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Abstract
The majority of today’s global Internet traffic is conveyed through optical fibers. The

ever-increasing data demands have pushed the optical systems to evolve from using re-
generators and direct-direction receivers to a coherent multi-wavelength network. Future
services like cloud computing and virtual reality will demand more bandwidth, so much
so that the so called capacity-crunch is anticipated to happen in near future. There-
fore, studying the capacity of the optical system is needed to better understanding and
utilizing the existing fiber network.

The characterization of the capacity of the dispersive and nonlinear optical fiber de-
scribed by the nonlinear Schrödinger equation is an open problem. There are a number
of lower bounds on the capacity which are mainly obtained based on the mismatched
decoding principle or by analyzing simplified channels. These lower bounds either fall to
zero at high powers or saturate. The question whether the fiber-optical capacity has the
same behavior as the lower bounds at high power is still open. Indeed, the only known
upper bound increases with the power unboundedly.

In this thesis, we first study how the fiber nonlinear distortion is modeled in some sim-
plified channels and what is the influence of the simplifying assumptions on the capacity.
To do so, the capacity of three different memoryless simplified models of the fiber-optical
channel are studied. The results show that in the high-power regime the capacities of
these models grow with different pre-logs, which indicates the profound impact of the
simplifying assumptions on the capacity of these channels.

Next, we turn our attention to demodulation and detection processes in the presence
of fiber nonlinearity. We study a two-user memoryless network. It is shown that by
deploying a nonlinearity-tailored demodulator, the performance improves substantially
compared with matched filtering and sampling. In the absence of dispersion, we show
that with the new receiver, unlike with matched filtering and sampling, arbitrarily low
bit error rates can be achieved. Furthermore, we show via simulations that performance
improvements can be obtained also for a low-dispersion fiber.

Then, we study the performance of three different dispersion compensation methods
in the presence of inter-channel nonlinear interference. The best performance, in terms
of achievable information rate, is obtained by a link with inline per-channel dispersion
compensation combined with a receiver that compensates for inter-channel nonlinearities.
Finally, the capacity analysis is performed for short-reach noncoherent channel, where
the source of nonlinearity is not the fiber but a square-law receiver. Capacity bounds
are established in the presence of optical and thermal noises. Using these bounds we
show that optical amplification is beneficial at low signal-to-noise ratios (SNRs), and
detrimental at high SNRs. We quantify the SNR regime for each case for a wide range
of channel parameters.

Keywords: Achievable rate, channel capacity, fiber optics, information theory, nonlin-
earity mitigation, noncoherent optics, dispersion compensation, perturbation theory.
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CHAPTER 1

Introduction

1.1 Overview
Today’s modern society relies on fast and reliable communication systems that connect
the world. The massive amount of data produced every day is transmitted almost exclu-
sively through the optical fibers that connect cities, countries, and continents. The two
most significant advantages of optical fibers compared to other communication media are
providing enormous bandwidth and having extremely low loss, which allows the fiber to
transfer data at high rates to far destinations. Comparing to coaxial cables, the loss is
2–3 orders of magnitude smaller and the bandwidth is about 4000 times larger. Fibers
are also immune to the electro-magnetic and radio-wave interference, resistant to lighting
strikes, and are lighter and smaller than copper cables.

The optical-fiber communication system was born by manufacturing low-loss fibers in
1970 [1]. The history of the optical communication is divided to three eras [2, Sec. 2]. In
the first era, from 1977–1993, on–off keying and direct-detection was used to transmit the
data through the fiber. Also, at this stage, to compensate for the fiber loss, regenerators
were deployed along the fiber, which recover the data in the electric domain and retrans-
mit it over the fiber. With the introduction of the optical amplifiers in the late 1980s [3]
the second era began. Transmitting multiple wavelength-devision multiplexed (WDM)
channels over a single fiber became possible as all the channels could be amplified with a
single optical amplifier. Finally, we are now in a new phase where using modern digital
signal processors makes it possible to move from direct detection to coherent transmission
systems.

With all the aforementioned advances, the optical communication systems were able to
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Chapter 1 Introduction

cope with the increasing data demand in the past five decades, which is mainly attributed
to the exponential growth of the Internet. The call for higher data rates is expected to
grow even faster in the future as bandwidth-hungry applications like Internet of things,
cloud computing, and virtual reality are beginning to emerge. It is anticipated that the
current optical systems will meet their limit in the near future, an incident that is referred
to as the capacity crunch.
To avoid the capacity crunch, it is essential to exploit all the potentials of the optical

fiber. In today’s fiber-optical transmissions, the coding, modulation, and demodulation
algorithms are adopted from wireless systems. However, the optical fiber is a nonlinear
medium because the intensity of the light changes the refractive index of the fiber core.
Since the transmission system is designed for the linear channel, the nonlinearity is
treated as noise. This so called nonlinear noise increases with the intensity of the signal
such that the performance of the system degrades after an optimal input power, causing
the achievable rates with commonly used transmission schemes to have a maximum at
a certain power. An interesting open question is whether this peaky behavior of the
achievable rate is fundamental or is merely because of deploying suboptimal algorithms.
Information-theoretic analysis of the capacity is a standard way to obtain insights about
the answer.
After about five decades from the birth of optical fibers and seven decades from the

dawn of information theory [4], the characterization of the capacity of the fiber-optical
channel remains an open problem. The main question is whether the capacity increases
to infinity or is bounded. To answer this question, either an ever-increasing lower bound
or a bounded upper bound on the capacity are required. However, no such bounds are
established as yet. All the lower bounds either vanish or saturate at high powers where the
only known upper bound [5] increases indefinitely with power. To obtain approximations
of the capacity, many simplified models have been developed and bounds were established
on their capacity (see [6, 7] for two recent reviews).

1.2 Thesis Outline
This thesis revolves around the influence of nonlinear effects on the performance of fiber-
optical communication systems and methods to compensate for these effects. It is divided
into two parts, where the first one includes some background and general information
about the topic and the second comprises four papers. The rest of the first part is
organized as follows. First, we study the nonlinear Schrödinger (NLS) equation that
governs the propagation of a signal through a fiber in Chapter 2. The main goal of
Chapter 2 is to describe the continuous-time optical channels to justify the models used
in the appended papers. Also, a detailed description of the split-step Fourier (SSF)
method, which is a common tool to simulate the fiber-optical channel is provided. In
Chapter 3 different notions of capacity are investigated for continuous- and discrete-time
channels, and some information-theoretic tools to bound the capacity are provided. Some
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1.3 Notation

optical channel models, including the channel models used in the papers, are studied in
Chapter 4. A review on the nonlinearity and dispersion compensation techniques is
provided in Chapter 4.7.2. Finally, a summary of the contributions of the papers is
provided in Section 6.

In Part II, we first investigate the accuracy of some existing channels that model the
fiber nonlinearity (Paper A). We study the influence of some simplifying assumptions,
used in developing simple optical channels, on capacity. We show that these assumptions
have a profound influence on the capacity of optical models at high powers, and therefore
the capacity results based on these models are not accurate in the high-power regime.

In Paper B, the matched filtering and sampling (MFS) which is the common demod-
ulation method in optical systems is revisited. Multiple demodulation and detection
schemes are proposed for a two-user memoryless WDM network. A significant gain in
performance was observed with the optimal demodulation method, with which the sym-
bol error rate (SER) decreases to zero with power, whereas with MFS the SER goes
to approximately one in the high-power regime. Furthermore, the SER is evaluated for
dispersive fibers via simulation, where some performance gain are obtained.

In Paper C, we consider the inter-channel nonlinear interference in WDM systems.
We compare the influence of these distortions on the performance of three optical links:
dispersion-managed (DM), non-dispersion-managed (NDM), and per-channel dispersion-
managed (CDM). It was shown that CDM links obtain the best performance if the effects
of inter-channel interference is compensated for at the receiver.

Finally, Paper D studies the capacity of noncoherent systems, where nonlinearity orig-
inates from the square-law receiver. We consider a more general model than previous
studies by taking into account both optical and thermal noises. By using our capac-
ity bounds we determine the power regimes where optical amplification is beneficial or
detrimental to the capacity.

1.3 Notation
The following notation is used in this thesis. The complex zero-mean circularly symmetric
Gaussian distribution is denoted by CN (0, σ2), where σ2 is the variance; also the real-
valued normal distribution with mean µ and variance σ2 is denoted by N (µ, σ2). All
logarithms are in base two. Vectors are denoted by underlined letters. The kth element
of a vector (e.g., x) is indicated by subscript k (xk) and a vector that is composed of
x1, . . . , xk is indicated by the superscript k (xk). The Euclidean norm is denoted by
‖ · ‖. We use boldface letters to show random quantities. The inner product between
two complex functions f(t) and g(t) is defined as 〈f, g〉 =

∫∞
−∞ f(t)g∗(t) dt, where ( · )∗

denotes complex conjugation. H( · ) and h( · ) represent the entropy and the differential
entropy functions, respectively. The mutual information between two random variables
x and y is denoted by I(x; y). The imaginary unit is represented by j =

√
−1. We

show with px the probability distribution (mass) function of the continuous (discrete)
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random variable x. Sets are indicated by upper-case script letters. For example, we
indicate the alphabet set of a random variable (e.g., x) by its corresponding upper-case
script letter (X ). We use R(x), |x|, and x to denote the real part, the absolute value,
and the phase of a complex number x. In the context of matrix operations, | · | and
( · )T represent the determinant and the transpose operators, respectively. The real line
and the complex plane are represented by R and C, respectively, and ∗ indicates the
convolution operator. Finally, for two functions q(x) and r(x), we write q(x) = o(r(x)) if
lim supx→0 |q(x)/r(x)| = 0 and we write q(x) = O(r(x)) if lim supx→0 |q(x)/r(x)| < ∞.
All logarithms are in base two.

Notation inconsistencies:
Here we list the inconsistencies between the aforementioned notation and the notation

used in some of the appended papers.
• In Paper B and D the probability mass function of a discrete random variable x

at x is denoted by Pr(x = x). Also, in Paper B the probability density function
of a continuous random variable x at x is represented by fx(x).

• In Paper C the random variables are not bold.
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CHAPTER 2

Fiber-Optical Transmission Systems

The purpose of this chapter is to connect the discrete-time optical channel models used in
the appended papers to the underlying physical channel. Also, it provides the reader with
some general information about optical channel modeling. Furthermore, a comprehensive
description of the SSF method, which is a standard tool to simulate the fiber-optical
channel is included.

Optical core networks, which are information highways connecting cities, countries,
and continents, carry a vast amount of Internet data. To connect two nodes via these
networks, reconfigurable optical add-drop multiplexers (ROADMs) are used to add or
drop a channel at each switching point. Fig. 2.1 shows a simple schematic of how WDM
channels are added and dropped at different nodes of the network. Therefore, through
propagation of a signal, the channels on neighboring wavelengths, which introduce inter-
ference to the signal, may change at each switch.

The standard single-mode fiber (SMF) has an extremely low loss. However, for long
transmission distances (> 100 km), it should be compensated for. Optical amplifiers
boost the signal energy while adding noise to it. Apart from the loss and noise, there
are two main impairments associated with fibers, namely, dispersion and nonlinearity.
They are mainly caused by the dependence of the refractive index on wavelength and
electromagnetic field, respectively.

This chapter begins by describing the signal propagation through the fiber in Sec-
tion 2.1. The effects of dispersion, nonlinearity, and loss will be studied separately in
Sections 2.1.1, 2.1.2, and 2.1.3. The effects of optical amplification is added to the model
in Section 2.2. Furthermore, in Section 2.3.1 nonlinearity and loss are investigated to-
gether. A comprehensive description of the SSF method is presented in Section 2.3.

7
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Rx.2

Rx.1

Tx.1

Tx.2 ROADM

Figure 2.1: An schematic of an optical network, where switching is performed by ROADMs.

Signal spectral broadening is discussed in Section 2.4. Finally, in Section 2.5, WDM
systems are described briefly.

