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The genomic characteristics of human cytomegalovirus (HCMV) strains sequenced directly from clinical pathology samples were 
investigated, focusing on variation, multiple-strain infection, recombination, and gene loss. A total of 207 datasets generated in this 
and previous studies using target enrichment and high-throughput sequencing were analyzed, in the process enabling the determi-
nation of genome sequences for 91 strains. Key findings were that (i) it is important to monitor the quality of sequencing libraries 
in investigating variation; (ii) many recombinant strains have been transmitted during HCMV evolution, and some have apparently 
survived for thousands of years without further recombination; (iii) mutants with nonfunctional genes (pseudogenes) have been 
circulating and recombining for long periods and can cause congenital infection and resulting clinical sequelae; and (iv) intrahost 
variation in single-strain infections is much less than that in multiple-strain infections. Future population-based studies are likely to 
continue illuminating the evolution, epidemiology, and pathogenesis of HCMV.

Keywords.  human cytomegalovirus; genome sequence; target enrichment, genotype; variation; multiple-strain infection; 
recombination; gene loss; mutation.

Human cytomegalovirus (HCMV) poses a risk, particularly to 
people with immature or compromised immune systems, and 
can have serious outcomes in congenitally infected children, 
transplant recipients, and people with human immunodefi-
ciency virus/AIDS. Prior to the advent of high-throughput 
technologies, studies of HCMV genomes in natural infections 
were limited to Sanger sequencing of polymerase chain reaction 

(PCR) amplicons, often focusing on a small number of poly-
morphic (hypervariable) genes [1]. This left out most of the 
genome and also restricted the characterization of multiple-
strain infections, which may have more serious outcomes.

The first complete HCMV genome sequence to be determined 
was that of the high-passage strain AD169 [2], from a plasmid li-
brary. Over a decade later, additional genomes were sequenced 
from bacterial artificial chromosomes [3–5], virion DNA [6] and 
overlapping PCR amplicons [7, 8]. These sequences were also de-
termined using Sanger technology, and were complemented sub-
sequently by many others, increasingly using high-throughput 
methods [7, 9–13]. With only 3 exceptions [7, 11], all were derived 
from laboratory strains isolated in cell culture. Mounting evidence 
of the existence of multiple-strain infections and the propensity 
of HCMV to mutate during cell culture [6–8, 14, 15] added im-
petus to sequencing genomes directly from clinical material to de-
fine natural populations. One strategy for this involves sequencing 
overlapping PCR amplicons [7, 16]. Another utilizes an oligonu-
cleotide bait library representing known HCMV diversity to select 
target sequences from random DNA fragments. This target enrich-
ment technology originated in commercial kits for cellular exome 

applyparastyle “fig//caption/p[1]” parastyle “FigCapt”

D
ow

nloaded from
 https://academ

ic.oup.com
/jid/article-abstract/220/5/781/5485299 by U

niversity of G
lasgow

 user on 09 O
ctober 2019

https://doi.org/10.1101/505735
http://orcid.org/0000-0003-2556-2563
http://orcid.org/0000-0002-4991-9128


782  •  jid  2019:220  (1 September)  •  Suárez et al

sequencing, and was subsequently applied to various pathogens [17, 
18], including HCMV [19–21]. We have applied it to HCMV since 
2012 and have systematically released via GenBank many genome 
sequences that have proved pivotal in other studies [11, 12, 19–21].

The HCMV genome exhibits several evolutionary phe-
nomena, including variation, multiple-strain infection, recom-
bination, and gene loss, all of which were discovered prior to 
high-throughput sequencing and have since been illuminated 
by this technology (early references are [22–26]). We explore 
these and other key genomic features of HCMV, with an em-
phasis on the strains present in clinical material.

METHODS

Samples

For convenience, samples were analyzed as collections 
1–3, which are summarized in Table 1 and described in 
Supplementary Tables 1–3, respectively. Collection 3 represents 
samples sequenced by others in previous studies using target 
enrichment with a different oligonucleotide bait library. The 
features of the samples are shown in Supplementary Tables 1–3 
(rows 3–6), and the clinical outcomes of congenital infection 
are in Supplementary Table 1 (row 205).

