is consistent, for example, 

with models where the weights matrices are row-normalized and the number of neighbours of 

a given cross-sectional unit depends on sample size (see Kapoor et al., 2007, p. 102) or where 

the strength of interdependence (in terms of the spatial autoregressive parameters) changes 

with the number of neighbours. 

 

As a result, the model specification in equations (1a)-(1c) is fairly general, allowing for 

higher-order spatial dependence in the dependent variable, the explanatory variables, and the 

disturbances, and enabling specification tests to determine to proper structure of cross-

sectional interdependence in applied work. 

 

3. Overview of Estimation Procedure 

In the following, we outline the estimation procedure proposed in the present paper. Details 

and proofs of the claims made here are given in the subsequent sections.  

                                                 
8
 If the matrices  are not row-normalized, Assumption (2c) is implied by 

for some matrix norm  (see Lee and Liu, 2010, Horn and Johnson, 

1985, p. 301).  

Nr ,W

1

,
,...,1

max








 Nr

Rr
A W   



 In a first step, the regression parameters in model (1a), i.e., Nδ , are consistently 

estimated by fixed effects two-stage least squares (TSLS), ignoring the spatial 

regressive structure of Nu  (see Amemiya, 1971, Baltagi, 2005). Under the maintained 

assumptions, this yields consistent estimates of the disturbances NNNN δZyu ˆˆ  . 

Under stronger assumptions, consistent estimates can also be obtained by pooled two-

stage least squares or two-stage least squares with random effects.  

 Based on the estimates of the disturbances Nu , a generalized moments (GM) 

estimator can be used to obtain consistent estimates of the parameters of the spatial 

regressive disturbance process )( Nρ  and the variance of the time-invariant error 

component ( 2

 ), denoted as  Nρ
~  and 2

,
~

N . 

 The joint variance-covariance matrix for the estimates of the regression parameters Nδ  

and the spatial regressive parameters Nρ  derived in the present paper, which is robust 

to both the spatial dependence in Nu  as well as arbitrary heteroskedasticity in the 

idiosyncratic error term Nv , can be used for specification tests to determine the proper 

form of the interdependence decay function.
9

  

 To improve efficiency (the estimates of) the parameters Nρ  can be used to obtain a  

(feasible) spatial generalized least squares (GLS) transformed variant of model (1a), 

which corresponds to a “standard” (fixed or random effects) panel data model without 

spatial dependence in the disturbances but with heteroskedasticity of unknown form in 

the idiosyncratic error term Nv . Using this transformed model, feasible spatial 

generalized two-stage least squares (TSLS) estimates of the regression parameters 
*~̂
Nδ  

can be obtained. (The asterisk indicates that the estimates are based on a transformed 

model; the tilde indicates that the model transformation is based on Nρ
~ , i.e., the GM 

estimates of Nρ ). Again a heteroskedasticity-robust joint variance-covariance of 
*~̂
Nδ  

and Nρ
~  is derived, allowing for joint inference regarding the regression parameters 

and the spatial regressive parameters of the model.  

 The estimation procedure can also be implemented in an iterative way, i.e., the 

feasible spatial generalized TSLS estimates 
*~̂
Nδ  can be used to obtain iterated 

                                                 
9
 The possibility that joint hypotheses about  and  may be formulated and tested is an 

advantage of the proposed two-step approach over the use of (spatial-dependence and 

heteroskedasticity) robust standard errors. In particular, it allows for specification tests a la 

Anselin et al. (1996) in a higher order setting and under less restrictive distributional 

assumptions.  

Nδ Nρ



estimates of the disturbances Nu , which can in turn be used to obtain a new set of 

estimates for Nρ , etc.  

 The obtained (feasible or iterated) heteroskedasticity-robust fixed and random effects 

models can then be tested against each other by a Hausman test which is derived in 

this paper. 

 

To keep the analysis general, we first consider only the GM estimation of the disturbance 

process (1c), without assuming a particular form of model (1a) or how consistent estimates of 

the residuals Nu~  of model (1a) are obtained. The advantage of this approach is that the results 

are potentially applicable to the disturbances of a wider class of regression models, e.g., 

nonlinear specifications of equation (1a). Then, we consider the estimation of the main 

equation (1a), using a modular approach with general notation that covers the four estimators 

considered in the present paper: random effects and fixed effects estimation of both the 

original and the spatial GLS transformed model.  

 

 

III. GM Estimation of a SAR(S) Process  

In the following, we consider GM estimators for the spatial regressive parameters Nρ  of the 

disturbance process in equation (1c) and the variance of the time-invariant error component 
2

  and establish their asymptotic joint distribution. In this subsection, we only consider the 

process in equation (1c) for the disturbances Nu , but not necessarily the one in equation (1a) 

for Ny . These disturbances Nu  are unknown and thus have to be obtained in a first-step, 

using consistent estimates of Nδ  in the main equation (1a) (or from some other model), 

ignoring the spatial regressive error structure in Nu . The assumptions sufficient to establish 

the asymptotic properties of the GM estimates (consistency and normality) are stated in 

general terms in Assumptions 4 to 7 in this section and will be made more specific in section 

IV, where we consider TSLS and spatial generalized TSLS estimation of model (1a). It will 

also become apparent in this section that the asymptotic distribution of the (second-step) GM 

estimates of Nρ , which are based on estimated disturbances Nu , is affected in a non-trivial 

way by the properties of the first-step estimation (fixed versus random effects) and by the 

presence of endogenous right hand side variables. 

 

1. Moment Conditions  

A set of three moment conditions for GM estimation of first-order spatial regressive error 

processes was introduced in the seminal paper by Kelejian and Prucha (1999) for the case of a 

single cross-section under homoskedasticity. The extension of this estimator to a random 

effects panel data error component model by Kapoor et al. (2007) (under homoskedasticity) 

yields a set of six moment conditions. Heteroskedasticity has so far only been considered in 

the cross-sectional SARAR(1,1) framework by Kelejian and Prucha (2010), who use two of 



the three moment conditions in Kelejian and Prucha (1999), and in the SARAR(0,1) 

framework by Lin and Lee (2010).  

 

An analogous approach to Kelejian and Prucha (2010) is pursued here in the derivation of the 

moment conditions under heteroskedasticity, but for (both fixed and random effects) panel 

data models. For this, we use four of the six moment conditions akin to the ones in Kapoor et 

al. (2007). Moreover, with an S-th-order rather than a first-order process (SAR(S), with 1S

), additional moment conditions are available, associated with each weights matrix Ns,M , 

Ss ,...,1 , and each pair of weights matrices Ns,M , Ns ,M , SssSs ,...,;,...,1,  . Define  

 

])()[()(
1

,,,,, 



S

m

NNmTNmNNsTNNsTNs uMIuMIεMIε  . (10) 

 

Under Assumptions 1 to 3, we then have the following set of moment conditions for 2T ,  

and SssSs ,...,;,...,1,  :  

 

:M ,

1

ss 
 )]()([

)1(

1
]

)1(

1
[ ,,,0

2

,1,,0, NsNsTNNn

NT

nNsNNs vEdiagTr
TNTN

E 






MMIQεQε  (11a) 

:M2

s  0]
)1(

1
[ ,0, 


NNNs

TN
E εQε , or  (11b) 

:M ,

3

ss 
 )]()([

1
)(]

1
[ ,,,1

2

,1,,

2

,,1, NsNsTNNn

NT

nNsNsNsNNs vEdiagtr
N

tr
N

T

N
E 

 MMIQMMεQε  (11c) 

:M4

s  0]
1

[ ,1, 
NNNs

N
E εQε . (11d)        

 

Unless part of the weights matrices are orthogonal, there are )1(4  SSS  moment 

conditions.
10

 For the case of a first-order spatial regressive process, i.e., 1S , they nest the 

moment conditions of the aforementioned GM estimators as special cases. Under 

homoskedasticity, i.e., NTvNit

NT

n vEdiag I
22

,1 )(  , the corresponding four moment conditions in 

Kapoor et al. (2007) are then obtained. In the cross-sectional case, i.e., for 1T  (and 

0Q N,0 ) the moment conditions M1 and M2 become uninformative and M3 and M4 reduce to 

the corresponding the two moment conditions in Kelejian and Prucha (2010) under 

heteroskedasticity with the NN   matrix )( 2

1 i

N

i vEdiag  , or the two moment conditions in 

                                                 
10

 If some pairs of matrices are orthogonal,  for some , the corresponding 

moment condition is trivially satisfied for any set of (finite) parameter values. Hence, if all 

weights matrices were pairwise orthogonal, there would be  moment conditions. 

0MM 
 NsNs ,, ss 

S4



Kelejian and Prucha (1999) under homoskedasticity with the NN  matrix 
2

,

2

,1 )( NvNNi

N

i vEdiag I .  

 

Note that the moment conditions can also be written as quadratic forms in the vector Nε : 

:M ,

1

ss 
 0]

)1(

1
[ ,

,1 




N

ss

NN
TN

E εAε , with       (12a) 

NnnNsNsTN

NT

nNsNsTNNss diag ,0,,,01,,,0

1

,, ]})([){( QMMIQMMIQA 
 . 

:M2

s  0]
)1(

1
[ ,2 


N

s

NN
TN

E εAε , with )( ,,0,2 NsTN

s

N MIQA  . (12b)    

:M ,

3

ss 
 0)(]

1
[ ,,

2,

,3 




NsNsN

ss

NN tr
N

T

N
E MMεAε  , with (12c)  

  }])(([)({ ,0,,,11,0,,,1

,

,3 NnnNsNsTN

NT

nNNsNsTN

ss

N diag QMMIQQMMIQA 

  .  

:M4

s  0]
1

[ ,4 
N

s

NN
N

E εAε , with )( ,,1,4 NsTN

s

N MIQA  . (12d) 

  

Substituting equations (3a), (3b), (6b), and (10) into the )1(4  SSS  moment conditions 

(11) yields a )1(4  SSS  equation system in ),,...,( 2

,,1  NSN , which can be written as    

 

0 NNN bΓγ , (13a) 

 

where  Nb  is a 1]12/)1([  SSS  vector given by  

 

),,...,,...,,,..., ,,...,( 2

,,1,,1,2,1

2

,

2

,1,,1
   NSNSNSNNNNSNNSNNb ,  

 

i.e., Nb  contains S linear terms Nm, , Sm ,...,1 , S quadratic terms 2

, Nm , Sm ,...,1 , 

2/)1( SS  cross products NlNm ,,  , SmlSm ,...,)1(  ),1(,...,1  , as well as 2

 . For later 

reference, we define the 1)1( S  vector of all parameters as 

) ,,...,(),( 2

,,1

2    NSNNN ρθ . 

 

Nγ  is a 1)]1(4[  SSS  vector with elements )( ,Ni , )1(4,...,1  SSSi , and NΓ  is a 

)]1(4[  SSS ]12/)1(2[  SSS  matrix with elements )( ,, Nji , )1(4,...,1  SSSi , 

12/)1(2,...,1  SSSj . The elements Ni ,  and Nji ,,  will be defined below. 

 

Throughout the paper, we adopt the following convention with respect to the ordering of the 

rows in equation system (13). The first four rows are associated with the 4 moment conditions 
ssM
,

1 , sM 2 , 
ssM
,

3 , and sM 4  with 1 ss . The next four rows are associated with ssM
,

1 , 



sM 2 , ssM
,

3 , and sM 4  with 2 ss , and so forth up to Sss  . This yields S4  rows of the 

equation system. These moment conditions are always available under Assumptions 1 and 2. 

Unless part of the weights matrices are orthogonal, there are )1( SS  further moment 

conditions available, resulting from ss ,

1M  and ss ,

3M  with )1(,...,1  Ss , Sss ),...,1(  . 

These are added to the equation system, starting from row 14 S , as follows. The next row (

14 S ) is associated with ss ,

1M  and 1s  and 2s ; the next rows with ss ,

1M with 1s  and 

3s , and so forth up to 1s  and Ss  ; this yields 2/)1( SS  rows. We then proceed with 

ss ,

3M  in the same way, yielding another 2/)1( SS  rows. 

 

The sample analogue to equation system (13a) is given by  

 

 )(
~~

NNNNN θΓγ  b ,  (13b) 

 

where the elements of Nγ
~  and NΓ

~
 are equal to those of Nγ  and NΓ  with the expectations 

operator suppressed and the disturbances Nu  replaced by (consistent) estimates Nu~ .  

 

GM estimates of the parameters NSN ,,,1 ..., , 2

  are then obtained as the solution to  

 

 )](
~

)([)]
~~(

~
)

~~[(minarg
2

21 ,,..,,
NNNNNNNNNNNN

S

 θΘθΓγΘΓγ 


 bb ,  (14) 

 

i.e., the parameter estimates can be obtained from a (weighted) non-linear least squares 

regression of Nγ
~  on the columns of NΓ

~
; )( NN θ  can then be viewed as a vector of 

regression residuals. The optimal choice of the )]1(4[  SSS )]1(4[  SSS  weighting 

matrix NΘ  and its estimation will be discussed below.  

 

In the following, we define the elements of Nγ  and NΓ , grouped by the corresponding 

moment conditions. Thereby, we use the following notation:  

 

 NNsTNs uMIu )( ,,  , Ss ,...,1 , and  (15a) 

 NNmNsTNNmTNsTNsm uMMIuMIMIu )())(( ,,,,,  , Ss ,...,1 , Sm ,...,1 . (15b) 

 

In the derivation of the elements of Nγ  and NΓ , we also make use of the fact that  

 

 )(2)()( ,,,1

1

2

,1

2

,1 NnNnm

NT

n

S

m

mNn

NT

nNn

NT

n uudiagudiagvdiag 



    



 NT

S

m

NnlNnm

NT

nl

S

l

m uudiag I
2

1

,,,,1

1

)(  






, (16) 

 

where Nnmu ,,  denotes the n-th element of the vector Nm,u . 

 

Moment Condition ss ,

1M   

Due to the adopted convention regarding the ordering of the rows in equation system (13), the 

row index for moment condition ss ,

1M  – denoted as row( ss ,

1M ) – is given by 1)1(4 s  for 

ss   and ssssSsS  2/)1()1(4  for ss  . Hence, moment condition 1

,M ss   

delivers S  rows of equation system (in row 1, 5, …, )34 S ) for ss   and 2/)1( SS  rows 

of equation system (in rows 2/)1(4,....,14  SSSS ) for ss  . The corresponding 

elements of Nγ  and NΓ  are defined as follows:
11

 

)]})(([{
)1(

1
,,

2

,1,0,,0,)row(M ,
1

NsNsTNn

NT

nNNsNNs udiagTrE
TN

ss 



 MMIQuQu     (17a)  

)(
)1(

1 ,

,1 N

ss

NNE
TN

uu



 A , 

where })](([)({ ,,,01,,,0

,

,1 nnNsNsTN

NT

nNsNsTN

ss

N diag MMIQMMIQ 

 A . 
 

)]})(([{
)1(

2
,,,,,1,0,,0,,)row(M ,

1
NsNsTNnNnm

NT

nNNmsNNsm
uudiagTrE

TN
ss 




 MMIQuQu  

]([
)1(

2 ,

,1, N

ss

NNmTNE
TN

uMIu



 )A , associated with m , Sm ,...,1 . 

 

)]})(([{
)1(

1
,,

2

,,1,0,,0,,)row(M ,
1

NsNsTNnm

NT

nNNmsNNsmmS
udiagTrE

TN
ss 




 MMIQuQu   

 ])()([
)1(

1
,

,

,1, NNmT

ss

NNmTNE
TN

uMIMIu 





A , associated with 
2

m , Sm ,...,1 . 

