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Abstract 

We recently reported that brain-specific human β-secretase 1 (BACE1) knock-in (PLB4), a 

mouse model of ‘sporadic’ Alzheimer’s disease (AD), also develops a severe diabetic 

phenotype characterised by impaired glucose homeostasis, decreased insulin sensitivity and 

a fatty liver phenotype. Hence, we here aimed to assess if targeted anti-diabetic therapies 

(Liraglutide and Fenretinide) would attenuate the diabetic and behavioural phenotype of 

these mice. PLB4 and wild-type (WT) controls were administered Liraglutide or Fenretinide 

for ten consecutive weeks alongside vehicle-treated mice. Physiological (body weight and 

mass composition, glucose tolerance, serum hormone concentration), behavioural 

(locomotor activity) and molecular assessments were performed in mice pre- and post-

treatment. Liraglutide and Fenretinide treatments inhibited adiposity gain and decreased 

circulating serum triglyceride (with Liraglutide) and leptin (with Fenretinide) levels in PLB4 

mice. We also found that PLB4 mice exhibit increased levels of serum dipeptidyl peptidase 4 

(DPP4), together with up-regulated hepatic expression of Dpp4, retinol binding protein 4 

(Rbp4) and sterol regulatory element-binding 1c (Srebp1c), which was normalised by both 

treatments. Interestingly, Liraglutide treatment slowed down habituation to a novel 

environment and increased secondary night activity peak in WT mice, suggesting an impact 

on circadian activity regulation. However, neither treatment improved glucose homeostasis 

in PLB4 mice, implying that impaired glucose metabolism in this genotype may not be 

associated with glucagon like peptide 1 (GLP-1) and/or RBP4-mediated pathways. In 

summary, this study provides new insights into molecular mechanisms underlying neuronal 

BACE1-mediated metabolic regulation and implicates BACE1 as a putative regulator of 

systemic DPP4 levels.  
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1. Introduction  

Investigation into the links between Alzheimer’s disease (AD) and type 2 diabetes mellitus 

(T2DM) has recently gained wide attention. The association between the two disorders has 

been known for some time, but the mechanistic links remain elusive [1,2]. Abnormalities 

associated with T2DM, such as peripheral hyperinsulinaemia, may lead to decreased cerebral 

insulin levels, contributing to neuronal loss and acceleration of AD progression [3].  

Conversely, we have recently shown that AD-associated brain pathology can induce systemic 

T2DM-like symptoms [4]. More specifically, we demonstrated that expression of neuronal 

human β-secretase 1 (BACE1), the key enzyme in amyloid precursor protein (APP) processing 

and AD pathology, resulted in a diabetic phenotype prior to AD-like impairments in mice 

(termed PLB4) [4,5]. This was accompanied by neuronal pathology such as endoplasmic 

reticulum (ER) stress, elevated ceramides and upregulated central and hepatic levels of retinol 

binding protein 4 (RBP4), an adipokine associated with insulin resistance, likely all working in 

concert to induce glucose dyshomeostasis in these mice [4,6].  Importantly, other studies also 

confirm the significance of BACE1 in global metabolic regulation [7-9]; altogether implicating 

BACE1 as a strong link between AD and T2DM. 

Currently, no effective treatment exists for AD. Since insulin sensitivity and/or levels of insulin 

receptors are often decreased in AD brains [10,11], the use of anti-diabetic agents for 

treatment of AD may offer an alternative approach. Specifically, compounds that target the 

glucagon-like peptide 1 (GLP-1) pathway have attracted significant attention; GLP-1 is a 

glucoregulatory hormone mainly derived from intestinal L-cells in response to food ingestion 
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[12]; nevertheless, GLP-1 has been shown to be produced in the brain as well [13].  GLP-1 has 

a very short circulating half-life (~2min) and is rapidly metabolised by dipeptidyl peptidase IV 

(DPP4) or neutral endopeptidase 24.11 (NEP), converting active GLP-1 into its inactive form 

[14]. 

