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Abstract: This paper develops a unified framework for fixed and random effects estimation
of higher-order spatial autoregressive panel data models with spatial autoregressive
disturbances and heteroskedasticity of unknown form in the idiosyncratic error component.
We derive the moment conditions and optimal weighting matrix without distributional
assumptions for a generalized moments (GM) estimation procedure of the spatial
autoregressive parameters of the disturbance process and define both a random effects and a
fixed effects spatial generalized two-stage least squares estimator for the regression
parameters of the model. We prove consistency of the proposed estimators and derive their
joint asymptotic distribution, which is robust to heteroskedasticity of unknown form in the
idiosyncratic error component. Finally, we derive a robust Hausman-test of the spatial random
against the spatial fixed effects model.
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I. Introduction

This paper considers the estimation of panel data models with higher-order spatially
autocorrelated error components and spatially autocorrelated dependent variables. Spatial
interactions in data may originate from various sources such as strategic interaction between
jurisdictions (to attract firms or other mobile agents) and firms (in their price, quantity, or
quality setting) or general equilibrium effects which disseminate with spatial decay due to
their transmission through trade flows, migration, or input-output relationships.1 Data sets
used in empirical studies often share three features: first, they are available in the form of
panel data, with a large cross-sectional and a small time series dimension; second, spatial
interactions of various kinds co-exist — such as geography-related, trade-related, migration-
related interactions — or the decay function of a single spatial interaction is unknown; third, it
is unclear whether spatial interactions are local — and affect only immediate neighbors — or
global — and affect second third and other neighbors with repercussions. The estimator
proposed here addresses the mentioned three features in a unified framework. It allows for
panel data with a fixed but arbitrary number of channels or decay segments of spatial
interaction in both the error components and the dependent variable, referred to as
SARAR(R,S).

Estimation and testing of both random and fixed effects spatial regressive panel data models
with homoskedastic error terms has been considered in the recent literature using a maximum
likelihood framework (Baltagi, Song, and Koh, 2003; Lee and Yu, 2010) or a generalized
moments approach (Kapoor, Kelejian and Prucha, 2007; Mutl and Pfaffermayr, 2011). The
present paper builds on Kapoor et al. (2007). They propose a generalized moments (GM)
estimator for the parameters of the spatial regressive error process in a homoskedastic random
effects panel data model without endogenous explanatory variables (such as spatial lags of the
dependent variable), derive a simplified weighting matrix for the moment conditions under
the assumption of normally and identically distributed error components, and prove
consistency of the GM estimates. They also establish the asymptotic distribution of the
feasible generalized least squares (FGLS) estimates of the parameters of the exogenous
regressors.

The present paper extends and generalizes the analysis in Kapoor et al. (2007) in several
respects. First, we allow the explanatory variables to be related to the time-invariant error
component, i.e., we provide an estimation framework that nests both the fixed and random

. See CIiff and Ord (1973, 1981), Anselin (1988), and Cressie (1993) for classic references
about spatial econometric models in general. Recent theoretical contributions of spatial panel
data models include Baltagi, Song, and Koh (2003), Baltagi, Song, Jung, and Koh (2007),
Kapoor et al. (2007), Baltagi, Egger, and Pfaffermayr (2008), and Lee and Yu (2008). Recent
applications of spatial panel data models include Arbia, Basile, and Piras (2005), Egger,
Pfaffermayr, and Winner (2005), Baltagi, Egger, and Pfaffermayr (2007), and Badinger and
Egger (2009).



effects setup. Second, we allow for higher-order rather than only first-order spatial regressive
processes in both the dependent variable and the error process, enabling a more flexible
design and specification tests of the ‘spatial’ interdependence decay function.” Third, we
allow for endogenous variables, including spatial lags of the dependent variable in the main
equation, which is shown to affect the optimal weighting matrix for the moment conditions as
well as the distribution of the GM estimates. Fourth, we do not only prove consistency of the
estimates of the model parameters but also derive their joint asymptotic distribution (which is
affected by the presence of endogenous variables in a nontrivial way). Fifth, we dispense with
the assumption of normally distributed error components, used by Kapoor et al. (2007) to
derive a simplified weighting matrix of the moments. In particular, we relax the restrictive
assumption that the idiosyncratic errors are identically distributed and allow for
heteroskedasticity of arbitrary form over cross-sectional units and time in the idiosyncratic
error terms. Under these assumptions, we derive a robust variance-covariance matrix, drawing
on recent results by Stock and Watson (2008). We emphasize that the framework of the
present paper, the advantage of the GM approach over maximum likelihood (ML) estimation
goes beyond that of imposing less restrictive distributional assumptions and computational
simplicity, since ML yields inconsistent parameters estimates in the SARAR(R,S) framework
with heteroskedasticity of unknown form (see Lee and Yu, 2010). Sixth, we derive a
Hausman-test that allows to test the spatial fixed effects against the random effects model in
the presence of heteroskedasticity. Seventh and finally, we provide some limited Monte Carlo
evidence on the small sample performance of the proposed estimation procedures. In sum this
provides a fairly flexible framework for applied work, allowing specification tests, estimation,
and inference in random and fixed effects panel data models with potentially higher-order
cross-sectional interdependence and heteroskedasticity.

The remainder of the paper is organized as follows. Section Il introduces the basic model
specification, discusses the fixed versus the random effects model, and provides an overview
of the key assumptions of the proposed estimation procedure. Section Il proposes GM
estimators for the parameters of spatial dependence in the error components. Section 1V
derives a two-stage least squares (TSLS) and spatial generalized TSLS procedure for
estimation of the regression parameters of the model and derives a joint heteroskedasticity-
robust asymptotic variance-covariance matrix of the GM and TSLS estimates of the model
parameters. Section V derives a consistent estimator of the variance-covariance matrix.
Section VI proposes a Hausman-type test of the random versus the fixed effects model.
Section VII presents results of a Monte Carlo simulation exercise. Section VIII summarizes
our main findings and concludes. The detailed proofs are relegated to a technical appendix.

*In a cross-sectional framework, estimation of higher order spatial regressive models is
considered by Lee and Liu (2010) under homoskedasticity and by Badinger and Egger (2008)
under heteroskedasticity.



Il. The Basic Model

1. Specification and Key Assumptions

We consider an R-th order spatial regressive panel data model with S-th order spatial
regressive error components, referred to as SARAR(R,S) panel data error components model.
The basic model comprises i=1,...,N cross-sectional units and t=1...,T time periods.

Throughout, subscript N indicates that the variables or parameters are allowed to depend on
sample size. For time period t, the model reads

R

Yin = Xt,NBN +zj’r,NWr,Nyt,N +U y, OF (1a)
r=1

Yin = Zt,NaN +U N (1b)

where y,  is an N x1 vector with cross-sectional observations of the dependent variable in
year t, X, isan N xK matrix of observations on K non-stochastic explanatory variables,
i.e., Xy =XgniaXyen) Where each of the N vectors X = (X jnrXeiin) 1S Of

dimension 1x K, containing the observations on the K explanatory variables for cross-
section i and period t. For later reference, define the T x K matrix X; , = (X{, - Xi7 ) @S

observations on the K explanatory variables for cross-section i and all periods t =1,...,T .

The structure of spatial dependence in vy, is determined by the time-invariant N x N

matrices W,_, r=1...,R, whose elements w;

ij,r,

y are assumed to be known and will often

(but need not) be specified as a decreasing function of geographical distance between the
cross-sectional units i and j. The expression y, . =W, vy, is referred to as the r-th spatial

lag of y, . The specification of a higher-order process allows the strength of spatial

interdependence in the dependent variable (reflected in the spatial autoregressive parameters
Ay r=1..,R) to vary across a fixed number of R subsets of relations between cross-

sectional units.

In equation (1b), the Nx(K+R) design matrix is given by Z ,=(X,,Y.y), With
Yon =ViinrYernl, and 8, =(By.Ay), Where the Kx1 parameter vector of the
exogenous variables is given by B, =(B.y...fk ) and the Rx1 vector of spatial

autoregressive parameters of y, is defined as Ay = (4, y,.... Az )’

The Nx1 vector of error terms U, = (Uy .. Uyy) i assumed to follow a spatial

autoregressive process given by



s
Ui n :Zps,NMs,Nut,N & N (1c)

s=1

En =My T Vino (1d)

where p, and M, denote the time-invariant, unknown parameters and the known N x N

matrix of spatial interdependence, respectively. The structure of spatial correlation in the
disturbances is determined by the S different, time-invariant N x N matrices M, . As in

equation (1a), the specification of a higher-order process allows the strength of spatial
interdependence in the disturbances (reflected in the parameters p, , s=1...,S) to vary

across a fixed number of S subsets of relations between cross-sectional units. This enables a
more flexible parameterization of the decay of spatial dependence than with a first-order
process along two lines: by capturing more than just one channel of interdependence and by

allowing for estimation of several parameters p, for S segments of the decay function
(e.g., rings of neighbors or segments of distance). The expression T, ; , = M U,  is referred
to as the s-th spatial lag of u, . The Sx1 vector of the spatial autoregressive parameters of

U, isdefined as py = (o, n - Psn)-

Finally, the N x1 vector of error terms ¢, consists of two error components, a cross-section

specific, time-invariant error component p, and an idiosyncratic error component v, ,

which is specific to both the cross-sectional unit and the time period. The typical elements of
g and v, are the scalars ¢, and v, ,, respectively, and the N x1 vector of unit-specific

error components is given by py = (2 1o iy )’ -

Stacking observations for all time periods such that t is the slow index and i is the fast index
with all vectors and matrices, the model reads

Yy = X By + Yyhy +Uy , OF (2a)
Yn :ZNﬁN +Uy, (Zb)

!

with the NT xK regressor matrix Xy =(X{y,... X7 ), and Yy =Y,y Yan), Where
Yen =YirneYren) is the NT x1 vector of observations on the r-th spatial lag of the
dependent variable y, . The NT x1 vector of disturbances u, =(uyy.,...,u; )" for the

spatial autoregressive process of order S is given by

s
Uy Zps,N(IT @M, Uy +gy, (2c)
s=1



where |I; is an identity matrix of dimension T xT . The NT x1 vector &, = (g y,....&r y)  iS

specified as

gy =0, @l )y +Vy =ny+Vy, (3a)

where e; is a unit vector of dimension T x1 and I, is an identity matrix of dimension

N x N . In light of (2c), the error term can also be written as

s s
gy =Uy _Zps,N(IT ®Ms,N)uN =1, ®(1, _Zps,NMs,N)uN : (3b)
s=1

s=1

It follows that

Uy = 0y~ o aMe ) Jow = [ @ (1 =3 o uMy ) TG+ Vi) and  (4a)

s=1

Y :[IT ®(IN _iﬂ’r,NWr,N)il]xNBN +[IT ®(IN _iﬂ’r,NWr,N)il]uN ) (4b)

A more general specification of (4a) would allow the spatial regressive parameters (and
possibly the weighting matrices) associated with the two error components p, and v, to

differ as in Baltagi, Egger, and Pfaffermayr (2009). With a higher order process as considered
in the present paper, such a specification would be both difficult to identify and
computationally involved. Hence we assume the pattern of the spatial regressive disturbance
process to be the same for p,, and v as in Kapoor et al. (2007).

2. Key Assumptions

As it is standard in the spatial econometric panel data literature, we assume that the
explanatory variables collected in Xy are nonstochastic with elements that are bounded
uniformly in absolute value.” Without loss of generality we further assume that each
explanatory variable changes over time, at least for some cross-section i. (Under random
effects estimation, this assumption could be relaxed in a straightforward way without
invalidating the asymptotic results.) Beyond those, the following assumptions are maintained
throughout this paper.

Assumption 1.

Let T be a fixed positive integer. (a) For all 1<t<T and 1<i<N,N=>1, the error

components Vv, ,, are (mutually) independently distributed with E(v, ,)=0, E(vi \) =0z,

* See Kapoor, Kelejian, and Prucha (2007, p. 100), Lee and Yu (2008, p.3), Lee and Yu
(2010, Assumption 6, p. 6) or Mutl and Pfaffermayr (2011, p.51).
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where 0< o}, <oo, and E‘Vit,N " <o for some 7>0. Hence, the idiosyncratic disturbances

exhibit heteroskedasticity of unknown form.
(b) For all 1<i<N,N =1, the unit-specific error components 4, are identically and

2

(mutually) independently distributed with E(,qu)=aﬂ, where 0<aj<bﬂ<oo, and

E‘yi’N‘4+n<oo for some #>0. Following Mundlak (1978), it is assumed that

My = Xi T+ W, - Averaging over time periods t=1,..., T we obtain z  =X; \@+W, for

.
i=1..,N  “between-transformed” observations, —where Xi N :T_lZ:XityN and
t=1
.

W, =T w,, are both Nx1 vectors, and v, ~ (0,02 ). In the random effects model,
t=1

we have z=0, which implies that the time-invariant error component is uncorrelated with
the explanatory variables X; ,, in any time period t. In the fixed effects model, we have & #0

, 1.e., the explanatory variables are correlated with the time-invariant error component. More
precisely, in the random effects specification we have E(z; [X,)=0, whereas in the fixed

effects model it holds that E(z ,[X,) = f(X,)#0.’

(c) The processes {v; } and {z; \} are independent of each other.’

We emphasize that the estimation framework considered here assumes that the spatial
regressive structure of the empirical model given by (1a) to (1d) is identical under the fixed
effects and the random effects setup, i.e., the time-invariant error component displays the
same spatial regressive structure through equations (1b) and (1c), irrespective of the
properties of the covariates. This differs from the specification of the spatial regressive fixed
effects models in Lee and Yu (2010) as well as Mutl and Pfaffermayr (2011), who exclude the
time-invariant error component from the spatial regressive error process.6

) Strictly speaking, with non-stochastic regressors, the two expectations could also be stated
unconditionally (see Greene, 2008, p. 18).

’ Assumption 1 is maintained throughout the paper. For some results, in particular for
consistent estimation of the variance-covariance matrix of the GM estimates without
distributional assumptions, Assumption 1 will have to be strengthened, assuming that

El, | <oo forall 1<t<T and 1<i<N.

° Lee and Yu (2008) consider maximum likelihood estimation of a homoskedastic spatial
regressive fixed effects panel data model; Mutl and Pfaffermayr (2008) consider a Hausman-
test for random versus fixed effects first order SARAR(1,1) model with homoskedastic error
components. Both partial out the time invariant error component p, from the spatial
regressive disturbance process under fixed effects estimation. This choice implies that the

time-invariant error component displays the spatial regressive structure of the dependent
variable. The difference of Mutl and Pfaffermayr (2008) to our approach is apparent from the



As we will see below, our specification implies that the spatial generalized least squares
(GLS) transformed model nests the standard fixed and random effects panel data models.
Hence, we regard the nature of the spatial regressive process and the properties of the
explanatory variables under random versus fixed effects as two separate sets of assumptions.
Our approach allows for cross-sectional interdependence (with a known spatial structure) not
only in unobserved variables captured by v, but also in unobserved time-invariant variables

subsumed in p, in SARAR(0,S) models (i.e., without a spatially lagged dependent variable).

More importantly, this approach allows us to use the same set of four moment conditions both
under random effects and fixed effects estimation. Finally, when considering a Hausman test
of the random effects versus the fixed effects model in section VI, we wish to consider two
model specifications, i.e., the random effects and the fixed effects model, whose assumptions
regarding the spatial regressive structure of the error components and the nature of
heteroskedasticity are identical and which only differ with regard to whether or not =#=0
Assumption (1b).

Assumption 1 implies that

E(snEin) =0 +00, fori=jandt=s, (5)
E(snEpn) =02 fori=jandt #s, (5b)
E(sqn&jsn) =0, otherwise. (5¢)

As a consequence, the variance-covariance matrix of the stacked error term g, reads
Q, :E(‘(:NS,N)ZG;ZI(‘]TC@IN)_FZN’ (6a)

where J; =e;e; is a TxT matrix with unitary elements, I, is an identity matrix of

dimension NT x NT, and
Ty =E(vyvy) = diagr:\gl.E(Vr?,N) = diagrlw\I:TlE(grf,N)_o-il NT - (6b)
Note that we use single indexation n=1,...,NT in equation (6b) to denote elements of the

stacked vectors or matrices. We will adopt this convention at several points in the paper in
order to simplify notation, when there is no possibility for confusion.

specification of the ‘Mundlak assumption’ in (9). In matrix form and using notation in an
obvious way, we assume that p, = X, 7+, , whereas Mutl and Pfaffermayr (2008) assume
that py = (I, — oWy )X m+W, (which differs from the specification of their random
effects model).



Next, we define two matrices Q,, and Q,,, which are central to the estimation of error

component models and the moment conditions of the GM estimator:

QO,N :(IT_\:Jr_T)®IN (78.)
Quu =@l (7b)

Pre-multiplying an NT x 1 vector with Q,, transforms its elements into deviations from

cross-section specific sample means taken over time (“within-transformation’). We will refer

to “within-transformed” vectors or matrices with an underbar, e.g., Q, Z, =Z,. Pre-
multiplying a vector by Q, , transforms its elements into cross-section specific sample means
(“between-transformation™). Notice that Q,, and Q,, are both of order NT x NT,

symmetric, idempotent, orthogonal to each other, and sum up to I, J

Assumption 2.
(a) All diagonal elements of the matrices W, , r =1...,R,and M, s=1...,S, are zero.

(b) The admissible parameter space for the spatial lag of the dependent variable is given by

R
Aon € (=af7,a0), with 0<aly, afy <a™ <a’<ow, r=L.,R, and Y|4 |<A, <o,
r=1

where we define a* such that a* = rrllaxR(ai'r) holds.
r=1,...,
Analogous assumptions are made for the parameters of the spatial autoregressive error

process: p,\ €(-af,af,), with O<aly, af*y<a’”<a’<owo, s=1..,S, and

R S
(c) The matrices (I,—> A4 W,,) and (I,-> p, M,) are nonsingular for
r=1

m=1

A, e (=ay,aly) and p, e (-a/, &), respectively.

Part (a) of Assumption 2 is standard. Assumption (2b) requires the spatial regressive
parameters to be finite. The admissible value of the scalars A, (A,) will generally depend on

the properties of the weights matrices W, (M, ). For example, with row-normalized

R
matrices W, , r=1...,R, choosing A, =1 ensures that (I, —Zﬂ,’NWﬁN) is invertible, as
r=1

" See Remark A.2 in Appendix A for further properties of Q,, and Q, .



required in Assumption (20).8 Finally, Assumption (2c) ensures that u, and y, are uniquely
identified through equations (4a) and (4b).

Assumption 3.
The row and column sums of the matrices W, ., r=1.,R, M., s=1..,S,

R S
(I =D AW, )t and (I, =D po WM, )™ are bounded uniformly in absolute value.
r=1

s=1

In light of Assumptions 1-3 and Remark A.1 in the Appendix, it follows that E(u,) =0 and

the variance-covariance matrix of uy is given by

Q= E(uyuy) =[l; ®(l, _Zps,NMS,N)_l]Qs,N[IT ® (I _ZpS,NM;,N)_l]’ (8)

For the sake generality, all explanatory variables and parameters (except for the variances of
the error components p, and v, ) are allowed to depend on sample size N. (Of course, all

results hold up in the case where parameters do not depend on N.) In spatial econometric
models this degree of generality is important, given that spatial lags (and disturbance
processes) depend on normalized weights matrices. Depending on the weighting scheme, both
the spatially weights and the corresponding parameters will change with the size of the cross
section dimension, N, since a growing N (e.g., a growing number of countries or regions)
requires renormalizing the weights matrices. Such a specification is consistent, for example,
with models where the weights matrices are row-normalized and the number of neighbours of
a given cross-sectional unit depends on sample size (see Kapoor et al., 2007, p. 102) or where
the strength of interdependence (in terms of the spatial autoregressive parameters) changes
with the number of neighbours.

As a result, the model specification in equations (1a)-(1c) is fairly general, allowing for
higher-order spatial dependence in the dependent variable, the explanatory variables, and the
disturbances, and enabling specification tests to determine to proper structure of cross-
sectional interdependence in applied work.

3. Overview of Estimation Procedure
In the following, we outline the estimation procedure proposed in the present paper. Details
and proofs of the claims made here are given in the subsequent sections.

If the matrices W, are not row-normalized, Assumption (2c) is implied by

.....

1985, p. 301).



= In a first step, the regression parameters in model (1a), i.e., 8, , are consistently

estimated by fixed effects two-stage least squares (TSLS), ignoring the spatial
regressive structure of u, (see Amemiya, 1971, Baltagi, 2005). Under the maintained

A
N

assumptions, this yields consistent estimates of the disturbances 0, =y, —Z\0,.

Under stronger assumptions, consistent estimates can also be obtained by pooled two-
stage least squares or two-stage least squares with random effects.

= Based on the estimates of the disturbances u,, a generalized moments (GM)

estimator can be used to obtain consistent estimates of the parameters of the spatial
regressive disturbance process (p,) and the variance of the time-invariant error

component (o), denoted as p, and &, .

= The joint variance-covariance matrix for the estimates of the regression parameters d,,
and the spatial regressive parameters p, derived in the present paper, which is robust
to both the spatial dependence in u, as well as arbitrary heteroskedasticity in the
idiosyncratic error term v, can be used for specification tests to determine the proper

form of the interdependence decay function.’

= To improve efficiency (the estimates of) the parameters p, can be used to obtain a

(feasible) spatial generalized least squares (GLS) transformed variant of model (1a),
which corresponds to a “standard” (fixed or random effects) panel data model without
spatial dependence in the disturbances but with heteroskedasticity of unknown form in
the idiosyncratic error term v . Using this transformed model, feasible spatial

generalized two-stage least squares (TSLS) estimates of the regression parameters 5:,

can be obtained. (The asterisk indicates that the estimates are based on a transformed
model; the tilde indicates that the model transformation is based on p,, i.e., the GM

estimates of p, ). Again a heteroskedasticity-robust joint variance-covariance of 5;
and p, is derived, allowing for joint inference regarding the regression parameters
and the spatial regressive parameters of the model.

= The estimation procedure can also be implemented in an iterative way, i.e., the

feasible spatial generalized TSLS estimates 5’,; can be used to obtain iterated

? The possibility that joint hypotheses about 8, and p, may be formulated and tested is an

advantage of the proposed two-step approach over the use of (spatial-dependence and
heteroskedasticity) robust standard errors. In particular, it allows for specification tests a la
Anselin et al. (1996) in a higher order setting and under less restrictive distributional
assumptions.



estimates of the disturbances u, , which can in turn be used to obtain a new set of

estimates for p,, etc.

= The obtained (feasible or iterated) heteroskedasticity-robust fixed and random effects
models can then be tested against each other by a Hausman test which is derived in
this paper.