 

)]})(([{
)1(

2
,,,,,,1,0,,0,2/)1()1(,)row(M ,

1
NsNsTNnlNnm

NT

nNNlsNNsmmlmmmS
uudiagTrE

TN
ss 




 MMIQuQu

 ])(([
)1(

2
,

,

,1, NNmT

ss

NNlTNE
TN

uMIMIu 





)A ,  

associated  with lm , )1(,...,1  Sm ; Sml ),...,1(  . 
 

)(
1

,,12/)1(2,)row(M ,
1

NsNsSSS
tr

N
ss 

 MM .   

 

Moment Condition 
2M s   
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 For simplicity, subscript N is dropped in the definition of the elements of  and . Nγ NΓ



Due to the adopted convention with respect to the ordering of the rows in equation system 

(13a), the row index for moment condition ss, 

2M  is given by 2)1(4 s . (For ss, 

2M  we 

always have ss   such that we use only a single subscript.) Hence, moment condition s

2M  

delivers S  rows of the equation system (in rows 2, 6, …, )24 S . The corresponding 

elements of Nγ  and NΓ  are defined as follows: 

)(
)1(

1
,0,2)1(4 NNNss E

TN
uQu


  (17b) 

)(
)1(

1
,2 N

s

NNE
TN

uu A


 , where s

N

s

N ,2,2 AA . 
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TN
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
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s

N

s

NNmTNE
TN
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

 ,  
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TN
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
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,,2, NNmT
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NNmTNE
TN

uMIMIu 

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)1(

1
,,0,,,0,2/)1()1(,2)1(4 NlNNsmNmNNslmlmmmSs E

TN
uQuuQu 


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]))()(([
)1(

1
,,2,2, NNmT

s

N

s

NNlTNE
TN

uMIMIu 


 AA ,  

 

012/)1(2,2)1(4  SSSs . 

  

Moment Condition 
ss ,

3M  

Due to the adopted convention regarding the ordering of the rows in equation system (13), the 

row index for moment condition 
ss ,

3M  – denoted as row(
ss ,

3M ) – is given by 3)1(4 s  for 

ss   and ssssSsSSS  2/)1()1(2/)1(4  for ss  . Hence, moment condition 

ss ,

3M  delivers S  rows of the equation system (in rows 3, 6, …, )14 S  for ss   and 

2/)1( SS  rows of the equation system (in rows )1(4,....,12/)1(4  SSSSSS ) for 

ss  . 
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ss 

 MMIQuQu

 ])(([
2

,

,

,3, NNmT

ss

NNlTNE
N

uMIMIu 


)A ,  

 

)(
)1(

,,12/)1(2,)row(M ,
3

NsNsSSS
tr

N

T
ss 




 MM , associated with 2

,N . 

 

Moment Condition ss ,

4M  

The row index for moment condition ss ,

4M  is given by 4)1(4 s , i.e., moment condition 

s

4M  delivers S  rows of the equation system (in rows 4, 8, …, S4 ). Moment condition M2 

delivers S  rows of the equation system (in rows 2, 6, …, 24 S ). The corresponding 

elements of Nγ  and NΓ  are defined as follows: 

)(
1

,1,4)1(4 NNNss E
N

uQu  (17d)    

)(
1

,4 N

s

NNE
N

uu A , where  s

N

s

N ,4,4 AA . 

 

)(
1

,,1,,1,,4)1(4 NmNNsNNNsmms E
N

uQuuQu    

]))(([
1

,4,4, N

s

N

s

NNmTNE
N

uMIu AA  ,  

 

)(
1

,,1,,4)1(4 NmNNsmmSs E
N

uQu   

])(([
1

,,4, NNmT

s

NNmTNE
N

uMIMIu  )A , 

 

][
1

,,1,,,1,2/)1()1(,4)1(4 NlNNsmNmNNslmlmmmSs E
N

uQuuQu 

]))()(([
1

,,4,4, NNmT

s

N

s

NNlTNE
N

uMIMIu  AA , 

 

012/)1(2,4)1(4  SSSs . 

 



This completes the specification of the elements of the matrices Nγ  and NΓ . The similarity 

between the structure of the expressions resulting from moment conditions ss ,

1M and s

2M  on 

the one hand and ss ,

3M and s

4M  on the other hand is apparent. Apart from a slight discrepancy 

in the definition of the element corresponding to 2

  between ss ,

1M  and ss ,

3M , the other 

elements differ only by the normalization factor and the corresponding matrix of quadratic 

forms, N,0Q  and N,1Q , respectively.  

 

2. Definition of GM Estimator 

It is a well known result from the literature on generalized method of moments estimation 

that, for weighting matrix NΘ  in (14), it is optimal to use the inverse of the (properly 

normalized) variance-covariance matrix of the sample moments, evaluated at the true 

parameter values. Denote the optimal weighting matrix, which will be derived in Subsection 

3.2, by 1

NΨ  and its estimate by 1~ 

NΨ . The optimally weighted GM estimator uses 1~~  NN ΨΘ  

and is defined as  

  

 }],0[,,..,1, ),(
~

)({ minarg),~,~,...,~(
22

,,1, 



  bSsaa sNNNNNSN  θΘθ ,   

  with  ),,()(
2


 ρθ NN )

~~( bNN Γγ  .  (18)  

 

In a first step, we will assume that Ni,  and Nitv ,  are normally distributed in the derivation of 

the optimal weighting matrix 
1

NΨ  as in Kapoor et al. (2007). In the Appendix, the optimal 

weighting matrix 
1

NΨ  will be derived without distributional assumptions (apart from the ones 

in Assumption 1). It is worth emphasizing that the use of estimated disturbances together with 

the presence of endogenous variables in (1a) introduces a difference between the optimal 

weighting matrix 
1

NΨ  and the inverse of the variance-covariance matrix of the sample 

moments. Under fixed effects, this is also true, even if there are no endogenous variables in 

the main equation (1a). This will become apparent in section 3.2., where the optimal 

weighting matrix 
1

NΨ  and an estimate 1~ 

NΨ  are derived.  

 

 

3. Asymptotic Properties of the GM Estimator for Nθ   

3.1 Consistency  

In order to prove consistency of the estimator Nθ
~

, the following additional assumptions are 

introduced: 

 

Assumption 4.  



Assume that NNNN ΔDuu ~ , i.e., NNnNnNn uu Δd .,,,
~  , for NTn ,...,1 , where ND  is an 

PNT   matrix, the P1  vector Nn.,d  denotes the n-th row of ND  and NΔ  is a 1P  vector. 

Let Nnjd ,  be the j-th element of Nn.,d . We assume that 


dNnj ctdE
2

, )(  for some 0 , 

where dc  does not depend on N, and that )1(2/1

pN ON Δ . 

 

Assumption 4 will be fulfilled in many settings, e.g., if model (1a) contains endogenous 

variables (such as spatial lags of Ny ) and is estimated by fixed or random effects two-stage 

least squares. In that case, NΔ  denotes the difference between the parameter estimates and the 

true parameter values and Nn.,d  is the (negative of the) n-th row of the design matrix NZ  

under random effects or of the within transformed design matrix NNN ZQZ ,0  under fixed 

effects (see subsection 2 of Section IV). Under certain conditions, Assumption 4 will also be 

satisfied if model (1a) involves a non-linear specification (see Kelejian and Prucha, 2010). 

Finally, Assumption 4 implies that 



NT

n

NnNT
1

2

.,

1)(


d  is )1(pO . 

 

Assumption 5. 

(a) The smallest eigenvalues of NNΓΓ  are bounded uniformly away from zero, i.e., 

0)( *min   NNΓΓ . (b) )1(
~

pNN oΘΘ , where NΘ  are )]1(4[)]1(4[  SSSSSS  

non-stochastic, symmetric, positive definite matrices. (c) The largest eigenvalues of NΘ  are 

bounded uniformly from above, i.e.,  *max )(  NΘ and the smallest eigenvalues of NΘ  

are bounded uniformly away from zero, i.e., 0)( *min   NΘ . 

 

Assumption 5 implies that the smallest eigenvalues of NNN ΓΘΓ  are bounded uniformly away 

from zero, ensuring that the true parameter vector Nθ  is identifiable unique. Moreover, by the 

equivalence of matrix norms, it follows from Assumption 5 that NΘ  and 
1

NΘ  are O(1). 

 

Assumptions 1-5 ensure consistency of the GM estimators for ),( 2

NN ρθ  . We summarize 

these results in the following theorem, which is proven in Appendix B.  

 

Theorem 1. Consistency of Weighted GM Estimator Nθ
~

 

Suppose Assumptions 1-5 hold. Then, provided the optimization space contains the parameter 

space, the weighted GM estimators ])
~

(~),
~

(~),...,
~

(~[)
~

(
~ 2

,,,1
 NNNNSNNNN ρρ ΘΘΘΘθ   defined by 

(18) are consistent for NSN ,1, ,...,  and 2

 , i.e.,  

 0  )
~

(~
,s,

p

NsNN   Θ , Ss ,...,1 , and 0 )
~

( ~ 22

,

p

NN    Θ  as N . 

 



This result holds for an arbitrary weighting matrix (that satisfies Assumption 5). Hence, it 

applies to both the optimally weighted GM estimator defined by (18) with 1~~  NN ΨΘ or the 

initial unweighted GM estimator with NN IΘ 
~

.  

 

3.2 Asymptotic Distribution of GM Estimator for Nθ   

In the following we consider the asymptotic distribution of the optimally weighted GM 

estimator Nθ
~

. To establish asymptotic normality of )~ ,~(
~ 2

,NNN ρθ  , we need some additional 

assumptions. 

 

Assumption 6. 

Let ND  be defined as in Assumption 4, such that NNNN ΔDuu ~ . For any real NTNT   

matrix NA , whose row and column sums are bounded uniformly in absolute value, it holds 

that )1()(11

pNNNNNN oENN  
uADuAD . 

 

A sufficient condition for Assumption 6 is, e.g., that the columns of ND  are of the form 

NNN εΠπ  , where the elements of Nπ  are bounded uniformly in absolute value and the row 

and column sums of NΠ  are bounded uniformly in absolute value (see Remark A.1 in the 

Appendix). This will be the case in many applications, e.g., for model (1a), when ND  equals 

(the negative of) the design matrix NZ  or the within-transformed design matrix NZ  (compare 

subsection 2 of Section IV). 

 

Assumption 7. 

Let NΔ  be defined as in Assumption 4. Then, 

 )1()()( 2/12/1

pNNN oNTNT  
ξTΔ , with ),( ,,

 NNN μv TTT , ),(  NNN μvξ , i.e., 

 )1()()()( ,

2/1

,

2/12/1

pNNNNN oNTNTNT  
μTvTΔ μv , 

  

where NT  is an PNNT  )( -dimensional real non-stochastic matrix whose elements are 

bounded uniformly in absolute value; its submatrices N,vT  and N,μT  are of dimension 

)( PNT   and )( PN  , respectively. As remarked above, NΔ  typically denotes the difference 

between the parameter estimates and the true parameter values. Assumption 7 is kept general 

and will be satisfied by many estimators, which differ in the definition of NT . In Section IV, 

we verify that it holds if the model in equation (1a) is estimated by (random or fixed effects) 

two-stage least squares (TSLS) or feasible spatial generalized TSLS. 

 

In Appendix B, the limiting distribution of the GM estimator of Nθ  is shown to depend on 

(the inverse of) the matrix NNN JΘJ  and the variance-covariance matrix of a vector of 



quadratic forms in Nv  and Nμ , denoted as Nq . We consider each of these expressions in the 

following.  

 

The )1()]1(4[  SSSS  matrix NJ  of derivatives of the 1)]1(4[  SSS  vector of 

moment conditions in (11) is given by   

 

 
θ

Γγ
θJ






)(
)( NNN

NN

b
),,...,( ,1,,,,1, NSiNSiNi jjj  , with (19a) 

 Nsij ,,

s

NNiNi



 )( .,., bΓγ
, )1(4,...,1  SSSi , Ss ,...,1 , 

 NSij ,1,



 )( .,., NNiNi bΓγ
, )1(4,...,1  SSSi , 

 

where Ni.,γ  and Ni.,Γ  denote the i-th row of Nγ  and NΓ  respectively. 

 

Using 0
θ

γ




 N  and ignoring the negative sign, we have  

 

NNNNN Bb ΓΓ
θ

θJ 



)( ,   (19b) 

 

where NΓ  is defined above and of dimension )]1(4[  SSS  ]12/)1(2[  SSS  and NB  

is a  )1(]12/)1(2[  SSSS  matrix of the form  

 

 ),,,( ,4,3,21
 NNNN BBBBB , (20a) 

 

with ),( 11  SS 0IB  and )]),2([ 1,1,2  SNs

S

sN diag 0B . The )1(2/)1(  SSS  matrix 

],),...,[( 12/)1(,1,3,1,3,3 
 SSNSNN 0BBB  consists of )1( S  vertically arranged blocks Nm,,3B , 

)1(,...,1  Sm , which have the following structure:  

 

 ),,( ,,,,,3 NmNmNmNm EdCB  , (20b) 

 

where Nm,C  is a )1()(  mmS  matrix of zeros,
12

 Nm,d  is a 1)( mS  vector, defined as 

),...,( ,,1,
  NSNmNm d , and mSNmNm  I,, E . Finally, N,4B  is a )1(1  S vector, defined as  

 

                                                 
12

 I.e., there is no block  in .  N,1C N,1,3B



 )1,( 1,4 SN  0B . (20c) 

 

For later reference, note that NB  has full column rank )1( S ; as a consequence, the 

)1()1(  SS  matrix NNBB   is positive definite (see, e.g., Greene, 2003, p. 835).  

 

We next consider the vector Nq  and its limiting distribution. First, define ),( NNN Δθq  as the 

1)]1(4[  SSS  vector of sample moments with the expectation operator suppressed, 

evaluated at the true parameter values, and ignoring the deterministic constants. It is made up 

of the following quadratic forms in Nu~ : 

 

 )~~(),( ,

,

1

N

ss

NcNNNN N uCuΔθq
   for 4,...,1c  and Sss ,...,1,  . (21) 

 

Hence, each element of this vector corresponds to a particular moment condition, indexed by 

c, each of which is associated with a particular weights matrix Ns,M  through (12b) and (12d) 

for moment conditions s

2M  and s

4M , or through (12a) and (12c) with a pair of weights 

matrices Ns,M  and Ns ,M  for moment conditions ss ,

1M  and 
ss ,

3M . The arrangement of the 

elements is the same as in equation system (13).  

 

In light of (12), the matrices ss

Nc

,

,C , 4,...,1c , and Sss ,...,1,  , are defined as follows: 

 

 N

ss

N

ss

NN

ss

N
T

RAARC ])([
)1(2

1 ,

,1

,

,1

,

,1






, (22) 

 N

s

N

s

NN

s

N
T

RAARC ])([
)1(2

1
,2,2,2



 , 

 N

ss

N

ss

NN

ss

N RAARC ])([
2

1 ,

,3

,

,3

,

,3



, 

 N

s

N

s

NN

s

N RAARC ])([
2

1
,4,4,4

 ,  

where we have used the definition 



S

m

NmNmNTN

1

,, )]([ MIIR  . 

 

By Assumption 3 and Remark A.1 in Appendix A, the row and column sums of the 

symmetric NTNT   matrices ss

Nc

,

,C ,  4,...,1c , and Sss ,...,1,  , are bounded uniformly in 

absolute value. Using equation (21) and invoking Lemma B.1 (see Appendix B), the elements 

of ),(2/1

NNNN Δρq  can be expressed as  

 

 )1()()()~~( 2/1,

,

,

,

2/1,

,

2/1

pN

ss

NcN

ss

NcNN

ss

NcN oNNN  
ΔαuCuuCu  (23) 



 

with )(2])([ ,

,

1,

,

,

,

1,

, N

ss

NcNN

ss

Nc

ss

NcN

ss

Nc ENEN uCDuCCDα
   since ss

Nc

,

,C  is symmetric. By 

Lemma B.1 the elements of the 1P  vectors ss

Nc

,

,α ,  4,...,1c , and Sss ,...,1,  , are bounded 

uniformly in absolute value. As evident from (23), 0α 
ss

Nc

,

,  when 0Du )( NN
E , which is the 

case under random effects estimation if there are no endogenous variables.  

