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Kurzfassung

Die vorliegende Dissertation entwickelt und analysiert fortgeschrittene robuste Meth-

oden für die Signalverarbeitung. Behandelte Probleme sind aus den Bereichen der

Sensorgruppensignalverarbeitung, der robusten Modellordnungsschätzung, sowie der

Robustheit für abhängige Daten. Die entwickelten Methoden wurden auf praktisch rel-

evante Problemstellungen aus verschiedenen Gebieten der biomedizinischen Signalver-

arbeitung und der Sensorgruppensignalverarbeitung angewandt.

Insbesondere wurde für univariate unabhängige Daten ein robustes Modellord-

nungsschätzungskriterium entwickelt und für die Modellierung von Hornhauto-

berflächen Daten verwendet. Das vorgeschlagene Kriterium erweitert bestehende ro-

buste Kriterien. Für echte gemessene Daten wählt das entwickelte Kriterium auch

dann die Modellordnung in Übereinstimmung mit klinischen Erwartungen, wenn die

Messbedingungen der Videokeratoskopie, welches die heute gängige Messmethode ist,

schlecht sind.

Für die Sensorgruppensignalverarbeitung haben wir ein robustes Modellord-

nungsschätzungskriterium entwickelt und auf das Problem der Quellenschätzung ange-

wandt. Das entwickelte Kriterium verwendet einen robusten und gleichzeitig effizienten

Schätzer der Kovarianzmatrix der r-mode Auffaltungen des komplexwertigen Daten-

tensors. Sowohl für Gaußverteiltes Sensorrauschen als auch für impulsives Rauschen,

verursacht z. B. durch kurzzeitige Sensorfehler, ist die Leistung der vorgeschlagenen

Tensor-basierten Modellordnungsschätzungkriterien besser als die der korrespondieren-

den Matrix-basierten Verfahren.

Im Kontext der robusten Verfahren der Sensorgruppensignalverarbeitung haben wir als

nächstes das Problem der Schätzung der komplexwertigen Amplituden von Sinussig-

nalen in einer komplett unbekannten, impulsiven, räumlich und zeitlich unabhängig

verteilten Rauschumgebung untersucht. Eine Auswahl aus nichtrobusten und robusten

Schätzern wurde mit einem von uns vorgeschlagenen robusten semi-parametrischen

Schätzer verglichen.

Eine dritte Forschungsfrage, die uns im Bereich der Signalverarbeitung für An-

tennengruppen beschäftigte, ist die Robustheitsanalyse von Raum-Zeit-Frequenz-

Verteilungsschätzern. Zu diesem Zweck haben wir eine Robustheitsanalyse mittels der

Einflussfunktion (influence function) durchgeführt. Die Einflussfunktion ist ein Ro-

bustheitsmaß, das den Einfluss einer infinitesimalen Kontamination auf den Bias eines

Schätzers, normiert auf die Fraktion der Kontamination, beschreibt. Zusätzlich zur
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analytischen asymptotischen Analyse haben wir eine praktisch implementierbare Ein-

flussfunktion für begrenzte Datenlängen definiert. Simulationsergebnisse für endliche

Datenlängen bestätigen die analytischen Ergebnisse und zeigen die Unempfindlichkeit

kürzlich vorgeschlagener robuster Raum-Zeit-Frequenz-Verteilungsschätzer gegenüber

geringen Verletzungen getroffener statistischer Annahmen.

Ein Schwerpunkt dieser Dissertation es, robuste Schätzer für abhängige Daten zu en-

twickeln und zu analysieren. Zuerst behandeln wir einige praktische Beispiele aus

dem biomedizinischen Bereich, in denen Messartefakte mittels kombinierter robuster

Schätzung und Datentransformationen erkannt und deren Effekte unterdrückt werden.

Insbesondere schlagen wir einen Algorithmus zur Artefaktbereinigung von elektrokar-

diographischen (EKG) Messungen vor. Dies ist besonders wichtig für die Überwachung

von Patienten mit mobilen EKG-Messgeräten, die aufgrund der Bewegung der Patien-

ten von Artefakten besonders betroffen sind. Ein zweites biomedizinisches Problem, das

wir in dieser Dissertation untersucht haben, ist die Vorhersage von Hirndrucksignalen

für Patienten mit Schädel-Hirn-Trauma. Dies ermöglicht eine aktive und rechtzeit-

ige Intervention zu einer effektiveren Kontrolle des Hirndrucks. Wir stellen hierzu eine

Methode vor, die Artefaktbereinigung und eine Transformation in die Empirical-Mode-

Domäne kombiniert.

Motiviert durch die Vielzahl an praktischen Anwendungen fokussieren wir uns dann

auf die Herleitung und Analyse fortgeschrittener robuster Parameterschätzer und Mod-

ellordnungsschätzer für Autoregressive Moving-Average (ARMA) Modelle. Wir stellen

für einen neu vorgeschlagenen Parameterschätzer einen schnellen Algorithmus vor und

führen eine komplette statistische Robustheitsanalyse durch. Für diesen Schätzer,

den wir den Bounded-Influence-Propagation (BIP) τ -Schätzer nennen, geben wir die

statistischen Konvergenzbedingungen, sowie einen Beweis der quantitativen und qual-

itativen Robustheit. Die Robustheit wird gemessen durch die Einflussfunktion, die

Maximal-Bias-Kurve (maximum bias curve) und den Ausfallpunkt (breakdown point)

des Schätzers. Der schnelle Algorithmus des vorgeschlagenen Schätzers basiert auf einer

Initialschätzung eines approximativen langen autoregressiven Modells, von dem die

ARMA Parameter abgeleitet werden. Auf diese Weise kann ein weiteres Verwenden der

ausreißerkontaminierten Daten vermieden werden. Der BIP τ -Schätzer ist sehr geeignet

und von der Rechenzeit her attraktiv für die ARMA Modellordnungsschätzung, da die

Rechenzeit für alle ARMA Kandidatenmodelle ungefähr der Rechenzeit entspricht, die

das approximative autoregressive Modell benötigt. Im Bereich der robusten ARMA

Modellordnungsschätzung schlagen wir verschiedene Kriterien basierend auf dem BIP

τ -Schätzer vor und vergleichen diese Kriterien mit existierenden Ansätzen.
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Abstract

In this thesis, advanced robust estimation methodologies for signal processing are de-

veloped and analyzed. The developed methodologies solve problems concerning multi-

sensor data, robust model selection as well as robustness for dependent data. The

work has been applied to solve practical signal processing problems in different areas

of biomedical and array signal processing.

In particular, for univariate independent data, a robust criterion is presented to select

the model order with an application to corneal-height data modeling. The proposed

criterion overcomes some limitations of existing robust criteria. For real-world data, it

selects the radial model order of the Zernike polynomial of the corneal topography map

in accordance with clinical expectations, even if the measurement conditions for the

videokeratoscopy, which is the state-of-the-art method to collect corneal-height data,

are poor.

For multi-sensor data, robust model order selection selection criteria are proposed and

applied to the problem of estimating the number of sources impinging onto a sensor

array. The developed criteria are based on a robust and efficient estimator of the

covariance of the r-mode unfoldings of a complex valued data tensor. Both in the case

of Gaussian noise and for a brief sensor failure, the proposed robust multi-dimensional

schemes outperform their matrix computation based counterparts.

In the context of robustness for multi-sensor data, we next investigate the problem

of estimating the complex-valued amplitude of sinusoidal signals in a completely un-

known heavy-tailed symmetric spatially and temporally independent and identically

distributed (i.i.d.) sensor noise environment. A selection of non-robust and robust

estimators are compared to a proposed semi-parametric robust estimator.

A third research focus in the area of multi-sensor data is that of analyzing the robust-

ness of spatial time-frequency distribution (STFD) estimators. We provide a robustness

analysis framework that is based on the influence function. The influence function is

a robustness measure that describes the bias impact of an infinitesimal contamination

at an arbitrary point on the estimator, standardized by the fraction of contamination.

In addition to the asymptotic analysis, we also give a definition of the finite sample

counterpart of the influence function. Simulation results for the finite sample influence

function confirm the analytical results and show the insensitivity to small departures

in the distributional assumptions for some recently proposed robust STFD estimators.
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A large part of this thesis concerns the topic of obtaining and analyzing robust estima-

tors in the dependent data setup. First, some practical issues concerning the detection,

and robust estimation in presence of patient motion induced artifacts in biomedical

measurements are addressed. In particular, we provide an artifact-cleaning algorithm

for data collected with an electrocardiogram (ECG). This is especially important for

the monitoring of patients with portable ECG recording devices, since these devices

suffer severely from patient motion induced artifacts. A second real-world problem

addressed in this doctoral project is that of forecasting the intracranial pressure (ICP)

levels for patients who suffered a traumatic brain injury. This enables active and early

interventions for more effective control of ICP levels. We propose a methodology which

uses combined artifact detection and robust estimation after a data transformation into

the empirical mode domain.

Motivated by plethora of practical applications, we then focus on deriving and analyz-

ing sophisticated robust estimation and model selection techniques for autoregressive

moving-average (ARMA) models. A fast algorithm as well as a detailed statistical and

robustness analysis of a novel robust and efficient estimator is given. For the proposed

estimator, which is termed the bounded influence propagation (BIP) τ -estimator, we

compute a complete statistical robustness analysis, which includes conditions for the

consistency, as well as a proof of qualitative and quantitative robustness. The robust-

ness is measured by means of the influence function, the maximum bias curve and the

breakdown point. The fast algorithm of the proposed estimator is based on first com-

puting a robust initial estimate of an autoregressive (AR) approximation from which

the ARMA model parameters are derived. In this way, the ARMA model parame-

ters are derived from the long AR approximation without further use of the outlier-

contaminated observations. The estimator is very suitable and attractive for ARMA

model selection purposes, since the computational cost of estimating all the candidate

ARMA models approximately reduces to that of computing one long AR model. In the

area of model selection for ARMA models, we propose and compare different robust

model order selection criteria that are based on the BIP τ -estimator.
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Chapter 1

Introduction to Robustness for Signal
Processing

1.1 Introduction and Motivation

Increasing awareness about what we today call ’robustness’ of an estimator has left its

mark in scientific endeavours over the last two centuries In an early contribution to the

ongoing scientific discussion, the French mathematician Adrien-Marie Legendre com-

mented on the necessity of rejecting outliers to provide stability to the least-squares

method [1]. At the end of the 19th century, the idea of modeling heavy-tailed distribu-

tions as mixtures of Gaussian densities has been proposed by the Canadian-American

astronomer and mathematician Simon Newcomb. The first formal theory of robustness

was proposed in 1964 by Peter J. Huber in response to an article by John W. Tukey [2].

A second theory of robustness was later developed by Frank Hampel in 1968, who intro-

duced important concepts, such as the influence function and the breakdown point [3].

In engineering, robust estimators and detectors have been of interest since the early

days of digital signal processing, for a review, the interested reader is referred to the

paper published by Salim Kassam and Vincent Poor in 1985 [4] and references therein.

There are also excellent text books that consider robust estimation for signal processing

[5, 6].

Measurement campaigns have reported the presence of impulsive noise in many of to-

day’s key signal processing applications, such as, e.g., radar, mobile communication

channels, biomedical measurements, see [7] for a recent overview. Impulsive (heavy-

tailed) noise can cause nominally optimal techniques, especially those derived using

the Gaussian probability model to be biased and even to break down. These situations

enforce the need for robust estimators, which are close-to optimal in nominal condi-

tions and remain highly reliable for real-life data, even if the assumptions are only

approximately valid. The increasing complexity of modern engineering problems poses

new demands to robust methods, some of which are addressed in this doctoral project.
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1.1.1 Aims of this Doctoral Project

The aim of this doctoral project is to analyze, introduce and improve robust estimation

methodologies to solve current and future signal processing problems. The major open

research questions which have been identified as highly relevant to the signal processing

community and are therefore addressed in this project concern

• Robustness when dealing with multi-sensor data

• Robust model selection

• Robustness for dependent data.

1.1.2 Publications

The following publications have been produced during this doctoral project.

Internationally Refereed Journal Articles

• M. Muma and A. M. Zoubir, “A new robust estimation and model order selection

method for ARMA processes”, to be submitted to IEEE Trans. Signal Process.,

March 2014.

• T. Schäck, M. Muma and A. M. Zoubir, “Robust causality analysis of non-

stationary multivariate time series”, to be submitted to IEEE Trans. Biomed.

Eng., March 2014.

• A. Kelava, M. Muma, M. Schmidt and A. M. Zoubir, “A new approach for

quantifying the coherence of multivariate non-stationary data with an application

to psychophysiological measures during emotion regulation”, under revision in

Psychometrica.

• W. Sharif, M. Muma and A. M. Zoubir, “Robustness analysis of spatial time-

frequency distributions based on the influence function”, IEEE Trans. Signal

Process., Vol 61, No 8, pp. 1958–1971, April 2013.

• A. M. Zoubir, V. Koivunen, Y. Chakhchoukh and M. Muma,“Robust estimation

in signal processing: a tutorial-style treatment of fundamental concepts”, IEEE

Signal Process. Magazine, Vol 29, No 4, pp. 61–80, July 2012.
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• M. Muma, D. R. Iskander and M. J. Collins, “The role of cardiopulmonary signals

in the dynamics of the eye’s wavefront aberrations”, IEEE Trans. Biomed. Eng.,

Vol 57, No 2, pp. 373–383, February 2010.

Internationally Refereed Conference Papers

• M. Muma, “Robust model order selection for ARMA models based on the

bounded innovation propagation τ -estimator”, Submitted to the Proc. of the

IEEE Workshop on Statistical Signal Processing (SSP) 2014, Gold Coast, Aus-

tralia, June 2014.

• S. Vlaski, M. Muma and A. M. Zoubir, “Robust bootstrap methods with an

application to geolocation in harsh LOS/NLOS environments ”, In the Proc. of

the IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP) 2014,

in Florence, Italy, May 2014, (accepted).

• J. Dagdagan, M. Muma and A. M. Zoubir, “Robust testing for stationarity in

the presence of outliers”, In the Proc. of the IEEE Int. Conf. Acoustics, Speech

and Signal Processing (ICASSP) 2014, in Florence, Italy, May 2014, (accepted).

• B. Han, M. Muma, M. Feng and A. M. Zoubir, “An online approach for ICP

forecasting based on signal decomposition and robust statistics”, In the Proc. of

the IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP) 2013,

in Vancouver, Canada, pp. 6239–6243, May 2013.

• F. Strasser, M. Muma and A. M. Zoubir, “Motion artifact removal in ECG sig-

nals using multi-resolution thresholding”, In the Proc. of the European Signal

Processing Conference (EUSIPCO) 2012 in Bucharest, Romania , pp. 899–903.

August 2012.

• M. Muma, Y. Cheng, F. Roemer, M. Haardt and A. M. Zoubir, “Robust source

number enumeration for R-dimensional arrays in case of brief sensor failures”, In

the Proc. of the IEEE Int. Conf. on Acoustics, Speech and Signal Processing

(ICASSP) 2012 in Kyoto, Japan, pp. 3709–3712. March 2012

• M. Muma and A. M. Zoubir, “Robust model selection for corneal-height data

based on τ -estimation”, In the Proc. of the IEEE Int. Conf. Acoustics, Speech

and Signal Processing (ICASSP) 2011 in Prague, Czech Republic, pp. 4096–

4099, May 2011.

• M. Muma, U. Hammes and A. M. Zoubir, “Robust semi-parametric amplitude

estimation of sinusoidal signals: the multi-sensor case”, In the Proc. of the
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3rd IEEE International Workshop on Computational Advances in Multi-Sensor

Adaptive Processing (CAMSAP) 2009, Aruba, Dutch Antilles, December 2009.

1.2 What is Robustness?

The term “robust” has been used with different and sometimes contradicting annota-

tions. The robustness we are concerned with in this doctoral project is that of analyz-

ing the impact on statistical methods caused by a discrepancy between the (statistical)

modeling assumptions and reality [2,3,7,8]. It provides methods which trade-off some

efficiency at the nominal model to minimize the effects of deviations.

1.2.1 Defining, Measuring and Ensuring Robustness

In the sequel, we highlight the aims of robust methods and then discuss how these

aims can be fulfilled. For this, we first briefly revisit the most important measures of

robustness that have been of great importance in this doctoral project.

1.2.1.1 Aims of Robust Methods

Clearly, depending on the application at hand, the aims of robust methods may vary

somewhat. However, throughout the literature of robust statistics, three major aims

regularly appear. Intuitively speaking, a robust method should fulfill:

Aim 1: Near Optimality

This aim states that a robust procedure should behave “reasonably good” (nearly

optimal) at the assumed model [2]. When taking a closer look at Aim 1, it becomes

clear that robust methods are approximate parametric methods. Robustness is relative

to a nominal model, which is assumed to be approximately valid. Approximate validity

can refer to (i) a majority of the data belonging to the nominal distribution in contrast

to some outlying (contaminating) observations that do not follow the pattern of the

majority or (ii) that the distribution of the data is within a specific class of neighboring

distributions, as measured by some distance measure. This is referred to a model

uncertainty. Clearly, near-optimality, in both cases is a necessary requirement, since

the robust method must be competitive for the assumed model.
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Aim 2: Qualitative Robustness

The second aim requires that the effect of an erroneous observation, even if it takes

an arbitrary value, should not have a large impact on the method [3]. It is therefore

related to the stability against small (infinitesimal) contamination. As will be seen in

later Sections, qualitative robustness also ensures that a small change in the data only

has a small effect on the estimates. Small changes can refer both to changing a small

fraction of the data arbitrarily (e.g., outliers) or performing a minor change to a large

fraction of the data (e.g., rounding). In analogy to the stability of a bridge, qualitative

robustness proves the stability of a method against infinitesimal perturbations.

Aim 3: Quantitative Robustness

The third aim is that somewhat larger deviations from the model should not cause a

catastrophe [2]. This means that, e.g., even if we increase the fraction of outlying data

up to some point, the method should still provide us with reasonable information. A

“catastrophe” for an estimator is, for example, when the bias of the estimate becomes

infinite. Again speaking in the analogy of the bridge, the estimator should be stable

enough not to break down in case of larger deviations.

1.2.1.2 Measures of Robustness

Analyzing the robustness of a method, and ensuring that it fulfills the above men-

tioned aims, requires tools (measures) derived from robust statistics. These are briefly

introduced and defined in this Section.

The Relative Efficiency (Eff)

The relative efficiency the increase in the (asymptotic) variance σ2 of the estimates at

the assumed model compared to the optimal method σ2
opt:

Eff =
σ2
opt

σ2
,

thus 0 ≤ Eff ≤ 1. Figure 1.1 plots the distributions of three estimators of location for

the standard Gaussian distribution N (0, 1). For this distribution, the sample mean

(average) is the optimal estimator. The variance of two robust estimators, i.e. the

sample median Eff = 0.64 and Huber’s M-estimator Eff = 0.95 [2] is larger.

The Influence Function (IF)

The influence function (IF) describes the bias impact of an infinitesimal contamination

at an arbitrary point on the estimator, standardized by the fraction of contamination.
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Figure 1.1: The distributions of three location estimators for the standard Gaussian distri-
bution N (0, 1). Compared to the optimal estimator, which is the sample mean (average), the
robust estimators have a larger variance, which corresponds to a relative efficiency Eff < 1.
For the sample median Eff = 0.64 while Huber’s M-estimator is tuned to be highly efficient
Eff = 0.95.

Boundedness and continuity of the influence function are required for the qualitative

robustness (Aim 2) of an estimator. Furthermore, the relative efficiency of an estimator,

i.e., the ratio of variances of the optimal method under perfect conditions and the

(robust) method under consideration, can be derived from the influence function [3,8].

When the limit exists, the influence function, which is basically the first derivative of

the functional version of an estimator θ̂ at a nominal distribution Fθ, is defined by

IF(z; θ̂, Fθ)= lim
ε→0

θ̂∞(Fε)− θ̂∞(Fθ)

ε
=

[
∂θ̂∞(Fε)

∂ε

]

ε=0

. (1.1)

Here, θ̂∞(Fθ) and θ̂∞(Fε) are the asymptotic values of the estimator when the data is

distributed following respectively Fθ and the contaminated distribution

Fε = (1− ε)Fθ + εδz,

with δz being the point-mass probability on z and ε the fraction of contamination.

Figure 1.2 depicts the influence functions of three estimators of location for the standard

Gaussian distribution N (0, 1). The influence function is plotted with respect to z, the

position of the infinitesimal contamination. In Chapters 3 and 4, we derive the influence

functions for some multi-channel and dependent data estimators.
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Figure 1.2: The influence functions of three location estimators for the standard Gaussian
distributionN (0, 1). While the influence function of the sample mean (average) is unbounded,
that of the sample median is bounded but not continuous at the origin. Only the influence
function of the robust M-estimator [2], see Section 2.1.2.3, is bounded and continuous, which
means that the estimator is qualitatively robust. For this estimator, the impact of infinitesi-
mal large-valued outliers on the estimate is maximally suppressed, since the influence function
re-descends to zero.

The Maximum Bias Curve (MBC)

The maximum bias curve (MBC) provides information on the bias introduced by a

specific amount of contamination. It plots the absolute value of the maximum possible

asymptotic bias

bθ̂(Fθ) = θ̂∞(Fθ)− θ
of an estimator θ̂ with respect to the fraction of contamination ε. This is particu-

larly useful, when comparing the robustness of two estimators, since the more robust

estimator minimizes the MBC.

Formally, the maximum bias curve is defined as

MBC(ε, θ) = max {|bθ̂(Fθ)| : F ∈ Fε,θ} . (1.2)

Here, Fε,θ = {(1− ε)Fθ + εFε} is an ε-neighborhood of distributions around the nom-

inal distribution Fθ with Fε being an arbitrary contaminating distribution. Figure 1.3

displays the maximum bias curves for the sample mean (average), the sample me-

dian and the α-trimmed mean at N (0, 1). In Chapter 4, we provide and discuss the

maximum bias curves for some existing and a newly proposed robust autoregressive

moving-average (ARMA) parameter estimator for dependent data.
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Figure 1.3: The maximum bias curves of three location estimators for the standard Gaussian
distribution N (0, 1), i.e., the sample mean (average), the sample median and the α-trimmed
mean, with α = 0.25. The maximum bias is infinite beyond the BP, therefore, the maximum
bias curve of a non-robust estimator, e.g., the sample mean is infinite at ε > 0.

The Breakdown Point (BP)

The breakdown point (BP) is perhaps the most intuitively comprehensible of the ro-

bustness measures. It is used to characterize the quantitative robustness (Aim 3) of

an estimator. Loosely speaking, the breakdown point indicates the maximal fraction

of outliers (highly deviating samples) in the observations, which an estimator can han-

dle without breaking down. The breakdown point ranges from 0 to 50 %, where a

higher BP value corresponds to larger quantitative robustness. As can be seen from

Figure 1.3, for the location estimation problem, the breakdown point coincides with

an infinite maximum bias.

Figure 1.4 illustrates the concept of the BP for the sample mean, the α-trimmed mean

and the sample median. It can be seen that the breakdown point of the sample mean

is zero, which means that a single outlier may throw the estimator completely off. The

breakdown point of the sample median, on the other hand, is 50 %. Beyond 50 %,

robust estimators are no longer applicable, since one cannot distinguish between the

nominal and contaminating distributions.

In Section 2.1, we review some regression estimators that are highly efficient, while at

the same time possess the maximal possible breakdown point. In Chapter 4, we discuss

the breakdown point for the dependent data case, which is not yet established in the

literature. We also propose a novel estimator for ARMA parameters and show that it
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has the maximum possible breakdown point of 50 %, while, at the same time, being

highly efficient.

Figure 1.4: The bias and breakdown point of three location (µ) estimators, i.e., the sample
mean (red), the α-trimmed mean (green) and the sample median (blue). “Clean” observations
are depicted as crosses and outliers as circles. The breakdown point of the sample median
is equal to 50 %, which means that its bias remains bounded even in situations when up to
half of the observations, in this case three, are replaced by arbitrarily large values.

1.3 Important Open Robustness Issues for Signal

Processing

Intuitively, robustness as defined above, is central to engineering applications, perhaps

even more so than optimality. In this doctoral project, we identified and addressed the

following open problems that are relevant to the signal processing community, today

and will remain relevant in the future.

1.3.1 Robust Model Selection Issues

The key questions to be answered in this research area are: “How can I find a suitable

statistical model to describe the majority of the data?” and “How can I prevent out-

liers or other contaminants from having overriding influence on the final conclusions?”

In this thesis, we address these questions by means of robust model selection crite-

ria. Applications arise in corneal topography estimation (Chapter 2), source number

enumeration (Chapter 3) and biomedical signal modeling (Chapter 4).
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1.3.2 Multi-Sensor Data Issues

The key questions to be answered in this research area are: “How can I robustly deter-

mine the number of sources impinging on an array, even when a random sensor briefly

fails?”, “How can I use a sensor array to robustly estimate the complex-valued ampli-

tudes of sinusoidal signals impinging on this array, even if the sensor noise distribution

is heavy-tailed and/or completely unknown?”, “How can I analyze the robustness of

spatial time-frequency distribution estimators?” and “Are recently proclaimed robust

methods truly robust?” Answers to these questions are sought for in Chapter 3 of this

thesis.

1.3.3 Dependent Data Issues

The key questions to be answered in this research area are: “How can I mitigate the

effects of artifacts in biomedical measurements?” and “How can I robustly determine

the parameters and the model orders of ARMA models in a way that is both compu-

tationally feasible and analytically justifiable?” Finding answers to such questions is

the concern of Chapter 4.

1.3.4 Organization of this Thesis

Following this introduction, the dissertation is organized as follows:

Chapter 2 briefly reviews robust parameter estimation and robust model order se-

lection for the linear regression model in case of independent data. A robust criterion

to select the model order is proposed and applied to corneal-height data modeling. In

particular, we derive an expression for the penalty term in robust information crite-

ria when using the τ -estimator which is simultaneously robust and efficient. This is

indispensable in the application of corneal topography estimation, where the fraction

of outliers varies over the topographical map. Both simulated and real-world data

examples gained from a videokeratoscope are given.

Chapter 3 deals with three challenges that demand robust multi-channel methods.

The first problem that we investigate is that of robust source enumeration for R-

dimensional data in presence of impulsive noise, as, e.g., caused by brief sensor failures.

For this, we derive criteria that are based on robust and efficient estimation of the co-

variance matrix using the r-mode unfolding operation of the data tensor. The second
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issue under investigation in this Chapter is the estimation of the complex-valued ampli-

tudes of sinusoidal signals using multiple sensors. Here, our focus is to derive so-called

robust semi-parametric estimators, which adapt to the underlying noise distribution by

non-parametric transformation kernel density estimation followed by maximum likeli-

hood estimation incorporating the estimated density. The third research focus in this

Chapter is the robustness analysis of spatial time-frequency distributions. These are

widely used, e.g., for direction-of-arrival and blind source separation in case of non-

stationary signals. In particular, we provide the asymptotic and finite sample influence

function expressions for a standard and a recently proposed robust estimators.

Chapter 4 is dedicated to robustness for dependent data. After briefly reviewing

some dependent data models, we show some practical applications of robust depen-

dent data methods to solve real-world problems. We briefly describe two artifact de-

tection and mitigation strategies that are based on data transformations. We apply

these to real-world electrocardiogram and intracranial pressure data. We also derive

and analyze sophisticated robust estimation and model selection techniques for autore-

gressive moving-average models. A fast algorithm, as well as a detailed statistical and

robustness analysis of a novel robust and efficient estimator, is given. For the proposed

estimator, which is termed the bounded influence propagation (BIP) τ -estimator, we

compute a complete statistical robustness analysis, which includes conditions for the

consistency, as well as a proof of qualitative and quantitative robustness. The estima-

tor is very suitable and attractive for ARMA model selection purposes and we propose

and compare different robust model order selection criteria that are based on the BIP

τ -estimator.