To keep the analysis general, we first consider only the GM estimation of the disturbance
process (1c), without assuming a particular form of model (1a) or how consistent estimates of
the residuals u, of model (1a) are obtained. The advantage of this approach is that the results

are potentially applicable to the disturbances of a wider class of regression models, e.g.,
nonlinear specifications of equation (1a). Then, we consider the estimation of the main
equation (1a), using a modular approach with general notation that covers the four estimators
considered in the present paper: random effects and fixed effects estimation of both the
original and the spatial GLS transformed model.

I11. GM Estimation of a SAR(S) Process

In the following, we consider GM estimators for the spatial regressive parameters p, of the
disturbance process in equation (1c) and the variance of the time-invariant error component
0'2 and establish their asymptotic joint distribution. In this subsection, we only consider the

process in equation (1c) for the disturbances u, , but not necessarily the one in equation (1a)
for y, . These disturbances u, are unknown and thus have to be obtained in a first-step,
using consistent estimates of &, in the main equation (1a) (or from some other model),
ignoring the spatial regressive error structure in u, . The assumptions sufficient to establish

the asymptotic properties of the GM estimates (consistency and normality) are stated in
general terms in Assumptions 4 to 7 in this section and will be made more specific in section
IV, where we consider TSLS and spatial generalized TSLS estimation of model (1a). It will
also become apparent in this section that the asymptotic distribution of the (second-step) GM
estimates of p, , which are based on estimated disturbances u, , is affected in a non-trivial

way by the properties of the first-step estimation (fixed versus random effects) and by the
presence of endogenous right hand side variables.

1. Moment Conditions

A set of three moment conditions for GM estimation of first-order spatial regressive error
processes was introduced in the seminal paper by Kelejian and Prucha (1999) for the case of a
single cross-section under homoskedasticity. The extension of this estimator to a random
effects panel data error component model by Kapoor et al. (2007) (under homoskedasticity)
yields a set of six moment conditions. Heteroskedasticity has so far only been considered in
the cross-sectional SARAR(1,1) framework by Kelejian and Prucha (2010), who use two of



the three moment conditions in Kelejian and Prucha (1999), and in the SARAR(0,1)
framework by Lin and Lee (2010).

An analogous approach to Kelejian and Prucha (2010) is pursued here in the derivation of the
moment conditions under heteroskedasticity, but for (both fixed and random effects) panel
data models. For this, we use four of the six moment conditions akin to the ones in Kapoor et
al. (2007). Moreover, with an S-th-order rather than a first-order process (SAR(S), with S >1
), additional moment conditions are available, associated with each weights matrix M, ,

s=1...,S, and each pair of weights matrices M, M, s,=1...,S;s' >s,...,S . Define

£ = (1, OM, ey = (I M, Dy~ oo (1 M, U] (10)

m=1

Under Assumptions 1 to 3, we then have the following set of moment conditions for T > 2,
and s,=1...,S;s'>5s,...,S:

s,s'. 1 - — . ,

IVI1’ - E[ N(T —l) SS,NQO,NSS',N] = N (T _1)Tr[d|agr'1\1:T1E(Vr$,N)QO,N (IT ® MS,NMS’,N)] (118.)
s 1

M2 . E[mss,NQO,NaN]ZO’ or (11b)

s,s'. 1 = = T ' 1 H ’

ME L2000 fu] = 1 oM M,.,) + [0 (2, )0, (1 B, M, )](110
s . 1.

M E[WSS,NQLNSN]:O' (11d)

Unless part of the weights matrices are orthogonal, there are 4S+S(S—1) moment

conditions.” For the case of a first-order spatial regressive process, i.e., S =1, they nest the
moment conditions of the aforementioned GM estimators as special cases. Under
homoskedasticity, i.e., diag,;E(v; ) = o1y, the corresponding four moment conditions in
Kapoor et al. (2007) are then obtained. In the cross-sectional case, i.e., for T =1 (and
Q,n = 0) the moment conditions M; and M become uninformative and Mz and M, reduce to
the corresponding the two moment conditions in Kelejian and Prucha (2010) under

heteroskedasticity with the N xN matrix diag,E(v}), or the two moment conditions in

10 . . :
If some pairs of matrices are orthogonal, M., M, , =0 for some s = s’, the corresponding

moment condition is trivially satisfied for any set of (finite) parameter values. Hence, if all
weights matrices were pairwise orthogonal, there would be 4S moment conditions.



Kelejian and Prucha (1999) under homoskedasticity with the N x N matrix
diag,E(viy) =1 oy -

Note that the moment conditions can also be written as quadratic forms in the vector g, :

s,s’ 1 ' s,s’ -
Ml’ . E[msNALNSN]:O’ with (123.)
ss N Qo N{(I ®M’5 N s,N)_diagrlm\‘:Tl[Qo,N(lT ®M;',NMS,N)nn]}QO,N '
M; : [N(T 1)8 WA NENT=0, with AS | =Q, (I ®M ). (12b)
\V/ s E[%a’NAg g, ]- 0' “tr(My My ) =0, with (12¢)

Ay ={Q.\ (I ®ML M, ) — Q,  [diag L (Q,  (I; ® ML (M )] Qo n 3 -

S 1 ! S H S
M,: E[WSNA4,N8N] =0, with A,y =Q, (I ®M, ). (12d)

Substituting equations (3a), (3b), (6b), and (10) into the 4S + S(S —1) moment conditions
(11) yields a 4S +S(S —1) equation system in (p, ..., Ps n ,aﬁ), which can be written as

vy —Iyby =0, (13a)

where b, isa [S+S(S—-1)/2+1]x1 vector given by

N = (P P p12,N ’---vpsz,N 1PINP2N v PINPs N PsanPs N 10'5)' ,

ie, by contains S linear terms p,,, m=1..,S, S quadratic terms p,, m=1..,S,
S(S-1)/2 cross products o, o, n, M=1...,(S-1),I=(m+1),...,S, as well as ai. For later
reference, we  define  the (S+1)x1  wvector of all parameters as

BN = (p'N ,O'fl)' = (pl,N ""’pS,N y O'i)r .

Yy IS @ [4S+S(S -1)]x1 vector with elements (y,,), 1=1..,45+S(S-1), and I' is a
[4S +S(S D] x[2S +S(S-1)/2+1] matrix with elements (y;;), 1=1..,4S+S(S-1),
1=1..,25+S(S-1)/2+1. The elements y; , and y, ; , will be defined below.

Throughout the paper, we adopt the following convention with respect to the ordering of the
rows in equation system (13). The first four rows are associated with the 4 moment conditions

M, M3, M, and M} with s=s"=1. The next four rows are associated with M,



Ms, M3, and M with s=s"=2, and so forth up to s=s'=S. This yields 4S rows of the

equation system. These moment conditions are always available under Assumptions 1 and 2.
Unless part of the weights matrices are orthogonal, there are S(S—1) further moment

conditions available, resulting from M$® and M3* with s=1,..,(S-1), s'=(s+1),..,S.
These are added to the equation system, starting from row 4S +1, as follows. The next row (
4S +1) is associated with M} and s=1 and s’'=2; the next rows with M with s=1 and
s'=3,and so forthup to s=1 and s"=S; this yields S(S —1)/2 rows. We then proceed with

M3*" in the same way, yielding another S(S —1)/2 rows.
The sample analogue to equation system (13a) is given by
Vv —T\by =5,(0,), (13b)

where the elements of v, and fN are equal to those of vy, and I' with the expectations

operator suppressed and the disturbances u,, replaced by (consistent) estimates u,, .

GM estimates of the parameters o, ..., ps . o are then obtained as the solution to

argmin [(¥, —Tyby) Oy (Fy ~Tyb)1=[9,(8,) O, 4 (8,1, (14)

plvpzv"vpsvo_;zz

i.e., the parameter estimates can be obtained from a (weighted) non-linear least squares
regression of 7y, on the columns of fN; 9,(0,) can then be viewed as a vector of
regression residuals. The optimal choice of the [4S +S(S -1)] %[4S +S(S —1)] weighting
matrix @, and its estimation will be discussed below.

In the following, we define the elements of y, and I'\, grouped by the corresponding
moment conditions. Thereby, we use the following notation:

U,y = ®M Uy, s=1...,S, and (15a)
U, = ;M )(I; M, Iu, =(1; ®M M, Uy, s=1..,S, m=1..,S. (15b)

In the derivation of the elements of y, and I',, we also make use of the fact that

s
diag,”, (v, ) = diag,”, Uy ) = 23 pdiag,’s (0, , U v )

m=1



S S
+Zzpmpldiag (umnNuI nN) Jy NT (16)

m=11=1

where U, denotes the n-th element of the vector T,

m,n,N

Moment Condition M
Due to the adopted convention regarding the ordering of the rows in equation system (13), the
row index for moment condition M?* — denoted as row(M>*) — is given by 4(s—1)+1 for

s=s and 4S+(s—-1)S-s(s-1)/2+s'—s for s<s'. Hence, moment condition M3,

delivers S rows of equation system (in row 1, 5, ...,4S—3)) for s=s" and S(S-1)/2 rows

of equation system (in rows 4S+1,...,4S+S(S-1)/2) for s<s’. The corresponding

elements of y, and I' are defined as follows:"

J/row(ijs') =mE Ué,NQO,NUs',N _Tr[QO,Ndiagr:\I:Tl(uriN)(lT ® M;,NMS’,N)]} (173)

1

N(T -2

where 2035 ={Qq  (Ir @ ML, M, ) —diag ) [Q, (It ® (ML, (M, )]}

E(u 2llN N

yrow(Mf‘S'),m = m E Us’,N QO,N ﬁs’m,N _Tr[QO,Ndiagrz\‘:Tl (Um,n,Nun,N )(IT ® M;,N Ms',N )]}

:N(Tz—l) E[uy, (I; ® M7, )7 u, ], associated with p,,, m=1...,S.
oty oom =~ N(rl 1 B Qun T~ TIQ0,i0 T (07, )y M M. ]y
- N(I' 5 ———E[uy (I; @M, )Y (1I; ®M,, )u,], associated with p2, m=1...S.
Y 0wz ) s(mst)-m(m-1y/2+1-m = N(T =) E{T4,n Qo Uy, = TrIQg wdiags’s (U, o w0 ) (1 @M (M, )T}
:_m E[ul, (I, ®M; )2 (I, ® M, )uy],

associated with p_ o, , m=1...,(S-1); | =(m+1),...,S

1 '
_ﬁtr(Ms,NMs’,N) :

7/row(M;‘S'),2S+S(s—1)/2+1 =

Moment Condition M?

" For simplicity, subscript N is dropped in the definition of the elements of y,, and I',, .



Due to the adopted convention with respect to the ordering of the rows in equation system
(13a), the row index for moment condition M3* is given by 4(s—1)+2. (For M}* we
always have s=s' such that we use only a single subscript.) Hence, moment condition M;
delivers S rows of the equation system (in rows 2, 6, ..., 4S—2). The corresponding

elements of y,, and T', are defined as follows:

1
74(s71)+2—m E(Tq Qo U N) (17b)

1

N(T - )E(u WA \Uy), Where 205 =A; .

74(sfl)+2,m:N(T ) (usmN ONuN+usNQON mN)

1
_NU—D

Efuly (Ir ® M, )2 +2A5 3 )uy],

7/4(5—1)+2,S+m = N (T 1) ﬁsm,N(QO,NUm,N)

l ! ! S
= N(T _1) E[UN(IT ®Mm,N)2[2,N(IT ® Mm,N)uN]’

1 = — =} —
7/4(s—l)+2,8(m+1)—m(m—1)/2+|—m == N (T _1) E usI,N QO,Num,N + usm,NQO,N uI,N]

1 ’ ' s/ S
= N(T _1) E[UN(IT ®MI,N)(Q(2,N +22[2,N)(|T ®Mm,N)uN]’

Va(s—1)+2,25+5(S-1)/ 241 — 0.

Moment Condition M3*

Due to the adopted convention regarding the ordering of the rows in equation system (13), the
row index for moment condition M$* — denoted as row(M;*) — is given by 4(s—1) +3 for
s=s"and 4S+S(S-1)/2+(s-1)S—s(s—-1)/2+s"—s for s<s'. Hence, moment condition
M;* delivers S rows of the equation system (in rows 3, 6, ..., 45—-1) for s=s' and
S(S-1)/2 rows of the equation system (in rows 4S+S(S-1)/2+1,....,.4S+S(S-1)) for
s<s'.

7row(|v|55 = —E{Uq NQlN s',N Tr[QlNdlag (unN)(I ®M,SN s',N)]} (17¢)
:_E(u 2[3N N

where ngf\l :[Ql,N(IT ® M’s',NMs,N)_diag:Z[QLN(IT ®M;’,NMS,N)]nn]'



7row(M§‘S')m_ E{UsN 1N smN Tr[QlNdlag (umnNunN)(I ®M;N s’,N)]}
:WE[U,N(IT®M, )QLZN N]

1 _ -, '
7row(M§'S'),S+m = _W E l"Ism N1, N sm N Tr[Ql Ndlagn_l(um n, N)(I ®Ms N s’,N)]}

1 ' ' s,s’
= _ﬁ E[UN (IT ® Mm,N)Q(SJN (IT ® Mm,N)uN] ,
2 —y — H — —_ ’
j/rOW(Mg‘S’),S(m+1)7m(mfl)/2+lfm = _N E{usm,NQl,N uS’I,N _Tr[Ql,Ndlagr,l\lz-l;.(um,n,Nul,n,N )(IT ® MS,NMS',N )]}

2 ’ ’ s,s’
Z_WE[UN(IT ®MI,N)QLS:N(IT ®Mm,N)uN]’

M- p - :
Y owns®), 25 +5(s1)/241 N tr(Ms,NMS'YN)’ associated with O-/ZI,N :
Moment Condition M3*
The row index for moment condition M$* is given by 4(s—1)+4, i.e., moment condition
M; delivers S rows of the equation system (in rows 4, 8, ..., 4S). Moment condition M,

delivers S rows of the equation system (in rows 2, 6, ..., 4S—2). The corresponding
elements of y,, and T', are defined as follows:

1.
Vas1+a = WE(us,NQl,NuN) (17d)
l ! S S
=WE(UNQL4N n) . Where R4, =A, .
1
Vas-1+4m = 37 N E(usm ninUn + us NQinTn )

1 ’ ’ S’ S
:WE[UN(IT ® Mm,N)(Ql4,N +2[4,N)UN]!

1 _
Vas-1)+4,5+m = N E(usm nQinUnn)

1 ’ !/ S
= _ﬁ E[UN (IT ® Mm,N)QL4,N (IT ® Mm,N)uN] )

1 — — =7 —
Y 4(s-1)+4,S (m+1)-m(m—-1)/ 2+1-m — N E[UG yQunUnn + Ugy Qo Ty ]

1 ' i s/ N
:_WE[UN (I ®MI,N)(Q[4,N +Q[4,N)(IT ®Mm,N)uN]’

Va(s—1)+4,25+5(S-1)/ 241 — 0.



This completes the specification of the elements of the matrices y, and Iy, . The similarity
between the structure of the expressions resulting from moment conditions M:*'and M} on
the one hand and M3* and M; on the other hand is apparent. Apart from a slight discrepancy
in the definition of the element corresponding to o between M;* and M3, the other

elements differ only by the normalization factor and the corresponding matrix of quadratic
forms, Q, and Q. , respectively.

2. Definition of GM Estimator
It is a well known result from the literature on generalized method of moments estimation

that, for weighting matrix @, in (14), it is optimal to use the inverse of the (properly

normalized) variance-covariance matrix of the sample moments, evaluated at the true
parameter values. Denote the optimal weighting matrix, which will be derived in Subsection

3.2, by W and its estimate by ‘—Iv'@l. The optimally weighted GM estimator uses (:)N = ‘i’;,l
and is defined as

(Pin ,...,,BS’N,@?N ,) =argmin {3, (Q)'(:)NSN 0),-a’ <p, < a’,s =1,..,S,gi €[0,b,T},

with 9, (8) =9 (p.g%.) = (¥ ~Tb). (18)

In a first step, we will assume that z; , and v, are normally distributed in the derivation of
the optimal weighting matrix ¥ as in Kapoor et al. (2007). In the Appendix, the optimal

weighting matrix W will be derived without distributional assumptions (apart from the ones

in Assumption 1). It is worth emphasizing that the use of estimated disturbances together with
the presence of endogenous variables in (1a) introduces a difference between the optimal

weighting matrix ¥, and the inverse of the variance-covariance matrix of the sample

moments. Under fixed effects, this is also true, even if there are no endogenous variables in
the main equation (1a). This will become apparent in section 3.2., where the optimal

weighting matrix ¥, and an estimate ‘f’@l are derived.

3. Asymptotic Properties of the GM Estimator for 0

3.1 Consistency

In order to prove consistency of the estimator ﬁN , the following additional assumptions are
introduced:

Assumption 4.



Assume that Uy —uy, =DyAy, i.e., U, —U, =d, Ay, for n=1..,NT, where D is an

NT x P matrix, the 1x P vector d  denotes the n-th row of D, and A isa Px1 vector.

Let d; , be the j-th element of d . We assume that Ednj’N(t)‘M <¢, <o forsome 6 >0,

nj,N

where ¢, does not depend on N, and that N*'?|A =0, (1).

Assumption 4 will be fulfilled in many settings, e.g., if model (1a) contains endogenous
variables (such as spatial lags of y, ) and is estimated by fixed or random effects two-stage

least squares. In that case, A, denotes the difference between the parameter estimates and the
true parameter values and d,  is the (negative of the) n-th row of the design matrix Z,
under random effects or of the within transformed design matrix Z, =Q, Z, under fixed

effects (see subsection 2 of Section V). Under certain conditions, Assumption 4 will also be
satisfied if model (1a) involves a non-linear specification (see Kelejian and Prucha, 2010).

240

is 0,(2).

do

NT
Finally, Assumption 4 implies that (NT)‘lz
n=1

Assumption 5.
(@) The smallest eigenvalues of I'\I'y, are bounded uniformly away from zero, i.e.,

Zon(TWTW) 2 4. >0. (b) O, -0, =0,(1), where ®, are [4S +S(S —1)]x[4S +S(S ~)]
non-stochastic, symmetric, positive definite matrices. (c) The largest eigenvalues of @, are

bounded uniformly from above, i.e., 1, (®,)<A-<ooand the smallest eigenvalues of @,

are bounded uniformly away from zero, i.e., 4,;,(®,)=4.>0.

Assumption 5 implies that the smallest eigenvalues of I'\®,TI", are bounded uniformly away
from zero, ensuring that the true parameter vector 0, is identifiable unique. Moreover, by the

equivalence of matrix norms, it follows from Assumption 5 that @, and @' are O(1).

Assumptions 1-5 ensure consistency of the GM estimators for 6, = (py ,aj) . We summarize

these results in the following theorem, which is proven in Appendix B.

Theorem 1. Consistency of Weighted GM Estimator §N
Suppose Assumptions 1-5 hold. Then, provided the optimization space contains the parameter
space, the weighted GM estimators éN (@N) :[ELN(E)N),...,Z)’SYN@N)ﬁiN(@N)]' defined by

(18) are consistent for p, ..., 05 and o, i.e.,

5S,N((:)N)—PS,N 50, s=1..,S,and 52, ((:)N)—af,—p)O as N —oo.



This result holds for an arbitrary weighting matrix (that satisfies Assumption 5). Hence, it
applies to both the optimally weighted GM estimator defined by (18) with (:)N = ‘i";,l or the

initial unweighted GM estimator with (:)N =1,.

3.2 Asymptotic Distribution of GM Estimator for 0
In the following we consider the asymptotic distribution of the optimally weighted GM
estimator §N . To establish asymptotic normality of 6N =(py, 5-ij), we need some additional

assumptions.

Assumption 6.
Let D, be defined as in Assumption 4, such that u, —u, =Dy A, . For any real NT x NT

matrix A, , whose row and column sums are bounded uniformly in absolute value, it holds
that N "Dy Ayu, —N"E(DyAu,) =0, ().

A sufficient condition for Assumption 6 is, e.g., that the columns of D, are of the form
m, + Il &, , where the elements of &, are bounded uniformly in absolute value and the row
and column sums of II, are bounded uniformly in absolute value (see Remark A.1 in the
Appendix). This will be the case in many applications, e.g., for model (1a), when D, equals
(the negative of) the design matrix Z, or the within-transformed design matrix Z, (compare
subsection 2 of Section V).

Assumption 7.
Let A, be defined as in Assumption 4. Then,

(NT)"2Ay = (NT)*Ti&, +0, (D), with Ty =(T, i)' &y = (Vi my)' e,
(NT)"?Ay =(NT) 2T, vy +(NT) 2T iy +0,(D),

where T, is an (NT + N)x P-dimensional real non-stochastic matrix whose elements are
bounded uniformly in absolute value; its submatrices T, and T, are of dimension

(NT xP) and (N x P), respectively. As remarked above, A, typically denotes the difference

between the parameter estimates and the true parameter values. Assumption 7 is kept general
and will be satisfied by many estimators, which differ in the definition of T, . In Section IV,

we verify that it holds if the model in equation (1a) is estimated by (random or fixed effects)
two-stage least squares (TSLS) or feasible spatial generalized TSLS.

In Appendix B, the limiting distribution of the GM estimator of 0, is shown to depend on

(the inverse of) the matrix J\®,J, and the variance-covariance matrix of a vector of



quadratic forms in v, and p, , denoted as g, . We consider each of these expressions in the
following.

The [4S+S(S-D]x(S+1) matrix J, of derivatives of the [4S+S(S—-1)]x1 vector of
moment conditions in (11) is given by

oy T b . o _
3,00 = RO (T wit (19)
oty « —T
Jisn = (Y"'Nap "'Nb”), i=1..4S+S(5-1), s=1...,S,
oy, «—T. b.) .
Jisan = (YI"NGO_ L N)1 i1=1..4S+S(S-1),

7

where y;  and I,  denote the i-th row of y and T" respectively.

Using % =0 and ignoring the negative sign, we have
0
JN(9)=£FN[’N =I'B,, (19b)

where Ty, is defined above and of dimension [4S +S(S —1)]x[2S +S(S-1)/2+1] and B
isa [2S+S(S-1)/2+1]x(S +1) matrix of the form

%N :(%1’%;,N’%5,N'%;,N)” (203)

with B, =(15,05,) and B, =[diag;,(2p,,).0s.)]. The S(S—-1)/2x(S+1) matrix
By =[BiinDBhsan)0ss1y2q] CONsists of (S-1) vertically arranged blocks 9B,
m=1,...,(S—1), which have the following structure:

B =Cnn Onn €, (20b)

where € isa (S—m)x(m-1) matrix of zeros, 0, isa (S—m)x1 vector, defined as

0n = PmianrPsn) vand € = p Is - Finally, 98, isa 1x(S +1) vector, defined as

12 . .
l.e., there isno block €, in B, .