 

Note that NNNN vQεQ ,0,0   and that for symmetric NN   matrices NA , we have 


NNNTNN εQAIQε ,1,1 )( NNNTNNNNNT vQAIQvμAμ ,1,1 )(  + NNTN μAev )(2  . Using 

(22), (23), and Assumption 7 we can rewrite the vector of sample moments as  

 

 )1()1(),( *2/12/1

pNpNNNN ooNN   qqΔθq , (24) 

 

where each element of the 1)]1(4[  SSS  vector )( ,
,

*

,

* ss
NcNc

 qq  can be written as linear 

quadratic form of the 1)(  NNT  vector ),(  NNN μvξ : 

 

 )1(])([ ,

,

,

,

,

,

*

pN

ss

NcN

ss

NcN

ss

Nc
o


ξaξAξq  

 )1(])()([ ,

,,

,

,,

,

, pN

ss

NcN

ss

NcN

ss

NcN o


μavaξAξ μv ,     (25) 

 

where  

 

 





















ss

Nc

ss

Nc

ss

Nc

ss

Ncss

Nc ,

,,

,

,,,

,

,,,

,

,,,

,
)( μμv

μvv

AA

AA
A , 

 ss

NcN

ss

Nc T


 ,

,

1,

, αTa , 4,...,1c , Sss ,...,1,  , or  

 ])(,)[(])(,)[( ,

,,

,

,,

1,

,,

,

,,

,

,


 ss

NcN

ss

NcN

ss

Nc

ss

Nc

ss

Nc T αTαTaaa μvμv , for  4,...,1c , and Sss ,...,1,  . 

 

Observe that the elements of ss

Nc

,

,a , 4,...,1c , and Sss ,...,1,  , are bounded uniformly in 

absolute value by Assumption 7 and Lemma B.1. The symmetric matrices ss

Nc

,

,A , ss

Nc

,

,,vA , 

ss

Nc

,

,,, μvA , and ss

Nc

,

,,μA  are of dimension )()( NNTNNT  , NTNT  , NNT  , and NN  , 

respectively, and defined as follows. 

 

For moment condition ss ,

1M , we have  

 ])([
)1(2

1 ,

,1

,

,1

,

,,1





 ss

N

ss

N

ss

N
T

AAA v , NNT

ss

N 


 0A μv

,

,,,1 , and NN

ss

N 


 0A μ

,

,,1 . (26a) 

 

For moment condition s

2M  we have  



 ])([
)1(2

1
,2,2,,2



 s

N

s

N

s

N
T

AAA v , NNT

s

N  0A μv ,,,2 , and NN

s

N  0A μ,,2 .  (26b) 

 

For moment condition ss ,

3M  we have 

 ])([
2

1
,3,3

,

,,3


 s

N

s

N

ss

N AAA v
, )]([

2

1
,,,,

,

,,,3 NsNsNsNsT

ss

N 

  MMMMeA μv , and  

 )(
2

,,,,

,

,,3 NsNsNsNs

ss

N

T


  MMMMA μ . (26c) 

 

For moment condition s

4M , we have  

])([
2

1
,4,4,,4
 s

N

s

N

s

N AAA v , )]([
2

1
,,,,,4 NsNsT

s

N MMeA μv
 , and   

)(
2

,,

,

,,4 NsNs

ss

N

T
MMA μ



.  (26d) 

 

Note that the row and column sums of the symmetric matrices ss

Nc

,

,A , ss

Nc

,

,,vA , ss

Nc

,

,,, μvA , and 

ss

Nc

,

,,μA  are bounded uniformly in absolute value by Assumption 3 and Remark A.1 in the 

Appendix. Moreover, the elements of the ),(  NNN μvξ  are independently distributed by 

Assumption 1, and the variance-covariance matrix of Nξ  is  

 

 













NNTN

NNTN

N
I0

0Σ
Ωξ 2,


. (27) 

 

In order to calculate the variance-covariance matrix of Nq , given by the 

)]1(4[)]1(4[  SSSSSS  matrix )( **1

NN

-

N EN qq Ψ , we invoke Lemma A.1 in 

Kelejian and Prucha (2010). For the moment, assume that the error components Nμ  and Nv

are normally distributed.
13

 The distribution of the GM estimates without distributional 

assumptions (apart from Assumption 1) is considered in the Appendix. Under normality, the 

covariance between two elements of the vector Nq  is given by:  

 

),(
,

,

*,

,

*1,;,

,,

tt

Nc

ss

Nc

ttss

Ncc CovN






  qqE  (28a) 

 ])(,)([ ,

,

,

,

,

,

,

,

1

N

tt

NcN

tt

NcNN

ss

NcN

ss

NcNCovN ξaξAξξaξAξ 








  

 ])()(,)()([ ,

,,

,

,,

,

,

,

,,

,

,,

,

,

1

N

tt

NcN

tt

NcN

tt

NcNN

ss

NcN

ss

NcN

ss

NcNCovN μavaξAξμavaξAξ μvμv














  
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 In that case, in Assumption 1, the requirement of finite -th moments of the error 

components can be relaxed to the requirement of finite variances.  

4



 ))(2(2 ,

,,

,

,,

4,

,,,

,

,,,

2,

,,

,

,,

1 tt

Nc

ss

Nc

tt

NcN

ss

NcN

tt

NcN

ss

NcTrN












  μμμvμvvv AAAΣAΣAΣA   .  

  ])()[( ,

,,

,

,,

2,

,,

,

,,

1 tt

Nc

ss

Nc

tt

NcN

ss

NcN








  μμvv aaaΣa  ,   

 

with 4,...,1, cc , Sts ,...,1,   for ss   and tt  , and 1,...,1  Ss ,  ss  . Note that the 

each combination of indices c , s , s  (and also c , t , t ) is associated with a particular row 

of Nq . Hence, ttss

Ncc





,;,

,,E  is the covariance between the element of Nq  associated with moment 

condition ss

c

,M  and the element of Nq  associated with moment condition tt

c





,M . (For the 

second and fourth moment condition we always have ss   and tt  ). 

 

In equation (28), ss

Nnnca
,

,,,v  and ss

Niica
,

,,,μ  denote the n-th and i-th main diagonal element of the 

matrices  ss

Nc

,

,,vA  and ss

Nc

,

,,μA , respectively, and ss

Nnca
,

,,,v  and ss

Nica
,

,,,μ  denote the n-th and i-th 

element of the vectors ss

Nc

,

,,va  and ss

Nc

,

,,μa  respectively.  

 

The arrangement of the elements )( ,, NjiN Ψ , )]1(4[,...,1  SSSi , 

)]1(4[,...,1  SSSj  is straightforward and follows naturally from the ordering of the 

elements in the vector Nq , though it is notationally burdensome to state in the general case.  

 

The expression in (28) holds generally. Part of the elements of NΨ  can be stated in simpler 

terms: in particular, the submatrices ss

Nc

,

,,μA ,  are zero for 1c  and 2c  such that *

,NμE  drops 

out for the respective elements. If both sub-matrices associated with Nit ,  are zero ( 1c  or 

2c  and 1c  or 2c ), **

,NμE drops out as well. Under fixed effects estimation, the terms 

**

,NμE  (the expressions involving ss

Nc

,

,,μa ) are equal to zero. Finally, since the main diagonal 

elements of the matrices s

N,2A  and s

N,4A  are zero, the term *,

,NvE  does not show up for 

elements where 2c  or 4c  (or where 2c  or 4c ).  

 

To derive the asymptotic distribution of Nq  and Nθ
~

 we invoke the central limit theorem for 

vectors of linear quadratic forms given by Kelejian and Prucha (2010, Theorem A.1) and 

Corollary F4 in Pötscher and Prucha (1997). We summarize the results regarding the 

asymptotic distribution of Nθ
~

 in the following Theorem, which is proven in Appendix B.  

 

Theorem 2. Asymptotic Normality of Nθ
~

 

Let Nθ
~

 be the GM estimator defined by (18). Suppose Assumptions 1-7 hold and, 

furthermore, that 0)( *

min  ΨΨ cN . Then, provided the optimization space contains the 

parameter space, we have  

 



 )1()()
~

( 2/112/1

pNNNNNNNNN oN  
ξΨΘJJΘJθθ , with  

 NNNNN Bb ΓΓ
θ

J 



 ,  and 

 ),0( )1(4

2/1



  SSS
d

NNN N IΨξ q , 

 

where )( NNN E qq Ψ  and ))(( 2/12/1  NNN ΨΨΨ . 

 

Furthermore )1()
~

(2/1

pNN ON θθ  and 

 

 11
~ )()()(   NNNNNNNNNNNN

N

JΘJJΘΨΘJJΘJΘΩ
θ

, 

 

where 
Nθ

Ω~  is positive definite. 

 

Theorem 2 implies that the difference between the cumulative distribution function of 

)
~

(2/1

NNN θθ   and that of ),0( ~
N

N
θ

Ω  converges pointwise to zero, which justifies the use of 

the latter as an approximation of the former.
14

 Theorem 2 holds both under normality and non-

normality of the error components, the difference being only the definition of the elements of 

NΨ  (and the requirement regarding the finiteness of the moments of the error components in 

Assumption 1). 

 

Note that 
111

~ )()(   NNNN
N

JΨJΨΩ
θ

and that )()( 1
~~

 NN
NN

ΨΩΘΩ
θθ

 is positive semidefinite. 

Thus, using a consistent estimator of 
1

NΨ  (which will be derived below) as weighting matrix 

NΘ  leads to the efficient GM estimator. We add that NΨ  is not exactly equal to the variance-

covariance matrix of the moments, if there is an endogenous right-hand side variable in 

equation (1), since the GM estimates are based on estimated rather than the true disturbances. 

(See also the discussion surrounding equation (23)). 

 

 

IV. Estimation of Regression Parameters Nδ  and Joint Asymptotic Distribution  

In the following, we consider estimators for the regression parameters Nδ  in model (1a) and 

establish their joint asymptotic distribution with the GM estimates Nθ
~

 derived in section III.  

We keep the analysis general first, allowing us to state our results in a succinct way that nests 

both random and fixed effects estimation of the original model as well as the spatial GLS 

transformed model. We will then be more specific about the properties and the respective 

expressions for the TSLS and spatial generalized TSLS estimation of model (1a). 

                                                 
14

 Compare Corollary F4 in Pötscher and Prucha (1997). 



 

1. General Statement of Estimator and Joint Asymptotic Distribution 

Key to establishing the asymptotic properties of the GM estimates Nθ
~

, which are based on the 

estimated disturbances of model (1a), is Assumption 7, which holds that the (properly 

normalized) difference between the true parameters and the estimates ( NΔ ) is linear in the 

stacked vector of  error terms, i.e., )1()()( 2/12/1

pNNN oNTNT  
ξTΔ .  

 

For all estimators of Nδ  in model (1a) considered in the present paper, the matrix NT  has the 

following structure: 

 

 NNN PFT    with ),( ,,
 NNN μv FFF ,   (29a) 

 

which can also be written as  

 

 ),( ,,
 NNN μv TTT  with NNN PFT vv ,,  , NNN PFT μμ ,,  , (29b) 

 

where N,vF  is a real non-stochastic *PNT   matrix, N,μF  is a real non-stochastic *PN   

matrix, and NP  is a real non-stochastic PP *  matrix, with P  as in Assumption 7. The 

definition of NP , N,vF , N,μF  will be seen to depend on the estimated model (original versus 

spatial GLS transformed model) and the estimation approach (random versus fixed effects). In 

general, NP  is a function of the original or within-transformed design matrix NZ  and a real 

non-stochastic *PNT   matrix of instruments NH , (or spatial GLS transformed variants 

thereof); N,vF  and N,μF  depend on the original or within-transformed instruments NH  (or 

spatial GLS transformed variants thereof),  and – in the untransformed model – on the matrix 





S

m

NmNmNT

1

1

,, ])([ MII  . 

 

Since both )
~

(2/1

NNN θθ   and NNT Δ
2/1)( , and thus also NN Δ

2/1
 are asymptotically linear in 

Nξ , the joint distribution of the vector ])
~

(,[ 2/12/1 
NNN NN θθΔ  can be derived invoking the 

central limit theorem for vectors of quadratic forms by Kelejian and Prucha (2010).  

 

Consider the 1)]1(4[( *  SSSP  vector of linear and linear quadratic forms in Nξ :  

 

 






 




N

NN

N

NT

q

ξF
w

2/1)(
.     (30) 

 



Its variance-covariance matrix is of dimension )]1(4[()]1(4[ **  SSSPSSSP  and 

given by: 

 

 

















NNNNN

NNNNNNN

NN
NT

NTNT
EVar

qqq

q

Fξ

ξFFξξF
Ψw w 2/1

2/11

,
)(

)()(
)( 












NN

NN

ΨΨ

ΨΨ

Δθ

ΔθΔΔ

,

,,
 , (31) 

 

where the )]1(4[()]1(4[  SSSSSS  matrix NΨ  is defined above in (28).  

 

The ** PP    matrix N,ΔΔΨ  is defined as  

 

 N,ΔΔΨ μ

ΔΔ

v

ΔΔ ΨΨ NN ,,  , with (32a) 

 )()( ,,

1

, NNNN NT vv

v

ΔΔ FΣFΨ    and NNN NT ,,

21

, )( μμ

μ

ΔΔ FFΨ  

 .  

 

The )]1(4[*  SSSP  matrix N,ΔθΨ  is given by  

 

 ])[( 2/1

, NNNN NTE q 
ξFΨΔθ ,  (32b) 

 

which is made up by )]1(4[  SSS  columns of dimension 1* P , each of them associated 

with a set of indices c , s , and s  and thus a particular moment condition. Under normality of  

Nμ  and Nv , the columns are defined as  

 

 Nssc ),,,(,., Δθψ μ

Δθ

v

Δθ ψψ NsscNssc ),,,(,.,),,,(,.,   , 4,...,1c , Sss ,...,1,  , with (32c) 

 v

Δθψ Nssc ),,,(,.,  )(
11 ,

,,,2/1

ss

NcNN
TN

 vv aΣF , and  

 μ

Δθψ Nssc ),,,(,.,  )(
11 ,

,,,

2

2/1

ss

NcN
TN

 μμ aF . 

 

In Appendix 1.2, N,ΔθΨ  is defined for the general case without distributional assumptions 

(apart from Assumption 1). 

 

Regarding the joint limiting distribution of )
~

(2/1

NNN θθ   and NNT Δ
2/1)( , we now have the 

following result, which is proven in Appendix B. 

 

Theorem 3. Joint Distribution of Nθ
~

 and Regression Parameters  

Suppose that Assumptions 1-7 hold. Moreover, assume also that )1(ON H  (see Assumption 

9 below) and that )1(ON F ; the latter assumption will be verified, once we have defined the 



matrix NF  for the particular estimators used. Moreover, assume that 0)( *

,min 
wΨwΨ cN . 

Then,   

 

 )1(
)()

~
(

,

2/1

,1

2/1

2/1

2/1

pNoN

NNNNN

N

NN

N o
T

N

N























 



ξΨ
ΘJJΘJ0

0P

θθ

Δ
w

, with  

 ),(],)[(
)1(4

2/12/1

,

2/1

,, * 

 
SSSP

d
NNNNNNNo NNT I0FξΨwΨξ ww q , and  

 































1

2/1

,1

2/1

,
)()( NNNNN

N

N

NNNNN

N

N

TT

JΘJJΘ0

0P
Ψ

ΘJJΘJ0

0P
Ω ww . 