2.1 Signal Propagation in Fibers
An optical signal can be described by a slowly varying envelope of the light’s electro-
magnetic field. Therefore, its propagation through the fiber is governed by Maxwell’s
equations. Under some assumptions, which are discussed later, these equations lead to
the Manakov equation [8]

∂a
∂z

+ j
β2
2
∂2a
∂t2︸ ︷︷ ︸

Dispersion

− jγ 8
9 ‖a‖

2 a︸ ︷︷ ︸
Nonlinearity

+ α

2 a︸︷︷︸
Attenuation

= 0. (2.1)

Here, a = [ax(z, t) ,ay(z, t)], where ax(z, t) and ay(z, t) are complex baseband signals
propagating in the x and y polarizations at time t and location z, respectively. β2 is the
group-velocity dispersion parameter and α is the attenuation constant. The parameter
γ = 2πn2/(λAeff) is the nonlinear coefficient, where n2 is the nonlinear refractive index,
Aeff is the effective area of the fiber core, and λ is the wavelength in vacuum.
We note that (2.1) describes the signal propagation in a SMF without any amplification

and hence without noise. The effects of optical amplifiers are added to this equation in
Section 2.2. If the signal is transmitted in only one polarization, (2.1) changes to the
NLS equation by replacing the random vector a by the random variable a and also the
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z
z = Zz = 0

Nonlinear Schrödinger Equation

a(0, t) a(Z, t)

Figure 2.2: An schematic representation of signal propagation through the optical fiber gov-
erned by NLS equation.

vector norm ‖ · ‖ by the absolute value | · |. As we solely consider single polarization in
this thesis, we use the NLS equation to describe the signal propagation in fibers. It reads

∂a
∂z

+ j
β2
2
∂2a
∂t2
− jγ|a|2a + α

2 a = 0. (2.2)

We note that the NLS equation is an excellent model for fibers and its validity has been
checked by many experiments. However, it also should be noted that many assumptions
have been considered in the derivation of this equation; here we list the most important
ones.

• The signal’s spectral width ∆f is much smaller than the central frequency f0:1
∆f/f0 � 1.

• The wavelength region 0.5− 2µm is utilized for transmission.
• The fiber-loss is low.
• The refractive index of the core and cladding is invariant of spatial coordinates.
• The nonlinear response is instantaneous.
• The higher order nonlinearities and dispersion are weak.

Therefore, the NLS equation may be inaccurate at very high powers or at very low or high
wavelengths. Also, it does not cover all the impairments of the fiber. More information
about these assumption can be found in [9, Ch. 2].

For the general case of NLS equation, no analytical solution has been found as yet.
However, some numerical methods can be used to solve this equation with arbitrary
accuracy. We discuss one of these methods in detail in Section 2.3.

2.1.1 Chromatic Dispersion
In a SMF, each frequency component of a signal propagates with a different velocity
through the fiber. Therefore, some components of the signal arrive at the receiver sooner
than others, which results in the broadening of the signal in time. Specifically, a pulse

1The relation between signal frequency f0 and wavelength λ is f0 = c/λ, where c is the speed of light.
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Figure 2.3: Effect of dispersion on a signal after a distance Z > 0.

with spectral width ∆f broadens in time after propagating through a fiber with length
Z by approximately 2πZβ2∆f .
The effect of the dispersion on the transmitted signal can be studied by neglecting the

nonlinearity (γ = 0) and the attenuation (α = 0). Doing so, we obtain from (2.2)

∂a
∂z

+ j
β2
2
∂2a
∂t2

= 0. (2.3)

To solve (2.3), one can apply the Fourier transform to both sides of the equality to obtain

∂a(z, f)
∂z

= 2jπ2f2β2a(z, f). (2.4)

Solving (2.4), the signal at position z can be expressed in the frequency domain as

a(z, f) = a(0, f)e2jπ2f2β2z. (2.5)

Therefore, the chromatic dispersion (CD) can be modeled by a linear all-pass filter with
frequency response H(z, f) = exp(2jπ2f2β2z). The corresponding impulse response is

h(z, t) = exp(jt2/(2β2z))√
2jπβ2z

. (2.6)

If not compensated for, dispersion deteriorates severely the performance of the optical
systems. Fig. 2.3 illustrates the effect of dispersion on a signal after propagation. It
can be seen that the signal becomes completely distorted. Two categories of dispersion
compensation (DC) techniques exist. The first one is to compensate the dispersion in
the optical domain and the second is by utilizing digital signal processors at the receiver
in the electrical domain. We will elaborate on these techniques in Section 5.1.
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Figure 2.4: Effect of nonlinearity on three pulses with different amplitudes in the frequency
domain after propagation.

2.1.2 Kerr Nonlinearity
The presence of Kerr nonlinearity is the main difference between the optical communica-
tion channels and the linear wireless ones. Its origin comes from the dependence of the
refractive index on the electromagnetic field. Since the fiber core has a very small area,
the intensity of the optical power launched into the fiber becomes very high. This high
intensity changes the physical features of the glass like its refractive index. The effects
of Kerr nonlinearity can be studied by neglecting dispersion β2 = 0 and loss α = 0 in
(2.2) to obtain

∂a
∂z

= jγ|a|2a. (2.7)

This equation has the solution

a(z, t) = a(0, t) exp(jγ|a(0, t)|2z). (2.8)

Therefore, the nonlinearity appears as a phase distortion that is a function of the signal
power. The effects of the nonlinearity distortion can be studied in the frequency domain.
Fig. 2.4 shows the evolution of three Gaussian pulses in the frequency domain after
propagation. It can be seen that the spectrum of the pulse broadens and this spectrum
broadening increases with the amplitude of the signal. Many methods for compensating
nonlinearity exist, some of which are presented in Section 5.2.

2.1.3 Fiber Loss
The fiber core is an extremely transparent glass. Its loss is approximately 0.2 dB/km
at wavelength 1.55µm which is mainly due to a fundamental loss mechanism, Rayleigh
scattering, and exists in all fibers [10, Sec. 2.5.3]. Neglecting dispersion and nonlinearity,
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the solution to (2.2) becomes

a(z, t) = a(0, t) exp(−αz/2) (2.9)

which indicates that the power decreases with the rate exp(−αz). The power loss is often
stated in terms of dB/km which can be calculated from α by αdB = 10α log10(e).

2.1.4 Beyond the NLS Equation
As mentioned before, although the NLS equation covers the important features of signal
propagation over fiber, it does not describe all the impairments. Here, we briefly list
some of these additional phenomena.

• Stimulated Raman scattering is an important nonlinear effect that occurs at high
powers. It transfers a portion of an optical field’s energy to a lower frequency.
This feature of the fiber is utilized to build distributed Raman amplifiers, where
an optical beam is transmitted at higher frequencies than the signal to boost its
energy continuously during propagation. This effect can also severely deteriorate
the performance of WDM systems in the high-power regime by introducing inter-
channel interference.

• Stimulated Brillouin scattering is a nonlinear process similar to the Raman effect.
In this process some of the energy of an optical field is transferred to lower fre-
quencies and propagates forward or backward through the fiber. The frequency
range affected by Brillouin scattering is much smaller than that of Raman scat-
tering [11, Sec. 5.2.3].

2.2 Optical Amplifications
For long-haul transmission, in order to compensate for the loss, the signal needs to be
amplified. Traditionally, this process was performed by installing costly regenerators
that brought the optical signal to the electrical domain and then retransmitted it. Now
this task is done by optical amplifiers, which are more economical. Moreover, optical
amplification is the key enabling technology to WDM systems. A single amplifier can
boost the energy of optical signals in a wide spectrum of wavelengths, while with the old
systems, one regenerator was needed for each WDM channel. The optical amplification is
based on stimulated emission, where a copy of a photon is generated by an excited atom.
This process is always accompanied with spontaneous emission, where an excited atom
emits a photon randomly. Therefore, optical amplification always comes at the price of
increased noise level. By considering the optical amplification, the signal propagation
through the fiber can be described by the statistic NLS equation as

∂a
∂z

+ j
β2
2
∂2a
∂t2
− jγ|a|2a + α− g(z)

2 a = n. (2.10)
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2.2 Optical Amplifications

Table 2.1: Amplifier parameters

Parameter Symbol Value
Amplifier Gain G eαZsp

Span length Zsp 80–100 km
Noise figure Fn 4–7 dB

Spontaneous emission factor nsp 1–2.5
Number of spans K ≥ 1
Planck’s constant h 6.626 · 10−34 Js
Carrier frequency ν 1.911 · 1014 − 1.961 · 1014 Hz

Here, n is the amplified spontaneous emission (ASE) noise, which is circularly symmetric
white Gaussian, and g(z) is the gain profile. Next, we present two commonly used
amplification schemes and study the noise and g(z) for them.

2.2.1 Lumped Amplifiers

In this amplification scheme the fiber is divided into multiple spans and an erbium-doped
fiber amplifier (EDFA) is used at the end of each span to boost the signal’s energy. The
amplification noise, n(z, t) has the autocorrelation of

E[n(z, t)n(z′, t′)∗] = (G− 1)nsphνδ(t− t′)δ(z − z′)
K∑
k=1

δ(z − kZsp). (2.11)

Here, δ( · ) is the Dirac delta function, hν is the optical photon energy, and nsp is the
spontaneous emission factor. It is also common to report the noise figure Fn = (1 +
2nsp(G−1))/G instead of nsp [12, Eq. (7.2.15)]. The rest of the parameters are presented
in Table 2.1 with their typical range of values. The gain profile can be described as

g(z) = αZsp

K∑
k=1

δ(z − kZsp). (2.12)

If we assume that the signal bandwidth, W , is constant during propagation, the total
noise variance is

PN = 2K(G− 1)nsphνW. (2.13)
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Figure 2.5: Split-step Fourier method for lumped amplification with K spans. Each fiber span
is divided to N segments. G = eαZsp is the amplifier power gain.

2.2.2 Distributed Amplifiers
Unlike lumped amplification, in the distributed one the transmission loss is continuously
compensated for along propagation. Therefore, the signal power level remains almost
constant. In this scheme, a pump wave is transmitted at higher frequencies than that
of the signal. The pump wave copropagates with the signal and through the Raman
effect, it gives the signal a portion of its energy. The gain profile for the ideal Raman
amplification is g(z) = α and the noise autocorrelation is

E[n(z, t)n(z′, t′)∗] = αnsphνδ(z − z′)δ(t− t′). (2.14)

The total noise variance is
PN = 2αZnsphνW (2.15)

where Z is the total fiber length. We note that, in practice, the gain profile is not a
constant and it decreases as the distance from the amplifier increases.

2.3 Split-Step Fourier Method
For special classes of input signals, such as solitons [9, Ch. 5], the lossless NLS equation
((2.2) with α = 0) has an analytical solution. However, a general solution for the NLS
equation in (2.2) has not been found. The evolution of the signal can be tracked by
means of numerical methods, among which the most famous one is the SSF method.

2.3.1 Lumped Amplification
In the SSF method for lumped amplified systems, a fiber span with length Zsp is split
into N segments with length ∆z = Zsp/N . It is assumed that the linear and nonlinear
operators in the NLS equation act independently in each segment. The output of the
nth segment, an = a(n∆z, t), can be obtained by applying three operators to the output
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Figure 2.6: Split-step Fourier method for distributed amplification with N segments.

of its previous segment an−1: i) a nonlinear operator as in (2.8) ii) a linear operator as
in (2.5), and iii) an attenuation operator as in (2.9), i.e.,

an = e−α∆z/2 [h(∆z, t) ∗ [an−1 exp(jγ∆z|an−1|2)]
]
. (2.16)

Here, h(z, t) is the impulse response of the dispersion filter defined in (2.6).
In practice, to implement the SSF method, the input signal is sampled much faster

than the Nyquist rate so that the effects of spectrum broadening, caused by the channel
nonlinearity, is correctly captured. Moreover, to reduce the complexity of the method, the
convolution in (2.16) is calculated in the frequency domain using fast Fourier transform
(FFT).