%4,N = (les 1). (20c)

For later reference, note that %8, has full column rank (S+1); as a consequence, the

(S +1)x (S +1) matrix B B, is positive definite (see, e.g., Greene, 2003, p. 835).

We next consider the vector g, and its limiting distribution. First, define q,(0,,A,) as the
[4S +S(S —1)]x1 vector of sample moments with the expectation operator suppressed,

evaluated at the true parameter values, and ignoring the deterministic constants. It is made up
of the following quadratic forms in u,, :

dy(0y,Ay) =N (T, CyUy) for c=1...,4 and s,5'=1...,S. (21)

Hence, each element of this vector corresponds to a particular moment condition, indexed by
¢, each of which is associated with a particular weights matrix M,  through (12b) and (12d)

for moment conditions M; and M;, or through (12a) and (12c) with a pair of weights
matrices M, and M, for moment conditions M;* and M;*. The arrangement of the

elements is the same as in equation system (13).

In light of (12), the matrices Ciji; , c=1..4,and s,s'=1,...,S, are defined as follows:

s,s’ 1

Cl,N = 2(T 1) R' [A +(A )’]RN’ (22)
S 1 ! S r
Cz,N 2T - 1)R [A N+(A2,N)]RN7
1

Ciy = SR WA AT IR,

S 1 ’ S S r
C4,N :ERN[A4,N +(A4,N)]RN )

where we have used the definition R, =[I; ®(l,, me MOl

By Assumption 3 and Remark A.1 in Appendix A, the row and column sums of the
symmetric NT x NT matrices C}}, c¢=1..,4,and s,s'=1...,S, are bounded uniformly in

absolute value. Using equation (21) and invoking Lemma B.1 (see Appendix B), the elements
of N*?q, (py.,A,) can be expressed as

NY2(T,Coaly) = N 2(Up Coauy ) + (a2 ) NY2A +0, (1) (23)



with % = NTE[D (CS5 +Co3 )uy1=2NE(D,Chu,) since C% is symmetric. By
Lemma B.1 the elements of the P x1 vectors a.}, c=1...,4,and s,s'=1..,S, are bounded

uniformly in absolute value. As evident from (23), a2} =0 when E(uN|DN) =0, which is the

case under random effects estimation if there are no endogenous variables.

Note that Q. &\ =Q,,Vv, and that for symmetric NxN matrices A, we have

‘(;,NQLN (I ®AL)Qney = THYARY + Vi Qyy (It ®A)Q Vv T2V (6 ®A )R, . Using
(22), (23), and Assumption 7 we can rewrite the vector of sample moments as

Nl/qu(eN’AN)zN_1/2€IN+0p(l)=qN+Op(1)1 (24)

where each element of the [4S +S(S —1)]x1 vector Cl*c,N =(z*7§;ﬁ) can be written as linear

quadratic form of the (NT + N) x1 vector &, = (V,pn})":

Fon =[EVAREN +(@2N)EN]+0, (D)
:[&:'N E§N+(ach)V +(acpN)uN]+0p(1)’ (25)

where

s,S s,S

NS Ach ACVpN

c,N — s, s,s’
(A VpN) A

c,u, N

aj; =T ' Tyely, c=1..4, 55 =1..,S,0r

S =M@y ), @ )T =T (T, wesy ) (T, yois) T, for c=1...4,and s,8'=1..,S.

Observe that the elements of &y, c=1..,4, and s,5'=1,...,S, are bounded uniformly in
absolute value by Assumption 7 and Lemma B.1. The symmetric matrices A}, A}y,
ASS

c,v,u,N?

and A% are of dimension (NT +N)x(NT +N),NTxNT, NTxN,and NxN,
respectively, and defined as follows.

For moment condition M:*', we have

Ai\jN 2(T B )[Ai; +(Air§1)] Aijp n = Oyr.n » @nd AiiN =Open - (262)

For moment condition M} we have



A;V,N = (T )[A N +(A N)] AZVpN = Oy » and A;,u,N =Opn - (26b)

For moment condition M$* we have

5,8’ 1 S S r s,s' 1 ' '
Aszv,N :E[AS,N +(A3,N)] A3Vp N T E[eT ®(Ms',NMs,N + MS,NMS’,N)]’ and
s,s’ T ' ’
A3,u,N :E(Ms’,NMs,N +Ms,NMs’,N)' (26C)
For moment condition M}, we have

S l S
A4,V,N:§[A4,N+(A N)] A4VuN: [e ®(M5N+M N)] and

T

AZ;NZZ(M N+ M N) (26d)
Note that the row and column sums of the symmetric matrices A%}, Ay, Alb,.n. and

A: \ are bounded uniformly in absolute value by Assumption 3 and Remark A.1 in the
Appendix. Moreover, the elements of the &, =(v},n)) are independently distributed by

Assumption 1, and the variance-covariance matrix of &, is

%, O
leN :|: N N2TI N:| . (27)

Onont (2PN

In order to «calculate the variance-covariance matrix of ¢, , given by the

[4S+S(S-1)]x[4S+S(S-1)] matrix ¥, =N"E({,q"y), We invoke Lemma A.l in
Kelejian and Prucha (2010). For the moment, assume that the error components p, and v,

are normally distributed.” The distribution of the GM estimates without distributional
assumptions (apart from Assumption 1) is considered in the Appendix. Under normality, the
covariance between two elements of the vector q,, is given by:

€on =NTCov(g:y 72y (28a)

= N"Cov[E\ ATEy +(B0R) En ENALNEN + (@) En]

= N_lCOV[YB’N ?\lgN +(ach) Vi +(acpN)llN":NAttN§N +(ac VN) Vi +(ac pN)uN]

“ In that case, in Assumption 1, the requirement of finite 4+7 -th moments of the error
components can be relaxed to the requirement of finite variances.
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+N_l[(ach)Z ac wntOo (anN)aC N

with ¢,c'=1,....4, s,t=1...,S for s=s" and t=t’', and s=1,..,S—1, s">s. Note that the
each combination of indices ¢, s, s’ (and also ¢’, t, t") is associated with a particular row
of q, . Hence, &\ is the covariance between the element of q, associated with moment

c,c',N
condition M?* and the element of q, associated with moment condition M.". (For the
second and fourth moment condition we always have s=s" and t =t").

In equation (28), &y .y and &>, denote the n-th and i-th main diagonal element of the
matrices Ay, and A", respectively, and a3y and a>;; denote the n-th and i-th
element of the vectors a7} and &g  respectively.

The arrangement of the  elements Yy=Win) i=1..,[4S +S(S-1)],

1=1...,[4S+S(S -1)] is straightforward and follows naturally from the ordering of the
elements in the vector g, , though it is notationally burdensome to state in the general case.

The expression in (28) holds generally. Part of the elements of ¥ can be stated in simpler
terms: in particular, the submatrices Ai;fL"N , are zero for c=1and ¢ =2 such that &, drops
out for the respective elements. If both sub-matrices associated with 4  are zero (c=1 or
c=2and c'=1or ¢'=2), @IN drops out as well. Under fixed effects estimation, the terms
QEIN (the expressions involving azle) are equal to zero. Finally, since the main diagonal
elements of the matrices A;, and A;, are zero, the term &} does not show up for

elements where c=2 or c=4 (or where ¢'=2 or ¢'=4).

To derive the asymptotic distribution of ¢, and 5N we invoke the central limit theorem for

vectors of linear quadratic forms given by Kelejian and Prucha (2010, Theorem A.1) and
Corollary F4 in Potscher and Prucha (1997). We summarize the results regarding the

asymptotic distribution of ﬁN in the following Theorem, which is proven in Appendix B.

Theorem 2. Asymptotic Normality of ﬁN
Let ﬁN be the GM estimator defined by (18). Suppose Assumptions 1-7 hold and,

furthermore, that A

min

(W,)=>c, >0. Then, provided the optimization space contains the
parameter space, we have



NY2(0, —0,) = (J10,J,) 3,0, ¥4 %, +0,(1), with

il“NbN =I'y%,, and

!

Jy =
& =N ay SN, L5 55 1)
where ¥, = E(q,q,) and ¥, = (¥}/*)(V¥}?)'.
Furthermore N¥?(8, —0,,) =0,(1) and
Q; (0,)=(J,0,J,) " I0,¥,0,3,J,0,J\) ",
where 95N IS positive definite.

Theorem 2 implies that the difference between the cumulative distribution function of
N”Z(ﬁN —0,) and that of N(O, QéN) converges pointwise to zero, which justifies the use of
the latter as an approximation of the former." Theorem 2 holds both under normality and non-
normality of the error components, the difference being only the definition of the elements of
¥, (and the requirement regarding the finiteness of the moments of the error components in
Assumption 1).

Note that ©; (¥y)=(J,'¥yJy) "and that Q; (©,)-€; (¥y) is positive semidefinite.
Thus, using a consistent estimator of ¥, (which will be derived below) as weighting matrix

®,, leads to the efficient GM estimator. We add that ¥, is not exactly equal to the variance-

covariance matrix of the moments, if there is an endogenous right-hand side variable in
equation (1), since the GM estimates are based on estimated rather than the true disturbances.
(See also the discussion surrounding equation (23)).

IV. Estimation of Regression Parameters 8, and Joint Asymptotic Distribution

In the following, we consider estimators for the regression parameters &, in model (1a) and

establish their joint asymptotic distribution with the GM estimates 6N derived in section I1lI.

We keep the analysis general first, allowing us to state our results in a succinct way that nests
both random and fixed effects estimation of the original model as well as the spatial GLS
transformed model. We will then be more specific about the properties and the respective
expressions for the TSLS and spatial generalized TSLS estimation of model (1a).

H Compare Corollary F4 in Potscher and Prucha (1997).



1. General Statement of Estimator and Joint Asymptotic Distribution
Key to establishing the asymptotic properties of the GM estimates 6N , which are based on the

estimated disturbances of model (1a), is Assumption 7, which holds that the (properly
normalized) difference between the true parameters and the estimates (A, ) is linear in the

stacked vector of error terms, i.e., (NT)"2A, =(NT)™2T(&, +0,(1).

For all estimators of &, in model (1a) considered in the present paper, the matrix T, has the
following structure:

T, =F,P, with F, = (F\;,N1F;1,N),’ (29a)
which can also be written as

Ty =M\ Ton) with T, =F Py, T,y =F,\Py, (29b)

n

where F  is a real non-stochastic NT xP. matrix, F,  is a real non-stochastic N xP.
matrix, and P, is a real non-stochastic P.xP matrix, with P as in Assumption 7. The

definition of Py, F,, F, will be seen to depend on the estimated model (original versus

spatial GLS transformed model) and the estimation approach (random versus fixed effects). In
general, P, is a function of the original or within-transformed design matrix Z,, and a real

non-stochastic NT x P. matrix of instruments H,, (or spatial GLS transformed variants
thereof); F, , and F, depend on the original or within-transformed instruments H, (or

spatial GLS transformed variants thereof), and — in the untransformed model — on the matrix

[IT ®(| N _me,NM:’n,N)il]'

Since both N*2(8, —0,) and (NT)"2A,,, and thus also N¥?A,, are asymptotically linear in

g, , the joint distribution of the vector [N*2A’,,N*2(8, —0,)7 can be derived invoking the
central limit theorem for vectors of quadratic forms by Kelejian and Prucha (2010).

Consider the [(P.+4S +S(S —1)]x1 vector of linear and linear quadratic forms in &, :

W {(NT)-“ZF@N}_ 30)
qn



Its variance-covariance matrix is of dimension [P. +4S + S(S —1)]x[(P. +4S + S(S —1)] and
given by:

Var(w,) =¥, {(NT) P EnEnFy (NT)”ZFaaNq'NH‘I’AA,N ‘I’} (31)

(NT)_UZqNéN qu,N lI’IA(),N lI’N
where the [4S + S(S —1)]x[(4S + S(S —1)] matrix ¥, is defined above in (28).

The P.xP. matrix ¥,, \ is defined as

Wan =Wy + Py With (32a)
E SV :(NT)’l(F\’,,NENF\,,N) and WX, , =(NT)" '’F Fon

Py
The P.x[4S +S(S —1)] matrix ¥,  is given by

¥,,n = EIINT) ™R &an], (32b)
which is made up by [4S +S(S—1)] columns of dimension P.x1, each of them associated

with a set of indices ¢, s, and s" and thus a particular moment condition. Under normality of
p, and v, , the columns are defined as

WAO,.,(C,S,S’),N = ‘I’Xe,.,(c,s,s'),N +‘|’Ze,.,(c,s,s’),N ’ c :11""4’ S’S, :l""’ S ’ Wlth (32C)
11,

\llxe,.,(c,s,s’),N = WW(FV NZ azf/ N) and
11

n _ 2
\IIA(),.,(C,S,S'),N _WTlIZ o ( n, Nacu N)

In Appendix 1.2, ¥, is defined for the general case without distributional assumptions

(apart from Assumption 1).

Regarding the joint limiting distribution of N“Z(’éN —0,) and (NT)"?A,, we now have the
following result, which is proven in Appendix B.

Theorem 3. Joint Distribution of EN and Regression Parameters
Suppose that Assumptions 1-7 hold. Moreover, assume also that H,, =O(1) (see Assumption

9 below) and that F, =0O(2); the latter assumption will be verified, once we have defined the



matrix F for the particular estimators used. Moreover, assume that A, (¥, \) ZC;,W >0.
Then,

Nl/ZA T*l/ZP! O ]
[ vars }:{ N , e W&o +0, (1), with
N (BN—GN) 0 (JNQNJN) J\Oy

Eo =P Wy = WL NIINT) 28 Fy ay T N(O, I ), and

P"+45+5(5-1)

_ T*l/ZP’:‘ O T*l/ZPN 0 |
0 (303", " 0 03,0,03,)"

Theorem 3 implies that the difference between the joint cumulative distribution function of
[N¥2A},N*2(6, —6,,)7] and that of N(0,€,,,) converges pointwise to zero, which justifies

the use of the latter distribution as an approximation of the former.

Remark 2.
Theorem 3 holds under both normality and non-normality of the error components, the

difference being the definition of the elements of ¥, , in particular those of ¥, and ¥, .

w,N !
Obviously, Theorem 3 can also be used to obtain the joint distribution of Nl’z(ﬁN -0,) and
some other estimator NY?Ay, where (NT)"?Ay =(NT)™*T ¢, +0,(), T;=FP,
assuming that analogous assumptions are maintained for this estimator. In particular, the
results remain valid, but with F and P, replaced by F; and Py in the definitions of ¥,,

aswellas ¥, .

2. Two-Stage Least Squares (TSLS) and Spatial Generalized TSLS Estimation of §,

Obviously E(Y,u%)=0 in model (1a). In the following we consider four TSLS estimators
for &, . First, depending on whether =0 or not in equation (9), we consider random effects

or fixed effects estimation. Second, we consider (both fixed and random effects) estimation of
the original model (1a) as well as of the spatial generalized LS transformed model, which is
obtained by premultiplying model (1a) with the transformation  matrix

S
Ry =[; ®(1, —me’NMm,N)]. Regarding notation, we use an underbar to refer to within-

m=1

transformed variables, e.g., Z, =Q,\Z, . Spatial generalized LS transformed variables are
indicated by an asterix, e.g., Z, =R,Z, . Matrices and vectors that are both within- and
spatial GLS transformed variables are indicated, accordingly, e.g.,

Z, :QO’NZ’,; =QynRnZy . By the properties of Q,,, an equivalent way writing this is



Z,=R,Z, =QunRnZy s ie., the order, in which the transformations are performed is

immaterial.

2.1 Assumptions
Some properties of the regressor matrix X, have already been discussed in subsection 3 of

section I1. The following further assumptions are maintained.

Assumption 8.
The non-stochastic instrument matrix H, has full column rank P.2K +R (for N large

enough). Furthermore, the elements of H are bounded uniformly in absolute value. Under
fixed effects estimation, we also assume that each instrument changes over time (at least for
some cross-section i). Moreover, it hold that Q. =lim,__[(NT)"H\H,] and

Q. =plim,__ [(NT)™H} Z,] are finite and non-singular.

Regarding the choice of instruments, note that

E(Z_:Wr,NyN) = Z_:Wr,N E(yN) = ZWr,NE{[IT ® (I N _Zﬂ“r,NWr',N)_l]XNBN}

= ZWF,N{IT ®I:IN +i(zﬂ‘r’,NWr',N)i]}XNﬁN ’

i=1l r=1

R
> 2 W, || <1 for some matrix norm |- | (compare Horn and Johnson, 1985,

r'=1

provided that

p. 301). The instrument matrix H, is used to instrument Z, = (X,,Y,) in a least squares
regression of Z, on H,, obtaining Z =P, Z,, where P, =H(H\H,)™"Hj. Itis thus

reasonable to select H,, to include X, and a subset of the linearly independent columns of

Q R _
terms of the sum [I, ®Z(ZWF,’N)']XN , Wwhere Q is some predefined constant.”” Note that

i=l r=l

such a choice of H, implies that the second part of Assumption 9 will be fulfilled (by

Assumptions 3 and 8) and that X, is projected on itself.

Analogous assumptions are maintained for the within-transformed regressor and instrument
matrices X, and H, . Assumption 8 then also hold for the spatial GLS transformed variables

15 .. . . . .

Kelejian, Prucha, and Yuzefovich (2004) consider the results using alternative sets of
instruments in the estimation of a cross-section SARAR(1,1) model. Their Monte Carlo
simulation results suggest that choosing Q =2 will be sufficient in many applications.



X, and Hj (under random effects estimation) or )_(’,; and ﬂ’,; (under fixed effects
estimation).

2.2 Definition of TSLS Estimator and Asymptotic Results

2.2.1 Random Effects Estimation
The random effects TSLS estimator of model (1a) is defined as

By =(Z4Zy) " Zyyy » where (33)
Z, =P, Zy = (X,,Y,), and

A

v =Py Yy with P, =H (HH ) H,.

<

As already mentioned, under random effects estimation, the Z-matrix typically includes a
constant. The following lemma shows that the various assumptions maintained in Section 11

are automatically satisfied by the random effects TSLS estimator EN and the corresponding
residuals u, =y, —ZNEN, which are used in the GM estimation of the parameters p, ,

s=1..,S,and aj. A proof of Lemma 1 is given in Appendix B.

Lemmal
Suppose that Assumptions 1-3 and 8 hold, and that sup||B,|<b<o. Let Dy, =-Z,, then,

the fourth moments of the elements of D, are bounded uniformly in absolute value,
Assumption 6 holds, and
@ (NT)"2(8, —8,)=(NT)™2T, vy +(NT) 2T’ s, +0, (1), where

TV,N = FV,NPN ) T;,l,N = Fp,NPN )

Py = Qi Quz (Qiz Qi Q) ™,

s
Fon =[l, ®(1, _me,NM:n,N)il]HN , and
)

o = (€ @10, O, =3 oMy ) Hy.
(b) (NT)™*T, v, +(NT)”2TE,_:uN =0,(D);
(c) P, =0, and P, —P, =0,(1), with
Py =[(NT) " HH T INT) " HL Z KINT) *Z3 H JINT) " Hy H T INT)  HL Z, I

Note that (a) and (b) together imply that EN is a N'?-consistent estimator of 3, . Regarding

Assumption 4, we now have u, —u, =DyA, , where D, =-Z, and A = SN -9, . Lemma



1 shows that under Assumptions 1-3 and 8 the TSLS residuals automatically satisfy the
conditions postulated in Assumptions 4, 6, and 7 with respect to D, A, and T, . Hence,

Theorems 1 and 2 apply to the GM estimator §N , Which is based on the TSLS residuals. The

lemma also establishes that the elements of D, =—Z, are bounded uniformly in absolute

value, gives explicit expressions for P, and 5N , and verifies that the conditions concerning
these matrices made in Theorem 3 are fulfilled. Hence, Theorem 3 covers the GM estimator
EN and the TSLS estimator gN, and gives the joint limiting distribution of N“Z(’éN -0,)

and NY2(3, —&,), where the matrices PP, , F,, F, areasin Lemma 1.

2.2.2 Fixed Effects Estimation
The fixed effects TSLS estimator of model (1a) is defined as

I
I
N>

N =
N :PHN Zy :PﬂNZN with PﬂN =Hy (H'y HN)_lﬂ,N Zy.

'WZy) Ly Yy where (34)

IN>

The fixed effects estimates EN can then be used to obtain consistent estimates of the
disturbances, given by U, =y, —ZNgN, which are then used for the GM estimation of the

parameters p,, s=1..,S, and o . These should not be confused with the fixed effects

residuals U, = y —Zydy, which are an estimate of Q, U, .

The results for the fixed effects estimation are exactly as in Lemma 1, with T, P, H,

replaced with their within-transformed counterparts T,,, P, , H, , and with

T.n=0,F, =0, and

S S
Fon =Qonlly ®(y = puxMi ) Hy =1 ©(1y =D o Moy ) M Hy,
m=1 m=1

3. Definition of Spatial Generalized Two-Stage Least Squares (GTSLS) Estimator and
Asymptotic Results

° By the idempotency of the within-transformation matrix Q,,, one could equivalently use
the fixed effects residuals Vi =Qon Vi in the expression

(NT)"?Ay =(NT) 2T, , v\, +0,(1) . However, since the derivation of the heteroskedasticity-

robust variance-covariance matrix relies on the use of the original residuals, we also define
the fixed effects estimator as a linear form in the original residuals v, .



3.1. Random Effects Estimation
The spatial GLS transformed version of model (1b) is given by

Yn =Zydy +Uy, (34)

where y,, =R,Y,, Zy =R,Z,, and u, =R, u, =g, and the transformation matrix R, is

s
given by Ry =[l; ®(I, _zpm,NMm,N)]'
]

The random effects spatial GTSLS estimator, denoted as &), is then obtained as a TSLS
estimator applied to the transformed model (37), using the transformed instruments
H,=R.H,.ie.,

Dox I * Sox !l *

oy =(ZZ) 2 yh, (35a)
with Z, =P_. Zy and P, =Hy (Hy Hy)'Hy.

The feasible random effects spatial GTSLS estimator, denoted as 5:, , Is defined analogously,

~ S
replacing the transformation matrix R by its estimate R, =[l; ® (I, —Z,Bm’NMm,N)], e,
=1

8y =(Zy ZW) ' Zy Yy, (35b)
where the tilde indicates that the transformation is based on the estimate of R, .

The following lemma shows that the various assumptions maintained in Section Il are

automatically satisfied by the (feasible) random effects spatial GTSLS estimator 5:, and the

corresponding residuals u, (5;) =Yy —ZNEL . The proof is given in Appendix B.