Liraglutide is an approved medication for the treatment of T2DM with an extended half-life 

(~13h) compared to endogenous GLP-1, resulting in insulin-sensitizing and glucose lowering 

effects [15]. However, recent studies have demonstrated that the effects of Liraglutide are 

not limited to anti-diabetic actions and can target AD-like pathologies as well [16-18]; 

Liraglutide treatment alleviated oligomeric amyloid β (Aβ)-induced synaptic loss, 

phosphorylation of tau and decrease of insulin receptors in the brains of non-human primates 

[16]. Furthermore, several studies using experimental mouse models of AD demonstrated 

beneficial effects of  Liraglutide against AD pathologies, including decreased Aβ accumulation, 

tau  protein phosphorylation and hippocampal neurodegeneration, as well as improved 

memory, cognition and motor function [16,19-20]. Collectively, these findings suggested that 

Liraglutide may be a potential therapeutic agent for both T2DM and AD, and led to currently 

ongoing clinical trials of Liraglutide in AD patients (ELAD; www.ClinicalTrials.gov identifier 

NCT01843075). Nevertheless, other in vivo studies demonstrated that chronic Liraglutide 

treatment has no effect on Aβ expression in transgenic hAPPLon/PS1a246E and 

hAPPSwe/PS1ΔE9 mice, indicating that efficacy of Liraglutide treatment may vary [21]. 

An alternative therapeutic target may be retinoid receptors, transporters and metabolizers; 

these have been the subject of considerable ongoing research for obesity, diabetes and AD 

[22,23]. Lately, an interest has been focused on the synthetic retinoid 4-

hydroxy(phenyl)retinamide (Fenretinide), which has been investigated as a promising 

http://www.clinicaltrials.gov/
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treatment for obesity and diabetes [24-28]. Although, the precise mechanisms through which 

Fenretinide mediates its beneficial metabolic effects remains unknown, it was shown to 

prevent weight gain and leptin oversecretion in high-fat-diet (HFD)-fed mice and improve 

insulin sensitivity by decreasing adipose and serum RBP4 levels [24], as well as normalise 

increased fibroblast growth factor 21 (FGF21) levels in diabetic mice [25]. Based on these 

findings, we hypothesized that Fenretinide may exert beneficial effects in PLB4 mice, as these 

were found to display RBP4-related hepatic and brain pathology [4].  

The aim of this study was to investigate the effects of a ten week treatment with Liraglutide 

or Fenretinide on comorbid AD- and T2DM-like phenotypes in neuronal BACE1 knock-in 

(PLB4) and WT controls, in order to assess their therapeutic potential on the AD background.

  

2. Materials and methods 

2.1 Animals 

Animals were housed and tested following European (Directive on the Protection of Animals 

used for Scientific Purposes, 2010/63/EU) and UK Home Office regulations. Experiments were 

approved by the University Ethics Board and carried out in accordance with the Animal 

(Scientific Procedures) Act 1986 and following ARRIVE guidelines. Transgenic PLB4 and WT 

mice were generated as previously reported [5] and experiments were not blinded to 

genotype. All animals were group-housed male mice (3-5 mice per cage), ~4 months when 

treatment started and ~6 months old when treatment ended. All mice were 5 h fasted and 

afterwards sacrificed by cervical dislocation at the end of the study.  
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2.2 Drug treatments 

Liraglutide was purchased from GL Biochem (Shanghai) Ltd and 0.04% wt/wt Fenretinide 

enriched mouse chow diet was purchased from (Research Diets, New Brunswick, NJ) together 

with chow control diet. Fenretinide was a generous gift of T. Martin (Johnson & Johnson, New 

Brunswick, NJ) to N. Mody. WT (n=26) and PLB4 (n=23) mice were randomized and 

counterbalanced to the three experimental groups (control (CON) WT n=11, PLB4 n=7), 

Liraglutide (WT n=7; PLB4 n=8) or Fenretinide (WT n=8; PLB4 n=8) according to the body weight. 

Fenretinide group mice received 0.04% wt/wt Fenretinide containing chow diet; Liraglutide 

and CON group mice were administered 25 nmol/kg Liraglutide or 0.9% w/v saline once-daily 

i.p. injection five times a week for 10 weeks respectively, and fed chow control diet (Research 

Diets, New Brunswick, NJ).  

 

2.3 Body mass composition  

Fat and lean mass composition was analysed using an EchoMRI scanner pre- and at week 7 of 

treatment in non-fasted mice (EchoMedical Systems, Houston, TX, U.S.A.). 

 
2.4 Metabolic measurements  

Glucose tolerance tests (GTTs) were performed 7 weeks into treatment following previously 

described protocol [28]. Briefly, all mice were fasted for 5 h and tail blood glucose was 

determined using an AlphaTRAK glucose strips and glucometer (Berkshire, UK) at baseline 

(time 0) before i.p. injection of glucose (2 mg/g body weight) and at 15, 30, 60 and 90 min 

post- injection.  

 

 

 



  

7 
 

2.5 Serum immunoassays  

Tail or trunk blood was collected from 5 h fasted mice into serum separator Microtubes. 

Serum was used for insulin, leptin, total GLP-1 and FGF21 determination (Insulin, GLP-1 and 

FGF21 ELISA, Millipore, Darmstadt, Germany; leptin ELISA, CrystalChem, Zaandam, 

Netherlands). 

