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Abstract

It is stressed that the two-center exchange energy components lead

to a significant lowering of the total molecular energy because of ex-

clusion of self-repulsion, and this is inevitable for covalent bond for-

mation. The success of the two-center bond order index relies on the

fact that it gives a qualitative estimate of this important phenomenon.
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In a recent paper1 Bacskay and Nordholm performed a number of calcu-
lations of H+

2 and essentially re-iterated and extended the classical results of
Ruedenberg2−4 concerning the complex role of kinetic energy in formation of
chemical bonds. The results seem to be completely in line with the summary
given in the textbook5 of the present author: “The problem was investigated
in much detail by Ruedenberg on simple examples like H+

2 . He considered
the bond formation as being formally divided into consecutive steps: the first
step is a promotion with a contraction of the valence orbitals. This leads to
a lowering of the potential energy (the electrons in average are closer to the
nuclei) but the kinetic energy increases more than this potential energy low-
ering. (This increase of the kinetic energy is an obvious consequence of the
uncertainty relation.) Then the delocalization permits a kinetic energy low-
ering with respect to the promoted state; this decrease in the kinetic energy
is inevitable to provide the possibility of conserving the lower potential en-
ergy that has been a result of the promotion. However, in the final account
the bond formation is connected with a decrease of the potential energy and
increase of the kinetic energy in accord with the virial theorem.” (The last
remark refers to the minimum on the potential energy curve, as the virial
theorem is directly applicable only in points where the energy is stationary.)

The importance of the subject, however, deserves repeated attempts to
give a proper physical interpretation of the chemical bond formation. In
particular, it is desirable to connect the concept of delocalization appearing
in the considerations like those of Ruedenberg or Bacskay and Nordholm with
the concept of bond order (multiplicity) and the powerful picture of Lewis
electron pairs which are fundamental in chemist’s thinking. For that reason,
it is desirable to consider a different simple decomposition of the energy , first
for the same H+

2 model, then for the general case, too.
As the internuclear distance increases, the energy of H+

2 quickly tends to
that of a free hydrogen atom (-1/2 atomic units), as the system dissociates
into a hydrogen atom and a free proton. (The energy of a free proton is zero
by definition, and it interacts with a neutral H atom.) However, owing to the
symmetry of the system, the wave function of H+

2 becomes the sum of wave
functions corresponding the electron to be “here” or “there”; the energy of
such a linear combination for sufficiently large distances equals that of either
degenerate localized state. As we are dealing with a single electron system,
this linear combination results in an electron orbital delocalized between the
two atoms.

For such a wave function each hydrogen atom bears, on average, a positive
charge 1/2. And from a global electrostatic point of view that means a rather
significant repulsive interaction of 1/(4RAB) between the atoms, where RAB

is the interatomic distance. This electrostatic interaction decays rather slowly
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with the distance. At the distances about or over 5 atomic units practically
no interactions count except the electrostatic interactions of point charges;
the repulsion of 1/(4RAB) would constitute 0.05 atomic units at RAB=5
a.u. and 0.025 atomic units at RAB=10 a.u. These are quite considerable
numbers on the chemical scale: over 30 and 15 kcal/mol, respectively. But
nothing similar can be seen on the actual H+

2 potential curve – see Fig. 1.
Why? Obviously there is an effect compensating this electrostatic repulsion.
Understanding its nature is instructive for getting a deeper insight into the
role of delocalization in chemical bonding.

If one has a proton and a H atom, then there are two global electrostatic
effects which just cancel each other: an internuclear repulsion 1/RAB and
an electron-nuclear attraction −1/RAB. In the delocalized case the global
electrostatic effect formally contains – besides the terms present also in the
p + H case – an electron-electron repulsion that exactly equals the problem-
atic 1/(4RAB) term. But we have in our system only a single electron, and the
electron does not interact with itself in the non-relativistic quantum theory.
So the global electrostatic effect should be corrected for the self-interaction

of the electron. After this correction is done, we get zero electrostatic in-
teraction, and the resulting potential energy curve will be determined by
other factors—namely the behaviour of the potential and kinetic energies, as
discussed in Refs. 1–5.