 

 

Theorem 3 implies that the difference between the joint cumulative distribution function of 

])
~

(,[ 2/12/1 
NNN NN θθΔ  and that of ),( ,NN wΩ0  converges pointwise to zero, which justifies 

the use of the latter distribution as an approximation of the former.  

 

Remark 2. 

Theorem 3 holds under both normality and non-normality of the error components, the 

difference being the definition of the elements of N,wΨ , in particular those of NΨ  and N,ΔθΨ . 

Obviously, Theorem 3 can also be used to obtain the joint distribution of )
~

(2/1

NNN θθ   and 

some other estimator 


NN Δ
2/1

, where )1()()( 2/12/1

pNNN oNTNT  
ξTΔ , 

  NNN PFT , 

assuming that analogous assumptions are maintained for this estimator. In particular, the 

results remain valid, but with NF  and NP  replaced by 


NF  and 


NP  in the definitions of N,ΔΔΨ  

as well as N,ΔθΨ .  

 

 

2. Two-Stage Least Squares (TSLS) and Spatial Generalized TSLS Estimation of Nδ  

Obviously 0uY  )( NNE  in model (1a). In the following we consider four TSLS estimators 

for Nδ . First, depending on whether 0π   or not in equation (9), we consider random effects 

or fixed effects estimation. Second, we consider (both fixed and random effects) estimation of 

the original model (1a) as well as of the spatial  generalized LS transformed model, which is 

obtained by premultiplying model (1a) with the transformation matrix 





S

m

NmNmNTN

1

,, )]([ MIIR  . Regarding notation, we use an underbar to refer to within-

transformed variables, e.g., NNN ZQZ ,0 . Spatial  generalized LS transformed variables are 

indicated by an asterix, e.g.,  NNN ZRZ *
. Matrices and vectors that are both within- and 

spatial GLS transformed variables are indicated, accordingly, e.g., 

NNNNNN ZRQZQZ ,0

*

,0

*
 . By the properties of N,0Q , an equivalent way writing this is 



NNNNNN ZRQZRZ ,0

*
 , i.e., the order, in which the transformations are performed is 

immaterial.  

 

 

2.1 Assumptions 

Some properties of the regressor matrix NX  have already been discussed in subsection 3 of 

section II. The following further assumptions are maintained. 

 

Assumption 8. 

The non-stochastic instrument matrix NH  has full column rank RKP *  (for N  large 

enough). Furthermore, the elements of NH  are bounded uniformly in absolute value. Under 

fixed effects estimation, we also assume that each instrument changes over time (at least for 

some cross-section i). Moreover, it hold that  ])[(lim 1

NNN NT HHQHH
 

  and  

])[(plim 1

NNN NT ZHQHZ
 

  are finite and non-singular. 

   

Regarding the choice of instruments, note that 

 

 }])({[)()( 1

1

,,

1

,

1

,

1

, NN

R

r

NrNrNT

R

r

NrN

R

r

Nr

R

r

NNr EEE βXWIIWyWyW








     

  NN

i

i
R

r

NrNrNT

R

r

Nr βXWIIW  


 






1 1

,,

1

, ]})([{  ,  

 

provided that 1
1

,, 




R

r

NrNr W  for some matrix norm     (compare Horn and Johnson, 1985, 

p. 301). The instrument matrix NH  is used to instrument ),( NNN YXZ   in a least squares 

regression of NZ  on NH , obtaining NN N
ZPZ Hˆ , where NNNNN

HHHHPH
 1)( . It is thus 

reasonable to select NH  to include NX  and a subset of the linearly independent columns of 

terms of the sum N

Q

i

i
R

r

NrT XWI  
 


1 1

, ])([ , where Q  is some predefined constant.
15

 Note that 

such a choice of NH  implies that the second part of Assumption 9 will be fulfilled (by 

Assumptions 3 and 8) and that NX  is projected on itself.  

 

Analogous assumptions are maintained for the within-transformed regressor and instrument 

matrices NX  and NH . Assumption 8 then also hold for the spatial GLS transformed variables 
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 Kelejian, Prucha, and Yuzefovich (2004) consider the results using alternative sets of 

instruments in the estimation of a cross-section SARAR(1,1) model. Their Monte Carlo 

simulation results suggest that choosing  will be sufficient in many applications.  2Q



*

NX  and *

NH  (under random effects estimation) or 
*

NX  and 
*

NH  (under fixed effects 

estimation).  

 

 

2.2 Definition of TSLS Estimator and Asymptotic Results 

2.2.1 Random Effects Estimation 

The random effects TSLS estimator of model (1a) is defined as  

 

 NNNNN yZZZδ   ˆ)ˆ(
~ 1 , where (33) 

 )ˆ,(ˆ
NNNN N

YXZPZ H  , and   

 NN N
YPY Hˆ  with NNNNN

HHHHPH
 1)( .  

 

As already mentioned, under random effects estimation, the Z-matrix typically includes a 

constant. The following lemma shows that the various assumptions maintained in Section III 

are automatically satisfied by the random effects TSLS estimator Nδ
~

 and the corresponding 

residuals NNnN δZyu
~~  , which are used in the GM estimation of the parameters Ns, , 

Ss ,...,1 , and 2

 . A proof of Lemma 1 is given in Appendix B. 

 

Lemma 1  

Suppose that Assumptions 1-3 and 8 hold, and that  bNN βsup . Let NN ZD  , then, 

the fourth moments of the elements of ND  are bounded uniformly in absolute value, 

Assumption 6 holds, and  

(a)   )1()()()
~

()( ,

2/1

,

2/12/1

pNNNNNN oNTNTNT  
μTvTδδ μv , where  

NNN PFT vv ,,  , NNN PFT μμ ,,  , 

  
111 )(   HZHHHZHZHH QQQQQPN ,   

  N

S

m

NmNmNTN HMIIFv 



1

1

,,, ])([  , and    

  N

S

m

NmNmNTNTN HMIIIeFμ 



1

1

,,, ])()[(  . 

(b)  )1()()( ,

2/1

,

2/1

pNNNN ONTNT  
μTvT μv ; 

(c)  )1(pN OP  and )1(
~

pNN oPP , with  

  11111111 ]})[(])][()]{[()[(])[(
~   NNNNNNNNNNN NTNTNTNTNT ZHHHHZZHHHP . 

 

Note that (a) and (b) together imply that Nδ
~

 is a 
2/1N -consistent estimator of Nδ . Regarding 

Assumption 4, we now have NNNN ΔDuu ~ , where NN ZD   and NNN δδΔ 
~

. Lemma 



1 shows that under Assumptions 1-3 and 8 the TSLS residuals automatically satisfy the 

conditions postulated in Assumptions 4, 6, and 7 with respect to ND , NΔ , and NT . Hence, 

Theorems 1 and 2 apply to the GM estimator Nθ
~

, which is based on the TSLS residuals. The 

lemma also establishes that the elements of NN ZD   are bounded uniformly in absolute 

value, gives explicit expressions for NP  and NP
~

, and verifies that the conditions concerning 

these matrices made in Theorem 3 are fulfilled. Hence, Theorem 3 covers the GM estimator 

Nθ
~

 and the TSLS estimator Nδ
~

, and gives the joint limiting distribution of )
~

(2/1

NNN θθ   

and )
~

(2/1

NNN δδ  , where the matrices NN PP
~

, , N,vF , N,μF  are as in Lemma 1. 

 

2.2.2 Fixed Effects Estimation  

The fixed effects TSLS estimator of model (1a) is defined as  

 

 
NNNNN yZZZδ ˆ)ˆ(

~ 1   , where  (34) 

NNN NN
ZPZPZ HH ˆ  with NNNNNN

ZHHHHPH
 1)( . 

 

The fixed effects estimates Nδ
~

 can then be used to obtain consistent estimates of the 

disturbances, given by NNnN δZyu
~~  , which are then used for the GM estimation of the 

parameters Ns, , Ss ,...,1 , and 2

 . These should not be confused with the fixed effects 

residuals NNnN δZyu
~~  , which are an estimate of NNuQ ,0 . 

 

The results for the fixed effects estimation are exactly as in Lemma 1, with NT , NP , NH  

replaced with their within-transformed counterparts NT , NP , NH , and with  

 

 0Tμ N, , 0Fμ N, , and  

 N

S

m

NmNmNTN

S

m

NmNmNTNN HMIIHMIIQFv 






 
1

1

,,

1

1

,,,0, ])([])([  .
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3. Definition of Spatial Generalized Two-Stage Least Squares (GTSLS) Estimator and 

Asymptotic Results 
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 By the idempotency of the within-transformation matrix , one could equivalently use 

the fixed effects residuals  in the expression 

. However, since the derivation of the heteroskedasticity-

robust variance-covariance matrix relies on the use of the original residuals, we also define 

the fixed effects estimator as a linear form in the original residuals . 
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3.1. Random Effects Estimation 

The spatial GLS transformed version of model (1b) is given by  
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where NNN yRy * , NNN ZRZ * , and NNNN εuRu *  and the transformation matrix NR  is 

given by 
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The random effects spatial GTSLS estimator, denoted as *ˆ
Nδ , is then obtained as a TSLS 

estimator applied to the transformed model (37), using the transformed instruments 

NNN HRH *
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The feasible random effects spatial GTSLS estimator, denoted as 
*~̂
Nδ , is defined analogously, 

replacing the transformation matrix NR  by its estimate 
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where the tilde indicates that the transformation is based on the estimate of NR . 

 

The following lemma shows that the various assumptions maintained in Section III are 

automatically satisfied by the (feasible) random effects spatial GTSLS estimator 
*~̂
Nδ  and the 

corresponding residuals 
** ~̂

)
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( NNNNN δZyδu  . The proof is given in Appendix B. 

 

Lemma 2.   

Suppose the Assumptions of Lemma 1 hold, and let 
*ˆ
Nδ


 be defined as in (39), where Nθ


 is 

any 
2/1N -consistent estimator of Nθ  (such as the GM estimator Nθ

~
 based on the TSLS 

residuals). Then 
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In light of Lemmata 1 and 2 the joint limiting distribution of the (feasible) spatial GTSLS 

estimator 
*ˆ
Nδ


 and the GM estimator Nθ


 follows from Theorem 3 and the discussion 

thereafter, with NNN δδΔ  **
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Note that in light of Lemma 2 the residuals 
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 can be used to 

estimate Nθ  by the GM estimator defined by (18), where the discussion surrounding Lemma 

1 applies analogously here. Taking this argument one step further, Nθ  and Nδ  can also be 

estimated by an iterative procedure. 

 

 

3.2. Fixed Effects Estimation 

The fixed effects spatial GTSLS estimator, denoted as 
*

ˆ
Nδ , is defined as  
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The feasible fixed effects spatial GTSLS estimator, denoted as 
*~̂
Nδ , is defined analogously, 

using the estimate of the transformation matrix 



S

m

NmNmNTN

1

,, )]~([
~

MIIR  , i.e., 

 

 
**1**

*
~~̂

)
~~̂

(
~̂

NNNNN yZZZδ


  . (36b) 

 

The results for the fixed effects estimation are exactly as in Lemma 1, with 
*

NT , 
*

NP , 
*

NH  

replaced with their within-transformed counterparts 
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NT , 
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NP , 
*

NH , and with  

 



 0Tμ 
*

,N  and 0Fμ 
*

,N , and  

 
**

, NN HFv  . 

 

Again notice that it is not the fixed effects residuals but the estimated disturbances 
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V. Variance-Covariance Matrix Estimation  

As evident from Theorem 3, the matrix N,wΩ  is of sandwich form. Both under random and 

fixed effects estimation, the “sandwiched” middle term, i.e., N,wΨ , is seen to depend (among 

others) on the idiosyncratic error terms Nv . A complication in deriving a consistent estimator 

for N,wΨ  arises from the well-known fact that one can only obtain consistent estimates of the 

vector of fixed effects residuals )( ,NitN vv , i.e., the within-transformed residuals, but not of 

the original idiosyncratic errors Nv  – a manifestation of the so-called incidental parameter 

problem (Lancaster, 2000). 

 

This point was prominently made in a recent paper by Stock and Watson (2008), who suggest 

a heteroskedasticity-robust bias-corrected variance-covariance matrix estimator for nonspatial 

fixed effects panel data models. A closely related issue arises in the estimation of the 

variance-covariance matrix of the GM estimates Nθ  given by (28). In the following, we will 

derive bias-corrected estimators for the joint asymptotic variance-covariance matrix of all 

model parameters under both fixed and random effects estimation, pursuing an approach 

analogous to that in Stock and Watson (2008).  

 

1. Estimation of N,wΨ  

In the following, we derive estimators for the each block of N,wΨ . We start by defining an 

estimator for N,ΔΔΨ , required for inference with respect to the parameters Nδ  of the main 

equation (1a). In a next step we turn to the estimation of the (inverse) of the optimal 

weighting matrix for the GM estimation NΨ , which is also a key element in the estimation of 

the variance-covariance matrix of the GM estimates of Nθ . Finally, we turn to the estimation 

of NθΔΨ , required for joint tests regarding Nθ  and Nδ . 

 

1.1 Estimation of N,ΔΔΨ  
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Under random effects estimation, the estimators for NF  (original model) and *

NF  (spatial GLS 

transformed model) are defined as  
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Under fixed effects estimation, the estimators for NF  and 
*

NF  are defined as 
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Hence – under random effects estimation of the untransformed model – the estimator for 
μ

ΔΔΨ N,  is given by  
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in the same way, properly replacing the F-matrices and the estimates of the disturbances Nu~ . 

 

As already mentioned above, due to the heteroskedasticity of Nv  and the fact that the 

variance covariance matrix depends on the idiosyncratic error terms in levels Nv  rather than 

the fixed effects residuals Nv , a bias correction is required. As shown in Lemma C.2 of the 



Appendix, adopting an approach analogous to that in Stock and Watson (2008) in the present 

framework yields the following bias-corrected estimator for v

ΔΔΨ N, :
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Again the modification modifications of (39) for other estimators are straightforward, 

replacing N,

~
vF  properly.  

 

We summarize the consistency result of the estimators given by (38) and (39) with the 

following theorem.  