 

2.6 Triglyceride assay 

Serum triglycerides were determined using calorimetric triglycerides assay in serum from 5 h-

fasted mice (triglyceride kit, Sigma Aldrich, Irvine, UK).  

 

2.7 Immunoblotting 

RBP4 and DPP4 levels were determined in 1 ul of serum from 5 h fasted animals via 

immunoblotting protocol as previously reported [29]. Briefly, 1 ul of serum was mixed with 

29 ul of 1x SDS-PAGE gel-loading buffer containing 5% β-mercaptoethanol, samples heated 

for 10min at 95°C and total volume loaded into the 30 ul wells of a pre-cast gel (4-12% 

Criterion XT Bis-Tris, BioRad, USA). Immunostaining was performed using RBP4 (Dako, 

Glastrup, Denmark; A0040, 1:1000) and DPP4 (Abcam, Cambridge, UK; ab129060, 1:1000) 

antibodies. Ponceau S (Sigma Aldrich, Irvine, UK) staining was used as a loading control.  

 

2.8 Gene expression 

Livers were collected from 5 h-fasted animals and snap-frozen in liquid nitrogen. RNA was 

isolated from frozen liver tissue (right lobe) using TRIzole (Sigma, UK) and cDNA was 

synthesised from 1 ug RNA using bioscript cDNA synthesis kit (Bioline, UK), oligo (dT) 18 and 

random hexamer primers. Genes of interest were amplified by quantitative PCR (qPCR), using 

gene-specific primers and GoTaq qPCR master mix (Promega, Madison, WI, USA). Relative 
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expression of hepatic mRNA levels was calculated using the Pfaffl method [30] and normalised 

to the geometric mean of the three most stable reference genes (NoNo, Ywhaz, 18S).  

 

2.9 Activity in the PhenoTyper  

Locomotor and circadian activity were assessed using the PhenoTyper home cage observation 

system (30 cm x 30 cm x 35 cm; Noldus IT, Netherlands) with ad libitum access to food and 

water, following our previous protocol [5].  Habituation activity (mean distance moved during 

first 3 hours) and post-habituation average hourly activity over 24 h (mean over five days 

post-habituation), were considered as parameters of locomotor and circadian activity in mice.  

 

2.10 Statistical analysis 

Results are expressed as mean ± SEM. Statistical analyses were performed using one- or two-

way ANOVA with post hoc tests or unpaired two-tailed Student’s t-test as appropriate. 

Nonlinear regression analyses (exponential one-phase decay) was applied to analyse the 

habituation activity in the PhenoTyper. GraphPad Prism 5 software (GraphPad Software, Inc., 

San Diego, California, USA) was used for analyses. P-values < 0.05 were considered significant. 
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3. Results 

3.1 Liraglutide and Fenretinide treatments inhibited adiposity gain in PLB4 mice without 

affecting overall body weight maintenance. 

As previously reported [4], PLB4 mice had lower body weight compared to WT controls (Fig. 

1a; F (1,160) = 8.7, p<0.05). Neither Liraglutide nor Fenretinide affected body weights of WT (Fig. 

1b) or PLB4 (Fig. 1c) mice during the ten weeks of treatment. Congruent with the lower body 

weight phenotype, PLB4 mice displayed lower lean mass content compared to WT controls 

pre- and at week 7 of treatment (Fig. 1d; pre-treatment p<0.01; week 7 p<0.0001), and 

treatments did not affect lean mass in WT or PLB4 mice. However, both Liraglutide and 

Fenretinide decreased fat mass content in PLB4 mice compared to saline controls (Fig. 1e; 

Liraglutide: p<0.05; Fenretinide: p<0.01). The relative change in body composition between 

pre- and post-treatment (7 weeks) indicated ~ 65%  lower fat mass in Fenretinide-treated 

PLB4 mice compared to PLB4 controls, without significant effects on lean mass (Fig. 1f and 

1g).  

 

3.2 Impaired glucose tolerance with Fenretinide treatment in BACE1 knock-in mice  

We next assessed glucose homeostasis and in agreement with our previous study [4],   PLB4 

mice were glucose intolerant (Fig. 1h; F (1, 64) = 18.03, p<0.001). Neither treatment affected 

glucose homeostasis in WT mice (Fig. 1i), similarly to previously described Liraglutide therapy 

findings in other WT control mice [31]. Liraglutide treatment did not improve glucose 

homeostasis in PLB4 mice (Fig 1j); surprisingly, however, Fenretinide treatment worsened 

glucose maintenance in PLB4 mice at 30min post-glucose injection (Fig 1j; p<0.05), which 

resulted in an overall increase in glucose excursion during the GTT (Fig 1k; p<0.05). 
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3.3 Altered serum hormone and lipid levels with Liraglutide and Fenretinide treatments in 

PLB4 mice 

Serum insulin, leptin and triglyceride levels were not affected by treatments in WT mice (Fig. 