Chapter 5 concludes and summarizes the thesis. Furthermore, we give some future

directions and describe preliminary steps we have undertaken. One future direction

concerns robust bootstrap methods, which can be applied to confidence region estima-

tion in geolocation position estimation. A further future research direction will be the

integration of robustness concepts into the emerging and highly active research area of

distributed detection and estimation.
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Chapter 2

Robustness in Regression Models with
Independent Data

2.1 Introduction

Linear regression models are amongst the most powerful and popular tools to tackle

today’s engineering problems. Depending on the data at hand, there exist a number of

difficulties to deal with. In this Section, we discuss robust parameter estimation [2,7–10]

and robust model order selection problems [11–14] for data that contains outliers.

The term ’outliers’ refers to a minority of observations which strongly deviate from

the model which best fits the majority. The key research questions in robust model

selection are: “How can I find a suitable statistical model to describe the majority of

the data?” and “How can I prevent the outliers from having overriding influence on

the final conclusions?”.

2.1.1 Contributions in this Section

In the sequel, we present a robust criterion to select the model order in a linear uni-

variate regression setup and apply it to corneal-height data modeling. In particular,

we derive an expression for the penalty term in robust information criteria [11–13],

when using the τ -estimator [9, 10]. The τ -estimator is a simultaneously robust and

efficient estimator, which is indispensable in corneal topography estimation. To de-

rive the penalty term, we exploit the asymptotic equivalence of the τ -estimator to an

M-estimator. Based on the proposed criterion, we introduce an algorithm to fit an

appropriate set of Zernike polynomials to corneal-height data [15–17], even when mea-

surements are contaminated by outliers, e.g., due to breakups in the pre-corneal tear

film and reflections from the eyelashes.

The main contributions in this Section have been published in [14]. Some general

illustrations of robustness issues in regression problems have been published in [7],

more simulation results, some extensions and further real data examples can be found

in [18].
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2.1.2 Robustifying the Linear Regression Model

This Section contains a brief revisit of some key principles involved in robustly esti-

mating the parameters of linear regression models.

2.1.2.1 The Linear Regression Model

The linear regression model is defined as

Yn = XT

nθ + Vn, n = 1, . . . , N. (2.1)

Here, we assume that the predictors Xn = (X1n, . . . , Xpn)
T, the errors Vn and data

points (Yn,X
T

n) for n = 1, . . . , N , are independent random variables. Furthermore,

θ = (θ1, . . . , θp)
T are the unknown parameters of interest and Xn and Vn are mutually

independent.

2.1.2.2 Outlier Types in Linear Regression Models

The occurrence of outliers in linear regression models has been reported in a plethora

of engineering problems in ares as diverse as wireless communication [19–23], ultrasonic

systems [24], computer vision [25,26], electric power systems [27], automated detection

of defects [28], biomedical signal analysis [29] and many more. For linear regression

models, one can distinguish two different types of outliers:

1. vertical outliers, which are outliers in Vn,

2. leverage points, which are outliers in XT

n.

Vertical outliers are present, e.g., in case of an impulsive noise distribution of Vn and

leverage points occur, e.g., when XT

n is random and has a heavy-tailed distribution.

The term leverage point comes from the fact that these points have a high leverage

on the estimation of the slope defined by θ. Not all leverage points are harmful for

the estimation of θ. In fact a large-valued point which lies on the true slope can even

increase estimation performance. On the other hand, a ’bad leverage point’ that tilts

the slope into a different direction, is obviously harmful.
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Figure 2.3 depicts a situation for a 2 vector-valued parameter θ, where we observe

different kinds of outlying observations, which do not follow the linear pattern of the

majority of the data. Vertical outliers are present, when their XT

n is not outlying

and leverage points are present, if it is. As depicted, the maximum likelihood (ML)-

estimator, under the Gaussian data assumption, is not robust against any type of

outliers which contribute in an unbounded fashion to its bias.

2.1.2.3 M-Estimation

The first systematic and perhaps the most frequently used robust estimator is the

M-estimator. It was first defined by Huber in his seminal paper [30] on robustifying

the location model. M-estimators generalize the ML-estimators by replacing the max-

imization of the likelihood function by a general function, which is usually denoted as

the ρ-function. To obtain robust estimates, for symmetric distributions, ρ(x) is an odd

and bounded function with derivative

ψ(x) =
dρ(x)

dx
.

Regression M-estimates solve

N∑

n=1

ρ

(
Rn(θ̂M)

σ̂M

)
= min, (2.2)

where σ̂M is a robust M-estimate of scale, see Eq. (2.10), that is required for θ̂M to be

scale equivariant. M-estimates, as defined in Eq. (2.2), are also regression and affine

equivariant. The residuals in Eq. (2.2) are given by

Rn(θ̂M) = Yn −XT

nθ̂M , n = 1, . . . , N.

Differentiating Eq. (2.2) yields

N∑

n=1

ψ

(
Rn(θ̂M)

σ̂M

)
XT

n = 0. (2.3)

ML-estimators are included in the class of M-estimators by setting

ρ(x) = − log(fX(x)), (2.4)

where fX(x) is the density function of the random variable X . For the Gaussian data

assumption, the ML-estimator coincides with the least-squares (LS)-estimator and is

thus given by ρ(x) = x2

2
. This estimator is non-robust, since its score function ψ(x) = x
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is unbounded. Solutions to Eq. (2.3) with monotone and re-descending ψ(x) are called

monotone and re-descending regression M-estimates, respectively.

Huber’s M-estimator [2] is also referred to as the soft limiter and uses

ρ(x) =

{
1
2
x2 |x| ≤ cHub

cHub|x| − 1
2
c2Hub |x| > cHub

(2.5)

or correspondingly

ψ(x) =

{
x |x| ≤ cHub

cHubsign(x) |x| > cHub.
(2.6)

Tukey’s biweight (or bisquare) M-estimator is obtained with

ρ(x) =

{
x2

2
− x4

2c2Tuk
+ x6

6c4Tuk
|x| ≤ cTuk

c2Tuk

6
|x| > cTuk

(2.7)

and

ψ(x) =

{
x− 2 x3

c2Tuk
+ x5

c4Tuk
|x| ≤ cTuk

0 |x| > cTuk.
(2.8)

Figures 2.1 and 2.2 illustrate the two classes of robust M-estimators by depicting the

popular ρ- and ψ-functions proposed by Huber (monotone) and Tukey (re-descending).

The main advantages of the monotone estimators are, that all solutions of Eq. (2.2)

yield solutions to Eq. (2.3) and that all solutions are unique. Furthermore, monotone

M-estimates are important as starting point for re-descending M-estimates. This is

necessary due to the non-convexity of the maximization problem for re-descending M-

estimates. While M-estimators are robust against vertical outliers, they become non-

robust with a BP equal to zero in the presence of leverage points. This can be seen from

Eq. (2.6), where the influence of outliers inXn is not bounded by ψ(x). M-estimates are

consistent and asymptotically Gaussian distributed under some general conditions [8].

The tuning constants in Eqs. (2.5)-(2.8) trade-off robustness and efficiency. Achieving

both simultaneously is not possible for regression M-estimators.

2.1.2.4 S-Estimation

A second fundamental class of robust estimators are the ones based on the minimization

of a residual scale. This class includes estimators, such as the LS, least-trimmed-squares

(LTS) [31] and the least-median-of-squares (LMS) [31] estimators.



2.1 Introduction 17

−3 −2 −1 0 1 2 3
0

1

2

3

4

5

x

ρ
 (

x
)

 

 

c
Hub

=∞

c
Hub

=1.5

c
Hub

=1

−3 −2 −1 0 1 2 3
−4

−2

0

2

4

x

ψ
 (

x
)

 

 

c
Hub

=∞

c
Hub

=1.5

c
Hub

=1

Figure 2.1: Examples of Huber’s (monotone) ρ- and ψ-functions for different parameter
choices for a standard Gaussian distribution.

S-estimators [32] minimize the M-estimate of scale of the residuals and are thus defined

as

θ̂S = argmin
θ

σ̂M (R(θ)), (2.9)

where σ̂M (R(θ)) is the M-scale estimate defined by

1

N

N∑

n=1

ρ

(
Rn(θ)

σ̂M (R(θ))

)
= b, (2.10)

with R(θ) = (R1(θ), R2(θ), . . . , RN(θ))
T and

b = EF [ρ(R(θ))] .
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Figure 2.2: Example of Tukey’s (re-descending) biweight ρ- and ψ-functions for different
parameter choices for a standard Gaussian distribution.

Here, EF [·] is the expectation w.r.t. the standard Gaussian distribution F .

S-estimates are regression, scale and affine equivariant and highly robust, if ρ(x) is

chosen accordingly, see [33] for details. However, as with M-estimates, BP=0.5 and

high efficiency cannot be achieved simultaneously. Interestingly, S-Estimates are also

M-estimates, as defined in Eq. (2.2) and Eq. (2.3), but with the condition that the

scale σ̂M (R(θ)) is estimated simultaneously [8].
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Figure 2.3: Different types of outliers in the regression context and their effect on the bias of
the ML-estimator under the Gaussian assumption and on an M-estimator. The ML-estimator
is not robust against any type of outliers. M-estimators are robust against vertical outliers,
but they become non-robust with a BP equal to zero in the presence of leverage points.

2.1.2.5 τ-Estimation

The τ -estimate of scale [9] of the residuals σ̂τ (R(θ)) is defined as

σ̂τ (R(θ)) = σ̂M1(R(θ))

√√√√ 1

N

N∑

n=1

ρ2

(
Rn(θ)

σ̂M1(R(θ))

)
, (2.11)

where σ̂M1(R(θ)) is the robust M-scale estimate, as defined in Eq (2.10) with ρ-function

given by ρ1. The τ -estimate of regression [9, 10] is defined as the θ which minimizes

Eq. (2.11)

θ̂τ = argmin
θ

σ̂τ (R(θ)). (2.12)

Unlike the S-estimates, τ -estimates combine a high BP and a controllable efficiency.

In fact, the choice of ρ2, controls the efficiency of the τ -estimate, e.g., full efficiency for

the Gaussian distribution can be obtained by setting ρ2(r) = r2, which corresponds to

the ML-estimate. The BP of the τ -estimate, on the other hand, is controlled by ρ1 and

is the same as that of an S-estimate that uses ρ1. In this way, one can obtain BP=0.5

simultaneously with high efficiency. This can be understood, by the fact that θ̂τ in

Eq. (2.12) satisfies an M-estimating equation, as given in Eq. (2.3)
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N∑

n=1

(
Wn(θ)ψ1

(
Rn(θ)

σ̂M1(R(θ))

)
+ ψ2

(
Rn(θ)

σ̂M1(R(θ))

))
XT

n = 0. (2.13)

Here, the weighting factor Wn(θ) is given as

Wn(θ) =
2EF

[
ρ2

(
Rn(θ)

σ̂M1
(R(θ))

)]
− EF

[
Rn(θ)σ̂M1(R(θ))ψ2

(
Rn(θ)

σ̂M1
(R(θ))

)]

EF

[
Rn(θ)σ̂M1(R(θ))ψ1

(
Rn(θ)

σ̂M1
(R(θ))

)] . (2.14)

If

ρ2(x) ≥ xψ2(x)/2

is satisfied, Wn(Rn(θ)) ≥ 0 and we can think of the τ -estimate as an M-estimate with

the adaptive ψτ -function

ψτ = Wn(θ)ψ1 + ψ2. (2.15)

Clearly, if ψ1 = ψ2, the τ -estimate becomes an S-estimate.

2.1.3 Robustly Selecting the Model Order

When fitting a model to the data, questions that arises are: ”Which of the candidate

models under consideration is the best?” or given a specific type of models ”Which

variables to include?” To find answers, a fundamental approach is to trade-off data fit

and model complexity. Robustness furthermore requires that a minority of the data

does not override the decision that is made for the majority.

2.1.3.1 Classical Criteria

Much model selection research has been conducted since the late 1960’s, overviews are

given, e.g., by [34–36].

2.1.3.2 Information Criteria

An important class of approaches to model selection are the information criteria, e.g.,

[13, 37–44]. These can be categorized into two paradigms: efficient criteria, e.g., [13,

37–40] and consistent criteria, e.g., [41, 42, 44].

When assuming that the data generating model, henceforth denoted as the ’true model’,

is of infinite dimension or not contained in the set of candidates, a reasonable approach
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is to choose the model with minimum mean-squared-error (MSE) distribution [45].

Based on the estimation of the Kullback-Leibler discrepancy and ML-estimation, the

general expression of Akaike’s information criterion (AIC) [39] is:

AIC = −2 log(likelihood︸ ︷︷ ︸)
data fit

+ 2× number of model parameters︸ ︷︷ ︸
model complexity penalty

For the univariate linear regression model, assuming Gaussian distribution of the data,

AIC becomes

AIC(p) = log(σ̂ML(R(θ̂ML))) +
2p

N
, (2.16)

where σ̂ML(R(θ̂ML)) is the sample standard deviation of the residuals of the ML-

estimate θ̂ML which is of dimensions p× 1 and N is the sample length.

A small sample bias corrected version is the AICc [13]

AICc(p) = log(σ̂ML(R(θ̂ML))) +
N + p

N(N − p− 2)
. (2.17)

A second paradigm in model selection are the consistent criteria. When the true model

is of finite dimension and is included in the set of the candidate models, consistency

requires asymptotically identifying the correct model with probability one. This leads

to a stronger penalty term for over-fitting, compared to the AIC. E.g., the Schwarz

information criterion [42] for univariate regression assuming Gaussian data becomes

SIC(p) = log(σ̂ML(R(θ̂ML))) +
log(N)p

N
. (2.18)

2.1.3.3 Robust Criteria

Since the 1980’s, robust versions of classical criteria of model selection for univariate

regression have been proposed [8, 11, 12, 46–53]. The most general robustifiation of

the AIC and AICc has been proposed by [12]. By generalizing the Kullback-Leibler

information so that it measures the discrepancy between a robust function, evaluated

both under the true and the fitted model, the authors derived criteria that have two

important properties: (i) they include the classical criteria as special case and (ii) the

can be combined with M-estimators.

For the univariate linear regression model, assuming a Gaussian distribution of the

majority of the data the robust criteria that are suggested by [12] are

AICR∗
M(p) =

N∑

n=1

ρ

(
Rn(θ̂M))

σ̂M (R(θ̂M)))

)
+ p

EF [ψ(x)2]

EF [ψ(x)′]
(2.19)
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with the corresponding small sample bias corrected

AICCR∗
M(p) =

N∑

n=1

ρ

(
Rn(θ̂M))

σ̂M(R(θ̂M)))

)
+

pN

N − p− 2

EF [ψ(x)2]

EF [ψ(x)′]
. (2.20)

2.1.4 Robust Model Selection Based on τ-Estimation

In order to utilize the advantageous properties of the τ -estimator in model selection,

we propose an extension to the criteria defined in [12] to incorporate this type of

estimator. By exploiting the equivalence of the τ -estimator to an M-estimator with

adaptive ψ-function [9], we define

AICR∗
τ (p) =

N∑

n=1

ρτ

(
Rn(θ̂τ ))

σ̂τ (R(θ̂τ )))

)
+ p

EF [ψτ (x)
2]

EF [ψτ (x)′]
, (2.21)

where

ρτ =Wn(θ)ρ1 + ρ2.

and ψτ is given in Eq. (2.13). The small sample bias corrected AICCR∗
τ becomes

AICCR∗
τ (p) =

N∑

n=1

ρτ

(
Rn(θ̂τ ))

σ̂τ (R(θ̂τ )))

)
+

pN

N − p− 2

EF [ψτ (x)
2]

EF [ψτ (x)′]
. (2.22)

2.1.4.1 Simulations

To evaluate the performance of the proposed criterion, simulated data is generated for

the polynomial trend from [54] in additive noise

Yn = 0 + 0.4Xn + 0.1X2
n + Vn n = 1, . . . , N, (2.23)

where X = (0, 1, . . . , N−1)T and N = 30. The candidate orders range from 0 ≤ p ≤ 6,

and the true model order is 2. The performance is evaluated both for Gaussian and

additive outlier-contaminated noise. The outlier-contaminated noise is generated from

an ǫ-contaminated Gaussian mixture model [2]

(1− ǫ)N (0, σ2) + ǫN (0, κσ2) (2.24)

with probability of contamination ǫ = 0.3, impulsiveness factor κ = 100, and nom-

inal variance σ2 = 25. These parameters were chosen in order to gain an outlier-

contaminated noise scenario with an SNR comparable to the Gaussian noise case.



2.1 Introduction 23

For the AICCR∗, when using Huber’s M-estimator, cHub = 1.345, which ensures an

efficiency of 0.95 for Gaussian errors, yields

EF [ψ(x)2]

EF [ψ(x)′]
= 1.729.

To compute θ̂τ and σ̂2
τ , we use the fast-τ algorithm [10], which combines re-sampling

with local iteratively re-weighted least-squares improvements and for which the sta-

tistical properties are very close to that of the τ -estimator. The parameter settings

for the fast-τ -algorithm are: 15 random sub-samples, 2 initial iteratively re-weighted

least-squares steps on each candidate and 5 candidates to fully improve. The use of

Tukey’s ρ-functions (see Eq. (2.7) with cTuk,1 = 1.56 and cTuk,2 = 6.08 ensure that the

resulting τ -estimate has BP=0.5 and efficiency of 0.95 under Gaussian errors [9]. The

penalty terms in Eqs. (2.21) and (2.22) are approximated by numerical integration and

we estimate the expectations in Eq. (2.14) with their sample means.

The results of 1000 Monte Carlo runs for Gaussian noise with σ2 = 100 are displayed

in Figure 2.4. Only results of the bias corrected versions of the AIC are given here,

since they were in general slightly better with similar differences between the model

selection procedures, for an extensive overview, see [18]. It can be seen, that for

Gaussian noise, both the robust and classical model order selection criteria choose the

correct model order with a high empirical probability. Excellent results are obtained for

the AICC : 86.5% and AICCR∗
M : 88.2%, and slightly poorer results for the AICCR∗

τ :

78.1%. Furthermore, it is noticeable, that all criteria choose candidate models within

a bounded range of model orders.

The results for the impulsive noise scenario are displayed in Figure 2.5. It can be seen,

that the AICC drastically looses in performance and only chooses the correct model

order with an empirical probability of 31.0%, while the AICCR∗
M only degrades slightly

81.2% and the AICCR∗
τ even chooses the correct model order with a higher empirical

probability of 92.9%, compared to the Gaussian noise case. Furthermore, the AICCR∗
τ

is the only criterion, which remains bounded within the same range of model orders

(p = 1 to 4), in both noise scenarios.

Further extensive simulation studies and a comparison of robust extensions for different

information criteria [42, 44] have been performed in the Bachelor project by Andrea

Schnall [18].
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Figure 2.4: The results of model order selection for a polynomial trend in additive Gaussian
noise. All criteria choose the correct model order with a high empirical probability. Excellent
results are obtained with the AICC : 86.5% and AICCR∗

M : 88.2%, and slightly poorer results
for the AICCR∗

τ : 78.1 %.
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Figure 2.5: The results of model order selection for a polynomial trend in additive outlier-
contaminated noise. It can be seen, that the AICC drastically looses in performance AICC :
31.0%, while the robust criteria still exhibit a high empirical probability (AICCR∗

M : 81.2%,
AICCR∗

τ : 92.9%) of selecting the correct model order of p = 2.
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2.1.4.2 Conclusions

In this Section, we derived an expression for the penalty term in robust information

criteria [11–13] when using τ -estimators [9, 10]. Some simulation results were given.

In [18], it is shown that the proposed criteria outperform robust information criteria

based on M-estimation in a wide range of impulsive noise settings.

2.2 Robust Model Selection for Corneal-Height

Data

Corneal-height data, typically measured with a videokeratoscope, is modeled as a set

of Zernike polynomials [15–17]. Videokeratoscopy requires a good quality of the pre-

corneal tear film and sufficiently wide eyelid aperture, which is not always fulfilled in

practice. This results in missing values or outliers in the corneal topography map.

2.2.1 Contributions in this Section

In the following Sections, we show how to reliably estimate corneal topography mod-

els with a new two-step model selection procedure based on τ -estimation and the

AICCR∗
τ (p) criterion.

2.2.2 Corneal Topography Estimation

The cornea is the transparent front most part of the human eye. Together with the

crystalline lens, it constitutes the eye’s optical system, which focuses incident light

onto the retina. The cornea contributes to about two thirds of the total optical power

of the eye and subtle changes in the corneal shape can strongly influence the vision

process [16].

2.2.2.1 Measuring Corneal-Height Data

The state-of-the-art technique for capturing corneal-height information is videoker-

atoscopy, where a set of illuminated concentric rings of pre-defined geometry is pro-

jected onto the corneal surface, as illustrated in Figure 2.6. The rings are reflected off
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Figure 2.6: (left) Videokeratoscopy, illuminated concentric rings of pre-defined geometry
projected onto cornea; (right) videokeratoscopic image in good measurement conditions.

the pre-corneal tear film and captured by a video camera. From these reflections, a

topographical map of the cornea is generated, which reveals distortions or irregularities

in the corneal shape.

2.2.2.2 Outlier Sources

In practice, corneal topography data includes measurements with break-ups in pre-

corneal tear film (dry eyes), reflections from eyelashes (narrow eyelid aperture) and

mucus. See Figure 2.7 for an example of such severe measurement conditions. These

lead to outliers in the topographical map and therewith an inaccurate modeling of the

corneal-height data.

2.2.2.3 Modeling Corneal Topography

Corneal modeling can be used in a variety of applications [16], [15], [17], e.g., corneal

refractive surgery requires accurate modeling of the corneal shape prior to surgery and

evaluation of changes resulting from the surgery. Also, contact lens design and fitting

requires corneal topography characterization and corneal modeling can be used as a

tool for screening corneal diseases, such as Keratoconus, which distorts the corneal

shape and results in a significant vision loss [17].

Commonly, a Zernike polynomial expansion [15] is applied as a model to decompose the

corneal-height or wavefront aberration data [55] into surfaces, which have optical inter-

pretations. Zernike polynomials are a set of functions, which consist of a polynomial

variation in the radial and a sinusoidal variation in the azimuthal direction.
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Figure 2.7: Videokeratoscopic image in severe measurement conditions.

Zernike polynomials are especially useful for representing a circular sphere, such as

a section of the pupil. Because they are orthogonal in a unit circle, they may also

be broken into a sum of independent components, which represent specific types of

aberrations. Let 0 ≤ r ≤ 1 be the normalized radial distance, and 0 ≤ φ ≤ 2π the

angle, as known from the polar coordinate system. A corneal surface S(r, φ) is then

modeled as

S(r, φ) =
∑

m,n

am,nZ
n
m(r, φ) + v(r, φ),

where am,n are the Zernike coefficients with corresponding Zernike polynomials

Zn
m(r, φ) =

{
Nm
n R

|m|
n (r) cos(mφ) for m ≥ 0

−Nm
n R

|m|
n (r) sin(mφ) for m < 0.

In the double indexing scheme, n describes the order of the radial polynomial and m

describes the azimuthal frequency of the sinusoidal component. Here, m and n are

always integer and satisfy m ≤ n and n− |m| = even. The radial polynomial R
|m|
n (r)

is described by the following equation

R|m|
n (r) =

(n−|m|)/2∑

s=0

(−1)s (n− s)!
s![(n + |m|)/2− s]! [(n− |m|)/2− s]! r

n−2s,
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where Nm
n is a normalization factor which is given by

Nm
n =

√
2(n+ 1)

1 + δm0
,

with δm0 being the Kronecker delta function

δm0 =

{
1 for m = 0
0 otherwise.

Today, there is an ANSI standard [56], which derives the single indexed Zernike poly-

nomials from the double indexed scheme:

i =
n(n + 2) +m

2

The first six Zernike terms Z1, Z2, ...Z6 are referred to as the lower order aberrations,

while the remaining coefficients constitute the higher order aberrations, which cannot

be corrected by sphero-cylindrical lens corrections.

An important issue encountered in eye research, which has been a subject of research

for many years [14,16,17,57], is to choose the appropriate set of Zernike terms. Since,

in most practical cases, it is sufficient to choose only the model order of the Zernike

polynomial expansion, rather than determining the particular subset [16], we suggest, in

the sequel, to estimate only the radial order and choose the complete set of azimuthal

and radial terms up to the determined order. This is formulated as a model order

selection problem in a linear regression.

2.2.3 Model Order Selection for Corneal Topography Estima-

tion

In this Section, we describe an approach how robust model selection can be used to

model corneal-height data. Figure 2.8 shows the corneal topography map (top) of a

healthy cornea, gained from a Medmont E300 videokeratoscope (Medmont Pty. Ltd.,

Melbourne, Australia), which has a radial resolution of 33 samples and an azimuthal

resolution of 300 samples. Figure 2.8 (bottom) represents an example of a radial profile,

in which missing data points are treated as outliers with a height value of z = 0.

2.2.3.1 Proposed Algorithm

For the determination of the radial order of the corneal-height data, we suggest the

following two-step procedure:
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Figure 2.8: The upper plot depicts the corneal topography map of a healthy cornea, which
consists of maximally 9900 data points with radial resolution of 33 samples and an azimuthal
resolution of 300 samples. Breakups in the pre-cornial tear film and reflections from the
eyelashes, result in missing regions. The lower plot exemplifies a radial profile, for which
missing data points are treated as outliers with a height value of z = 0.

1. Compute the polynomial order for each radial profile individually, which gives us

an empirical probability of selection for each model order.

2. Compute a statistical measure, e.g., the mode or the median of this empirical

distribution, resulting in the overall radial order estimate.

2.2.3.2 Real Data Results

The following example illustrates the applicability of the suggested robust model selec-

tion procedure to determine the radial order of the Zernike polynomial expansion to fit

corneal data. As described above and depicted in Figure 2.8, 300 radial profiles may

be used to estimate the radial model order of the Zernike polynomial expansion. For

a normally shaped, healthy cornea the clinically expected radial order is 4 to 5 [16].

Figure 2.9 displays the empirical probability with which each candidate model order

chosen by the criteria. To determine the overall radial model order, a statistical mea-

sure, such as the mode or the median of this empirical distribution, can be taken.

While the AICC, and even the robust AICCR∗
M overestimate the complexity of the

corneal surface due to outliers (mode and median is 10), the suggested AICCR∗
τ (mode

and median is 5) gives results, which are in close accordance with clinical expectations

for a normally shaped cornea.
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Figure 2.9: The percentage with which each candidate model order is chosen by the criteria
is displayed above. The AICC, and the AICCR∗

M overestimate (overall estimated order is
p̂ = 10) the complexity of the corneal surface due to the outliers, while the AICCR∗

τ (p̂ = 5)
gives results, which are in accordance with clinical expectations.

Extensions to other robust criteria based on M-estimation are straightforward and

have been investigated in the Bachelor project of Andrea Schnall, see [18] for details.

Her results are based on further videokeratoscopic data and show that the τ -estimator

based criteria are a good choice, and outperform the ones based on M-estimation. It

was also shown that the τ -estimator based criteria outperform ones based on semi-

parametric robust estimation [58], which can be contributed to the small sample size

(N=30). The performance evaluation showed that a robustification of the SIC, called

the SICR∗
τ performs slightly better than AICCRτ .

2.2.3.3 Conclusions and Future Work

An algorithm was proposed and tested to reliably estimate the radial order of corneal-

height data in severe measurement conditions. Based on robust information criteria

and τ -estimation, a two-step model order selection was performed, which, even for

moderately contaminated data, was able to reliably estimate the radial order of the

Zernike polynomials in accordance with clinical expectations.