Nonetheless, the self-interaction correction discussed is in intimate con-
nection with the concept of chemical bonding. To see this, we turn to the
energy partitioning scheme discussed in Ref. 6. The expressions given there
refer to the single determinant (Hartree-Fock) case. However, the Hartree-
Fock level is sufficient for understanding the qualitative aspects of bonding:
electron correlation usually influences the numbers but not the chemical pic-
ture.

In that energy decomposition the leading two-center contribution is the
“electrostatic interaction in the point charge approximation”. It represents a
sum of two terms: one describes the electrostatic interaction of the resulting
atomic point charges, another reflects the interatomic exchange. Now, it
is known that in Hartree-Fock theory exchange includes the self-repulsion of
electrons and that they cannot be separated out from each other conceptually,
because self-repulsion alone would not be unitary invariant.
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The expressions in Ref. 6 are given in terms of spin-orbitals; turning to
the spatial orbitals, the two-center exchange contribution in the point-charge
approximation can be re-written as

Eexch.point
AB = ǫexch.point

AB + ǫexch.point
BA

= −

1

RAB

∑

µ∈A

∑

ν∈B

[

(PαS)µν(P
αS)νµ + (PβS)µν(P

βS)νµ

]

(1)

= −

1

2RAB

∑

µ∈A

∑

ν∈B

[(DS)µν(DS)νµ + (PsS)µν(P
sS)νµ]

Here RAB is the internuclear distance between atoms A and B, Pα and Pβ

are the usual “density matrices” for spins α and β, respectively, S is the
overlap matrix of the atomic orbitals, D is the “total density matrix” and
Ps the spin-density matrix. All matrices are expressed in the basis of atomic
orbitals.

Now, comparing with the definition7,8 of the bond order index, BAB we
see that9

Eexch.point
AB = −

1

2RAB

BAB (2)

As the bond order BAB for H+
2 is exactly 1/2, this result is completely in

agreement with the self-interaction term −1/(4RAB) discussed above.
Table 1 contains some selected energy values for the H+

2 system calculated
by using cc-pVTZ basis set. As could be expected, the point-charge approx-
imation is good at larger internuclear distances, but not at the equilibrium
one; there the reduced overall electrostatic repulsion reflects the stabilizing
effect of the charge accumulation between the nuclei.

Now, if we add one more electron, then there will be two electrons oc-
cupying the bonding molecular orbital, leading to one Lewis electron pair,
and the bond order value becomes equal to one. The electron-electron self-
interaction, reducing the total energy as compared with the crude electro-
statics, would also be twice as large at the same distance RAB – but the
increase of bonding interactions reduces RAB, so the effect becomes larger.
Note that in this case there are no resulting atomic charges, so the exclusion
of the electron self-interaction gives an energy reduction with respect to the
vanishing overall electrostatic interaction energy (at the level of point charge
approximation), corresponding to the neutral situation.

However, it is also to be realized that in case with a doubly occupied
bonding MO there is a price to be paid for the exchange (self-interaction) re-
duction of the electrostatic energy. That is connected with the appearance of
the ionic terms in the wave functions, i.e., those in which both electrons are
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on the same atom. This gives rise to one-center electron-electron repulsion
terms11 which are absent for a single H atom. They may be very signifi-
cant, but this effect is an inevitable consequence of electron delocalization.
And electron delocalization is necessary in order that other terms usually
discussed in connection with bond formation – like accumulation of charge
in the bonding region, reduction of the kinetic energy as compared with the
atomic promoted states etc., – could contribute to the final energy. Thus the
total binding energy is due to these terms as well as the exchange energy;
while the appearance of the ionic terms reduces the energy of the chemical
bonding. (Table 2 collects some illustrative numbers for the Hartree-Fock
calculations performed for the H2 molecule by using cc-pVTZ basis set.)