Theorem 4a. Consistency of N,

~
ΔΔΨ   

Let 
v

ΔΔ

μ

ΔΔΔΔ ΨΨΨ NNN ,,,

~~~
  with 

μ

ΔΔΨ N,

~
 and 

v

ΔΔΨ N,

~
 defined in (38) and (39). Suppose that the 

Assumptions of Theorem 3, apart from Assumptions 5 and 7, hold and that additionally all of 

the fourth moments of the elements of ND  are bounded uniformly. Suppose furthermore (a) 

1sup
1

, 


S

s

NsN   and that the row and column sums of NM  are bounded uniformly in 

absolute value by one and some finite constant respectively, and  

(b) )1(
~

pNN oPP  with )1(ON P . Then, )1(
~

,, pNN o ΔΔΔΔ ΨΨ  and )1(
~ 1

,, pNN o 

ΔΔΔΔ ΨΨ .  

 

Proof. Theorem 4a follows from Lemmata C.2 and C.3 in Appendix C.
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Remark 3: Under estimation of the spatial GLS transformed model (where the inverse of NR  

cancels out), condition (a) can be dropped. Under TSLS (or spatial GTSLS estimation ), 

condition (b) in Theorem 4a is automatically fulfilled (see Lemmata 1 and 2).  

 

1.2 Estimation of NΨ  
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Consider the elements of NΨ  as defined in (28). For estimation, it will turn out convenient to 

rewrite the part of the elements of NΨ   as given by (28a) with the main diagonal elements of 

the matrices ss

Nc

,

,,vA  set to zero in the first expression of the trace in the first line. Furthermore, 

to simplify the exposition we drop the indices sc, , and s  in the following derivation and to 

adopt the following notational convention. We refer to the matrix ss
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In that case, equation (28a) can be written, for given a given pair of index sets ssc ,,  and 

ttc  ,, ,  as 
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Notice that the terms 4

,,,, NnvNnc v , NTn ,...,1 , associated with the main diagonal elements of 

N,vA  and N,vB , in the expression NNNN ΣBΣA vv ,, , are not included in *,

,NvE . To rewrite *,
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We next define the estimates for N,va  and N,μa : 
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We next define estimators for the terms in (40), starting with the “homoskedastic” terms, 

involving only the time-invariant error component Ni, . 

 

1.2.1. Estimation of “homoskedastic” terms  

Consistent estimators of the expressions in (40), associated (only) with the homoskedastic, 

time-invariance error component  Niμ ,  , are given by   
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The consistency proofs for the estimators defined in (42) are easily seen to be special cases of 

those for the heteroskedastic terms considered in the next section and thus omitted for the 

sake of brevity.  

 

1.2.2. Estimation of “heteroskedastic” terms  

Consider first *,

,NvE  as defined in (40). Its estimation is simplified by the fact that the matrices 
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The derivation, using a bias correction in the spirit of Stock and Watson (2008), and the proof 

of consistency is given in Lemma C.6a in Appendix C.  

 

In light of the previous results, estimation of *

,NvμE  is straightforward; exploiting the fact that 

the weights matrices are time-invariant, a consistent estimate is given by  
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, pNN o vv EE  follows from Lemmata C.2 and C.3 and Remark C.1 thereafter in 

Appendix C.  

 

We summarize the results of section 1.2 with the following theorem.  

Theorem 4b. Consistency of NΨ
~

 



Suppose all of the assumptions of Theorem 4a and Assumption 7 holds and that Nv  and Nμ  

are normally distributed. Let the elements of NΨ
~

 be defined as above (from (39) to (44)). 

Then, )1(
~

pNN oΨΨ  and )1(
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ΨΨ .  

Remark 4: Under non-normality, Theorem 4.b holds under additional assumptions regarding 

the moments of Nv  and Nμ  and with augmented definitions of the elements of NΨ  and NΨ
~

; 

details are given in the Appendix.  

 

1.3 Estimation of N,θΔΨ  

It remains to provide an estimate of N,θΔΨ , which is required for tests of joint hypotheses 

concerning the regression parameters Nδ  and the parameters associated with the spatial 

regressive disturbance process Nθ .  

 

As evident from the results in section 1.2, the assumptions maintained in Theorem 4b are 

sufficient to prove that the following expressions consistently estimate the columns of N,θΔΨ  

as defined in light of (32c), provided that Nv  and Nμ  are normally distributed: 
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Theorem 4c. Consistency of N,
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ΔθΨ  

Suppose the assumptions of Theorem 4b hold and let (the columns of ) N,
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(45). Then, we have )1(, ON θΔΨ ,  )1(
~

,, pNN o θΔθΔ ΨΨ , and  )1(
~

, pN OθΔΨ .  

 

Remark 5: Under non-normality, Theorem 4c holds under additional assumptions and with 

augmented definitions of the columns of N,ΔθΨ  and N,

~
ΔθΨ ; details are given in the appendix.  

 

 

2. Estimation of N,wΩ  

The estimate of NJ  is given by  

 

 NNN B
~~~

ΓJ  . (46) 

 



The elements of NΓ
~

 are defined in (17) with the expectations operator suppressed and the 

disturbances Nu  replaced by their estimated counterparts. For simplicity of notation, the 

estimated disturbances are denoted as Nu~  throughout, though it should be clear that they are 

generated by the respective estimators 
Nδ

~
, 

Nδ
~

, 
*~̂
Nδ , or 

*~̂
Nδ  defined above. For example, 

under fixed effects (feasible) spatial generalized LS estimation, we have 
*~̂~
NNNN δZyu  . 

The matrix NB
~

 is given by (20) with Ns,  replaced by the GM estimates Ns,
~ , Ss ,...,1 . 

 

Theorem 5. Consistency of 
NwΩ

~
 

Suppose that Assumptions 1-7 hold. Let N,

~
wΨ  be defined as above (from (39) to (45)). Define  

 N,

~
wΩ 
































1

2/1
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2/1

)
~~~

(
~~

~
~

~~
)

~~~
(

~

NNNNN

N
N

NNNNN

N TT

JΘJJΘ0

0P
Ψ

ΘJJΘJ0

0P
w . 

It follows that )1(
~

po
NN
 ww ΩΩ , )1(O

N
wΩ , and )1(

~
pO

N
wΩ . 

 

Proof. 

Above we showed that )1(
~

,, pNN o ww ΨΨ . By assumption, )1(
~

pNN oPP , )1(ON P , 

and )1(
~

pN OP  as well as )1(
~

pNN oΘΘ , )1(ON Θ  and )1(
~

pN OΘ . In the proof of 

Theorem 2 it was shown that )1(
~

pNN o JJ , )1(ON J , and )1(
~

pN OJ , and that 

)1()()
~~~

( 1

pNNNNNN o 
JΘJJΘJ , )1()( 1 ONNN  

JΘJ , and )1()
~~~

( pNNN O 
JΘJ . It now 

follows that )1(
~

,, pNN o ww ΩΩ  and )1(, ON wΩ  and thus )1(
~

, pN OwΩ .  

 

Remark 5: Under non-normality, Theorem 5 holds under additional assumptions and with 

augmented definitions of N,wΨ  and N,

~
wΨ ; details are given in the appendix.  

 

 

VI. Random vs. Fixed Effects. A Heteroskedasticity-Robust Hausman Test  

In the following we derive a Hausman-type test of the spatial random effects versus the 

spatial fixed effects model under heteroskedasticity of unknown form. Both estimators 

considered are based on the spatial GLS transformed model (which removes the cross-

sectional interdependence) and use a heteroskedasticity-robust robust variance-covariance 

matrix for inference. In general, neither of these two estimators will be efficient, such that we 

use a generalized Hausman-test for inference (see, Weesie, 1999; Creel, 2004).  

 

Consider the stacked vector of random and fixed effects estimates of the regression 

parameters, which is given by  



 



























)ˆ(

)ˆ(
*
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*2/1
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NN

NN

N

N

N

N

N

N

N

δδ

δδ

Δ

Δ
d .  (47) 

 

By Theorem A.1 in Kelejian and Prucha (2010) 

 














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***
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ˆˆˆ
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N

d

N

δδδ

δδδ

ΩΩ
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Ωd . (48) 

 

As evident from (48), 
*

,

*1

ˆ * NNNT
N

PΨPΩ ΔΔδ
 

 and 
*

,

*1

ˆ * NNNT
N

PΨPΩ ΔΔ
δ

  . The off-diagonal 

block of NΩ  is given by  

 

 ** ˆˆ
NN δδ

Ω  
**

,

*

,

* ]
1

[
1

NNNNN
NTT

PFΣFP vv
 , (49a) 

 

which can be estimated consistently – by the same logic as *ˆ
Nδ

Ω  and *ˆ
Nδ

Ω – using  

 