2a, 2b, 2c). In PLB4, Fenretinide decreased insulin and leptin levels (Fig. 2a, insulin p<0.05; Fig. 

2b, leptin p<0.05) and Liraglutide lowered circulating serum triglycerides (Fig. 2c; p<0.05). As 

expected, Liraglutide increased total levels of serum GLP-1 in WT (Fig. 2d; p<0.01), but not in 

PLB4 mice, suggesting that PLB4 mice were unable to respond to Liraglutide’s insulin-

sensitizing effects. Furthermore, a significant decrease in serum FGF21 levels was found in 

Fenretinide-treated WT mice as compared to controls (Fig. 2e; p<0.05).  

 

3.4 Liraglutide and Fenretinide decreased serum RBP4 levels alongside increased serum 

DPP4  

Elevated levels of circulating and hepatic RBP4 and DPP4 have been linked to impaired glucose 

homeostasis, insulin resistance and fatty liver phenotype [6,32,33]. We have previously 

shown that PLB4 mice had increased neuronal and hepatic RBP4 protein levels, which 

suggested that impaired RBP4 secretion and signalling could underlie decreased insulin 

sensitivity in PLB4 mice [4]. Therefore, we measured serum RBP4 and DPP4 levels in WT and 

PLB4 mice; whilst no differences were found in serum RBP4 levels in the present cohort of 

PLB4 mice compared to WT mice (Fig. 3a, 3b), significantly higher levels of serum DPP4 were 

detected in PLB4 than WT control mice (Fig. 3a, 3b; p<0.01). 

 

Furthermore, Fenretinide treatment markedly decreased serum RBP4 levels in both WT and 

PLB4 mice (Fig. 3c, 3d; both genotypes p<0.0001), which is in agreement with Fenretinide’s 

known mode of action [6, 24, 26], since RBP4 normally binds the transthyretin (TTR) homotetramer 
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while in circulation [29], whereas Fenretinide was shown to disrupt the RBP4/TTR complex leading to 

increased renal clearance of RBP4 [6]. Liraglutide also caused a small decrease in serum RBP4, 

which only reached significance in WT but not PLB4 mice (Fig. 3c, 3d; WT p<0.05). 

 

Intriguingly, Liralgutide and Fenretinide treatments resulted in the opposite effects on serum 

DPP4 levels compared to serum RBP4; Fenretinide increased serum DPP4 levels in WT mice 

(Fig. 3e, 3f; p<0.05) whilst Liraglutide-treated mice exhibited a trend towards increased serum 

DPP4 levels (p=0.1). In PLB4 mice however, Liraglutide significantly increased serum DPP4 

levels (Fig. 3e, 3f; p<0.05), with no effects of Fenretinide (Fig. 3e, 3f). 

 

3.5 PLB4 mice displayed up-regulated hepatic Rbp4, Dpp4 and Srebp1c mRNA expression, 

which was normalised by Liraglutide and Fenretinide treatments 

Since serum RBP4 and DPP4 levels were altered by Liraglutide and Fenretinide treatments, 

we next investigated hepatic mRNA expression of Rbp4, Dpp4 and genes involved in glucose 

and lipid metabolism. PLB4 vehicle-treated mice presented elevated hepatic Rbp4 and Dpp4 

expression compared to WT controls (p<0.05; Fig. 4a, 4b). This was normalised by both, 

Liraglutide and Fenretinide treatments in PLB4 mice. None of the treatments affected Dpp4 

mRNA expression in WT mice. As expected, Fenretinide decreased Rbp4 and Fgf21 expression 

in WT mice (p<0.05 (Rbp4); p<0.001 (Fgf21); Fig. 4a, 4b). Similar changes in Ffg21 expression 

were also observed in WT mice with Liraglutide treatment (p<0.05; Fig. 4c) without significant 

alternations in Fgf21 detected in PLB4 mice across the treatment groups, yet, a trend for up-

regulated Fgf21 expression in Liraglutide-treated PLB4 mice. As expected, Fenretinide 

treatment specifically led to a significant (~20 fold) up-regulation of the classic retinoid target 
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gene of cytochrome P450 family 26 subfamily A member 1 (Cyp26a1) in both WT and PLB4 

mice (p<0.001; Fig. 4d) [24].  