For lumped amplification, the effect of the amplifier can be captured by multiplying
the signal by

√
G = exp(αZsp/2) and adding the ASE noise to the signal. A model for

the SSF method for lumped amplification is provided in Fig. 2.5.
Next, we focus on the effects of nonlinearity and loss. If dispersion is ignored, we have

|an|2 = exp(−nα∆z)|a0|. Therefore, the output of the first span can be described by

aN = a0e
−αZsp/2

N−1∏
n=0

exp
(
jγ∆ze−nα∆z|a0|2

)
(2.17)

= a0e
−αZsp/2 exp

(
jγ|a0|2∆z 1− e−αZsp

1− e−α∆z

)
. (2.18)

Using lim∆z→0 ∆z/(1 − exp(−α∆z)) = 1/α, the right-hand side (RHS) of (2.18) in the
limit ∆z → 0 becomes

a0e
−αZsp/2 exp(jγZeff |a0|2) (2.19)

where Zeff is the effective length of the fiber with length Zsp and is defined as

Zeff = 1− exp(−αZsp)
α

. (2.20)
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Note that Zeff ≤ z, which indicates that the nonlinear phase shift is smaller than in
the lossless case in (2.8). A channel model similar to the one in (2.19) is obtained in
Section 4.3 and is studied in Paper A.

2.3.2 Distributed Amplification
For ideal distributed amplification, the fiber loss is compensated for completely and ASE
noise is added to the signal continuously during propagation. One step of the SSF method
with distributed amplification can be described as

an+1 = h(∆z, t) ∗ [an exp(jγ∆z|an|2)] + nn (2.21)

where nn is the amplifier noise and has the autocorrelation of

E[nn(t)nn′(t′)∗] = αnsphν

N
δ(n− n′)δ(t− t′) (2.22)

where N is the number of SSF steps. A model for the SSF method for distributed
amplification is illustrated in Fig. 2.6.
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2.3.3 A Cookbook for the SSF Method

Although (2.16) and (2.21) describe the SSF method completely, they do not give a
straightforward description of how to implement this method. In this section, we pro-
vide step-by-step algorithms to implement the SSF method for lumped and distributed
amplifications (with and without dispersion compensating fiber (DCF)).
Algorithm 1: SSF method for lumped amplification
Data: Input sample vector xin of length L; sampling time ∆t; fiber parameters:

nonlinearity γ, dispersion β2, attenuation α, span length Zsp, number of
spans K; SSF segment length ∆z (N = Zsp/∆z should be an integer); noise
parameters: Fn, h, and ν as described in Table 2.1.

1 x← xin
2 PN ← (eαZsp − 1)nsphν/∆t

3 d` ← exp
(
j∆z2β2 (π/ (L∆t))2 (L/2− |L/2− `|)2

)
for ` = 0, 1, . . . L− 1

4 for k ∈ {1, 2, . . . ,K} do
5 for n ∈ {1, 2, . . . , N} do
6 x` ← x` exp(jγ∆z|x`|2) for ` ∈ {0, 1, . . . , L− 1}
7 x̃← FFT(x)
8 x̃` ← x̃`d` for ` ∈ {0, 1, . . . , L− 1}
9 x← iFFT(x̃)

10 x` ← x` exp(−α∆z/2) for ` ∈ {0, 1, . . . , L− 1}
11 if DCF is used then
12 x̃← FFT(x)
13 x̃` ← x̃`/(d`)N for ` ∈ {0, 1, . . . , L− 1}
14 x← iFFT(x̃)
15 x` ← x`e

αZsp/2 for ` ∈ {0, 1, . . . , L− 1}
16 Draw L iid samples from CN (0, PN ) to generate z` for ` ∈ {0, 1, . . . , L− 1}
17 x` ← x` + z` for ` ∈ {0, 1, . . . , L− 1}
18 if Electronic DC is used then
19 x̃← FFT(x)
20 x̃` ← x̃`/d

KN
` for ` ∈ {0, 1, . . . , L− 1}

21 x← iFFT(x̃)
22 return x

The FFT function x̃ = FFT(x) is used to calculate the discrete-Fourier transform,
which is defined as

x̃` =
L−1∑
m=0

xm exp(−2jπ`m/L) for ` ∈ {0, 1, . . . , L− 1} (2.23)
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and its corresponding inverse transform, iFFT, is

x` = 1/L
L−1∑
m=0

x̃m exp(2jπ`m/L) for ` ∈ {0, 1, . . . , L− 1}. (2.24)

In Algorithm 1, we neglect the nonlinearity and the loss of DCF, whose effects are typi-
cally negligible. Next, we present the SSF algorithm for ideal distributed amplification.
Algorithm 2: SSF method for distributed amplification
Data: Input sample vector xin of length L; sampling time ∆t; fiber parameters:

nonlinearity γ, dispersion β2, attenuation α; total length Z; SSF segment
length ∆z (N = Z/∆z should be an integer); noise parameters: nsp, h and ν
as described in Section 2.2.2.

1 x← xin
2 PN ← α∆znsphν/∆t

3 d` ← exp
(
j∆z(2β2) (π/ (L∆t))2 (L/2− |L/2− `|)2

)
for ` = 0, 1, . . . L− 1

4 for n ∈ {1, 2, . . . , N} do
5 x` ← x` exp(jγ∆z|x`|2) for ` ∈ {0, 1, . . . , L− 1}
6 x̃← FFT(x)
7 x̃` ← x̃`d` for ` ∈ {0, 1, . . . , L− 1}
8 x← iFFT(x̃)
9 Draw L iid samples from CN (0, PN ) to generate z` for ` ∈ {0, 1, . . . , L− 1}

10 x` ← x` + z` for ` ∈ {0, 1, . . . , L− 1}
11 if Electronic DC is used then
12 x̃← FFT(x)
13 x̃` ← x̃`/d

N
` for ` ∈ {0, 1, . . . , L− 1}

14 x← iFFT(x̃)
15 return x

Both Algorithm 1 and Algorithm 2 can be adapted to simulate polarization-multiplexed
systems. To do so, all the steps should be performed for both the x polarization and for
the y polarization. Furthermore, the nonlinear operations (Step 6 in Algorithm 1 and
Step 5 in Algorithm 2) should be replaced with

x` ← x` exp(jγ∆z(|x`|2 + |y`|2)) for ` ∈ {0, 1, . . . , L− 1} (2.25)

where y` denotes the `th sample of the signal propagated over the y polarization.

2.3.4 Precision of the SSF Method
As was mentioned, the SSF method is a standard approach to approximate the solution
of the NLS equation. In this method, an optical fiber of length Z is modeled by a cascade
of N segments of length ∆z = Z/N . The input to the SSF method is a complex vector
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Figure 2.7: Output of the SSF method for different values of ∆Z for a) P = 0 dBm and b)
P = 10 dBm.

of length L containing samples taken every ∆t seconds from the baseband input signal
of duration T = L∆t. The accuracy of the SSF method depends on the value of ∆t and
∆z. The approximation obtained by the SSF method gets precise in the limits ∆t → 0
and ∆z → 0.

To maintain a fixed level of accuracy, ∆t and ∆z should decrease as the input power P
increases [13, Sec. II-A]. The value of ∆z should be chosen proportional to the nonlinear
length ZNL = 1/(γP ) and the dispersion length ZD = 1/(|β2|W 2), with W being the
maximum signal bandwidth during propagation. In general, the signal spectrum broad-
ens through propagation due to the fiber nonlinearity. The bandwidth does not increase
monotonically with the propagation distance (see Fig. 2.10). However, in general, the
expansion of the signal bandwidth increases with the input power. Therefore, the sam-
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Figure 2.8: Output of the SSF method for different values of ∆Z for a) P = 0 dBm and b)
P = 10 dBm.

pling rate should increase (∆t should decrease) with the input power to maintain a fixed
accuracy level of the SSF method. The topic of spectral broadening is further discussed
in Section 2.4.
To examine the accuracy of SSF method for different values of ∆z and ∆t and for

different input powers, we conduct the SSF simulation for an example of optical fiber
system and sketch the output signal (as in [14, Fig. 2]). A 300-km lossless standard SMF
is considered with typical parameters listed in Table 2.2. The exact solution of the NLS
equation is calculated by choosing a very small ∆z (∆z = 1 m) and taking 32 samples
per symbol. Root-raised cosine pulse shaping with roll-off factor of 0.2 is considered.
Fig. 2.7 depicts the output of the SSF algorithm for different values of ∆z and two

input powers. It can be seen in Fig. 2.7 (a) that with P = 0 dBm the output of the SSF
method is almost equal to the NLS solution for ∆z = 10 km but not for ∆z = 100 km.
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Table 2.2: Amplifier parameters

Parameter Symbol Value
Fiber length Z 300 km
Dispersion β2 −21.7 ps2/km
Nonlinearity γ 1.27 (Wkm)−1

Symbol rate Rs 50 Gbaud

With P = 10 dBm, it can be seen in Fig. 2.7 (b) that smaller values of ∆z are required
for the SSF method to converge to the solution of the NLS equation; the output of the
SSF method for ∆z = 5 km is completely different from the NLS solution. In Fig. 2.8,
we examine the accuracy of the SSF method for different values of sampling time ∆t.
For P = 0 dBm it can be seen that by taking two samples per symbol one can obtain
samples of the NLS solutions accurately via SSF method. However, to achieve a fair level
of accuracy for P = 20 dBm, 10 samples per symbol are required.

Next, we evaluate the minimum number of samples per symbols that are required to
approximate the NLS solution via the SSF method accurately. We define the error of
the SSF method as the energy of the difference of the SSF output and the NLS solution
normalized by the input energy. If the error is less than one percent, then the SSF
method is deemed accurate. We consider a 10-Gbaud single fiber-optical channel, where
the rest of parameters are specified in Table 2.2.

Fig. 2.9 (a) demonstrates the minimum required number of samples per symbol vs. the
input power for three pulse shapes and two modulation formats. This figure shows that
the sample rate must rapidly grow with the input power for P > 0 dBm. It also can be
seen that the required number of samples is not just a function of the input power, but
it depends also on the modulation and the pulse shape. Fig. 2.9 (b) depicts the required
sampling rate vs. the transmission distance for P = 10 dBm with root-raised cosine
pulse shaping and Gaussian input distribution. It can be seen that the required number
of samples increases with the distance in the first 100 km and then it saturates.

2.4 Spectral Broadening
As was mentioned in the previous section, because of the fiber nonlinearity, the signal
bandwidth broadens during propagation. The bandwidth expansion has a direct relation
with the input power. Nonetheless, as yet, there is no analytical result that expresses
the relation between the input power and the bandwidth of the received signal. Actually,
the input power may not be the sufficient statistics to determine the propagating signal’s
bandwidth. Pulse shaping has an effect on the signal’s spectrum during propagation.
Soliton pulses [15, Ch. 5] can propagate through the fiber without suffering from spectral
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Figure 2.9: Minimum number of samples per symbol needed to reach less than 1% error in the
SSF method vs. a) input power and b) distance.

broadening.
Fig. 2.10 depicts the maximum signal bandwidth as a function of the input power and

the propagation distance. A single channel with 10 Gbaud symbol rate is simulated; the
rest of the channel parameters can be found in Table 2.2. It can be seen in Fig. 2.10 (a)
that for powers less than 0 dBm the signal bandwidth does not expand during the
propagation, as the nonlinear effects are negligible; for higher powers, the bandwidth
grows rapidly with P . Fig. 2.10 (a) depicts the signal bandwidth as a function of the
propagation distance for P = 10 dBm. As it can be seen, the signal’s bandwidth first
increases at the beginning, reaches a maximum, and then saturates. It is evident from
both Fig. 2.10 (a) and Fig. 2.10 (b) that the spectrum broadening does not only depend
on input power but also other statistics of the signal.
As mentioned, currently there is no analytical expression that describes the relation

between the propagating signal bandwidth, the statistics of the input signal, and the
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Figure 2.10: Bandwidth (99%) of the propagating signal vs. a) input power and b) distance.

channel parameters. As a conjecture, one may use the Hamiltonian invariant of the NLS
equation as a starting point to tackle this open problem. For the lossless NLS equation
(Eq. (2.2) with α = 0), the Hamiltonian invariant [16] (see also [17, Eq. (12c)]) indicates
that the value of

β2

∞∫
−∞

∣∣∣∣∂a(z, t)
∂t

∣∣∣∣2 dt+ γ

∞∫
−∞

|a(z, t)|4 dt (2.26)

is constant during the propagation (is independent of z). The first term of (2.26) is
proportional to the mean square of the signal bandwidth and the second term to the
fourth moment of the signal. This suggest a relation between the signal’s fourth moment
and its bandwidth.
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2.5 WDM Systems and Impairments Related to It
WDM systems consist of multiple channels at different carrier wavelengths copropagating
through a single fiber. The number of channels is usually limited by the bandwidth of the
optical amplifier used in these systems, which for EDFAs is roughly 5 THz. Therefore,
around 100 channels with bandwidth of 50 GHz can be transmitted. Due to the Kerr
effect these channels interfere with each other. Spectrum guard bands are applied to
reduce the crosstalk between channels at the cost of reducing spectral efficiency.
To better understand the effects of nonlinearity distortions on the signal, it is cus-

tomary to categorize them into signal–signal and signal–noise distortions. The former
is caused by interaction between multiple frequency components of the signal and the
latter by interactions between signal and noise. Independently, one can classify the non-
linear effects as intra-channel and inter-channel distortions. The former originate from
the interactions between the frequency components within the bandwidth of the channel
of interest (COI), while in the latter category, at least one of the components (signal
or noise) belongs to the neighboring channels. Therefore, the nonlinear impairments of
WDM systems can be classified into four categories: intra-channel/inter-channel signal–
signal/signal–noise. The intra-channel signal–signal distortion is also known as self-phase
modulation (SPM). The inter-channel signal–signal interference is further classified into
cross-phase modulation (XPM) and four-wave mixing (FWM). In the following, we elab-
orate upon SPM, XPM, and FWM. For a more comprehensive discussion on this topic,
see [18] and references therein.
To model the effect of the nonlinear crosstalk, we consider a WDM channel with two

wavelengths. The signal propagation through these channels in the fiber can be described
by the pair of coupled equations [15, p. 274].