 
**

,
*

,

*

ˆˆ

~
]

~~~

)2(

1
[

~1~
** NN

HR

NNN
TNTNN

PFΣFPΩ vv
δδ




 . (49b)  

 

The Hausman test, which is derived under the null hypothesis that the random effects model 

as specified in section II is the true model, takes the form of a Wald-type test of the restriction 

that 
*

* ˆˆ
NN δδ  . Define the discrepancy vector NNN qRm ˆ  ˆ  , where )ˆ,ˆ(ˆ

**  NNN δδq .  Note that 

typically, the dimension of the parameter vector under random effects exceeds the parameter 

vector under fixed effects by 1 due to the inclusion of a constant. Hence, for comparison of 

the two estimators, we focus on a joint test regarding the slope parameters, i.e., we test  

 

 0NH Rq  :0  against 0NH Rq  :1 , (50) 

 

where ),,( 1 PPP II0  R , assuming that the constant appears in the first row of the random 

effects estimator *ˆ
Nδ . We use a generalized Wald-type test (e.g., Greene, 2003, pp. 95, 487), 

which takes the form
19

  

 

 )(~)
~

( 2 PNNN mRQRm  ,   (51) 
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 If one of the estimators is efficient, the off-diagonal blocks are equal to zero and equation 

(51) reduces to the standard Hausman test.  



where ** ˆˆ

1~~

NN

NN
δδ

Ω
Q  and P  is the number of restrictions, which is equal to the number of 

slope parameters in the present case.
20

  

 

VII. Some Monte Carlo Evidence  

In the following we provide some limited Monte Carlo evidence on the performance of the 

estimation procedure suggested in the present paper. A comprehensive assessment, using a 

broad range of parameter constellations, alternative distributional assumptions, and alternative 

specifications of the weights matrices is beyond the scope of the present paper and left for 

future research. We consider a SARAR(2,2) specification with two explanatory variables, 

assuming that NN MW  :
21

  

 

 uyWIxxy  


2

1

2211 )(
r

rTrββ  , (52a) 

 εuWIu 


2

1

)(
s

sTs . (52b) 

 

We consider three sample sizes: 50N , 100N , and 250N  and assume 5T  

throughout. For each Monte Carlo experiment, we consider 1000 draws. The explanatory 

variables 1x  and 2x  are generated as random draws from a standard normal distribution, 

scaled with a factor of five, and treated as fixed in repeated samples. The parameters are as 

follows: 121   , 5.01  , 25.02  , 4.01  , and 2.02  .  

 

The unnormalized NN   matrix 
0

W  consists of two NN   matrices 0

1W  and 0

2W , where 

00

2

0

1 WWW  . The matrices 0

1W  and 0

2W  are specified such that they contain the elements 

of 
0

W  for a different band of neighbours each. Otherwise, they have zero elements. In line 

with Kelejian and Prucha (2010), we choose a design, where 0

1W  corresponds to an ‘up to 3 

ahead and up to 3 behind’ specification and 0

2W  corresponds to a ‘4 to 6 ahead and 4 to 6 

behind’ specification. The final weights matrices 1W  and 2W  are obtained by individually 

row-normalizing 0

1W  and  0

2W . As already mentioned, we have 11 WM   and 22 WM  . 
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 The theory underlying Hausman tests with not fully efficient estimators is derived in White 

(1982, 1994). In a non-spatial context, such a generalized Hausman test is considered, e.g., in 

Weesie (1999) or Creel (2004). Sufficient assumptions to ensure well-behaved asymptotic 

properties in generalized Wald tests are derived and discussed in Andrews (1987) and Vuong 

(1987).  
21

 For simplicity of notation, the subscript  is suppressed in the following.  N



Regarding the choice of instruments, we include linearly independent terms of up to second 

order spatial lags of the exogenous variables. In particular, the matrix of untransformed 

instruments H  contains 12 columns and is given by  

].)(,)(,)(,)(,)(,[ 21

2

2

2

121 XWWIXWIXWIXWIXWIXH  TTTTT   (53) 

 

The elements of the error term ε  are specified as itiit vμε  , where the idiosyncratic error is 

given by itititititit xxv   )1.01.05.0(5.0 2

,2

2

,1 . Thereby it  and it  are draws from a 

standard normal distribution and it  is a draw from a uniform distribution with support 

]5.1 ,5.0[ , which is treated as fixed in repeated samples. Hence, itv  exhibits both conditional 

and unconditional heteroskedasticity.  

 

The individual effect is specified as iiii wxπxπμ  ,22,,11 , where Niw ,  is a draw from 

normal distribution with variance 0.5. We consider two specifications: in the random effects 

model we have 021  ππ  (and, hence, )()( ,, NiNi wVarμVar  ); in the fixed effects model we 

have 25.021  ππ  (and, hence, )()()( 2

,, iiNi wVarVarμVar  πx ). 

 

Results for the estimates of 1  and 2  are obtained by the GM estimator defined in equation 

(18), using the optimal weighting matrix under normality 1)
~

( 
NΨ . The estimates reported for 

the regression parameters are FGTSLS estimates as defined in (35) and (36) using the 

transformed set of instruments **~
H . For each single coefficient, we report the average bias 

and root mean squared error for each parameter constellation and the rejection rates for the 

test that the coefficient is equal to the true parameter value. For the random effects models, 

we also show the results for the Hausman test.  

 

< Table 1 > 

 

Table 1 reports the results of the Monte Carlo analysis for the three different sample sizes 

considered, both under the random and fixed effects specification. Given that the natural 

habitat of GM estimation is large samples, the performance in the smallest sample with 

50N  is acceptable. In the random effects (fixed effects) specification, the average bias and 

RMSE amount to 0.0008385 and 0.0246475 (0.001719 and 0.027935) for the estimates of 

),( 21
 λ  and -0.0096335 and 0.2563835 (-0.0106385 and 1.050696) for the estimates of 

),( 21
 ρ . With an average rejection rate of 0.0685 and 0.139 (0.0650 and 0.1225), the 

performance of the single hypotheses tests referring to λ  and ρ  is not too bad as well. The 

Hausman test is oversized with a rejection rate of 0.1060.  

 

For moderately sized samples with 250N , the bias has virtually disappeared: in relative 

terms it amounts to 0.01560 (0.0102) percent for estimates of ),( 21
 λ  and to -0.1647  



(-0.280) percent for the estimates of ),( 21
 ρ  under random effects (fixed effects). The 

average RMSE of the estimates of ),( 21
 λ  shrinks to 0.011376 (0.011466), that of the 

estimates of ),( 21
 ρ  shrinks to 0.213485 (0.800393) under random effects (fixed 

effects). The size of the tests improves, but it approaches nominal size of 5 percent relatively 

slowly. The reason for the latter partly accrues to the fact that the data for 1x  and 
2x  are 

generated as random draws. A second reason relates to the specific ‘ahead-behind’ design of 

the spatial weights matrices, which – together with the properties of the explanatory variables 

– results in a fairly high correlation between spatial lags of different orders. With explanatory 

variables as in many empirical applications and less artificial spatial weights matrices, there 

will be less correlation between the spatial lags of the explanatory variables and spatial lags of 

different orders and the size of tests can be expected to approach the nominal size faster than 

in the chosen design. Regarding the GM estimates of ρ , the average size amounts to 0.139 

(0.123), that for the FGTSLS estimates of λ  to 0.0555 (0.139). The performance of the 

Hausman test is worth mentioning, which has already approached its nominal size with a 

rejection rate of 0.056.  

 

The final column in Table 1 considers the case with N = 250 and where the sum of the 

parameters of the spatial lag of the dependent variable is closer to 1, i.e., with 1 = 0.6 and 2 

= 0.35. As can be seen from the results, the performance in terms of bias and size is 

comparable with the parameter constellation where the sum of 1 and 2 is smaller in 

magnitude. 

 

Overall, the Monte Carlo experiments illustrate that the proposed estimators work reasonably 

well in terms of bias and RMSE, even in very small samples. Regarding the estimates of the 

variance-covariance matrix of the parameter estimates, in particular those relating to the 

disturbance process, some care is warranted in the interpretation of the results in small 

samples, though the tests appear to be conservative in the sense that they under-reject the null 

and the p-values converge from above for reasons mentioned in the previous paragraph. It 

should also be emphasized that the results here are based on a correctly specified model with 

a high signal to noise ratio. Hence, apart from a comprehensive Monte Carlos study using 

alternative distributional assumptions and ‘real world’ explanatory variables and weights 

matrices, an interesting extension for future research would be to explore small sample 

corrections or re-sampling methods for the GM estimators considered in the present paper in 

order to improve the performance in small samples or in empirical models with poor fit.  

 

 

VIII. Conclusions  

This paper derived a two-step estimation procedure for spatial regressive panel data models 

with spatial regressive disturbances of the SARAR(R,S) type under both random and fixed 

effects assumptions and allowing for heteroskedasticity of arbitrary form in the idiosyncratic 



error terms. The regression model is estimated by two-stage least squares (TSLS) to obtain 

consistent estimates of the disturbances, which are then used in the second step to obtain 

generalized moments (GM) estimates of the parameters of the spatial regressive disturbance 

process.  

 

We provide a detailed study of the asymptotic properties of the proposed two-step TSLS and 

GM estimators of the model parameters, prove their consistency and establish asymptotic 

normality. Both for the original model and the spatial generalized least squares (GLS) 

transformed model, we derive the joint and asymptotic variance-covariance matrix, which is 

robust to (cross-sectional interdependence and) heteroskedasticity of unknown form.  This 

enables robust tests of the general SARAR(R,S) model against restricted alternatives such as 

SARAR(0,S) and SARAR(R,0) or SARAR(1,1) with random and fixed effects panel data 

models under heteroskedasticity. We also propose a generalized Hausman-type test of the 

spatial random versus the spatial fixed effects model.  

 

The framework suggested in the present paper provides a flexible tool for applied 

econometric researchers for empirical models with cross-sectional interdependence and 

allows to study the strength and pattern of spatial interdependence more flexibly and under 

less restrictive assumptions than existing SARAR(1,1) models assuming homoskedasticity. 

Allowing for alternative modes of interdependence and determining the proper pattern of the 

interdependence decay function is not only of interest in itself but also a prerequisite for a 

correct model specification and valid inference.  

 



Table 1. Monte Carlo Results, 1000 draws 

 N = 50 N = 100 N = 250 N = 250   

 RE FE RE FE RE FE RE FE 

1  = 0.5        1  = 0.6   

Bias 0.001082 0.002029 -0.000113 0.000359 0.000237 -0.0000468 0.000161 0.000587 

RMSE 0.02395 0.026601 0.018157 0.016493 0.010799 0.011269 0.009209 0.009012 

Rej. Rate 0.074 0.068 0.045 0.049 0.046 0.042 0.056 0.048 

2 = 0.25              2  = 0.35   

Bias 0.000595 0.001409 0.000259 0.000791 -0.000120 -0.0000301 -0.000073 -0.000654 

RMSE 0.025345 0.029269 0.019095 0.017378 0.011953 0.011663 0.010053 0.009981 

Rej. Rate 0.063 0.062 0.05 0.054 0.065 0.051 0.047 0.052 

1 = 1              1 = 1   

Bias -0.000313 0.000429 -0.000564 -0.000313 0.000187 -0.000447 0.000286 0.00000197 

RMSE 0.017017 0.01953 0.013611 0.012649 0.008170 0.008024 0.008164 0.007508 

Rej. Rate 0.049 0.057 0.064 0.064 0.049 0.054 0.061 0.042 

2 = 1             2 = 1    

Bias -0.000125 -0.000613 0.000103 -0.000262 0.000005 -0.0000729 -0.000561 0.000248 

RMSE 0.018706 0.019158 0.012461 0.011945 0.008016 0.007815 0.00777 0.008334 

Rej. Rate 0.057 0.087 0.054 0.047 0.047 0.053 0.048000 0.052000 

1 = 0.4              1 = 0.4   

Bias -0.002348 0.014094 0.000859 -0.00071 0.000162 0.003757 -0.000614 0.004045 

RMSE 0.184249 0.954723 0.146618 0.670901 0.121458 0.701775 0.126152 0.747754 

Rej. Rate 0.147 0.122 0.126 0.115 0.146 0.131 0.125000 0.133000 

2 = 0.2              2 = 0.2   

Bias -0.016919 -0.035371 -0.004592 -0.010192 -0.000656 -0.005854 -0.005464 -0.011615 

RMSE 0.328518 1.146669 0.314663 0.864678 0.305513 0.899012 0.312235 0.945605 

Rej. Rate 0.131 0.123 0.131 0.116 0.132 0.115 0.118000 0.128000 

Hausman-test                 

Rej. Rate  0.106   0.058   0.056   0.054   
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APPENDIX. Variance-Covariance Matrix Under Non-Normality of Error Components 

As already mention in the main text, Theorems 4b and 4c as well as Theorem 5 also hold 

under non-normality with different definitions of NΨ  and N,θΔΨ  respectively. In the 

following, we provide the definitions of the respective elements under non-normality and 

define consistent estimates for them. 

 

1.1 Distribution of GM Estimates under Non-Normality (Definition of NΨ ) 

If we drop the assumption that Nμ  and Nv  are normally distributed, equation (28b) becomes 
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Adopting the notational convention introduced in section V, subsection 1.2, (A.1a) can be 

written as  
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i.e., 0*

, NvE , and the additional terms, appearing in the second row of (A.1b), are defined as:  
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where )3(

  and )4(

  ( )3(

v  and )4(

v ) denote the third and fourth moments of Nμ  ( Nv ), 

respectively.
22

 

 

As shown in Lemma C.4 of Appendix C, the third and fourth moments of Ni, , denoted as 

)3(

  and )4(

 , can be estimated consistently using 
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Hence, consistent estimators of the expressions in (A1), associated (only) with the 

homoskedastic, time-invariance error component Niμ ,  , are given by   
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Next turn to ***
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We first consider ***

,1 NvE  and note that the elements Nnc ,,v  are time-invariant. By Lemma C.6a, 

a consistent estimator of ***

,1 NvE  is given by  
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 For the elements, where both  (or ) and  (or ), the terms involving 

the third and fourth moments drop out. 
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Next consider ***

,2 NvE , which involves a weighted sum of the squared variance. Without 

distributional assumptions and unknown heteroskedasticity over both cross-sections and time, 

it is not possible to obtain an estimates of (a weighted sum of) the squared variances. (Using 

the fourth power of the residuals estimates a weighted sum of the fourth moments.) Hence, an 

approximation is required, assuming that the idiosyncratic error components are 

heteroskedastic only over cross-sections, but not over time, i.e., ),0.(.~ 2

, iNit div  . Under that 

assumption, the following expression consistently estimates  ***

,2 NvE   as shown in Lemma C.6b 

in Appendix C: 
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where 1010 ,,, kkmm  are defined as above.  

 

Finally, a consistent estimate of ****

,NvE  is given by  
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1.2 Joint Distribution of Regression Parameters and GM Estimates under Non-

normality (Definition of N,θΔΨ ) 

Under non-normality, equation (32c) becomes augmented by terms involving the third 

moments of the error components as follows:  
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In light (32c) and the results of section 1.2, the assumptions maintained in Theorem 4b are 

sufficient to prove that the following expressions consistently estimate the elements of N,θΔΨ : 
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TECHNICAL APPENDIX 
 

 

APPENDIX A 

Notation 

We adopt the standard convention to refer to matrices and vectors with acronyms in boldface. 

Let NA  denote some matrix. Its elements are referred to as Nija , ; Ni.,a  and Ni,.a  denote the i-

th row and the i-th column of NA  respectively. If NA  is a square matrix, 1

NA  denotes its 

inverse; if  NA  is singular,  

NA  denotes its generalized inverse. The (submultiplicative) 

matrix norm     is defined as 2/1)]([ NNN Tr AAA  . In several places, we use single 

indexation, e.g., NTn ,...,1 , to denote elements of the vectors or matrices that are stacked 

over time periods.
 23

 

 
Remark A.1  

i) Definition of row and column sum boundedness (Kapoor, Kelejian, and Prucha, 2007, p. 

99): Let 1, NNA , be some sequence of NTNT   matrices with T  some fixed positive 

integer. We will then say that the row and column sums of the (sequence of) matrices NA  are 

bounded uniformly in absolute value, if there exists a constant c , which does not depend 

on N, such that  

 ca
NT

j

Nnj
NTn





1

,
1
max  and ca

NT

n

Nnj
NTj





1

,
1
max  for all N  1.    

ii) Let NA  be a (sequence of) NN   matrices whose row and column sums are bounded 

uniformly in absolute value, and let S  be some TT   matrix (with 1T  fixed). Then the 

row and column sums of the matrix NAS  are bounded uniformly in absolute value 

(compare Kapoor, Kelejian, and Prucha, 2007, p. 118). 

iii) If NA  and NB  are (sequences of) NTNT   matrices (with 1T  fixed), whose row and 

column sums are bounded uniformly in absolute value (by Ac  and  Bc ), then so are the row 

and column sums of NNBA  and NN BA   (by BAcc  and  BA cc  ). If NZ  is a (sequence of) 

PNT   matrices whose elements are bounded uniformly in absolute value, then so are the 

elements of NNZA  and NNNNT ZAZ1)( . Of course, this also covers the case NNNT ZZ1)(  

for NTN IA    (compare Kapoor, Kelejian, and Prucha, 2007, p. 119). 
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 Take the vector , for example. Using indexation , the 

elements  , refer to period , elements  refer to , 

etc., and elements  refer to period .   

),...,( ,,1
 NTNN vvv NTn ,...,1

Nnv Nn ,...,1 ,,  1t NNnu Nn 2,...,1 ,,  2t

NTNTnu Nn ,...,1)1( ,,  Tt 



iv) Suppose that the row and columns sums of the NTNT   matrices )( ,NijN aA  are 

bounded uniformly in absolute value by some finite constant Ac ; then q

A

qNT

n

Nnj ca 
1

,  for 

1q  (see Kelejian and Prucha, 2009, Remark C.1). 

v) Let Nξ  and Nη  be 1NT  random vectors (with 1T  fixed), where, for each N, the 

elements are independently distributed with zero mean and finite variances. Then the elements 

of NNNT ξZ 2/1)(  are )1(pO  and NNNNT ηAξ1)(  is )1(pO .
24

  

vi) Let Nζ  be a 1NT  random vector (with 1T  fixed), where, for each N, the elements are 

distributed with zero mean and finite fourth moments. Let Nπ  be some nonstochastic 1NT  

vector, whose elements are bounded uniformly in absolute value and let NΠ  be a NTNT   