 

Next, we investigated the mRNA levels of genes involved in insulin signalling and 

gluconeogenesis. PLB4 control mice had down-regulated hepatic insulin receptor (IR) 

expression (p<0.05; Fig. 4e), which was increased by Liraglutide and Fenretinide treatments 

(p<0.05 (Liraglutide); p<0.001 (Fenretinide). Fenretinide treatment induced significant up-

regulation of gluconeogenic genes (glucose 6-phosphatase (G6Pase) and 

phosphoenolpyruvate carboxykinase (Pepck)) in PLB4 mice (p<0.05; Fig. 4f, 4g), consistent 

with the worsened glucose clearance phenotype during the glucose tolerance test. 

 

As serum triglycerides were decreased in PLB4 mice with Liraglutide treatment, we also 

examined mRNA expression of genes involved in lipid regulation. The carbohydrate response 

element binding protein (Chrebp) was shown to play a major role in mediating lipogenic and 

glucose-responsive gene transcription [34,35]; Liraglutide treatment decreased the 

expression of Chrebp in PLB4 mice (p<0.05; Fig. 4h), but it was not changed by any of the 

treatments in WT mice or Fenretinide-treated PLB4 mice (Fig. 4h). The sterol regulatory 

element-binding protein 1c (Srebp1c) is one of the main transcription factors regulating de 

novo lipid synthesis and hepatic lipid homeostasis. PLB4 control liver had significantly higher 

Srebp1c levels compared to WT control mice (p<0.01; Fig. 4i), which was normalised in both, 

Liraglutide and Fenretinide treated PLB4 mice (p<0.05; Fig. 4i). Finally, fatty acid synthase 

(Fas) was down-regulated in WT Fenretinide mice compared to WT controls (p<0.05; Fig. 4j), 

with no significant alterations found in PLB4 mice with treatments (Fig. 4j). 
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3.6 Altered locomotor activity with Liraglutide and Fenretinide treatments in WT mice  

Finally, we also investigated effects of Liraglutide and Fenretinide in vivo, on habituation to a 

novel environment, as well as locomotor and circadian activity during week 9 of treatment. 

PLB4 mice were previously found to have higher initial activity during habituation at 3, 6 and 

12 months of age compared to WT controls [5], and the same effect was seen in the present 

study in PLB4 versus WT control mice (~6 months of age; Fig. 5a; F(1, 324) = 5.46, p<0.05; curve 

fit p<0.0001). Although no significant drug effects were detected on habituation activity of 

WT and PLB4 mice, a significant difference in activity curves between PLB4 control and PLB4 

Fenretinide mice was apparent using nonlinear exponential decay analyses (Fig. 5b; p<0.001). 

A markedly higher initial (Y0) activity was also detected in WT mice on Fenretinide (Fig. 5b; 

p<0.0001), suggesting heightened agitation or anxiety in the new surroundings, alongside a 

strong trend (p=0.05) for increased plateau activity. A trend (p=0.07) for differences in activity 

curves between WT control and WT Liraglutide mice was also identified (Fig. 5b).  

 

Similar treatment effects on habituation activity in PLB4 mice were also detected; i.e. a delay 

in habituation was found in Fenretinide-treated PLB4 mice as compared to PLB4 control mice 

(Fig. 5c; p<0.001), and a strong trend (p=0.05) for delayed habituation in PLB4 mice on 

Liraglutide (Fig. 5c). 

 

Overall, no significant differences were found between WT and PLB4 control mice, when 

assessing ultradian activity (hourly activity over 24 h, mean over five days) (Fig. 5d); however, 

Liraglutide resulted in a significant increase in a secondary night activity peak (2 h prior the 

end of dark phase period) in WT mice (Fig. 5e; p<0.05). Although no significant effects of 

Liraglutide or Fenretinide for overall daily activity in WT or PLB4 mice was found (Fig. 5e, 5f), 
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the strong up-regulation of the secondary night activity peak in WT indicates GLP-1 and its 

receptor involvement in circadian and ultradian activity patterns regulation.  

 

4. Discussion 

The present study was designed to investigate the effects of Liraglutide and Fenretinide 

administration in neuronal BACE1 expressing mice (PLB4) in order to assess if 

pharmacologically altering GLP-1- and/or RBP4-related molecular pathways would be 

beneficial for diabetes-associated pathologies in AD-prone population with increased 

neuronal BACE1 expression and/or activity. The major findings of this study demonstrate that 

both Liraglutide and Fenretinide inhibit adiposity gain and decrease circulating serum leptin 

(with Fenretinide) and lipid (with Liraglutide) levels under diabetic conditions in transgenic 

PLB4 mice. However, neither of the treatments improved glucose homeostasis in this 

genotype, suggesting that impaired glucose metabolism in PLB4 mice may not be associated 

with GLP-1- and/or RBP4-mediated pathways or was too advanced to benefit from these 

treatments.  