Lemma 2.
Suppose the Assumptions of Lemma 1 hold, and let 5N be defined as in (39), where EN IS

any NU*-consistent estimator of @, (such as the GM estimator EN based on the TSLS
residuals). Then
@ (NT)"2A, =(NT) 2T vy +(NT) 2T my +0, (1), where

T:,N = F:,NP:I ) T;:N = F:,NP; '



H*H*Q oz (Qlinzs H*H*Q H*Z*)_
£3 *

I:v,N = HN '
F*N = (e} ®IN)H*N
() (NT)™T. vy +(NT) 2T/ p, =0, (1).
(c) Py =0() and P, —Py =0, (1) for
Py =[INT) ™ Hy H TP INT) M HY Z I {INT) ™ Z3 HLJINT) ™ Hy H TP INT)  HY Z T

In light of Lemmata 1 and 2 the joint limiting distribution of the (feasible) spatial GTSLS

estimator &), and the GM estimator @, follows from Theorem 3 and the discussion

thereafter, with Ay, =8, —&,,.

Note that in light of Lemma 2 the residuals G, (§’,;) SN —ZNg’,; =u, +DyA} can be used to
estimate 0, by the GM estimator defined by (18), where the discussion surrounding Lemma
1 applies analogously here. Taking this argument one step further, 0, and 8, can also be
estimated by an iterative procedure.

3.2. Fixed Effects Estimation
The fixed effects spatial GTSLS estimator, denoted as §N , Is defined as

8y =(Zn Z) 2N Y, (36a)
with Z}, =P, Z and P, —ﬂ?,(ﬂ?,' Hy)H),

The feasible fixed effects spatial GTSLS estimator, denoted as SN , is defined analogously,

using the estimate of the transformation matrix I?eN =[l; ®(I, _Zﬁm,NMm,N)]’ ie.,

*
Kxl o~

8y =(Zn Z0)'Z0 ¥, (36b)

*

The results for the fixed effects estimation are exactly as in Lemma 1, with T, Py, H}

replaced with their within-transformed counterparts T, , P\, H, , and with



Again notice that it is not the fixed effects residuals but the estimated disturbances

Uy (8,) =Y, —Z,0y , which can be used in the GM estimation of 0, .

V. Variance-Covariance Matrix Estimation
As evident from Theorem 3, the matrix €,  is of sandwich form. Both under random and

fixed effects estimation, the “sandwiched” middle term, i.e., ¥ is seen to depend (among

w,N ?

others) on the idiosyncratic error terms v, . A complication in deriving a consistent estimator

for ¥, arises from the well-known fact that one can only obtain consistent estimates of the

w,N

vector of fixed effects residuals v =(v; ), i.e., the within-transformed residuals, but not of

the original idiosyncratic errors v, — a manifestation of the so-called incidental parameter
problem (Lancaster, 2000).

This point was prominently made in a recent paper by Stock and Watson (2008), who suggest
a heteroskedasticity-robust bias-corrected variance-covariance matrix estimator for nonspatial
fixed effects panel data models. A closely related issue arises in the estimation of the
variance-covariance matrix of the GM estimates 0,, given by (28). In the following, we will

derive bias-corrected estimators for the joint asymptotic variance-covariance matrix of all
model parameters under both fixed and random effects estimation, pursuing an approach
analogous to that in Stock and Watson (2008).

1. Estimation of ¥,
In the following, we derive estimators for the each block of ¥, . We start by defining an

estimator for ¥,, ,, required for inference with respect to the parameters 6, of the main

equation (1a). In a next step we turn to the estimation of the (inverse) of the optimal
weighting matrix for the GM estimation ¥, , which is also a key element in the estimation of

the variance-covariance matrix of the GM estimates of 0, . Finally, we turn to the estimation

of ¥, required for joint tests regarding 6, and 9, .

1.1 Estimation of k VN

Consider



YN =Yun + Wy Where

E SN :(NT)’l(F\;'NZNF\,‘N) and W%, \ =(NT)"c’F, F

# wNT Nt

Under random effects estimation, the estimators for F, (original model) and F, (spatial GLS
transformed model) are defined as

= > =~ ! +
Fon =[I, ®(1, _me,NMm,N) Hy, (379)
m=1

~ S
Fp,N =& ®1)[I; ® (I _me,NM;n,N)+]HN ;
m=1

and

s
FV,N =H, :[IT ®(IN _ZIBm,NMm,N)]HN ' (37b)
m=1

—~ S —~
Fp,N :(e’T ® IN)HN :(e’T ® IN)[IT ®(IN _me,NMm,N)]HN’
m=1

Under fixed effects estimation, the estimators for F,, and F,, are defined as

~ ~

Fun =QonFons Fun =0, and (37¢)

~% ~ ~%
*

EV,N :QO,NFV,N ) Ep,,N =0. (37d)

Hence — under random effects estimation of the untransformed model — the estimator for
W', v isgiven by

¥ ZW&ZE' Fous (38)

where 55 is the GM estimate of aj (based on the residuals generated using the random

effects estimator u, (gN) =Yy —ZNgN ). For the other estimators considered, {i’iA,N is defined

in the same way, properly replacing the F-matrices and the estimates of the disturbances U, .

As already mentioned above, due to the heteroskedasticity of v, and the fact that the
variance covariance matrix depends on the idiosyncratic error terms in levels v, rather than

the fixed effects residuals v, , a bias correction is required. As shown in Lemma C.2 of the



Appendix, adopting an approach analogous to that in Stock and Watson (2008) in the present

framework yields the following bias-corrected estimator for ¥y, 2

~ 1 ~ = ~
¥ Zm(FV,NEERFV,N)’ (39)
~ T
where £ =diag Vi [(V % )?] with (V)7 =V2, —ﬁZ\Zﬁ,N . The estimates of the
o=l

S
fixed effects residual are given by Vy =(V; ) =Qq & =Qoull; @Iy =D PnxMpn)Uy -
m=1

Again the modification modifications of (39) for other estimators are straightforward,
replacing IEV’N properly.

We summarize the consistency result of the estimators given by (38) and (39) with the
following theorem.

Theorem 4a. Consistency of ‘AI-’AAYN

Let ‘i’AA’N =‘i’§A'N +‘f’XA’N with ‘i’ﬁA’N and ‘T'XA‘N defined in (38) and (39). Suppose that the

Assumptions of Theorem 3, apart from Assumptions 5 and 7, hold and that additionally all of
the fourth moments of the elements of D, are bounded uniformly. Suppose furthermore (a)

S

supy

s=1

Psn| <1 and that the row and column sums of M, are bounded uniformly in

absolute  value by one and some finite constant  respectively, and
(b) Py —Py =0,(1) with P, =O(1). Then, ¥,, , — ¥ =0,(1) and ¥}, , —¥si , =0,().

Proof. Theorem 4a follows from Lemmata C.2 and C.3 in Appendix c.”

Remark 3: Under estimation of the spatial GLS transformed model (where the inverse of R,

cancels out), condition (a) can be dropped. Under TSLS (or spatial GTSLS estimation ),
condition (b) in Theorem 4a is automatically fulfilled (see Lemmata 1 and 2).

1.2 Estimation of ¥

o The result in Stock and Watson (2008) is obtained as a special case for p,, =0 and if there
are no endogenous right-hand side variables, i.e., Fy = X .

" Note that Lemma C.2 uses a slightly different definition of !X, factoring out T /(T —2),
for notational convenience of the proof.



Consider the elements of ¥, as defined in (28). For estimation, it will turn out convenient to
rewrite the part of the elements of ¥ as given by (28a) with the main diagonal elements of

the matrices AS®

c,v,N

set to zero in the first expression of the trace in the first line. Furthermore,
to simplify the exposition we drop the indices c,s, and s’ in the following derivation and to

adopt the following notational convention. We refer to the matrix A®® , associated with the

c,v,N?

with its main

c,v,N

set of indices c,s,s" as A, =(a,,,n) = (@, sn)» and to the matrix AZ;

diagonal elements set to zero as A;, =A,, —diag,’(a,.n)- Analogously, the matrix

A, » associated with the set of indices c',t,t’ is denoted as B,y = (b, nnn) = Oy )+ aNd
By = —diag, (b, ..n)- We adopt the same convention for the matrices AC"N,

henceforth denoted as A, :(aunnN) = (a1, js’N), as well as A‘Cz"",N , henceforth denoted as

B, » and also for the vectors &g, and a', , henceforth denoted a,  =(a, ,y) = (@, n)

ch ch’

and b, =(b,,\) =) respectively. Finally, we refer to products of equally indexed
elements of A, and B, as C,;n =&t jsnbuitjsn (OF Con =@, nnnBynnn )+ @nd we define

d (av n,N v nn,N + av,nn,Nbv,n,N) and du,n,N = (au,n,Nbu,nn,N +au,nn,Nbp,n,N) '

In that case, equation (28a) can be written, for given a given pair of index sets c,s,s’ and
c,tt', as

¢, =C, L +E +QE:’N +€Vp N HE QE;*N, (40)

where

N T N T
e\/,ON = 2N71Tr(A?/,NZNB?/,NZN) = 2N71EZZZ ch it,js,N Vit, NVJZS,N |
i=L t=1 j=ls=1
N NT
sz',.N = 2N_lzcv,n,N v,n,N :_N_lzcv n,N \54n) N
n=1
QE —40 N‘lTr(AVIIN BV%N),
QE}LN = ZJﬂN‘lTr(ApYNBp’N) ,
¢y =N"a, Z.b, .
¢ =N"c%a b,

,u n, N

4
v,n,N vnN’

Notice that the terms ¢ n=1...,NT, associated with the main diagonal elements of

A, and B, , inthe expression A, XB, X, are notincluded in &7, . To rewrite &5,



we have used the fact that o, =ol¥ /3 under normality, where o} is the fourth

vnN v,n,N

moment of v, .

We next define the estimates for a, , and a,

a N (a\/,n,N) ::I-_V,NaN ) Pavp,N = (au,n,N) = :i:p,NaN , with (41)

~ ~ ~ ~

T, =FPys Ton :PIEMYN‘ISN, and a, =2N*(D,C,0,). The (properly indexed) matrices

v,N n,

C,, ie, Ci;i}, are given by (22) with p, replaced by p, and the estimates of the

disturbances are given by GN(EN) =Yy —ZNEN . Expression (41) as written holds for random
effects estimation of the original model; the modifications for the other estimators are
obvious, appropriately replacing D, =—-Z,, '~FN , and u, . Of course, analogous definitions

applyto b, and b,

We next define estimators for the terms in (40), starting with the “homoskedastic” terms,
involving only the time-invariant error component 4 .

1.2.1. Estimation of “homoskedastic” terms
Consistent estimators of the expressions in (40), associated (only) with the homoskedastic,

time-invariance error component ; , , are given by

€ =25 N7Tr(A, B, x), (42a)
¢ =N75% b (42b)

/t uN mN

The consistency proofs for the estimators defined in (42) are easily seen to be special cases of
those for the heteroskedastic terms considered in the next section and thus omitted for the
sake of brevity.

1.2.2. Estimation of “heteroskedastic’ terms
Consider first @j}, as defined in (40). Its estimation is simplified by the fact that the matrices

A,y and B, and thus the elements c, , are time-invariant, i.e., ¢; ;s =C; ;- As shown

it, js,

in Lemma C.5 in Appendix C, a consistent estimate of & is given by

~ T

QSv’,ON (T l) N ZZQ I NZZVItNV]SN ) (433.)

i=1l j=1 t=1 s=1




Next, consider &%, = 2N’1ZcV wnOunn - Under normality, and noting that elements ¢,  are

time-invariant, this can also be written as weighted sum of fourth moments as

N
& = 2 N™> Coin Zav(“,i « » Which can be estimated consistently using

. 2.k k,m,
N== ———aqa,], where 43b
=l e 2 oy ) (430)

N i=1 ’ t:l_
_ 1 N T > 1 T >
ay=—.¢ V; )
2N N ; i,N tzl_lt N T _lr:1_|r N
r=t
. T S i)
©oT-277-3T+9 ' ' T°-2T7-3T+9’

TZ(T—l) (T =2)(6T —-9)
i 2 K =- 3 2 :
T°—4T“+6T -3 T°—4T“+6T -3

The derivation, using a bias correction in the spirit of Stock and Watson (2008), and the proof
of consistency is given in Lemma C.6a in Appendix C.

In light of the previous results, estimation of QE\*,“’N is straightforward; exploiting the fact that
the weights matrices are time-invariant, a consistent estimate is given by

¢ 4~21 T

vp,N

Tr(AV AN > NBuun) (44a)

where £, = diag)[(7, )]

Finally, an estimate of & is given by

- T o =
€, N :ma‘v,NE:va,N : (44b)

That € —€ =0,(1) follows from Lemmata C.2 and C.3 and Remark C.1 thereafter in
Appendix C.

We summarize the results of section 1.2 with the following theorem.

Theorem 4b. Consistency of ‘i"N



Suppose all of the assumptions of Theorem 4a and Assumption 7 holds and that v, and p,
are normally distributed. Let the elements of "I“’N be defined as above (from (39) to (44)).
Then, ¥, — P, =0,(1) and v - =0,(1).

Remark 4: Under non-normality, Theorem 4.b holds under additional assumptions regarding

the moments of v and p, and with augmented definitions of the elements of ¥ and ‘i’N ;
details are given in the Appendix.

1.3 Estimation of ¥,
It remains to provide an estimate of ¥, , which is required for tests of joint hypotheses

concerning the regression parameters o, and the parameters associated with the spatial

regressive disturbance process 0, .

As evident from the results in section 1.2, the assumptions maintained in Theorem 4b are
sufficient to prove that the following expressions consistently estimate the columns of ¥,

as defined in light of (32c), provided that v, and p, are normally distributed:

\T’Ae,.,(c,s,s’),N = \T’XG (c,s,8"),N + \T’ze,.,(c,s,s'),N ’ c :11""4’ S’ S, :1""’ S ’ Wlth (45)
_ Tl/2 R~
\l’xe,.,(c,s,s’),N = N(T -2) (F’ ):' csj N) and

-~ l 1 ! ~ss
\|’§e,.,(c,s,s'),N :WT“Z (F NG N)

Theorem 4c. Consistency of ‘AI"AOYN
Suppose the assumptions of Theorem 4b hold and let (the columns of ) ‘i’AeN be defined by

(45). Then, we have ¥,y =O(1), ¥oun —¥oun =0,1), and ¥,, =0, ().

Remark 5: Under non-normality, Theorem 4c holds under additional assumptions and with
augmented definitions of the columns of ¥, ,, and ‘i’Ae'N ; details are given in the appendix.

2. Estimation of QN

The estimate of J,, is given by

~

-T\B,. (46)



The elements of fN are defined in (17) with the expectations operator suppressed and the
disturbances u, replaced by their estimated counterparts. For simplicity of notation, the

estimated disturbances are denoted as U,, throughout, though it should be clear that they are

A *

generated by the respective estimators EN, [ 5:,, or EN defined above. For example,

*

under fixed effects (feasible) spatial generalized LS estimation, we have U, =y, —ZNgN.

The matrix B v is given by (20) with p, , replaced by the GM estimates p, ,, s=1,...,S.

Theorem 5. Consistency of ﬁWN

Suppose that Assumptions 1-7 hold. Let ‘f’W]N be defined as above (from (39) to (45)). Define
- -1/25¢ _ -1/25
O (‘]NQNJN) ‘]N®N O ®NJN(JN®NJN)

It follows that ©,, -€,, =0,(1), 2, =0(@),and &, =0,().

Proof.

Above we showed that ‘T’W,N -¥,n=0,(1). By assumption, P, —P,=0,(1), P, =0(),
and 5N =0, as well as (:)N -0, =0,(), ®,=0() and E)N =0,(@). In the proof of

Theorem 2 it was shown that jN -Jy=0,1), Jy=0(@), and J,=0,(1), and that
(3,0,J,) —(340,,) " =0,(1), (J©,J,)"=0@), and (J;0,J,)" =0, (D). It now
follows that ©,,, —€,,, =0,(1) and ,,, =O(1) and thus €,,, =0, (1).

Remark 5: Under non-normality, Theorem 5 holds under additional assumptions and with

augmented definitions of ¥, and v details are given in the appendix.

w,N

V1. Random vs. Fixed Effects. A Heteroskedasticity-Robust Hausman Test

In the following we derive a Hausman-type test of the spatial random effects versus the
spatial fixed effects model under heteroskedasticity of unknown form. Both estimators
considered are based on the spatial GLS transformed model (which removes the cross-
sectional interdependence) and use a heteroskedasticity-robust robust variance-covariance
matrix for inference. In general, neither of these two estimators will be efficient, such that we
use a generalized Hausman-test for inference (see, Weesie, 1999; Creel, 2004).

Consider the stacked vector of random and fixed effects estimates of the regression
parameters, which is given by



_ 12 4% NY2(§" —
d, :{NMA,T}:{ m@ﬂ F’N)}. (47)
N AN N @N _6N)
By Theorem A.1 in Kelejian and Prucha (2010)

Q.. Q.

oy dy dy

5 4o 2 Qs*s*
dy,—>Q, = NN (48)

As evident from (48), Q.. =T 'P{'¥,, \Py and Q. =T'Py ¥,, \ P\ - The off-diagonal

N

block of Q,, is given by

1wl o o o o
Qi =~ v o EnEun P (49a)

which can be estimated consistently — by the same logic as Q.. and Qs* — using

_1lpr 1 = $wE™ 1B
s, =7 g gy Fon I FunPs o)

The Hausman test, which is derived under the null hypothesis that the random effects model
as specified in section Il is the true model, takes the form of a Wald-type test of the restriction
that &, =9, . Define the discrepancy vector i, = 9 4, , where 4, = (85 ,0, )’. Note that

typically, the dimension of the parameter vector under random effects exceeds the parameter
vector under fixed effects by 1 due to the inclusion of a constant. Hence, for comparison of
the two estimators, we focus on a joint test regarding the slope parameters, i.e., we test

H,: PRq, =0 against H,: Rq, =0, (50)

where R =(0,,,,1,,—1,), assuming that the constant appears in the first row of the random
effects estimator S’;, . We use a generalized Wald-type test (e.g., Greene, 2003, pp. 95, 487),

which takes the form™

m ) (RO R) m, ~ 2(P), (51)

19 . . - . .
If one of the estimators is efficient, the off-diagonal blocks are equal to zero and equation
(51) reduces to the standard Hausman test.



where ﬁN =N7Q._ . and P is the number of restrictions, which is equal to the number of

dndy

. 20
slope parameters in the present case.

VII. Some Monte Carlo Evidence

In the following we provide some limited Monte Carlo evidence on the performance of the
estimation procedure suggested in the present paper. A comprehensive assessment, using a
broad range of parameter constellations, alternative distributional assumptions, and alternative
specifications of the weights matrices is beyond the scope of the present paper and left for
future research. We consider a SARAR(2,2) specification with two explanatory variables,

assuming that W, = M, .

2
y:X1ﬂ1+X2ﬂ2+z/’tr(lT ®Wr)y+u’ (528.)

r=1

u=ips(lT®Ws)u+s. (52b)

s=1

We consider three sample sizes: N =50, N =100, and N =250 and assume T =5
throughout. For each Monte Carlo experiment, we consider 1000 draws. The explanatory
variables x, and x, are generated as random draws from a standard normal distribution,
scaled with a factor of five, and treated as fixed in repeated samples. The parameters are as
follows: g, =p4,=1, 4, =05, 4,=0.25, p,=04,and p,=0.2.

The unnormalized N x N matrix W° consists of two N xN matrices W and W, , where
W + W, =W?°, The matrices W, and W, are specified such that they contain the elements
of W° for a different band of neighbours each. Otherwise, they have zero elements. In line
with Kelejian and Prucha (2010), we choose a design, where W, corresponds to an ‘up to 3
ahead and up to 3 behind’ specification and W, corresponds to a ‘4 to 6 ahead and 4 to 6
behind’ specification. The final weights matrices W, and W, are obtained by individually

row-normalizing W, and W . As already mentioned, we have M, =W, and M, =W, .

“ The theory underlying Hausman tests with not fully efficient estimators is derived in White
(1982, 1994). In a non-spatial context, such a generalized Hausman test is considered, e.g., in
Weesie (1999) or Creel (2004). Sufficient assumptions to ensure well-behaved asymptotic
properties in generalized Wald tests are derived and discussed in Andrews (1987) and Vuong
(1987).

“ For simplicity of notation, the subscript N is suppressed in the following.



Regarding the choice of instruments, we include linearly independent terms of up to second
order spatial lags of the exogenous variables. In particular, the matrix of untransformed
instruments H contains 12 columns and is given by

H=[X, (I, ® W)X, (I ®W,)X, (I, @ WE)X, (I, @ WE)X, (I; @ WW,)X]. (53)

The elements of the error term € are specified as ¢, = 1 +V,,, where the idiosyncratic error is

given by v, =0-5§n\/(0-5+0-1xfn +0.1x5,,) +\/KTH9“. Thereby ¢, and §, are draws from a
standard normal distribution and «;, is a draw from a uniform distribution with support

[0.5,1.5], which is treated as fixed in repeated samples. Hence, v, exhibits both conditional
and unconditional heteroskedasticity.

The individual effect is specified as y =7, X;; +7,X,; +W,, where W, is a draw from
normal distribution with variance 0.5. We consider two specifications: in the random effects
model we have =, =z, =0 (and, hence, Var(y; ) =Var(w, ) ); in the fixed effects model we

have 7, =m, =0.25 (and, hence, Var (g ) =Var(x; )x* +Var (W,)).

Results for the estimates of p, and p, are obtained by the GM estimator defined in equation

(18), using the optimal weighting matrix under normality (‘Ai';q)‘l. The estimates reported for
the regression parameters are FGTSLS estimates as defined in (35) and (36) using the
transformed set of instruments H™. For each single coefficient, we report the average bias
and root mean squared error for each parameter constellation and the rejection rates for the

test that the coefficient is equal to the true parameter value. For the random effects models,
we also show the results for the Hausman test.

< Tablel>

Table 1 reports the results of the Monte Carlo analysis for the three different sample sizes
considered, both under the random and fixed effects specification. Given that the natural
habitat of GM estimation is large samples, the performance in the smallest sample with
N =50 is acceptable. In the random effects (fixed effects) specification, the average bias and
RMSE amount to 0.0008385 and 0.0246475 (0.001719 and 0.027935) for the estimates of
A=(4,4,)" and -0.0096335 and 0.2563835 (-0.0106385 and 1.050696) for the estimates of

p=(p.,p,)". With an average rejection rate of 0.0685 and 0.139 (0.0650 and 0.1225), the
performance of the single hypotheses tests referring to A and p is not too bad as well. The
Hausman test is oversized with a rejection rate of 0.1060.