Future research will be to investigate whether it is possible to surpass the intrinsic

outlier detection of the Medmont E300 videokeratoscope which causes large regions of

missing data that we treat as outliers by assigning them zero height information. In
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fact, these regions may contain useful information and an approach based completely

on robust estimation will be promising, especially when the data has a high level

of outliers and heavy mucus, which still causes trouble to the existing approach. A

second future direction will be to investigate a robustification of re-sampling based

techniques which have been proposed in [57]. Furthermore, an evaluation using corneal

topography data of more complex structure (higher radial order), e.g., subjects with

Keratoconus, will be necessary to evaluate whether the proposed algorithm is able

to distiguish between irreguarities in the surface and outliers due to measurement

conditions.
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Chapter 3

Robustness for Array Signal Processing
(Multi-Sensor Data)

3.1 Introduction

The use of multiple sensors which form an array is essential in many of today’s key signal

processing applications, such as, e.g., multiple-input multiple-output (MIMO) commu-

nication systems, phased array and MIMO radar systems and biomedical measurement

systems, such as used in magnetoencephalography (MEG) or electroencephalography

(EEG). The Gaussian assumption is often justified by the central limit theorem and is

also convenient in terms of mathematical tractability. There are, however, scenarios,

where the Gaussian assumption is violated, or even cases where the noise distribution

is completely unknown or strongly varying in time. See, e.g., [7] for a recent review.

In this Chapter, we identified and addressed three challenges that demand robust multi-

channel methods. The first research problem that we investigate is that of robust source

enumeration for R-dimensional data in presence of impulsive noise, as, e.g., caused by

brief sensor failures. For this, we derive criteria that are based on robust and efficient

estimation of the covariance matrix using the r-mode unfolding operation of the data

tensor. The second issue under investigation in this Chapter is the estimation of the

complex-valued amplitudes of sinusoidal signals using multiple sensors. Here, our focus

is to derive so-called robust semi-parametric estimators, which adapt to the underlying

noise distribution by non-parametric transformation kernel density estimation followed

by ML-estimation incorporating the estimated density. The third research focus in

this Chapter is the robustness analysis of spatial time-frequency distributions (STFD).

These are widely used, e.g., for direction-of-arrival (DOA) and blind source separation

in case of non-stationary signals. In particular, we derive the asymptotic and finite

sample influence functions for some recently proposed robust estimators.
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3.2 Robust Source Number Enumeration in Case

of Brief Sensor Failures (Model Order Selection

for Tensor Data)

3.2.1 Contributions in this Section

In this Section, we define robust model order selection schemes for multi-dimensional

data. The results presented here, are based on the MM-estimator of the covariance of

the r-mode unfoldings of the complex valued data tensor. We treat the R-dimensional

extensions of the AIC [40] and the minimum description length (MDL) [43], which are

denoted as R-D AIC and R-D MDL, respectively.

In the context of source enumeration, we provide simulation examples for 2-D and

3-D uniform rectangular arrays. Both in the case of Gaussian noise and for a brief

sensor failure, the proposed robust multi-dimensional schemes outperform their matrix

computation based counterparts significantly.

Some of the contributions of this Section have been published in [59]. Some general

illustrations of robustness concepts for array signal processing problems have been

published in [7].

3.2.2 Source Number Enumeration for R-D Arrays

Estimating the number of signal components impinging on a sensor array is an ele-

mentary step in various signal processing tasks, such as, e.g., source separation, DOA

estimation and Doppler frequency estimation. There has been much research on matrix-

based array signal processing techniques during the last decades which consider various

signal and noise constellations, depending on the application at hand. A number of

model order selection criteria have been developed, see, e.g., [36,60–62] and references

therein, and shown to be optimal in some sense, e.g., efficient or consistent under given

assumptions, such as the Gaussian distribution of the noise [63, 64].

In the last few years, there has been an increased interest in multi-dimensional array sig-

nal processing, which is advantageous, since problems are seen from multiple perspec-

tives. Multiple dimensionality can refer to spatial dimensions, e.g., 2-dimensional or 3-

dimensional arrays, but also refer to combinations of several dimensions like space, time,



3.2 Robust Source Number Enumeration in Case of Brief Sensor Failures (Model Order

Selection for Tensor Data) 35

frequency, and polarization. A further important advantage of using multi-dimensional

data lies in the identifiability due to the higher rank of the multi-dimensional data.

A first step has been undertaken in [65] to extend classic model order selection criteria

[60] to the multi-dimensional case by using tensor notation. It has been shown that

taking into account the multi-dimensional structure of the data improves the estimation

of the model order. Not much attention has been paid, however, how these criteria

perform for small departures from the assumptions. This is crucial, since the occurrence

of impulsive noise has been frequently reported in array processing applications.

Impulsive noise occurs, for example, in outdoor mobile communication channels be-

cause of switching transients in power lines or due to automobile ignitions [66], in radar

and sonar systems as a result of natural or man-made electromagnetic and acoustic

interference [67,68] and in indoor wireless communication channels, owing, e.g., to mi-

crowave ovens and devices with electromechanical switches, such as electric motors in

elevators, printers, and copying machines [69, 70]. It was also shown that biomedical

sensor array measurements of the brain activity, such as in magnetic resonance imaging

(MRI) were found to have non-Gaussian noise and interference in various regions of

the human brain, where the complex tissue structure is known to exist [71]. Further-

more, when arrays are used in wireless sensor networks, the low cost and low quality

sensors in harsh and unattended environments make the generated data unreliable and

inaccurate [72].

A practical case which we investigate in this Section is what happens when a sensor fails

for a short period of time. One could assume that the above techniques can deal with

this problem, especially when the number of dimensions and correspondingly sensors,

increases. We show in the following that this is not the case. In fact, even a single

sensor failure during one snapshot can cause classical matrix and tensor-based model

order selection criteria to break down, i.e., the ability to estimate the correct number

of sources impinging onto the array decreases drastically.

3.2.2.1 Tensor Notation

For tensor notation, we follow [59, 65, 73]: scalars are represented by italic letters,

column vectors by lower-case bold-face letters, matrices by bold-face capital letters

and tensors are written as bold-face calligraphic letters. The (i, j)-th element of the

matrix A is denoted as ai,j and the (i, j, k)-th element of a third order tensor A as

ai,j,k. The superscripts T, H, −1 and ∗ denote transposition, Hermitian transposition,
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matrix inversion, and complex conjugation, respectively. Furthermore, r-mode vectors

of a tensor are obtained by keeping all indices fixed, except for the r-th index which is

varied within its range. The r-mode unfolding of a tensor A ∈ CI1×I2×...×IR is denoted

by [A](r) ∈ C
Ir×(I1...Ir−1Ir+1...IR). The r-mode unfolding is therefore nothing else than a

matrix containing the r-mode vectors of the tensor. The r-mode product of a tensor

A and matrix U ∈ CJr×Ir is denoted as A ×r U ∈ CI1×I2...×Jr...×IR. It is obtained by

multiplying all r-mode vectors of A from the left-hand side by the matrix U.

3.2.2.2 Source Number Enumeration for R-D Arrays

The criteria that we robustify are based on the structure of the signal and noise sub-

space, i.e., the eigenvalues. The R-D extension consists in replacing the eigenvalues

in the classical criteria by the global eigenvalues, i.e., the R-D subspace and adjusting

the free number of parameters in the penalty terms.

The R-D AIC [65] chooses the model order d̂ as the value k ∈ {1, . . . , K}, which

minimizes

R-D AIC(k) = −N(α(G) − p) log
(
g(G)(p)

a(G)(p)

)
+ p(2α(G) − p). (3.1)

Here, α(G) is the total number of sequentially defined eigenvalues, a(G)(p) and g(G)(p)

are the arithmetic and geometric means of the smallest p = K − k global eigenvalues,

which are given by the product of the eigenvalues computed for every r-mode of the

tensor. Similarly, the R-D MDL criterion [65] is given by

R-D MDL(k) = −N(α(G) − p) log
(
g(G)(p)

a(G)(p)

)
+

1

2
p(2α(G) − p) log(N) (3.2)

and only differs in the penalty term. The r-mode eigenvalues are estimated by use of

the sample covariance matrix of the r-mode unfolding of the data tensor X , i.e.,

R̂
(r)
XX =

Mr∏R
i=1Mi

[X ](r)[X ]H(r) ∈ C
Mr×Mr . (3.3)

Here, Mr and Mi are the array dimensions and the total number of sensors equals

Mr ·Mi.



3.2 Robust Source Number Enumeration in Case of Brief Sensor Failures (Model Order

Selection for Tensor Data) 37

3.2.3 Robust Covariance Matrix Estimation

3.2.3.1 Gaussian ML-Estimator of Covariance

It is well known in the array signal processing community that the sample covariance

matrix is optimal in the ML-sense under the Gaussian noise assumption. However

for slight deviations from the Gaussian assumption it loses drastically in performance

[7, 74]. This can be explained by means of the influence function which describes

the bias impact of infinitesimal contamination at an arbitrary point on the estimator,

standardized by the fraction of contamination [7].

Figure 3.1 depicts the ‖IF(z, g1, F )‖ at the bi-variate complex valued standard Gaus-

sian distribution F for a complex-valued outlier z = (z1, z2)
T such that z2 = ‖1‖ is fixed

and z1 = x1 + jy1 varies. The expression of the IF(z, g1, F ) is given in terms of the

eigenvector functional g1 corresponding to the eigenvalue λ1, for details, see [7,74]. In

the case of the sample covariance matrix, the influence of an outlier z1, e.g., generated

by a sensor failure is unbounded and has linear influence on the bias of the eigenvector

estimate. Hence, none of the classical subspace based source enumeration methods are

robust against a sensor failure and the optimality of these methods is quickly lost.

3.2.3.2 MM-Estimator of Covariance

As described for the regression case in Section 2.1.2, also for robust estimates of co-

variance, it is desirable to attain both a given asymptotic efficiency and BP simulta-

neously [75, 76]. One such estimator is the MM-estimator [77] that has been extended

to the multi-variate data case by Lopuhaã [76].

An MM-estimator of covariance is basically an M-estimator based upon the obser-

vations obtained after scaling with an affine equivariant S-estimator. The resulting

MM-estimator is affine equivariant and only the M-estimator determines the asymp-

totic efficiency independently of the initial S-estimator of covariance, as long as it is

consistent. The influence function of the MM-estimator is the same as that of the

M-estimator, as long as it is continuous. The BP of the MM-estimator is inherited

from the S-estimator, i.e., combining a high BP S-estimator with a highly efficient

M-estimator yields an MM-estimator with very favorable robustness properties. For

details, see [76, 78, 79].

Figure 3.2 plots ‖IF(z, g1, F )‖ of the MM-covariance matrix estimator at the bi-variate

complex valued standard Gaussian distribution F for a complex-valued outlier z =
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Figure 3.1: ‖IF(z,g1, F )‖ of the Gaussian ML-estimator at the bi-variate complex valued
standard Gaussian distribution F for a complex-valued outlier z = (z1, z2)

T such that z2 = ‖1‖
is fixed and z1 = x1 + jy1 varies. Since the influence function is unbounded, it is non-robust
against outliers, which in turn leads to unreliable source enumeration in case of sensor failures.

(z1, z2)
T such that z2 = ‖1‖ is fixed and z1 = x1 + jy1 varies. The bounded influence

function is inherited from the M-estimator. In this Figure, we depict the ‖IF(z, g1, F )‖
of an M-estimator that coincides with the t1-ML-estimator, for details, see [7, 74].

3.2.4 Robust Source Number Enumeration for R-D Arrays

By applying robust MM-estimation of covariance to all r-mode unfoldings of the data

tensor, we obtain a robust R-D AIC that chooses the model order d̂ as the value

k ∈ {1, . . . , K}, which minimizes

R-D AICrob(k) = −N(α(G) − p) log
(
g
(G)
rob (p)

a
(G)
rob (p)

)
+ p(2α(G) − p). (3.4)

Here, a
(G)
rob (p) and g

(G)
rob (p) are computed analogously to a(G)(p) and g(G)(p) with the

difference that the eigenvalues are estimated using the robust MM-covariance matrix

estimator. Similarly, the robust R-D MDL is given by
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Figure 3.2: ‖IF(z,g1, F )‖ of the MM-covariance matrix estimator at the bi-variate complex
valued standard Gaussian distribution F for a complex-valued outlier z = (z1, z2)

T such that
z2 = ‖1‖ is fixed and z1 = x1 + jy1 varies. The IF(z,g1, F ) is bounded and continuous, i.e.,
the MM-estimator is qualitatively robust, which yields reliable source enumeration in case of
sensor failures.

R-D MDLrob(k) = −N(α(G) − p) log
(
g
(G)
rob (p)

a
(G)
rob (p)

)
+

1

2
p(2α(G) − p) log(N). (3.5)

Since the MM-estimator was designed for real-valued data, for complex valued data,

stacking of the real- and imaginary-parts of the r-mode unfoldings must be performed,

i.e.,

[X̃ ](r) =


 Re

{
[X ](r)

}

Im

{
[X ](r)

}

 . (3.6)

By employing the MM-estimator on [X̃ ](r), as defined in Eq. (3.6), we obtain the robust

estimate of its covariance matrix R̂
(r)

X̃X̃,robust
that can be expressed as

R̂
(r)

X̃X̃,robust
=

[
R̂

(r)

X̃X̃A
R̂

(r)

X̃X̃B

R̂
(r)

X̃X̃C
R̂

(r)

X̃X̃D

]
. (3.7)
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Therewith, the robust estimate of the covariance matrix of the r-mode unfolding of the

data tensor X can be identified as

R̂
(r)
XX,robust = R̂

(r)

X̃X̃A
+ R̂

(r)

X̃X̃D
+ j(R̂

(r)

X̃X̃C
− R̂

(r)

X̃X̃B
). (3.8)

3.2.4.1 Robust Source Number Enumeration R-D Uniform Rectangular
Arrays

In this Section, we give two examples which illustrate the applicability of the proposed

methods. We consider the relatively simple setup of 2-D and 3-D rectangular arrays.

Extensions into higher dimensions are straight-forward and other applications such

as EEG, where the dimensions are time, frequency, and channels can be formulated

analogously.

3.2.4.2 Example 1: Robust Source Number Enumeration for a 2-D Uni-
form Rectangular Array

Consider a two-dimensional uniform rectangular array (URA) of dimensions M1 ×M2

with d sources impinging onto the array. The spatial frequencies for the i-th source

for the two dimensions are represented by µi =
[
µ
(1)
i , µ

(2)
i

]T
, i = 1, . . . , d. The vector

a(r)(µ
(r)
i ) denotes the array response in the r-th dimension for the i-th source, where

r = 1, 2 in this example. Let N denote the number of available snapshots and M =

M1 ·M2 be the total number of sensors. Let S be the complex valued source symbol

matrix of dimensions d × N . In the classical matrix-based approach, all the spatial

dimensions are stacked into column vectors. Here, we construct a measurement tensor

X ∈ CM1×M2×N as

X = A×3 S
T +W , (3.9)

where W is i.i.d. complex circular stationary noise tensor and A is the array steering

tensor constructed as

A =
[
A1 3A2 . . . 3Ad

]
, (3.10)

where r represents the concatenation operation along mode r, and matrix Ai is

obtained from the outer product of the array response vectors a(1)(µ
(1)
i ) and a(2)(µ

(2)
i ),

i = 1, . . . , d. For this case, the global (robust) eigenvalue is given by the product of the

three (robust) eigenvalues of the r-mode unfoldings of the measurement data tensor

X [65] .
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3.2.4.3 Example 2: Robust Source Number Enumeration for a 3-D Uni-
form Rectangular Array

For the 3-D case, with M3 denoting the number of sensors on the third dimension of

the array, we model the measurement tensor X ∈ CM1×M2×M3×N as

X = A×4 S
T +W , (3.11)

where W is i.i.d. complex circular stationary noise tensor. Note that in this 3-D exam-

ple, the spatial frequencies for the i-th source for the three dimensions are represented

by µi =
[
µ
(1)
i , µ

(2)
i , µ

(3)
i

]T
, i = 1, . . . , d. The vector a(r)(µ

(r)
i ) represents the array re-

sponse in the r-th dimension for the i-th source, where r = 1, 2, 3. The array steering

tensor A is then constructed as

A =
[
A1 4A2 . . . 4Ad

]
, (3.12)

where tensor Ai is obtained from the outer product of the array response vectors

a(1)(µ
(1)
i ), a(2)(µ

(2)
i ) and a(3)(µ

(3)
i ), i = 1, . . . , d.

3.2.5 Simulations

3.2.5.1 Simulation Setup

The simulation setup for Example 1 is a 2-D URA array setup with parameters as

follows: M1 = 8, M2 = 8, d = 3, N = 6, µ1 = [−π/2,−π/4]T , µ2 = [−π/4,−π/2]T ,
µ3 = [0, π]T , S contains complex valued Gaussian source symbols. Our results are

given for varying SNR are based on an average over 100 Monte Carlo runs.

The second simulation setup is a 3-D scenario with the following parameters: M1 = 5,

M2 = 7, M3 = 9, d = 3, N = 10, µ1 = [−π/4, 0, π/4]T , µ2 = [0, π/4, π/2]T , µ3 =

[π/4, π/2, 3π/4]T . The other parameters were chosen as in the previous example.

To simulate a scenario where we have a very short sensor failure, we randomly replaced

a single observation at a random sensor position with a complex i.i.d. impulsive noise,

i.e., the contaminating density is complex, zero mean Gaussian with variance equal

to κσ2, where κ > 1 determines the impulsiveness of the outliers. In the example

presented here, κ = 50, other impulsive noise types produced similar results.
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3.2.5.2 Simulation Results

Figure 3.3 illustrates the performance of robust and classical methods for source number

enumeration. It is clearly visible here that 2-D based methods perform better than

matrix-based methods. Furthermore, the robust methods based on the MM-estimator

perform similarly to the non-robust ML-estimator based methods which are optimal

for this setup.
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Figure 3.3: Average probability of detecting the correct number of sources for different
SNR using source enumeration with a 2-D URA in case of Gaussian noise.

Figure 3.4 depicts results for a scenario where we have a very short sensor failure.

The non-robustness of classical methods is apparent. In fact, the classical methods

fail, while the robust ones nearly maintain the performance of the Gaussian noise case.

This can be traced back to the high efficiency of the MM-estimator of covariance.

Again, the 2-D based methods, in general, perform better than matrix-based methods.

Figure 3.5 shows the results for the 3-D URA source enumeration study for the Gaussian

noise case. Again, the R-D methods provide a considerable gain in detecting the correct

number of sources compared to matrix-based methods. Differences between non-robust

and robust methods, as well as between AIC and MDL based methods are small.

Figure 3.6 displays the effects of a brief single sensor failure. It is evident that even for

the increased number of sensors that are used in the 3-D case, a single failure causes

the non-robust methods to break down.
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Figure 3.4: Average probability of detecting the correct number of sources for different
SNR using source enumeration with a 2-D URA in case of brief sensor failure.

3.2.5.3 Conclusions and Future Work

In this Section, we investigated the problem of source number enumeration for array

signal processing in the presence of brief sensor failures. For this, we introduced robust

model selection criteria for multi-dimensional array data based on the robust MM-

estimator of the covariance matrix using the r-mode unfolding operation of the data

tensor. The proposed method is applicable to complex as well as real-valued data.

In this way, we obtained robust MM-estimates of the r-mode eigenvalues which are

multiplied to get global eigenvalues. The global eigenvalues were used to robustify

R-D model order selection criteria.

The proposed criteria showed nearly optimal performance with 2-D and 3-D URA

settings for the Gaussian noise case. For a brief sensor failure, simulated by an impulsive

noise at a single random sensor position, they provided a similar performance while

non-robust methods broke down. It could be noted that, in general, the R-D criteria

outperformed the matrix-based ones. The difference between applying all variants of

AIC and MDL was not significant for our simulations.

Future work will consider different non-Gaussian noise scenarios, dropping of the inde-

pendence assumption and applying the proposed criteria to real EEG data.
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Figure 3.5: Average probability of detecting the correct number of sources for different
SNR using source enumeration with a 3-D URA in case of Gaussian noise.

3.3 Robust Semi-Parametric Estimation of Sinu-

soidal Signals

3.3.1 Contributions in this Section

In this Section, we present a semi-parametric robust estimation approach for the esti-

mation of the complex-valued amplitudes of sinusoidal signals using multiple sensors.

This approach adapts to the sensor measurements using a compact, and conceptually

simple non-parametric transformation density estimation followed by ML-estimation

incorporating the estimated density. It is conceptually favorable to robust methods,

when the noise distribution is not even approximately known. Simulation results are

provided, which compare the performance of the proposed method with robust and

non-robust estimation procedures, i.e., Huber’s M-estimator, the τ -estimator and the

ML-estimator under the Gaussian noise assumption.

Some of the contributions of this Section have been published in [80].

3.3.2 Problem Statement

Estimation of a parameter using multiple sensor observations is a task, which occurs in

different applications, such as radar, radio and underwater applications. A widespread
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Figure 3.6: Average probability of detecting the correct number of sources for different
SNR using source enumeration with a 3-D URA in case of a brief sensor failure.

noise model, for which various optimal procedures exist, is the Gaussian model. In

practical array signal processing applications, however, measurement campaigns re-

vealed the presence of impulsive noise [4, 66, 67, 69, 70], due to natural and man made

electromagnetic interferences, see [7] for a recent overview.

3.3.2.1 Signal Model

In the sequel, the signal model for the estimation of the complex amplitudes of sinu-

soidal signals of known frequency, based on multiple sensor observations is given. Let

ym ∈ C
N denote the observation vector at sensor m.

ym = s (θ) + vm m = 1, 2, ...,M (3.13)

Here, ym = [y0,m, y1,m, · · · , yN−1,m]
T , where yn,m is the observation at time instant n at

sensor m, s (·) is a known functional, θ ∈ CK is an unknown K-dimensional parameter

vector containing the complex amplitudes of the sinusoidal signals, and vm is spatially

and temporally i.i.d. circular complex noise, whose elements have the p.d.f. fV (v),

which is modeled by the complex-valued ε-contaminated mixture model

(1− ε)Nc(v; 0, ν2) + εHc. (3.14)

The ε-contaminated model, as given in Eq. (3.14), is used to describe the effect of

deviations from the nominal p.d.f. Nc(v; 0, ν2). Here, 0≤ε≤0.5 is the contamination
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parameter andHc is the contamination density, which is only assumed to be symmetric,

and centered around zero. The task that we consider in the sequel, is to estimate

θ ∈ CK , given time series measurements of the m = 1, 2, ...,M sensors, in a heavy-

tailed noise environment.

For k = 1, 2, ..., K sinusoidal signals of lengthN, s (θ) in (3.13) becomes a vector, whose

elements are given by
K∑

k=1

θke
jωkn n = 0, 1, ..., N − 1, (3.15)

where θk is the unknown, complex amplitude of the k-th sinusoid of known frequency

ωk. Combining (3.13) and (3.15), yields the following matrix notation [81]

ym = Sθ + vm m = 1, 2, ...,M, (3.16)

where

S =




1 · · · 1
ejω1 · · · ejωK

...
...

ej(N−1)ω1 · · · ej(N−1)ωK


 . (3.17)

By separating the real and imaginary parts of (3.16), we obtain

ỹm = S̃θ̃ + ṽm m = 1, 2, ...,M, (3.18)

with

ỹm =

[
Re{ym}
Im{ym}

]
S̃ =

[
Re{S} −Im{S}
Im{S} Re{S}

]

θ̃ =

[
Re{θ}
Im{θ}

]
ṽm =

[
Re{vm}
Im{vm}

]
.

From this, the extended signal model can be formulated as a linear regression, cf.

Eq. (2.1).

y = Xθ̃ + v (3.19)

with

y =




ỹ1

ỹ2
...

ỹM


 X =




S̃

S̃
...

S̃


 v =




ṽ1

ṽ2
...

ṽM


 .

For reasons of visual clarity, in the following, estimates of θ̃ are denoted by θ̂.
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Figure 3.7: The schematic illustration of a sensor array that is used to estimate the complex
amplitudes of multiple sinusoidal signals of known frequencies from distant sources is depicted.
A nearby electromagnetic interferer causes impulsive noise.

3.3.2.2 Impulsive and Unknown Distribution

While in many situations, the distribution of the sensor observations can at least ap-

proximately be modeled as a Gaussian distribution, in this setup, we consider the case,

where the noise distribution is not even approximately known. Figure 3.7 depicts a

distant source whose sinusoidal signal impinges on a sensor array that is disturbed by

a nearby impulsive interferer.

3.3.2.3 Maximum Likelihood (ML) Estimation

When the noise distribution fV (v) is known, the ML-estimator of θ̃ is obtained by

maximizing the log-likelihood function log fY (y|θ̃). Based on the linear regression

model as given in Eq. (3.19), ML-estimation requires solving

2MN∑

j=1

xj,kϕ

(
yj−

2K∑

k′=1

xj,kθ̂k′

)
=0, k = 1, 2, ..., 2K, (3.20)

where ϕ (v) = −d log fV (v)/dv is the location score function, xj,k denotes the (j, k)Ap-

th element of X, and 2MN is the length of the observation vector y. If fV (v) is the

density function of a Nc(v; 0, ν2) distribution, the ML-estimator of θ̃ coincides with

the LS-estimator.

θ̂ = (XTX)−1XTy. (3.21)
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When outliers occur in the observations, the ML-estimator fails, as their impact on the

estimator is unbounded.

3.3.2.4 Robust Estimation

Approaches based on robust statistics [2, 3, 8] can be applied to the estimation of θ̃

in order to be less sensitive to small deviations from the assumed parametric model.

M-estimation replaces ϕ (·) by a bounded location score function ψ (·), as detailed in

Section 2.1.2.3. Applying Huber’s ψ (·), as given in Eq. (2.6) yields the minimax-

optimal estimator of θ̃.

The minimax estimator is the ML-solution to the least favorable distribution Hc (3.14),

assuming a nominal distribution, e.g., Nc(v; 0, ν2). The least favorable distribution has

the interpretation of being the density for which the observations are least informative

about the parameter one wishes to estimate [4]. However, the possibility of Huber’s

estimator in particular and M-estimators in general, to adapt to the data, is limited

and therefore they may be far from optimal for completely unknown noise distributions

fV (v).

In principle, any type of robust regression estimator can be applied, to estimate θ̃. In

this study, we consider τ -estimators, which have some ability to adapt their ψ-function

to the distribution of the data (see Section 2.1.2.5).

3.3.2.5 Semi-Parametric Robust Estimation

While the aim of robust estimation is to robustify the estimator against small deviations

from the assumed model, further adaptability to the data can be achieved by semi-

parametric estimation, which compensates for model misspecifications by estimating a

data-dependent ϕ(·) non-parametrically.

Given a preliminary consistent (e.g., the ML) initial estimate θ̂0, the residuals of (3.19)

can be estimated by

v̂ = y−Xθ̂, (3.22)

and based on these estimates, the score function ϕ(v) can be estimated non-

parametrically. Different approaches exist for the estimation of ϕ(v) [82]. Here we
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consider a common approach, which is to use kernel density estimation (KDE) [20], [58],

where

ϕ̂(v) =
−f̂ ′

V (v)

f̂V (v)
. (3.23)

However, for a heavy-tailed fV (v), KDE with a global bandwidth fails, since outliers

produce peaks at the tails, causing f̂ ′
V (v) to become multi-modal, and thus a unique

solution of (3.20) is no longer guaranteed. In contrast, KDE with local bandwidth

selection requires the estimation of nuisance parameters, for which no optimal solutions

exist [83].

A less complex, and conceptually simple approach, which is based on transformation

density estimation [84], has been presented by Hammes et al. [58]. Here, the heavy-

tailed residuals v̂ are transformed [84], so that the transformed sample distribution

is approximately Gaussian [85]. For the transformed residual, KDE with a global

bandwidth is performed, and f̂V (v) is gained via back-transform.