DNA Sequencing

Target enrichment and sequencing library preparation were 
performed using the SureSelect XT version 1.7 system for 

Illumina paired-end libraries with biotinylated RNA bait 
libraries (Agilent) [21]. Bait libraries representing known 
HCMV diversity were designed in February 2012 and April 
2014 from 31 and 64 complete genome sequences, respec-
tively. Information on and access to the latter library (55 210 
baits of 120 nucleotides [nt] with overrepresentation of G 
+ C–rich regions) are available from the corresponding au-
thor. Data on viral loads and library construction are shown 
in Supplementary Tables 1–3 (rows 9–12). Datasets of 300 
or 150 nt paired-end reads were generated using a MiSeq 
(Illumina). Their names are shown in Supplementary Tables 
1–3 (row 7). They were prepared for analysis using Trim 
Galore version 0.4.0 (program available at http://www.bioin-
formatics.babraham.ac.uk/projects/trim_galore/; length  =  21, 
quality  =  10, and stringency  =  3). The numbers of trimmed 
reads are in Supplementary Tables 1–3 (row 15).

Library Diversity

Estimating the number of reads in a dataset derived from 
unique HCMV fragments initially involved using Bowtie2 ver-
sion 2.2.6 [29] to align the reads against the strain Merlin se-
quence (GenBank accession number AY446894.2), and, where 
it could be determined, the consensus genome sequence derived 
from the dataset. The relevant data are in Supplementary Tables 
1–3 (rows 17–19 and 23–26). Reads containing insertions or 
deletions were removed to preserve coordinate numbering, as 

Table 1.  Selected Characteristics on Sample Collections 1–3

Characteristic Collection 1 Collection 2 Collection 3

Patients, No.a 48 29 25

Patient condition Congenital infection Mostly transplant recipients Various

Samples, No. 53 89 57

Sample source, city (prefix) Pavia (PAV), Jerusalem  
(JER), Prague (PRA)

Hannover (Child, RTR, SCTR),  
Pavia (PAV)

Rotterdam (Rot), 
London (Lon, Pat_)

Datasets, No. 53 97b 57c

Duplicated libraries, No. 0 7 0

HCMV load, IU/µLd 26–559 968 5–194 840 104–18 377

Genome copies for library, No.e 225–8 399 520 280–3 896 800 Unknown

Reads in Merlin alignment, % 2–91 0–85 0–90

Coverage ratio in Merlin alignment, % unique/total reads 0.40–83.12 0.00–76.09 0.00–90.21

Genome sequences determined, No.f 42 25 24

Details are provided in Supplementary Tables 1–3.

Abbreviation: HCMV, human cytomegalovirus.
aArchived diagnostic samples were used, and clinical data were retrieved, with the approval of the institutional review boards of Policlinico San Matteo, Pavia (reference numbers 35853/2010 
and 35854/2010), Hadassah University Hospital, Jerusalem (reference number HMO-063911), Motol University Hospital, Prague (reference number EK-701a/16) and Hannover Medical 
School, Hannover (reference number 2527-2014).
bWe reported 68 of the Hannover datasets previously [21].
cThese datasets were reported previously by others, and were either provided by the authors [19] or downloaded from the European Nucleotide Archive (study PRJEB12814) [20].
dViral load in most extracted samples was quantified in the laboratory of origin or the sequencing laboratory. In some instances, the entire sample was used blind to generate a sequencing 
library.
eAssumes that 1 IU is equivalent to 1 genome copy.
fThe trimmed paired-read data were aligned to the UCSC hg19 human reference genome (http://genome.ucsc.edu/) using Bowtie2. Nonmatching reads were assembled de novo into contigs 
using SPAdes version 3.5.0 [27]. The contigs were ordered using Scaffold_builder version 2.2 [28] by reference to a version of the strain Merlin sequence lacking all but 100 nt of the terminal 
repeat regions (TRL at the left end and TRS at the right end; Figure 1), and merged into a draft genome sequence. Residual gaps were filled by identifying relevant reads anchored in flanking 
regions and assembling them manually in a reiterative fashion. TRL and TRS were reinstated, and the complete genome sequence was verified by aligning it against the read data using 
Bowtie2 and inspecting the alignment in Tablet. An annotated genome sequence was produced using Sequin (https://www.ncbi.nlm.nih.gov/Sequin/).
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were duplicate read pairs sharing both end coordinates and 
duplicate unpaired reads sharing one end coordinate, thereby 
producing an alignment file for unique reads derived from 
unique HCMV fragments (program available at https://centre-
for-virus-research.github.io/VATK/AssemblyPostProcessing). 
This file was viewed using Tablet version 1.14.11.7 [30]. The 
coverage depth values for total and unique fragment reads are 
in Supplementary Tables 1–3 (rows 20–21 and 27–28).