For moderately sized samples with N =250, the bias has virtually disappeared: in relative
terms it amounts to 0.01560 (0.0102) percent for estimates of A =(A4,,4,)" and to -0.1647



(-0.280) percent for the estimates of p=(p,,0,)" under random effects (fixed effects). The
average RMSE of the estimates of A= (A, 4,)" shrinks to 0.011376 (0.011466), that of the
estimates of p=(p,,p,)" shrinks to 0.213485 (0.800393) under random effects (fixed
effects). The size of the tests improves, but it approaches nominal size of 5 percent relatively
slowly. The reason for the latter partly accrues to the fact that the data for x, and x, are

generated as random draws. A second reason relates to the specific ‘ahead-behind’ design of
the spatial weights matrices, which — together with the properties of the explanatory variables
— results in a fairly high correlation between spatial lags of different orders. With explanatory
variables as in many empirical applications and less artificial spatial weights matrices, there
will be less correlation between the spatial lags of the explanatory variables and spatial lags of
different orders and the size of tests can be expected to approach the nominal size faster than
in the chosen design. Regarding the GM estimates of p, the average size amounts to 0.139

(0.123), that for the FGTSLS estimates of A to 0.0555 (0.139). The performance of the
Hausman test is worth mentioning, which has already approached its nominal size with a
rejection rate of 0.056.

The final column in Table 1 considers the case with N = 250 and where the sum of the
parameters of the spatial lag of the dependent variable is closer to 1, i.e., with A; = 0.6 and A,
= 0.35. As can be seen from the results, the performance in terms of bias and size is
comparable with the parameter constellation where the sum of A; and A, is smaller in
magnitude.

Overall, the Monte Carlo experiments illustrate that the proposed estimators work reasonably
well in terms of bias and RMSE, even in very small samples. Regarding the estimates of the
variance-covariance matrix of the parameter estimates, in particular those relating to the
disturbance process, some care is warranted in the interpretation of the results in small
samples, though the tests appear to be conservative in the sense that they under-reject the null
and the p-values converge from above for reasons mentioned in the previous paragraph. It
should also be emphasized that the results here are based on a correctly specified model with
a high signal to noise ratio. Hence, apart from a comprehensive Monte Carlos study using
alternative distributional assumptions and ‘real world’ explanatory variables and weights
matrices, an interesting extension for future research would be to explore small sample
corrections or re-sampling methods for the GM estimators considered in the present paper in
order to improve the performance in small samples or in empirical models with poor fit.

VI11. Conclusions

This paper derived a two-step estimation procedure for spatial regressive panel data models
with spatial regressive disturbances of the SARAR(R,S) type under both random and fixed
effects assumptions and allowing for heteroskedasticity of arbitrary form in the idiosyncratic



error terms. The regression model is estimated by two-stage least squares (TSLS) to obtain
consistent estimates of the disturbances, which are then used in the second step to obtain
generalized moments (GM) estimates of the parameters of the spatial regressive disturbance
process.

We provide a detailed study of the asymptotic properties of the proposed two-step TSLS and
GM estimators of the model parameters, prove their consistency and establish asymptotic
normality. Both for the original model and the spatial generalized least squares (GLS)
transformed model, we derive the joint and asymptotic variance-covariance matrix, which is
robust to (cross-sectional interdependence and) heteroskedasticity of unknown form. This
enables robust tests of the general SARAR(R,S) model against restricted alternatives such as
SARAR(0,S) and SARAR(R,0) or SARAR(1,1) with random and fixed effects panel data
models under heteroskedasticity. We also propose a generalized Hausman-type test of the
spatial random versus the spatial fixed effects model.

The framework suggested in the present paper provides a flexible tool for applied
econometric researchers for empirical models with cross-sectional interdependence and
allows to study the strength and pattern of spatial interdependence more flexibly and under
less restrictive assumptions than existing SARAR(1,1) models assuming homoskedasticity.
Allowing for alternative modes of interdependence and determining the proper pattern of the
interdependence decay function is not only of interest in itself but also a prerequisite for a
correct model specification and valid inference.



Table 1. Monte Carlo Results, 1000 draws

N =50 N =100 N =250 N =250
RE FE RE FE RE FE RE FE

/ﬁtl =05 ﬂl =0.6
Bias 0.001082 0.002029 -0.000113 0.000359 0.000237 -0.0000468 0.000161 0.000587
RMSE 0.02395 0.026601 0.018157 0.016493 0.010799 0.011269 0.009209 0.009012
Rej. Rate 0.074 0.068 0.045 0.049 0.046 0.042 0.056 0.048
12 =0.25 ﬁz =0.35
Bias 0.000595 0.001409 0.000259 0.000791 -0.000120 -0.0000301 -0.000073 -0.000654
RMSE 0.025345 0.029269 0.019095 0.017378 0.011953 0.011663 0.010053 0.009981
Rej. Rate 0.063 0.062 0.05 0.054 0.065 0.051 0.047 0.052
pi=1 pi=1
Bias -0.000313 0.000429 -0.000564 -0.000313 0.000187 -0.000447 0.000286 0.00000197
RMSE 0.017017 0.01953 0.013611 0.012649 0.008170 0.008024 0.008164 0.007508
Rej. Rate 0.049 0.057 0.064 0.064 0.049 0.054 0.061 0.042
p=1 p=1
Bias -0.000125 -0.000613 0.000103 -0.000262 0.000005 -0.0000729 -0.000561 0.000248
RMSE 0.018706 0.019158 0.012461 0.011945 0.008016 0.007815 0.00777 0.008334
Rej. Rate 0.057 0.087 0.054 0.047 0.047 0.053 0.048000 0.052000
=04 m=04
Bias -0.002348 0.014094 0.000859 -0.00071 0.000162 0.003757 -0.000614 0.004045
RMSE 0.184249 0.954723 0.146618 0.670901 0.121458 0.701775 0.126152 0.747754
Rej. Rate 0.147 0.122 0.126 0.115 0.146 0.131 0.125000 0.133000
=02 =02
Bias -0.016919 -0.035371 -0.004592 -0.010192 -0.000656 -0.005854 -0.005464 -0.011615
RMSE 0.328518 1.146669 0.314663 0.864678 0.305513 0.899012 0.312235 0.945605
Rej. Rate 0.131 0.123 0.131 0.116 0.132 0.115 0.118000 0.128000
Hausman-test
Rej. Rate 0.106 0.058 0.056 0.054
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APPENDIX. Variance-Covariance Matrix Under Non-Normality of Error Components
As already mention in the main text, Theorems 4b and 4c as well as Theorem 5 also hold

under non-normality with different definitions of ¥, and ‘¥, respectively. In the

following, we provide the definitions of the respective elements under non-normality and
define consistent estimates for them.

1.1 Distribution of GM Estimates under Non-Normality (Definition of ¥, )

If we drop the assumption that p,, and v are normally distributed, equation (28b) becomes

szz tNt - lCOV(qC N ’qc N (Ala)
=NTCov[g| AZLEy +(ATH)En ENALEN + (@5 ) EN]
= N"Cov[g}|A ?\lgN +(ach) Vi +(acuN)uN'éNAttNéN _,_(aC VN) vy + (@) pN)uN]

A'[I

=2N7Tr(AY W ZNAY, W Z +202(As,sfw),2 A“vHN +0'4ASS

c,v c,;m,N

AttuN)

+N71[(ach)Z a'ch +o (acuN)ac uN]

4 4
+N ZacvnnN cvnnN( 6r3N_3GvnN)+(G() 30 )N zanIIN (t:tpuN

©) ©INRS
+N Z(a‘cvnNac vnnN+a‘cvnnN cvnN) vnN+o— N Z(ac;uN cu||N+an||N CplN)

Adopting the notational convention introduced in section V, subsection 1.2, (A.l1a) can be
written as

¢, = Q‘:T,‘YC’N +€;’N +@T,H’N +C€::N +@:N (A.1b)
+E +QE:’;, +E +QE:*§,

i.e., € , =0, and the additional terms, appearing in the second row of (A.1b), are defined as:

NT
712 v,n, N( \542 N \in,N) (A2a)
n=1
N
@ (0(4) 36,3)N712Cp,ii,N (A.2b)
i=1
e = Nilzdv nN V(Sn) N (A.2¢)

(A.2d)

i, N?

Fkkk _ (3) 71
¢\ =0N Zd
i=1



where o and ol (o and o!”) denote the third and fourth moments of p, (v,),

. 22
respectively.

As shown in Lemma C.4 of Appendix C, the third and fourth moments of ., , denoted as

o and o”, can be estimated consistently using

_ 1 N T T - -
(3) ZZZ 2
o = E.nEir and A3a
NONT(T-) S5 = S (A5
~(4) 1 A ZT = g3 (A.3b)
o\ =— E E EnEi .
ILI,N N-I- (T _1) et e - is,N “it,N

3 N T T - 1 N T - N T T
_—_]_)_ZZZEIS NgltN(NTZ gItN NT(T 1)222 is, NgltN)’

i=1 t=1 i=1 s=1

S
where EN = IT ®(IN _Zﬁm,NMm,N)GN

Hence, consistent estimators of the expressions in (Al), associated (only) with the
homoskedastic, time-invariance error component g, , , are given by

N
=" -3GIND cin s (A.4a)
i=1
QE;LN _0(3)N_1ZdulN Wlth d (apanpnnN +aunnN pnN) (A4b)

Next turn to €., which we rewrite as

*hk
QEV,N

=QE:1*N _stzN with QSVlN = N_lzcvnN \54n)N and QszN = N_lzcvn NOv,n,N (A.59)

n=1 n=1

We first consider &, and note that the elements c, ,, are time-invariant. By Lemma C.6a,

a consistent estimator of &, is given by

“ For the elements, where both ¢ =2 (or c=4)and c'=2 (or c'=4), the terms involving
the third and fourth moments drop out.



ok k 1. N il 1. il ~2
&= 0 c Vo + c Vo ., (Aba
vl,N 1—k1ml T; VINZ it,N 1 km NZ v,i,N tl_|tN-|- lrl 2ir,N ( )
r=t
where
. T® m = 2T -3
° T -2T7-3T+9 T°-2T°-3T+9’
T(T -1 o (T —-1)(6T -9)

ST AT +6T-3) 1 (T°-4T’+6T-3)

Next consider &, , which involves a weighted sum of the squared variance. Without

distributional assumptions and unknown heteroskedasticity over both cross-sections and time,
it is not possible to obtain an estimates of (a weighted sum of) the squared variances. (Using
the fourth power of the residuals estimates a weighted sum of the fourth moments.) Hence, an
approximation is required, assuming that the idiosyncratic error components are

heteroskedastic only over cross-sections, but not over time, i.e., v,  ~i.d.(0,07) . Under that

assumption, the following expression consistently estimates &, as shown in Lemma C.6b

in Appendix C:

~ N T T
QSVZ,N ch 1 \ilt N 1 \Z|2r,N + mlk 1 CVI N
1- m1k1 i-1 T t=1 T-1 -1 1-mk, NT i-1 t

r=t

N T

VIt v+ (A.5b)
=1

where m,,m;, Kk, k, are defined as above.

Finally, a consistent estimate of ¢ is given by

~
Fkkk

ev,N - N(T 1)Zdvn N(vnHNR) Wlth a-v,n,N :(é‘-v,n,Nbv,nn,N +av,nn,N6v,n,N)v (A6)

TT-1) -
= Vin +
T°-3T+3 (T - l)
Lemma C.7 and Remark C.3 thereafter in Appendix C.

where (Vs Zv,r v]. The consistency of Q‘EvN follows from

1.2 Joint Distribution of Regression Parameters and GM Estimates under Non-
normality (Definition of ¥, )

Under non-normality, equation (32c) becomes augmented by terms involving the third
moments of the error components as follows:

WAO,.,(C,S,S’),N = \I’XB,.,(c,s,s'),N +‘|’§9,.,(c,s,s'),N ’ c :11""4’ S’S’ :1""’ S ’ Wlth (A?&)



11

\IIXG,.,(C,S,S'),N = N T1/2 [ v,N (2(3) Ass +X a'c v, N)] ) and
11
\|’Ae (c,s,8"),N = NT1/2[ ( © Az‘:‘"N /1 C|,1N)

where X =diag(c{?)) is an NT xNT diagonal matrix with third moments o,

n=1..,NT, k is an NT x1 vector with the main diagonal elements of A%, and

ASS

c,v,N

K isan N x1 vector with the main diagonal elements of A>® .

s,8'
AcpN

In light (32c¢) and the results of section 1.2, the assumptions maintained in Theorem 4b are
sufficient to prove that the following expressions consistently estimate the elements of ¥, \ :

‘T’Ae,.,(c,s,s’),N = ‘T’Xﬂ,.,(c,s,s'),N +‘T’§9,.,(c,s,s'),N ’ c :11""4’ S’S, :1""’ S ’ Wlth (A7b)
1 -|-1/2 5 HR,(3) HRY
\l’XG,.,(c,s,s'),N = Wﬂ[F\;N (ZN Y KA;i" EN ac v, N)] and

iy _ “‘(3)
Wie,.,(c,s,s’),N - N T1/2[ ( " +U an N)



TECHNICAL APPENDIX

APPENDIX A

Notation

We adopt the standard convention to refer to matrices and vectors with acronyms in boldface.
Let A, denote some matrix. Its elements are referred to as a; ; a; y and a; , denote the i-
th row and the i-th column of A respectively. If A, is a square matrix, Ay denotes its
inverse; if A, is singular, A, denotes its generalized inverse. The (submultiplicative)
matrix norm |-| is defined as |A[=[Tr(AyA)I"%. In several places, we use single
indexation, e.g., n=1...,NT, to denote elements of the vectors or matrices that are stacked

. - 23
over time periods.

Remark A.1

i) Definition of row and column sum boundedness (Kapoor, Kelejian, and Prucha, 2007, p.
99): Let A,,N>1, be some sequence of NT xNT matrices with T some fixed positive
integer. We will then say that the row and column sums of the (sequence of) matrices A are

bounded uniformly in absolute value, if there exists a constant ¢ < oo, which does not depend
on N, such that

NT NT
o< < >
IQ%T; a,|<C and lQ%TnZ:; a,y|<c forallN>1.
i) Let A, be a (sequence of) N xN matrices whose row and column sums are bounded

uniformly in absolute value, and let S be some T xT matrix (with T >1 fixed). Then the
row and column sums of the matrix S® A, are bounded uniformly in absolute value

(compare Kapoor, Kelejian, and Prucha, 2007, p. 118).

iii) If A, and B, are (sequences of) NT x NT matrices (with T >1 fixed), whose row and
column sums are bounded uniformly in absolute value (by c, and c;), then so are the row
and column sums of A B, and A, +B, (by c,c; and c,+cCy). If Z is a (sequence of)

NT x P matrices whose elements are bounded uniformly in absolute value, then so are the
elements of A,Z, and (NT)*Z,A,Z, . Of course, this also covers the case (NT)*Z}\Z,

for A, =1y; (compare Kapoor, Kelejian, and Prucha, 2007, p. 119).

® Take the vector Vy =(Vyyn Vi)', for example. Using indexation n=1..,NT, the
elements v, ,n=1..,N, refer to period t =1, elements u,,,n=N+1..,2N referto t=2,

etc., and elements u, ,n=(T —1)N +1,...,NT refer to period t =T .



iv) Suppose that the row and columns sums of the NT xNT matrices A, =(a;,) are

NT
. . .. q
bounded uniformly in absolute value by some finite constant c,; then E anj,N‘ <cy for
n=1

g >1 (see Kelejian and Prucha, 2009, Remark C.1).

v) Let &, and m, be NT x1 random vectors (with T >1 fixed), where, for each N, the
elements are independently distributed with zero mean and finite variances. Then the elements
of (NT)¥2Z}&, are O, (1) and (NT)™& A, is O,(1)."

vi) Let £, bea NT x1 random vector (with T >1 fixed), where, for each N, the elements are
distributed with zero mean and finite fourth moments. Let z,, be some nonstochastic NT x1

vector, whose elements are bounded uniformly in absolute value and let II, be a NT x NT

nonstochastic matrix whose row and column sums are bounded uniformly in absolute value.
Define the column vector d ==, +II§, . It follows that the elements of d have finite

fourth moments.”

Remark A.2
The matrices Q, , and Q, have the following properties (see Kapoor, Kelejian, and Prucha,

2007, p. 101):

tr(Qun)=NT -1, r(Q.)=N, Qyy(e; ®1)=0, Q. (e; ®l)=(e; ®I),
Qonen =QonVin:y Quugny = (& @1y +Q vy, (I ®Dy)Qy = Qo (Ir ®Dy),
(I; ®Dy)Qyy =Qyn(I; ®Dy), tr[(l; ®Dy)Qq ] = (T —1tr(Dy),

tr[(l; ® Dy )Qy1=1tr(Dy),

“ Kelejian and Prucha (2004) consider the case T =1 and identically distributed elements of
&y and m, . Results hold up for (fixed) T =1 and under heteroskedasticity, as long as the
variances of the elements of &, and n, are bounded uniformly in absolute value.

* Kelejian and Prucha (2009, Lemma C.2) give a proof for T =1 and independent elements
of , . The extension to (fixed) T >1 is obvious. Independence of the elements of {, is not

required for the result to hold. The fourth moments of the elements of d, ==, +II,{, are

NT NT
given by E(”i,N +Z”ij,N§j,N)4 <2 E[”fN +(Z7Z-ij,N§j,N)4]
-1 -1

NT NT NT NT
= 24[7[:,1N +ZZZZ‘7[U,NH”ik,N“ﬂu,N””im,N‘E‘gj,N“gk,N“gl,N“gm,N‘] <K<, by Holder’s
1

j=1 k=1 1=l m=

inequality as long as the fourth moments of the elements of £, are bounded uniformly.



where D, is an arbitrary N x N matrix. Obviously, the row and column sums of Q,, and

Q. are bounded uniformly in absolute value.



APPENDIX B

Lemma B.1*
Let A, be some nonstochastic NT x NT matrix (with T fixed), whose row and column sums

are bounded uniformly in absolute value. Let u,, be defined by (2c) and u, be a predictor

for u,, . Suppose that Assumptions 1 to 4 hold. Then
(@) N7EjujAyuy|=0(1), Var (N"ujAyuy) =0() ,and N7 (T Aly) - NEU Auy) =0,(1) .

(b) NE

d.’j,NANuN‘:O(l)’ j=1..,P,where d; is the j-th column of the NT xP matrix

Dy, and N"'Dj AT, —N"E(DAu,)=0,(1).

(c) If furthermore Assumption 6 holds, then

N~Y20 ATy = N 2ul Aguy +al NY?A +0, (1) with @ = NTE[D) (A + A} )u,].
In light of (b), we have a, =O(1) and N'D} (A, +A})Uy—a,=0,(1).

Proof of part (a)
Let

9, =N"u A, and 4, = NT, A, (B.1)

Given (4a), we have 4, = N'¢\& &, , with the symmetric NT x NT matrix & ,, defined as

6N = (1/2)[|T ®(IN _me,NM:n,N)il](AN +A,N)[IT ®(IN _me,NMm,N)il] (B-Z)

By Assumptions 1-3 and Remark A.1 in Appendix A, the row and column sums of the
matrices &, are bounded uniformly in absolute value. Let Q, =o.(J; ®1,)+X, then

given Assumption 2, the row and column sums of the matrices &€, &L, are bounded

uniformly in absolute value.

In the following let K <o be a common bound for the row and column sums of the absolute
value of the elements of &,,Q,,, and &,Q,,6,Q,, and of the absolute value of their
respective elements. Then

NT NT

E|‘9N|: E N_lzzbnj,Ngn,Ngj,N (B.3)

n=l j=1

“ Compare Lemma C.1 in Kelejian and Prucha (2009) for the case of a cross-sectional
SARAR(1,1) model and Lemma C.1 in Badinger and Egger (2008b) for the case of a cross-
sectional SARAR(R,S) model.



bnj,N\E

&nN ‘gj,N‘

NT NT
SNTR2
n=1 j=1
NT NT

D)

n=l j=1

o. o . <TK3,

enej —

bnj,N

where we used Holder’s inequality in the last step. This proves that E|9, | is O(1).

Now consider Var(9,), rewriting 4, as quadratic form in &, =(vy,py) and invoking
Lemma A.1 in Kelejian and Prucha (2009):

Var(9,) = Cov(N '€\ & &, , N '&,&S &) (B.4)
= N_zcov(ar\lgNFsN ’gll\lgNgN)

o o NT
=2N7Tr(6,Q, 6,9, )+ N> 5 .[E(\) -3,
n=1

where &, is a N(T +1)x N(T +1) matrix, whose elements and row and column sums are
bounded uniformly in absolute value by some constant K”. Next, 5, is the n-th diagonal
element of & =(5,,.4) =S\ &Sy, with S S, =Q, , where €, is the variance-
covariance matrix of & , which is diagonal with elements o, for n=1...,NT and elements
aj for n=NT +1,...,N(T +1). Finally, the vector n, =S€, . In light of Assumption 1, the
row and column sums (and the elements) of S, are bounded uniformly in absolute value by
some finite constant, say K™. Moreover, the row and column sums (and the elements) of S;;

are also bounded uniformly in absolute value by some constant K. Finally, in light of
Remark A.1 and Assumption 1 it follows that the elements of m, =S¢, have finite fourth

moments. Denote their bound by K™ . Without loss of generality we assume that the bound

K used above is chosen such that K" <K, K"<K, K™ <K, and K™ <K . Hence, we
have

.....

The claim in part (a) of Lemma B.1 that N~'(uyAyu,)—NTE(UyAuy)=0,(1) now
follows from Chebychev’s inequality (see, for example, White, 2001, p. 35).

We now prove the second part of (a), i.e., N7'(U\AUy)—N"E(U\Auy)=0,(1). Since

4 —E(4)=0,(Q), it suffices to show that §N -8, =0,(1). By Assumption 4, we have



Uy —uy =DyA,, where Dy =(d; ,....dy; ) . Substituting Uy =u, +DyA, into the

expression for 9, in (B.1), we obtain

9, -9, =N (ul, +A, DA, (U, +DyA) = NTU AU, (B.5)
= NYA, D, (A, + AUy + A, DA DA, ]
=P +Wn
where
¢y = NTIALDL (A + AUy ], (B.6)

S
= N{ALDL (A + AV @1y =D P My ) ey}
=1
=N"(A\D\Cygy),
S
with Cy = (Ay + AL @y =Y P uMon) 1= (€ 1 Cpr 1)+ and
=1
vy, = NTA DA DA, . (B.7)
By Assumption 3 and Remark A.1, the row and column sums of C, are bounded uniformly
in absolute value. We next prove that ¢, =0,(1) and y =0,(1).
Proof that ¢, =0,(1):

|¢N|:'\rl

A DL Cyy| (B.8)

NT
=N~ ZA,Nd’n.,NCn.,NSN

n=1

1 NT
<N [AL]
n=1

’
din

Cn.,NSNH

NT NT

_ 1At '

= NTIALD e wf [ cn i
n=1 j=1

NT NT
-1 ' !
< NTJALR Jdnn] 2 an,Ngj,NH
n=1 j=1
. NT NT
N ' '
= N7 AL ‘chj,N ‘SJ,N‘
n=1 j=1
. NT NT
N A ’
= N7|AY Z‘gj,N‘z din Cajn
j=1 n=1

NT NT ) e Nt ] g
-1 ’ i
< N7Ay Z‘gi.N‘ > [ 2 an,N‘
j=1 n=1 n=1



NT NT VPN q e
_ Nl/pl/Z(NlIZHAN”)[Nlz‘gj,N‘][Nl di ‘pj [Z an,N‘ ] .
=1 n-1 =

NT

Note that (Z

n=1

an’NU < K < oo by Assumption. In the following we denote by K the uniform

bound for the row and column sums of the absolute value of the elements of A, and C,,.