 

Nevertheless, this study provided valuable new insights into the relationship between 

neuronal BACE1 and metabolic regulators such as DPP4, showing that T2DM-like phenotype 

induced by BACE1 knock-in results in increased levels of serum DPP4 alongside elevated 

expression of hepatic Dpp4 mRNA. A number of recent studies have shown that liver-specific 

DPP4 promotes systemic insulin resistance, inflammation in the adipose tissue, impaired 

glycogen storage and fatty liver disease [32,33,36], which resembles the diabetic phenotype 

of PLB4 mice at ~8 months of age [4]. This indicates that an increase in Dpp4 mRNA expression 

in murine hepatocytes (~5.5 months old) may possibly influence and/or lead to ectopic lipid 
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build-up in the long-term (i.e. increased liver triglycerides at ~8 months of age). This is in 

agreement with Miyazaki et al., 2012, who reported increased hepatic mRNA and serum 

levels of DPP4 in patients with non-alcoholic fatty liver disease [37]. Interestingly, both 

treatments normalised up-regulated hepatic Dpp4, Rbp4 and Srebp1c expression in PLB4 

mice, which together with decreased adiposity, suggest an action of both drugs to specifically 

target lipid-related pathways under diabetic condition of neuronal BACE1 knock-in, without 

influencing body weight, or importantly, improving glucose homeostasis. 

 

We detected a clear increase in serum GLP-1 levels in Liraglutide-treated WT mice, without 

changes in serum GLP-1 levels in PLB4 mice, suggesting that endogenous DPP4 or NEP levels 

and/or activity may be up-regulated in these mice, leading to increased metabolism and/or 

excretion of GLP-1 analogue, which led to the investigation of serum DPP4 expression. PLB4 

control mice had higher levels of serum DPP4 compared to WT mice, which was further 

increased with Liraglutide treatment. It is known that circulatory and cellular DPP4 functions 

are different [38], however, only recent studies have started investigating the exact regulatory 

mechanisms of each. Here, we demonstrate that both, Liraglutide and Fenretinide treatments 

exerted different effects on soluble and membrane-bound DPP4. A clear increase in serum 

DPP4 protein levels was detected in WT Fenretinide and PLB4 Liraglutide mice, which may be 

due to the increase in possible shedding of the membrane-bound DPP4 across the tissues. 

However, up-regulated hepatic Dpp4 mRNA levels in PLB4 mice were normalised by both 

treatments, with no appreciable changes detected in WT mice. 

 

Intriguingly, a shift towards higher Fgf21 expression was observed in Liraglutide-treated PLB4 

mice liver, which is similar to recent study showing that GLP-1 analogues (liraglutide and 
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exenatide 4) increased hepatic transcription, protein and circulating levels of FGF21 while 

decreasing glucose production in mouse models of diabetes [39]. The authors concluded that 

GLP-1 triggered hepatic production of FGF21 is required to stimulate glucose lowering effects 

of GLP-1, silenced via inhibition of FGF21 [39]. Taken together, a tendency for up-regulated, 

yet, not significantly, hepatic Fgf21, combined with no changes in serum GLP-1 in Liraglutide-

treated PLB4 mice and higher circulating DPP4 levels, could perhaps imply that exogenous 

GLP-1 was degraded prior to completing the stimulation of hepatic FGF21 production and 

thus, failing to exhibit its glucose lowering effects in these mice.  In addition to this, while 

both treatments down-regulated hepatic Fgf21 expression in WT mice, no metabolic changes 

were found, suggesting that decreased Fgf21 transcription does not affect glucose 

homeostasis under normal physiologic conditions.   

 

Regardless of treatment, no significant changes were detected in body weights of WT and 

PLB4 mice. This could be attributed to normal body weight in WT mice and a lean body 

phenotype in PLB4 mice since obesity-associated animal models of diabetes were found to be 

more sensitive to Liraglutide and Fenretinide induced loss in body weight [24,40], with no 

significant effects observed in normal weight or leaner than WT controls AD mice [21,41].  

 

Data from clinical studies show that heightened plasma DPP4 levels and/or activity are 

associated with T2DM, obesity and insulin resistant states and are directly correlated with 

BMI, leptin and insulin levels [42,43]. In contrast to this, our data suggest that an increase in 

circulating DPP4 concentration can be independent of adiposity and body weight gain in mice, 

since lean PLB4 mice displayed up-regulated serum DPP4 levels, which were further increased 
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with treatments alongside decreased fat mass.  However, while circulatory DPP4 levels were 

increased, effects on enzymatic activity of serum DPP4 are unknown.  