Strain Enumeration

The number of strains represented in a dataset was estimated by 
2 strategies: genotype read-matching and motif read-matching 
(program available at https://centre-for-virus-research.github.
io/VATK/HCMV_pipeline). Both strategies utilized datasets 
concatenated from the paired-end datasets. The genotype 
designations used were either based on reported phylogenies 
[6, 12, 25, 31, 32], amended or extended as appropriate, or 
constructed afresh using Clustal Omega version 1.2.4 [33] and 
MEGA version 6.0.6 [34] with data for the genomes listed in 
Supplementary Table 4 and individual genes for which addi-
tional sequences were available in GenBank. Alignments and 
phylogenetic reconstructions are in Supplementary Figures 1 
and 2, respectively.

For genotype read-matching, Bowtie2 was used to align the 
reads to sequences representing the genotypes of 2 hypervariable 
genes, UL146 and RL13 [6, 12, 35]. The sequences from the en-
tire coding region of UL146 and the central coding region of 
RL13 are in Supplementary Tables 1–3 (rows 34–58). In contrast 
to the UL146 genotypes, the RL13 genotypes cross-matched 
within 4 groups (G1, G2, G3; G4A, G4B; G6, G10; and G7, G8). 
In these instances, the genotype within the group with most 
matching reads was scored. The number of reads aligned to each 
genotype is in Supplementary Tables 1–3 (rows 34–58). A geno-
type was scored if the number of reads was >10 and represented 
>2% of the total number detected for all genotypes of that gene. 
For 14 samples in collection 1 that had been sequenced prior to 
the availability of ultrapure (TruGrade) oligonucleotides, these 
values were >25 and >5%, respectively. The number of strains in 
a sample was scored as the greater of the numbers of genotypes 
detected for the 2 target genes, and is in Supplementary Tables 
1–3 (row 13).

For motif read-matching, conserved genotype-specific motifs 
(20–31 nt) were identified by visual inspection of alignments 
(Supplementary Figure 1) for 12 hypervariable genes [6, 12, 19, 
35]. Additional motifs for identifying common intergenotypic 
recombinants were included. The motif sequences and number 
of reads containing perfect matches to a sequence or its reverse 
complement are in Supplementary Tables 1–3 (rows 60–170). 
Genotypes were scored as described above. The number of 
strains in a sample was estimated as the maximum number of 
genotypes detected for at least 2 genes, and is in Supplementary 
Tables 1–3 (row 14).

Pseudogene Analysis

The genomes of some HCMV strains exhibit gene loss apparent 
as pseudogenes resulting from mutations causing premature 
translational termination [7, 11, 12, 26]. These mutations are 
substitutions that introduce in-frame stop codons or ablate 
splice sites, or insertions or deletions that cause frameshifting 
or loss of protein-coding regions. Motif read-matching was 
used to assess the presence of common mutations and also to 
determine the prevalence of mutations identified in collection 
1. These data are in Supplementary Tables 1–3 (rows 171–178) 
and Supplementary Table 1 (rows 180–203), respectively.