NT /g
q a2 q
j <K* and thus (Z an,N‘ ]
n=1
<K . Factoring K out of the sum yields

1/p
|¢N| < KNY p1/2(N1/2||AN”{N1%‘81_“‘][-'-('\”-)1% ‘Pj '
j=1 n=1

This holds for p=2+¢6 for some 6>0 as in Assumption 4 and 1/p+1/g=1. By

NT
From Remark A.1 in Appendix A, it follows that (Z

n=1

an,N

!
dn.,N

Assumption 4, NY?A|=0,(1).  Assumption 4 also  implies that

s

1/p
‘p] =0, (1) for p=2+4 and some & >0.

!
dn.,N

NT
Moreover, E‘aj,N‘S K <o, which implies that N’lz &n|=0,(). Since NYP2 50 as
n=1

N — oo it follows that |¢, | = 0, (1) . For later reference, note that |4, |= Rop(l) =0, (1), where

we can choose K =2c,c,, where ¢, and ¢, are the bounds for the row and column sums of
S

the absolute values of the elements of A, and [I; ®(I, —me,NMm,N)’l], respectively.

m=1

(Compare (B.6) and Remark A.1).

Next consider

NT NT
|l//N| = N - A,N D,N'A\N DNAN | = N - ZZA'Nd;.,Nanj,Ndj.,NAN (Bg)
n=1 j=1
4 2 NT , NT
<N S0 o
n= J=

’
dn.,N

NT ] eyt a g
(Sl ]St
j=1 j=1
NT p
JCR

NT ol
_ Nl/p—l/ZN—lIZK(Nl/ZHAN||)Z [N‘lzudj_“”p} =0,(1).
-1

. 0T
<N7Ad 2,

NT
< N”"K||AN||2[N‘1Z
n=1

!
dn.,N




From the last inequality we can also see that N*/?y, =0, (1) . Note that |y, | = Rop(l) =0,(1),

where we can choose K = 2¢,Cp . Summing up, we have proved that v =0,(1).



Proof of part (b)
Denote by, the s-th element of N'D}, A u,,. By Assumptions 3 and 4 and Remark A.1

in Appendix A there exists a constant K <oo such that E(qu) <K and E‘dij'N‘p <K with
p=2+¢ for some & >0. Without loss of generality we assume that the row and column

sums of the matrices A, are bounded uniformly by K < oo. Notice first that
<(Eu?, J*(Ed? , }'*

< (Euﬁ,N }/Z(E‘djs,m p)llp

< KY2KYP = KY2%'P with p as before.

E d

un,N

js,N

It follows that
NT NT
=N"Y >
n=l j=1
o 1/2+1/ 1NZT:NZT:
<KYSHPNT

n=1 j=1

E

*
19st

anij‘ E

un,N

\d

(B.10)

js,N

aan‘ SEllzmpN_lNTl?:Tl?g/zmp<oo,

which shows that E‘N’ld.’s'NANuN‘ =0(), and also that @, = N"'E[D} (A, + A} )u,]=0().
It is readily verified that Var (J) = o(1) , such that we have 3 — E(%) =0, (1) . Next observe
that

N'D| AU, = N"'D AU, +d, (B.11)
where ¢, =N"'D,A,D,A,. By arguments analogous to the proof that ¢, =
N[AL D} (A + Ay )u1=0,(1), it follows that ¢ =0, (1) . Hence I -9 =0,(1), and thus

9 —E(%)=0,(1), which also shows that ND}, (A, + A} )Ty —~0,=0, (1) .

Proof of part (c)
In light of the proof of part (a)

N20 AU, = NY2ug Aguy +[Nup (A + AL DG INY?A L + NY 2 (B.12)
where N*?y, =o0_(1) as shown above, and in light of (b) and since N*?A, =0, (1) by
Assumption 4, we have

NY20 ATy = N2ug Aguy + NY2ag Ay +0, (D). (B.13)



Proof of Theorem 1. Consistency of the Weighted GM Estimator
We first show that Assumption 5 also implies that the smallest eigenvalue of I'y®, T is

bounded away from zero, i.e., that 4, (I'y®,I'y) = 4, for some A, >0. By Assumption 5
and in light of Rao (1973, p. 62),

2 mld
XTIy X
2

. (D) =inf >, >0, (B.14)

Using Mittelhammer (1996, p. 254) we have
XT\ T X

1.

, . XT 0, I X
j“min (FNQNFN) = Irlf % min XX

> A (E)inf

= Ain (G)N)ﬂ’m (FINFN)Z% >0, (B.15)

with 4, = 4.4 since = 4;,(@,) = 4. >0 by Assumption 5.
The objective function of the weighted GM estimator and its nonstochastic counterpart are
given by

Ry(0)= (¥, ~T',b)®, (¥, ~T,b) and (B.16a)

ﬁN (2) :(YN _FNE)’GN ('YN _FNE) (B-16b)
Since y, —T'yby, =0, we have R (8,)=0, ie, R,(8)=0 at the true parameter vector
0y = (o Psnr0,) - Hence,

ﬁN (Q)_ﬁN (GN):(E_bN),F'NGNrN (E_bN)' (B.17a)

In light of Rao (1973, p. 62) and Assumption 5, it follows that:

§N (Q) - ﬁN (ON) > ﬂ'min (F’NG)NFN )(E _bN )’(E _bN) and (B-17b)

F_2N (2)_ ﬁN(BN) 2%(2—51\1)'(2—51\1)-
By the properties of the norm ||A]|=[tr (AA)'?, we have ||Q—6||2 <(b-b,)(6-by) such

that Ry (8) — Ry (0y) = %||Q -0, ||2 . Hence, for every £ >0

lim inf [R,(®)—R,(0)]> inf A[0—0,[ =4s*>0, (B.18)

N_)OO{Q:HQ—BN Hzg} {Q:HQ_BN HZS}

which proves that the true parameter vector 0, =(p, ..., 05 ,0.) s identifiable unique

(compare Lemma 4.1 in Potscher and Prucha, 1997).

Moreover, let §, =Yy ,—fN) and @, =(yy,—I'y). Then, the difference between the
objective function and its nonstochastic counterpart can then be written as
Ry(@,0) = (LB)F/0,F, (Lb) and (B.192)



Ru(0) = (Lb)®\, 0, @ (Lb), (B.19b)
such that

Ry (@,0)~ Ry (0) =|(LB)(F}0,F\, — @O, @)L b)Y

= ‘sl:léN&N —0,0,®, H ”(1’ Z)HZ

25+5(5-1)

< ‘ :

810y8\ ~ @\O®, [1+S(2)’ + ) +b2].

As evident from (17), the elements of the matrices y, and I'y are all of the form u 2 u,,
where 2, are nonstochastic NT x NT matrices, whose row and column sums are bounded

uniformly in absolute value. In light of Lemma B.1, the elements of ®, are O(1) and it
follows that HSN —(I)NH1>O and HSK,E)NSN —tI)’N(DNCI)NHim as N — . As a consequence,
we have (for finite S)

sup Ry (,0) - Ry (0)| <[[8 &\, - @\ @, ]|[1+S(a")’ +y(a”)“+bz]£>0 as N -,

—a”siga/’ s=1,..S ,i‘ie[o,bﬂ]

(B.20)
Together with identifiable uniqueness, the consistency of 8y = (D, /Osx Tay) NOW

follows directly from Lemma 3.1 in Potscher and Prucha (1997).

Proof of Theorem 2. Asymptotic Normality of 6N

To derive the asymptotic distribution of the vector ¢, , defined in (30) we invoke the central

limit theorem for vectors of linear quadratic forms given by Kelejian and Prucha (20009,
Theorem A.1). The vector of quadratic forms in the present context, to which the Theorem is

applied is ¢, =N"%,; its variance-covariance matrix is given by ¥, =N¥, and

(\i;N )—1/2 — N—l/Z‘PNIIZl

Note that in light of Assumptions 1, 2 and 7 (and Lemma B.1), the stacked innovations &, ,

. s,s' s,s' 5,8’ 8,8’
the matrices A7, Ag,. and the vectors a7 and ag,

c=1..4, s,s=1...,S, satisfy

the assumptions of central limit theorem by Kelejian and Prucha (2009, Theorem A.1).

It follows that
- (‘I”l:l )71/2qt\l = _N 71/2‘11&1/251; = _‘P&llzq N d_>(0’ I4S+2) 1 (821)

since N4, (¥) = 4, (¥,) > 0 by assumption as required in Theorem A.1.

in



Since the row and column sums of the matrices A

>*, the elements of the vectors a7y,

c=1..4, and s,5'=1..,S, and the (4+7)—th moments of v, and p, are bounded
uniformly in absolute value, it follows in light of (28) that the elements of ¥, and also those

of W} are bounded uniformly in absolute value.

~

We next turn to the derivation of the limiting distribution of the GM estimator 0. In

Theorem 1 we showed that the GM estimator §N defined by (18) is consistent. It follows that

— apart from a set of the sample space whose probability tends to zero — the estimator satisfies
the following first order condition:

0 = . um = 00y (0y,Ay) = =
204600, (0,.8,) = 1O g, @, =0, (.22

which is a (S +1)x1 vector, the rows corresponding the partial derivatives of the criterion

function with respectto p,, s=1..,S,and o.

Substituting the mean value theorem expression

aq, (0, A

a _ ) (; _
Oy (04, Ay) =0y (0y,Ay) + ey (0, —6y), (B.23)

where 0, is some between value, into the first-order condition yields

00, (0,,A,) = 90, (8,,A ~ o0, (0,,A,) =
qN(a(r; N)GN qN(ag, N)Nllz(eN _ON):_WGNNUZC}N(BWAN)- (B.24)

Observe that %=R%N and consider the two (S +1) x (S +1) matrices
= aqy(0y,Ay) =~ 00,0, Ay) S == = e
Z, = qN(ag e, qN(ag, W _ % 6,18, (B.25)
=, =%B,T,0,I,8,, (B.26)

where %N and B, correspond to 9B, as defined above with ﬁN and 0, substituted for
0, . Notice that =, is positive definite, since I'y and ©, are positive definite by

assumption and the [2S + S(S —1)/2+1]x (S +1) matrix 2B has full column rank.

In the proof of Theorem 1 (and Lemma B.1) we have demonstrated that T', —I'y, >0 and

that the elements of T’ and fN are O() and O, (1), respectively. By Assumption 5,
(:)N -0, =0,(1), ®, =0(1) and (:)N =0,(1). Since p, and p, (and thus also %N and



%B,,) are consistent and bounded uniformly in probability, if follows that EN —E, =0,(),

(LI

v=0,(), and E, =O(1). Moreover, E is positive definite and thus invertible, and its

=-1

inverse = isalso O(1) .

Denote =, as the generalized inverse of Z, . It then follows as a special case of Lemma F1
in Potscher and Prucha (1997) that EN is non-singular with probability approaching 1 as

N —s o, that E;, is O, (1), and that E;, &, =0, (1).

I

Pre-multiplying (B.24) with E; we obtain, after rearranging terms,

= s = =, 80, (0,,A,) =
Nl/z(eN -0,)= (IS+1_'=‘N'=‘N)N1/2(9N -0,)- N1/2'=‘N WGNqN(BN'AN) .(B.27)

In light of the discussion above, the first term on the right-hand side is zero on w-sets of
probability approaching 1 (compare Pétscher and Prucha, 1997, pp. 228). This yields

Py = 0 6 AV 5
NY2(0, —8,)=-E; W@NN“Z%(@N,AN)WP(D. (B.28)

Next observe that

=, O E,A ~ —_—loy ! ot
:NW%_“N 0, =0 (1), (B.29)

since Ef, ~E =0,(1) and %—%NFN =0,(1).

As we showed in section 111, the elements of N*'*q,, (8,,A,) can be expressed as
N*2qy (0, Ay) = N5 +0,(1) =g, +0,(1). (B.30)

where q, is defined in (24), and that

= () =N = (0, ,). (B.31)
It now follows from (B.28), (B.29), and (B.30) that

NY2(0, —8,) = E,10,,0, ¥i2 (¥, ) +0,1) . (B.32)
Since all nonstochastic terms on the right hand side from (B.32) are O(1) it follows that

NY?(8, —8,) is O, (1) . To derive the asymptotic distribution of N?(8,, —8,), we invoke

Corollary F4 in Potscher and Prucha (1997). In the present context, we have



Gy =—¥y "%y HE~ N(O, Lisisisn)
Nl/2(9N —-0,)=X &, +0,(1) , with
X, =530,V

Furthermore, N“Z(aN —0,)=0,() and its variance-covariance matrix is
QaN (®N ) = (‘],NG)NJ N )_1‘];\IGN‘PN®NJ N (‘]'NG)NJ N )_1 )

where Q is positive definite.

As a final point it has to be shown that liminf, A (X,%})>0 as required in Corollary
F4 in Potscher and Prucha (1997). Observe that

ﬂ‘min (xNx’) ﬁ'mln(:al N® T G), JN:Kll (833)

mln (‘PN )ﬂ“mm (G ® ) min (:Nl:gll min (r, N) min (%,N% N) > O ’

since the matrices involved are all positive definite.

Proof of Theorem 3. Joint Distribution of p,, and Other Model Parameters
The first line in Theorem 3 holds in light of Assumption 7 (for NY?A ), bearing in mind that
T, =F,P, , and Theorem 2 (for N¥2(0, —0,,)).

We next prove that &, , =W, C[(NT)?&\Fy,q ] >N, 1. ) by verifying that the

P"+4S+S(S-1)
assumptions of the central limit theorem A.1 by Kelejian and Prucha (2009) are fulfilled. Note
that A, (¥,n)2 ci;,w >0 by assumption. In Theorem 2, we verified that the stacked

innovations &, , the matrices ASS,, A, and the vectors a3 and a®%,, c=1..4,

c,v,N? c,u,N? c,v,N c,u,N?
s,s'=1,...,S, satisfy the assumptions of central limit theorem by Kelejian and Prucha (2009,
Theorem A.1).

For the estimators considered in the present paper, the elements of the matrix
Fy =(F.n:F.n)' are bounded uniformly in absolute value, provided that the elements of the

matrix H, are bounded uniformly in absolute value (see Lemmata 1 and 2). Hence, the linear

form R&, =F vy +F,\ny fulfils the assumptions of Theorem A.1; as a consequence,

&N DN, I

P*+4S+S(s-1)) :



Proof of Lemma 1.
Consider the case of random effects estimation first. In light of equations (4a) and (4b),

Assumptions 3 and 8, as well as sup,|B,|<b<c, it follows that all columns of

Z, =(Xy,Yy) are of the form &, ==, + I, , where the elements of the vector m, and
the row and column sums of the matrix IT, are bounded uniformly in absolute value. It
follows that the fourth moments of the elements of the matrix D, =-Z, are bounded

uniformly by some finite constant and that Assumption 6 holds (see Remark A.1 in Appendix
A).

Next, note that
(NT)2(8, —8,) = P, (NT)™2F, (v, + Py (NT)2F.

where P, is defined in the Lemma, and
3 1
Fv,N =[l; ®(l _me,NM:n,N)_ Hy,and
m-1
s
Fu,N =(er ® 1[I, ®(l, _zpm,NM’m,N)il]HN :
m-1

In light of Assumption 8, 5N —-Py=0,(1) and P, =0(1), with P as defined in the Lemma.
By Assumptions 2, 3 and 8, the elements of F, , and F, , are bounded uniformly in absolute
value. By Assumption 1, E(v,)=0, E(n,)=0, and the diagonal variance-covariance
matrices of v and p, have uniformly bounded elements. Thus, E[(NT)‘“ZFV"NVN]=0 and
the elements of the variance-covariance matrix of N?F, v, , i.e, (NT)'F, Z\F, ., are
bounded uniformly in absolute value. Moreover, E[(NT)‘”ZF;YN;;N] =0, and the elements of

the variance-covariance matrix of NYV?F p., ie, (NT)'c}

’F WF.n, are bounded

uniformly in absolute value (see Remark A.1 in Appendix A). It follows from Chebychev’s
inequality that (NT)™?F, vy, =0,(1), (NT)"?F \n,=0,(1), and consequently
(NT)2(8, —8,) = Py (NT)™2F, (v, + Py (NT)2F, \py +0, (1) and that
Py(NT) 2R, (v + P (NT)™¥?F, \m =0, (1) . This completes the proof, recalling that
Ty =M Ton) = (PR . PyFLy)". Obviously, the same proof applies under fixed effects

estimation, using the within-transformed matrices T\, T, y,

ENa HN’ Eleaand Ep,,N :O’

provided that Assumption 8 is maintained accordingly for X, and H,.



Proof of Lemma 2.
The random effects spatial generalized TSLS estimator is given by

A A
=k =%

8, = (2. Z)1Z.y, , where Y, = Z.8, +U, with
S

lv"N :[IT ®(IN _Zlbm,NMm,N)]uN .
m=1

kT Rk

Substituting Zy, = P Z, =H (H,H)™H},'Z), , we obtain

(NTY"2(3, —8,) = (NT)"2A), = (NT)*F'H;/ i, with

N =% I = *

P ={INT) Z} HLJINT) HY H TN G ZL D1 NT) 223 HG TONT) R HL D
Next note that

s
Uy =Uy _Z(lbm,N _pm,N)(IT ®My)uy,

m=1
where M, is a matrix, whose row and columns sums are bounded uniformly in absolute
value, satisfying

s s L
Z(ﬁm,N = Pan)M = Z(ﬁm,N — Pan )My .

m=1 m=1

Substituting for Uy, , we obtain
(NT)"2(8, —8y) = (NT)"?A} = 0, -0, , where

Oy = (NT)_I/ZP;'F'L’SN ’

=Y At S - —
O,n = (NT)_HZPN Hy Z(pm,N _pm,N)(IT ®My)uy

m=1

~i =l S - r— S _
= (NT)_UZPN Hy Z(pm,N _pm,N)(IT M), ®(l, _zpm,NMm,N) 1]£N ,
2

m=1

Note that the feasible generalized TSLS estimator uses generated (transformed) instruments
H;, , based on the estimate 6, . Using

— * S - -
Hy = HN(BN)_Z(pm,N _pm,N)(IT ®My)H,

m=1

2 2 2
we obtain 9, = > 9, suchthat (NT)"?AL =>">"0, .

j=1 i=1l j=1



Considering 9, , we have

9., = (NT) 2P H} /e,
= (NT)_UZP:J,HT\J’ [VN + (eT ® IN)"’N]

=(NT)?P{'F, , vy + (NT)?PUFL |y,

with F,, =Hy,and F, = (e; ® 1 )H} .

o*'! S = ’ 'V
[ZPAY :_(NT)_UZPN Z(pm,N _pm,N)HN(IT ®M\)e, .

m=1
Regarding 0,, we have

ok, o x ! S - —_— S _
Oyn = (NT)JIZPN H,y Z(pm,N _pm,N)(IT MY &1, _me,NMm,N) l]8N
m=1

m=1

S ' -
[PPRN :_(NT){/ZPN Z(pm,N = P )HN (I ® M)
m=1

XZ(lbm,N _pm,N)(IT ®MN)[IT ® _me,NMm,N)_l]SN

m=1

5’ & = ' NA' NA 3 =
:_(NT)_MPN [Z(pm,N _pm,N)]ZHN(IT MM ®(1 _me,NMm,N) 1]£N '
m=L

m=1

Next note that, in light of Assumption 8 and since 6, is N*'?-consistent, it follows that

(NT)*Z Z = Qlpepe Qi Qpreze =0, (D).
By Assumption 8 we also have = Q. QrQuz-=0@  and  thus

(Qpzr Qi Quipr) 1 =0(). It follows as a special case of Pétscher and Prucha (1997,

H*H*

Lemma F1) that
[ (NT){ZL Z*N ]71 - (QH*Z* 7Hl*H*QH*Z*)71 = Op(l) :

It follows further that Py — Py =0, (1) and Py =O(l) with P} defined in the Lemma.

Next observe that (py, —py)=0,(1). Note further that all terms 9; , except for 9, are of

the form op(l)ﬁ:,'(NT)'“ZCD'NsN, where ®, are NT xP. matrices involving products of

S
(1; M), [I; ®(y =D pnuxMny) 1, and Hy . By the maintained assumptions regarding

m=1

these matrices it follows that the elements of © , are bounded uniformly in absolute value.



As a consequence, E[(NT)™*®/e,]1=0 and the elements of the variance-covariance matrix

of (NT)?®'g,, ie., (NT)"D\Q, D, are bounded uniformly in absolute value (see
Remark A.1 in Appendix A). It follows from Chebychev’s inequality that
(NT) *D" g, =0,(D) . As a consequence, all terms v, except for ?,,, are 0,(1), and

9.,y =0,(1). Finally, observe that d,,, = (NT)™2P}'F. vy, +(NT)‘”25;'F;,N'uN, with

Fiv =Hy and F, | =Hy (e, ®1), recalling that T, = FyPy .

APPENDIX C

LemmaC.1

S
Define the NT x1 vectors & =[l; ® (Iy =Y pn Mp)lly Wwith elements &, and the
m=1

vector of fixed effects residuals Vy =Q, &, . Suppose that Assumptions 1-4 hold and that

the elements of Dy =(d; y,....d} )" have bounded fourth moments. Then &, =€, +n, and

Vy =Vy +n,,, with ‘nit,N‘ <ayfin,

Mn| S B and where N’ =0,(), Ef:n <K

,and Egﬁ , S K forsome K <. As a direct consequence,

~2 2 2 2 =2 2
‘git,N _git,N‘S2aNﬁit,N‘git,N‘+aNﬂit,N and Vi — Vi

2 52
<2a éit,N Vie n| T Oy éit,N '

Proof.
Note first that

g, = &, +M,,Where (C.1)

My :[Z(pm,N _5m,N)(IT @M, Il ®(1y _me,NMm,N)il]SN

m=1
S S
+[1; ®(ly _me,NMm,N)]DNAN +[Z(pm,N _pm,N)(IT ®Mm,N)]DNAN .
m=1 m=1
This can also be written as
Ny =Ry, (C.2)

where R = (R, R, n.R,,) with

s
9{l,N =1, ®(l _me,NMm,N)DN’
m=L

ERz,N ={(I, ®M1,N)[|T ®(l, _zpm,NMm,N)_l]aN o (I ®MS,N)[IT ®(l, _me,NMm,N)_l]SN}l

m=1 m=1

R =[(I; ®M1,N)DN""’(IT ®MS,N)DN]1 and



gy =[A% (P —Py) (P —Py) ®ALT.
In light of Assumption 3 and since the elements of D, =(d \,...,dy )" have bounded fourth
moments, each column of the matrix R, is of the form =z, + 1§, , where the elements of
the NT x1 vector z,, are bounded uniformly in absolute value by some finite constant, the
row and column sums of the NT x NT matrix II,, are bounded uniformly in absolute value
by some finite constant, and the fourth moments of the elements of {,, are also bounded by

some finite constant. It follows that the fourth moments of the elements of R are also

bounded by some finite constant (see Remark A.1 in Appendix A).