∂a1
∂z

+ j
β21
2
∂2a1
∂t2

− jγ1(|a1|2 + 2|a2|2)a1 + α

2 a1 = 0 (2.27)

∂a2
∂z

+ j
β22
2
∂2a2
∂t2

− jγ2(|a2|2 + 2|a1|2)a2 + α

2 a2 + jd
∂a2
∂t

= 0. (2.28)

Here, β2i is the group velocity dispersion at wavelength i ∈ {1, 2}, γi is the nonlinear
parameter, and ai corresponds to the ith baseband signal. The attenuation constant α
is assumed equal for both channels. The parameter d is the group velocity mismatch

d = 1
vg2
− 1
vg1

(2.29)

where vgi is the group velocity. In (2.27) and (2.28), the time is measured according to a
reference frame moving with the first signal. The term jγ1|a1|2 in (2.27) corresponds to
the SPM, that is the modulation of signal’s phase by its amplitude. The term jγ1|a2|2 in
(2.27) is known as XPM and captures the interference between the copropagating signals.
It can be seen that the phase shift caused by XPM is twice as large as that caused by
SPM.
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The phase distortions caused by SPM and XPM, although they do not change the sig-
nal’s amplitude, expand the signal’s spectrum. The only exception a perfect rectangular
pulse shape, where the phase distortions are constant during one symbol period.

Another important impairment in WDM systems is the FWM, where three signal
at different frequencies f1, f2, and f3 combine with each other to create a signal at
f4 = f1 +f2−f3. With many signals propagating in WDM, FWM can be a major source
of distortion. This effect can be mitigated by proper channel spacing [19].
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CHAPTER 3

Channel Capacity

In this chapter, we study the concept of channel capacity. Differential entropy and mutual
information are defined in Section 3.1. Section 3.2 provides the definition of the capacity
of discrete-time channels. The capacity and the spectral efficiency of the continuous-time
additive white Gaussian noise (AWGN) channel are defined in Section 3.3. Section 3.4
provides some information-theory tools to bound capacity. Finally, we define the achiev-
able information rate (AIR) in Section 3.5 and provide a detailed description on how to
compute it for some auxiliary channels.

3.1 Differential Entropy and Mutual Information

Consider two random vectors x and y that take values in RL and are distributed according
to the joint probability distribution function (pdf) px,y(x, y). The differential entropy of
x is defined as [20, Sec. 8]

h(x) = −
∫
RL
px(x) log

(
px(x)

)
dx. (3.1)

Similarly, the joint differential entropy of x and y is

h(x,y) = −
∫
RL

∫
RL
px,y(x, y) log

(
px,y(x, y)

)
dxdy. (3.2)
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Moreover the mutual information between the random vectors x and y is defined as

I(x; y) = h(y) + h(x)− h
(
x,y

)
(3.3)

= h(y)− h(y|x) (3.4)

where
h(y|x) = h(y,x)− h(x) (3.5)

is the conditional entropy. The mutual information can be written in terms of relative
entropy as

I(x; y) = D(px,y ‖ pxpy) (3.6)

where the the relative entropy between two pdfs p(w) and q(w) is defined as

D(p ‖ q) =
∫
p(w) log

(
p(w)
q(w)

)
dw. (3.7)

The relative entropy is always nonnegative and serves as a distance metric between two
distributions [20, Thm. 8.6.1]. Let now x take value in CL. We have

h(x) = h(xr,xi) (3.8)

where xr and xi are the random vectors representing the real and imaginary parts of x,
respectively. Also, the mutual information between two complex random vectors can be
defined similarly as in (3.3).

3.2 Capacity of Discrete-Time Channels
A discrete-time memoryless channel can be described by a conditional pdf py|x(y|x),
where x and y are complex random variables. The capacity CDMC of this channel is
the maximum rate in bits per channel use at which the information can be transferred
through the channel with arbitrary low error probability. By Shannon’s channel coding
theorem [4], the capacity under the average power constraint P > 0, can be calculated
as

CDMC = sup
px(x)

I(x; y) bits per channel use (3.9)

where the supremum is taken over all input distributions px(x) such that E
[
|x|2

]
≤ P .

Similarly, for a discrete-time block-memoryless communication channel described by
the conditional pdf py|x(y | x), the capacity, CDBC, under the average power constraint
P > 0, is

CDBC = sup
px(x)

I(x,y) bits per block. (3.10)
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Here, the supremum is taken over all input distributions px(x) such that E
[
||x||2

]
≤ LP ,

where L is the input vector length, which coincides with the block size. Alternatively,
we have

CDBC = 1
L

sup
px(x)

I(x,y) bits per channel use. (3.11)

3.3 Capacity of the Continuous-Time AWGN Channel
The capacity of a continuous-time channel in bits per second is the maximum of the
average number of information bits that can be transmitted through the channel during
one second at an arbitrarily low error probability. The maximum is over all modulation,
pulse shaping, demodulation, detection, and coding schemes. For the complex AWGN
channel, the input–output relation can be written as y(t) = x(t) + n(t), where n(t) is a
complex white Gaussian process with power spectral density (PSD) N0 W/Hz and x(t)
is the complex input signal with two-sided bandwidth W Hz. The capacity, CAWGN, of
this channel under the power constraint lim

T→∞
1/T

∫ T
0 |x(t)|2 dt ≤ P is [4] (see also [20,

Eq. (9.62)])

CAWGN = W log
(

1 + P

WN0

)
bits per second. (3.12)

For a continuous-time channel, spectral efficiency is measured in terms of bits per
seconds per Hertz by dividing its capacity to its bandwidth, W . For the AWGN channel
the spectral efficiency, SEAWGN , is

SEAWGN = log
(

1 + P

WN0

)
bits per second per Hertz. (3.13)

3.4 Some Information-Theoretic Tools for Bounding
Capacity

In this section, we provide some standard information-theoretic tools to upper- and lower-
bound the capacity. Also we introduce the Blahut–Arimoto algorithm, which can be used
to find the capacity-achieving input distribution for discrete-time memoryless channels
with finite-cardinality alphabets.

3.4.1 Maximum Entropy
Among all real random vectors x ∈ RL with a fixed nonsingular correlation matrix
R(x) = E

[
xxT

]
, the joint Gaussian distribution has maximum differential entropy [20,

Thm. 8.6.5], i.e.,

h(x) ≤ 1
2 log

(
(2πe)L det R(x)

)
. (3.14)
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Using Hadamard’s inequality [20, Thm. 17.9.2] and Jensen’s inequality [20, Sec. 2.6] we
can further upper-bound (3.14) as [5]

h(x) ≤ L

2 log
(

2πe
L

Tr
[
R(x)

])
(3.15)

= L

2 log
(

2πe
L

E
[
‖x‖2

])
. (3.16)

3.4.2 Polar Coordinate System
The differential entropy of a complex random variable x can be computed in polar coor-
dinates as [21, Lemma 6.16]

h(x) = h(|x|,∠(x)) + E[log |x|] . (3.17)

Here, ∠(x) denotes the phase of x. Furthermore, [21, Lemma 6.15]

h
(
|x|2

)
= h(|x|) + E[log |x|] + log 2. (3.18)

Using (3.17) and (3.18), we can upper-bound h(x) as

h(x) = h(|x|) + h(∠(x) ||x| ) + E[log |x|] (3.19)
= h

(
|x|2

)
− log 2 + h(∠(x) ||x| ) (3.20)

≤ h
(
|x|2

)
+ log π. (3.21)

In the last step, we used that h(∠(x) | |x|) ≤ h(∠(x)) ≤ log(2π).

3.4.3 Entropy Power Inequality
The entropy power inequality [20, Theorem 17.7.3] is a powerful tool for lower-bounding
the entropy of the sum of two independent random variables/vectors. Let x and y be
two real independent L-dimensional random vectors, we have that

2
2
Lh(x+y) ≥ 2 2

Lh(x) + 2
2
Lh(y) (3.22)

3.4.4 Duality Bound
The duality bound [21–23] upper-bounds the mutual information between two random
variables x and y with density px,y and alphabets X and Y as

I(x; y) ≤ E
[
log
(
py|x(y|x)
qy(y)

)]
(3.23)

= −E[log(qy(y))]− h(y|x) (3.24)
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where qy is any arbitrary distribution on Y and the expectation in (3.24) is with respect
to the distribution py. Eq. (3.24) can be proved by using (3.4) and

−E[log(qy(y))] = E
[
log(py(y)

qy(y) )
]
− E[log(py(y))] (3.25)

= D(py ‖ qy) + h(y) (3.26)
≥ h(y) (3.27)

where (3.27) follows from the non-negativity of the relative entropy. One can use the
duality bound together with the method of Lagrange multipliers to upper-bound the
capacity under the power constraint P as [21]

C = max
px

I(y; x) (3.28)

≤ max
px
−E[log(qy(y))]− h(y|x) (3.29)

≤ max
px
−E[log(qy(y))]− h(y|x) + λ

(
P − E[|x|2]

)
(3.30)

= max
px

Ex
[
−Ey|x[log(qy(y))]− h(y|x) + λ

(
P − |x|2

)]
(3.31)

≤ max
x
−Ey|x[log(qy(y))]− h(y|x = x) + λ

(
P − |x|2

)
(3.32)

where, λ ≥ 0 is the Lagrange multiplier. Therefore, a capacity upper bound can be
obtained by choosing the distribution qy and minimizing (3.32) over λ.

3.4.5 Blahut–Arimoto Algorithm
For a memoryless channel, if mutual information can be calculated for every input dis-
tribution px (e.g., for discrete-time memoryless channels with finite input and output
alphabets), then the capacity can be numerically evaluated via Blahut–Arimoto algo-
rithm [20, Sec. 10.8]. This method was presented by Arimoto [24] and Blahut [25] in-
dependently. The algorithm can be used to find the capacity-achieving distribution in
an iterative fashion. If the input or the output has a continuous alphabet, then one can
estimate the capacity by discretization. The constrained capacity can also be computed
with this method [25, Fig. 4].

3.5 AIR: Definition and Calculation
In this section, first the AIR is defined for channels with memory and then algorithms
to calculate the AIR are provided for some auxiliary channels.