Intrahost Variation

Minor genome populations were analyzed by enumerating 
single-nucleotide polymorphisms (SNPs) in datasets for which 
consensus genome sequences had been determined. Thus, the 
term mutant applies hereafter to a strain that has a mutation in 
the consensus sequence resulting in a pseudogene, and the term 
SNP applies to a minor variation from the consensus within 
a population. To enumerate SNPs, original datasets were pre-
pared for analysis using Trim Galore (length = 100, quality = 30, 
and stringency  =  1), and trimmed reads were mapped using 
Bowtie2. Alignment files in SAM format were converted into 
BAM format, sorted using SAMtools version 1.3 [36], and 
analyzed using LoFreq version 2.1.2 [37] and V-Phaser 2 [38].

Data Deposition

Original datasets were purged of human reads and deposited 
in the European Nucleotide Archive (ENA; project number 
PRJEB29585), and consensus genome sequences were deposited 
in GenBank. The accession numbers are in Supplementary 
Tables 1–3 (rows 8 and 29, respectively). Updated genome se-
quence determinations in collection 3 were deposited by the 
original submitters in GenBank [19] or by us as third-party 
annotations in ENA (project number PRJEB29374) [20]. 
Sequence features are in Supplementary Tables 1–3 (rows 
30–32).

RESULTS

Operational Limitations

A total of 207 datasets from 199 samples and 102 individuals 
were analyzed (Table 1 and Supplementary Tables 1–3). Library 
quality was represented in the percentage of HCMV reads and 
the coverage depth by unique fragment reads. These values were 
related to sample type, being higher for urine than blood pre-
sumably because of a higher proportion of viral to host DNA. 
They also depended on the number of viral genome copies used 
to make the library, with >1000 copies generally being needed 
to determine a complete genome sequence. However, despite 
high library diversity, it was not possible to assemble complete 
genome sequences from most datasets in collection 3 because of 
gaps in RL12 and some G + C–rich regions, perhaps as a result 
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of limitations in the bait library. The use of excessive PCR cycles 
with some samples in collections 1 and 2 led to high coverage 
depth by total fragment reads but low coverage depth by unique 
fragment reads, and thus to highly clonal libraries (eg, PAV2 in 
collection 1). Genotypes present at subthreshold levels may rep-
resent multiple-strain infections or cross-contamination during 
the complex sample processing pathway (eg, PRA4 reads in 
PRA6A in collection 1).

Genome Sequences

A total of 91 complete or almost complete HCMV genome 
sequences were determined (Table 1). We reported 5 previ-
ously [21], and 16 are improvements on published sequences 
[19]. Most originated from single-strain infections or multiple-
strain infections in which one strain was predominant, and 
some originated from different strains that predominated in a 
patient at different times. Defining a strain as a viral genome 
present in an individual, these 91 sequences, plus an addi-
tional 49 deposited by our group and 104 by others, brought 
the number of strains sequenced to 244 (Supplementary Table 
4). Of these, 91 were sequenced directly from clinical material, 
and all but one were determined in this and our previous study 
[21]. The average size of the HCMV genome, based on the 78 
complete sequences in this set, is 235 465 bp (range 234 316–
237 120 bp).

Multiple-Strain Infections

Genotypic differences in hypervariable genes (Figure 1 and 
Supplementary Figures 1 and 2) were exploited to distinguish 

single-strain from multiple-strain infections by genotype read-
matching and motif read-matching with threshold values. To 
our knowledge, these methods, employed in the present work 
and the companion study [39], have not been used previously 
for categorizing HCMV infections. Single strains were common 
in congenitally infected patients (n = 43/50 in collections 1 and 
2), but significantly less so in transplant recipients (n = 11/25 in 
collections 2 and 3; χ2 = 14.583, P < .05). Intrahost variation is 
discussed below.

Recombination

The 244 genome sequences were genotyped in the 12 
hypervariable genes used for motif read-matching and then in 5 
additional genes (Figure 1 and Supplementary Table 4).