As a consequence, |ny| <[ y[[ g, or for the n-th element of the NT x1 vector n,,,

TN S||9N|| tn,NH:aNﬁn,N’ (C.3)

where «a, =|lg,[, t,, denotes the n-th row of S, and ﬂn,N=tn.,NH with

E,li’n]N‘4 <K, <oo. Without loss of generality we can select K, such that E(f;,) <K, for

y <4 . By Assumption 1 there is also some K such that Ele, | <K, <o for y <4. Inthe

€nN
following we use K to denote the larger bound, i.e., K=max(K ,K;). Also note that

N"?ey, =0, (1) . Replacing index n with index it , we have, from (C.1) and (C.3), that

~2 2 2 2 2 2 2
‘git,N _git,N‘ :‘(git,N + 1N ) _git,N‘ :‘(git,N + 28 Tl n +77it,N)_git,N‘

_ 2
_‘Zgit,Nnit,N +77it,N‘

<|2¢. |+ |n?

- |t,N77|t,N 77|t,N
<2a,p ‘g- ‘ + azﬂz

- N/, N |“it,N N/~it,N *

By the same reasoning we have

Vu :QO,NEN = QunEn + QonMy (C.4)
:Qo,NVN +'_]N
=\_/N +BN ]

with n =R gy, where R =Q, R, . Obviously, the elements of the columns of R

and their fourth moments remain bounded uniformly after pre-multiplication with Q,  , such

4
< Ké <oo. Finally, we

that we have "ln N‘s ay B, With « defined as above and E‘én N



~2 2
\iit,N _\_/it,N

K in the lemma such that K > K, and K > K/,.

have

< 2aNﬂit’N \'

~it,N

+al é;N . Without loss of generality, we choose the bound

Proof of Theorem 4a. Consistency of l’Iv’AA'N
In the following we provide two Lemmata that establish the consistency of ‘T’XA’N 2 As

evident from the proof, this also covers the simpler case of ‘i'gA N

Lemma C.2
Suppose Assumptions 1-4 hold and let

s
Vy =QonEn =QonVy :QO,N[IT (I _me,NMm,N)]uN ,and

m=1

s
=Q0,NEN =Q0,N[IT (I _me,NMm,N)GN )

<t
z

with Uy =uy +DyA and Dy =(d; y.....d}; )", and where the S x1 vector p, can be any

estimator that satisfies (p, —py)=0,(). Let ay and b, be NT x1 vectors, whose elements
are bounded uniformly in absolute value by some constant c, and let
N=diagr;<Ev§,N)=diagr;<ain,N). Define Ei* = diag \T[(7, )] = diag\L[(VyR)*] with
e 72 1 L

=T DA

(@ i, — A Zby =0,1) and &%,y ~O0Q).

(b) There exist random variables ¢, that do not depend on a, and b, such that

N—lTaNzHRb NlT 2, Euby < K(©@A+cy), with ¢y =0,(1) and where K(c)<oo is a

constant that depends monotonically on € (as well as on some other bounds maintained in the
assumptions).

Proof.
A complication in the estimation of (NT) a\X,b, arises from the fact that

=diag,; (EvZ ) is based on the idiosyncratic error components in levels (v, ), whereas

the estimator has to be based on the (demeaned) fixed effects residuals v, . The problem at

hand is similar in its structure to that in Stock and Watson (2008), who consider the
estimation of a heteroskedasticity-robust variance-covariance matrix in fixed effects panel
data models (without spatial correlation). They suggest an asymptotic bias correction that is

“ Related results for the cross-sectional case are obtained by Kelejian and Prucha (2009).



based on an expression, where the error components v, are clustered over cross-section
units (averaged over time), and which can be estimated consistently with the fixed effects
residuals (\Zﬁ'N ). In the following, we adopt the approach by Stock and Watson (2008) to

derive bias-corrected estimators in the present framework.

Define
1
TN ZWE(aNZNbN), (C5a)
1 , . .
In =7 op S Enbw With Zy = diag,} (v;,,) , and (C.5b)
= N gy B with £, =diag (7). (c50)

The bias is derived using the expectation of the infeasible estimate Ez , which assumes that
the true parameters p,, and &, are known and omits the degrees of freedom correction for
the P regressors. For simplicity of notation, define ¢ , =a, \b, v ; without loss of generality,

the bound ¢ in the Lemma is chosen such that ¢, , <c <.

1 1 N
Recognizing that Ez = E@,x.b,)=—E)» z., we have, for each i,
gnizing In =y =g SO ENPN) = iZ:l)_.,N
L 2
Ezin :—Ezcit N Vit N (C.6)
) _1 t:1 5 ’
1 T 2 — =2
:ﬁEzcit,N(Vit,N =2V Vi TV
- t=1
1 T ) 1 T 1 T 1 T 1 T T
=—E>»c V,y,——E>» 2¢. V,n=) V.xn+t—E) —¢C V. Vi
T—l ; it,N it,N T—l ; it,N It’NT; is,N T—l ;T |t,N§§ ir,N "is,N
T-2

. 1 1 T 1 T
usIng 7 :-I_-Ezcit,NVi%,N and «; :?EZCM ?Zvizr,N .
=1 r=1

t=1 t

Rearranging terms and averaging over N yields the following bias corrected estimator for z, :

~ T-1- 1 -
Ty = T _Z[ZN T _lISNL (C.7)




_ N T _ 1 N T
where 7, = c. Vo, and Ky =-—— C. v ® Finall , hote
LN N(I' 1);; it,N =it,N 2N NT ZZ |tN-|- 12 ir,N - y

i=l t=1
that (C.7) can also be written as 7% = ! —_al =Rb,, , where £{* is a diagonal matrix with
NT

T - 1 L
——\iit,N - 2 Virn
T-2 T-H(T-2)=

elements (V,'x

We next prove that 7" —z,, =0, (1), considering
~ T-1
z'NHR —In= T_ (TN _N)_ Z(KN Ky) (C.8)

and showing that both (z —Ezy) and (k¥ —x,) are 0,(1) for fixed Tas N —oo.

Consider first 7, — Ez,. It follows from the triangle inequality that
|£N - EZN| S|ZN _ZN|+|ZN - EZN|- (C.9)

By the weak law of large numbers for i.d. variables (e.g., White, 2001, p. 35), we have

Ezy = N(T 1);;Cit,N(\_/it,N _E\_/it,N):Op(l)’ (C.10)

observing that the fourth moments of v, (and v;, ) are bounded uniformly by Assumption

In—

1. We thus also have |z, —Ez,|=0,(1).

Moreover, repeatedly using the triangle inequality, it follows that

N T
zzclt N (Vlt N E\_/IZtN)

i=1 t=1

|Z_-N _EZN| (C.11)

N(T 1)

<cdyy +2c.c°,

2 2
‘Vn N It,N ‘ - E‘\_/it,N - E\_/it,N‘

: the constant c,. is chosen such

where ¢y = NG 1)22

t=1

that Ev; , <c. and E\_/it,N <c.. Note that iy =0,(1) by the weak law of large numbers.

Next rewrite

S S 1N

;
T W Zyby = C Vo, =— "WCyVy , and
N N(T 1) =N™~N 1)§Z it,N Zit,N N(T 1) N =N

1_9 1 <
* Note that Kin = Eigi v, Where & y = ?Ezcit,N ﬁz\_/izr,N
1

4=l



1
In =
- NT-D—

where C, =diag, (c, ) =diag(c, ) - Hence,

ViCyVy,

~ 1
Ty =
“NTN(T 2D
= : G'NQNGN
N(T -1) (f D

s
uy[ls ®(zpm,NM:n,N)]QN[IT ®me,NMm,N)]GN ’
m=1 m=1

V' \C\Vy (C.12a)

S
ULl ® (D 20 uMipn )ICK Uy,
m=1

1
+—
N(T -1)
where Cy =Q, yCyQy,y , and

1

CyVv C.12b
n = N(T — 1)_N VN ( )

l ! —. ! 3 !

= N(T —1) uy Cyuy —2(NT) 1uN[IT ®(§pm,NMm,N)]QNuN
1 S S
(T 1 N[IT®(me,NM;n,N)]QN[IT ®me,NMm,N)]uN
m=1 m=1

By the properties of the matrices Q,,, C,, and M, , m=1...,S, and in light of Remark

A.l, the expressions in (C.12b) are all quadratic forms in matrices whose row and column
sums are bounded uniformly in absolute value by some constants that depend monotonically
on c as well as on other bounds maintained in the assumptions.

Repeatedly using the triangle inequality, Lemma B.1 in Appendix B, and factoring out the
0,() terms it follows that

Tn —zn| <k (OS5 (C.13)

where ¢;, =0,(1) and does not depend on ayand b, and the constant k_(c) depends

monotonically on ¢ and other bounds maintained in the assumptions. Obviously, it follows
that 7, —Ez, =0,(1) . Moreover, we have

|ETN|<—ZZ\an\E\vnNkcc <. (C.14)

i=1 t=1

It follows from (C.9), (C.11), and (C.13) that

Fy — ] <[+ 200, +k, @), (C.15)

where ¢y =(1+Sy) .



Next consider (i —x,) . By the triangle inequality, |x —x|<|x —x|+|xy —xy| and by the

weak law of large numbers
Ky =0,(1), (C.16)

observing that the fourth moments of v, , are bounded uniformly by Assumption 2. We thus

also have |« — x| =0, (1). Next, rewrite |« — x| as

|KN KN| NT chltN(VlN Evi,éN) (C.173)

i=1 t=1
P 1 5 1 . .
where \ZiN :—12\‘/?”' and va =?ZV§VN. Moreover, repeatedly using the triangle
L= =1

inequality, it follows that

N T
| KN|_ chit,N(\Ziz,N _Evi,zN)

i=1 t=1

(C.17b)

<cgl +2cc,

N T
where the last step uses &7y :(NT)*lzz

i=1 t=1

as above. Note that ¢y =0,(1) by the weak law of large numbers.

and c, is defined

—2 =2 =2 =2
‘\_/i,N - EVi,N‘_ E‘\_/i,N - EVi,N‘

2

From Lemma C.1 in Appendix C, it follows that [V}, —V;

<2a, éit’N \%

~it,N

+0£,i éiN !
where Eg:N <K, <o and N*2¢, =0, (1). Using the triangle and Holder inequality, we

have

_ l N T ~2 N T
|EN _EN| = _T qu ﬁ _1_|r N chn N Z_II‘ N

i=1 t=1 i=1 t=1 r=1

<k.(c)¢5n, where &7 =0,(1). (C.18)
Obviously, |k —xy|=0,(1), which — together with (C.16) implies that x —xy =0,(1). It

also holds that |« | <oo.

From (C.17) with (C.18) it follows that

| — x| < [c +2cc. +k. (C)lgy, (C.19)

where ¢y =(1+¢Y). Combining our results that 7, —Ez, =0,(1) and x-x,=0,(1),

result (@ in Lemma C.2 follows in light of (C.8), noting that



N T
Iy | < N—l_l_ZZ‘cn’N‘E ol n| < cC. <o Result (b) in Lemma follows from (C.15) and (C.19),
i=1l t=1
which yields
75" — 74| < 2f[c+2cc. +k, (€)]gy, +[c+2cc. +k.(©)Isn} (C.20)

< 2[c+2cc. +k(C)]gy

where k(c) =maxk, (c).k, (c)] and ¢y =gy +¢y = (2+45 +4Y).

Lemma C.3

S

Suppose Assumptions 1-4 hold. Furthermore, assume that sup, Y_|p, y| <1, and that the row
m=1

and column sums of M, m=1..,S are uniformly bounded in absolute value by 1 and

S
some finite constant respectively. Let v\ =Q, &y =Q [l ® (I —me]NMm,N)]uN, and

m=1
S
let Uy =Qun& =Qonll; ®Uy =D AnyMp Uy with Ty =u,+DyA, and
m=1

Dy =(d y.,...d\r.n)", and where the Sx1 vector p, can be any estimator that satisfies

(5N _pN):Op(l)'
S - S

Let Fy=[l; ®(y - pnyMpy)THy and Fy=[l; ® (I, -> 5, M, ) THy, where
m=1 m=1

H, isan N xP. matrix whose elements are uniformly bounded in absolute value by some

constant C<oo, and let £, and X"  be defined as in Lemma C.2. Then,
1 =1 S HR[ 1 ' 1 '

WFNZN FN _WFNZNFN =Op(l) and WFNZNFN =O(1)
Proof.

S
The subsequent proof will focus on the case, where F =[l; ® (I _zpm,NMm,N)_l]HN and

m=1

- S
Fy =0 ®(, —Zﬁm'NMmYNY]HN ; this corresponds to the random effects estimation of the

m=1

untransformed model (see Lemma 1); it is readily observed from the proof that this covers
also the case where F, =F, (fixed effects estimation of untransformed model), F, =F,

(random effects estimation of transformed model) as well as F, =F, (fixed effects

estimation of transformed model).



S
Under the maintained assumptions there exists a p. with supZ‘pm'N‘<p*<1. By the
m=1

properties of the matrices M, the row and column sums of oM, , m=1..,S are

uniformly bounded in absolute value by 1 and some finite constant respectively. For later
reference, also note that the elements of the vector pMih,  are also uniformly bounded in

absolute value by c.

In the following, we ignore the division by (the fixed constant) T without consequences for

. 1 = == 1
the proof. Denote the (r,s)-th element of the difference WFQZHRFN —WFN):NFN as v, . It

IS given by
vy = N (ERE —f 2 f ), hs=1.,P, (C.21)
7
which can be written as v, = ZVLN , Where
i1
Vi =N = F ) EF 20— o) (C.22)
Vo =N(E o~ ET -ZOE
Vo = N7F L (EF - 2)(Fy —Fa)

Van = N_]f.'r,N (i:R _ZN)f.s,N
V5,N = Nil(f.r,N _f.r,N),ZN (f.s,N _f.s,N)
Ven = Nil(fr,N _f.r,N)IZNf.s,N

Vin = N_]f.:',NZN (f.s,N _f.s,N) .

S
Next note that f  =[I: ® (I, = D_ pnxMpuy) 'Thg, and thus

m=1
~ S _ S .
f.s,N _f.s,N :{IT ®[(IN _zpm,NMm,N)+ _(IN _zpm,NMm,N)_ ]}h.s,N (C23)
m=1 m=1

We next demonstrate that F.S,N —f.n=0,(1) by showing that each summand v, =0,(1),

I1=1...,7, invoking the following theorem (see, e.g., Resnik, 1999, p. 171): Let (X, X,,N>1

) be real valued random variables. Then, X, -2 X if and only if each subsequence X,

contains a further subsequence X,., that converges almost surely to X .

As we show below we will be confronted with terms of the form:



NED = Nplh (1 @ M) ZR(1, @M )h ~NZ PR (1 @ MIDE, (1, ®M)h, , (C.24)

where M, is a matrix, whose row and column sums are uniformly bounded in absolute value

by some constant c_ It follows that the absolute values of the elements of the vector
(I ® M )h,, (and also that of pi (I, ® MY )h,, ) are uniformly bounded in absolute value
by some finite constant ¢.=cc (and c..= piCc<c.). (See Remark A.1 in Appendix A.)

Without loss of generality C. is chosen such that Ev2 , <c. and Ev; , <c. holds.

Hence, Lemma C.2 applies and it follows that N{{” =0, (1) and that there exist random

variables ¢, =0, (1) such that ‘Nﬁj")‘s K(c)+gy).

Now, let the index N, denote some subsequence. In light of the aforementioned equivalence,
there exists a subsequence of this subsequence (N, ) such that for events we A, with

P(A%) =0, it holds that
NG (@) >0, oy, (@) >0, [P, (@) = pry, | >0, m=1....8 (C.25)

and that for some N, >N

¢y, (@) <1 and thus

(o)

NG (@) < K(e)WH gy, (@) <2K(e), (C.26)
and finally
S
: Uy D |onu| + P-
Z‘ﬁm,N;(w)‘S P, Where p..= '“:12 <1. (C.27)
m=1

S
In the following, assume that N. > N_. Since Z‘,BmyNé(a))kl, it follows from Horn and
m=1

S
Johnson (1985, p. 301) that (I —Zﬁm'N; (w)M,, . )" is invertible and that

m=1

- s ) s )
f.s,N;(a)) _f.s,N; =1 ®{[(1, _me,N;(a))Mm,N;) - I @y _me,N;Mm,N;) l]}h.s,NE’, (C.28)
m=1 m=1

0 S S
= IT @)Z[(ZIBmN;l (a))'\/lm,Ng\)I _(zpm,Ngl'\/Im,Né)l]h.s,N;i .
m=1

I=1 m=1

Substituting into the expression for v, . given by (C.22) yields

Ving = N;_l(Fr,Né (o) —f.r,N;)'(izi _ZNé)(fS,Né (@) _f.s,N;) (C.29)



0 S S
= N;_lh.,r,N;{IT ®Z[(Z/5m,N;Mm,N;\)I _(me,N;Mm,N;)I]y}
1=1 =1 m=1

- 0 S — S
X(ZN; _ZN;){IT ®Z[(2Pm,N;Mm,N;)k _(zpm,N;Mm,N;)k]}h.s,N;
m=1

k=1 m=1

0 @ s s N s s

= N;lzzh.’r,mé{lT ®[(Z/5m,N;M:n,N;)I _(zpm,N;M’m,N;)l]}Zn?{lT ®[(zpm,N;Mm,N;)k _(me,N;Mm,N;)k]}h_s,N;
k=1 I=1 m=1 m=1 m=1 m=1
0 @ s s s s

=Ny ®LO Ao Minn)' = O P Ml ) Tl @I B M) = O s Mo ) I,
k=1 I=1 m=1 m=1 m=1 m=1

A single element with index (k,I) of this infinite double sum over k and I is given by
=Nl ®[(Zﬁm,N;M’m,N;)' —(me,NéM’m,N;)']}iﬁf{lT ®[(Zﬁm,N;Mm,N;)k —(me,N;Mm,N;)k]}h_s,N;

s s s s
- N;_lh,,r,N;{IT ®[(me,N;M;n,N;)l _(zpm,N;M:n,N;)l]}ZN;{IT ®[(ZPm,N;Mm,N;)k _(me,N;Mm,N;)k]}h.s,N; :
m=1 m=1 m=1 m=1

(C.30)

Next note that for any value of py, and any ﬁNé(a)) there exist matrices My, and ﬁNé,

whose row and column sums are uniformly bounded in absolute value, such that:

s s _ s s —
me,N;Mm,N; = (zpm,N;)MN; and me,N;Mm,N; :(zpm,Ng)MN; . (C.31)
m=1 m=1 m=1 m=1

ﬁNé and ﬁNé can thus be factored out of the sum, yielding

(B, (@) M = () M (€32)

S S
By the same reasoning, for any values of (Z Em,Né (w)) and (Z Pan:) » there exists a matrix

m=1 m=1

M., whose row and column sums are uniformly bounded in absolute value, such that:

S — s — S | s —
(ZPm,N; (w)) MN; _(me,N;) MN; :[(me,N;(w)) _(me,Né) ]MN; . (C.33)
m=1 m=1 m=1 m=1

Substituting MN; into the expression for v, . , we obtain
(C.127)

Vin, = Na';lh.'r,Né{IT ®[(Z/3m,wé (a)))l - (me,N;)']Mﬁ;}iﬁf{lT ®[(Zﬁm,N; (a)))k _(me,N;)k]m;\E}h.s,N;
- N;lh.’r,N;{lT ®[(Zﬁm,N; (0)' - (me‘N;)l]m;\:;}ENé{lT ®[(25m,Né (@) - (me‘N;)k]m;\lk;}hAs‘N; :

Hence, we can then write



Vi, (@) = iixfi")(w) , (C.34)

k=11=1

where X" (@) =af," (@)N{;" (w) with

[(Zﬁm,N; (a)))l _(Z_pm,N;)l] [(Z_/Sm,N;)I _(Z_pm,N;,)k]

a,(\Ikgl,l)(a)) —_m=1 | m - m (C35)
p* p*
and

NE\Z’I)((‘)) =N p’lfkh.'r,Né (I; ®m;\:;) iﬁg (w)(1+ ®mr§;)h.sN; -N* pbkh.'r,N;(lT ®m;\:;)ZN;(IT ®mh )h.s,N;
(C.36)

Note that ‘a,(j‘;')‘—m as N! —>ooin light of the aforementioned results and thus

X" ()| > 0 since [N{:” (@) < 2K (c.) for N} large enough. Moreover,

[(Z,Bm,N; (a)))l - (me,Né)l] [(Zﬁm,Né)l - (me,Né)k]
a'(\‘k;)(a)) — _m=l | m=1 m=1 - m=1 . (C37)
P P!

| k I+k
sz(&J 2(&] :4(&] |
P ) \p P

For N>N_, ‘N(Nk;')(a))‘ < 2K(c.), such that

Hence,

v,

*

I+k I+k
XED (@) < B = 2K(c)4[&] - 8K(c)(&] . (C.38)
, p.

Hence, there exists a dominating function B"* for all values of k,l. Moreover, since
.| p. <1 by construction, the dominating function is integrable (summable), i.e.,

SYIB =SB < (C.39)
k=1 I=1 k=1 1=1

Hence the assumptions for application of Lebesgue’s Dominated Convergence Theorem are
fulfilled (see, e.g., Van der Vaart and Yen, 1968), such that

lim . . Vo, (@) =0. (C.40)

The same holds for v, ., i=2,..,7. It follows that v; ., -0 as N, —o and in light of

Resnik (1999) it follows that v —0,(1).



Thus, N7FZF, -N7FE.F, =0,(1). That N7FX,F, =0@) follows from the

S
properties maintained for the row and column sums of (I _meMm,N)il and the elements

m=1

of X, and Hy .