One such transformation is the modulus transformation which a monotonic and point

symmetric function, that is defined as

w = m(v, λ) =

{
sign(v) (|v|+1)λ−1

λ
, λ 6= 0

sign(v) log(|v|+ 1), λ = 0.
(3.24)

In the case of a symmetric and heavy-tailed fV (v), the modulus transformation tends

to approximately normalize the data [85], [86]. By constraining λ < 1, so that w =

m(v, λ) is concave for v > 0 and convex for v < 0, the residuals become concentrated

around zero, which allows for KDE using a global bandwidth. The parameter λ can

be estimated e.g., by ML-estimation [58], when we assume that fW (w), the p.d.f. of

the transformed residuals (3.24), is a Gaussian p.d.f. with mean µW and variance σ2
W .

The probability distribution fW (w) of the transformed residuals is estimated by KDE

f̂W (w, h) =
1

2MNh

2MN∑

j=1

K
(
w − ŵj
h

)
, (3.25)

where K (·) is the standard Gaussian kernel density function, ŵj is the j-th transformed

residual, and h is the global bandwidth. It was found [58], that the choice of h is not

critical, and the plug-in rule [83] ĥ = 1.06σ̂2
WN

−1/5, where σ̂W = med(|ŵ−med(ŵ)|) ·
1.483 is the standardized median absolute deviation (MAD) estimate, is suitable.

The density of the residuals is obtained via back-transformation as

f̂V (v) = f̂W (m(v, λ)) · |m′(v, λ)| , (3.26)
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where differentiation of (3.26) w.r.t. v yields f̂ ′
V (v), and the final estimate θ̂ is ob-

tained by performing an iterative Newton-Raphson procedure [2], until convergence

is achieved. Different algorithms for the adaptation of the step size ν, yield similar

results, a possible choice is given in the algorithm of Table 3.1.

Table 3.1: The algorithm of the proposed semi-parametric robust estimation of the complex
valued amplitudes of sinusoids.

'

&

$

%

1. Initialization

Set i=0. Obtain an initial estimate θ̂o

2. Determine the residuals

v̂ = y −Xθ̂i

3. Estimate the score function

Determine λ̂,perform the modulus transformation

w = m(v̂, λ̂) of the residuals, estimate

f̂W (w) and f̂ ′
W (w), obtain f̂V (v) and f̂

′
V (v)

by back-transform and estimate the score function

ϕ̂(v) = −f̂V (v)/f̂ ′
V (v).

4. Update the parameter estimates

θ̂i+1 = θ̂i + ν(XTX)−1XTϕ̂(v̂), where
ν = 1/(1.25max{|ϕ̂′(v̂)|})

5. Check for convergence

For a small number ξ ∈ R, stop if ‖θ̂i+1−θ̂i‖

‖θ̂i+1‖
< ξ

otherwise i← i+ 1 and go to step 2

3.3.3 Simulations

In this Section, the performance of the discussed estimators for the estimation of a

complex amplitude of a sinusoidal signal of known frequency is compared for Gaussian

and impulsive noise environments.
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3.3.3.1 Simulation Setup

The frequencies and complex amplitudes of the k = 3 sinusoidal signals are chosen as

in [81] to be ω1 = 0.2π, θ1 = ejπ/4, ω2 = 0.22π, θ2 = ejπ/3 and ω3 = 0.6π, θ3 = ejπ/4.

The clipping point for Huber’s M-estimator is set to be cHub = 1.5 · σ̂V , where σ̂V
is the standardized MAD estimate. All results that are presented here, are based on

M = 4 sensors, N = 32 samples, and averaging over 1000 Monte Carlo simulations.

For smaller sample sizes down to N ≥ 4, the MSE increases similarly for all estimators.

The results for all θ̂k are also similar, hence only the results for θ̂1 are given.

In Eq. (3.14), Hc is set as Nc(v; 0, κν2), where κ controls the impulsiveness of the

noise. The parameter ν2 is chosen such, that for given ε and κ, the fixed overall

variance becomes σ2
V = (1− ε)ν2 + εκν2.

3.3.3.2 Simulation Results

Figure 3.8 shows the MSE for the estimation of θ̂1 for different noise environments for

the ML-, M-, τ - and semi-parametric robust estimators. By varying σ2
V the effect of

the signal-to-noise-ratio (SNR) on the MSE of the estimators is evaluated for −5 dB

< SNR < 30 dB. The Gaussian noise case is included by setting ε = 0, while different

impulsive noise cases are modeled by ε = 0.25, 0.4 and κ = 100.

It can be seen from the top plot of Figure 3.8 that the performance of all robust estima-

tors is similar to the optimal ML-estimator in the Gaussian noise case. For increasing

levels of impulsiveness and contamination Huber’s M-estimator is increasingly outper-

formed by the τ -estimator and the proposed semi-parametric robust estimator, which

yields best results in all impulsive noise scenarios.

3.3.4 Conclusions and Future Work

In this Section, we investigated the task of estimating the complex-valued amplitude

of sinusoidal signals, based on multiple sensor observations in an unknown heavy-

tailed symmetric spatially and temporally i.i.d. noise environment. A selection of non-

robust and robust estimators were compared to a semi-parametric robust estimator

and simulation results were provided. The performance of all robust estimators was

similar to the optimal ML-estimator in the Gaussian noise case. For increasing levels
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Figure 3.8: The mean squared error (MSE) for the estimation of θ̂1 for different noise
environments (from top to bottom ε = 0, 0.25, 0.4), κ = 100, N = 32 samples, M = 4
sensors, based on averaging 1000 Monte Carlo simulations.
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of impulsiveness and contamination Huber’s M-estimator was outperformed by the τ -

estimator and the proposed semi-parametric robust estimator, which performed best

in all impulsive noise scenarios.

Further studies will investigate the sensitivity of the estimator towards other deviations

from the model assumptions, such as multi-modality of the noise distribution, and

violations of the i.i.d. assumption.

3.4 Measuring Robustness of Time-Frequency Dis-

tributions by Means of the Influence Function

3.4.1 Contributions in this Section

In this Section, we define a generally applicable framework of robustness analysis of

spatial time-frequency distribution (STFD) estimators. For this, we apply the defi-

nition of the influence function, see Section 1.2.1.2, and also that of its finite sample

version, which is called sensitivity curve or empirical influence function, to STFD ma-

trix estimators.

The results presented here, are based on the M-estimator of the STFD, for which we

prove qualitative robustness, i.e., continuity and boundedness of the influence func-

tion, in case of Huber’s estimator. For detailed derivations and the analysis of further

estimators, the reader is referred to [87]. Array processing examples for the influ-

ence functions and empirical influence functions in the case of a uniform linear array

observing an FM source are given.

It should be noted, that major derivations as well as all simulations have been per-

formed by W. Sharif to whom we give full credit. The main contribution of the author

of this thesis, in his own view, was to rigorously ensure technical correctness and to

introduce uniformity in the notation for the derivations of the influence functions,

as well as to contribute with some minor ideas of how to define robust statistics for

non-stationary signals.

3.4.2 Robust Spatial Time-Frequency Distribution Estima-
tion

Non-stationary signals, such as, e.g., frequency modulated (FM) signals occur in many

practical applications [88, 89]. For sensor array applications, e.g., in radar, sonar and
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mobile communication applications, STFD matrices have been developed and widely

used over the last decade for DOA estimation [90–101] and blind source separation of

FM sources [102–106].

Standard STFD estimators [90–93, 96, 103] were derived under strict distributional

assumptions, which, in practice, often are not valid [7, 66, 67, 70, 107] and a serious

degradation of performance is experienced in nominally optimal methods [108–112].

While nominal optimality for the assumed distribution is clearly desirable for a DOA

estimator of an FM source, in practice, consideration of the performance in case of

minor deviations from the assumptions made, is at least equally important. Practical

situations enforce the need for robust STFD estimators [108–112], which are close-to-

optimal in nominal conditions and highly reliable for real-life data, even if the assump-

tions are only approximately valid. Up to now, the statements on the robustness of

DOA estimators are only based on simulations. In the following, we perform a formal

robustness analysis of STFD estimators by means of the influence function.

3.4.2.1 Array Signal Model

In narrow-band array processing, the baseband signal model for K signals, impinging

on an m-element sensor array is given by

x(t) =
K∑

k=1

a(θk)sk(t) + n(t) t ∈ {1, 2, . . . , N}. (3.27)

Here, x(t) is the M × 1 array output vector, a(θk) is the M × 1 array steering vector

for a source impinging from direction θk and sk(t) denotes the source waveform of the

k-th signal at time t. The source’s waveforms are considered to be constant amplitude

deterministic FM signals with unknown parameters

sk(t) = ej2πΦk(t) k ∈ {1, 2, . . . , K}

with corresponding instantaneous frequencies fk(t) = dΦk(t)/dt. Here, Φk(t) is a

continuously differentiable function, and e.g., Φk(t) = t2 corresponds to a linear FM

signal with fk(t) = 2t.

Polynomial phase signals are encountered e.g., in radar, oceanography, and ultrasound

imaging [89,113]. The noise at the sensor array n(t), t = 1, . . . , N is from the Nc(0, σ2I)
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distribution, hence x(t) ∼ Nc(µ(t), σ2I) and the means at the p-th and the q-th sensors

are given by:

µp(t + l) =
K∑

k=1

ap(θk)sk(t+ l), µq(t− l) =
K∑

k=1

aq(θk)sk(t− l) (3.28)

Since our focus is on the robustness analysis, we assume that the instantaneous fre-

quencies and the DOA’s of the sources are known. Tools to estimate instantaneous

frequencies and DOA’s exist in the literature, see, for example, [96], [114].

3.4.2.2 Classical Spatial Time-Frequency Distribution Estimation

The STFD matrix consists of auto and cross-TFDs of sensor signals as its diagonal

and off-diagonal elements, respectively. Let Dxx(t, f) denote the STFD matrix of the

signal x(t) and

dp,q(t, f)=Dxpxq(t, f), t, f ∈R, p, q∈{1, . . . , m}, (3.29)

where (t, f) represents a point in the time-frequency plane, dp,q(t, f) stands for the

(p, q)-th element of the STFD matrix Dxx(t, f), and xp and xq are the signals cor-

responding to the p-th and the q-th sensor, respectively. Given observations for

t ∈ {1, . . . , N}, D̂xpxq(t, f) is assumed to be a bi-linear TFD estimate of Cohen’s

class [115], e.g., the pseudo Wigner-Ville distribution (PWVD) in discrete form, given

by

D̂xpxq(t, f) =

L/2∑

l=−L/2

xp(t+ l)x∗q(t− l)e−j4πfl, (3.30)

where L denotes the window length. Since the PWVD is the most commonly used

STFD matrix estimator, in the sequel, we refer to it as the standard STFD estimator.

It is evident from Eq. (3.30) that any outlier in either xp or xq has an unbounded

(linear) influence on the estimate D̂xpxq(t, f).

3.4.2.3 Spatial Time-Frequency Distribution M-Estimation

In this Section, we consider the M-estimator for which the (p, q)-th element of the STFD

matrix is defined as a solution to the minimization of the following cost function:

D̂xpxq(t, f) = argmin
D

L/2∑

l=−L/2

ρ (d(t, l)) (3.31)
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Here, d(t, l) is the distance, which is given by

d(t, l) =
xp(t+ l)x∗q(t− l)e−j4πfl −D

σ̂M(t)
, (3.32)

where σ̂M (t) is the M-estimate of scale of |xp(t + l)x∗q(t − l)e−j4πfl − D| for l =

−L/2, . . . , L/2, as given in [2] p. 107. ρ is a function which ensures robustness if

it is chosen in such a way that it leaves the ‘good‘ data untouched and bounds the

influence of an outlier. As discussed in Section 2.1.2.3, a monotone ρ-function, yields

convexity of the estimation problem, e.g., Huber’s ρ-function [2] becomes

ρ (d(t, l)) =

{
|d(t, l)|2/2 if |d(t, l)| < cHub

cHub(|d(t, l)| − cHub/2) if |d(t, l)| ≥ cHub,
(3.33)

where cHub is the parameter which determines the threshold to weigh the normal and

the outlying observations differently. For details on how to compute σ̂M(t) and how to

choose cHub, the reader is referred to [95]. The solution to the minimization of the cost

function in Eq. (3.31) can be computed by a gradient descent based approach:

∂D̂xpxq(t, f)

∂D
=

L/2∑

l=−L/2

ψ (d(t, l)) = 0 (3.34)

For Huber’s ψ-function, we obtain

ψ (d(t, l)) =

{
d(t, l) if |d(t, l)| < cHub,

cHub sign (d(t, l)) if |d(t, l)| ≥ cHub.
(3.35)

For the complex-valued distance d(t, l) ∈ C

sign(d(t, l)) =
d(t, l)

|d(t, l)| . (3.36)

The solution to Eq. (3.31) when using a monotone ρ, can be computed e.g., by finding

the root of Eq. (3.34) with iteratively re-weighted least-squares.

3.4.2.4 The Influence Function of STFD Matrix Estimators

For the (p, q)-th element of the STFD matrix, the influence function of STFD matrix

estimators is defined as:

IF(zp, zq; D̂xpxq(t, f), F ) =
EFε

[
D̂xpxq(t, f)

]
− EF

[
D̂xpxq(t, f)

]

ε

∣∣∣∣∣∣
ε↓0

=
∂EFǫ

[
D̂xpxq(t, f)

]

∂ε

∣∣∣∣∣∣
ε↓0

(3.37)
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where zp and zq represent the contamination in xp and xq, respectively, and EF [·] is
the expectation operator under the distribution F . For the signal model defined in Eq.

(3.27), F is complex circular Gaussian Nc(µ(t), σ2) with variance σ2 and time-varying

mean µ(t) and Fε is an unknown contaminating distribution.

The empirical influence function for STFD matrices, which is the finite sample coun-

terpart of the influence function in Eq. (3.37), is obtained by replacing the statistical

expectations in Eq. (3.37) by their Monte Carlo estimates. Let D̄xpxq(t, l) be an esti-

mate of EF

[
D̂xpxq(t, f)

]
obtained by averaging Monte Carlo realizations of D̂xpxq(t, f)

based on the signal model defined in Eq. (3.27). Further, let D̄xpxq(t, l, zp, zq) be the

Monte Carlo estimate of EFǫ

[
D̂xpxq(t, f)

]
which is obtained by adding single point out-

liers zp and zq to xp(t + l) and xq(t − l) with l ∈ {−L/2, . . . , L/2}, respectively. The

corresponding empirical influence function is then given by:

EIF(zp, zq; D̂xpxq(t, f), F ) =
D̄xpxq (t, l, zp, zq)− D̄xpxq (t, l)

1/(L+ 1)
, (3.38)

where L is the window length.

3.4.2.5 Robustness Analysis of the Classical STFD Estimator

Considering the sensor signal model of Eq. (3.27) and the definition of the influence

function in Eq. (3.37), we find

IF(zp, zq; D̂xpxq(t, f), F ) =−2
L/2∑

l=−L/2

K∑

k=1

ap(θk)sk(t+ l)s∗k(t− l)a∗q(θk)e−j4πfl

+z∗q

L/2∑

l=−L/2

K∑

k=1

ap(θk)sk(t+ l)e−j4πfl

+zp

L/2∑

l=−L/2

K∑

k=1

a∗q(θk)s
∗
k(t− l)e−j4πfl.

(3.39)

The derivation is given in [87]. The influence function for the auto-sensor TFD is

obtained by following the same steps, and differs only by an additional term for p 6=
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q given by −2σ2 that is equal to zero in Eq. (3.39) because of the independence

assumption. The first term in Eq. (3.39) is dependent only on the signal parameters

while the second and the third terms lead to non-robustness of D̂xpxq(t, f), since they

are linearly proportional to the magnitude of the contamination zq and zp, respectively.

The influence function is unbounded which means that a small fraction ε of outliers

approximately cause a large bias of εIF(zp, zq; D̂xpxq(t, f), F ), for details, see [8]. This

analytically confirms the non-robustness of standard STFD matrix estimators.

3.4.2.6 Robustness Analysis of the STFD M-Estimator

The derivation of the influence function is given in [87]. The resulting expression for a

general ψ is:

IF(zp, zq; D̂xpxq(t, f), F ) =

(
2

L/2∑

l=−L/2

EF [ψ (d(t, l))]−
L/2∑

l=−L/2

EF (xp) [ψ (d(t, l, zq))]

−
L/2∑

l=−L/2

(
EF (xq) [ψ (d(t, l, zp))]

−EF
[
ψ′ (d(t, l))

∂d(t, l)

∂σ̂M (t)

]
IF(zp, zq; σ̂M(t), F )

))

×




L/2∑

l=−L/2

EF

[
ψ′ (d(t, l))

∂d(t, l)

∂D

]


−1

(3.40)

Here, EF (xp)[·] and EF (xq)[·] denote the expectations w.r.t. the distribution of xp and

xq. d(t, l, zq) and d(t, l, zp) are the distances obtained by setting xq = zq and xp = zp,

respectively, in Eq. (3.32).

The computation of statistical expectations in Eq. (3.40) for the example of Huber’s ρ-

function is given in [87]. Here, it was shown that in case of Huber’s M-estimator, for all

terms that include zp or zq, down-weighting of the outliers is performed for |d(t, l, z)| >
cHub, i.e., even for zp,q →∞ the influence function remains bounded. Boundedness and

continuity, which is given as long as ψ (·) is continuous ensure qualitative robustness

of the STFD M-estimator.
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3.4.3 Simulations

3.4.3.1 Simulation Setup

In our simulations, we use the array signal model defined in Eq. (3.27) for a sensor array

of m = 2 sensors in a uniform linear array (ULA) geometry observing a single linear

FM source (K = 1) from the broadside angle of θ1 = −5◦. The instantaneous frequency
f1 of the linear FM source varies from the normalized frequency value of 0.1 to 0.3. An

SNR of −5 dB is used for plotting the influence function for different STFD estimators.

In the case of two sensors, the single point outlier is z = [z1, z2]
T , where z1, z2 ∈ C

are complex-valued. In the following, the influence function for the p = 1, q = 1

auto-sensor TFD is considered and the range of z1 is Re {z1} , Im {z1} ∈ [−50, 50].
The window length L = 25 is used for the computation of the PWVD based STFD

matrix. For the computation of the influence function of σ̂M (t), we approximate σ and

µ(t) to be constant on an interval of length L. We divide our results into two parts.

The statistical expectations for the finite sample counterpart of the influence function,

i.e., the empirical influence function (EIF) as defined in Eq. (3.38) are estimated by

the sample means of the STFDs which are obtained by averaging the STFD estimates

from 1000 Monte Carlo runs.

3.4.3.2 Simulation Results

Figure 3.9 (left) depicts the influence function of the standard STFD matrix estimator.

The influence function increases linearly with increasing magnitude of contamination,

meaning that the influence of outliers is unbounded. Figure 3.9 (right) shows that the

empirical influence for the standard STFD matrix estimator increases with an increase

in the magnitude of the contamination and which confirms the findings based on the

analytical influence function, see Figure 3.9.

The influence function of the M-estimation based STFD matrix estimator is plot-

ted in Figure 3.10 (left). The influence of the contamination decreases with an in-

creasing magnitude of the outlier. The largest peak of the influence function for the

M-estimator of the STFD matrix is obtained for the case when the contamination

Re {z1} = Im {z1} = 0. This means that the uncontaminated data in the observations

is given the largest influence on the estimate. For visual clarity, this peak is not plotted

in Figure 3.10 (left). The EIF of the M-estimation based STFD matrix estimator is

plotted in Figure 3.10 (right). Again, the influence function is bounded.
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Figure 3.9: (top) Influence function of the PWVD based STFD matrix estimator. (bottom)
Empirical influence function of the standard STFD estimator. In both cases, p = q = 1 and
the parameters are set as described at the beginning of this Section.
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Figure 3.10: (top) Influence function of the M-estimation based STFD matrix estimator.
(bottom) Empirical influence function of the M-estimation based STFD matrix estimator. In
both cases, cHub = 5 for p = q = 1 and the parameters are set as described at the beginning
of this Section.
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3.4.4 Conclusions and Future Work

We introduced a framework for the robustness analysis of STFDs. A definition for

the influence function of the STFD matrix estimator was given and the analytical

expressions for the influence functions of different types of STFD matrix estimators

were provided. Although herein, we treated mainly the robust STFDs, this analysis

can be applied to any type of quadratic TFDs. The influence functions for the robust

estimators are bounded and continuous which confirms their qualitative robustness.

In addition to the asymptotic analysis, we also gave a definition for the finite sample

counterpart of the influence function also called the EIF or the sensitivity curve. The

simulation results for the EIF confirmed the analytical results and showed the insensi-

tivity to small departures in the distributional assumptions for the robust techniques.

Future research on STFD estimation will allow for the design of robust and efficient

estimators based on the influence function. Estimators, such as the τ - and the MM-,

can be derived for STFD estimation, along with their influence functions. Further-

more, it would be of great interest to study robustness when using real-data. To do so,

one could create a controlled setup where a real-data measurements which follow the

nominal noise distribution as well as contaminated measurements which contain inter-

ference from an impulsive noise sources are taken. From these measurements, STFD

estimates must be computed. Based on repeated measurements, one would estimate

the distributions of the estimates and obtain an (empirical) influence function for the

real-data case.

3.5 Conclusion

In this Chapter, we contributed to three research foci within the multi-channel setting.

First, we proposed robust R-dimensional information criteria that are based on the

estimator of the (complex-valued) covariance matrix of the r-mode unfoldings of the

data tensor. Simulated scenarios of brief sensor failures at random senor positions

showed the superior performance of the proposed criteria compared to matrix-based

criteria. Furthermore, the vulnerability of both non-robust R-dimensional and matrix-

based criteria to such events was demonstrated and remedied by the proposed criteria.

We then presented a robust semi-parametric estimation approach for the estimation

of the complex-valued amplitudes of sinusoidal signals impinging onto a sensor array.

This approach, in a simulation study, outperformed even advanced robust methods,

such as the τ -estimator for all levels of contamination. Finally, in this Chapter, we
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performed influence function based robustness analysis of STFD estimators. Simulation

examples were given for a single linear FM source impinging onto a uniform linear

sensor array. Both the Monte Carlo averaged and asymptotically derived influence

functions confirmed the non-robustness of the standard PWVD-based estimator and

the qualitative robustness of the M-estimation based STFD estimator.

Further research directions concerning the above mentioned issues have been detailed in

Sections 3.3.4, 3.2.5.3 and 3.4.4. A promising new line of research, which goes beyond

the scope of this project, but is of very high future interest, is the robustness in case

of distributed signal processing, see Section 5.2.
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Chapter 4

Robustness for Dependent Data

4.1 Introduction

Although there exists a considerable body of literature on robust estimation methods

for engineering practice under the assumption of i.i.d. observations, for a long time,

estimators for dependent data were limited. While the first contributions were made in

the 1980’s [4,116,117], there was not much progress on robust estimation for dependent

data for some time. This is mainly due to the fact that existing robust estimators and

concepts for i.i.d. data are not easily extendible to dependent data, and thus, new

robust approaches are sought for. Recently, research increased significantly in this

area [8, 27, 118–131] and some novel estimators have been proposed. In this Section,

we consider the robust estimation, both of the parameters and the model orders for

autoregressive moving-average (ARMA) models.

4.1.1 Contributions in this Chapter

The contributions in this Chapter include some practical applications of robust de-

pendent data methods to solve real-world problems. In particular, we develop artifact

detection and mitigation strategies that are based on data transformations. These are

applied to real-world electrocardiogram and intracranial pressure data. We also derive

and analyze sophisticated robust estimation and model order selection techniques for

ARMA models. A fast algorithm as well as a detailed statistical and robustness anal-

ysis of a novel robust and efficient estimator, are given. For the proposed estimator,

which is termed the bounded influence propagation (BIP) τ -estimator, we compute

a complete statistical robustness analysis, which includes conditions for the consis-

tency, as well as a proof of qualitative and quantitative robustness. The estimator is

very suitable and attractive for ARMA model order selection purposes and we propose

and compare different robust model order selection criteria that are based on the BIP

τ -estimator.

Some contributions in this Chapter have been published in [7, 130, 131]. A paper

concentrating on the ARMA parameter estimation and model order selection with the

BIP τ -estimator [132] is to be submitted in December 2013.



66 Chapter 4: Robustness for Dependent Data

4.2 Modeling Dependent Data

4.2.1 Autoregressive Moving-Average (ARMA) Models

One of the most popular approaches the signal processing practitioner uses to model

dependent data is the ARMA model [133]. This is not much different in robust statis-

tics.

An ARMA(p, q) model is defined as

Xn +

p∑

k=1

akXn−k = Zn +

q∑

k=1

bkZn−k, n ∈ Z, (4.1)

where Zn is a sequence of zero-mean i.i.d. random variables with finite variance σ2
Z

(i.e., white-noise). Important subclasses of ARMA models are the autoregressive AR(p)

models

Xn +

p∑

k=1

akXn−k = Zn, n ∈ Z, (4.2)

which are obtained from Eq. (4.1) when q = 1 and b1 = 0, as well as the moving-average

MA(q) models:

Xn = Zn +

q∑

k=1

bkZn−k, n ∈ Z, (4.3)

which are obtained by setting p = 0 in Eq. (4.1).

A convenient representation of Eq. (4.1) is

Ap(z)Xn = Bq(z)Zn, n ∈ Z. (4.4)

Here, Ap(z) = 1 + a1z
−1 + . . .+ apz

−p and Bq(z) = 1 + b1z
−1 + . . .+ bqz

−q, where z−k

is the lag operator defined by z−kXn = Xn−k, k ∈ Z. To ensure stationarity of the

process Xn, the polynomial Ap(z) must have roots inside the unit circle. Invertibility

of the system is obtained when the same condition is satisfied for Bq(z).

By defining

B∞(z) = A−1(z)B(z) = 1 +

∞∑

k=1

b∞k z
−k, (4.5)

we obtain the MA(∞) representation of Eq. (4.1)

Xn = Zn +
∞∑

k=1

b∞k Zn−k, n ∈ Z.
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4.2.2 Classical Parameter Estimation for ARMA Models

According to Stoica and Moses [134], there is no well-established algorithm for estimat-

ing the parameters of ARMA models from both theoretical and practical standpoints.

As in other estimation problems, ML-estimators are known to have desirable asymp-

totic properties, e.g., they are consistent and achieve the Cramér-Rao lower bound

asymptotically. However, for the estimation of ARMA models, ML-estimation re-

quires a numerical search procedure to find the maximum of the likelihood function

given constraints on the parameter space, such that one will end up with a stationary

and invertible model. Because of finite sample performance, as well as for computa-

tional complexity reasons, ML-estimation has never become very popular for estimating

ARMA models in practice [134–136]. Instead, different statistically sub-optimal, but

computationally cheaper methods, e.g., [134, 136–140], have been proposed and com-

pared to the Cramér-Rao lower bound.

4.2.2.1 Durbin’s Method and Reduced Statistics Estimators for ARMA
Models

In the sequel, we describe a set of methods [136,141] that improve Durbin’s two stage

method [138]. The key idea is to perform an initial splitting of the dynamics of an

ARMA model into the AR and MA parts, based on a long autoregressive model.

Given the initial estimate of the AR parameters, the second stage consists of first

computing the final MA parameters using the initial estimates and then improving the

first stage AR estimate. The attractiveness of this method in terms of robustness is,

that the second stage only uses the parameter estimates from the first stage, not the

data itself. This means that if we are able to estimate a long AR model robustly, we can

derive the corresponding ARMA model without further use of the outlier-contaminated

observations. Also, the computational cost of computing the ARMA model robustly is

basically that of computing the long AR model, since the reduced statistics estimator’s

contribution to the computational cost is negligible compared to that of the robust

estimator. There exist different possibilities to perform the initial separation, none of

which are superior to the others in all given settings.