Hypervariation in UL55, which encodes glycoprotein B 
(gB), is located in 2 regions (UL55N near the N terminus, and 
UL55X encompassing the proteolytic cleavage site) [23, 40]. 
Five genotypes (G1–G5) have been assigned to each region [23, 
40–42], which are separated by 927 bp that are 80% identical 
in all strains. All genomes had a recognized UL55X genotype 
(Supplementary Table 5). As reported previously [40], UL55N 
G2 and G3 could not be distinguished reliably from each other, 
and 2 additional genotypes (G6–G7) were detected that may 
have arisen from ancient recombination events within UL55N 
(Supplementary Tables 4 and 5 and Supplementary Figure 1). 
There was evidence for recombination in the region between 
UL55N and UL55X in only 8 genomes. This low proportion of 
recombination (3.3%) contrasts with the higher levels proposed 
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Figure 1.  Locations in the human cytomegalovirus strain Merlin genome of genes used for genotyping. The genome consists of 2 unique regions, UL (1325–194 343 bp) 
and US (197 627–233 108 bp), the former flanked by inverted repeats TRL (1–1324 bp) and IRL (194 344–195 667 bp), and the latter flanked by inverted repeats IRS (195 090–
197 626 bp) and TRS (233 109–235 646 bp). Protein-coding regions are indicated by shaded arrows, and noncoding RNAs as narrower, white arrows, with gene nomenclature 
below. Introns are shown as narrow white bars. The 12 genes (RL5A, RL6, RL12, RL13, UL1, UL9, UL11, UL73, UL74, UL120, UL146, and UL139) used for motif read-matching 
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in UL55 from PCR-based studies [40, 43], which may have been 
affected by artefactual recombination.

UL73 and UL74, which encode glycoproteins N and O (gN 
and gO), respectively, are adjacent hypervariable genes that 
exist as 8 genotypes each [25, 32, 44]. There was evidence for 
recombination between them in only 7 genomes (2.9%), in ac-
cordance with the low levels (2.2%) detected previously in PCR-
based studies [25, 32, 45]. In the region containing adjacent 
hypervariable genes RL12, RL13, and UL1, recombinants were 
also rare (1.2%) within RL12 and absent from RL13 and UL1. 
In contrast, hypervariable genes UL146 and UL139, which en-
code a CXC chemokine and a membrane glycoprotein, respec-
tively, are separated by a well-conserved region of over 5 kbp. 
The number (66) of the 126 possible genotype combinations 
represented in the 244 genomes is too large to allow any under-
lying genotypic linkage to be discerned, consistent with previous 
conclusions from PCR-based studies [31]. No recombinants 
were noted within UL146.

In principle, strains in multiple-strain infections have the 
opportunity to recombine. In our previous analysis of RTR1 in 
collection 2, we noted that one strain (RTR1A) predominated 
at earlier times and another (RTR1B) at later times [21]. From 
the low frequency of SNPs across a large part of the genome, 
we concluded that the second strain had arisen either by re-
combination involving the first strain or by reinfection with, or 
reactivation of, a second strain fortuitously similar to the first. 
In the present study, recombination was strongly supported by 
a comparison of the 2 genome sequences, which showed that 
approximately two-thirds of the genome is almost identical 
(differing by 3 substitutions in noncoding regions), whereas the 
remaining third is highly dissimilar.

To investigate whether strains have been transmitted 
without recombination occurring, identical genotypic 
constellations were identified among the 244 genomes (Table 
2). This revealed the existence of 12 haplotype groups within 
which multiple strains lack signs of having recombined since 
diverging from their last common ancestor; these are hence-
forth termed nonrecombinant strains. As an incidental out-
come, the 2 strains in group 1 (PRA8 and CZ/3/2012), which 
were characterized in different studies, were confirmed as 
having originated from the same patient, reducing the set of 
sequenced strains to 243. The results from the other 11 groups 
suggest that nonrecombinant strains have been circulating, 
some for periods sufficient to allow the accumulation of >100 
substitutions. Among the highly divergent groups, group 9 (3 
strains) exhibited 135 differences, with the 50 that would af-
fect protein coding distributed among 38 genes, and group 10 
(2 strains) exhibited 138 differences, with the 38 that would 
affect protein coding distributed among 27 genes. No obvious 
bias was observed toward greater diversity in any particular 
gene or group of genes, including those in the hypervariable 
category.