Remark C.} o

Regarding €, , note that a, , =F, \Pya, and a,, =F,P,a, (obviously suppressing the
indexation of a,, ), and accordingly for b, , . By assumption 5N -Py=0,(), Py =0(1) and
thus ﬁN =0,(1), where the dimension of P, is P.xP. Moreover, a,—a,=0,(1),
ay =O(1) and thus ay =0, (1), where the dimension of a, is Px1. By Lemma C.3, we
have NFZHF, ~NTFEZRF, =0, (D). It follows that

Hk Hk

€y — €y = NTa PR R Pd, — N, PLFLE F Py, =0,(1).

LemmaC.4

Let 5 and & be defined as in (A.3a) and (A.3b). Suppose that Assumptions 1-4 hold
and that the elements of Dy =(d; y....d} y) have bounded fourth moments. It follows that
¥ -o¥=0,1), o=0@), and thus & =0,(1), and that &} -’ =0,(1),

o =0(1) and thus 61} =0, ().

Proof.

The subsequent proof builds on Gilbert (2002), who considers the estimation of third and
fourth moments in homoskedastic error component models without spatial lags of the
dependent variable (or other endogenous variables) and without spatial regressive
disturbances.

Consider the third moment of 4, and its estimate:

o =E(g,n&irn) forany giveniand s=t, and (C.41a)

_ l N T T _ -
G :mzzzgisﬂgitzﬂ : (C.41b)

- 1 N T T
S =m§§?m + ) + )’ (C.42)



1 N T T
:mzzz(%swgﬁw + 210 nEisn +77i%,N8is,N +77is,Ngif,N + 217 Nl +77is,N77iiN)
s
:¢1,N +¢2,N +¢3,N +¢4,N +¢5,N +¢6,N .
Consider
N T T , N T T ,
Ain zzzzgis,Ngit,N = ZZZ(MS,N +Vig N ) (e n + Vi) (C.439)
i=1 s t#s i=1 s=1

2

N T T
3
= ZZZ(M N +2,u| nVien T Hi N |t N TV, Nlul N +2,u| N Vit N Vis,n T Vie v Visn

:¢1LN +¢12,N +¢13,N +¢14,N +¢15,N +¢16,N .

By the weak law of large numbers ¢, converges in probability to '”. Notice further that,
by the properties of v,  and g  (see Assumption 1), &, \,Ban:Pan Asn, and @, areall

0,(1). As a consequence, ¢ , converges in probability to off)

Next observe that

1 N T T
P n :—Zzzznit,NEis,N (C.43b)

p
_|
SN
2
N
=4
.MZ
M—.
M—|
am
=4
B

i=1l s=1t=1
t#s
1/2 1/2
N T T ) N T T
<S2NYZa N2 INT(T =017 e INTT-D1" Y>> i | =0,@),
i=l s=1 t=1 i=1l s=1 t=1
t#s t#s
N T T ,
C.43c
¢3,N NT(T )gszzl:;ﬂum is,N ( )
1/2 1/2
1/2 28 L 1N N 2 1N SN 4
< (N2 )P N INT(T=DT' DD > le INTT-DI"Y > > Biw | =0,0,
il s t=1 i=1 s=1 t=1
t#£s t=s

Pun =

NT(T ) ;;zﬂls,wgn,m (C43d)

is,N

j [[NT(r—l)FZZZ/ziNj —0,(0),

i=l s t#s

<N"’q, N‘“z([NT(T —1)]-1iii P

i=1 s t#s



¢5,N Zzz s N it N (C.43e)

NT(T i=1 s t=s

2 1/2 lN N
Sm ay)’N ;;g s D
<2(N"2oy )N [NT(T -D)] 1ZZZA5N [NT(T —D]’@ZZﬁiiN =0,(1),
1 N T T )
P :mgl‘,;;mswﬂnw (C.43f)
1/2 1/2
2N )N [NT(T -1)] 1222% [NT(T-2)] 222 o] =00,

because N'%c, is O,(1) and the terms in brackets expressions are all O,(1), since

E

gon| <K<oo and E[f,,[ <K<w for y<4 and all N. It follows that

G —oP=0,(1), o =0(1) by Assumption 1, and that &}, =O, (1) . Obviously, we then

yN

also have that (613 —o ) -0 =% —ot? =0,(1).

Consider next the fourth moment of £, and its estimate:

o, = E(g; It) 3E(g,sg,t)[E(g,t) E(g,&,)] forany giveniand s=t, (C.44a)
N T
=) _
O-,u,N - Z Z |s NgItN (C44b)
NT(T —1) &5 & 4
(T ) T
3 NT T y L I N T T
- — . E —_— o Ei. NEi
Nm_@;; i 23~ R 2 e
= ZN(O-gN 2,N)'
Observe that
N T T
51,N NT(T )ZZZ(‘C"B N +77|s N)(glt N +77|t N) (C45)
i=1l s=1t=1
t#s
O N 3 2 2 3
NT(T )ZZZ( snEin T3 nEinTlin T MinEisnEin T Eisnin
i=1 s=1t=1

t£s

2 2 3
+77is,Ngit,N + 3 nTinThsn T ITinThsnEin T Tinisn)



:ézl.lN +512,N +513,N +514,N +515,N +é;|.6,N +é;l.7,N +é:l.8,N '

The first term o, can also be written as
3 3
51LN = &is,NEit,N :(:uis,N +Vis,N)(/uit,N +Vit,N) = (C.46)
3 2 2 3

= (s, +Vis n ) (hien + 388 WVien + 3t View +View)

3 2 2 3
= (s, n Mt T s n Mt nVien + Shlis e nView + His Vi

3 2 2 3
+Vign it 38 wVisnVien + 38 VisnVien T VisaVien)

= (' +3L2\V o +BUENVE Nt Vs AV I B Ve Vs B Ve VA Ve V)
=WHin O N Vien T NVien T His nVien T Vis NHien T O i N Vis N Vien T O N Vis N Vien T Vis,n Vie N -

By the properties of v, and g  (see Assumption 1), the difference between o,,, and

N

.
(4) +o, ‘E— Z;%Z n converges in probability to zero by the weak law of large numbers

for i.d. random variables (White, 2001, p. 37, Corollary 3.9).

Moreover, it follows from the properties of v, and p, (see Assumption 1), that the terms

O1an 1 Oran 1 Oran 1 05 Oren 1 07w Orgn are all 0, (1). It follows that the difference between o,

N 1 T
and ¢ + 02 =>" =07, converges in probability to zero.
i=1 t=1

Next consider
3 N T T
- ZZZ(‘%S,N + i ) (Ein + ) (C.47)
i=1 s-1
3 N T T
= NT (T —1) ZZZ(‘%,N + s ) (Eien i)
—1) i1

N T T
:—ZZZ(gis,Ngit,N +onEin T EsnTin T s nhien) »

which converges to 3c0° by the weak law of large numbers, since

T

E[ Z Eisn - 1)Zg.m] o> for s=t by the properties of v, , and g, and the sum

s=1 t#s

over the remainder terms appearing in J,, are 0,(1) by arguments analogous to those for

¢,y and ¢, (see (C.43e) and (C.43f)). Finally, the difference between o7 =

1 N T 1 N 1 T
ZZS,EN and o +ENZ?ZJV2”N converges in probability to zero. As a
t=1

i=l t=1

consequence, oo\ —o) =0, (1), =0(1) by Assumption 1, and ¢ =0, (1).



Lemma C.5

Suppose Assumptions 1-4 hold. Let A, =N—]:I_(G$'N)’ANG\2/'N with 65 = (0% O nrn) s

with Ay =(a, ;n) real, nonstochastic, and symmetric NT xNT matrices, whose elements

are time-invariant (& ;v =& ; ), Whose diagonal elements are zero (g ;, =0 for & ;, =0

), and whose row and column sums are bounded uniformly in absolute value. Let

Vy =Qonen =Qonll; ®(Iy —ZS:,Bm,NMm,N)GN with U, =u, +D A, and
Dy =(dj y,.-.d\r.n)', and where the Sx1 vector p, can be any estimator that satisfies

(Py —py) =0,(1). Finally, define

~HR T2 1 &N 1T
A — e I v .
N 1) N Z; i, Tzlzl_ltN js,N
Then, we have K'ﬂf Ay =0,(1), Ay, =0(1), and AR =0,().
Proof.
Note that
1 N N
Ay =NEZZA”|N , where (C.48a)
i=1 j=1
1 T T 1 T T 5
A I]NE zzvl NVjSN - i _Zzavno-v js
T t=1 s=1 T t=1 s=1

since & ;, =0 for i=j and t=s. The corresponding expression based on the fixed effects
residuals is given by

T

N
Ay :%EZA” n Where A; ZZ\_/ﬁNvM (C.48b)

i j=1 t=1 s=1

Since v, and v are independent for all t,s,

1 T T
EAjn =@ ?Ez\_/izt,NEz\_/?s,N (C.49)
t=1 s=1

1 (T ~1)? u
| j.N T r2 Z it,N EZVJ?S,N
T T pry

t=1
(T-1°
= T2 Aij N s
which suggests the following bias-corrected estimator:

2

T
AT = —1/_\N , Where (C.50)




N 1 N 1 T T
A =WZZ N Wlth A _aivj'N_Zz it N ]SN .
i=1 j=1 T t=1 s=1
~ 2
To show that ‘A*,LR —AN‘ =0,(1), we next demonstrate that T Ay —Ay|=0,(1) and
AHR T?
R O
Consider
1 N N T T )
ZZaIJNZZ\_/nNVJsN (C.51)
i=1 j=1 t=1 s=1
1

= ﬁ(\_/i ) Ay \_/2N ,

using Vi :(vﬁN):(vﬁN) and A, =(a,,n)=(a;y). Note that a, ,,=a;, and that

it, js,N

=0 for it = Js. Next, define the NT x1 vector {, = (\_/it,N —0yun)- By Assumption 1,

It js,N

Cin = (\_/it,N)S K <o and the row and column sums of the variance-covariance matrix

Q

=, =E(.{,) are bounded uniformly in absolute value. Next rewrite

1 , 2 ,
Ay :ﬁ@N) AL, +EA, +W(G§) A&, , and note that

Var(Ay )<{( NT)? Var[(CN)ANCN]+(Ni)zV<’:1lf[(63)'ANCN]}0'5 (C.52)
2

[(NT) Tr(AN—'NAN'-'N)+(N ) (6 ) (AVEVA )6] =0(1),

T
such that we have A —W EAy =0,(1) by Chebychev’s inequality.

T2
(T-17 1)

Next note that and consider

AT\JR - Ay|=

(T -1

N N T T

1
NTZZaIJNZZ(VItN js,N _|tN ]sN)

i=1 j=1 t=1 s=1

<|9|+|%|+|%],

(C.53)

‘_N _N

with
N N T T
|31|___zzal i, NZZ(!KN _ltN)VJsN )
i=1l j=1 t=1 s=1
N N T T
|‘92|___Zzal i, NZZ(V isN T Vs, N)
i=1 j=1 t=1 s=1
N N

|33|__?ZZanNZZ(\L|tN _ItN)(VjsN _jSN)'

i=1 j=1 t=1 s=1



~2
v

By Lemma C.1 we have |v; , —V; N

<2aNﬂ

Vien +aN,B . In light of the maintained

assumptions regarding the properties of V; and A, , it follows that [%|=0,(1), |%,|=0,@),

19|=0,(1), and thus |A, —Ay|=0,(1).

] - ) 1 N N T T
Summing up ‘A*,LR—AN‘:op(l). Finally, AN:_ZZZZait,jSNGVIIUVJS O(@), such that

AR = O, (), which completes the proof.

Lemma C.6a
Suppose Assumptions 1-4 hold; in addition, assume that Evfi,N <oo for all 1<t<T and

. 1 N I . .. .
1<i<N,N>1. Let @, =WEZCLNZV§,N , Where the nonstochastic, time-invariant
i=1 t=1

scalars Cin =Cin are  bounded uniformly  in  absolute  value. Let
S
Vn =Q0,N8N =Q0,N[|T ®(IN _me,NMm,N)uN with GN =Uuy +DyA and

Dy =(d} y.,...d\r.n)', and where the Sx1 vector p, can be any estimator that satisfies

(P —Py) =0, (). Finally, define

sir- k5 o km
N 1—km,

1- km -
é - INZ!HN’

ZC 1S v’
|N _|tN 2ir,N
STNT 145

i=1

a, , Where

r=t

m, =

T® oo (2T-3
TP-2T°-3T+9 ' °  T°-2T*-3T+9’
T%(T -1) o (T —1)(6T —9)

T —4T?4+6T-3" ' T°-4T%+6T -3’
Then, we have @\" —@, =0,(1), @, =0(), and & " =0, (1).

k, =

Proof.
Consider

N T
Ty = EX 7 With @, =6, Y (C543)
i=1

t=1

The corresponding expression based on the fixed effects residuals is given by



N T
@y :%EZQLN with @; :T—llci,N Z\_/ﬁ,N : (C.54Db)
i=1 - t=1

Substituting for \_/ﬁyN , simplifying (exploiting the independence of v, , and v, for i= j or
s #1t), and collecting terms, we obtain — for each i — that

@y = KE@; y +Ka;  , where (C.55)
a,,=C Eiiv2 Livz
i,N i,N -I- ) it,N -I- _1r:1 ir,N ?
r=t
2T - T —1)(6T —
Ky = LU and k, = - (T ~1)(6T —9)

T 4T +6T -3
Since the correction term a;, is also based on original rather than demeaned residuals,
another bias correction for is required. Analogous derivations yield the result that

T°—4T%+6T -3

a;y =MEq; y +ma  , with (C.56)
14, 1 &
Zi,N i,N T — Zit,N T _1r:l_|r,N
r=t
T? 2T -3
m, = and m =— ( )

© T _2T2-3T+9 T2-27T2-3T+9’
Substituting (C.56) into (C.55), averaging over i=1..,N and solving for @, yields the
following bias corrected estimator for @, :

@y =go@y +0,a,, where (C.57)
Ko k,m
= and g, =—-2—.
do=1” k,m, a1 k,m,

We next show that & — @, = 0, (1, considering each summand in (C.57). By the weak law

of large numbers,
@y —Ea@, =0,0), (C.58a)

given that E|gN|2 <K <o, since the 8-th moments of v, , (and thus also those of v, ) are
finite. Using the triangle inequality and the results in Lemma C.1, we have

~ 13~
|C_0N _QN|SWZ‘QLN _Q,i,N‘ (C.58b)
i=1
< 1 E N N a8 2 2 4 2 4
- Z‘CLN‘Z Vien Ty +6\—/itvN M TNy 15
NT 3 t=1 ’ ’ ' ’
13 S 3 2 2 52 3 3 4 4
SWZ‘CLN‘ZMO{N View éit,N +6ay Vi éit,N + 4oy Vi éit,N +ay git,N)
i=1 t=1

1 N 4
< ﬁ;‘cm ‘;é‘k,it J



.
with &, =4ay Y v

t=1

S —aNZﬂ . It is readily verified that WZ‘CLN‘Zé‘M =0,(1) for k=1..,4 under
i=1 t=1

3
éit,N !

[ _6aNZVItNIBtN O _4aNZ

=it,N Zit,N ! and

|tN

the maintained assumptions. As an example, consider the case k =1. Using ‘ci,N‘ <K <o for
some K < oo, the triangle inequality, and Holder’s inequality, we have

(C.58¢c)
j ~0,(1),

=0,(1), and N2 =0(1).

Z_it,N

1 W T NOT
W;‘Cm‘éé‘m = ZZ‘\_IHN‘ ay|p

i=1 t=1

N T

<4KN—1/2 |\|1/2 N)( ii‘_um‘j (N_]:I.Zszlﬂ

Z_js,N
j=1 s= ]

since N"?ar, =0, (1), T ZZ‘\_/“N‘ =0,@, NT ZZ

js,\N
i=1 t=1 j=1 s=1

It follows that |@, —@,|=0,(1) and thus |@, —Ew,|=0,(1).

Next consider [a, — Ea,|. Again, under the maintained assumptions,
an — EgN = Op(l) ) (C59a)

and thus |a,, — Eay|=0,(1) by the weak law of large numbers.

Using the triangle inequality and the results in Lemma C.1, we have

£ —aN|<—Z\~. N =iy (C.59b)

NT(I- 1) Z‘C' N‘ Z‘ak,it‘ !

t=1 k=1

3|t_ |INZZ_|rN77

r¢t

_NQQ
Il
S
F‘- N
p=4
-
<<
EIN
=2
|

with O = |IN77tNZV|rN ’
r¢t
2 T ) T
Ojt = ﬁ\_/it,N Tin rZzl‘,\_/nr,N TN Osjt = T _17_7it,N ZZYir,N TN Opt = 1_n N Z’?Ir N
ret ”‘t

2 L 1 5 w2
O i :T_—l\_/it'N Mien ;Qir,N  Jgii :agit,r\l ZQir,N '
r=t

Consider o,; . Substituting for 7. “Ngn,w using the triangle inequality and the

Lit,N
generalized Holder inequality, we obtain — for each of the (T —1) terms with r =t

2K 1
NT(T 1)2‘ 'N‘Z‘ 1”‘_ N T(T 1) Nz

i=1

T

z_ltNﬁ,tN ir,N

t=1

(C.59¢)




2K

-1/2 1/2 e 1 Y\
oyt © “( T 22 J GEZE

N
since ‘CLN‘S K with K=0(), N*’e, =0, (1), iz

~it,N

](1immj ~0,)

1 00

] =0,(1),and N2 =0(1).

Vit

N T 1/4_ 1 N T
MY RECIENES 5 518

j=1ls=1

]sN

By analogous arguments, the other terms involving &,; to J; can be shown to be o,(1)
under the maintained assumptions. It follows that |d,,—a,|=0,(1), and thus
|§N - E9N| = Op(l) .

This completes the proof, recognizing that |wN| =0(1) under the maintained assumptions.

Lemma C.6b
Suppose Assumptions 1-4 hold; assume further that v, , ~i.d.(0,57;), i.e., there is cross-

sectional heteroskedasticity only in v, (but no heteroskedasticity over time). Let

1 N T . ]
=—— > C o; and define
ZN NT “ |,Nt§l i
fSR = o ZUN )

a
mk T omk
where my,m,k,,k, aswell as a, and @, are asin Lemma C.6a.
Then, we have 7" — 7, =0,(1), »y =0@),and 7" =0, (1).

Proof.
Notice first that

1 & T N
AN = ﬁ G NZ(EVH N) = Zci,No-i4 : (C-GOb)
i= i=1

Under the maintained assumptions, this can be written equivalently in the following
(estimable) expression:

1 N
== Zin (C.60b)
N

c, T T
where ., = E Vi
@ N (T(T 1) tzlz Vi) -

Next, observe that y, is equal to a, as defined in the proof of Lemma C.6a. Substituting
(C.55) into (C.56), solving for a, , and averaging over i =1,...,N the bias corrected estimator



given in Lemma C.6b is obtained. That |@, —Ew,|=0,(1) and |a, —Ea,|=0,(1) was
already shown in the proof of Lemma C.6a.



Remark C.2
If v, is in fact heteroskedastic over both cross-sections and time, the error made by the

approximation in Lemma C.6b is given by
1 N 1 T T N T T

AzﬁzcixNT(T_l)ZZUﬁNalsN ZINT(T 1)ZZO_§NUnN

i=1 t=1 s=1
st s#t

T T

13 ) 5
chl T(T 1)ZZG|tN(G|sN |t,N)'

i=1 t=1 s=1
s#t

Hence, A can be assumed to be small for small T and when heteroskedasticity is mainly of
the cross-section type (or random over time).

Lemma C.7
N T

Suppose the assumptions of Lemma C.6a hold. Let 9, ZNLEZZC“’NV{:"N , Where the

i=1 t=1

nonstochastic scalars c;; ,, are bounded uniformly in absolute value. Define

~e 5 ~
"= f,a, + f,by, where

N - i=1 t=1
~ 1319 1 ~3
by=—> = ,
2N N iletZﬂ: ltNT_lr:l_er
- 1 T?
f, = ;I-(T 2) and f,=-— 5.
T°-3T+3 (T°=-3T+3) (T -1

Then, we have 9% — 9, =0,(1), 9, =0(1), and IR = 0,().

Proof.
Consider

N T
Gy = ED @ With 8 =1 Y 0 Vi (C.61a)
i=1 t=1

The corresponding expression based on the fixed effects residuals is given by

.
N :—EZS, v With 9, :iZcitN\_/iN . (C.61b)
N T—14 "

Substituting for vIt v » simplifying (exploiting the independence of v, and v for i j or
s #t), and rearranging terms, we obtain that — for each i

9y = F,ES  + T, where (C.62)
fOZM and f.lZZ;'
T2-3T+3 T2-3T+3



Since the correction term b, is also based on original rather than demeaned residuals,
another bias correction is required as well. Analogous derivations yield the result that
T2

by =7
M-

Ebin (C.63)

such that
In = fES y + FLEb; , where

1 T(T-)

fO :—,:2—,
f, T°-3T+3

. T? 1 T?

fl = f1 2 T2 2
(T-9)° (T°-3T+3)(T-I

o Ta-y T T

T?-3T+3(T-1)° °(T-1°

Averaging over i =1,...,N , we obtain the following bias corrected estimator for @ :

R = f, 5 + flgN , Where (C.64)
~ 1 &~
Iy EZZCn N |t N = N ZQ N » and
i=1 t=1 N =1

The proof that @ — @, =0,(1) is very similar to that in Lemma C.6a and is thus omitted for
the sake of brevity. Finally, suppose that @, can be written as quadratic form

1 .
SN:ﬁa'NZS)bN with = =diag [ E(V: ) =diag L E(vS ) and €y =a, by then

~ 1 = . ~ .
G = ma TOHRG and O =diag,[(V$)°%] with
~3

(Vlt N) = f [\inN Tt T— 1)3 Z_lr N]

Remark C.3
NT

Note that ¢, \=N"*>d, o and e —N‘lzdVnN ol . Accounting for the
n=1

definition of d,,,, &, can be written as sum of the two expressions a’leEﬁ)KB ) and

!

K Zﬁ)bv,N , Where Kg, | (KAWN ) isan NT x1 vector made up of the main diagonal elements

of the matrix B,, (A,,). Next, observe that a,, =F,Pye, and a,, =EV,NI5N6N
(obviously suppressing the indexation of a, ). By assumption IE'N -Py=0,(), Py =0@)
and thus I5N =0, (1), where the dimension of Py is P.xP . Moreover, a, —a, =0,(1),

=0() and thus ay =0, (1), where the dimension of @, is Px1. By arguments,

analogous to that in Lemma C.3, we have N'FZQ™k_ -NT'FIZP™k  =0,@). It

v,N Bv,N



follows that N-la'Nﬁ@ﬁ@@HRKBVN—N-la'p,r,N PII\IFI(IZS)KBvN=Op(1)' By the same

reasoning, K’AVNiﬁ’BM _K’A\INZ(I\?)bv,N:op(l)’ from  which it  follows that

Fkkk

év,N _e:*’: = Op(l) .