3.5.1 Definition of AIR
Consider a generic discrete-time communication channel defined by an input alphabet
XL, output alphabet YL, and a conditional probability function py|x(y|x). In the absence
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of an optimal receiver for this channel, one can deploy a mismatched receiver that is
optimized for an auxiliary channel qy|x(y|x). The AIR determines an information rate
that can be transferred reliably through the true channel py|x by using the mismatched
receiver optimized for the auxiliary channel qy|x for a fixed input distribution px(x). It
is defined as

Iq(x,y) = lim
L→∞

1
L

E
[

log
qy|x(y|x)
qy(y)

]
(3.33)

= lim
L→∞

1
L

E
[
log qy|x(y|x)

]
− lim
L→∞

1
L

E
[
log qy(y)

]
(3.34)

(3.35)

where L is the length of x and y and

qy(y) =
∫
XL

qy|x(y|x)px(x) dx. (3.36)

Similarly, if X is a discrete set, we have

qy(y) =
∑
x∈XL

qy|x(y|x)px(x). (3.37)

The maximization of the AIR in (3.33) over all qy|x results in I(x; y), and qy|x = py|x
achieves this maximum. Further maximization over the input distribution px results in
the channel capacity. Therefore, the AIR calculated for any arbitrary auxiliary channel
qy|x and any input distribution px establishes a lower bound on the capacity. Also,
roughly speaking, the tightness of this lower bound depends on how close is the auxiliary
channel to the real one and the input distribution to the capacity-achieving one.
One can estimate the value of (3.33) with two long sequences x and y sampled from

px,y as [26, Eq. (46)]

Iq(x,y) ≈ 1
L

log qy|x(y|x)− 1
L

log qy(y). (3.38)

Therefore, the AIR can be estimate with the following three steps [26].
1. Generate a “very long” input vector x and sample an output vector y according

to the true channel law py|x(y|x).
2. Calculate (1/L) log(qy(y)) and (1/L) log(qy|x(y|x)).
3. Estimate the AIR via (3.38).

For the fiber-optical channel the output vector y in the first step can be obtained using
the SSF method. Next, we study the calculation of the two terms in Step 2. Specifically,
we will see how the AIR can be calculated effectively for independent and identically
distributed (iid) input distributions and a) for AWGN auxiliary channels and b) for an
auxiliary phase-noise channel with memory.
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3.5.2 Auxiliary AWGN Channel With Gaussian Input

In this section we study the calculation of (3.38) when the auxilary channel is an AWGN
one and the input distribution is an iid circularly-symmetric complex Gaussian. With the
AWGN auxiliary channel, the input–output relation can be described by the memoryless
channel y` = αx` + n`, where n` ∼ CN (0, σ2

n). A natural choice of α and σ2
n is

α = σxy/σ
2
x (3.39)

σ2
n = 1

L

L∑
`=1
|y` − αx`|2 (3.40)

= σ2
y − |α|2σ2

x (3.41)

where

σxy = 1
L

L∑
`=1

y`x
∗
` (3.42)

σ2
x = 1

L

L∑
`=1
|x`|2 (3.43)

σ2
y = 1

L

L∑
`=1
|y`|2. (3.44)

For the AWGN auxiliary channel, we have

qy|x(y|x) =
L∏
`=1

1
πσ2

n

exp
(
−|y` − αx`|

2

σ2
n

)
(3.45)

Therefore,

1
L

log qy|x(y|x) = − log(πσ2
n)− log e

Lσ2
n

L∑
`=1
|y` − αx`|2 (3.46)

= − log(πeσ2
n) (3.47)

where in (3.47) we used (3.40).
Moreover, with px ∼ iid CN (0, σ2

x), qy becomes an iid circularly symmetric Gaussian
distribution with variance |α|2σ2

x + σ2
n, which by (3.41) is equal to σ2

y. Therefore,

− 1
L

log qy(y) = log(πeσ2
y). (3.48)
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Substituting (3.47) and (3.48) into (3.38), we obtain

Iq(x,y) ≈ log
(
σ2
y

σ2
n

)
(3.49)

= log
(

σ2
yσ

2
x

σ2
yσ

2
x − |σxy|2

)
. (3.50)

Equation (3.50) is established in [6, Eq. (6)] and is used in Paper C to calculate the AIR
based on the Gaussian auxiliary channel.

3.5.3 Auxiliary AWGN Channel With Discrete Input
In this section, we consider a more practical case, where the input takes value from a
finite alphabet set X . Compared with Section 3.5.2, the main difference here is that
now qy is not a Gaussian distribution and (3.48) does not hold. The auxiliary channel is
y` = x` + n` with n` ∼ iid CN (0, σ2

n). In order to use this auxiliary channel, one should
scale the output of the demodulator properly. For example, it can be scaled by the factor
1/α, where α is defined in (3.39).
A natural choice of the parameter σ2

n is

σ2
n = 1

L

L∑
`=1
|y` − x`|2. (3.51)

Following the same calculation as in the previous chapter (with α = 1) we have

1
L

log qy|x(y|x) = − log(πeσ2
n). (3.52)

Furthermore, assuming that qx is iid, we have

− 1
L

log
(
qy(y)

)
= − 1

L
log
(

L∏
`=1

qy`(y`)
)

(3.53)

= − 1
L

L∑
`=1

log
(∑
x`∈X

px(x`)qy|x(y`|x`)
)

(3.54)

where qy|x can be found in (3.45) with α = 1 and L = 1.

3.5.4 Auxiliary Channel With Auto-Regressive Phase-Noise Process
In this section, we review the method proposed in [26, 27] to compute the AIR for an
auxiliary channel with phase noise described as

y` = h0x`ejθ` + n` (3.55)
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where n` ∼ iid CN (0, σ2
n), h0 is channel coefficient. Here, x` and y` indicate the input

and the output of the channel and belong to the alphabet sets X and Y, respectively. The
parameter θ` is an real auto-regressive (AR) phase-noise process of order one described
by

θ` = θ`−1 + z` mod 2π (3.56)

where z` ∼ iid CN (0, σ2
z). The process θ` can be also regarded as a discrete-time Wiener

process. To calculate the AIR, we begin by evaluating the first term on the RHS of
(3.38). We have

1
L

log q(y|x) = 1
L

log
L∏
`=1

q(y`|x, y`−1) (3.57)

= 1
L

L∑
`=1

log q(y`|x, y`−1) (3.58)

= 1
L

L∑
`=1

log q(y`|x`, y`−1). (3.59)

Furthermore,

q(y`|x`, y`−1) =
2π∫
0

q(y`, θ`|x`, y`−1) dθ`. (3.60)

We continue by calculating

q(y`, θ`|x`, y`−1) =
2π∫
0

q(y`, θ`, θ`−1|x`, y`−1) dθ`−1 (3.61)

=
2π∫
0

q(θ`−1|x`−1, y`−1)q(θ`|θ`−1)q(y`|x`, θ`) dθ`−1 (3.62)

where (3.62) follows from the Markov property of the channel. Based on the channel
model (3.55), we have

q(θ`|θ`−1) = 1√
2πσ2

z

∞∑
m=−∞

e
−(θ`−θ`−1+2mπ)2

2σ2
z (3.63)

and also

q(y`|x`, θ`) = 1
πσ2

n

exp
(−|y` − h0x`e

θ` |2
σ2
n

)
. (3.64)
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Finally, we have

q(θ`−1|x`−1, y`−1) =
q(y`−1, θ`−1|x`−1, y`−2)
q(y`−1|x`−1, y`−2) . (3.65)

To calculate (3.65) one can use the equations (3.60) and (3.62) by replacing ` with
`− 1. This leads to an iterative process for calculating (3.57). The process is initialized
by taking q(θ0) as uniform distribution over the interval [0, 2π). Then the process of
calculating (3.57) can be described as follows.

Algorithm 3: Calculating 1
L log q(y|x)

Data: Input vector: x of length L; output vector y; parameters: σ2
n, σ2

z , h0

1 q(θ0|x0, y0)← 1
2π

2 for ` ∈ {1, 2, . . . , L} do

3 q(y`, θ`|x`, y`−1)←
2π∫
0
q(θ`−1|x`−1, y`−1)q(θ`|θ`−1)q(y`|x`, θ`) dθ`−1

4 q(y`|x`, y`−1)←
2π∫
0
q(y`, θ`|x`, y`−1) dθ`

5 q(θ`|x`, y`)← q(y`, θ`|x`, y`−1)/q(y`|x`, y`−1)

6 return 1
L

L∑̀
=1

log q(y`|x`, y`−1)

Next, we calculate the second term on the RHS of (3.38) that is 1
L log q(y). This term

can be calculated in the same fashion as 1
L log q(y|x). These calculations are presented

in the following algorithm.
Algorithm 4: Calculating 1

L log q(y)
Data: Input distribution: px(x); output vector y of length L; parameters: σ2

n, σ2
z ,

h0
1 q(θ0|y0)← 1

2π
2 for ` ∈ {1, 2, . . . , L} do

3 q(y`, θ`|y`−1)←
2π∫
0
q(θ`−1|y`−1)q(θ`|θ`−1)q(y`|θ`) dθ`−1

4 q(y`|y`−1)←
2π∫
0
q(y`, θ`|y`−1) dθ`

5 q(θ`|y`)← q(y`, θ`|y`−1)/q(y`|y`−1)

6 return 1
L

L∑̀
=1

log q(y`|y`−1)
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In Algorithm 4, we have that

q(y`|θ`) =
∫
X
q(y`, x`|θ`) dx` (3.66)

=
∫
X
px(x`)q(y`|θ`, x`) dx` (3.67)

where px is the input distribution. If X is discrete then

q(y`|θ`) =
∑
x`∈X

px(x`)q(y`|θ`, x`). (3.68)

3.5.5 AIR Calculation Using Particle Method
In general, the integrals in Algorithm 3 and Algorithm 4 cannot be calculated analytically.
Here, we study the particle approach presented in [27] to calculate the AIR numerically.
With this method, an arbitrary pdf, say pv(v), is represented by a set of particles {v(m)}M1
and a set of weights {ω(m)}Mm=1 such that

∑
ω(m) = 1 and for any function g( · )

Ev[g(v)] ≈
M∑
i=1

ω(m)g(v(m)). (3.69)

We use the notation pv(v) ≡ {v(m), ω(m)} to indicate the particles and the weights
corresponding to the pdf pv(v).
To evaluate the AIR based on (3.38), we first calculate the term 1

L log qy|x(y|x). Based
on (3.59), this term is equal to 1/L

∑L
` log λ`, where

λ` = q(y`|x`, y`−1) (3.70)

=
2π∫
0

q(θ`|x`, y`−1)q(y`|x`, θ`) dθ` (3.71)

= Eθ`
[
q(y`|x`, θ`)|x`, y`−1] (3.72)

≈
M∑
m=1

ω
(m)
` q(y`|x`, θ(m)

` ) (3.73)

where the particle set {θ(i)
` }M1 and the weight set {ω(m)

` }M1 are the particle representation
of p(θ`|x`, y`−1) which is equal to p(θ`|x`−1, y`−1). To proceed, in order to calculate λ`+1
in the next step, we need to find the particle representation of p(θ`+1|x`, y`). Assuming
that

q(θ`|x`, y`) ≡ {θ̃(m)
` , ω̃

(m)
` } (3.74)

by (3.56), we have that

q(θ`+1|x`, y`) ≡ {θ̃(m)
` + z

(m)
` , ω̃

(m)
` }. (3.75)
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To find θ̃(m)
` and ω̃(m)

` , for any arbitrary function g(θ`) we have that

Eθ`
[
g(θ`)|x`, y`

]
=

2π∫
0

g(θ`)q(θ`|x`, y`) dθ` (3.76)

=
2π∫
0

g(θ`)q(θ`|x`, y`−1)
q(y`|x`, y`−1, θ`)
q(y`|x`, y`−1) dθ` (3.77)

= Eθ`

[
g(θ`)

q(y`|x`, y`−1, θ`)
q(y`|x`, y`−1) |x

`, y`−1

]
(3.78)

≈
M∑
m=1

ω
(m)
` g(θ(m)

` )β
(m)
`

λ`
(3.79)

where λ` is defined in (3.70) and

β
(m)
` = q(y`|x`, y`−1, θ

(m)
` ) (3.80)

= q(y`|x`, θ(m)
` ). (3.81)

From (3.79) we obtain

θ̃
(m)
` = θ

(m)
` (3.82)

ω̃
(m)
` = ω

(m)
`

β
(m)
`

λ`
. (3.83)

Based on equations (3.73), (3.75), (3.82), and (3.83), the term 1
L log qy|x(y|x), can be eval-

uated recursively. We initialize the recursion by taking qθ1 to be the uniform distribution
over [0, 2π).