Pseudogenes

Among the strains sequenced from clinical material, 77% 
are mutated in at least one gene (compared with 79% among 
all sequenced strains), and one is mutated in as many as 6 
genes (Pat_D in collection 3)  (Supplementary Table 4). The 
most frequently mutated genes are UL9, RL5A, UL1 and RL6 
(members of the RL11 family), US7 and US9 (members of the 
US6 gene family), and UL111A (encoding viral interleukin 
10)  (Table 3). In addition, there was evidence from the PAV6 
datasets (collection 1) for maternal transmission of a US7 mu-
tant (Supplementary Table 1), and from PCR data (not shown) 
for maternal transmission of a UL111A mutant to PAV16 (col-
lection 1). Focusing on the most common mutations, strains 
in which UL9, RL5A, UL1, US9, US7, and UL111A were af-
fected (singly or in combination) were, like strains that were not 
mutated in any gene, transmitted in congenital infections and, 
in some cases, linked to defects in neurological development 
(Supplementary Table 1).

Intrahost Diversity

LoFreq and V-Phaser analyses showed that single-strain 
infections contained markedly fewer SNPs (median values of 60 
and 140, respectively) than multiple-strain infections (median 
values of 2444 and 2955, respectively; Figure 2). The differences 
between the values for single- and multiple-strain infections 
were significant (Kruskal–Wallis rank-sum test; LoFreq: 
χ2 = 67.918, P < 2.2 × 10-16; V-Phaser: χ2 = 63.536, P = 1.6 × 
10-15).

DISCUSSION

Advances in high-throughput sequencing technology have 
made it possible to generate a wealth of viral genome informa-
tion directly from clinical material. However, operational 
limitations should be registered. These include sample charac-
teristics (source, viral content and presence of multiple strains), 
confounding factors (technical limitations, logistical errors and 
cross-contamination), design of the bait library (ability to en-
rich all strains and acquire data across the genome), and quality 
and extent of the sequencing data (library diversity and coverage 
depth). Since perceived levels of intrahost variation are partic-
ularly sensitive to these factors, we proceeded cautiously with 
this aspect. However, as indicated in our previous study [21], 
it is clear that the number of SNPs in single-strain infections 
was markedly less than that in multiple-strain infections. It was 
also far less than that reported by others in samples from con-
genital infections [16]. The factors listed above may have been 
responsible for the outliers observed in single-strain infections; 
for example, the PAV6 (collection 1)  library was made using 
non-TruGrade oligonucleotides, RTR6B (collection 2)  had a 
low coverage depth and also came from a patient from whom 
other samples contained multiple strains, and CMV-35 (collec-
tion 3)  may have contained subthreshold levels of additional 
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strains or cross-contaminants. In our view, accurate estimates 
of the levels of intrahost variation in single-strain infections are 
not available from the present and previous studies, and will 
require sequencing and bioinformatic approaches that are de-
monstrably reliable, robust, and reproducible [46, 47].

Whole-genome analyses have confirmed the significant role 
of recombination during HCMV evolution reported in nu-
merous earlier studies [12, 19]. Recombination has occurred 
over a very long period but nonetheless remains limited in ex-
tent, with surviving events being more numerous in long re-
gions, less numerous in short regions, and rare or absent in 
hypervariable regions, consistent with the role of homologous 

recombination. Recombination frequency may be restricted in 
some circumstances by functional interdependence within the 
same protein (eg, gB) or possibly between separate proteins (eg, 
gN and gO [25, 32, 44]). However, it is not known whether dif-
ferential recombination due to sequence relatedness is of general 
biological significance for the virus. Also, strains have circulated 
that seem not to have recombined for long periods. Application 
of an evolutionary rate estimated for herpesviruses (3.5 ×  10−8 
substitutions/nt/year) [48] implies that these periods may have 
extended to many thousands of years. Moreover, as suggested 
by the lack of diversity within genotypes in comparison with the 
marked diversity among them, the distribution of substitutions 

Table 3.  Mutated Genes in Order of Decreasing Frequency

Gene Feature(s)