 

Recently, it was reported that BACE1 plays a significant role in regulating liver IR cleavage and 

expression, demonstrating that reduction or increase in BACE1 results in an increase or 

decrease of hepatic IR protein expression, without changes in mRNA levels [8].   Here, we 

show that PLB4 mice exhibited lower IR mRNA in the liver, which was markedly raised by both, 

Liraglutide and Fenretinide treatments. Overall, the decreased hepatic IR expression paired 

with elevated expression of Rbp4, Dpp4 and Srebp1c in PLB4 mice, imply that neuronal 

changes induced by BACE1 may regulate hepatic gene expression and contribute to the 

systemic phenotype in these mice through yet to uncover mechanism, likely involving changes 

in the hypothalamic/liver axis signalling. In line with our work, a few other studies have also 

reported that AD-associated changes in the brain can trigger peripheral diabetes-like 

impairments. For example, central infusion of Aβ oligomers induced peripheral glucose 

intolerance in vivo, linked to pro-inflammatory pathways activation in the hypothalamus, 

whereas systemic administration did not induce these changes [44]. 

  

Neither Fenretinide nor Liraglutide induced any changes in glucose homeostasis in WT mice, 

confirming a lack of effect of both drugs on systemic glucose regulation under non-diabetic 

conditions [12,45]. However, Fenretinide exacerbated glucose intolerance in diabetic PLB4 

mice. This may be due to decreased serum insulin levels in Fenretinide-treated mice, possibly 

resulting in a reduction of glucose uptake by insulin-sensitive tissues, and/or up-regulated 

gluconeogenic gene (Pepck and G6ase) expression. In contrast to other studies with T2DM-

like models [46-48], we did not detect any changes in serum insulin levels or glucose 
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homeostasis and tolerance in PLB4 mice treated with Liraglutide; however, most of the 

studies investigated obesity-related diabetic animal models and not lean T2DM-like cases, 

suggesting that a different mechanism may be involved. 

 

Interestingly, Liraglutide resulted in a tendency to slow down habituation and increased 

secondary night activity peak in WT mice, suggesting an impact on circadian activity 

regulation. Studies investigating a role for GLP-1 and GLP-1 receptor (GLP-1R) on biological 

rhythms control have been limited, but several interesting findings have been reported. 

Human and rodent L-cell activity and GLP-1 secretion was shown to be driven by circadian 

patterns [49], which can be altered by disruptions in light-dark cycles and obesity-linked 

dietary alterations [50,51]. Administration of the GLP-1 agonist exendin-4 (12 h before rapid-

feeding) was found to affect clock genes transcription in liver and adipose tissue of mice [52]; 

however, further experiments are required to fully understand the relationship between GLP-

1 and circadian clock modulation. 

 

In summary, our findings demonstrate that Liraglutide and Fenretinide treatments resulted 

in decreased adiposity and lipid lowering effects in PLB4 mice and shed new light on BACE1 

and DPP4 molecular interconnection. Since neither of the treatments improved glucose 

metabolism in PLB4 mice, we conclude that T2DM-like phenotype on this background may 

not be due to alterations in GLP-1 and retinoid-signalling, and/or diabetic pathologies in PLB4 

mice were too advanced to benefit from Liraglutide and Fenretinide treatments.  
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Figure legends 

Figure 1. Liraglutide and Fenretinide treatment effects on body weight, body mass 

composition and glucose homeostasis in WT and PLB4 mice.  

(a) Body weights of WT and PLB4 control (CON) mice throughout the 10 weeks of study; comparison 

of body weight in WT (b) and PLB4 (c) mice across CON, Liraglutide and Fenretinide groups. Lean (d) 

and fat mass (e) composition in WT and PLB4 mice pre- and at week 7 of treatment. The relative 

changes (%) in body mass composition of WT (f) and PLB4 (g) mice. (h) GTT of WT and PLB4 control 

mice; GTT of WT (i) and PLB4 (j) mice at week 7 of treatment. (k) Total glucose excursion during GTT 

(Area under curve (AUC) analysis). Number of mice per group: WT CON n=11; WT Liraglutide n=7; WT 

Fenretinide n=8; PLB4 CON n=7; PLB4 Liraglutide n=8; PLB4 Fenretinide n=8. Data expressed as means 

± SEM and significant differences determined using repeated measured two-way ANOVA followed by 

Bonferroni post hoc test or unpaired two-tailed Student’s t-test. Asterisks: *p < 0.05, **p < 

0.01,***p<0.001, ****p<0.0001.  