Algorithm 5: Calculating 1
L log qy|x(y|x) using particle approach

Data: Input vector: x of length L; output vector y; parameters: σ2
n, σ2

z , h0

1 Draw M samples uniformly from [0, 2π) to produce {θ(i)
1 }M1

2 ω
(m)
1 ← 1/M for m ∈ {1, . . . ,M}

3 for ` ∈ {1, 2, . . . , L} do
4 λ` ←

M∑
m=1

w
(m)
` q(y`|x`, θ(m)

` )

5 ω
(m)
`+1 ← ω

(m)
` q(y`|x`, θ(m)

` )/λ` for m ∈ {1, . . . ,M}
6

7 θ
(m)
`+1 ← θ

(m)
` + z

(m)
` for m ∈ {1, . . . ,M}

8 return 1
L

L∑̀
=1

log λ`
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The calculation of the second term on the RHS of (3.38), 1
L log q(y), can be performed

with the same method. We consider two cases. If X is a finite set with small cardinality,
the following algorithm describes the steps to calculate 1

L log q(y).

Algorithm 6: Calculating 1
L log q(y|x) using particle approach

Data: Input distribution: px(x); output vector y of length L; parameters: σ2
n, σ2

z ,
h0

1 Draw M sample uniformly from [0, 2π) to produce {θ(m)
1 }M1

2 ω
(m)
1 ← 1/M for i ∈ {1, . . . ,M}

3 for ` ∈ {1, 2, . . . , L} do
4 γ` =

∑
x∈X

p(x)q(y`|x, θ(m)
` )

5 λ` ←
M∑
m=1

w
(m)
` γ`

6 ω
(m)
`+1 ← ω

(m)
` γ`/λ` for m ∈ {1, . . . ,M}

7 θ
(m)
`+1 ← θ

(m)
` + z

(m)
` for m ∈ {1, . . . ,M}

8 return 1
L

L∑̀
=1

log λ`

If the set X is not finite or is very large, one can modify Algorithm 6 to represent p(x)
with particles. The algorithm is presented as follows.
Algorithm 7: Calculating 1

L log q(y|x) using particle approach
Data: Input distribution: px(x); output vector y; parameters: σ2

n, σ2
z , h0

1 Draw M sample uniformly from [0, 2π) to produce {θ(m)
1 }M1 for i ∈ {1, . . . ,M}

2 ω
(m)
1 ← 1/M

3 for ` ∈ {1, 2, . . . , L} do
4 Draw M samples from px(x) to produce {x(m)

` }M1
5 λ` ←

M∑
i=1

w
(m)
` q(y`|x(m)

` , θ
(m)
` )

6 ω
(m)
`+1 ← ω

(m)
` q(y`|x(m)

` , θ
(m)
` )/λ` for m ∈ {1, . . . ,M}

7 θ
(m)
`+1 ← θ

(m)
` + z

(m)
` for m ∈ {1, . . . ,M}

8 return 1
L

L∑̀
=1

log λ`

Finally, we note that in order to stabilize the numerical algorithms based on the particle
approach, one should “resample” the particles after a few iterations. This procedure is
explained in detail in [27].
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CHAPTER 4

Optical Channel Models

In this chapter, we investigate the input–output relation of a discrete-time channel ob-
tained by applying linear modulation and MFS demodulation to a linear and a nonlinear
channel. Also, we derive the channel models considered in the appended papers. Finally,
we review some known results on the capacity of optical channel models.

4.1 Modulation and Demodulation for Linear and
Nonlinear Channels

In this section, we study two discrete-time channels based on applying a linear modulation
and a MFS demodulation on i) the AWGN channel and ii) a nonlinear optical channel.

4.1.1 Matched Filtering and Sampling for a Linear Channel
Consider the complex-valued linear AWGN channel, where the input–output relation is
described by

y(t) = x(t) + n(t). (4.1)
Here, n(t) is a zero-mean circularly symmetric complex Gaussian noise with PSD N0.
With linear modulation, we have

x(t) =
∑
`

x`p(t− `T ) (4.2)

where x` are complex numbers and represent the information symbols generated by the
source. The symbol period is given by T . Moreover, p(t) is a real-valued function of

41



Chapter 4 Optical Channel Models

time t and represents the pulse shape which is assumed to satisfy the orthonormality
condition ∫ ∞

−∞
p(t)p(t− lT ) dt =

{
1 l = 0
0 l 6= 0

(4.3)

for all integers l. The transmitted power can be computed as

lim
T ′→∞

1
2T ′

∫ T ′

−T ′
|x(t)|2 dt = 1

T
lim
N→∞

1
2N

N∑
`=−N

|x`|2. (4.4)

To detect the transmitted symbols, the receiver performs demodulation to obtain a com-
plex number per each time interval T . It is well-known that MFS is the optimal demodu-
lation method for the linear AWGN channel. The output of this demodulator is obtained
by calculating the inner product between the received signal and the time-shifted pulse
shape, i.e.,

y` =
∫ ∞
−∞

y(t)p(t− `T ) dt (4.5)

for all integers `. The output y` can also be obtained by passing the signal through a filter
with impulse response p(−t) and sampling at time instances t = `T . After normalizing
by 1/

√
T , the resulting discrete-time channel is

y` = x` + n` (4.6)

where n` ∼ iid CN (0, N0/T ).

4.1.2 Matched Filtering and Sampling for a Nonlinear Channel
For a linear channel, MFS provides a sufficient statistics for the detection process [28,
Thm. 26.4.1], i.e., given the set {y`}, the received signal y(t) becomes independent of
the transmitted signal. However, this is not the case for nonlinear channels such as a
fiber. Here, we study the impact of the fiber nonlinearity on the performance of MFS.
We assume that the pulse shape p(t) is zero outside the interval [0, T ) and only consider
the effects of nonlinearity on the signal. In this case, the output of the demodulator for
the first symbol is (see (2.8))

y0 = x0

∫ T

0
p2(t)ejγZ|x0|2p2(t) dt+ n. (4.7)

where n is a complex Gaussian noise and Z is the fiber length. The value of y0 depends
on the shape of p(t). If p(t) is a rectangular pulse shape, i.e., p(t) = 1, 0 ≤ t ≤ T , we
obtain from (4.7) that y0 = x0 exp(jγZ|x0|2) + n. Therefore, the effects of nonlinearity
appears as a phase shift in the discrete channel. In general, if p(t) is not rectangular,
the nonlinearity effects both the phase and the amplitude of the received signal. At high
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Figure 4.1: Scatter plots of the output of the MFS demodulator in the presence of Kerr non-
linearity described in (4.7).

powers, where |x0|2 � 1, the phase of the integrand in (4.7) changes quickly with time,
which scales down the result of the integral, i.e., |y0| < |x0|.
Fig. 4.1 is the scatter plot of the output of MFS demodulator described in (4.7). It

can be seen that at the input power of −10 dBm, the effects of nonlinearity is minor.
The nonlinear distortion manifests itself as a phase noise in the discrete-time channel at
P = 0 dBm. By increasing the power to 10 dBm, it can be seen that the nonlinearity
affects both the amplitude and phase of the output. Therefore, MFS is not a suitable
demodulation method for the fiber channel at high powers.

4.2 Perturbation Theory
For many nonlinear systems, a linearization around a working point can provide an
approximation of the system’s output. With the fiber-optical channel, this approach
leads to perturbative channel models. The main assumption here is that the effects of
nonlinear distortion are weak. Specifically, the solution to the NLS equation, with initial
condition a(0, t), is approximated by

a(z, t) ≈ aL(z, t) + ∆a(z, t) (4.8)

where aL(z, t) is the solution to the NLS equation with γ = 0 and ∆a(z, t) is a nonlinear
perturbation. This approach of approximating the solution is commonly referred to as
the regular perturbation (RP) method.

There are three main approaches for calculating ∆a(z, t). The first one is to insert
aL(z, t)+∆a(z, t) into the NLS equation and to neglect the nonlinear terms that include
∆a(z, t) [29–31]. The second is to write the solution as a power series of the nonlinear
parameter γ, i.e.,

a(z, t) =
∞∑
i=0

γiai(z, t) (4.9)

and then inserting (4.9) into the NLS equation to find out the signals ai(z, t) [32, 33].
by equating coefficients of γ0 one obtains a0(z, t) = aL(z, t). The third method is to
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use Volterra series, which approximate the NLS channel by a transfer function in a
multi-dimensional frequency domain [34,35]. All these methods result in roughly similar
channel models. In [33] it has been shown that the order n solution of the second method
coincides with the order 2n+ 1 result of Volterra series.
Now, we consider the channel model derived in [32, Sec. 3], where the second method

is used to approximate the NLS equation. Let bi(z, t) = ai(z, t) exp(αz/2) for all z.
The first-order perturbative term, which is a cubic function of the optical field, can be
calculated as [32, Eq. (12)]

b1(z, t) = j

∫ z

0
(|b0(z, t)|2b0(z, t)) ∗ h(z − ζ, t)e−αζ dζ (4.10)

where h( · , · ) is defined in (2.6). Here, we consider the memoryless case when β2 = 0,
which is the case treated in Paper A. If the channel memory is neglected, the linear
solution, b0(z, t), can be obtained by setting β2 = γ = 0 in (2.2) as b0(z, t) = a(0, t).
The first perturbative term b1 in the memoryless case can be calculated by substituting
h(z, t) = δ(t) into (4.10) to obtain

b1(z, t) = j|a(0, t)|2a(0, t)
∫ z

0
e−αζ dζ (4.11)

= jZeff |a(0, t)|2a(0, t) (4.12)

where Zeff is defined in (2.20). Therefore, the first-order perturbation theory approxi-
mates the solution of the memoryless NLS equation as

a(z, t) ≈
(
a(0, t) + jγZeff |a(0, t)|2a(0, t)

)
e−αz/2. (4.13)

Another approach to obtain perturbative channel models is to use the logarithmic
perturbation (LP) method to obtain a faster convergence [32, 36]. This method can be
viewed as applying the RP technique to the logarithm of the field. The normalized
solution b(z, t) = eαz/2a(z, t) is written as

b = b0 exp
(
jγ

∞∑
i=0

γiblp
i

)
(4.14)

where b0 = aL exp(αz/2) and blp
i can be found by substituting (4.14) into the NLS

equation. Doing so, one can show that [36, Eq. (10b)]

blp
0 = 1

b0

∫ z

0

(
|b0|2b0

)
∗ h(z − ζ, t)e−αζ dz. (4.15)

For the memoryless case, h(z, t) = δ(t), we obtain

b0(z, t) = a(0, t) (4.16)
blp

0 (z, t) = Zeff |a(0, t)|2. (4.17)
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Therefore, the first-order LP results in the approximate solution

a(z, t) ≈ a(0, t)e−αz/2ejγZeff |a(0,t)|2 . (4.18)

Observe that (4.13) and (4.18) are equal up to a first-order linearizion. A combination of
regular and logarithmic approach is used in [37] to obtain a more accurate approximation.

4.3 A Memoryless Optical Channel
In this section we neglect the effects of dispersion to obtain a memoryless channel model.
If the dispersion is set to zero, i.e., β2 = 0 in (2.2), we get

∂a
∂z
− jγ|a|2a + α

2 a = 0. (4.19)

This equation can be solved analytically to obtain [9, Sec. 4.1.1]

a(z, t) = a(0, t)e−αz/2ejγZeff |a(0,t)|2 (4.20)

where Zeff is defined in (2.20).
To obtain a channel model for memoryless lumped amplified systems, we can use (4.20)

to describe the signal propagation over a single span, before amplification. At the end
of each span, an amplifier multiplies the signal by exp(αZ/2) and adds a Gaussian noise
n(t), as described in Section 2.2.1. We denote the signal at the end of the kth span and
after amplification by ak = a(kZsp, t) for k = 0, . . . ,K. The output of the memoryless
channel model, aK , can be obtained by iterating the following step for k = 0, . . . ,K − 1

ak+1 = akejγZeff |ak|2 + nk (4.21)

where nk(t) is the noise added by the kth amplifier.
A similar channel model can be developed for a distributed amplification system by

letting the number of spans N go to infinity for a fixed system length, Z. The channel
output, aN can be obtained by iterating the following equation for n = 0, . . . , N

an+1 = anejγZ/N |an|
2

+ nn (4.22)

where nn describes the amplifier ASE noise discussed in (2.22). This model accurately
describes the nondispersive NLS channel when N →∞. A discrete-time version of (4.22)
is studied in Paper A.