nonstochastic matrix whose row and column sums are bounded uniformly in absolute value. 

Define the column vector NNNN ζΠπd  . It follows that the elements of Nd  have finite 

fourth moments.
25

  

 

Remark A.2 

The matrices N,0Q  and N,1Q  have the following properties (see Kapoor, Kelejian, and Prucha, 

2007, p. 101): 

 )1()( ,0  TNtr NQ , Ntr N )( ,1Q , 0IeQ  )(,0 NTN , )()(,1 NTNTN IeIeQ  ,  

NNNN vQεQ ,0,0  , NNNNTNN vQμIeεQ ,1,1 )(  , )()( ,0,0 NTNNNT DIQQDI  ,  

)()( ,1,1 NTNNNT DIQQDI  , )()1(])[( ,0 NNNT trTtr DQDI  , 

)(])[( ,1 NNNT trtr DQDI  , 
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 Kelejian and Prucha (2004) consider the case  and identically distributed elements of 

 and . Results hold up for (fixed)  and under heteroskedasticity, as long as the 

variances of the elements of  and  are bounded uniformly in absolute value.  

25

 Kelejian and Prucha (2009, Lemma C.2) give a proof for  and independent elements 

of . The extension to (fixed)  is obvious. Independence of the elements of  is not 

required for the result to hold. The fourth moments of the elements of  are 

given by  

 , by Hölder’s 

inequality as long as the fourth moments of the elements of  are bounded uniformly. 
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where ND  is an arbitrary N  N matrix. Obviously, the row and column sums of N,0Q  and 

N,1Q  are bounded uniformly in absolute value.  



APPENDIX B 

Lemma B.1
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Let NA  be some nonstochastic NTNT  matrix (with T fixed), whose row and column sums 

are bounded uniformly in absolute value. Let Nu  be defined by (2c) and Nu~  be a predictor 

for Nu . Suppose that Assumptions 1 to 4 hold. Then 

(a) )1(1 OEN NNN 
uAu , )1()( 1 oNVar NNN 

uAu , and )1()()~~( 11

pNNNNNN oENN  
uAuuAu .   

(b) )1(,.

1 OEN NNNj 
uAd , Pj ,...,1 , where Nj ,.d  is the j-th column of the PNT   matrix 

ND , and )1()(~ 11

pNNNNNN oENN  
uADuAD . 

(c) If furthermore Assumption 6 holds, then  

)1(~~ 2/12/12/1

pNNNNNNNN oNNN  
ΔαuAuuAu  with ])([1

NNNNN EN uAADα   .  

In light of (b), we have )1(ON α  and )1(~)(1

pNNNNN oN 
αuAAD . 

 

Proof of part (a) 

Let  

 NNNN N uAu 1  and NNNN N uAu ~~~ 1   . (B.1)   
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By Assumptions 1-3 and Remark A.1 in Appendix A, the row and column sums of the 

matrices NS  are bounded uniformly in absolute value. Let NNTN ΣIJΩε  )(2

,  , then 

given Assumption 2, the row and column sums of the matrices NNNN ,, εε ΩΩ SS  are bounded 

uniformly in absolute value. 

 

In the following let K  be a common bound for the row and column sums of the absolute 

value of the elements of NS , N,εΩ , and NNNN ,, εε ΩΩ SS  and of the absolute value of their 

respective elements. Then  
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 Compare Lemma C.1 in Kelejian and Prucha (2009) for the case of a cross-sectional 

SARAR(1,1) model and Lemma C.1 in Badinger and Egger (2008b) for the case of a cross-

sectional SARAR(R,S) model. 
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where we used Hölder’s inequality in the last step. This proves that NE  is O(1). 

 

Now consider )( NVar  , rewriting N  as quadratic form in ),(  NNN μvξ  and invoking 

Lemma A.1 in Kelejian and Prucha (2009): 
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where NS  is a )1()1(  TNTN matrix, whose elements and row and column sums are 

bounded uniformly in absolute value by some constant 
*K . Next, Nnn*,s  is the n-th diagonal 

element of NNNNnnN SS SS  )( ,*,

* s , with 
NNN ξΩSS  , where 

Nξ
Ω is the variance-

covariance matrix of Nξ , which is diagonal with elements 2
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  for )1(,...,1  TNNTn . Finally, the vector NNN ξSη
1 . In light of Assumption 1, the 

row and column sums (and the elements) of NS  are bounded uniformly in absolute value by 

some finite constant, say 
**K . Moreover, the row and column sums (and the elements) of 

1

NS  

are also bounded uniformly in absolute value by some constant 
***K .

 

Finally, in light of 

Remark A.1 and Assumption 1 it follows that the elements of NN ξSη
1  have finite fourth 

moments. Denote their bound by 
****K . Without loss of generality we assume that the bound 
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By Assumption 3 and Remark A.1, the row and column sums of NC  are bounded uniformly 

in absolute value. We next prove that )1(pN o  and )1(pN o .  

 

Proof that )1(pN o : 

 N NNNNN εCDΔ 1   (B.8) 

  N

NT

n

NnNnNN εcdΔ


 
1

.,.,

1  

  


 
NT

n

NNnNnNN
1

.,.,

1   εcdΔ   

   
 

 
NT

n

NT

j

NjNnjNnN cN
1 1

,,.,

1   dΔ   

   
 

 
NT

n

NT

j

NjNnjNnN cN
1 1

,,.,

1   dΔ  

   
 

 
NT

n

NT

j

NjNnjNnN cN
1 1

,,.,

1    dΔ   

  


 
NT

n

NnjNn

NT

j

NjN cN
1

,.,

1

,

1   dΔ   

  

q
NT

n

q

Nnj

p
NT

n

p

Nn

NT

j

NjN cN

/1

1

,

/1

1

.,

1

,

1    















 




dΔ   



   
q

NT

n

q

Nnj

p
NT

n

p

Nn

NT

j

NjN

p cNNNN

/1

1

,

/1

1

.,

1

1

,

12/12/1/1    






























 








dΔ  . 

Note that 










Kc
NT

n

Nnj

1

,  by Assumption. In the following we denote by K  the uniform 
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This holds for  2p  for some 0  as in Assumption 4 and 1/1/1  qp . By 
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(Compare (B.6) and Remark A.1). 
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From the last inequality we can also see that )1(2/1

pN oN  . Note that N )1()1( pp ooK  , 

where we can choose PAccK 2 . Summing up, we have proved that )1(pN o . 

 



Proof of part (b) 

Denote by *

,Ns  the s-th element of NNNN uAD1 . By Assumptions 3 and 4 and Remark A.1 

in Appendix A there exists a constant K  such that KuE Ni )( 2

,  and KdE
p

Nij ,
 with 

 2p  for some 0 . Without loss of generality we assume that the row and column 

sums of the matrices NA   are bounded uniformly by K . Notice first that  
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where . By arguments analogous to the proof that 

, it follows that . Hence , and thus 

, which also shows that . 

 

Proof of part (c) 

In light of the proof of part (a)  
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Proof of Theorem 1. Consistency of the Weighted GM Estimator  

We first show that Assumption 5 also implies that the smallest eigenvalue of is 

bounded away from zero, i.e., that  for some  By Assumption 5 

and in light of Rao (1973, p. 62), 

 . (B.14) 

Using Mittelhammer (1996, p. 254) we have  
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with  since  by Assumption 5. 

 

The objective function of the weighted GM estimator and its nonstochastic counterpart are 

given by  

  and (B.16a)  
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In light of Rao (1973, p. 62) and Assumption 5, it follows that:  
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By the properties of the norm , we have  such 

that . Hence, for every  
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which proves that the true parameter vector  is identifiable unique 

(compare Lemma 4.1 in Pötscher and Prucha, 1997).  

 

Moreover, let  and . Then, the difference between the 

objective function and its nonstochastic counterpart can then be written as  
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such that  

 

       

  .  

As evident from (17), the elements of the matrices  and  are all of the form , 

where  are nonstochastic matrices, whose row and column sums are bounded 

uniformly in absolute value. In light of Lemma B.1, the elements of  are  and it 

follows that  and  as . As a consequence, 

we have (for finite S) 

 

 (B.20) 

Together with identifiable uniqueness, the consistency of  now 

follows directly from Lemma 3.1 in Pötscher and Prucha (1997). 

 

Proof of Theorem 2. Asymptotic Normality of   

To derive the asymptotic distribution of the vector , defined in (30)  we invoke the central 

limit theorem for vectors of linear quadratic forms given by Kelejian and Prucha (2009, 

Theorem A.1). The vector of quadratic forms in the present context, to which the Theorem is 

applied is ; its variance-covariance matrix is given by  and 
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the matrices , , and the vectors  and , , , satisfy 

the assumptions of central limit theorem by Kelejian and Prucha (2009, Theorem A.1).  

 

It follows that  
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since  by assumption as required in Theorem A.1. 

 

),1(),1()(  bb NNNNR ΦΘΦθ

),1)(
~

)(,1()(),(  bFFb NNNNNNNN RR ΦΘΦΘθθ

2

),1( 
~

bFF  NNNNNN ΦΘΦΘ

])(
2

)1(2
)([1 

~ 242


 ba

SSS
aSNNNNNN 


 ΦΘΦΘ FF

Nγ NΓ NNN uu A

NA NTNT 

NΦ )1(O

0
p

NN ΦF 0
~ p

NNNNNN  ΦΘΦΘ FF N

.  as   0])(
2

)1(
)([1 ][)(),(sup 242

],0[,,..,1,
2







Nba
SS

aSRR p

NNNNNN
bSsaa s










ΦΦθθ FF

)~,~,...,~(
~ 2

,,,1 NNSNN θ

Nθ
~

Nq

NN N qq 2/1*  NN NΨΨ 
*

2/12/12/1*
)(   NN N ΨΨ

Nξ

ss

Nc

,

,,vA
ss

Nc

,

,,μA
ss

Nc

,

,,va
ss

Nc

,

,,μa 4,...,1c Sss ,...,1, 

),()( 24

2/1*2/12/1*2/1*



  S

d

NNNNNN N I0ΨΨΨ qqq

0)()( min

*

min

1 

NNN ΨΨ 



Since the row and column sums of the matrices , the elements of the vectors , 

, and , and the  moments of  and  are bounded 

uniformly in absolute value, it follows in light of (28) that the elements of  and also those 

of  are bounded uniformly in absolute value. 

 

We next turn to the derivation of the limiting distribution of the GM estimator . In 

Theorem 1 we showed that the GM estimator  defined by (18) is consistent. It follows that 

– apart from a set of the sample space whose probability tends to zero – the estimator satisfies 

the following first order condition: 

, (B.22)  

which is a  vector, the rows corresponding the partial derivatives of the criterion 

function with respect to , , and . 

 

Substituting the mean value theorem expression  

, (B.23) 

where  is some between value, into the first-order condition yields 

.  (B.24)  

Observe that  and consider the two  matrices  
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where  and  correspond to  as defined above with  and  substituted for 

. Notice that  is positive definite, since  and  are positive definite by 

assumption and the  matrix  has full column rank.  

 

In the proof of Theorem 1 (and Lemma B.1) we have demonstrated that  and 

that the elements of  and  are  and , respectively. By Assumption 5, 

,  and . Since  and  (and thus also  and 
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) are consistent and bounded uniformly in probability, if follows that , 

, and . Moreover,  is positive definite and thus invertible, and its 

inverse  is also .  

 

Denote  as the generalized inverse of . It then follows as a special case of Lemma F1 

in Pötscher and Prucha (1997) that  is non-singular with probability approaching 1 as 

, that  is , and that . 

 

Pre-multiplying (B.24) with  we obtain, after rearranging terms,      

 .(B.27) 

In light of the discussion above, the first term on the right-hand side is zero on -sets of 

probability approaching 1 (compare Pötscher and Prucha, 1997, pp. 228). This yields 
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Next observe that 
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As we showed in section III, the elements of  can be expressed as  
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It now follows from (B.28), (B.29), and (B.30) that  

 . (B.32) 

Since all nonstochastic terms on the right hand side from (B.32) are  it follows that 

 is . To derive the asymptotic distribution of , we invoke 

Corollary F4 in Pötscher and Prucha (1997). In the present context, we have  
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 ,   

 , with 

 . 

Furthermore,  and its variance-covariance matrix is  

 , 

where  is positive definite. 

 

As a final point it has to be shown that  as required in Corollary 

F4 in Pötscher and Prucha (1997). Observe that  

  (B.33) 

   , 

since the matrices involved are all positive definite. 

 

 

Proof of Theorem 3. Joint Distribution of  and Other Model Parameters 

The first line in Theorem 3 holds in light of Assumption 7 (for ), bearing in mind that 

, and Theorem 2 (for ). 

 

We next prove that  by verifying that the 

assumptions of the central limit theorem A.1 by Kelejian and Prucha (2009) are fulfilled. Note 

that  by assumption. In Theorem 2, we verified that the stacked 

innovations , the matrices , , and the vectors  and , , 

, satisfy the assumptions of central limit theorem by Kelejian and Prucha (2009, 

Theorem A.1).  

 

For the estimators considered in the present paper, the elements of the matrix 

 are bounded uniformly in absolute value, provided that the elements of the 

matrix  are bounded uniformly in absolute value (see Lemmata 1 and 2). Hence, the linear 

form  fulfils the assumptions of Theorem A.1; as a consequence, 
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Proof of Lemma 1.   

Consider the case of random effects estimation first. In light of equations (4a) and (4b), 

Assumptions 3 and 8, as well as , it follows that all columns of 

 are of the form , where the elements of the vector  and 

the row and column sums of the matrix  are bounded uniformly in absolute value. It 

follows that the fourth moments of the elements of the matrix  are bounded 

uniformly by some finite constant and that Assumption 6 holds (see Remark A.1 in Appendix 

A). 

 

Next, note that  

 ,    

where  is defined in the Lemma, and  

 , and    

 . 

In light of Assumption 8,  and , with  as defined in the Lemma. 

By Assumptions 2, 3 and 8, the elements of  and  are bounded uniformly in absolute 

value. By Assumption 1, , , and the diagonal variance-covariance 

matrices of  and  have uniformly bounded elements. Thus,  and 

the elements of the variance-covariance matrix of , i.e., , are 

bounded uniformly in absolute value. Moreover, , and the elements of 

the variance-covariance matrix of , i.e., , are bounded 

uniformly in absolute value (see Remark A.1 in Appendix A). It follows from Chebychev’s 

inequality that , , and consequently 

 and that 

. This completes the proof, recalling that 

. Obviously, the same proof applies under fixed effects 

estimation, using the within-transformed matrices , , , , , and , 

provided that Assumption 8 is maintained accordingly for  and . 
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Proof of Lemma 2.  

The random effects spatial generalized TSLS estimator is given by  

 , where  with   

 . 

Substituting  , we obtain 

 , with  

 . 

Next note that  

 ,   

where  is a matrix, whose row and columns sums are bounded uniformly in absolute 

value, satisfying  

. 

Substituting for , we obtain  

 

 , where  

 

 ,       

  

  , 

 

Note that the feasible generalized TSLS estimator uses generated (transformed) instruments 

, based on the estimate . Using   

  

we obtain  such that .  
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Considering , we have 

  

    

 ,  

with , and . 

 . 

 

Regarding  we have 

  

  

  , 

Next note that, in light of Assumption 8 and since  is -consistent, it follows that  

 .  

By Assumption 8 we also have  and thus 

. It follows as a special case of Pötscher and Prucha (1997, 

Lemma F1) that  

 .  

It follows further that  and  with  defined in the Lemma. 

 

Next observe that . Note further that all terms  except for  are of 

the form , where  are  matrices involving products of 

, , and . By the maintained assumptions regarding 

these matrices it follows that the elements of  are bounded uniformly in absolute value. 
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As a consequence,  and the elements of the variance-covariance matrix 

of , i.e., , are bounded uniformly in absolute value (see 

Remark A.1 in Appendix A). It follows from Chebychev’s inequality that 

. As a consequence, all terms  except for  are , and  

. Finally, observe that , with 

 and , recalling that . 

 

 

APPENDIX C  

Lemma C.1 

Define the  vectors  with elements  and the 

vector of fixed effects residuals . Suppose that Assumptions 1-4 hold and that 

the elements of  have bounded fourth moments. Then  and 

, with , , and where , 

, and   for some . As a direct consequence,  

 and . 

  

Proof. 

Note first that  

  , where  (C.1) 

  

 . 

This can also be written as 

 ,  (C.2) 

where  with    

  

 , 
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 . 

In light of Assumption 3 and since the elements of  have bounded fourth 

moments, each column of the matrix  is of the form , where the elements of 

the  vector  are bounded uniformly in absolute value by some finite constant, the 

row and column sums of the  matrix  are bounded uniformly in absolute value 

by some finite constant, and the fourth moments of the elements of  are also bounded by 

some finite constant. It follows that the fourth moments of the elements of  are also 

bounded by some finite constant (see Remark A.1 in Appendix A).  

 

As a consequence, , or for the n-th element of the  vector ,  

 ,  (C.3) 

where ,  denotes the n-th row of , and  with 

. Without loss of generality we can select  such that  for 

. By Assumption 1 there is also some  such that  for . In the 

following we use  to denote the larger bound, i.e., . Also note that 

. Replacing index  with  index , we have, from (C.1) and (C.3), that  

   

   

                     

   .        

By the same reasoning we have  

   (C.4) 

   

  ,  

with , where . Obviously, the elements of the columns of  

and their fourth moments remain bounded uniformly after pre-multiplication with , such 

that we have with  defined as above and . Finally, we 
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have  . Without loss of generality, we choose the bound 

 in the lemma such that  and . 

 

Proof of Theorem 4a. Consistency of   

In the following we provide two Lemmata that establish the consistency of .
27

 As 

evident from the proof, this also covers the simpler case of .  

 

Lemma C.2  

Suppose Assumptions 1-4 hold and let 

, and  

,  

with  and , and where the  vector  can be any 

estimator that satisfies . Let  and 
 
be  vectors, whose elements 

are bounded uniformly in absolute value by some constant c, and let 

. Define  with 

. Then  

(a)  and .  

 (b) There exist random variables  that do not depend on  and  such that 

, with  and where  is a 

constant that depends monotonically on  (as well as on some other bounds maintained in the 

assumptions).  

 

Proof. 

A complication in the estimation of  arises from the fact that 

 is based on the idiosyncratic error components in levels ( ), whereas 

the estimator has to be based on the (demeaned) fixed effects residuals . The problem at 

hand is similar in its structure to that in Stock and Watson (2008), who consider the 