 

Figure 2. Effects of Liraglutide and Fenretinide treatments on serum markers.    

Comparison of 5h-fasted insulin (a), leptin (b) and serum triglyceride (c) levels in WT and PLB4 mice 

treated with Liraglutide or Fenretinide. Total GLP-1 (d) and FGF21 (e) levels in WT and PLB4 serum. 

Number of mice per group WT CON n=11; WT Liraglutide n=7; WT Fenretinide n=8; PLB4 CON n=7; 

PLB4 Liraglutide n=8; PLB4 Fenretinide n=8. Data expressed as means ± SEM and significant differences 

determined using two-way ANOVA followed by unpaired two-tailed Student’s t-test: *p < 0.05, **p < 

0.01. 
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Figure 3. Fenretinide decreased serum RBP4 levels and increased circulating DPP4 in mice. 

(a) Representative immunoblots of serum RBP4 and DPP4 in WT versus PLB4 control mice, showing 

an increase in serum DPP4 levels in PLB4 CON versus WT CON mice. (b) Quantified data of serum RBP4 

and DPP4 in WT CON and PLB4 CON mice. Immunoblots representing Liraglutide and Fenretinide 

treatment effects on serum RBP4 (c) and DPP4 (e) in WT and PLB4 mice; quantification of serum RBP4 

(d) and DPP4 (f) levels in WT and PLB4 mice. Number of mice per group: (a and b) WT CON n=6; PLB4 

CON n=6. (c and d) WT CON n=6; WT Liraglutide n=5; WT Fenretinide n=5; PLB4 CON n=4; PLB4 

Liraglutide n=6; PLB4 Fenretinide n=7. Data expressed as means ± SEM and significant differences 

determined using one-way ANOVA with post hoc test: *p<0.05, **p < 0.01, ***p<0.001, ****p<0.001. 

 

Figure 4. Changes in hepatic transcription of Rbp4, Dpp4 and genes related to glucose and 

lipid homeostasis.  

Quantitative gene expression analysis of hepatic mRNA expression in WT and PLB4 mice revealed a 

significant increase in Rbp4 (a) and Dpp4 (b) gene expression in PLB4 CON mice compared to WT CON, 

which was normalised with Liraglutide and Fenretinide treatments. (c) Fgf21 expression was 

decreased in WT mice on both treatments, but not in PLB4 mice. (d) Cyp26a1 expression was markedly 

increased on Fenretinide treatment in both groups of mice. (e) IR expression was lower in PLB4 CON 

mice liver compared to WT CON and increased with both treatments in PLB4 mice. (f and g) G6Pase 

and Pepck expression was higher in PLB4 mice treated with Fenretinide. (h) Chrebp gene expression 

was decreased in Liraglutide-treated PLB4 mice. (i) Hepatic Srebp1c gene expression was elevated in 

PLB4 CON versus WT CON mice and was normalised with Liraglutide and Fenretinide treatments. (j) 

Fas expression was down-regulated in Fenretinide-treated WT mice, but was not changed by any of 

the treatments in PLB4 mice. Gene expression was normalised to NoNo housekeeping gene. Number 

of mice per group: WT CON n= 8-9; WT Liraglutide n=6-7; WT Fenretinide n=5-7; PLB4 CON n=6-7; 

PLB4 Liraglutide n=6-7; PLB4 Fenretinide n=6-7. Data expressed as means ± SEM and significant 
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differences determined using two-way ANOVA followed by two-tailed Student’s t-test. Asterisks: *p < 

0.05, **p < 0.01,***p<0.001. 

 

Figure 5. Liraglutide and Fenretinide treatments altered locomotor activity in mice  

(a) Representative graphs of habituation activity (10 min bins) in WT versus PLB4 control mice, and 

WT (b) and PLB4 (c) mice across the treatment groups. Post-habituation average 24h daily (ultradian) 

activity in hourly bins over 5 consecutive days in the PhenoTyper of WT versus PLB4 control mice (d). 

Liraglutide and Fenretinide treatment effects on the daily activity in WT (e) and PLB4 (f) mice during 

the week 9 of treatment. Number of mice per group: WT CON n=9; WT Liraglutide n=6; WT Fenretinide 

n=7; PLB4 CON n=7; PLB4 Liraglutide n=8; PLB4 Fenretinide n=7. Data expressed as means ± SEM and 

data analysed using nonlinear exponential decay analyses (a,b,c) or repeated measured two-way 

ANOVA followed by Bonferroni post hoc test (a,d,e,f): *p < 0.05, **p<0.01; ***p<0.001; 

****p<0.0001. Parameters: Y0 (Y value when the time is zero); K (rate constant). 
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