Strains Mutated, No.a Strains Mutated, %a

Passagedb Clinicalc Alld Passagedb Clinicalc Alld

UL9 RL11 family; type 1 membrane protein 50 31 81 32.89 34.07 33.33

RL5A RL11 family 31 27 58 20.39 29.67 23.87

UL1 RL11 family; type 1 membrane protein 20 18 38 13.16 19.78 15.64

RL6 RL11 family 23 14 37 15.13 15.38 15.23

US9 US6 family; type 1 membrane protein 26 11 37 17.11 12.09 15.23

UL111A Viral interleukin-10 16 7 23 10.53 7.69 9.47

UL150 Unknown 11 3 14 7.24 3.30 5.76

US7 US6 family; type 1 membrane protein 7 7 14 4.61 7.69 5.76

UL40 Type 1 membrane protein 8 2 10 5.26 2.20 4.12

UL30 UL30 family 2 3 5 1.32 3.30 2.06

UL142 MHC family; type 1 membrane protein 2 3 5 1.32 3.30 2.06

RL12 RL11 family; type 1 membrane protein 3 1 4 1.97 1.10 1.65

RL1 RL1 family 1 2 3 0.66 2.20 1.23

UL136 Potential transmembrane domain 3 0 3 1.97 0.00 1.23

US13 US12 family; type 3 membrane protein 3 0 3 1.97 0.00 1.23

UL133 Potential transmembrane domain 2 0 2 1.32 0.00 0.82

US6 US6 family; type 1 membrane protein 1 1 2 0.66 1.10 0.82

US8 US6 family; type 1 membrane protein 0 2 2 0.00 2.20 0.82

US27 GPCR family; type 3 membrane protein 2 0 2 1.32 0.00 0.82

UL11 RL11 family; type 1 membrane protein 1 0 1 0.66 0.00 0.41

UL13 Unknown 0 1 1 0.00 1.10 0.41

UL14 UL14 family; type 1 membrane protein 0 1 1 0.00 1.10 0.41

UL15A Potential transmembrane domain 0 1 1 0.00 1.10 0.41

UL20 Type 1 membrane protein 1 0 1 0.66 0.00 0.41

UL43 US22 family 0 1 1 0.00 1.10 0.41

UL99 Envelope-associated protein 1 0 1 0.66 0.00 0.41

UL148 Type 1 membrane protein 1 0 1 0.66 0.00 0.41

UL147 CXCL family 1 0 1 0.66 0.00 0.41

UL145 Unknown 0 1 1 0.00 1.10 0.41

UL150A Unknown 1 0 1 0.66 0.00 0.41

IRS1 US22 family 1 0 1 0.66 0.00 0.41

US1 US1 family 1 0 1 0.66 0.00 0.41

US12 US12 family; type 3 membrane protein 1 0 1 0.66 0.00 0.41

US19 US12 family; type 3 membrane protein 0 1 1 0.00 1.10 0.41

Abbreviations: CXCL, chemokine (CXC motif) ligand; GPCR, G protein–coupled receptor; MHC, major histocompatibility complex.
aOmitting mutations that occurred in RL13, UL128, UL130, and UL131A probably during passage, or that were engineered during bacterial artificial chromosome construction.
bStrains sequenced from strains passaged in cell culture, not taking into account the minority of mutations confirmed from the clinical samples (n = 152, excludes CZ/3/2012, which is the 
same strain as PRA8).
cStrains sequenced directly from clinical material (n = 91).
dStrains sequenced directly from clinical material or passaged virus (n = 243).

D
ow

nloaded from
 https://academ

ic.oup.com
/jid/article-abstract/220/5/781/5485299 by U

niversity of G
lasgow

 user on 09 O
ctober 2019



788  •  jid  2019:220  (1 September)  •  Suárez et al

in nonrecombinant strains fits with the view that intense diver-
sification of the hypervariable genes occurred early in human or 
pre–human history [25, 31] and has long since ceased.

Assessing the extent to which recombinants arise and sur-
vive in individuals with multiple-strain infections is problem-
atic. Except where populations fluctuate significantly and are 
sampled serially (eg, RTR1 in collection 2), it is difficult to ap-
proach this using short-read data, as they are based on PCR 
methodologies prone to generating recombinational artefacts. 