estimation of a heteroskedasticity-robust variance-covariance matrix in fixed effects panel 

data models (without spatial correlation). They suggest an asymptotic bias correction that is 

                                                 
27

 Related results for the cross-sectional case are obtained by Kelejian and Prucha (2009). 
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based on an expression, where the error components  are clustered over cross-section 

units (averaged over time), and which can be estimated consistently with the fixed effects 

residuals ( ). In the following, we adopt the approach by Stock and Watson (2008) to 

derive bias-corrected estimators in the present framework.  

 

Define 

 
,   (C.5a) 

 

 with , and (C.5b)  

 

 with . (C.5c) 

The bias is derived using the expectation of the infeasible estimate , which assumes that 

the true parameters  and  are known and omits the degrees of freedom correction for 

the P regressors. For simplicity of notation, define ; without loss of generality, 

the bound  in the Lemma is chosen such that .  

 

Recognizing that  we have, for each i,   

 

  (C.6)

  

 

    

  

 

  ,  

using  and . 

 

Rearranging terms and averaging over N yields the following bias corrected estimator for : 
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where

 

 and .
28

 Finally, note 

that (C.7) can also be written as , where  is a diagonal matrix with 

elements .  

 

We next prove that , considering 

 

 (C.8)
 

 

and showing that both  and  are  for fixed T as .  

 

Consider first . It follows from the triangle inequality that 

 . (C.9) 

By the weak law of large numbers for i.d. variables (e.g., White, 2001, p. 35), we have   

 ,
 

(C.10)

 

observing that the fourth moments of  (and ) are bounded uniformly by Assumption 

1. We thus also have .  

 

Moreover, repeatedly using the triangle inequality, it follows that  

 

 (C.11) 

  

, 

where ; the constant  is chosen such 

that
 

 and . Note that

 

 by the weak law of large numbers.  

 

Next rewrite  

 

, and  
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where . Hence,  

    (C.12a) 

  

 

 , 

where , and 

 
  (C.12b) 

  

  . 

By the properties of the matrices
 

, , and ,  and in light of Remark 

A.1, the expressions in (C.12b) are all quadratic forms in matrices whose row and column 

sums are bounded uniformly in absolute value by some constants that depend monotonically 

on c as well as on other bounds maintained in the assumptions. 

 

Repeatedly using the triangle inequality, Lemma B.1 in Appendix B, and factoring out the 

 terms it follows that  

 ,  (C.13) 

where  and does not depend on and  and the constant  depends 

monotonically on c and other bounds maintained in the assumptions. Obviously, it follows 

that . Moreover, we have 
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It follows from (C.9), (C.11), and (C.13) that 
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Next consider . By the triangle inequality,  and by the 

weak law of large numbers  

 ,
  

(C.16)

 

observing that the fourth moments of 
 
are bounded uniformly by Assumption 2. We thus 

also have . Next, rewrite  as  

 
 (C.17a) 

where  and . Moreover, repeatedly using the triangle 

inequality, it follows that  

 

 (C.17b) 

  
, 

where the last step uses  and  is defined 

as above. Note that

 

 by the weak law of large numbers.  

 

From Lemma C.1 in Appendix C, it follows that , 

where  and . Using the triangle and Hölder inequality, we 

have  

  

  
, where . (C.18)

 

Obviously, , which – together with (C.16) implies that . It 

also holds that . 

 

From (C.17) with (C.18) it follows that  
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where . Combining our results that  and , 
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. Result (b) in Lemma follows from (C.15) and (C.19), 

which yields 

 
 (C.20)

 

  , 

where  and .  

 

 

Lemma C.3 

Suppose Assumptions 1-4 hold. Furthermore, assume that , and that the row 

and column sums of ,  are uniformly bounded in absolute value by 1 and 

some finite constant respectively. Let , and 

let  with  and 

, and where the  vector  can be any estimator that satisfies 

.  

Let  and , where 

 is an  matrix whose elements are uniformly bounded in absolute value by some 

constant , and let  and   be defined as in Lemma C.2. Then,  

 and . 

 

Proof. 

The subsequent proof will focus on the case, where  and 

; this corresponds to the random effects estimation of the 

untransformed model (see Lemma 1); it is readily observed from the proof that this covers 

also the case where  (fixed effects estimation of untransformed model),  

(random effects estimation of transformed model) as well as  (fixed effects 

estimation of transformed model). 

 

 
 

*

1 1

2

,,,

1
ccEc

NT

N

i

T

t

NitvNitN 

N

HR

N  ~ })](2[)](2{[2 **





  NN ckcccckccc 

Nckccc )](2[2 * 

)](),(max[)( ckckck 
  NNN  )2(   NN 

1sup
1

, 


S

m

NmN 

Nm,M Sm ,...,1

N

S

m

NmNmNTNNNN uMIIQεQv )]([
1

,,,0,0 


 

N

S

m

NmNmNTNNNN uMIIQεQv ~)~([~~

1

,,,0,0 


 
NNNN ΔDuu ~

),...,( .,.,1
 NNTNN ddD 1S Nρ

~

)1()~( pNN oρρ

N

S

m

NmNmNTN HMIIF ])([ 1

1

,,





  N

S

m

NmNmNTN HMIIF ])~([
~

1

,,





 

NH *PN 

c
NΣ

HR

NΣ
~

)1(
1~~~1

pNNNN

HR

NN o
NTNT

 FΣFFΣF )1(
1

O
NT

NNN  FΣF

N

S

m

NmNmNTN HMIIF ])([ 1

1

,,





 

N

S

m

NmNmNTN HMIIF ])~([
~

1

,,





 

NN FF 
*

NN FF 

*

NN FF 



Under the maintained assumptions there exists a  with . By the 

properties of the matrices  the row and column sums of ,  are 

uniformly bounded in absolute value by 1 and some finite constant respectively. For later 

reference, also note that the elements of the vector  are also uniformly bounded in 

absolute value by c.  

 

In the following, we ignore the division by (the fixed constant) T without consequences for 

the proof. Denote the (r,s)-th element of  the difference  as . It 

is given by  

 , , (C.21) 

which can be written as , where  

  (C.22) 

  

  

  

  

  

 . 

Next note that  and thus  

  (C.23) 

We next demonstrate that  by showing that each summand , 

, invoking the following theorem (see, e.g., Resnik, 1999, p. 171): Let 

) be real valued random variables. Then,  if and only if each subsequence  

contains a further subsequence  that converges almost surely to .  

 

As we show below we will be confronted with terms of the form:  
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.(C.24) 

where  is a matrix, whose row and column sums are uniformly bounded in absolute value 

by some constant  It follows that the absolute values of the elements of the vector 

 (and also that of ) are uniformly bounded in absolute value 

by some finite constant  (and ). (See Remark A.1 in Appendix A.) 

Without loss of generality  is chosen such that  and  holds.  

 

Hence, Lemma C.2 applies and it follows that  and that there exist random 

variables  such that . 

 

Now, let the index  denote some subsequence. In light of the aforementioned equivalence, 

there exists a subsequence of this subsequence ( ) such that for events , with 

, it holds that  

 , , ,    (C.25) 

and that for some ,  and thus  

 ,  (C.26) 

and finally   

 ,  where . (C.27) 

In the following, assume that . Since , it follows from Horn and 

Johnson (1985, p. 301) that  is invertible and that  

(C.28) 

 . 

Substituting into the expression for  given by (C.22) yields  

 (C.29) 
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.  

A single element with index (k,l) of this infinite double sum over k and l is given by  

 

. 

   (C.30) 

Next note that for any value of  and any  there exist matrices  and ,  

whose row and column sums are uniformly bounded in absolute value, such that:  

  and . (C.31) 

 and  can thus be factored out of the sum, yielding 

 . (C.32) 

By the same reasoning, for any values of  and , there exists a matrix 

,  whose row and column sums are uniformly bounded in absolute value, such that:  

 . (C.33) 

Substituting  into the expression for , we obtain  

   (C.127) 
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 ,  (C.34) 

where  with   

 (C.35) 

and  

   (C.36) 

Note that  as in light of the aforementioned results and thus 

 since  for  large enough. Moreover,  

 . (C.37) 

 

Hence,  

 . 

For , , such that  

 . (C.38) 

Hence, there exists a dominating function  for all values of k,l. Moreover, since 

 by construction, the dominating function is integrable (summable), i.e.,  

  .  (C.39) 

Hence the assumptions for application of Lebesgue’s Dominated Convergence Theorem are 

fulfilled (see, e.g., Van der Vaart and Yen, 1968), such that 

 .  (C.40) 

The same holds for , . It follows that  as  and in light of 

Resnik (1999)  it follows that .  
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Thus, . That  follows from the 

properties maintained for the row and column sums of and the elements 

of  and . 

 

Remark C.1 

Regarding , note that  and  (obviously suppressing the 

indexation of ), and accordingly for  . By assumption ,  and 

thus , where the dimension of  is . Moreover, , 

 and thus , where the dimension of  is . By Lemma C.3, we 

have . It follows that 

. 

 

 

Lemma C.4 

Let  and  be defined as in (A.3a) and (A.3b). Suppose that Assumptions 1-4 hold 

and that the elements of  have bounded fourth moments. It follows that 

, , and thus , and that , 

 and thus . 

 

Proof. 

The subsequent proof builds on Gilbert (2002), who considers the estimation of third and 

fourth moments in homoskedastic error component models without spatial lags of the 

dependent variable (or other endogenous variables) and without spatial regressive 

disturbances.  

 

Consider the third moment of  and its estimate: 

  for any given i and , and (C.41a) 

 .  (C.41b) 

By Assumption 1,  is invariant to the choice of  i, s and t. Using (C.1), we have  

  (C.42) 
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Consider  

 (C.43a) 

  

 . 

By the weak law of large numbers  converges in probability to . Notice further that, 

by the properties of  and  (see Assumption 1), , and  are all 

. As a consequence,  converges in probability to .  
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because  is  and the terms in brackets expressions are all , since 

 and  for  and all N. It follows that 

,   by Assumption 1, and that . Obviously, we then 

also have that . 

 

Consider next the fourth moment of  and its estimate: 

 for any given i and ,  (C.44a) 
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Observe that  
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 . 

The first term  can also be written as  

 (C.46) 

  

  

   

 . 

By the properties of  and  (see Assumption 1), the difference between  and 

 converges in probability to zero by the weak law of large numbers 

for i.d. random variables (White, 2001, p. 37, Corollary 3.9). 

 

Moreover, it follows from the properties of  and  (see Assumption 1), that the terms 

 are all . It follows that the difference between  

and  converges in probability to zero. 

 

Next consider  

 (C.47) 

  

 , 

which converges to  by the weak law of large numbers, since  

 for  by the properties of  and  and the sum 

over the remainder terms appearing in  are  by arguments analogous to those for 

 and  (see (C.43e) and (C.43f)). Finally, the difference between 

 and  converges in probability to zero. As a 

consequence, ,   by Assumption 1, and . 
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Lemma C.5 

Suppose Assumptions 1-4 hold. Let  with , 

with  real, nonstochastic, and symmetric  matrices, whose elements 

are time-invariant ( ), whose diagonal elements are zero (  for 

), and whose row and column sums are bounded uniformly in absolute value. Let 

 with  and 

, and where the  vector  can be any estimator that satisfies 

. Finally, define 

 . 

Then, we have , , and . 

 

Proof. 

Note that  

 , where  (C.48a) 

 , 

since  for  and . The corresponding expression based on the fixed effects 

residuals is given by  

 where . (C.48b) 

Since  and  are independent for all ,  

  (C.49) 

   

  , 

which suggests the following bias-corrected estimator: 

 , where  (C.50) 
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  with . 

To show that , we next demonstrate that  and 

.  

 

Consider 

   (C.51)  

  ,   

using  and . Note that  and that 

 for . Next, define the  vector . By Assumption 1, 

 and the row and column sums of the variance-covariance matrix 

 are bounded uniformly in absolute value. Next rewrite 

, and note that  

  (C.52) 

  , 

such that we have  by Chebychev’s inequality. 

 

Next note that   and consider  

  (C.53) 
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By Lemma C.1 we have . In light of the maintained 

assumptions regarding the properties of  and , it follows that , , 

, and thus .  

 

Summing up . Finally, , such that 

, which completes the proof.  

 

 

Lemma C.6a 

Suppose Assumptions 1-4 hold; in addition, assume that  for all  and 

. Let , where the nonstochastic, time-invariant 

scalars  are bounded uniformly in absolute value. Let 

 with  and 

, and where the  vector  can be any estimator that satisfies 

. Finally, define 

 , where  

 ,  

 , 

  , , 

 , . 

Then, we have , , and . 

 

Proof. 

Consider  

  with . (C.54a) 

The corresponding expression based on the fixed effects residuals is given by  
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  with . (C.54b) 

Substituting for , simplifying (exploiting the independence of  and  for  or 

), and collecting terms, we obtain – for each  – that  

 , where (C.55) 

 , 

  and .  

Since the correction term  is also based on original rather than demeaned residuals, 

another bias correction for is required. Analogous derivations yield the result that  

 , with (C.56) 

 , 

   and . 

Substituting (C.56) into (C.55), averaging over  and solving for  yields the 

following bias corrected estimator for : 

 , where  (C.57) 

  and .  

We next show that , considering each summand in (C.57). By the weak law 

of large numbers,  

 ,  (C.58a) 

given that , since the 8-th moments of  (and thus also those of ) are 

finite. Using the triangle inequality and the results in Lemma C.1, we have  

  (C.58b)  
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with , , , and 

. It is readily verified that  for  under 

the maintained assumptions. As an example, consider the case . Using  for 

some , the triangle inequality, and Hölder’s inequality, we have  

 

  (C.58c) 

   , 

since , , , and . 

It follows that  and thus . 

 

Next consider . Again, under the maintained assumptions,   

 ,  (C.59a)  

and thus  by the weak law of large numbers.  

 

Using the triangle inequality and the results in Lemma C.1, we have  

  (C.59b) 

  , 

with , , , 

, , ,  

, . 

 

Consider . Substituting for , using the triangle inequality and the 

generalized Hölder inequality, we obtain – for each of the  terms with   

    (C.59c) 
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since  with , , ,   

 , , and . 

 

By analogous arguments, the other terms involving  to  can be shown to be  

under the maintained assumptions. It follows that , and thus 

. 

 

This completes the proof, recognizing that  under the maintained assumptions.  

 

 

Lemma C.6b 

Suppose Assumptions 1-4 hold; assume further that , i.e., there is cross-

sectional heteroskedasticity only in  (but no heteroskedasticity over time). Let 

 and define  

 , 

where  as well as  and  are as in Lemma C.6a.  

Then, we have , , and . 

Proof. 

Notice first that  

 . (C.60b) 

Under the maintained assumptions, this can be written equivalently in the following 

(estimable) expression: 

 , (C.60b) 

where .  

Next, observe that  is equal to  as defined in the proof of Lemma C.6a. Substituting 

(C.55) into (C.56), solving for , and averaging over  the bias corrected estimator 

),1(
111

)(
)1(

2
4/1

1

4

,

4/1

1 1

4

,

2/1

1 1

2

,

2/12/1

p

N

i

Nir

N

i

T

s
Nis

N

i

T

t

NitN ov
NNT

v
NT

NN
T

K



























 

  

 

Kc Ni , )1(OK  )1(2/1

pN ON  )1(
1

2/1

1 1

2

, p

N

i

T

t

Nit Ov
NT










 

)1(
1

4/1

1 1

4

, p

N

j

T

s
Njs

O
NT















 

 )1(
1

4/1

1 1

4

, p

N

i

T

t

Nit Ov
NT










 

)1(2/1 oN 

it,2 it,8 )1(po

)1(~
,1,1 pNN

oaa

)1(~
pNN oE  aa

)1(ON 

),0.(.~ 2

,, ivNit div 

Nitv ,

 
 


N

i

T

t

iNiN c
NT 1 1

4

,

1


NN

HR

N
km

km

km

m
 ~

1

~

1

~

11

01

11

0





 a

1010 ,,, kkmm Na
~

N~

)1(~
pN

HR

N o  )1(ON  )1(~
p

HR

N O

 
 


N

i

T

t

NitNiN Evc
NT 1 1

22

,, )(
1

 



N

i

iNic
N 1

4

,

1






N

i

NiN
N 1

,

1


)
)1(

(
1 1

2

,

2

,, 






T

t

T

ts
s

NisNit
i

Ni vv
TT

c
E

N Na

Na Ni ,...,1



given in Lemma C.6b is obtained. That  and  was 

already shown in the proof of Lemma C.6a.  
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Remark C.2 

If  is in fact heteroskedastic over both cross-sections and time, the error made by the 

approximation in Lemma C.6b is given by  

   

  . 

Hence,  can be assumed to be small for small T and when heteroskedasticity is mainly of 

the cross-section type (or random over time). 

 

 

Lemma C.7 

Suppose the assumptions of Lemma C.6a hold. Let , where the 

nonstochastic scalars  are bounded uniformly in absolute value. Define 

 , where   

 ,  

 ,  

  and . 

Then, we have , , and . 

 

Proof. 

Consider  

  with , (C.61a) 

The corresponding expression based on the fixed effects residuals is given by  

  with . (C.61b) 

Substituting for , simplifying (exploiting the independence of  and  for  or 

), and rearranging terms, we obtain that – for each   

 , where (C.62) 
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Since the correction term  is also based on original rather than demeaned residuals, 

another bias correction is required as well. Analogous derivations yield the result that 

 ,   (C.63) 

such that  

 , where  

 , 

  

 . 

Averaging over , we obtain the following bias corrected estimator for : 

 , where  (C.64) 

 , and   

 . 

The proof that  is very similar to that in Lemma C.6a and is thus omitted for 

the sake of brevity. Finally, suppose that  can be written as quadratic form 

 with  and ; then 

, and   with 

. 

 

Remark C.3 

Note that  and . Accounting for the 

definition of ,  can be written as sum of the two expressions  and 

, where ( ) is an  vector made up of the main diagonal elements 

of the matrix  ( ). Next, observe that  and  

(obviously suppressing the indexation of ). By assumption ,  

and thus , where the dimension of  is . Moreover, , 

 and thus , where the dimension of  is . By arguments, 

analogous to that in Lemma C.3, we have . It 
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follows that . By the same 

reasoning, , from which it follows that 

. 
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