We describe four possibilities to compute the MA parameters in the first stage, i.e.,

a) The “long AR” estimator [139], which employs the relation

B̂(z)

Â(z)
≈ 1

Âp0(z)
, (4.6)
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where Â(z) and B̂(z) are estimates of the polynomials, as given in Eq. (4.4), and

Âp0(z) is the AR(p0) approximation of the ARMA(p,q) model obtained by using

a high order denoted as p0. Since p0 > p holds, ak = 0 for k > p and therewith

the first stage MA(q) parameters b1, b2, . . . , bq can be estimated without knowing

the first AR parameters by finding the LS solution of

q∑

k=0

b̂kâ
p0
m−k = ζm, m = p+ 1, . . . , p0. (4.7)

Here, ζm represents the inaccuracies of the approximation made in Eq. (4.6) and a

solution exists, if p0 ≥ p+q. The initial AR(p) parameters can then be computed

by substituting the estimated initial MA(q) parameters into

q∑

k=0

b̂kâ
p0
m−k = âm, m = 0, . . . , p, (4.8)

or by using the second stage AR method which is described later.

b) The “long MA” estimator [136], which uses

1

Âp0(z)
≈ B̂q0(z), (4.9)

where q0 >> p0 is chosen such that the impulse response computed from

Âp0(z)B̂q0(z) = 1 dies out at q0. Knowing that the MA(k) parameters are zero

for k > q, the initial AR parameters are computed as the LS solution to

p∑

k=0

âk b̂
q0
m−k = ζm, m = q + 1, . . . , q0. (4.10)

c) The “long COV” estimator [136], where, first, the estimate of the covariance

function ĉXX(κ) is obtained from the Yule-Walker equations:

p0∑

k=1

âp0k ĉXX(m− k) = 0, m = 1, 2, . . . , p0 (4.11)

with ĉXX(−|κ|) = ĉXX(κ) for κ > 0. Using ĉXX(κ), the initial AR parameters

are obtained from the LS solution to

p∑

k=0

âkĉXX(m− k) = ζm, m = q + 1, . . . , p0. (4.12)

Again, a solution exists, if p0 ≥ p+q. B̂(z) can then be computed by substituting

the estimates into Eq. (4.6).
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d) The “long RINV” estimator [136] uses the inverse correlations rinv(κ), which are

defined by interchanging the AR and MA polynomials [140]. Given Âp0(z), rinv(κ)

can be estimated with

r̂inv(κ) =

p0−κ∑

k=0

âp0k â
p0
k+κ, κ = 0, 1, . . . , p0. (4.13)

Additionally, r̂inv(κ > p0) = 0 and r̂inv(−|κ|) = r̂inv(κ). The initial MA parame-

ters are thus found as the LS solution to
q∑

k=0

b̂kr̂inv(m− k) = ζm, m = p+ 1, · · · , p0 (4.14)

and the initial AR parameters are found in the same way as described for method

a).

Clearly, none of these estimators are statistically optimal in any sense. It is hoped that

at least one of the four yields an adequate initialization Â0(z) for the second stage of

Durbin’s method [138] that consists of two steps: (i) estimate the final MA parameters

B̂(z) using approximate relations between the polynomials Âp0(z) and Â0(z). (ii) esti-

mate the final AR parameters Â(z) with the help of B̂(z) and Âp0(z). For details, the

interested reader is referred to [137,138]. An interesting frequency domain formulation

of the second stage of Durbin’s method has been provided by [136] as follows:

(i) Estimate the final MA parameters B̂(z) via

B̂(ejω) ≈ argmin
B(ejω)

N

2π

∫ π

−π

∣∣∣∣∣
B(ejω)Âp0(ejω)

Â0(ejω)

∣∣∣∣∣

2

dω. (4.15)

This is intuitively understandable by defining

ME

(
1

B(ejω)
,
Âp0(ejω)

Â0(ejω)

)
:=

N

2π

∫ π

−π

∣∣∣∣∣
B(ejω)Âp0(ejω)

Â0(ejω)

∣∣∣∣∣

2

dω,

where ME
(
Â(z)

B̂(z)
, A(z)
B(z)

)
is a measure of the model error for ARMA models esti-

mated from N observations, see [136] for details.

(ii) Estimate the final AR parameters Â(z) via

Â(ejω) ≈ argmin
A(ejω)

N

2π

∫ π

−π

∣∣∣∣∣
A(ejω)

B̂(ejω)Âp0(ejω)

∣∣∣∣∣

2

dω, (4.16)

where again the intuition is to minimize the ME

ME

(
1

A(ejω)
,

1

Âp0(ejω)B̂(ejω)

)
=
N

2π

∫ π

−π

∣∣∣∣∣
A(ejω)

B̂(ejω)Âp0(ejω)

∣∣∣∣∣

2

dω.
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Models estimated with Durbin’s second method have the important property that they

are always stable and invertible.

4.2.3 Outlier Models

There exist several probability models for outliers in dependent data. Outliers can,

e.g., replace an observation or be an additive contaminant. Furthermore, they can

occur in Xn or in Zn. Outliers may also appear as isolated events or in patches. In the

sequel, we introduce some frequently used outlier models.

4.2.3.1 Additive Outlier (AO) Model

For the so-called additive outlier (AO) model, a contaminated process Yn is given by

Yn = Xn + V ε
n , n ∈ Z, (4.17)

where

V ε
n = ξεnWn, n ∈ Z. (4.18)

Here, Wn denotes the contaminating process and ξn represents a stationary random

process for which

ξεn =

{
1 with probability ε

0 with probability (1− ε). (4.19)

4.2.3.2 Replacement Outlier Model

For the so-called replacement outlier model, a contaminated process Yn is given by

Yn = Xn + V ε
n , n ∈ Z,

where

V ε
n = ξεn(Wn −Xn), n ∈ Z,

with Wn denoting the contaminating process which is independent of Xn and ξn as

defined in Eq. (4.19).
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4.2.3.3 Innovation Outlier (IO) Model

For the so-called innovation outlier (IO) model, the innovations Zn in Eq. (4.1) contain

outliers. This can happen either when the distribution of Zn is heavy-tailed, see e.g.,

[142], or when Zn is contaminated by outliers, e.g.,

Zε
n = Zn + V ε

n , (4.20)

with V ε
n as given in Eq. (4.18) for the additive innovation outliers and where for re-

placement innovation outliers

V ε
n = ξεn(Wn − Zn), n ∈ Z.

Here, Wn is independent of Zn.

4.2.3.4 Patchy and Isolated Outlier Models

For dependent data, outliers may occur isolated or they may be grouped in patches.

In case of isolated outliers, ξεn takes the value 1, such that at least one non-outlying

observation is between two outliers (e.g., follows an independent Bernoulli distribution).

For patchy outliers on the other hand ξεn, n ∈ Z takes value 1, for np ≤ N/2 subsequent

values. Patchy outliers occur in many practical situations, e.g., when switching between

line-of-sight/non-line-of-sight environments in geolocation position estimation [22], as a

result of a loose connection in a sensor [59], which creates patchy impulsive noise [72] or

in case of motion artifacts in patient movement for biomedical measurements [130,131].

4.3 Artifact Detection and Removal Using Data

Transformations

In some cases, it is possible to mitigate the effects of outliers by means of outlier

detection. Outlier detection should be based on robust estimation procedures. Finding

outliers in dependent data is not always straight forward. In the following Section, we

describe two practical examples, where we apply data transformations which enable

outlier detection in the transformed domain. After detecting the outlier positions, one

can either apply a form of data cleaning followed by classical or robust estimation, or

use estimators that can handle missing data.
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4.3.1 Motion Artifact Removal in Electrocardiogram (ECG)

Signals Using Multi-Resolution Thresholding

The electrocardiogram (ECG) is a powerful non-invasive tool which contains infroma-

tion that helps in the diagnosis of a wide range of heart conditions. Figure 4.1 depicts

an ECG of a healthy subject. The P-,Q-,R-,S-,T- waves, as indicated in the plot, are

features which are useful in a broad range of applications. Today’s health applications

include monitoring patients with portable ECG recording devices that are equipped

with a transmitter in order to communicate health related information and to trigger

alarms in case of life threatening situations. However, these devices suffer severely

from patient motion-induced artifacts. While much research has been conducted to

remove time-invariant noise from ECG signals, the removal of motion-induced artifacts

remains an unsolved problem [130].
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Figure 4.1: The ECG is a powerful non-invasive tool which contains infromation that
helps in the diagnosis of a wide range of heart conditions. The P-,Q-,R-,S-,T- waves, and
corresponding intervals, are features which are useful in a broad range of applications.

In this Section, we therefore briefly describe a method that we introduced in [130],

which removes these artifacts by obtaining an estimate of the artifacts in the stationary

wavelet domain (SWD) [143]. The idea of our method is to estimate a signal ŝoutliers,

that represents the motion-induced artifacts and impulsive noise. This estimate is then

subtracted from the recorded signal to obtain a cleaned ECG signal, i.e.,

ŝcleaned = srecorded − ŝoutliers. (4.21)

The additive outlier model is well motivated in this case, since motion-induced artifacts

are additive disturbances. We use the diversity of the coefficient sequences obtained by
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the stationary wavelet transform (SWT) and a multi-resolution thresholding method-

ology based on robust estimation to find ŝoutliers. The scheme of the algorithm is shown

in Figure 4.2. A real-data illustration of the signals given in Eq. (4.21), is given in

Figure 4.3. In this case, the motion artifacts follow a patchy additive outlier model.

Figure 4.4 plots an example of the fifth detail coefficient d5 of the stationary wavelet

transformed data from Figure 4.3 (top). Much of ŝoutliers is concentrated in this coef-

ficient, while signal content is reduced to a simple structure, which allows for a good

separation of signal and artifacts. For an extensive performance analysis and an appli-

cation to R-peak detection based on simulated and real measured data, the interested

reader is referred to [130].
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Figure 4.2: The ECG motion artifact removal algorithm performs an estimation of the
artifact signal via outlier detection in the stationary wavelet domain (SWD). The data is
transformed to allow for better separability of the signal and artifact components. Robust
estimation is used to detect the QRS complexes and to set the thresholds.
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Figure 4.3: (top) An example of a recorded ECG signal srecorded. (middle) An estimate
ŝoutlier of the motion artifact signal obtained by the multi-resolution thresholding algorithm.
(bottom) The artifact cleaned signal ŝcleaned, see Eq. (4.21).
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Figure 4.4: An example of the 5th detail coefficient d5 of the stationary wavelet transformed
ECG measurement. The thresholds are based on robustly estimated averages of maxima
and minima calculated within segments of one second length. Each coefficient series has
independent thresholds, which allows for exploiting the diversity of the signal and artifact
components in the stationary wavelet domain.

4.3.2 Artifact Detection in the Empirical Mode Domain for

the Forecasting of Intracranial Pressure (ICP) Signals

The monitoring of intracranial pressure (ICP) signals is common practice for patients

who suffered a traumatic brain injury. A danger for these patients is that the primary

brain damage, caused by the accident, can lead to a secondary pathophysiological

damage, which usually occurs together with a significantly high or low ICP value.

Currently, manual observation and judgment of the ICP signals by the nurses is used

to predict whether ICP levels are likely to raise or drop significantly and to call a doctor

who gives medication. This method risks human errors and suffers from ineffectiveness

[144]. Accurate ICP forecasting enables active and early interventions for more effective

control of ICP levels. The major difficulties that arise in this application are (i) the

non-stationarity of ICP signals, which is too high to be canceled by methods like time-

differentiation or time-segmentation and (ii) the inevitable artifacts, which are caused

by motion of the patients or by equipment errors [145]. Figure 4.5 plots an example of

an ICP measurement, where some artifacts are highlighted with red crosses.

In this Section, we briefly present a method that we introduced in [131] which uses

combined artifact detection and robust estimation after a data transformation into the

empirical mode domain. The empirical mode decomposition (EMD) [146] decomposes

a non-stationary ICP signal x into a set of second order stationary components via
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Figure 4.5: A ten hour excerpt of a typical ICP measurement (blue); artifacts highlighted
by red crosses.

x =
M∑

m=1

cm + rM .

Here, (c1, c2, . . . , cM)T must satisfy two conditions: (i) the number of extrema and the

number of zero crossings must either equal or differ at most by one; and (ii) at any point,

the mean value of the envelope defined by the local maxima and the envelope defined

by the local minima is zero [146]. Figure 4.6 gives an example of a the decomposition

of a one hour excerpt of an ICP signal into (c1, c2, . . . , cM , rM)T. Only the first two

IMFs and residual from the EMD are plotted.

Figure 4.7 shows an overview of the algorithm we proposed in [131]. The steps are

briefly explained in the sequel, for full details, see [131]. The artifact detection and

signal reconstruction consists of two artifact detectors, whose decisions ξ1 and ξ2 are

’or’-fused to yield the overall outlier label ξout.

In Artifact Detector 1, x is filtered with an i-th order median filter with output x̃. The

residuals given by e1 = x− x̃ and a 3–σe1 rejection rule yields the outlier label ξ1.

Artifact Detector 2 works in the EMD, i.e., x is decomposed into (c1, c2, . . . , cM , rM)T

and then, the following steps are performed:

For every row in (c1, c2, . . . , cM , rM)T:
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Figure 4.6: (top) one hour excerpt of an ICP signal. (bottom) First two intrinsic mode
functions (IMF) and residual from empirical mode decomposition (EMD).

1. Robustly estimate its integrated autoregressive moving-average (ARIMA) model

order (p, d, q).

2. Estimate ARMA(p̂, q̂) parameters with median-of-ratios-estimator (MRE), see

Section 4.5.3.

3. Apply an ARMA(p̂, q̂) filter-cleaner with output xf , see Section 4.5.4.

4. Obtain overall residuals ǫi =→ x− xf , i = 1, . . . , k.

The back-transform is simply the summation e2 =
∑k

i=1 ǫi, with corresponding overall

residual scale σ̂e2 =
∑k

i=1 σ̂i. Finally, a 3–σe2 rejection rule yields the outlier label ξ2.
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The signal reconstruction is performed via

ŝR(n) =

{
x(n) ξout(n) = 0

x̃(n) ξout(n) = 1.

For the robust forecasting, the following steps are performed:

1. Decompose ŝR with the EMD.

2. For every component, robustly estimate its ARIMA model.

3. Compute a robust ARIMA forecast with the MRE, as described in [124].

4. Sum all forecast components up to obtain the overall forecast signal ŝF,curr.

In some cases, long patches of outliers occur. For this reason, forecasts based on

some data blocks are much worse than others, even when using robust methods. Our

suggested solution is to:

1. Save the current forecast in a buffer:

→ forecasts ŝF,curr and ŝF,curr-D, which overlap on an interval of length D.

2. Assess forecasting quality: compute (non-robust) sample standard deviations of

ŝF,curr and ŝF,curr-D on D and compare them to a robustly estimated scale of

measurements x(n) for which ξout(n) = 0.

3. Final forecast ŝF : prediction whose standard deviation is closer to a robust scale

estimate.

Figure 4.7: A schematic overview of the intracranial pressure signal forecasting algorithm
that is based on outlier detection, robust ARIMA estimation and a data transformation into
the empirical mode domain.

Figure 4.8 plots three real-data forecasts for (top) a measurement with a small amount

of artifacts, (middle) a highly contaminated measurement and (bottom) a highly con-

taminated measurement with quickly varying ICP level. Our method is compared to a

recently proposed algorithm by [145], which becomes unreliable in presence of outliers.

For an extensive performance evaluation based on simulated data, the interested reader

is referred to [131].
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Figure 4.8: Three real-data examples of ICP measurements (blue) and on-line forecasts of
the proposed and a neural networks based existing method [145] (green).
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4.3.3 Limitations of the Outlier Detection Approach

While the outlier detection and data cleaning approaches are highly useful in practical

situations, as shown in the examples above, performance can be usually only measured

via extensive simulations. No formal statements on robustness or optimality can be

made. Furthermore, we will show for the example of ARMA parameter estimation that

methods based on outlier detection can be outperformed by sophisticated robust meth-

ods. Nevertheless, we believe that the research areas of outlier detection and robust

statistics are highly related and can be used together in many practical situations.

4.4 Robustness Theory for Dependent Data

There are some significant difficulties that appear, when analyzing the robustness of

estimators for dependent data.

4.4.1 Influence Function for Dependent Data

The IF describes the bias impact of an infinitesimal contamination at an arbitrary

point on the estimator, standardized by the fraction of contamination. There exist

two definitions of the influence function for the dependent data case [147], [148], which

differ, but are mathematically related, see [8] for a comparative discusssion. The influ-

ence functions of some robust estimators in the case of an AR(1) have been evaluated

theoretically in [124,147], however, there is no evaluation for an autoregressive process

of order superior than p = 1 or for an ARMA(p, q) process with p 6= 0 and q 6= 0. This

is explained by the complexity introduced by the correlation, where for an AR(p), for

example, one must consider the joint distribution of (Yn, Yn−1, . . . , Yn−p).
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For dependent data, the influence functions also change depending on the outlier model,

which makes the definition more general than in the i.i.d. case, since a contamination

process does not have to be represented by a Dirac distribution. It can, for example,

be a Gaussian process with a different variance and correlation [124, 147].

In this Section, we use the definition of the influence function by [147] which is given

by the functional derivative at FX

IF(F ε
X,ξ,W ; θ̂) = lim

ε↓0

1

ε

(
θ̂(F ε

Y )− θ̂(FX)
)
. (4.22)

Here, F ε
X,ξ,W is the joint distribution of the processes Xn, ξn and Wn. According to

this definition, the influence function is a functional on a distribution space. Influence

functions for LS and some robust estimators for the AR(1) and MA(1) models are

computed in [147]. We apply this definition to compute the influence functions of some

existing and a newly proposed estimator in Section 4.6.1.2.

4.4.2 Maximum Bias Curve (MBC) for Dependent Data

The MBC gives an idea on the maximum asymptotic bias of an estimator w.r.t. a

fraction of contamination ε. For dependent data, the MBC is defined as for the i.i.d.

case, but also depends on the outlier model. Its definition is analogous to the i.i.d. data

case, however, it is more complex and harder to compute for the same reasons as for

the influence function. The MBC is generally obtained using Monte Carlo simulations.

As described in [8], the maximum bias curve can be computed by

MBC(ε) = c
sup

∣∣∣θ̂N(ε, c)− θ

∣∣∣ , (4.23)

where θ̂N(ε, c) is the worst-case estimate of θ for a given sample size N and contam-

ination probability ε. c is a deterministic value that is varied on a grid such that for

each value of c, the distribution of Wn is given by P (wn = −c) = P (wn = c) = 0.5. We

perform a maximum bias analysis of some existing and a newly proposed estimator in

Section 4.6.1.3.
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4.4.3 Breakdown Point for Dependent Data

The definition of the BP in the correlated data case has not been established in the

literature, yet [149]. This is partly due to the fact that outliers may not drive the bias

of the estimate to infinity, but to a border of the parameter space. Furthermore, the

point that the bias converges to, depends on the type of outlier. E.g., when we consider

an AR(1) process, additive independent outliers will drive the estimate of a to zero.

An intuitive definition of the breakdown point has been given by [149]. It is that

the breakdown occurs for a certain percentage of outliers, beyond which the estimator

gets stuck at some value (fixed maximum bias) even when adding more outliers. This

definition is useful in many practical situations to estimate the breakdown point. BP

analysis for some existing and a proposed estimator of ARMA models is given in

Section 4.6.1.4.

4.5 Robust Estimation of ARMA Models

In this Section, we discuss the estimation of ARMA(p, q) models in the presence of

outliers. This consists in estimating the parameter vector θ = (a1, . . . , ap, b1, . . . , bq)
T

and the innovations scale σZ based on the contaminated observations y1, . . . , yN . In

the sequel, we describe the propagation of outliers that makes direct application of

robust estimators designed for the i.i.d. case impossible. Then, we briefly review some

existing robust estimators and introduce and analyze a novel estimator which we call

the BIP τ -estimator.

4.5.1 Outlier Propagation

ARMA parameter estimation is often based on fitting a model, such that some measure

of the estimated innovations sequence Ẑn is minimized. While these approaches work

fine for cases when the observed process Yn equals the true process Xn, in presence of

additive or replacement outliers, as given in Eqs. (4.17) and (4.2.3.2), a single outlier

in the observations can spoil the estimates of multiple innovations. In the worst case,

a single outlier can even contaminate an infinite number of subsequent innovations

estimates, making the straight forward adaptation of robustness concepts, known from

the independent data case impossible. E.g., the BP of M-, GM-, τ , S- or MM-estimators
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quickly decreases for increasing autoregressive orders p and even equals zero for moving-

average orders q > 0 [8].

Figure 4.9 illustrates the propagation of outliers for an ARMA(2,1) model with parame-

ters a = (−0.39,−0.3)T , b = 0.9. The top plot shows that the estimates (red-dashed) of

the innovations series obtained by inverse filtering a realization of the clean ARMA(2,1)

are indistinguishable form the true innovations process (blue). The lower plot, on the

other hand depicts the innovations series estimates derived from an ARMA(2,1) that

is contaminated by additive outliers. The red crosses mark the additive outlier posi-

tions, where, for this example, the additive outliers are equally spaced with amplitude

10. The “smearing” of a single outlier onto multiple innovations estimates can be seen

when comparing the true innovations process Zn with the innovations estimates that

are obtained by inversely filtering the observations Yn with the true parameters of the

ARMA(2,1) model. It can be clearly seen that robust estimators, as known from the

independent data case, are only applicable, if they include a mechanism that prevents

the “smearing” of a single outlier onto multiple innovations estimates. Sections 4.5.4

and 4.5.5.1 describe two possible mechanisms to suppress the propagation of outliers.

Figure 4.11 displays the innovations estimates using the bounded influence propagation

model that is described in Section 4.5.5.1.

In the sequel, we briefly revisit some existing robust estimators for ARMA models.

4.5.2 Cleaned Non-Robust Estimator

The cleaned non-robust estimator is a simple robust method that is frequently used

among practicing engineers [7]. It uses classical estimation after a ’3-σ’ rejection. The

’3-σ’ rejection is a simple rule of thumb that rejects observations beyond three times the

standard deviation estimated from the underlying signal. Its justification is explained

by the fact that for Xn ∼ N (µ, σ2), the probability of Xn taking a value above 3σ

is unlikely, i.e., P (|Xn − µ| > 3σ) = 0.003. Robust estimates of the mean µ and the

standard deviation σ should be used to avoid the masking effect, which means that

some outliers will be masked or will not be detected because of other outliers that

inflate the estimate of σ and cause a bias to µ̂. After rejecting outliers, a classical

estimator that handles missing observations, e.g., [150], is used.
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Figure 4.9: True innovations process Zn (blue); innovations estimates using ARMA(2,1)
model fit with true parameters a = (−0.39,−0.3)T , b = 0.9 (red-dashed); additive outlier
positions (red). (top) innovations derived from a clean ARMA(2,1) (bottom) illustration of
the “smearing effect” of additive outliers.

4.5.3 Median-of-Ratios-Estimator (MRE)

The median-of-ratios-estimator (MRE) [7, 124] uses robust autocorrelation estimates

based on sample medians coupled with a robust filter-cleaner, which rejects outly-

ing observations. This improves the efficiency and prevents outlier propagation. An

ARMA(p,q) model is estimated by the MRE as follows:

1. Fit a high order AR(p∗) using the median of Yn/Yn−k to estimate the correlation.

Here, the order p∗ > p is obtained by a robust order selection criterion.
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2. Discard the outliers by filtering the signal using a robust filter-cleaner [116] with

the estimated parameters of the high order AR(p∗) and apply a classical estima-

tion method of ARMA models that handles missing data [150].

The method offers good performance in practice and is easy to implement. However,

its BP is limited to 0.25 [7, 124].

4.5.4 Robustly Filtered Estimators

Robust filters [7,116,120,151] work in the state-space domain and bound the propaga-

tion of outliers by filtering the innovation residuals.

4.5.4.1 State-Space Model for Autoregressive Processes

Given the definition of an AR(p) process from Eq. (4.2), the so-called state equation

relates the unobservable p-dimensional state vector Xn = (Xn, Xn−1, . . . , Xn−p+1)
T to

the previous state Xn−1 via the state transition matrix A:

Xn = AXn−1 + Zn. (4.24)

Here, Zn = (Zn, 0, · · · , 0)T, with R = σ2
Z and

A =




a1 · · · ap−1 ap
1 · · · 0 0
...

. . .
...

...
0 · · · 1 0


 .

The measurement equation represents the contaminated observations, as given in

Eq. (4.17).

4.5.4.2 Approximate Conditional Mean Filter for Autoregressive Models

The approximate conditional mean (ACM) type filter, see [116, 120, 151] has as its

output a filter-cleaned version of Yn, henceforth denoted as Y f
n , which is an estimate of

Xn, given contaminated observationsYn = (Yn, Yn−1, . . . , Yn−p+1)
T. The state recursion

of the ACM filter is given by

X̂n|n = AX̂n−1|n−1 +
Σ1
n

σ2
n

σn ψ

(
Yn − Ŷn|n−1

σn

)
,
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where Σ1
n is the first column of the prediction error covariance matrix Σn, which is

computed recursively via

Σn+1 = AP nA
T +Q. (4.25)

Here,

Q =




σ̂2
Z 0 · · · 0
0 0 · · · 0
...

. . .
...

...
0 · · · 0 0




and the filtering error covariance matrix P n is given by

P n = Mn −W
(
Yn − Ŷn|n−1

σn

)
Σ1
nΣ

1 T

n

σ2
n

.

The weighting function W (x) = ψ(x)
x

and ψ (·) is usually chosen as Hampel’s three-part

re-descending [116, 120]. The one-step prediction error variance σ2
n is the first element

of Σ1
n. Furthermore, Ŷn|n−1 denotes the robust one step ahead prediction of Yn and is

given by the first element of AX̂n−1|n−1. Finally, the robustly filter-cleaned process Y f
n

at time n is given by the first element of X̂n|n.

An example of a contaminated AR(2) process Yn, n = 1, . . . , N , along with the un-

observable process Xn and its estimate Y f
n obtained by the filter-cleaner is given in

Figure 4.10.

4.5.4.3 Approximate Conditional Mean Filter for ARMA Models

For ARMA(p,q) models, it has been shown [8] that the state-space model can be

extended such that for a state vector Xn of dimension r = max(p, q + 1) × 1, the

following state-space representation holds

Xn = AXn−1 +BZn. (4.26)

Here, B = (1,−b1,−b2, . . . ,−br−1)
T with bk = 0 for k > q in case p > q. The state

transition matrix becomes

A =

[
ad−1 Id−1

ad 0d−1

]

with ad−1 = (a1, . . . , ad−1) and ak = 0 for k > p. The filter recursions are computed

analogously to the AR case. However, implementing this filter for ARMA parame-

ter estimation requires a good robust initial value and obtaining stable and invertible
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Figure 4.10: (top) example of a contaminated AR(2) process Y = X + V along with
the unobservable process X. (bottom) the estimate Yf obtained by the filter-cleaner that
uses the true parameters a = (−0.5, 0.1)T as filter coefficients. In this example, V is an
isolated additive outlier process of constant amplitude ξ = 10, random sign and contamination
probability ε = 0.1.

models is somewhat difficult. A suggestion has been given in [8], an alternative sug-

gestion is to adapt reduced statistics estimators to robust estimation, analogously to

the methodology described in Section 4.6.2.2.