Long- or single-read sequencing technologies and demonstrably 
reliable bioinformatic approaches are needed. Also, conclusions 
drawn from transplant recipients, who are immunosuppressed 
and in whom HCMV populations may be diversified by trans-
plantation from HCMV-positive donors or selected with an-
tiviral drugs, are unlikely to represent other situations, such 
maternal transmission via breast milk [39].

Evidence for pseudogenes was largely derived previously from 
strains isolated in cell culture, and it was unclear to what extent 
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Figure 2.  Box-and-whisker graphs created using ggplot2 (https://ggplot2.tidyverse.org) showing the total number of single-nucleotide polymorphisms (SNPs) detected at 
a frequency of >2% in single-strain and multiple-strain infections using LoFreq (A) and V-Phaser (B). Single-strain (n = 134 and 131, respectively) and multiple-strain datasets 
(n = 29 and 29, respectively) for which consensus genome sequences had been derived were identified by motif read-matching, and the total number of SNPs in each dataset 
was enumerated (insertions, deletions, and length polymorphisms were not considered). LoFreq employed a minimal coverage depth of 10 reads (minimal SNP quality [phred] 
64) and strand-bias significance with a false discovery rate correction of P < .001. V-Phaser employed phasing with a window size of 500 nucleotides and quality score (phred) 
20 for calibrating the significance of strand-bias at P < .05. Each box (light gray for single strains and dark gray for multiple strains) encompasses the first to third quartiles 
(Q1–Q3) and shows the median as a thick line. For each box, the horizontal line at the end of the upper dashed whisker marks the upper extreme (defined as the smaller of 
Q3 + 1.5 [Q3–Q1] and the highest single value), and the horizontal line at the end of the lower dashed whisker marks indicates the lower extreme (the greater of Q1 – 1.5 
[Q3–Q1] and the lowest single value).
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pseudogenes presented in natural populations. For example, in a 
study reporting that 75% of strains carry pseudogenes [12], 157 
mutations were identified in 101 strains, with all but one of these 
strains having been passaged in cell culture, although 35 mutations 
were confirmed by PCR of the clinical material. Nonetheless, we 
found that the distribution of pseudogenes among the 91 strains 
sequenced in the present study directly from clinical material is 
similar to that among strains isolated in cell culture, thus gener-
ally validating the earlier suppositions. The likelihood that many 
of these mutants are ancient is supported by the finding that all 
were detected at levels very close to 100% in collection 1, and by 
previous observations identifying the same mutation in different 
strains [7, 12]. Moreover, 9 of the groups of nonrecombinant 
strains contained pseudogenes, and some of the mutations 
were common to group members and even to additional strains 
among the 243, indicating that they have been transferred by re-
combination. The implication that some mutants have a selective 
advantage in certain individuals may be extended to their pres-
ence in pathogenic congenital infections, probably in combina-
tion with host factors. The genes from which pseudogenes have 
arisen are involved, or are suspected to be involved, in immune 
modulation. They include UL111A, which encodes viral inter-
leukin 10 [49]; UL40, which is involved in protecting infected 
cells against natural killer cell lysis [50] via its cleaved signal pep-
tide, in which mutations occur; and UL9, which bears a potential 
immunoglobulin-binding domain [2]. These findings also sug-
gest, but do not prove, that maternal HCMV genotyping might 
be useful in developing strategies for preventing congenital CMV.

Modern approaches offer a powerful means for analyzing 
HCMV genomes directly from clinical material, with the im-
portant proviso that the data should be quality assessed and 
interpreted in the context of the known evolutionary and bio-
logical characteristics of the virus. Extensive high-throughput 
sequence data are likely to illuminate further the epidemi-
ology, pathogenesis, and evolution of HCMV in clinical and 
natural settings, thus facilitating the identification of virulence 
determinants and the development of new interventions.

Supplementary Data

Supplementary materials are available at The Journal of Infectious 
Diseases online. Consisting of data provided by the authors to 
benefit the reader, the posted materials are not copyedited and are 
the sole responsibility of the authors, so questions or comments 
should be addressed to the corresponding author.
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