The effects of the charge accumulation etc., are responsible for the fact
that putting the electrons in the antibonding combination of the two hy-
drogenic orbitals leads to repulsive interaction and no chemical bonding —
although the interatomic bond order and the exchange effects are indepen-
dent of whether the bonding or the antibonding combination of the hydro-
genic orbitals is occupied. This clearly puts some limits on the interpretative
power of the bond order index, as it does not always permit to distinguish
between bonding and antibonding situations. In practice, however, that may
influence some non-bonded interactions, only.

It is interesting to follow what happens if further electrons are added
to the system—assuming, of course the appropriate increase of the nuclear
charges, too, so the overall neutrality of the system is maintained. The next
interesting system is a helium dimer in which — to a good approximation —
both the bonding and the antibonding combinations of the atomic 1s orbitals
are doubly occupied. In light of the above remark about the antibonding
orbitals, at first sight one could expect that the exchange effects of both pairs
of electrons will be added up. This is not, however, the case: they destroy the
effect of each other. Both the practical calculations and a detailed analytical
study8 show, that such a pair of bonding and antibonding orbitals lead to
zero bond order, thus to zero electrostatic exchange effect. This may be
understood very easily without much calculation.

It is known that the single determinant wave functions are uniquely de-
termined by the subspace of the occupied orbitals, which means that one can
use instead of the original orbitals any their linear combinations, as far as
they are linearly independent and thus span the original occupied subspace.
(This may change only the normalization of the many-electron wave func-
tion, but that has no physical significance.) In particular, the original atomic
orbitals of which the bonding and antibonding MO-s are built also represent
appropriate linear combinations of the latter,10 which means that one obtains
the same many-electron wave functions also by filling with two electrons each
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of the original atomic basis orbitals. This wave function does not exhibit any
delocalization, so there are no interatomic exchange (electron-electron self-
repulsion) effects either. In accord with that the bond order between two
helium atoms is practically zero and no covalent chemical bond appears. (As
the atomic orbitals of the two helium atoms slightly overlap, there is some
repulsion of closed shells. That is the only effect at the single determinant
level of theory. Dispersion, which is a par excellence electron correlation ef-
fect, causes a very-very shallow minimum to appear on the He. . . He potential
curve, but that is out of our present scope.)

Of course, if more basis orbitals are involved on the individual atoms,
then there can be one or more bonding electron pairs the effect of which
is not compensated by an occupied antibonding counterpart. However, the
fact that the core orbitals as well as the lone pairs do not contribute to the
bond orders of homonuclear diatomics can be understood exactly in the same
manner as the absence of the bonding in helium dimer. Thus one arrives8 to
the the definition of the well known “chemist’s bond order”

B =
Nbond − Nantibond

2
(3)

where Nbond and Nantibond are the number of electrons occupying bonding and
antibonding orbitals, respectively. This equality is fulfilled8 for all first row
homonuclear diatomics at the minimal basis level, except C2.

12 Instead of
each pair of occupied bonding and antibonding orbitals one can always turn
to the respective localized core or lone pair orbitals. Thus one may argue that
the localized orbital picture is more adequate for discussing the ground state
chemical structure of molecules — while the delocalized picture is better to
describe global ionization or excitation processes. The two representations
are complementary in that sense.

Double and triple bonds are formed if bonding combinations of atomic
basis orbitals of different symmetry — e.g., of σ and π-type — are occupied,
and the respective antibonding combinations are not. Then the bond-order
will also equal (or, in more general case, close) to two or three. (Sometimes
there are claims concerning of even higher bond orders, but we wish not
consider that point here.) Behind every such bond order there is an attractive
energy contribution of the electron-electron self repulsion, representing an
inseparable part of exchange. This contribution is of utmost importance
for forming the covalent chemical bonds; this connection explains why the
bond order index is a successful measure of the bond strengths and a useful
quantum chemical counterpart of the number of the valence lines used in a
chemical formula.

It is to be noted that the bond order equals some ideal integer or half-
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integer value only in some very special cases. Thus, independently of the
basis set used, the bond order is exactly equal 1/2 for H+

2 and 1 for an RHF
calculation of H2; for other homonuclear diatomics (except C2) this is true
only if minimal basis set is used8. If one uses larger basis sets or considers
heteropolar bonds, then deviations from the ideal integer values are obtained,
and the bond orders obtained in the calculations are usually close, but slightly
lower than the ideal values.14 The use of integrer bond multiplicities in these
cases may be considered as a sort of generalization (or simplification) which
distinguishes the chemist’s way of thinking from the the physicist’s way of
description of molecular systems.