4.4 Channel Models in Paper A
As was illustrated in Section 4.1.1, the effects of nonlinearity prevents the development
of a tractable discrete-time model attained by linear filtering and sampling at the re-
ceiver. To obtain discrete-time models from nonlinear continuous channels, in Paper A,
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× +

ejη̃| · |2 nk
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iT

Figure 4.2: Discrete-time memoryless optical channel model with K spans of lumped amplifi-
cation.

we assume that samples are taken at symbol rate at the receiver. It is assumed that
the noise is band-limited because of the use of inline optical filters. Using these as-
sumptions, the input–output relation of the discrete-time channels resembles that of the
continuous-time ones. This method of developing discrete-time optical channels has been
used extensively throughout the literature (see [38–40] for example). The importance of
designing demodulation methods that are compatible with the nonlinear nature of the
optical fiber is highlighted in Paper B.
In Paper A, three discrete-time optical channels were considered, which have been

developed using different methods. All these models represent the same fiber-optical
channel under different assumptions. Although the simplifying assumptions used in these
methods are only valid in the low-power regime, it is not uncommon to use these models
to draw conclusions at high powers. We analyze the capacity of these models for the
special case of zero dispersion to study the effects of the simplifying assumptions on the
capacity. The results indicate that although these models represent the same physical
channel, their capacities are drastically different in the high-power regime. Specifically,
their capacities grow according to different pre-logs. Here, the capacity pre-log is defined
as limP→∞ C/ logP , where P is the average input power and C is the capacity of the
channel.
All the three models in Paper A describe the same physical optical system and share

the same set of parameters. A distributed-amplified optical system with length Z is
considered. The loss is assumed to be completely compensated for by the amplifiers.
The discrete-time model is obtained from the continuous-time channel using the sampling
receiver. The three considered channels can be found in the following list.

1. Regular perturbative channel (RPC) is a discrete-time distributed-amplified sys-
tem with length Z, which is based on the RP method. The signal–noise interac-
tion is neglected and all the noise is added at the receiver. Therefore, the channel
model can be obtained from (4.13) by letting α→ 0 and Zeff = Z as

y = x + jη|x|2x + n (4.23)

where the nonlinearity is quantified by η = Zγ. The amplification noise is
denoted by n, which is complex circularly symmetric Gaussian with zero mean
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and variance PN defined in (2.15).
2. Logarithmic perturbative channel (LPC) can be obtained from the LP channel in

(4.18). It reads
y = x exp(jη|x|2) + n (4.24)

where η and n are the same as those used in RPC.
3. Memoryless NLS Channel (MNC) is a discrete-time model of the continuous-

time channel presented in (4.22). It can be described as a concatenation of K
segments. Denoting the input of the MNC by x0, its output xK can be obtained
by iterating the following equation for k = 0, . . . ,K − 1

xk+1 = xk exp(jη̃|xk|2) + nk. (4.25)

Here, η̃ = η/K and nk are independent complex circularly symmetric Gaussian
noise with zero mean and variance PN/K. Fig. 4.2 illustrates the input–output
relation in this model, where x0,i and xK,i denote the ith input and output sym-
bols, respectively. This channel describes the signal propagation in the mem-
oryless NLS channel (MNC) and has been studied extensively in the literature
(see [38,39,41] for some examples).

4.5 Channel Model in Paper B
In Paper B, we consider a simplified model of a two-user WDM network, which has been
introduced in Section 2.5. If the dispersion and group velocity mismatch in (2.27)–(2.28)
are neglected (d = β21 = β22 = 0), these equations have the analytical solution

a1(Z, t) = a1(0, t) exp(−α2 ) exp
(
jφnl

1
)

(4.26)

a2(Z, t) = a2(0, t) exp(−α2 ) exp
(
jφnl

2
)

(4.27)

where

φnl
1 = γ1Zeff

(
|a1(0, t)|2 + 2|a2(0, t)|2

)
(4.28)

φnl
2 = γ2Zeff(|a2(0, t)|2︸ ︷︷ ︸

SPM

+ 2|a1(0, t)|2︸ ︷︷ ︸
XPM

) (4.29)

where Zeff is defined in (2.20). In Paper B, we consider a lumped amplified system with
K spans, where a simplified model is obtained from (4.26) and (4.27) by multiplying the
phase shifts, φnl

1 and φnl
2 , by K and adding all the amplification noise at the receiver.

A discrete-time network based on this model is studied in [42–44]. We show that
by using nonrectangular pulse shaping and proper demodulation technique, the XPM
distortion can be effectively eliminated. However, when MFS is used as a demodulation
scheme, because of SPM and XPM distortions, the error probability increases with power
in the high-power regime.
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Figure 4.3: A schematic of a noncoherent optical receiver.

4.6 Noncoherent Optical Channel
Noncoherent transmission systems are often used in short-haul optical systems, wireless
optical communication, and data center networks. These systems are attractive since
they reduce the complexity and the cost of data transmission. Since the propagation
distance in noncoherent systems is short, the nonlinear distortion caused by the fiber
is negligible. The effects of dispersion can also be neglected if the fiber length is much
smaller than the dispersion length. Otherwise the dispersion is compensated for either
by DCFs or by predistorting the signal at the transmitter.
Fig. 4.3 depicts a noncoherent receiver with optical and electrical filters. The received

signal is corrupted by the white circularly-symmetric Gaussian noise no(t), whose PSD
is No. The source of this noise in the case of short-haul fiber links is either optical
amplification or the cross-talk from neighboring channels; in the case of wireless optics
it is the ambient light [45]. After filtering the signal in the optical domain, z(t) =
x∗ho(t)+no∗ho(t) is obtained. The output of the photodiod is then w(t) = R|z(t)|2.Here,
R = ζq/(hν) ≈ 1.25ζ (A/W ) is the photodetector responsivity [10, Eq. (4.1.3)], where
ζ ≤ 1 is quantum efficiency and q is the electron charge. Then, the thermal noise nT (t) is
added to the signal, which is a real white Gaussian noise with PSDNT = 2kbT/RL, where
kb = 1.38 · 10−23 (J/K) is the Boltzman’s constant, T is the temperature in Kelvin, and
RL is the receiver resistance. The origin of the thermal noise is the random movement of
electrons, which is present in any conductor. By adding the thermal noise to w(t) and
passing it through the electrical filter, we obtain

y(t) =
[
R|x ∗ ho(t) + no ∗ ho(t)|2

]
∗ he(t) + nT ∗ he(t). (4.30)

After electrical filtering yk is obtained by sampling at the symbol rate.

4.6.1 Channel Model in Paper D
To go from the continuous-time channel (4.30) to a discrete-time one, we consider linear
modulation

x(t) =
∑
`

x`p(t− `T ). (4.31)
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Here, x` is the kth symbol, T is the symbol time, and p(t) is the pulse shape that is
band-limited to W Hz. Also, we assume that p(t) satisfies the Nyquist criterion, i.e.,

p(`T ) =
{
p(0), ` = 0
0, ` 6= 0.

(4.32)

For a general case of ho(t) and he(t), the resulting discrete-time channel between yk and
xk has memory. In Paper D we consider a special choice of the two filters, which removes
the channel memory, namely

ho(t) = W sinc(Wt) (4.33)
he(t) = 2W sinc(2Wt) (4.34)

where sinc(t) = sin(πt)/(πt). In other words, we apply brick-wall filters with bandwidths
W and 2W . Since ho(t) is band-limited to W , w(t) = R|x ∗ ho(t) + no ∗ ho(t)|2 is band-
limited to 2W and passes through the electrical filter without distortion, i.e., w∗he(t) =
w(t). Therefore, the received signal is not distorted by optical or electrical filters. By
sampling the received signal at the symbol rate the following discrete-time channel model
is obtained

y = |x + no|2 + nT . (4.35)

Here, no ∼ CN (0, 2NoWR) and nT,k ∼ N (0, 4NTW ). In Paper D we study the capacity
of the channel model (4.35) under the power constraint E[|x|2] ≤ P .

4.7 Known Results on the Capacity of Fiber-Optical
Channel Models

In this section, we present a literature review on the capacity studies of coherent and
noncoherent optical transmission systems.

4.7.1 Results on coherent optical transmission
The fiber-optical system described by the NLS equation is a continuous-time channel with
memory. There are two main difficulties in studying the spectral efficiency of this channel.
The first is to obtain a discrete-time model. When linear modulation and demodulation
are applied, because of the nonlinear distortion, the output of the demodulator will be a
nonlinear function of all the input symbols, which is hard to formalize. Some efforts to
obtain an approximation of the discrete-time channel have been made, which have lead
to the perturbative models (see Section 4.2). The second is that because of nonlinearity,
the spectrum of the signal changes as it propagates through the fiber, which makes it
difficult to define the channel bandwidth and apply the sampling theorem.
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A number of lower bounds on the capacity of a variety of optical channel models
have been proposed, many of which are based on mismatched decoding [46] (see for
example [47–52]). On the other hand, only one upper bound is known as yet [5], which
indicates that the capacity, in bits per channel use, of a discrete-time NLS channel cannot
exceed that of the AWGN one. Here, “channel use” is referred to the elements of the
sample vector described in Section 4.7.1; this indicates that the upper bound gets looser
as the sampling time ∆t becomes smaller. A recent review on the capacity results is
available in [6].
There are different optical communication systems studied in the literature. An optical

system can be lumped- or distributed-amplified and single- or dual-polarized. Also,
WDM systems or a single channel can be considered. Furthermore, different models can
be obtained using various simplifying assumptions. All these models may be studied
with or without memory (dispersion). Here, we categorize some capacity results based
on different types of channel models. We consider the three categories mentioned in [7],
namely, perturbative models, Gaussian-noise models, and the memoryless NLS model.
In addition, we also review some capacity results based of the SSF method and AIR
computation based on experimental data.

Perturbative models As discussed in Section 4.2, in this class of optical channels, the
nonlinear distortion is modeled either by an additive perturbative term or by a signal-
dependent phase distortion. The former is referred to as RP and the latter as LP. A
channel model based on first-order RP theory was developed in [30] and lower bounds
on its capacity were derived analytically. In [50] an LP channel model was derived and
analytical lower bounds on the capacity of this channel were obtained by calculating AIR
for a mismatched receiver. A novel multivariate RP channel model is derived in [53], in
which the effects of signal–signal interaction as well as signal–noise interaction are taken
into account. Using LP channel models, AIRs were evaluated in [49, 54–56] to illustrate
the effects of XPM mitigation techniques on the capacity lower bounds. In [35] the
Volterra series is used to derive a WDM channel model. It is shown that if joint processing
is possible, the effects of nonlinear distortion on the capacity region is minimal. Authors
in [57] study the capacity of a WDM system, where the effects of FWM is modeled by
a RP term. It is shown that different assumptions on the behaviour of the interfering
channels have a profound impact on the capacity.

Gaussian-noise models In this class of optical channel models, the nonlinear distortion
is treated as an additive Gaussian noise, whose variance is determined based on signal
power and channel parameters (see for example [58–60]). In [61,62], the impact of FWM
distortion in WDM systems was modeled as a Gaussian noise. The mismatched-decoding
capacity lower bound based on this model has a maximum and then decreases with power.
By considering the cross-phase distortions as an additive noise, in [48] the sum capacity
of WDM networks was lower-bounded by the capacity of an equivalent AWGN channel
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with the same covariance matrix. This lower bound goes to zero as the input power
grows large. In [63], the capacity of the Gaussian-noise model presented in [58, 59, 64]
was studied and the maximum value of the rates achievable based on these models was
calculated. In [65] it was shown that the capacity of a finite-memory Gaussian-noise
channel is nondecreasing.