The filtered innovation estimate Zf (θ) from the one-step robust forecast obtained from

robust filters for ARMA models

Zf
n(θ) = Yn +

p∑

k=1

akY
f
n−k(θ)−

q∑

k=1

bkσnψ

(
Zf
n−k(θ)

σn

)
. (4.27)
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Here, Y f
n−k is the filter-cleaned value for Yn−k and is given by

Y f
n−k = Yn−k − Zf

n−k(θ) + σn−kψ

(
Zf
n−k(θ)

σn−k

)
. (4.28)

4.5.5 Bounded Influence Propagation (BIP) Estimators

An auxiliary model to robustly estimate ARMA models is the bounded innovation

propagation autoregressive moving-average (BIP-ARMA) model that has been recently

introduced by Muler et al. [123].

4.5.5.1 Bounded Influence Propagation (BIP) Models

Xn +

p∑

k=1

akXn−k = Zn +

r∑

k=1

(
(bk − ak)σZψ

(
Zn−k
σZ

)
+ akZn−k

)
(4.29)

Here, r = max(p, q); if r > p, ap+1 = . . . = ar = 0, while if r > q, bq+1 = . . . = br = 0;

σZ is a robust M-scale of Zn which coincides with the standard deviation when the

distribution of Zn is Gaussian. ψ(x) is an odd, bounded and continuous function. The

models described by Eq. (4.1) are included in Eq. (4.29) by setting ψ(x) = x. For

statistical properties of the BIP-ARMA model, cf. [123].

By applying the definition in Eq. (4.5), the MA(∞) representation of Eq. (4.29) be-

comes

Xn = Zn +

∞∑

k=1

b∞k σZψ

(
Zn−k
σZ

)
.

Figure 4.11 displays the innovations estimates for the ARMA(2,1) model with parame-

ters a = (−0.39,−0.3)T , b = 0.9 discussed in Section 4.5.1 fit with a BIP-ARMA(2,1)

model with the same parameters. The smearing effect of the outliers is significantly

suppressed compared to using the ARMA(2,1) model, cf. Figure 4.9.

4.6 BIP τ-estimators

In this Section, we propose a novel estimator, the BIP τ -estimator, which is based on

the BIP model. We analyze the robustness and asymptotic properties and provide a
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Figure 4.11: True innovations process Zn (blue); additive outlier positions (red); innovations
estimates using BIP-ARMA(2,1) model fit with true parameters a = (−0.39,−0.3)T , b = 0.9
(red-dashed).

fast algorithm to compute stable and invertible ARMA models. We also compare the

proposed estimator to some existing estimators and provide real-data examples that

illustrate its applicability to real-world problems. The proposed BIP τ -estimator is

similar in its statistical properties to the BIP MM-estimator by [123]. An advantage

over the MM-estimator is that the τ -estimator, inherently with the estimate of θ,

provides us with a highly efficient and robust τ -scale of the innovations sequence,

which is useful, e.g., in model order selection, see Section 4.7.

4.6.1 BIP τ-estimators: Asymptotic and Robustness Proper-

ties

4.6.1.1 Consistency

It has been shown by [123] that under the following assumptions an S-estimate is

strongly consistent:

A1S Yn, n ∈ Z, is a stationary and invertible ARMA process, where polynomials A(z)

and B(z) do not have common roots.

A2S The innovations Zn, n ∈ Z, have an absolutely continuous distribution with a

symmetric and strictly uni-modal density and EF [max{log(|Zn|, 0)}] <∞.
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A3S ρ(x) is continuous, even and non-constant and non-decreasing in |x| with sup(ρ) >

b and ψ(x) is bounded and continuous.

In the sequel, we prove the consistency of the τ -estimate under the Gaussian assump-

tion. The τ -estimate has been shown to be a linear combination of two S-estimates

where the weight Wn(θ), Eq. (2.14), depends on the data [9]. When the innovations Zn

follow a Gaussian distribution, asymptotically, Wn(θ) with θ = (a,b) equals 0. There-

fore, since the scale estimate σ̂M1 in Eq. (2.11) is consistent for the ARMA model,

see [123], the τ -estimate becomes an S-estimate which satisfiesong A3S, as long as

ρ2(x) is chosen accordingly. This proves that the τ -estimate is strongly consistent

under the following assumptions:

A1 Yn, n ∈ Z, is a stationary and invertible ARMA process, where polynomials A(z)

and B(z) do not have common roots.

A2 The innovations Zn, n ∈ Z follow a Gaussian distribution with

EF [max{log(|Zn|, 0)}] <∞.

A3 ρ2(x) is continuous, even and non-constant and non-decreasing in |x| with
sup(ρ2) > b and ψ2(x) is bounded and continuous.

The assumption of ρ2(x) being non-constant is only required to ensure that for all σ

EF

[
ρ

(
Zn − µ
σ

)]
(4.30)

has a unique minimum at µ = 0. In practice, this condition on ρ2(x) may be relaxed,

as long it is ensured that the minimum at µ = 0 is found. Otherwise, the estimates

will converge with probability 1 to µ1 6= 0.

Asymptotic equivalence of the S-estimates under an ARMA model and the S-estimates

of a BIP-ARMA has been established by [123]. Following the same steps, the asymp-

totic equivalence of the τ -estimates under an ARMA model and the τ -estimates of a

BIP-ARMA is given as long as A1, A2, A3 and

A4 P (Zn ∈ C) for any compact C,

A5 ψ(x) in Eq. (4.29) is odd, bounded and continuous,

hold.
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4.6.1.2 Influence Function

As described in Section 4.4, the influence function in the dependent data case depends

on the type of outlier model. Furthermore, due to the dependence of the variables in-

volved in the joint probability distribution function, computing the influence functions

for orders p > 1 or q > 1 quickly becomes infeasible. However, to obtain an impression

of the robustness of the BIP τ -estimator, we compute the influence function for the

AR(1) model in the case of additive isolated outliers, see Section 4.2.3.

With the definition of the influence function by [147], and the equivalence given in

Eq. (2.15), following the same steps as taken for M-estimators in [147], under the

assumption that

A6 ψτ (x) is bounded, odd and continuous and d
dx
ψτ (x) is bounded and continuous,

the influence function of the τ -estimator for AR(1) model is given by

IF(ξ; âτ , a, FX1,X0,V0) =

√
1−a2

EFU
[Uψτ (U)]

EFX1,X0,V0

[
(X1+aX0−aV0)ψτ ((X0+V0)

√
1−a2)

]
,

where U is a standard Gaussian random variable. The computation of the influence

function requires evaluation of the following integrals:

E0 =
∫ ∞

−∞

uψτ (u)
1√
2π
e−

u2

2 du,

E1 =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(x1 − ax0)ψτ ((x0+v0)
√
1−a2)fX1,X0(x1, x0; a)fV0(v0)dx1dx0dv0,

E2 =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

v0ψτ ((x0+v0)
√
1−a2)fX1,X0(x1, x0; a)fV0(v0)dx1dx0dv0,

with

fX1,X0(x1, x0; a) = fX1|X0(x1|x0; a)fX0(x0; a),

where

fX1|X0
(x1|x0; a) =

1√
2πσZ

e
− 1

2
(x1−ax0)

2

σ2
Z ,
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fX0(x0; a) =

√
1− a2√
2πσZ

e
− 1

2

x20(1−a2)

σ2
Z ,

and to compute IF(ξ; âτ , a, FX1,X0,V0) as a function of the outlier magnitude ξ, [147]

suggests

fV0(v0) = δ(ξ),

which yields additive outliers of constant value ξ. The influence function of the τ -

estimator for the AR(1) with isolated additive outliers has the following form:

IF(ξ; âτ , a, FX1,X0,V0) =

√
1−a2
E0

(E1 − aE2).

From Eqs. (4.6.1.2), (4.6.1.2) and (4.6.1.2), it can be seen that as ξ → ∞,

IF(ξ; âτ , a, FX1,X0,V0) remains bounded, as long as ψτ (ξ → ∞) = 0, which holds, e.g.,

when ψ1(x) and ψ2(x) follow Eq. (2.8). Figure 4.12 plots IF(ξ; âτ , a, FX1,X0,V0) and

IF(ξ; âML, a, FX1,X0,V0) for a = −0.5 in dependence of the outlier magnitude ξ. Clearly,

IF(ξ; âτ , a, FX1,X0,V0) is bounded, continuous and re-descending to zero as ξ →∞, while

IF(ξ; âML, a, FX1,X0,V0) is unbounded.
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Figure 4.12: Example of the influence functions of the τ -estimator and the Gaussian ML-
estimator for the AR(1) model with a = −0.5 and independent additive outliers of magnitude
ξ. The parameter a was chosen to be comparable to [147].

It can be proved [123] that the influence functions of robust estimates under the ARMA

model and under the BIP-ARMA model asymptotically coincide. Therefore, the in-

fluence function computed in Eq. (4.6.1.2) is the influence function of the BIP-AR(1)

τ -estimate. However, because the influence function only measures robustness against

infinitesimal contamination, one should consider further measures of robustness, which

is done in the sequel. These measures show that the robust BIP estimates outperform

the ARMA estimates for a positive fraction of outlier-contamination.
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4.6.1.3 Maximum Bias Curve (MBC)

In practice, the MBC is computed by a Monte Carlo procedure [8, 123]. The MBC of

the BIP τ -estimator for the AR(1) model and independent additive outliers is plotted

in Figure 4.15. Figures 4.13 and 4.14 plot the MBC of the Gaussian ML-estimator and

the Median-of-Ratios-estimator for comparison. To be comparable to [8], p. 306, we

chose a = 0.9 and set N = 2000. c was varied from 0 to 600 and ε from 0 to 0.5.

The MBC was estimated by

MBC(ε) = sup
c
{|â(N, ε, c)− a|} . (4.31)

We also define the Median BC

Median BC(ε) = median {|â(N, ε, c)− a|} (4.32)

and the Quantile BC

QxBC(ε) = Qx {|â(N, ε, c)− a|} . (4.33)

Here, Qx means that x percent of the sorted data is to the left of Qx. Therefore, e.g.,

Q75BC(ε) represents the MBC obtained in 75 % of the cases for varying c and fixed ε.

Q50BC(ε) corresponds to Eq. (4.32) and Q100BC(ε) is the MBC(ε) given in Eq. (4.31).

4.6.1.4 Breakdown Point

As discussed in Section 4.4.3, the concept of the BP is not fully established in dependent

data. For the AR(1) model and additive outliers, one can estimate the BP by evaluating

the bias curves. This yields the following results:

• The BP is the value of ε < ε0 with MBC(ε0)− a = 0.

• The definition by [149] is also fulfilled, i.e., MBC(ε ≥ ε0) does not change.
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Figure 4.13: Example of the bias curves of the Gaussian ML-estimator for the AR(1) model
with a = 0.9 w.r.t. the fraction of contamination ε. The MBC; the Median BC, Q75BC(ε)
and Q25BC(ε), i.e., the BC maintained by 75 % and 25 % of the data, respectively. The
parameter a was chosen to be comparable to [8], p. 306.
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Figure 4.14: Example of the bias curves of the MRE for the AR(1) model with a = 0.9
w.r.t. the fraction of contamination ε. The MBC; the Median BC, Q75BC(ε) and Q25BC(ε),
i.e., the BC maintained by 75 % and 25 % of the data, respectively. The parameter a was
chosen to be comparable to [8], p. 306.
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Figure 4.15: Example of the bias curves of the BIP τ -estimator for the AR(1) model with
a = 0.9 w.r.t. the fraction of contamination ε. The MBC; the Median BC, Q75BC(ε) and
Q25BC(ε), i.e., the BC maintained by 75 % and 25 % of the data, respectively. The parameter
a was chosen to be comparable to [8], p. 306.

• A further interesting observation is that for ε ≥ ε0, QxBC(ε) coincides for all

values of x.

Figure 4.13 clearly reveals that the BP of the Gaussian ML-estimator equals zero, since

all three conditions are fulfilled. For the MRE, evaluating Figure 4.14 shows, that in

this case, the BP ≈ 0.35. For the proposed BIP τ -estimator, evaluating the bias curves

in Figure 4.14 yields BP ≈ 0.5, which is the maximally possible BP.

4.6.2 BIP τ-estimators: Fast Algorithm to Obtain Stationary
and Invertible ARMA Estimates

In this Section, we describe an algorithm to robustly compute ARMA model parameter

estimates which yield stationary and invertible ARMA models. In the first step, the

parameters of a long AR model are computed. Robust AR model order selection for

this step is discussed in Section 4.6.2.1. In the second step, from the long AR model,

we propose an ARMA parameter estimator based on reduced statistics. This estimator

compares favorably to computing an ARMA estimate with missing data after outlier

detection based on the long AR model. We also illustrate with some simulated data

examples that the proposed estimator outperforms a set of existing robust estimators.
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4.6.2.1 Estimating the AR Model Parameters

In the sequel, we show how to compute BIP τ -estimates for the AR(p) model. Our al-

gorithm applies a robust Durbin-Levinson type procedure, similar to the one described

in [8], where the non-robustness sources of the standard Durbin-Levinson method are

eliminated. We begin by computing the AR(1) as follows:

1. For −1 < ζ < 1, compute:

(i) The AR(1) innovations estimate Z(1)(ζ) = (Z
(1)
2 (ζ), . . . , Z

(1)
N (ζ))T, see

Eq. (4.2) with p = 1, which is recursively defined for n = 2, . . . , N by

Z(1)
n (ζ) = Yn + ζYn−1.

(ii) The BIP-AR(1) innovations estimate ZBIP(1)(ζ) =

(Z
BIP(1)
2 (ζ), . . . , Z

BIP(1)
N (ζ))T, see Eq. (4.29) with p = 1, q = 0, which

is recursively defined for n = 2, . . . , N by

ZBIP(1)
n (ζ) = Yn + ζYn−1 − ζZBIP(1)

n−1 (ζ) + σ̂τ (Z
BIP(1)(ζ))ψ

(
Z

BIP(1)
n−1 (ζ)

σ̂τ (ZBIP(1)(ζ))

)
,

where

σ̂τ (Z
BIP(1)(ζ)) =

σ̂τ (Y)

1 + γ2
∑∞

k=1 b
∞
n (ζ)

. (4.34)

Here, σ̂τ (Y) is the τ -estimate of the scale (see Eq. (2.11))of Y =

(Y1, . . . , YN)
T, b∞(ζ) = (b∞1 (ζ), . . . , b∞∞(ζ)) is the MA(∞) representation

of the AR(1) with a1 = ζ and γ2 = E[ψ(X)]2, when the distribution

of X is standard Gaussian. In practice, one approximates b∞(ζ) ≈
(b∞1 (ζ), . . . , b∞q0 (ζ)), where q0 is a sufficiently large number.

2. Compute σ̂τ (Z
(1)(ζ)), see Eq. (2.11), and σ̂τ (Z

BIP(1)(ζ)), see Eq. (4.34). In our

algorithm, for the estimation of σ̂M1 , we use a biweight M-estimate of scale, which

is computed by the iterative algorithm described in [8] pages 40-41.

3. Find −1 < ζ < 1 which minimizes σ̂τ (Z
(1)(ζ)) and σ̂τ (Z

BIP(1)(ζ)):

â1 = argmin
ζ

{
σ̂τ (Z

(1)(ζ)), σ̂τ (Z
BIP(1)(ζ))

}
. (4.35)

Figure 4.16 illustrates the estimation of a1 = −0.5 for σZ = 1 using simulated

data of length N = 1000. The top plot depicts the clean data case, i.e., Yn = Xn.

The bottom plot shows an example, where Yn = Xn + Vn and Vn contains 10 %

equally spaced additive outliers of amplitude 10. In this case, the τ -estimator
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based on the AR(1) model yields a biased estimate of a1 due to the propagation

of outliers, see Section 4.5.1. The τ -estimator based on the BIP-AR(1) model,

on the other hand, maintains a reliable estimate of a1. The overall estimate of

the proposed estimator is, in the case of additive outliers, given by the estimate

based on the BIP-AR(1) model. Figure 4.17 shows a detailed zoom into the

minimization of σ̂τ (Z
(1)(ζ)) and σ̂τ (Z

BIP(1)(ζ)) for the clean data case. It can be

noticed that the σ̂τ (Z
(1)(ζ)) curve lies below the σ̂τ (Z

BIP(1)(ζ)) curve, meaning

that the true AR(1) model is used. It has been shown by [123] for the BIP MM-

estimator, that in generarl, for the clean data case, the minimum is provided by

the ARMA model based estimator. The same holds for the τ -estimator.
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Figure 4.16: Example of finding −1 < ζ < 1 which minimizes σ̂τ (Z
BIP(ζ)) and σ̂τ (Z(ζ)) for

an AR(1) process with a1 = −0.5 and σZ = 1. (top) Yn = Xn clean data example; (bottom)
Yn = Xn + Vn, where Vn contains 10 % equally spaced additive outliers of amplitude 10.
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â1 = -0.487

Figure 4.17: Example of finding −1 < ζ < 1 which minimizes σ̂τ (Z
BIP(ζ)) and σ̂τ (Z(ζ)) for

an AR(1) process with a1 = −0.5 and σZ = 1. (top) Yn = Xn clean data example; (bottom)
A zoom into the region of interest shows that for the clean data the AR(1) model is used.

Since, in practice, finding −1 < ζ < 1 which minimizes Eq. (4.35) requires a grid

search, in the sequel, we present a suggestion to significantly speed up the algorithm.

We suggest to evaluate Eq. (4.35) on a coarse grid, e.g., using a step size of ∆ζ0 = 0.05

requires computing 41 τ -estimates of scale. In the next step, we model the true curves

σ̂τ (Z
BIP(ζ)) and σ̂τ (Z(ζ)) by a polynomial model estimated from σ̂τ (Z

BIP(ζ0)) and

σ̂τ (Z(ζ0)), with ζ0 = (−0.99, 0.99 + ∆ζ0, . . . , 0.99 − ∆ζ0, 0.99)
T. In practice, least-

squares estimation of the polynomials of degree five produced results which practically

did not differ to an evaluation performed on a finer grid. In this way, we are able to

reduce the computational costs roughly by the factor 2×length(ζfine)/length(ζ0). E.g.,

for ∆ζ0 = 0.05 and ∆ζfine = 10−3, the computational costs are approximately reduced
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by the factor 50.

To obtain a BIP τ -estimate for an AR(2), given â1,1 = â1 from the previous step, again

requires minimizing the τ -estimate of scale of two innovations estimates. These are:

(i) The AR(2) innovations estimate Z(2)(ζ) = (Z
(2)
3 (ζ), . . . , Z

(2)
N (ζ))T, see Eq. (4.2)

with p = 2, is recursively defined for n = 3, . . . , N by

Z(2)
n (ζ) = Yn + â2,1(ζ)Yn−1 + â2,2(ζ)Yn−2.

(ii) The memory two BIP innovations τ -estimate ZBIP(2)(ζ) =

(Z
BIP(1)
2 (ζ), . . . , Z

BIP(1)
N (ζ))T, which is recursively defined for n = 3, . . . , N

by

ZBIP(2)
n (ζ) = Yn + â2,1(ζ)X̂

BIP(2)
n−1 (ζ) + â2,2(ζ)X̂

BIP(2)
n−2 (ζ), n = 3, . . . , N,

where â2,1(ζ) = (1 − ζ)â1,1 and â2,2(ζ) = ζ come from the Durbin-Levinson

recursion, see Eq. (4.38). Here, X̂
BIP(2)
n−1 (ζ), is the BIP τ -prediction of Xn−1(ζ):

X̂
BIP(2)
n−1 (ζ) = Yn−ZBIP(2)

n−1 (ζ)+σ̂τ(Z
BIP(2)(ζ))ψτ

(
Z

BIP(2)
n−1 (ζ)

σ̂τ (ZBIP(2)(ζ))

)
, n = 3, . . . , N,

where σ̂τ (Z
BIP(2)(ζ)) is defined analogously to Eq. (4.34), but letting b∞(ζ) =

(b∞1 (ζ), . . . , b∞∞(ζ))T stand for the MA(∞) representation of the AR(2) process

with parameter vector a = (a1 = â2,1(ζ), a2 = â2,2(ζ))
T.

The BIP τ -estimates for an AR(2) are then obtained by

â2 = argmin
ζ

{
σ̂τ (Z

(2)(ζ)), σ̂τ(Z
BIP(2)(ζ))

}
. (4.36)

Figure (4.18) plots an exemplary contaminated AR(2) process Y = X + V along

with X̂BIP(2)(âτ ), which can be interpreted as an outlier-cleaned version of Y. V is

an isolated additive outlier process of constant amplitude ξ = 10 and random sign.

The contamination probability ε = 0.1. The true parameter vector is given by a =

(−0.5, 0.1)T, σZ = 1 and using simulated data of length N = 1000 for this example,

yields âτ (Y) = (−0.472, 0.085)T. For comparison, âML(Y) = (−0.066,−0.013)T and

âML(X) = (−0.48,−0.105)T. For visual clarity, we plot an excerpt of 100 samples.

Figure (4.19) illustrates the estimation a2 for a contaminated AR(2) process. In this

case, the τ -estimator based on the AR(2) model yields a biased estimate of a2 due to
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Figure 4.18: (top) Example of a contaminated AR(2) process Y = X + V along with
the unobservable true AR(2) process X. V is an isolated additive outlier process of constant
amplitude ξ = 10, random sign and contamination probability ε = 0.1. (bottom) X̂BIP(2)(âτ ),
which can be interpreted as an outlier-cleaned version of Y.

the propagation of outliers, see Section 4.5.1. The τ -estimator based on the BIP-AR(2)

model, on the other hand, maintains a reliable estimate of a2 = 0.085.

For a general AR(p) process, after estimating the AR(1) as described above, the same

steps as described for the AR(2) are performed for m = 2, . . . , p to find

âm,m = argmin
ζ

{
σ̂τ (Z

BIP(m)(ζ)), σ̂τ (Z
(m)(ζ))

}
(4.37)
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Figure 4.19: Example of finding−1 < ζ < 1 which minimizes σ̂τ (Z
BIP(2)(ζ)) and σ̂τ (Z

(2)(ζ))
for an AR(2) process with a = (−0.5, 0.1)T and σZ = 1. (top) Yn = Xn clean data example
(bottom) Yn = Xn + Vn, where Vn contains 10 % isolated additive outliers of amplitude 10
and random sign.

with the help of the Durbin-Levinson recursion:

âm,m =

{
ζ if n = m

âm−1,n − ζâm−1,m−n if 1 ≤ n ≤ m− 1,
(4.38)

where in Eq. (4.37),

ZBIP(m)
n (ζ) = Yn +

m∑

k=1

âm,k(ζ)X̂
BIP(m)
n−k (ζ), n = m+ 1, . . . , N, (4.39)
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with

X̂
BIP(m)
n−k (ζ) = Yn−k−ZBIP(m)

n−k (ζ)+σ̂τ(Z
BIP(m)(ζ))ψτ

(
Z

BIP(m)
n−k (ζ)

σ̂τ (ZBIP(m)(ζ))

)
, n = m+1, . . . , N,

and

Z(m)
n (ζ) = Yn +

m∑

k=1

âm,k(ζ)Yn−k, n = m+ 1, . . . , N. (4.40)

The final estimates are then given by âτ = (âm,1, âm,2, . . . , âm,m)
T from Eq. (4.37) and

Eq (4.38) with m = p.

4.6.2.2 Estimating the ARMA Model Parameters

In this Section, we describe a computationally attractive algorithm to robustly esti-

mate ARMA(p,q) models, such that stationary and invertible models are obtained.

The general idea is to derive the ARMA(p,q) parameters from a long AR(p0) model.

We estimate this model robustly with the BIP τ -estimator, as described in the previ-

ous Section. The final ARMA(p,q) parameter estimates are obtained by the reduced

statistics estimator, see Section 4.2.2.1, which minimizes a τ -estimate of scale.

Many simulation studies have been done to find a suitable choice for p0, i.e., the

intermediate AR order for the ARMA estimation. From a theoretical viewpoint, [136,

152], none of the existing criteria are able to select an intermediate AR order for which

the parameters are most accurate (rather than the model best suited for prediction). To

determine an appropriate value for p0, we propose to use robust model order selection

criteria, as will be described in Section 4.7. Adapting the results by [136, 152], we

divide the penalty factor by two, which can be made plausible by considering that a

factor of one gives the same weight to bias and variance contributions [136].

Depending on the procedure applied in the first stage to obtain an initial separation

into the AR and MA parts, we define the reduced statistics estimates of θ = (a,b) in

Eq. (4.1) to be:

a) θ̂
(AR)

τ := (â
(AR)
τ , b̂

(AR)
τ )T

with â
(AR)
τ := (â

(AR)
1 , . . . , â

(AR)
p )T and b̂

(AR)
τ := (b̂

(AR)
1 , . . . , b̂

(AR)
q )T, where the

parameters are estimated from â0
τ = (a1, . . . , ap0)

T using the “long AR”

estimator defined by Eq. (4.7) and Eq. (4.8).
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b) θ̂
(MA)

τ := (â
(MA)
τ , b̂

(MA)
τ )T

with â
(MA)
τ := (â

(MA)
1 , . . . , â

(MA)
p )T and b̂

(MA)
τ := (b̂

(MA)
1 , . . . , b̂

(MA)
q )T, where the

parameters are estimated from â0
τ = (a1, . . . , ap0)

T using the “long MA”

estimator defined by Eq. (4.9) and Eq. (4.10).

c) θ̂
(CO)

τ := (â
(CO)
τ , b̂

(CO)
τ )T

with â
(CO)
τ := (â

(CO)
1 , . . . , â

(CO)
p )T and b̂

(CO)
τ := (b̂

(CO)
1 , . . . , b̂

(CO)
q )T, where the

parameters are estimated from â0
τ = (a1, . . . , ap0)

T using the “long COV”

estimator defined by Eq. (4.11) and Eq. (4.12).

d) θ̂
(RI)

τ := (â
(RI)
τ , b̂

(RI)
τ )T

with â
(RI)
τ := (â

(RI)
1 , . . . , â

(RI)
p )T and b̂

(RI)
τ := (b̂

(RI)
1 , . . . , b̂

(RI)
q )T, where the pa-

rameters are estimated from â0
τ = (a1, . . . , ap0)

T using the “long RINV”

estimator defined by Eq. (4.13) and Eq. (4.14).

From this, we obtain eight different estimates of Z(θ):

(i) The ARMA innovations Z(θ̂τ ) = (Zp+1(θ̂τ ), . . . , ZN(θ̂τ ))
T by plugging

θ̂
(AR)

τ , θ̂
(MA)

τ , θ̂
(CO)

τ and θ̂
(RI)

τ into

Zn(θ̂τ ) = Yn +

p∑

k=1

âkYn−k(θ̂τ )−
q∑

k=1

b̂kZn−k(θ̂τ ) (4.41)

for n = p+ 1, . . . , N .

(ii) The BIP-ARMA innovations ZBIP(θ̂τ ) = (ZBIP
p+1(θ̂τ ), . . . , Z

BIP
N (θ̂τ ))

T by plugging

θ̂
(AR)

τ , θ̂
(MA)

τ , θ̂
(CO)

τ and θ̂
(RI)

τ into

ZBIP
n (θ̂τ ) = Yn +

p∑

k=1

âkX̂
BIP
n−k(θ̂τ )

+

r∑

k=1

(
(b̂k − âk)σ̂τ (ZBIP(θ̂τ ))ψτ

(
ZBIP
n−k(θ̂τ )

σ̂τ (ZBIP(θ̂τ ))

)
+ âkZ

BIP
n−k(θ̂τ )

)
,

(4.42)

where n = p + 1, . . . , N and r = max{p, q}, if r > p, ap+1 = . . . = ar = 0, while

if r > q, bq+1 = . . . = br = 0. Here,
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X̂BIP
n−k(θ̂τ ) = Yn−k − ZBIP

n−k(θ̂τ ) + σ̂τ (Z
BIP(θ̂τ ))ψτ

(
ZBIP
n−k(θ̂τ )

σ̂τ (ZBIP(θ̂τ ))

)
(4.43)

and

σ̂τ (Z
BIP(θ̂τ )) =

σ̂τ (Y)

1 + γ2
∑∞

k=1 b
∞
n (θ̂τ ))

, (4.44)

where σ̂τ (Y) is the τ -estimate of the scale of Y = (Y1, . . . , YN)
T, b∞(θ̂τ )) =

(b∞1 (θ̂τ )), . . . , b
∞
∞(θ̂τ )) is the MA(∞) representation of the ARMA(p, q) with pa-

rameter estimates θ̂τ and γ2 = Var[ψτ (X)], when the distribution of X is stan-

dard Gaussian.