The above discussion also indicates that among the large (conceptually
infinite) number of different localization procedures the classical Edmiston–
Ruedenberg one16 may be considered the most adequate. Essentially it pro-
duces orbitals for which the intra-orbital self-repulsion exchange effect is
maximal, therefore they reflect best to the intimate connection between ex-
change and chemical bonding.

To summarize the message of this short note, we may stress that the two-
center exchange energy components lead to a significant lowering of the total
molecular energy because of exclusion of self-repulsion, and this is inevitable
for covalent bond formation. The success of the two-center bond order in-
dex relies on the fact that it gives a qualitative estimate of this important
phenomenon.

7



References

1. Bacskay G. B.; Nordholm S. Covalent Bonding: The Fundamental Role
of the Kinetic Energy. J. Phys. Chem. A, 2013, 117, 7946–7958.

2. Ruedenberg K. The Physical Nature of the Chemical Bond. Rev. Mod.

Phys. 1962, 34, 326–376.

3. Ruedenberg, K.; Schmidt, M. W. Physical Understanding through Vari-
ational Reasoning: Electron Sharing and Covalent Bonding. J. Phys.

Chem. A 2009, 113, 1954–1968.

4. Bitter, T.; Wang, S. G.; Ruedenberg, K.; Schwarz, W. H. E. Toward
a Physical Understanding of Electron-Sharing Two-Center Bonds. II.
Pseudo-Potential Based Analysis of Diatomic Molecules. Theor. Chem.

Acc. 2010, 127, 237–257.

5. Mayer I. Simple Theorems, Proofs, and Derivations in Quantum Chem-

istry, Kluwer Academic/Plenum Publishers, New York 2003.

6. Mayer I. Towards a “Chemical” Hamiltonian. Int. J. Quantum Chem.

1983, 23, 341–363.

7. Mayer I. Charge, Bond Order and Valence in the Ab Initio SCF Theory.
Chem. Phys. Lett. 1983, 97, 270–274.

8. Mayer I. Bond Order and Valence Indices: A Personal Account. J.

Comput. Chem. 2007, 28, 204–221.

9. In Ref. 7 the coefficient 1/2 was misprinted as 2.

10. If there were no interatomic overlap, then the original atomic orbitals
could be recovered simply as the normalized sum and difference of the
bonding and antibonding MO-s. Owing to the overlap, this procedure
does not lead to the atomic orbitals but to their Löwdin-orthogonalized
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FIGURE CAPTION

Figure 1

Potential curve of the H+
2 ion (cc-pVTZ basis).
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Table 1

Selected energetic parameters (in a.u.) of the H+
2 system, calculated by

using cc-pTVZ basis set at different internuclear distances.

R (a.u.) 2 5 10

Electrostatic energya) 0.0529 0.0465 0.0249
- ” - point charge approx. 0.1250 0.0500 0.0250

Exchange energy -0.1482 -0.0533 -0.0251
- ” - point charge approx. -0.1250 -0.0500 -0.0250

Total energy -0.6022 -0.5221 -0.5002

a) Including internuclear repulsion.

Table 2

Selected Hartree-Fock energetic parameters (in a.u.) of the H2 system,
calculated by using cc-pTVZ basis set at different internuclear distances.

R (a.u.) 1.4 2 3

Electrostatic energya) -0.1418 -0.0912 -0.0263
- ” - point charge approx. 0 0 0

Exchange energy -0.3139 -0.2546 -0.1801
- ” - point charge approx. -0.3571 -0.2500 -0.1667

One-center el.-el. repulsion 0.3420 0.3015 0.2639

Total energy -1.1330 -1.0911 -0.9886

a) Including internuclear repulsion.
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Figure 1

Potential curve of the H+
2 ion (cc-pVTZ basis).
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