Memoryless NLS model Unlike the general case of the NLS equation, the input–output
relation of a MNC can be derived in closed form [40, 41, 66]. Using this closed-form
channel law, lower bounds on capacity have been derived to prove that the capacity
increases to infinity with power [40, 66]. In [67] a lower bound on the capacity of this
channel has been derived via machine learning. An upper bound on the capacity was
established in [68], which together with lower bounds allow characterizing the capacity.
Receiver and constellation design for this channel is studied in literature extensively (see
for example [69–72]). All the aforementioned works on the capacity of the MNC assume
sampling receiver, which has infinite bandwidth. By calculating the autocorrelation
function of the channel output, the capacity with band-limited receivers was upper-
bounded in [73].

Split-step Fourier model The SSF method has been used in the literature with two
different approaches to obtain bounds on the capacity. The first is to use the SSF
method to obtain a channel model, whose input and output are complex vectors [5, 74].
In [5] it was proven that the capacity of the SSF channel in bits per sample is upper-
bounded by log(1 + SNR), where SNR is the signal-to-noise ratio. If one sample is taken
from each symbol, this upper bound coincides with the capacity of an equivalent linear
AWGN channel. However, at high powers, where more than one sample per symbol
is required to assure the accuracy of the SSF method, the upper bound diverges from
the capacity of the linear channel. The second is to conduct Monte Carlo simulations
to obtain channel statistics in order to evaluate lower bounds on the capacity (see for
example, [18, 51, 75, 76]). In [51] different mismatched lower bounds based on different
receivers have been evaluated using SSF simulation. An auxiliary backward channel is
used in [76] to obtain a lower bound that is evaluated by the SSF method.

AIR with experimental data An strong aspect of AIR is that it can be used to derive
lower bounds on the capacity of physical channels using experimental data. The main
benefit of this method is that all the imperfections of the physical channel are taken into
consideration. This method has been used in [77–80] with circularly-symmetric complex
Gaussian distribution as auxiliary channel.

4.7.2 Results on noncoherent optical transmission
In this section, we review some of the existing work on channel modeling and capacity
evaluation of the noncoherent optical system shown in Fig. 4.3. Three categories are
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considered based on the studied channel models, namely, with memory and no electrical
noise, memoryless without electrical noise, memoryless without optical noise. In paper D
we study the memoryless noncoherent channel in the presence of both electrical and
optical noises. To the best our knowledge this is the first work to consider the effect of
both noises on the capacity.

Channel models with memory and without electrical noise Many studies investigated
the derivation of the discrete-time input–output relation of the channel in Fig. 4.3 with
no electrical noise and arbitrary choices of optical and electrical filters to calculate the
BER (see for example [81–83]). In [84] a review of these methods is provided and their
complexity is compared. A compact formula for the channel model with memory can be
found in [84, Eq. (72)]. To the best of our knowledge, the capacity of this channel has
not been studied to date.

Memoryless models without thermal noise This channel model is (4.35) with nT = 0,
i.e.,

y = |x + no|2. (4.36)

In [85, Sec. 11.2] this channel is regarded as intensity-modulation direct-detection optical
channel. Some bounds on the capacity as well as capacity approximations are derived.
The capacity is studied in [86] and numerically evaluated in [87]. Most of the studies on
the capacity of this channel can be found in the context of phase-noise channel [88–91],
that is y = xejθ + n, where y and x are input and output of the channel and θ ∼
uniform[0, 2π) and n ∼ CN (0, PN ) are independent noise sources. Since with the phase-
noise channel the amplitude of y is sufficient statistics, it has the same capacity as
(4.36). Upper bounds on the capacity are derived using duality technique [21] in [88,91]
and [89] (memoryless case) as well as some lower bounds. In [91], it is proved that the
capacity-achieving distribution is discrete with infinite number of mass points. In [88] it
is shown that the half normal distribution asymptotically achieves the capacity and that
the capacity behaves as C = (1/2) log(SNR/2) at high powers. In [92] the authors show
that, if enough samples are taken from the received signal, the capacity of the direct-
detection channel is more than the capacity of the equivalent coherent channel minus one
bit.

Memoryless models without optical noise This channel model is (4.35) with no = 0,
i.e.,

y = |x|2 + nT . (4.37)

In [85, Sec. 11.2.3] this channel is regarded as thermal noise dominated intensity-modulation
direct-detection optical channel and its capacity is estimated. A continuous-time version
of (4.37) is presented in [45, Eq. (1)] for wireless infrared communication with strong
ambient or thermal noise. The capacity of this channel with multiple subcarriers has
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been upper-bounded in [93]. In [94] asymptotically tight bounds are derived on the
capacity of the continuous-time bandwidth-limited channel. Constellation design is per-
formed in [95]. The capacity of (4.37) is tightly bounded in low- and high-power regimes
in [96]. Bounds on the capacity of multiple-input multiple-output [97], multiple-input
single-output [98,99], and input-dependent noise [100] intensity-modulated optical chan-
nels have been derived, where (4.37) can be regarded as a special case of these studies.
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CHAPTER 5

Mitigation of Fiber Impairments

In this chapter we study different methods to compensate for the effects of CD and fiber
Kerr nonlinearity in Section 5.1 and Section 5.2, respectively.

5.1 Chromatic Dispersion Compensation
The CD distorts the signal severely after a short distance [10, Sec. 7.1]. It can be
compensated for either in the optical or in the electrical domain. With the latter method,
the effects of CD are compensated for at the receiver via digital signal processor by
applying a filter with frequency response exp(−2jπ2f2β2Z), where Z is the fiber length
(see [101] for a recent work on this topic). The optical-domain compensation of CD is
performed either through the whole spectrum via DCFs [10, Sec. 7.4] or locally within
the bandwidth of each channel via fiber Bragg grating [102]. We compare these three
methods in terms of AIR in Paper C.

5.2 Nonlinearity Mitigation Methods
The fiber nonlinearity is the central impairment of optical transmission systems and
limits the achievable data rate. Here, we list a number of fiber-nonlinearity mitigation
techniques that are implemented in the optical or digital domains, and also, we add our
contribution at the end.
The inverse scattering transform [103, 104] is among the first and yet most power-

ful nonlinearity mitigation techniques. It is based on the fact that some pulses, which
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are called solitons, can propagate through the lossless NLS channel without any distor-
tion. Specifically, during the propagation of a soliton, the nonlinear effects are effectively
canceled by the linear ones. Developing a communication system based on soliton trans-
mission has received a great deal of attention in the recent years [105–109] under the
name of nonlinear Fourier transform. The performance of this approach can be signifi-
cantly affected by random transmission effects such as polarization-mode dispersion and
the fiber loss in lumped amplified systems [110].
Digital backpropagation (DBP) is another important nonlinearity compensation ap-

proach which is based on the SSF method. If the effects of noise are ignored, the de-
terministic distortion of the NLS channel can be completely compensated for using the
SSF method with inverse parameters (−β2, −γ, −α) at the receiver, or transmitter, or
both [111–116]. DBP only compensates for the deterministic signal–signal distortions. To
mitigate the effects of signal–noise interaction, stochastic DBP can be implemented [117].
DBP suffers a high computational complexity. For the systems with inline DC, the com-
plexity of DBP can be reduced by implementing folded DBP [118,119].
Optical phase conjugation (OPC) was first suggested in [120] as a method for DC,

where the phase of the signal is inverted at the middle of the transmission line. Here,
we provide a brief justification of this method. The origin of chromatic dispersion is the
difference between the group velocities of the high and low frequency components of the
signal. After phase conjugation, the high-frequency components change their place with
the low-frequency ones and therefore they travel with the same average speed, which
mitigates the dispersion. In [121] it was pointed out that OPC can also be used as an
effective way of compensating nonlinearity. Since then, OPC has received attention as
an effective approach to reduce the effects of fiber nonlinearity [122–125].
Nonlinearity-tailored detection techniques use an approximation of the optical input–

output joint pdf in order to implement detectors based on the maximum a posteriori or
the maximum likelihood criteria [126–128]. In this approach the signal is sampled at the
receiver after a low-pass filter and the sample vector is fed to a Viterbi algorithm for
detection. In [129] it is shown that by setting the bandwidth of the receiver filter larger
than that of transmitted signal and oversampling the received signal, higher rates can be
achieved compared to matched filtering.
XPM compensation by equalization: The XPM distortion varies slowly with time since

it is the aggregation of the interference of many channels. Exploiting this property, the
XPM can be mitigated by deploying adaptive or turbo equalization [130–132].
Our contribution in Paper B is to introduce a novel SPM and XPM mitigation method

by using a novel demodulation technique. This method exploits the temporal correlation
of the aforementioned distortions during one time slot, which has not been considered
as yet. In one time slot, the distortion generated by SPM and XPM are correlated and
dependent on the pulse shape. This property can be exploited to differentiate these
distortions from noise and effectively mitigate their effect.
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CHAPTER 6

Summaries of the Appended Papers

In this chapter we provide a summary of the four appended papers.

6.1 Paper A
In Paper A we investigate the accuracy of two perturbative models by studying their
capacity for the zero-dispersion case. These models are the regular perturbative channel
(RPC) and the logarithmic perturbative channel (LPC). We also study the memoryless
NLS channel (MNC) that is described in Section 4.4. Comparing their capacity, three
different capacity pre-logs are established for these models: 3 for RPC, 1 for LPC, and
1/2 for MNC. This shows that the two perturbative channels, RPC and LPC, are grossly
inaccurate in the high-power regime. Therefore, care should be exercised in interpreting
the high-power results that have been established using these models.

Contributions: Kamran Keykhosravi (KK) derived the analytical bounds, numerically
evaluated them, analyzed the results, and wrote the paper. Erik Agrell (EA) formulated
the problem and contributed to the analysis. Giuseppe Durisi (GD) contributed to the
information-theoretic analyses. All authors reviewed and revised the paper.

Context: Section 4.4.

6.2 Paper B
In Paper B we show that the effects of XPM can be effectively compensated for by
exploiting the time coherence of the XPM distortion during one symbol period. This
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method of XPM mitigation is introduced for a two-user simplified memoryless network.
A new demodulation scheme named maximum matching is introduced. Also, the optimal
receiver, based on maximum a posteriori (MAP) detection is developed. The performance
of these two receivers was compared with the MFS method, using the SER as a metric.
Unlike with MFS, the SER with maximum matching and MAP receiver goes to zero at
high powers.
Contributions: KK formulated the problem, derived the analytical results, conducted

the simulations, analyzed the results, and wrote the paper. All authors reviewed and
revised the paper.
Context: Section 4.5.

6.3 Paper C
In Paper C we conduct a comparison between three WDM links: CDM, NDM, and DM.
All inband signal–signal distortions are compensated for via DBP and therefore, XPM is
the dominant impairment. The performance is assessed based on AIR with two different
auxiliary channels: AWGN and AR phase-noise channel (see (3.55)). We show that if the
effects of XPM are compensated for (with AR auxiliary channel), CDM links outperform
the NDM ones, however, if not (with AWGN auxiliary channel) NDM prevails. The DM
link has the worst performance in both cases. These results are explained by resorting
to the frequency-resolved LP model [50] and deriving the autocorrelation function of the
XPM phase noise.
Contributions: KK derived the analytical results, conducted the simulations, analyzed

the results, and wrote the paper. MS formulated the problem and contributed in con-
ducting the simulations and analyzing the results. All authors reviewed and revised the
paper.
Context: Sections 3.5 and 4.5.

6.4 Paper D
In Paper D we investigate the capacity of the noncoherent channel (4.35). We derive
an upper bound using the duality technique (see Section 3.4.4) and we establish a lower
bound. A capacity estimation is also made via Blahut–Arimoto algorithm. Our upper
and lower bounds improve on the results of [91] for the special case of nT = 0, and
[96] for the special case of no = 0. Our bounds also characterize the capacity of the
general case with both noises for the first time. Our results suggest that optical pre-
amplification is beneficial at low received signal powers and detrimental at high powers.
The boundary between these two regions is determined for a wide range of channel
parameters. Furthermore, it is illustrated that in some ranges of channel parameters,
applying optical amplification with a finite gain is optimal.
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6.4 Paper D

Contributions: KK derived the capacity bounds and numerically evaluated them,
analyzed the results, and wrote the paper. EA proposed the research problem. MS
contributed in numerical evaluation of the bounds. MK provided expertise in physical
relevance of the channel model. All authors reviewed and revised the paper.

Context: Section 4.6.1.
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