Having computed these estimates, which, in the sequel, are denoted depending on the

procedure applied to obtain the initial separation into the AR and MA parts in the

first stage, the final BIP-ARMA(p, q) τ -estimate θ̂τ = (âτ , b̂τ )
T is given by

θ̂τ = argmin
θ̂τ

{
σ̂τ (Z

BIP(θ̂
(AR)

τ )), σ̂τ (Z
BIP(θ̂

(MA)

τ )), σ̂τ (Z
BIP(θ̂

(CO)

τ )), σ̂τ (Z
BIP(θ̂

(RI)

τ )),

σ̂τ (Z(θ̂
(AR)

τ )), σ̂τ (Z(θ̂
(MA)

τ )), σ̂τ (Z(θ̂
(CO)

τ )), σ̂τ (Z(θ̂
(RI)

τ ))
}
.

(4.45)

This means that the final parameter estimate is the one which minimizes the τ -estimate

of scale of the innovations of all candidates, evaluated both under the BIP-ARMA(p,q)

and the ARMA(p,q) model.

Additionally, the BIP τ -estimator intrinsically supplies us with a robust innovations

scale estimate

σ̂τ (Z
BIP(θ̂τ )) = min

{
σ̂τ (Z

BIP(θ̂
(AR)

τ )), σ̂τ (Z
BIP(θ̂

(MA)

τ )), σ̂τ (Z
BIP(θ̂

(CO)

τ )), σ̂τ (Z
BIP(θ̂

(RI)

τ )),

σ̂τ (Z(θ̂
(AR)

τ )), σ̂τ (Z(θ̂
(MA)

τ )), σ̂τ (Z(θ̂
(CO)

τ )), σ̂τ (Z(θ̂
(RI)

τ ))
}
.

(4.46)

The final innovations sequence estimate ZBIP(θ̂τ ) is obtained by using the results from

Eq. (4.45) and Eq. (4.46) in Eq. (4.42).
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4.6.3 Simulations

In this Section, we give some simulation results for the parameter estimation of dif-

ferent ARMA(p,q) that are contaminated by various outlier models. We compare the

proposed BIP τ -estimator to some existing robust and classical estimators.

4.6.3.1 AR(p) Models With Different Outlier Models

Figure 4.20 plots a realization of an isolated AO process V ε
n (see Eq. (4.17)), as used

in the simulations in this Section. In this setup, the probability of contamination is

ε = 0.1, the positions ξεn are Bernoulli distributed and the p.d.f. of Wn, n = 1, . . . , 500

is zero-mean Gaussian with σW = κσX , where κ = 10. In case of an IO process, V ε
n

contaminates the innovations process Zn, see (see Eq. (4.20)). For a clean process,

the observations Yn = Xn. In this setup, Xn follows a Gaussian AR(1) model with

parameters a1=0.5, σZ = 1, µZ = 0, N = 500.
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Figure 4.20: An example of a realization of an isolated AO process V ε
n (see Eq. (4.17)), as

used in the simulations in this Section.

Figure 4.21 plots the parameter estimates of six robust estimators and the classical

ML-estimator for three cases: clean data, innovations outliers and additive outliers for

100 Monte Carlo runs.

The estimators considered are:
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1. Gaussian ML: the maximum likelihood-estimator under the Gaussian assump-

tion.

2. 3-σ-Cleaned Gaussian ML: all samples with amplitude greater than 3-σ̂MAD are

rejected. A missing data ML-approach is performed with the remaining samples,

see Section 4.5.2.

3. MRE: median-of-ratios-estimator (MRE) [7, 124], as described in Section 4.5.3.

4. Ranks: the estimator proposed in [121]. It is obtained by minimizing a rank-

based residual dispersion function. According to [121], the estimator can have

the same asymptotic efficiency as ML-estimators and are claimed to be robust.

5. Filtered τ : the estimator proposed in [8]. It consists of an approximate condi-

tional mean robust filter combined with the τ -estimator, see Section 4.5.4. The

estimate minimizes the τ -estimate of the scale of Zf (θ̂), as given in Eq. (4.27)

with p = 1 and q = 0.

6. BIP τ : the proposed bounded influence propagation τ -estimator, as described in

full detail in Section 4.6.2.

Table 4.1 gives the Monte Carlo averaged MSE for parameter estimation. Breakdown

is highlighted with red bold font. Best results are highlighted by black bold font. From

this example, which is the simplest possible ARMA model, we conclude that for:

• The clean data case: highly efficient estimators (ML, BIP τ) do best, some loss in

optimality for non-efficient estimators. All estimators, for this setup are biased

a1=0.5, while â1 ≈ 0.4, even for N = 500.

• Innovations outliers: the ranks-based estimator yields best results, classical es-

timators are next followed by BIP τ . The overall conclusion is that innovations

outliers are not harmful to classical or robust estimators.

• Additive outliers: BIP τ performs best and sophisticated robust estimators out-

perform the 3-σ-cleaned Gaussian ML. Clearly, additive outliers cause the Gaus-

sian ML-estimator to break down. We also see that the robustness of the ranks-

based estimator [121] is only against heavy-tailed innovations and the estimator

breaks downs for a contamination level of ε = 0.1 (10 %) additive outliers.

Overall, it can be seen that the BIP τ -estimator is the only estimator that yields sim-

ilar results for all three scenarios. In two cases, it performs best, and for innovations
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Figure 4.21: An example of 100 MC runs of parameter estimation of an AR(1) with a1=0.5,
σZ = 1, µZ = 0, N = 500. The three cases considered are: (top) Clean data; (middle)
innovations outliers (IO); and (bottom) additive outliers (AO). In both outlier models ε = 0.1,
κ = 10. All estimators, for this setup are biased, even for N = 500.
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outliers, it is among the top three. Furthermore, estimators that robustify against

heavy-tailed innovations, e.g., [121] do not ensure any form of robustness against ad-

ditive outliers, which are most harmful to classical estimators.

MSE for Clean Data MSE for IO MSE for AO
Gaussian ML 0.0119 0.0109 0.2119

3-σ-cleaned Gaussian ML 0.0142 0.0200 0.0280
MRE 0.0132 0.0152 0.0229
Ranks 0.0118 0.0056 0.2125

Filtered τ 0.0145 0.0331 0.0237
BIP τ 0.0112 0.0144 0.0182

Table 4.1: Monte Carlo averaged (100 MC runs) MSE for parameter estimation of an AR(1)
with a1=0.5, σZ = 1, µZ = 0, N = 500. The three cases considered are: clean data, IO and
AO. In both outlier models ε = 0.1, κ = 10. Breakdown is highlighted with red bold font.
Best results highlighted by black bold font.

4.6.3.2 ARMA(p,q) Models with Additive Outliers

In this Section, we give two examples of estimating ARMA(p,q) models in presence of

additive outliers.

Example 1: ARMA(2,1)

For the first example, we consider the ARMA(2,1) process that, for the clean data case,

was investigated in [139]. Xn has the following parameters: a = (1.5, 0.625)T, b = −0.5,
σZ = 1, µZ = 0, N = 1000. The outliers follow the isolated additive outlier model

with V ε
n (see Eq. (4.17)), as used in the simulations in this Section. In this setup, the

probability of contamination is ε = 0.05, the positions ξεn are Bernoulli distributed and

the p.d.f. of Wn, n = 1, . . . , 1000 is zero-mean Gaussian with σW = κσX , where κ = 5.

For the clean data case, Yn = Xn.

Figure 4.22 plots the parameter estimates of the proposed BIP τ -estimator for the

ARMA(2,1) process given in [139], evaluated over 100 Monte Carlo runs. It can be seen

that the estimator shows excellent performance for the clean data case. The variability

of the parameter estimates is increased in presence of additive outliers, however, in

none of the Monte Carlo runs, the estimator broke down.

Example 2: ARMA(2,2)
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Figure 4.22: Example of parameter estimation of an ARMA(2,1) [139] with a =
(1.5, 0.625)T , b = −0.5, σZ = 1, µZ = 0, N = 1000. (top) clean data case Yn = Xn

(bottom) isolated additive outliers with probability of contamination ε = 0.05 and amplitude
σW = κσX , where κ = 5.

As a second example, we consider the ARMA(2,2) process that, for the clean data, case

was investigated in [153]. Here, Xn has the following parameters: a = (−1.65, 0.845)T,
b = (−1.112, 0.596)T, σZ = 1.112, µZ = 0, N = 1000. The outliers again follow

the isolated additive outlier model with V ε
n having the same parameters, as for the

ARMA(2,1) study.

Figure 4.23 plots the parameter estimates of the proposed BIP τ -estimator for the

ARMA(2,2) process given in [153] evaluated over for 100 Monte Carlo runs. Figure 4.24

shows the reduced statistics with missing data refinement, i.e., computing an ML-
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estimate after a 3-σ̂τ (Z
BIP(θ̂τ )) rejection. It can be seen that, with this refinement, the

estimator is nearly able to maintain the performance obtained in the clean data case

in presence of outliers.
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â1,τ

a2
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Figure 4.23: Example of parameter estimation of an ARMA(2,2) [153] with a =
(−1.65, 0.845)T , b = (−1.112, 0.596)T , σZ = 1.112, µZ = 0, N = 1000. (top) clean data
case Yn = Xn (bottom) isolated additive outliers with probability of contamination ε = 0.05
and amplitude σW = κσX , where κ = 5. The plots show the procedure using reduced
statistics only.

4.6.3.3 Fast BIP τ Robust Spectrum Estimation

In this Section, we give an example of how the fast BIP τ -estimator can be used to

obtain robust spectrum estimates. We compare the obtained results for the ARMA(2,2)
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Figure 4.24: Example of parameter estimation of an ARMA(2,2) [153] with a =
(−1.65, 0.845)T , b = (−1.112, 0.596)T , σZ = 1.112, µZ = 0, N = 1000. (top) clean data
case Yn = Xn (bottom) isolated additive outliers with probability of contamination ε = 0.05
and amplitude σW = κσX , where κ = 5. The plots depict the reduced statistics with missing
data refinement.

process [153] with simulation parameters, as defined above. The proposed estimator

is compared to (i) the classical Bartlett estimator, (ii) a simple nonparametric robust

estimator described in [8] that replaces the sample averages in the Bartlett estimator

by robust location estimates and (iii) the ℓ1-Bartlett estimator that is based on the

ℓ1-periodogram estimator proposed by [126] which interprets the periodogram as the

least-squares solution of a (nonlinear) harmonic regression and replaces the ℓ2-norm

minimization by an ℓ1-norm minimization. This estimator is a special case of the

M-periodogram proposed by [154], where the ℓ2-norm cost function is replaced by an
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M-estimation cost function.

The BIP τ spectrum estimate is based on the robustly estimated ARMA parameters,

i.e., for a wide sense stationary process Xn, the ARMA(p, q) BIP τ spectrum estimate

is given by

ĈBIP−ARMA
XX (ejω, θ̂τ ) =

σ̂2
τ (Z

BIP(θ̂τ ))

2π

∣∣∣1 +
∑q

k=1b̂ke
−jωk

∣∣∣
2

|1 +∑p
k=1âke

−jωk|2
.

with the parameter estimates θ̂τ as given in Eq. (4.45) and σ̂τ (Z
BIP(θ̂τ )) computed

as in Eq. (4.46). Figure 4.25 plots the power spectral density estimates averaged

over 100 Monte Carlo runs along with the true spectral density for the clean data

and additive outlier cases. It can be noticed that only the fast BIP τ -estimator and

the ℓ1-periodogram estimator [126] provide similar results in both noise conditions.

Furthermore, in case of additive outliers, these two estimators provide results that are

quite close to the true spectrum. In all cases, the fast BIP τ -estimator is closest to the

true spectrum.
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Figure 4.25: Example of spectrum estimation of an ARMA(2,2) [153] with a =
(−1.65, 0.845)T , b = (−1.112, 0.596)T , σZ = 1.112, µZ = 0, N = 1000. The power spectral
density estimates are averaged over 100 Monte Carlo runs. (top) clean data case Yn = Xn and
(bottom) isolated additive outliers with probability of contamination ε = 0.05 and amplitude
σW = κσX , where κ = 5.
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4.7 Robust Model Order Selection for ARMA

Models

A fundamental task when fitting an ARMA model to real-world data is the selection of

the autoregressive and moving-average orders. As real-world data frequently contains

outliers and artifacts, robust model order selection becomes crucial. Robust model

order selection aims at finding a suitable statistical model that descirbes the majority

of the data while preventing atypical observations (outliers) from having overriding

influence on the final conclusions.

In the classical non-robust setting, order determination for ARMA models is a diverse

field of research that is scattered over several scientific disciplines. Up to date, no single

general method has been established that is superior for all purposes. As with general

order selection problems, methods have been classified into statistical hypothesis test-

ing, methods based on the analysis of (extended) autocorrelation functions, methods

based on prediction errors and methods based on information criteria, amongst others.

Literature on robust order determination for ARMA models is much more sparse,

especially in presence of additive outliers. The demand for robust order selection

methods, however, has been repeatedly stated as an important issue that needs to be

addressed, e.g.:

1. “Although, some convincing examples of the use of a proposed robust order-

selection rule based on BIFAR estimates may be found ..., careful studies of the

problem are needed.” [116]

2. “Many other theoretical as well as empirical problems should be investigated. For

example, how sensitive are some of the order-determination methods to devia-

tions from the familiar but restrictive assumption that the white noise process

is Gaussian distributed? How robust are the various methods in the presence of

outliers and bad data? It is our hope and expectation that these problems will be

solved in the very near future.” [155]

3. “One important problem that will be only briefy mentioned here is that of the

robust model selection.” [123]

4. “... un autre travail de recherche qui est de dériver un critère de selection d’ordre

robuste...” [128]

In this thesis, we focus our attention on robust model order selection based on infor-

mation criteria.
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4.7.1 Classical Model Order Selection Using Information Cri-

teria

The classical information criteria for Gaussian ARMA models discussed in this Section

all share the general form

log(σ̂2
ML(Z(θ̂ML)))︸ ︷︷ ︸
data fit

+ α(p, q, N)︸ ︷︷ ︸
model complexity penalty

(4.47)

Here, α is a penalty term that depends on p, q and N . The following table sums up

the penalty terms of some important classical information criteria.

α(p, q, N)

AIC [39] 2(p+q)
N

AICc [13] 2(p+q)
N−(p+q)−2

SIC [42] p+q
N

log(N)

HQ [44] 2(p+ q) log(log(N))
N

Table 4.2: Penalty terms α(p, q,N) of classical information criteria to select ARMA(p, q)
models.

4.7.2 Robust ARMA Model Selection

Figure 4.26 illustrates the model order selection for an AR(2) process with a =

(0.7,−0.4), given N = 200 samples, in the presence of isolated additive outliers with

probability of contamination ε = 0.05 and amplitude σW = κσX , where κ = 5. The

parameters of the robust data fit are estimated with the BIP τ -estimator. The penalty

is of the SIC type. The robust criterion consists of the superposition of a robust data

fit term and a model complexity penalty and has its minimal value at the true AR

order of p = 2.

4.7.2.1 Existing Approaches for Robust ARMA Model Selection

To the best of our knowledge, robust model order selection for dependent data in pres-

ence of additive outliers has not been treated much in the robust statistics community
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Figure 4.26: Example of model order selection for an AR(2) process. The robust criterion
consists of the superposition of a robust data fit term and a model complexity penalty and
has its minimal value at the true AR order of p = 2.

with the notable exceptions of [8,12,53,156–159] in case of AR processes and [160] for

ARMA processes. These are briefly reviewed in the sequel.

Existing Approach 1: “Criterion based on a robust likelihood obtained with robustly

filtered estimates”

The approach by [158] is based on robust filters and yields criteria via a robust likeli-

hood

log(f(y|p, θ̂f)) = −N
2
log(2π)− 1

2

N∑

n=p+1

log(σ2
n)−

1

2

N∑

n=p+1

ρ

(
Zf
n(θ̂

f
)

σn

)
.

In this equation, θ̂
f
is obtained by sequentially maximizing the robust likelihood as a

function of the partial autocorrelations with a Newton-Raphson method. The predic-

tion error innovations scale is obtained from the filter recursions, see Eq. (4.25), and

ρ(·) is chosen to be Hampel’s two part re-descending.

This, for autoregressive processes, gives a Schwarz-type criterion [158]

SICf(p) = −2 log(f(y|p, θ̂f)) + p log(N)

and an Akaike-type criterion [158]

AICf(p) = −2 log(f(y|p, θ̂f )) + 2p.
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Further criteria of this type, e.g., [13, 44], can be found by varying the penalty term.

The approach by [158] is applicable to AR(p) processes and can be extended to

ARMA(p, q) processes, by using a robust ARMA filter, see Eq. (4.27), however, the

asymptotic analysis and robustness properties are not tractable in this case.

Existing Approach 2: “Criterion based on M-estimation”

The approach by [156, 157] is based on M-estimators. The order of an AR process is

selected by the candidate order p that minimizes

RAICM(p) =
N∑

n=p+1

ρ

(
Zn(θ̂M)

σ̂M

)
+ α(p).

The penalty term used by [156] is

α(p) = 2p

and [157] suggests

α(p) = tr(E−1
1 E2),

where

E1 := EF [ψ
′

(
Zn(θ̂M)

σ̂M

)
(Yn−1, . . . , Yn−p)(Yn−1, . . . , Yn−p)

T]

and

E2 := EF [ψ
2

(
Zn(θ̂M)

σ̂M

)
(Yn−1, . . . , Yn−p)(Yn−1, . . . , Yn−p)

T].

This is the extension of Eq. (2.19) to AR models.

The above approach is limited in its applicability to robust ARMA model order selec-

tion, since the BP of the M-estimator for ARMA(p, q) processes is zero, and even for

AR(p) processes, it is limited to 0.5/(p+ 1).

Existing Approach 3: “Criterion based on a robustly estimated innovations scale

obtained with robustly filtered estimates”

A further preliminary suggestion has been made by [8], who suggest the following AIC

type criterion

AICfτ (p) = log(σ̂2
τ (Z

f
τ (θ̂

f

τ ))) +
2p

N − p.
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Concerning the penalty term, the authors state that “it would be better to multiply the

penalty term by a factor depending on the choice of the scale and on the distribution of

the residuals. This area requires further research.”. As the distribution of the residuals

obtained by the filtered-τ -estimator θ̂
f

τ (see [8], p.271) is not known, this is, up to

now, an impossible task. Similar to the approach by [158], the approach by [8] can be

extended to ARMA(p, q) models by combining a robust ARMA filter (see Eq. (4.27))

with a τ -estimator of scale, as described in [8], p.290.

Existing Approach 4: “Criterion based on a weighted likelihood”

A different approach has been proposed by [53], where a weighted likelihood is found

via

WAIC(p, q) = −2
N∑

n=1

wn log(fn(y|p, q, θ̂
w
)) + 2(p+ q).

Here, the weighted likelihood estimate θ̂
w
is computed with weights obtained by ad-

justing the Pearson residuals, based on an outlier classification scheme and on kernel

density estimation, for details the reader is referred to [53].

4.7.2.2 Robust BIP τ ARMA Model Selection

In the sequel, we describe and compare a set of possible model order selection criteria

that are based on the proposed robust BIP τ -estimator.

Proposed Approach 1: “Criterion based on a robust likelihood obtained with the

BIP τ -estimate”

This approach extends the ideas of Existing Approach 1 by estimating a robust like-

lihood f(y|p, q, θ̂τ ) with the BIP τ -estimator. The criterion trades off model fit, as

measured by this robust likelihood, with complexity as penalized by α(p, q). An ad-

vantage, compared to Existing Approach 1, is that the distribution of the residuals for

the BIP τ -estimator can be derived.

The form of this criterion is given by

ICRBIPτ
LR (p, q) = −2 log(f(y|p, q, θ̂τ ))︸ ︷︷ ︸

rob. data fit

+ α(p, q)︸ ︷︷ ︸
model complexity penalty

(4.48)
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and includes, e.g., criteria of the Schwarz-type

SICRBIPτ
LR (p, q) = −2 log(f(y|p, q, θ̂τ )) + (p+ q) log(N) (4.49)

and Akaike-type

AICRBIPτ
LR (p, q) = −2 log(f(y|p, q, θ̂τ )) + 2(p+ q) (4.50)

by varying α(p, q). Here the robust likelihood is given by

log(f(y|p, q, θ̂τ )) = −N
2
log(2π)− N

2
log(σ̂2

τ (Z
BIP(θ̂τ ))) (4.51)

−1
2

N∑

n=p+1

ρτ

(
ZBIP
n (θ̂τ )

σ̂τ (ZBIP(θ̂τ ))

)
. (4.52)

An approximation of the posterior probability of the ARMA(p, q) model can be ob-

tained via

P (ARMA(p, q)|y) = P (y|ARMA(p, q))P (ARMA(p, q))
∑K

k=0

∑M
m=0 P (y|ARMA(k,m))P (ARMA(k,m))

, (4.53)

where P (y|ARMA(p, q)) ≈ SICτ (p, q) and P (ARMA(p, q)) is the prior probability of

the ARMA(p, q) model.

Proposed Approach 2: “Extension of the criterion based on M-estimation to τ -

estimation”

Existing Approach 2 can be extended to τ -estimation by using the equivalence given

in Eq. (2.15). In this way, an RAIC-type criterion can be combined with an estimator

that is more robust for ARMA parameter estimation than the M-estimator used in

RAICM . This gives

RAICBIPτ (p, q) =
N∑

n=p+1

ρτ

(
ZBIP
n (θ̂τ )

σ̂τ (ZBIP(θ̂τ ))

)
+ α(p, q),

where α(p, q) is given by

α(p, q) = 2(p+ q)

or, in accordance with Eq. (4.7.2.1)
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α(p, q) = tr(E−1
1,τ E2,τ ),

where

E1,τ := EF [ψ
′
τ

(
ZBIP
n (θ̂τ )

σ̂2
τ (Z

BIP(θ̂τ ))

)
(Yn−1, . . . , Yn−p)(Yn−1, . . . , Yn−p)

T]

and

E1,τ := EF [ψ
2
τ

(
ZBIP
n (θ̂τ )

σ̂2
τ (Z

BIP(θ̂τ ))

)
(Yn−1, . . . , Yn−p)(Yn−1, . . . , Yn−p)

T].

This is the extension of the criterion defined in Eq. (2.19) to BIP τ -estimators for

ARMA models. In our view, a conceptual weakness exists with this criterion: large

values in the innovations estimates due to underestimation of the model order are down-

weighted by the re-descending ρτ -function, instead of being penalized. This leads to a

poor performace, even for clean data, as seen, e.g., in Table 4.3. Future research will

be necessary to make this criterion practically useful.

Proposed Approach 3: “Criterion based on the τ -estimate of the BIP τ innovations

scale”

Similarly to the Existing Approach 3, a robust criterion can be obtained via a robustly

estimated innovations scale estimate, which yields

ICBIPτ
σ̂τ (p, q) = log(σ̂2

τ (Z
BIP(θ̂τ ))) + α(p, q),

where choosing α(p, q) as in Table 4.2 yields the robust extensions to existing model

order selection criteria. The performance of this criterion is expected to be similar to

that of Existing Approach 3. An advantage, in terms of computational cost, compared

to computing the filtered-τ estimates is obtained, through deriving all ARMA candidate

models from the long AR approximation.

Proposed Approach 4: “Criterion based on a weighted likelihood obtained with the

BIP τ -estimate”

In this approach, we define a weighted likelihood type criterion based on the residuals

obtained with the BIP τ -estimate. This adapts the ideas of Existing Approach 4, in a

way that the BIP τ -estimator can be applied.

WAICBIPτ (p, q) = −2
N∑

n=1

wn log(fn(y|p, q, θ̂τ )) + 2(p+ q),
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where

log(fn(y|p, q, θ̂τ )) = −
N

2
log(2π)− N

2
log(σ̂2

τ (Z
BIP(θ̂τ )))−

∑N
n=p+1(Z

BIP
n (θ̂τ ))

2

σ̂2
τ (Z

BIP(θ̂τ ))
.

Details on possible choices and calculation of the weights wn are given in [160]. The key

idea is to compute weights that down-weight the influence of outlying observations on

the WAICτ (p, q). As described in [160], weights can be obtained via Pearson residuals

and a residual adjustment function that operates on Pearson residuals and allows to

create different measures of data fit, such as, e.g., the squared Hellinger or the Kullback

Leibler.

4.7.3 Simulations

First simulated examples for ARMA model order selection are given in this Section.

Further extensive simulations, as well as theoretical analysis will be necessary to eval-

uate the performance of the proposed criteria. This is part of current and future work.

Example 1: Model Order Selection for AR(2)

As a first example, we evaluate the proposed and some existing model order selection

criteria for the autoregressive model described in [158]. Xn has the following param-

eters: a = (−0.7, 0.4)T, σZ = 1, µZ = 0, N = 200. The outliers follow the isolated

additive outlier model with V ε
n (see Eq. (4.17)), as used in the simulations in this Sec-

tion. In this setup, the probability of contamination ε is varied from 0 to 0.25, the

outlier positions ξεn are Bernoulli distributed and the p.d.f. of Wn, n = 1, . . . , 200, is

zero-mean Gaussian with σW = κσX , where κ = 5. For the clean data case, Yn = Xn.

Table 4.3 displays the empirical probabilities of selecting the true model order, obtained

by averaging the result of 100 Monte Carlo runs. Candidate orders ranged from p =

0, 1, . . . , 5. The proposed criterion that is based on BIP τ -estimation and a robust

likelihood SICRBIPτ
LR outperforms all competitors by a margin. The classical SIC, which

uses ML-estimation, as well as the SICσ̂τ and WSICτ only provide high empirical

probabilities of selecting the true model order for the clean data case.
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MOS Criterion ε = 0 ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20 ε = 0.25
SIC 1.00 0.28 0.03 0.01 0.00 0.00

SICσ̂RA
0.45 0.32 0.16 0.21 0.18 0.17

SICRBIPτ
LR 1.00 0.91 0.74 0.45 0.26 0.13

RSICBIPτ 0.01 0.00 0.00 0.00 0.00 0.00

SICBIPτ
σ̂τ 0.93 0.34 0.02 0.01 0.01 0.00

WSICBIPτ 0.96 0.32 0.01 0.01 0.01 0.00

Table 4.3: Empirical probabilities of selecting the true model order for the AR(2) model [158]
with a = (−0.7, 0.4)T, σZ = 1, µZ = 0, N = 200 in dependence of the probability of
contamination ε. The proposed criterion based on BIP τ -estimation and a robust likelihood
SICRBIPτ

LR outperforms all competitors by a margin. Best results are highlighted by black
bold font.

Example 2: Model Order Selection for ARMA(1,1)

As a second example, we evaluate the proposed and some existing model order selection

criteria for the ARMA described in [123]. Xn has the following parameters: a = 0.5,

b = −0.5, σZ = 1, µZ = 0, N = 1000. The outliers follow the isolated additive outlier

model with V ε
n , see Eq. (4.17), as used in the simulations in this Section. In this setup,

the probability of contamination ε is varied from 0 to 0.05, the outlier positions ξεn are

Bernoulli distributed and the p.d.f. of Wn, n = 1, . . . , 1000 is zero-mean Gaussian with

σW = κσX , where κ = 5. For the clean data case, Yn = Xn. Candidate orders ranged

from p = 0, 1, . . . , 7 and q = 0, 1, . . . , 7, resulting in 64 candidate models, in total.

Table 4.4 displays the empirical probabilities of selecting the true model order, obtained

by averaging the result of 100 Monte Carlo runs. Again, in case of outliers, the proposed

criterion based on BIP τ -estimation and a robust likelihood SICRBIPτ
LR outperforms all

competitors by a margin. An interesting observation is the poor performance of the

criterion based on a robust τ -estimate of scale (SICσ̂τ ). In accordance with [8], we

agree that the penalty term should be made dependent on the choice of the scale and

the distribution of the residuals, which requires further research.

Figure 4.27 displays the empirical probabilities of selecting the candidate models with

p = 0, 1, . . . , 7 and q = 0, 1, . . . , 7 for the proposed criterion based on BIP τ -estimation

and a robust likelihood SICRBIPτ
LR . Both in the clean data case (top plot) and for

additive outliers that occur with a contamination probability ε = 0.05, the criterion

performs nearly optimal and selects the true model with empirical probabilities of 0.96

and 0.92, respectively. In both cases, the probability of under-estimating the model

order is equal to zero.
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Clean Data AO(ε = 0.05)
SIC 0.97 0.13

SICσ̂RA
0.15 0.04

SICRBIPτ
LR 0.96 0.92

SICBIPτ
σ̂τ 0.5 0.79

WSICBIPτ 0.58 0.70

Table 4.4: Empirical probabilities of selecting the true model order for the ARMA(1,1)
model [123] with a = 0.5, b = −0.5, σZ = 1, µZ = 0, N = 1000. For the clean data case,
ε = 0, and in the additive outlier scenario, the contamination probability ε = 0.05.

Figure 4.28 plots the empirical probabilities of selecting the candidate models for the

classical SIC criterion, which performs nearly optimal for the clean data case (top

plot), however, under-estimates the model order in presence of additive outliers. The

empirical probabilities of selecting the true model are 0.97 and 0.13 respectively. The

probability of under-estimating the model order in the case of additive outliers is 0.83.

Example 3: Model Order Selection for ARMA(2,1)

As a third example, we evaluate the proposed and some existing model order selection

criteria for the ARMA model described in [136]. Xn has the following parameters:

a = (0.39, 0.30)T, b = −0.9, σZ = 1, µZ = 0, N = 1000. The outliers follow the

isolated additive outlier model with V ε
n (see Eq. (4.17)), as used in the simulations in

this Section. In this setup, the probability of contamination ε is varied from 0 to 0.05,

the outlier positions ξεn are Bernoulli distributed and the p.d.f. of Wn, n = 1, . . . , 1000

is zero-mean Gaussian with σW = κσX , where κ = 5. For the clean data case, Yn =

Xn. Candidate orders ranged from p = 0, 1, . . . , 7 and q = 0, 1, . . . , 7, resulting in 64

candidate models, in total.

Table 4.5 displays the empirical probabilities of selecting the true model order, ob-

tained by averaging the results of 100 Monte Carlo runs. Again, in case of outliers,

the proposed criterion based on BIP τ -estimation and a robust likelihood SICRBIPτ
LR

outperforms all competitors by a margin. For the classical SIC, in case of additive

outliers, the probability of estimating the true model is zero and the probability of

under-estimating the model order is 0.93.
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Figure 4.27: The empirical probabilities of selecting the candidate models with p =
0, 1, . . . , 7 and q = 0, 1, . . . , 7 for the proposed criterion based on BIP τ -estimation and a
robust likelihood SICRBIPτ

LR . The true model is the ARMA(1,1) model by [123]. (top) clean
data case; (bottom) results in presence of additive outliers that occur with a contamination
probability ε = 0.05.
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Figure 4.28: The empirical probabilities of selecting the candidate models with p =
0, 1, . . . , 7 and q = 0, 1, . . . , 7 for the classical SIC criterion. The true model is the ARMA(1,1)
model by [123]. (top) clean data case; (bottom) results in presence of additive outliers that
occur with a contamination probability ε = 0.05.

Clean Data AO(ε = 0.05)
SIC 0.97 0.00

SICσ̂RA
0.85 0.03

SICRBIPτ
LR 0.95 0.86

SICBIPτ
σ̂τ 0.94 0.77

WSICBIPτ 0.95 0.65

Table 4.5: Empirical probabilities of selecting the true model order for the ARMA(2,1)
model [136] with a = (0.39, 0.30)T , b = −0.9, σZ = 1, µZ = 0, N = 1000. For the clean data
case, ε = 0, and in the additive outlier scenario, the contamination probability ε = 0.05.
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4.8 Summary and Conclusions

In this Chapter, we briefly reviewed robustness concepts and some existing estimators

for dependent data. We then proposed a novel robust and efficient estimator called

the BIP τ -estimator. We performed statistical robustness analysis of the proposed

estimator and also established the conditions required for the estimator to be consis-

tent. We next derived the influence function of the BIP τ -estimator for an AR(1)

model contaminated by additive outliers. The boundedness and continuity of the in-

fluence function proved the qualitative robustness of the proposed estimator. We then

estimated the maximum bias curve of the BIP τ -estimator and compared it to some ex-

isting robust and non-robust estimators. We also defined the quantile bias curve, which

displays additional information on the robustness of the estimator for a given fraction

of outlier-contamination at a finite sample size. Finally, we evaluated the breakdown

point of the proposed BIP τ -estimator by means of the maximum bias curve. It was

shown to possess the maximum possible breakdown point of 0.5 for the AR(1) model,

which proves the quantitative robustness of the proposed estimator.

After analyzing the statistical and robustness properties, we presented a fast algo-

rithm to robustly obtain stationary and invertible ARMA parameter estimates with

the BIP τ -estimator. The estimator minimizes the robust and efficient τ -estimate of

scale of the innovations estimates from the BIP τ -estimator. The key idea of this algo-

rithm is to first compute a robust initial estimate of an autoregressive approximation

from which the ARMA model parameters are derived. In this way, the ARMA model

parameters are derived from the long AR approximation without further use of the

outlier-contaminated observations. This is computationally very attractive, since the

computational cost of the ARMA parameter estimation approximately reduces to that

of computing the long AR model.

This advantage multiplies, when performing robust model order selection for ARMA

models, since all the candidate models can be derived from the long AR approximation,

while other robust estimators require robustly computing the estimates for all ARMA

models, individually. Different robust model order selection criteria that are based on

the BIP τ -estimator were derived and we have shown via extensive simulations that

the most robust criterion is that based on a robust likelihood.

Future work will consider the adaptation of the penalty term in model order selection

criteria based on the distribution of the residuals, which is still an open question.

Furthermore, re-sampling based robust model order selection methodologies, which

were not treated in this thesis, will be adapted to the BIP τ -estimator. On this topic,
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we recently submitted our first contribution in robust bootstrap techniques [161]. In

the area of robust stationarity testing, we have recently undertaken some preliminary

steps [162]. This interesting research area is closely related to problems, such as robust

spectrum estimation and outlier-cleaning, which can be addressed with the BIP τ -

estimator.

The proposed BIP τ -estimator will also be applied to a real-world problem in a biomed-

ical application. The necessary data for this evaluation has already been collected and

includes, amongst others, the intracranial pressure and mean arterial pressure collected

in a large clinical study. Further improvement compared to the methodology described

in Section 4.3.2, as well as novel problem evaluations along the line of [163, 164] to be

expected.

First research is currently being conducted on robust vector-valued AR parameter

estimation [165,166] and a major and difficult step will be to extend the BIP τ -estimator

to the multi-variate setting. Recently, we have conducted a first promising step in the

multi-variate analysis of non-stationary data [163]. The proposed approach is based

on a vector valued robust Kalman filter. An extension of the BIP τ -estimator or other

computationally feasible robust estimators to such problems seems to be possible and

is currently under investigation.
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Chapter 5

Summary, Conclusions and Future Work

5.1 Summary and Conclusions

This doctoral project analyzed, introduced and improved robust estimation methodolo-

gies to solve current and future signal processing problems in the areas of robustness

when dealing with multi-sensor data, robust model selection and robustness for de-

pendent data. The work was applied to solve practical signal processing problems in

different areas of biomedical and array signal processing.

In particular, for uni-variate independent data, a robust criterion was presented to

select the model order in a linear uni-variate regression setup with an application

to corneal-height data modeling. With the proposed robust criteria, the correct radial

model order of the Zernike polynomial of the corneal topography map could be selected,

even if the measurement conditions for the videokeratoscopy were poor, i.e., the quality

of the pre-corneal tear film was bad and the eyelid aperture was not sufficiently wide.

We then defined robust model order selection schemes for multi-dimensional data. The

results presented in this thesis were based on the MM-estimator of the covariance

of the r-mode unfoldings of the complex-valued data tensor. In detail, we proposed

and evaluated the performance of robust R-dimensional extensions of some well-known

information criteria. In the context of source enumeration, we provided simulation

examples for 2-D and 3-D uniform rectangular arrays. Both in the case of Gaussian

noise and for a brief sensor failure, the proposed robust multi-dimensional schemes

outperformed their matrix computation based counterparts significantly.

In the context of robustness for multi-sensor data, we next investigated the task of es-

timating the complex-valued amplitude of sinusoidal signals in a completely unknown

heavy-tailed symmetric spatially and temporally i.i.d. noise environment. A selection

of non-robust and robust estimators were compared to a semi-parametric robust estima-

tor. The performance of all robust estimators was similar to the optimal ML-estimator

in the Gaussian noise case. For increasing levels of impulsiveness and contamination

Huber’s M-estimator was outperformed by the τ -estimator and the proposed semi-

parametric robust estimator, which performed best in all impulsive noise scenarios.

A third research focus concerning multi-sensor data was that of analyzing the robust-

ness of spatial time-frequency distribution (STFD) estimators. Here, we provided a
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robustness analysis framework that is based on the influence function. The influence

function of different robust and non-robust STFD matrix estimators was given and the

analytical expressions for the influence functions of different types of STFD matrix esti-

mators were provided. Although in this doctoral project, we treated mainly the robust

STFDs, this analysis can be applied to any type of quadratic time-frequency distribu-

tion. The influence functions for the robust estimators were shown to be bounded and

continuous, which confirms their qualitative robustness. In addition to the asymptotic

analysis, we also gave a definition for the finite sample counterpart of the influence

function. The simulation results for the finite sample influence function confirmed the

analytical results and show the insensitivity to small departures in the distributional

assumptions for the robust techniques.

A large portion of this doctoral work concerned the topic of obtaining and analyzing

robust estimators in the dependent data setup. First, some practical issues concerning

the detection, and robust estimation in presence of patient motion induced artifacts

in biomedical measurements, were addressed. In particular, we provided an artifact-

cleaning algorithm for the electrocardiogram (ECG), which is a powerful non-invasive

tool containing information that helps in the diagnosis of a wide range of heart condi-

tions. This algorithm, which works in the stationary wavelet domain, enables the moni-

toring of patients with portable ECG recording devices that suffer severely from patient

motion induced artifacts. Since the portable devices are equipped with a transmitter

in order to communicate health related information and are able to trigger alarms in

case of life threatening situations, robustness is a fundamental requirement.

A second real-world problem addressed in this doctoral project was that of forecasting

the intracranial pressure (ICP) levels for patients who suffered a traumatic brain injury.

This enables active and early interventions for more effective control of ICP levels. We

proposed a methodology which uses combined artifact detection and robust estimation

after a data transformation into the empirical mode domain.

Motivated by plethora of practical applications, we then focused on deriving and ana-

lyzing sophisticated robust estimation and model selection techniques for autoregressive

moving-average (ARMA) models. A fast algorithm as well as a detailed statistical and

robustness analysis of a novel robust and efficient estimator were given. For the pro-

posed estimator, which is termed the bounded influence propagation (BIP) τ -estimator,

we computed a complete analysis, which included conditions for the consistency, as well

as qualitative and quantitative robustness analysis by means of robustness measures,

such as the influence function, the maximum bias curve and the breakdown point. The

fast algorithm of the proposed estimator is based on first computing a robust initial
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estimate of an autoregressive approximation from which the ARMA model parame-

ters are derived. In this way, the ARMA model parameters are derived from the long

AR approximation without further use of the outlier contaminated observations. For

this reason, the estimator is very suitable and attractive for ARMA model selection

purposes, since the computational cost of estimating all the candidate ARMA models,

approximately reduces to that of computing one long autoregressive model. In the

area of model selection for ARMA models, we proposed and compared different robust

model order selection criteria that are based on the BIP τ -estimator.

5.2 Future Directions

In addition to the open research questions detailed in the end of each Chapter, we

have identified future research directions and, in some cases, undertaken first steps to

address them.

One major future research concerns robust bootstrap methods. The bootstrap is a

powerful computational tool for statistical inference that allows for the estimation of

the distribution of an estimate without distributional assumptions on the underlying

data, reliance on asymptotic results or theoretical derivations. However, robustness

properties of the bootstrap in the presence of outliers are very poor, irrespective of

the robustness of the bootstrap estimator. This motivates the need to robustify the

bootstrap procedure itself. In [161], we present first improvements of existing robust

bootstrap methods, as well as a new methodology, which we call the robust starting

point bootstrap (RSPB). The first application of the RSPB we investigated, is the

problem of geolocation in harsh mixed line-of-sight (LOS) / non-line-of-sight (NLOS)

environments. Here, we extended point estimates to distribution estimates, hence

extracting additional information from a given sample, without additional data or

assumptions.

Figure 5.1 shows an example of RSPB distribution estimates of two location estimates.

The left plot of Figure 5.1 displays the RSPB distribution estimate (contour plot) of

the MM-estimate, the MM-point estimate and the true position of the MT for an LOS

scenario, while the right plot depicts an NLOS scenario with a NLOS probability of

0.4. Unlike for the classical bootstrap, the RSPB distribution estimate inherits the

robustness properties of the underlying MM-estimate and is similar in terms of area to

the LOS case.

The proposed improvements and the new method compare favorably to existing tech-

niques, as measured by the maximum bias curve and empirical coverage probabilities of
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the confidence intervals derived from the bootstrap, for details, see [161]. Further im-

provements, applications, analysis and development of new advanced robust bootstrap

methods are future research topics. This is also highly relevant for bootstrap-based

robust model order selection. Initially, we plan to investigate extensions of existing ap-

proaches for i.i.d. data, and then to propose novel and robust bootstrap model order

selection schemes for dependent data.

A second significant research area will concern robustness for distributed signal process-

ing. Distributed processing without a central processing unit (fusion center) [167–170]

is an emerging and highly active research field. A future research direction will be

the integration of robustness concepts into the framework of distributed detection and

estimation. Robustness, while highly demanded by the application, is only now be-

ginning to be considered in this young research area [171, 172]. In distributed signal

processing applications, robustness is not limited to deviations from distributional sta-

tistical assumptions on the sensor noise, but also includes robustness against sensor

failures which lead to erroneous, noisy or incomplete data [7, 72]. Furthermore, in a

wireless system, network state information may be imprecise leading to a severe per-

formance degradation if robustness is not properly taken into account in the algorithm

design. Only integrating robustness into distributed signal processing will truly enable

its application in critical real-world scenarios.

This doctoral project and resulting discussions have provided evidence, that robustness,

today, is more important than ever before, and will form the basis of countless research

projects to be conducted in the future.
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Figure 5.1: RSPB distribution estimate of a geolocation estimate for a LOS scenario and
an NLOS scenario with NLOS probability of 0.5. The contour plot is plotted in 10% steps.
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ACM approximate conditional mean
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BC bias curve
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MC Monte Carlo

MDL minimum description length

MEG magnetoencephalography

MIMO multiple-input multiple-output

ML maximum likelihood

MRE median-of-ratios-estimator

MRI magnetic resonance imaging
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NLOS non-line-of-sight

p.d.f. probability density function
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SIC Schwarz information criterion
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T

n) data point in the linear regression model (Chapter 2)
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a
(G)
rob (p) computed analogously to a(G)(p) with the difference that
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covariance matrix estimator (Chapter 3)
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(G)
rob (p) computed analogously to g(G)(p) with the difference that
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R̂
(r)

X̃X̃,robust
robust covariance matrix of the r-mode unfolding of the
data tensor X (Chapter 3)
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Nc(x;µ, σ2) complex-valued Gaussian distriubution with mean µ and
variance σ2 (Chapter 3)
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Dxx(t, f) STFD matrix of the signal x(t) (Chapter 3)

D̂xpxq(t, f) a bilinear time-frequency distribution estimate of Co-
hen’s class (Chapter 3)

L window length of the PVWD (Chapter 3)

d(t, l) complex-valued distance (Chapter 3)

D̄xpxq(t, l, zp, zq) Monte Carlo estimate of EFǫ

[
D̂xpxq(t, f)

]
(Chapter 3)

IF(zp, zq; D̂xpxq(t, f), F ) influence function of the STFD estimator D̂xpxq(t, f),
evaluated at the nominal distribution F for outliers zp, zq
(Chapter 3)

EIF(zp, zq; D̂xpxq(t, f), F ) empirical influence function of the STFD estimator
D̂xpxq(t, f), evaluated at the nominal distribution F for
outliers zp, zq (Chapter 3)

Ap(z) polynomial representation of autoregressive model of or-
der p (Chapter 4)

Bq(z) polynomial representation of moving-average model of
order q (Chapter 4)

B∞(z) polynomial representation of moving-average model of
infinite order (Chapter 4)

p0 order of long autoregressive model that approximates
the ARMA model (Chapter 4)

ĉXX(κ) estimate of the covariance function of X (Chapter 4)

ξεn binary series that indicates the presence (or absence) of
an outlier (Chapter 4)

ŝcleaned artifact-cleaned ECG signal (Chapter 4)

srecorded recorded ECG signal (Chapter 4)
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ŝoutliers additive outlier component in recorded ECG signal
(Chapter 4)

x non-stationary ICP measurement (Chapter 4)

ŝR reconstructed ICP signal (Chapter 4)

ŝF ICP signal forecast (Chapter 4)

IF(F ǫ
X,ξ,W ; θ̂) dependent data influence functional, i.e., functional

derivative at FX (Chapter 4)

F ǫ
X,ξ,W joint distribution of the processes Xn, ξn andWn (Chap-

ter 4)

X̂n|n state vector from state recursion of the robust filter
(Chapter 4)

Y f
n estimate of Xn obtained with a robust filter, given con-

taminated observations Yn = (Yn, Yn−1, . . . , Yn−p+1)
T

(Chapter 4)

Σ1
n first column of the prediction error covariance matrix

Σn (Chapter 4)

P n filtering error covariance matrix (Chapter 4)

W (x) = ψ(x)
x

weighting function of the filter (Chapter 4)

Ŷn|n−1 robust one step ahead prediction of Yn (Chapter 4)

Zf (θ) filtered innovation estimate (Chapter 4)

Median BC(ε) median bias curve, represents the MBC obtained in 50 %
of the cases as a function of ε (Chapter 4)

QxBC(ε) quantile bias curve, represents the MBC obtained in x %
of the cases as a function of ε (Chapter 4)

ZBIP(θ) BIP-ARMA innovations series (Chapter 4)

ZBIP(m)(ζ) memory-m BIP-AR(m) innovations estimate (Chap-
ter 4)

âm,m memory-m BIP-AR(m) parameter estimate (Chapter 4)

ζ0 coarse search grid for the grid search to minimize the
τ -estimate of scale (Chapter 4)

ζfine fine search grid for the grid search to minimize the τ -
estimate of scale (Chapter 4)

θ̂
(AR)

τ initial “long autoregressive” estimator of the ARMA pa-
rameters, given the long autoregressive approximation
(Chapter 4)

θ̂
(MA)

τ initial “long moving-average” estimator of the ARMA
parameters, given the long autoregressive approximation
(Chapter 4)
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θ̂
(CO)

τ initial “long covariance” estimator of the ARMA pa-
rameters, given the long autoregressive approximation
(Chapter 4)

θ̂
(RI)

τ initial “long inverse correlation” estimator of the ARMA
parameters, given the long autoregressive approximation
(Chapter 4)

θ̂τ final BIP τ -estimate of the ARMA parameters (Chap-
ter 4)

ZBIP
τ (θ̂τ ) final BIP τ -estimate of the innovations series (Chap-

ter 4)

σ̂τ (Z
BIP
τ (θ̂τ )) final BIP τ -estimate of the scale of the innovations series

(Chapter 4)

σ̂2
ML(Z(θ̂ML)) ML-estimate of the scale of the innovations series (Chap-

ter 4)

ĈBIP−ARMA
XX (ejω, θ̂τ ) BIP τ spectrum estimate based on the robustly esti-

mated ARMA-parameters (Chapter 4)

α(p, q, N) penalty term of information criteria, as a function of the
model orders p, q and the data length N (Chapter 4)

RAIC AR model order selection criterion based on M-
estimation (Chapter 4)

log(f(y|p, θ̂f )) robust log-likelihood of an AR(p) model obtained with
a robustly-filtered estimate (Chapter 4)

SICf Schwarz-type information criterion based on robustly-
filtered-estimate (Chapter 4)

AICf Akaike-type information criterion based on robustly-
filtered-estimate (Chapter 4)

AICfτ Akaike-type information criterion based on the τ -
estimate of scale obtained from a robustly-filtered τ -
estimate (Chapter 4)

WAIC information criterion based on a weighted likelihood
(Chapter 4)

f(y|p, q, θ̂τ ) robust likelihood for an ARMA(p, q) model obtained
with the BIP τ -estimator (Chapter 4)

ICRBIPτ
LR information criterion obtained from estimating a robust

likelihood with the BIP τ -estimator (Chapter 4)

SICRBIPτ
LR Schwarz-type information criterion obtained from esti-

mating a robust likelihood with the BIP τ -estimator
(Chapter 4)
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AICRBIPτ
LR Akaike-type information criterion obtained from esti-

mating a robust likelihood with the BIP τ -estimator
(Chapter 4)

P (ARMA(p, q)|y) approximation of the posterior probability of the
ARMA(p, q) model (Chapter 4)

RAICBIPτ extension of the Akaike-type model order selection crite-
rion based on M-estimation to τ -estimation (Chapter 4)

RSICBIPτ extension of the Schwarz-type model order selection cri-
terion based on M-estimation to τ -estimation (Chap-
ter 4)

ICBIPτ
σ̂τ information criterion based on the τ -estimate of scale

obtained from a BIP τ -estimate (Chapter 4)

SICBIPτ
σ̂τ Schwarz-type information criterion based on the τ -

estimate of scale obtained from a BIP τ -estimate (Chap-
ter 4)

WAICBIPτ weighted likelihood Akaike-type criterion based on the
residuals obtained with the BIP τ -estimate (Chapter 4)

WSICBIPτ weighted likelihood Schwarz-type criterion based on the
residuals obtained with the BIP τ -estimate (Chapter 4)

SICσ̂RA
information criterion based on the normalized MAD-
estimate of scale of the innovations estimate obtained
from a ranks-based-estimate (Chapter 4)
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static positioning in ultrasonic systems,” Sensors, vol. 9, no. 6, pp. 4211–4229,
2009.

[25] C. V. Stewart, “Robust parameter estimation in computer vision,” Siam Review,
vol. 41, no. 3, pp. 513–537, 1999.

[26] M. Ye, R. M. Haralick, and L. G. Shapiro, “Estimating piecewise-smooth optical
flow with global matching and graduated optimization,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 25, no. 12, pp. 1625–1630, Dec. 2003.

[27] L. Mili, M. G. Cheniae, and P. J. Rousseeuw, “Robust state estimation of electric
power systems,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 41, no. 5, pp.
349–358, May 2002.

[28] L. Thomas and L. Mili, “A robust GM-estimator for the automated detection
of external defects on barked hardwood logs and stems,” IEEE Trans. Signal
Process., vol. 55, no. 7, pp. 3568–3576, Jul 2007.

[29] C. G. Bénar, D. Schön, S. Grimault, B. Nazarian, B. Burle, Roth M., J. M.
Badier, P. Marquis, C-. Liegeois-Chauvel, and J. L. Anton, “Single-trial analysis
of oddball event-related potentials in simultaneous EEG-fMRI,” Human Brain
Mapp., vol. 28, no. 7, pp. 602–613, 2007.



Bibliography 145

[30] P. J. Huber, “Robust estimation of a location parameter,” Ann. Math. Statist.,
vol. 35, no. 1, pp. 73–101, 1964.

[31] P. J. Rousseeuw, “Least median of squares regression,” J. Am. Statist. Assoc.,
vol. 79, pp. 871–880, 1984.

[32] P. J. Rousseeuw and V. J. Yohai, “Robust regression by means of S-estimators,”
Lect. Notes Stat., vol. 26, pp. 256–272, 1984.
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[148] H. Künsch, “Infinitesimal robustness for autoregressive processes,” Ann. Statist.,
vol. 12, no. 3, pp. 843–863, 1984.

[149] M. G. Genton and A. Lucas, “Comprehensive definitions of breakdown points
for independent and dependent observations.,” J. Royal Statist. Soc. B, vol. 65,
no. 1, pp. 81–94, 2003.

[150] R. H. Jones, “Maximum likelihood fitting of ARMA models to time series with
missing observations,” Technometrics, vol. 22, no. 3, pp. 389–395, 1980.

[151] C. Masreliez, “Approximate non-Gaussian filtering with linear state and ob-
servation relations,” IEEE Trans. Autom. Control, vol. 20, no. 1, pp. 107–110,
1975.

[152] P. M. T. Broersen, “Autoregressive model orders for Durbin’s MA and ARMA
estimators,” IEEE Trans. Signal Proces., vol. 48, no. 8, pp. 2454–2457, Aug.
2000.

[153] P. J. Brockwell and R. A. Davis, Time series: theory and methods, Springer,
2006.

[154] V. Katkovnik, “Robust M-periodogram,” IEEE Trans. Signal Proces., vol. 46,
no. 11, pp. 3104–3109, 1998.

[155] Abraham B. Gould A. & Robinson L. (1985). de Gooijer, J. G., “Methods for
determining the order of an autoregressive-moving average process: A survey,”
Int. Stat.Review, vol. 53, no. 3, pp. 301–329, 1985.

[156] R. D. Martin, “Robust estimation of autoregressive models,” Directions in Time
Series, vol. 1, pp. 228–262, 1980.

[157] J. Behrens, Robuste Ordnungswahl für autoregressive Prozesse, Ph.D. thesis,
University of Kaiserslautern, Germany, 1991.

[158] Raftery A. E. Le, N. D. and R. D. Martin, “Robust Bayesian model selection for
autoregressive processes with additive outliers,” J. Amer. Stat. Assoc., vol. 91,
no. 433, pp. 123–131, 1996.

[159] E. Ronchetti, “Robustness aspects of model choice,” Statistica Sinica, vol. 7, pp.
327–338, 1997.

[160] C. Agostinelli, “Robust Akaike information criterion for ARMA models,” Ren-
diconti per gli Studi Economici Quantitativi, vol. 1, pp. 1–14, 2004.



154 Bibliography

[161] S. Vlaski, M. Muma, and A. M. Zoubir, “Robust bootstrap methods with an
application to geolocation in harsh LOS/NLOS environments,” in Submitted to
Proc. IEEE Int. Conf. Acoust. Speech Signal Process (ICASSP) 2014 in Florence,
Italy, 2014.

[162] J. Dagdagan, M. Muma, and A. M. Zoubir, “Robust testing for stationarity in
the presence of outliers,” in Submitted to Proc. IEEE Int. Conf. Acoust. Speech
Signal Process (ICASSP) 2014 in Florence, Italy, 2014.
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